L-2/T-2/URP

Date: 17/02/2018

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 BURP Examinations 2016-2017

Sub: ARCH 233 (Landscape Planning and Design)

Full Marks: 140

Time: 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks

SECTION - A

There are FOUR questions in this section. Answer any THREE.

	There are FOUR questions in this section. Answer any THREE .	
1.	(a) Define Landscape Planning. Discuss the domains of Landscape Planning with	
	appropriate example. $(1)_3^{\prime}$	10=11 ½)
	(b) Describe the styles of Persian garden.	(6)
	(c) Mention the key elements of English garden. Differentiate between Japanese and	•
	Chinese garden.	(3+3=6)
2.	(a) How soil texture and structure influence Ecosystem Process? Explain a generic soil	
	profile with the typical horizons and their characteristics.	(8+6=14)
	(b) Illustrate Lindeman's diagram of the food web and different trophic levels in	
	respect to a generalized life.	$(4\frac{1}{3})$
	(c) What is Negative Feedback Loop? Mention the considerations of a site designer,	
	interested in biodiversity conservation.	(2+3=5)
3.	(a) Briefly describe the elements of space organization.	(15)
	(b) How spatial impact influence organization of space. Use sketches if necessary.	$(8\frac{1}{3})$
4.	Explain Landscape Planning and design considerations in the context of Warm Humid	
	climate. Use illustrations.	$(23\frac{1}{3})$
	SECTION – B	
	There are FOUR questions in this section. Answer any THREE .	
5.	Explore the potential and design of edges in urban context using appropriate	
	illustration.	$(23\frac{1}{3})$
6.	(a) How design decision for choice of plants are guided by their characteristics?	$(13\frac{1}{3})$
	(b) Mention the information needed for site analysis.	(10)
_		
7.	Briefly explain elements of landscape design and their application.	$(23\frac{1}{3})$
8.	(a) Define "Community based landscape conservation planning".	(6 1/3)
	(b) Briefly explain landscape conversation strategies necessary for dhaka according to	•
	"Dhaka structure plan 2016-35".	(17)

L-2/T-2/URP Date: 22/02/2018

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA L-2/T-2 BURP Examinations 2016-2017

Sub: **HUM 221** (Public Finance)

Full Marks: 210

Time: 3 Hours

The figures in the margin indicate full marks.

Symbols indicate their usual meaning.

USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

	There are FOUR questions in this section. Answer any THREE .	
1	(a) Discuss the General Equilibrium Model of an economy with 2 consumers, 2 commodities, and 2 factors of production to show that the market outcome ensures maximum social welfare (hint: need to describe both exchange economy and production economy).	(35)
2.	(a) What is externality?	(5)
	(b) Discuss how externality in production can be internalized by imposing tax or	
	subsidy to producers?	(20)
	(c) Explain how externality can be internalized by applying Coase Theorem.	(10)
3.	(a) What is public good? Discuss how each of the characteristics of public good results	
	in market failure.	(10)
	(b) Explain how under production of public good is occurred if public good is	
	provisioned by private sector market.	(15)
	(c) Discuss how Government intervention can ensure efficient provision for public	
	good.	(10)
4.	(a) Discuss "Cyclical Voting Phenomenon" in case of majority voting.	(15)
	(b) What is "Median Voter Rule"?	(10)
	(c) Discuss the concept of "Log Rolling" under majority voting.	(10)
	<u>SECTION – B</u>	
	There are FOUR questions in this section. Answer any THREE.	
5.	Briefly discuss the arguments in favor and against the Government redistribution of	
	income with suitable example.	(35)

HUM 221/URP

ο.	Discuss any <u>two</u> of the	e following three scenarios of fixed quantity subsidy.	(33)
	(i) Fixed qua	ntity subsidy results in overconsumption.	
	(ii) Fixed qua	ntity subsidy results in reduction in private purchase.	
	(iii) Fixed qua	ntity subsidy results in under-consumption.	
7.	(a) Discuss the alloc	ative effect of excise subsidy from both individual and marke	t
	perspectives.		(20)
	(b) Show the distribu	tive effect of subsidy depends on the elasticity of demand and	i
	supply curves.		(15)
8.	(a) Describe Equal Sa	acrifice Rules to ensure vertical equity in taxation under differen	t .
	interpretations of equ	al sacrifice i.e. equal total sacrifice, equal proportional sacrifice	е
	and equal marginal sa	crifice.	(20)
	(b) Show that progres	sive income tax discourages labor supply.	(15)

L-2/T-2/URP Date: 27/02/2018

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 BURP Examinations 2016-2017

Sub: PLAN 261 (GIS and Remote Sensing)

