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A FUZZY-BASED RISK ASSESSMENT METHODOLOGY FOR 
CONSTRUCTION PROJECT UNDER EPISTEMIC UNCERTAINTY 

 

ABSTRACT 

In this thesis, a methodology for construction projects risk assessment under epistemic 

uncertainty (i.e., uncertainty arising from lack of data/knowledge) has been proposed. In 

practice, as the sufficient data from historical sources for probabilistic analysis is quite difficult 

to obtain, qualitative risk assessment methodologies based on expert’s judgments (i.e., using 

linguistic terms) are commonly used in construction industry. However, these insufficient 

probabilistic data combining with experts’ judgments can be used in the risks evaluation process 

to reduce uncertainties and biasness. Since the assessment of risk is basically a measure of 

uncertainties, fuzzy reasoning technique can be an effective tool to deal with these uncertainties 

and capture the vagueness in the linguistic variables. Most of the existing risk analysis models 

have evaluated risks based on two factors: risk likelihood and risk severity. In all these 

methodologies developed so far, it has been assumed that the degrees of uncertainties (level of 

uncertainties) involved in individual risk event are equal. However, in practice, the degree of 

uncertainties that involved in each risk event may vary due to the variation in the availability or 

quality of data obtained from multiple sources (e.g., from experts’ opinions and past data from 

similar projects). Therefore, evaluation of risks considering the degree of uncertainty involved in 

individual risk events may assist project manager in setting-up response strategies to mitigate 

threat to the project objectives. This thesis proposes a risk assessment methodology using 

triangular fuzzy numbering system to compute risk value by combining expert’s opinion and 

insufficient historical data. A modified form of general ramp type fuzzy membership function for 

quantification of uncertainty range of each risk event and an extended VIKOR method for risks 

ranking with these uncertainty ranges have been proposed. The most notable difference with 

other fuzzy risk assessment methods is the use of algorithm to handle the uncertainties involved 

in individual risk event. An illustrative example on risk assessment of a building construction 

project is used to demonstrate the proposed methodology.  
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CHAPTER 1 

INTRODUCTION 

1.1. Background of the study 

Risk assessment procedure is composed of four steps of identifying, analyzing, evaluating, and 

managing the risks inherent in a project (Morote and Vila, 2011). In practice, construction 

project contains a mixture of qualitative and quantitative data. Subjective judgment is often used 

in the form of linguistic variable in risk analysis due to lack of data availability (Choi et al, 

2004). Therefore, uncertainties in risk analysis may be attributed both to the inherent randomness 

in some variables (i.e., aleatory uncertainty) and to inadequate as well as imprecise data (i.e., 

epistemic uncertainty) (Choi and Mahadevan, 2008). In mathematical risk analysis models, it is 

generally assumed that all inputs are precisely known and the influence of epistemic uncertainty 

to the value of risk is not explicitly considered. However, in real-world situations, this 

deterministic assumption about inputs may lead to poor performance or project failure. Fuzzy 

reasoning technique provides a systematic tool to deal with uncertainties and to capture the 

vagueness in the linguistic variables. 

There exists a large volume of work for risk assessment of construction projects. However, most 

of them attempted to compute risk magnitude considering two factors: Risk Likelihood (RL) and 

Risk Severity (RS) (Carr and Tah, 2001; Zeng et al., 2007; Morote et al., 2011). Kuo and Lu 

(2013) proposed a modified Fuzzy-MCDM method to structure and evaluate the risk factors for 

prioritizing risk events of construction project. A methodology for incorporating knowledge and 

experience of many experts into conventional risk assessment framework is introduced by Yildiz 

et al. (2014). Cho et al. (2002) designed a new form of fuzzy membership curve to consider the 

ranges of uncertainties involved in both probabilistic parameter estimation and subjective 

judgments. Most of the existing methods of risk assessment consider only single Risk Value 

(RV) for prioritizing or categorizing (e.g., critical, major, minor, negligible) risks, which is 

helpful in risk response to mitigate threats to the project objectives (Zeng et al., 2007; 

Tamosaitiene et al., 2013; Sohrabinejad and Rahimi, 2015; Haghshenas et al., 2016; Asan et al., 

2016). However, in practice, the degree of uncertainty that involved in each risk event may vary 

due to the availability of data from multiple sources (e.g., from experts’ opinion and statistical 



2 
 

data of similar projects). Uncertainty is an integral part in any risk assessment process (Dutta, 

2015), thus its quantification may help project manager in taking preventive actions.  

Therefore, an approach to risk assessment for construction project that can quantify the RV 

incorporating their associated degree of uncertainty is needed.  The current research is intended 

to develop a risk assessment methodology that will evaluate risks in terms of uncertainty range 

that represents the degree of uncertainties involved in each risk event. 

1.2. Objectives with specific aims  

The specific objectives of this research are- 

o Development of a risk assessment model using fuzzy membership functions to deal with 

qualitative and quantitative data and capture the vagueness in the linguistic variables. 

o Development of the formulations and algorithms to compute the risk magnitudes using 

fuzzy inference systems and their associated degrees of uncertainties using a modified 

form of fuzzy membership