Full Marks: 210

Time: 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

	There are FOUR questions in this section. Answer any THREE.	
1.	(a) State the differences between vector and raster data structure with necessary	(15)
	diagrams.	
	(b) Discuss with diagrams the three types of topological relationship among different	
	features.	(20)
2.	(a) Explain how to perform a nearest neighbor analysis on point objects.	(15)
	(b) Define with examples the continuous surface and discrete surface.	(10)
	(c) Write short notes on high-pass and low-pass filter.	(10)
3.	(a) Describe the different types of overlay and explain its role in land suitability	
	analysis.	(25)
	(b) Discuss uniform, random and clustered distributional pattern.	(10)
4.	Write short notes on the followings:	$(5 \times 7 = 35)$
	(a) DEM and TIN	
	(b) Sliver polygon	•
	(c) Edge matching	
	(d) Interpolation	
	(e) "Entity error.	
	SECTION – B	0
	There are FOUR questions in this section. Answer any THREE.	
	All the terms and abbreviations have their usual meaning.	
5.	(a) "Ideal Remote Sensing System does not exist" — do you agree? Justify your	
	answer.	(12)
	(b) Why does one need to know about spectral signature? Table 1 provides spectral	
	reflectance value of three different types of land cover.	
	Contd P/2	

PLAN 261/URP

Contd... Q. No. 5(b)

(i)	Draw spectral signature of the land cover using the data in table 1.	, (6)
(-/	Didn bpoolid bigindare of the land to the manner of the ma	, (-)

(ii) Is it possible to distinguish the land cover from each other? (2)

(iii) Which band (or combination of bands) is best suitable for distinguishing the land covers? Justify your answer. (2+4)

Table 1: Spectral Reflectance Ratio (in%) for different land cover types in different Band.

Band No. →	Band 1	Band 2	Band 3	Band 4	Band 5
Band Wave Length →	0.4-0.5 μm	0.5-0.6 μm	0.6-0.8 μm	1.8-2.0 μm	2.0-2.4 μm
Land Cover					
Urban Area	28	56	62	25	10
Water body	40	15	05	02	0
Vegetation	20	30	35	46	50

(c) Write down the differences between (3×3)

- (i) Mie and Rayleigh Scattering
- (ii) Polar and Geo-stationary Satellite
- (iii) Across and Along track Sensor
- 6. (a) What are the advantages of SPOT-4 data over LandSAT-7 data? In which cases it is better to use LandSAT data over SPOT data? (4+5)
 - (b) For buying remote sensing image, what are the factors one has to consider? Explain your answer. (6+9)
 - (c) Write short notes on (Any two) $(2\times5\frac{1}{2})$
 - (i) Sentinel-2 mission
 - (ii) Hyperion Sensor
 - (iii) Geo-eye Satellite
- 7. (a) Your company bought image with geometric errors. Explain the reasons behind geometric error of image. How could you correct the geometric errors using GCP method? (14+6)
 - (b) Contrast manipulation is one of the most common approaches for image enhancement. Explain the different types of contrast manipulation techniques. (9)
 - (c) Explain in brief, the structure of remotely sensed image. (6)

PLAN 261/URP

3.	(a) In supervised classification, local knowledge of the area under image is important	
	— why?	(4)
	(b) What is training dataset? Write down the sequences you have to follow for	
	selecting pixel for training data set.	(3+16)
	(c) Land cover classification of an image has been performed. After field verification	
	following has been found.	
	* Out of 50,000 settlement pixels, 5,000 are classified in the image as vegetation	
	and 5,000 as waterbody and the rest as settlement	
	* Of the 25,000 vegetation pixels 5,000 is identified as waterbody and 15,000 as	
	vegetation. The rest are identified as settlement.	
	* Of the 25,000 pixels which were found to be waterbody in the field, 8,750	
	identified as settlement in the image and 1,250 as vegetation. The rest were	
	correctly identified.	
	(i) Construct the error matrix	(6)
	(ii) Determine the overall accuracy, user accuracy and producer accuracy.	(6)

L-2/T-2/URP Date: 05/03/2018

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 BURP Examinations 2016-2017

Sub: PLAN 293 (Statistics for Planners II)

Full Marks: 210

Time: 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.

Commonly used Statistical Formula.

1. A study wishes to investigate whether students' scores on a Higher Secondary Certificate (HSC) examination have any indicative power for future undergrad performance as measure by CGPA. To conduct the study, 100 students were randomly selected in a university and each student's HSC score and CGPA after completing undergrad were noted as shown in the table.

(35)

HSC Score	CGPA (Undergrad)			
(in marks)	<2.7	2.7–3.2	>3.2	
< 800	35	12	´5	
≥800	6	24	18	

Test, at the 1% level of significance, whether these data provide sufficient evidence to conclude that HSC scores indicate future performance levels of undergrad students measured by CGPA.

2. (a) The city transit planning authority has recently decided to train their officials. Based on some ground work, they found that three training programs claimed to be the most effective. They randomly selected 33 employees who wished to take the training and sent them to the three training programs. After six months their skillet index on different matrices were recorded. The results are summarized below.

(25)

Statistics	Program 1	Program 2	Program 3
Sample mean	$\bar{x}_1 = 10.65$	$\bar{x}_2 = 8.90$	$\bar{x}_3 = 9.33$
Sample variance	$s_1^2 = 27.20$	$s_2^2 = 16.86$	$s_3^2 = 32.40$
Sample size	$n_1 = 11$	$n_2 = 11$	$n_3 = 11$

The mean skill set index of the combined sample of all 33 people was $\bar{x} = 9.63$. Test, at the 5% level of significance, using appropriate test, whether the data provided sufficient evidence to conclude that some program is more effective than the others.

(b) Explain, with example, the two types of errors that can be made in a test of hypothesis.

(10)

PLAN 293

3. (a) The Director of city's bike-to-work program is preparing a brochure to promote the program. He would like to include in the brochure the average weight loss of program participants, but since time is pressing he decides to estimate this figure with a random sample of 7 participants. The sample mean of pounds lost is 3.6 and the sample standard deviation is 0.5 pound. The Director would like to assert that the program participants lost an average of 3 pounds or more. What is the maximum level of confidence that he can claim in making this assertion? Show your work, including hypothesis formulation and necessary figure.

(18)

(b) A study wishes to estimate the average increase in the total travel time a person experience due to the traffic signal installed on the Mouchak flyover. Twenty five different randomly selected travelers when took the flyover experienced a mean increase of 47.3 seconds travel time with a standard deviation of 6.4 seconds. Construct a 90% confidence interval for the mean increase of travel time any person would experience for the traffic signal installed on the flyover and interpret its meaning.

(17)

4. (a) The Department of Environmental (DOE) suspects that the fishes of a particular polluted lake have elevated mercury level. To confirm that suspicion, five fishes in that lake were caught and their tissues were tested for mercury. For the purpose of comparison, four fishes in an unpolluted lake were also caught and tested. The fish tissue mercury levels in mg/kg are given below.

(18)

Sample 1 (from polluted lake)	Sample 2 (from unpolluted lake)
0.580	0.382
0.711	0.276
0.571	0.570
0.666	0.366
0.598	

Test, at the 5% level of significance, whether the data provide sufficient evidence to conclude that fish in polluted lake have elevated levels of mercury in their tissue.

(b) A neighbourhood home owners' association suspects that the recent appraisal values of the houses in the neighbourhood conducted by the city authority for taxation purpose is too high. It hired a private company to appraise the values of ten houses in the neighbourhood. The results, in thousands of Taka, are shown in the table.

PLAN 293

Contd... Q. No. 4(b)

(i) Give a point estimate for the difference between the mean private appraisal of all such homes and the government appraisal of all such homes.

(3)

(ii) Test, at the 1% level of significance, the hypothesis that appraisal values by the city authority of all such houses is greater than the appraised values by the private appraisal company.

(14)

House	City Authority	Private Company
1	217	219
2	350	338
3	296	291
4	237	237
. 5	237	235
6	272	269
7	257	239
8	277	. 275
9	312	320
10	335	335

SECTION - B

There are **FOUR** questions in this section. Answer any **THREE**.

Abbreviations have their usual meanings.

5. (a) Distinguish between-

 $(5 \times 3 = 15)$

- (i) Interval and ratio level data,
- (ii) Co-efficient of determination and co-efficient of correlation,
- (iii) Seasonal and cyclical variation.
- (b) Suppose, you are assigned to prepare a structure plan for a 'A-class' Paurashava of Bangladesh. At the very onset of plan preparation process, you have to project population for the plan period. Which trend line methods are available with you to project the population? Discuss their advantages and disadvantages.

(20)

6. A real estate salesperson in a metropolitan area is studying the relationship between the size of a home (in square feet) and the selling price of the property. A random sample of 20 homes is selected:

PLAN 293 Contd... Q. No. 6

Selling Price	Area
(in millions of Taka)	(in square feet)
65	1,500
88	1,400
102	1,600
109	1,450
67	1,400
93	1,800
107	1,560
71	1,540
86	1,490
105	1,700
58	1,330
91	1,810
98	1,700
120	1,750
68	1,360
106	1,650
75	1,505
80	1,475
100	1,550
90	1,490

	(a) Determine the regression equation.	(10)
	(b) Compute the 'standard error of estimate' and interpret the result.	(5+3=8)
	(c) Develop a 95% confidence interval for the regression co-efficient and interpret the	
	result.	(6+3=9)
	(d) What selling price would you estimate for all homes with 1,500 square feet?	(2)
7.	(a) What is 'seasonal index'? Describe its uses.	(10)
	(b) A study has been made of the accident rates (per 1,000 population) for a sample of	
	medium sized cities in the Northeast, South and West part of Bangladesh. Use the 0.05	
	significance level to determine if there is a difference in the accident rates of different	
	geographical areas. The sample for each region has been arranged from low to high.	(25)

PLAN 293 Contd... Q. No. 7(b)

Northeast	South	West
2.3	1.6	1.7
4.5	1.9	3.7
6.7	3.0	3.8
7.8	6.5	4.3
9.5	7.2	5.9
12.7	11.6	6.2
13.1	13.1	7.9
	14.5	8.4
	15.1	

8. (a) A researcher wanted to find out whether the income distribution of population are identical in three cities, Rajshahi, Sylhet and Comilla. Three different samples-one from each city-produced the following data on the annual income (in thousand Taka) of people.

Rajshahi	Sylhet	Comilla
43	54	57
39	33	68
62	58	60
73	38	44
51	43	39
46	55	28
	34	49
		57

What kind of statistical tests (parametric and/or non-parametric) the researcher would prefer? Justify the answer.

(b) Using 2.0% significance level, can you conclude that the income distributions of people in these three cities are all identical?

(25)

(10)

Commonly used Statistical Formula

Commonly used Statistical Formula
$$\sigma = \sqrt{\frac{\sum_{i}^{N} (X_{i} - \mu)^{2}}{N}} \qquad s = \sqrt{\frac{\sum_{i}^{n} (X_{i} - \overline{X})^{2}}{n - 1}}$$

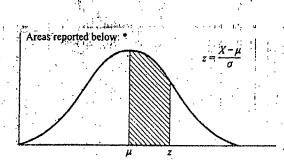
$$C.V. = \sigma / |\mu| \qquad \ell \cdot T = \overline{X} + / - \left(s.e. * t_{n-1,\alpha/2}\right)$$

$$s.e. \cong \frac{s}{\sqrt{n}} \qquad z-score = (X - \mu) / \sigma$$

$$t_{statistic} = \frac{\overline{X} - \mu}{s.e.} \qquad t_{statistic} = \frac{\overline{X}_{2} - \overline{X}_{1}}{s.e._{d}}$$

$$s.e._{d} = s_{d} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$

$$s_{d} = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}}$$


Number of observations/cases variables: N, n

Standard deviation variables: o, s

Mean variables: μ, X

 $t_{d.f.,\alpha}$ or $t_{d.f.,\alpha/2}$ are critical t-values Standard error = s.e.

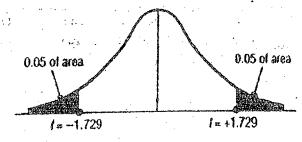
STANDARD NORMAL DISTRIBUTION

Proportions of Area for the Standard Normal Distribution

÷	1 1; 1					:		1 .		• • • • • • • • • • • • • • • • • • • •	
	z	.00	.01	: .02	103	.04	¿05	.06	. \07	.08	.09
per 1	: 0.0			080	QÏ20,	0160	.0199		0279	.0319.	0359
	0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	0675	.0714	.0753
	0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	1103	.1141
	, 0.3	.1179	1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
	0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	1879
	0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
	0.6	.2257	. 2291	2324	2357	2389	2422	.2454	.2486	.2518-	2549
	0.7	.2580	2612	.2642	.2673	2704	.2734	.2764	.2794	.2823	.2852
	0.8	2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
	0.9	,3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
	1.0	3413	3438	:3461	3485	3508	.3531	.3554	:3577	.3599	.3621
	TE	3643	.3665	.3686	.3708	3729	.3749	3770	3790	.3810	3830
	1.2	3849	.3869	.3888	.3907	3925	3944	.3962	3980	3997	4014
: i	1.35	4032	4049	4066	.4082	.4099	4115	.4131	.4147	4162	.4177
	14	4192	.4207	4222	.4236	.4251	4265	4279	4292	4306	4319
ी	25 3.33				· / / .		1,03		.4232	14300	4319
"	1.5	4332	.4345	4357	.4370	.4382	.4394.	4406	.4418	4429	.4441
ं	1.6	: 4452	4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
	1.7	4554	.4564	.4573	4582	:4591	.4599	~4608	4616	.4625	.4633
	1.8	*:4641	4649	4656	.4664	.4671	.4678	4686	.4693	.4699	4706
	1.9	4713	4719	.4726	4732	.4738 -	4744	4750	.4756	.4761	4767
	2.0	4772	.4778	4783	4788	# (4793 ₀₀	4798.rm	1.4803	3a.4808	4812	4817
	2.1	4821	. 4826	.4830	4834	.4838	4842	.4846	4850	4854	.4857
- 1	2.2	.4861	4864	4868	4871	.4875	.4878	.4881	4884	.4887	4890
- 1	2.3	.4893	4896	4898	4901	.4904	4906	4909	4911	4913	4916
-	2.4	.4918	.4920	.4922	4925	.4927	4929	.4931	4932	.4934	4936
1	2.5	4938	4940	4941	4045	W0.45	5 6630				1
- li	2.6	4953	. N		.4943	.4945	4946	.4948	4949	4951	.4952
: []	2.7	4965	4955	4956	4957	4959	4960	.4961	.4962	4963	4964
1	2.8		.4966	.4967	.4968	4969	.4970	4971	.4972	4973	.4974
1	2.9	4974 4981	.4975	.4976	.4977	.4977	4978	.4979	4979	.4980	.4981
-1:	1 10 10	4201	.4982	.4983	4983	.4984	4984	4985	.4985	4986	4986
1	3.0	4987						1.0	1.97		40.0
J.	3.5	4997		- ; <u> </u>					.00		
. [·	9. "A	y or se			,	***, *					
	4.0	4999		(.:					2540		
	1200							النسبنيا	<u> </u>		

Example, For 1 = 1.96, shaded area is 0.4750 out of the total area of 1.0000.

Tabl	C 3	The t Distribu	·	•			
		Lev	el of Significa	nce for One-Tai	led Test	·	
df	.10	.05	.025	.01	0.005	.001	.0005
1	3.078	6.314	12.71	31.821	63.657	_	636.619
2	1.886	2.920	4.31	6.965	9.925	-	31.598
3	1.638	2.353	3.19	4.541	5.841	_	12.941
4	1.533	2.132	2.78	3.747	4.604	7.18	8.610
5	1.476	2.015	2.57	3.365	4.032	5.90	6.859
6	1.440	1.943	2.45	3.143	3.707	5.21	5.959
7	1.415	1.895	2.37	2.998	3.499	4.79	5.405
8	1.397	1.860	2.31	2.896	3.355	4.51	5.041
9	1.383	1.833	2.27	2.821	3.250	4.30	4.781
10	1.372	1.812	2.23	2.764	3.169	4.15	4.587
11	1.363	1.796	2.20	2.718	3.106	4.03	4.437
12	1.356	1.782	2.18	2.681	3.055	3.93	4.318
13	1.350	1.771	2.16	2.650	3.012	3.86 .	4.221
14	1.345	1.761	2.15	2.624	2.977	3.79	4.140
15	1.341	1.753	2.13	2.602	2.947	3.74	4.073
16	1.337	1.746	2.12	2.583	2.921	3.69	4.015
17	1.333	1.740	2.11	2.567	2.898°	3.65	3.965
18	1.330	1.734	2.10	2.552	2.878	3.62	3.922
19	1.328	1.729	2.09	2.539	2.861	3.58 /	3.883
20	1.325	1.725	2.09	2.528	2.845	3.56	3.850
21	1.323	1.721	2.08	2.518	2.831	3.53	3.819
22	1.321	1.717	2.07	2.508	2.819	3.51	3.792
23	1.319	1.714	2.07	2.500	2.807	3.49	3.767
24	1.318	1.711	2.06	2.492	2.797	3.47	3.745
25	1.316	1.708	2.06	2.485	2.787	3.45	3.725
26 '	1.315	1.706	2.06	2.479	2.779	3.44	3.707
27	1.314	1.703	2.05	2.473	2.771	3.43	3.690
28	1.313	1.701	2.05	2.467	2.763	3.41	3.674
29	1.311	1.699	2.05	2.462	2.756	3.40	3.659
30	1.310	1.697	2.04	2.457	2.750	3.39	3.640
∞	1.282	1.645	1.96	2.326	2.576	3.08	3.2

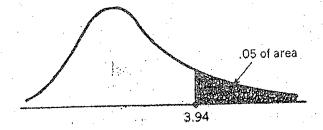

Source: Adapted from David G. Kleinbaum and Lawrence L. Kupper, *Applied Regression Analysis and Other Multivariable Methods*. Copyright © 1978. Published by Wadsworth/Duxbury Press.

Contd.... P/9

DISTRIBUTION OF X2

			Pr	obability			
Degrees of Freedom	.50.	.30.	.20	.10.	.05.	.02.	.01.
	455	1.074	1.642	2.706	3.841	5.412	6.635
1	.455	2.408	3,219	4.605	5.991	7.824	9.210
2	1.386	3.665	4.642	6.251	7.815	9.837	11.345
3	2.366	4.878	5.989	7.779	9.488	11.668	13.277
4	3.357 4.351	6.064	7.289	9.236	11.070	13.388	15.086
5.	5.348	7.231	8.558	10.645	12.592	15.033	16.812
6	6.346	8.383	9.803	12.017	14.067	16.622	18.475
7	7.344	9.524	11.030	13.362	15.507	18.168	20.090
8	,	10.656	12.242	14.684.	16.919	19.679	21.666
.9	8.343	11.781	13.442	15.987	18.307	21.161	23.209
10	9.342		1	17.275	19.675	22.618	24.725
11	10.341	12.899	14.631	18.549	21.026	24.054	26.217
12	11.340	14.011	15.812		£22.362	25.472	27.688
13	12.340	15.119	16.985	1	73.685	26.873	29.141
14	13.339	16.222	18: 151	21.064	24.996	28.259	30,578
15	14.339	17.322	19.311	22,307 23,542	26.296	29.633	32.000
16	15,338	18.418	20.465	24.769	27.587	-30.995	33.409
17	16.338	19.511	21,615		28.869	33.346	34.805
18	17.338	20:601	22.760	25.989	I . :	33.687	36.191
19	18.338	21.689	23.900	27.204	30.144	35.020	37.566
20	19.337	22,775	25.038	28.412	31.410		
21	+20.337	23,858	26.171	29.615	?2.671	36.343	38.932
22	21.337	24.939	27.301	30.813	33.924	37.659	40.289
	22.337	26.018	28.429	32.007	35.172	38.968	41.638
23		27.096	29.553	33.196	36,415	40.270	42,980
24	23.337		30.675	34.382	37.652	41.566	44.314
25	24.337	28.172 29.246	31.795	35.563	38.885	42:856	45.642
26	25.336 26.336	30.319	32.912	36,741	40.113	44.140	46.963
27	27.336	31.391	34.027	37.916	41.337	45.419	48.278
28	28.336	32.461	35.139	39.087	42.557	46.693	49.588
29	29,336	33.530	36.250	40.256	43.773	47.962	50.892
30	27, 330						

Appendix L is abridged from Table IV of Fisher and Yates: Statistical Tables for Blological, Agricultural, and Medical Research, published by Oliver and Boyd Ltd., Edinburgh, and by permission of the authors and publishers.

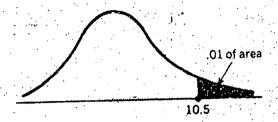

Contd P(11

Appendix Julie Z.

Areas in Soth Tails Combined for Stisdent's & Distribution

Example:	Degrees of	***************************************	Aroa in Both	Teils Combined	
of I that	Fracton	0.10	0.05 .	0.02	0.01
corresponds to		6.314	12.706	31.621	63.657
	2	2.920	4,303	6.965	9.925
an area of 0.10	3	2,353	3.102	4.541	5.841
in both tails of	A	2.132	2.776	3.747	4.604
がたひとさま トー・ニー かじ 光 変換機・	5	2.015	2.571 •	3.365	4.032
the distribution	6	1.943	2.447	3.143	3.707
combined when	7	-1.895	2.365	2.998	3,499
there are 19	8	1.860	2.306	2.896	3.355
Carrier 17 and the contract of	9	1.833	2.262	2.821	3.250
degraes of	10	1.812 1.796	2.228 2.201	2.764	3.169
freedom look	11	1.762	2.179	2.718 2.681	3.106
under the 0.10		1.771	2.160	2.650	3.055
	13 14	1,761	2.145	2.624	3.012
column, and	15	1.753	2,131	2.602	2.977
proceed down to	16	1,746	2.120	2.583	2.947
	17	1.740	2.110	2.567	2.921
the 19 degrees : 1889	10	1.734	2.101	2.552	2.898
of freedom rovi.	1 <i>9</i>	1.729	2.093	2.532 2.539	2.878
	20	1.725	2.086	2.528	2.861 2.845
the appropriate to see	~21	1.721	2.080	2.518	2.63 k
value there is	22	1.717	2.074	2.508	2.819
2 (1998)	23	1.714	2.069	2,500	2.807
1.729.	24	1.711	2.064	2.492	2.797
171 pri	25	1.708	2.060	2.485	2,787
	26	1.706	2.056	2.479	2.779
A.	27	1,703	2.052	2.473	2.771
39	28	1.701	2.048	2.467	2.763
13.5 week	29	1.699	2.045	2.452	2.756
i de la compania	30	1.697	2.042	2.457	2.750
46	` 40 .	1.684	2.021	2.423	2.704
	40	1.671	2.000	2.390	2,660
	120	1.658	1.980	2.358	2.617
	ormal Distribution	1.645	1.960	2.326	2.576

Values of F for F Distributions with .05 of the Area in the Right Tail.*



EXAMPLE: For a test at a significance level of .05 where we have 15 degrees of freedom for the numerator and 6 degrees of freedom for the denominator, the appropriate F value is found by looking under the 15 degrees of freedom column and proceeding down to the 6 degrees of freedom row; there we find the appropriate F value to be 3.94.

	. , , ,		• .				C	egre	es of	ireed	om fo	r nun	nerau	γr						
	•	1	2	3	4	5	6	7	8	· 9	10	12	15	20	24	30	40	60	120	э с
	1 2 3 4 5	10.1 7.71 6.61	200 19.0 9.55 6.94 5.79	19.2 9.28 6.59 5.41	19.2 9.12 6.39 5.19	19.3 9.01 6.26 5.05	19.3 8.94 6.16 4.95	6.09 4.88	19.4 8.85 6.04 4.82	19.4 8.81 6.00 4,77	19.4 8.79 5.96 4.74	19.4 8.74 5.91 4.68	8.70 5.86 4.62	8.66 5.80 4.56	8.64 5.77 4.53	8.62 5.75 4.50	8.59 5.72 4.46	8.57 5.69 4.43	8.55 5.66 4.40	8.53 5.63 4.37
ominator	6 7 8 9 10.	5.59 5.32 5.12 4.96	5.14 4.74 4.46 4.26 4.10	4.35 4.07 3.86 3.71	4.12 3.84 3.63 3.48	3.97 3.69 3.48 3.33	3.87 3.58 3.37 3.22	3.79 3.50 3.29 3.14	3.44 3.23 3.07	3.39 3.18 3.02	3.35 3.14 2.98	3.28 3.07 2.91	3.22 3.01 2.85	3.15 2.94 2.77	3.12 2.90 2.74	3.08 2.86 2.70	3.04 2.83 2.66	3.01 2.79 2.62	2.97 2.75 2.58	2.93 2.71 2.54
Degrees of freedom for denominator	11 12 13 14 15	4.75 4.67	3.98 3.89 3.81 3.74 3.66	3.49	3.26	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2,46	2.42	2.38	2.34	2.30	2.25 2.18	2.21
egrees of fre	16 17 18 19	4.45	3.63 3.59 3.55 3.52 3.49	3.20	2.96	2.77	2.66	2.58	2.50	2.46	2.45	2.34	2.27	2.19	2.15	2,11	2.06	2.02	1.97	1.92
Ď.	21 22 23 24 25	4,32 4,30 4.28	3.47 3.44 3.42 3.40 3.39	3.07 3.05 3.03	2.84 2.82 2.80	2.68 2.66 2.64	2.57 2.55 2.53	2.49 2.46 2.44	2.42 2.40 2.37	2.37 2.34 2.32	2.32 2.30 2.27 2.25	2.25 2.23 2.20 2.18	2.18 2.15 2.13 2.11	2.10 2.07 2.05 2.03	2.05 2.03 2.01 1.98	2.01 1.98 1.96 1.94	1.96 1.94 1.91 1.89	1.92 1.89 1.86 1.84	1.87 1.84 1.81 1.79	1.81 1.78 1.76 1.76
:	30 40 60 120 ∞	4.17 4.08 4.00	3.32 3.23 3.15 3.07 3.00	2.92 2.84 2.76	2.69 2.61 2.53	2.53 2.45 2.37	2.42 2.34 2.25	2:33 2:25 2:17	2.27 2.18 2.10	2.21- 2.12 2.04	2.16 2.08 1.99	2.09 2.00 1.92	2:01 1:92 1.84	1.93 1.84 1.75	1.89 1.79 1.70	1.84 1.74 1.65 1.55	1.79 1.69 1.59 1.50	1.74 1.64 1.53 1.43	1.68 1.58 1.47 1.35	1.62 1.51 1.39 1.25

^{*} Source: M. Merrington and C. M. Thompson, Blometrika, vol. 33 (1943).

Values of F for F Distributions with .01 of the Area in the Right Tail.

EXAMPLE: For a test at a significance level of .01 where we have 7 degrees of freedom for the numerator and 5 degrees of freedom for the denominator, the appropriate *F* value is found by looking under the 7 degrees of freedom column and proceeding down to the 5 degrees of freedom row; there we find the appropriate *F* value to be 10.5.

			. ,		+ + +- ·	**	-					orator	, H odologuidh	Oping sicks (Hillian Br	and the second				
					5	· 6	7	egree 8	s of fre	o dom : 10	12	15	20	24	30	40	60	120	, , , , , , , , , , , , , , , , , , ,
1 2 3 4 5	4,052 98.5 34.1 21.2 16.3	5,000 99.0 30.8 18.0 13.3	5,403 99.2 29.5 16.7 12.1	5,625 99.2 28.7 16.0 11.4	5,764 99.3 28.2 15.5 11.0	5,859 99.3 27.9 15.2 10.7	5,928 99.4 27.7 15.0 10.5	5,982 99.4 27.5 14.8 10.3	6,023 99.4 27.3 14.7 10.2	6,056 99.4 27.2 14.5 10.1	6,106 99.4 27.1 14.4 9.89	6,157 99.4 26.9 14.2 9.72	6,209 99.4 26.7 14.0 9.55	6,235 99.5 26.6 13.9 9.47	6,261 99.5 26.5 13.8 9.38	6,287 99.5 26.4 13.7 9.29	6,313 99.5 26.3 13.7 9.20	99.5 26.2 13.6 9.11	6,356 99.5 25.1 13.5 9.02
6	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	12.2	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	10.0	7.56	6.5 6	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	9.65	7.21 -	6.22	5.67	5.32	6.07	4.89	4.74	4.63	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
12	9.33	6.93 -	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	8.86	6.51	5.56	5.04	4.70	4.46	4.28	4.14	4.03	3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	8.40	6.11	5.19	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	8.19	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
25	7.77	5.57	4.68	4.18	3.86	3.63	3.46	3.32	3.22	3.13	2.99	2.85	2.70	2.62	2.53	2.45	2.36	2.27	2.17
30 40 80 20	7.56 7.31 7.08 6.85 6.63	5.39 5.18 4.98 4.79 4.61	4.51 4.31 4.13 3.95 3.78	4.02 3.83 3.65 3.48 3.32	3.70 3.51 3.34 3.17 3.02	3.47 3.29 3.12 2.96 2.80	3.30 3.12 2.95 2.79 2.64	3.17 2.99 2.82 2.66 2.51	3.07 2.89 2.72 2.56 2.41	2.98 2.80 2.63 2.47 2.32	2.84 2.66 2.50 2.34 2.18	2.70 2.52 2.35 2.19 2,04	2.55 2.37 2.20 2.03 1.88	2.47 2.29 2.12 1.95 1.79	2.39 2.20 2.03 1.86 1.70	2.30 2.11 1.94 1.76 1.59	2.21 2.02 1.84 1.66 1.47	2.11 1.92 1.73 1.53 1.32	2.01 1.80 1.60 1.38 1.00

L-2/T-2/URP Date: 11/03/2018

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 BURP Examinations 2016-2017

Sub: PLAN 215 (Urban Planning Techniques)

Full Marks: 210

footprint" concept.

Time: 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

	There are FOUR questions in this section. Answer any THREE.	
1.	(a) Write down the application of different types of zoning.	(15)
	(b) List the problems for which urban renewal is necessary. Which methods are used	
	for urban renewal process? Explain with example.	(20)
2.	(a) Define the types of local plan. What are the functions of local plan? Explain the	
	form and content of local plan.	(25)
	(b) State the concept and importance of planning standards.	(10)
3.	(a) Describe the upgrading principles of low-income settlements.	(15)
	(b) Discuss the characteristics of urban areas of a city. List the different techniques of	
	"detail area planning".	(15+5)
4.	(a) Write down the concept of land readjustment technique for planned development of	
	urban land.	(8)
	(b) Write short notes on the followings: (3	×9=27)
	(i) Sites and services scheme	
	(ii) Master plan	
	(iii) Structure plan	
	<u>SECTION – B</u>	
	There are FOUR questions in this section. Answer any THREE.	
5.	(a) Residential land use plan making process is comprised of a number of steps. Briefly	
	describe these steps.	(22)
	(b) People of Holland require 15 times more land than their country for food, forest	
	product and energy. Explain this statement from the perspective of "ecological	

(13)

<u>PLAN 215</u>

6.	(a) Which aspects need to be addressed to achieve the targets of Sustainable								
	Development Goal 11 in the context of Bangladesh. (b) What is the importance of land classification in planning? Write shor note on								
	'Detroit System" of land classification.	(5+10)							
7.	(a) What are the characteristics of compact development? Do you think Dhaka is a								
	compact city? — Justify your opinion.	(5+10)							
	(b) How the following tools/strategies can regulate development — explain with								
	example.	4×5=20							
	(i) Urban growth boundary								
	(ii) Inheritance tax								
	(iii) Transfer of development right								
	(iv) Impact fees								
8.	(a) Briefly discuss five dimensions of development management plan.	(10)							
	(b) Elaborate the social, ecological and health impacts of sprawl development.								
	(c) Explain the term "imageability" of a city. 'Edge' is one of the elements of city								
	image. Discuss this element in case of Dhaka.	3+7=10							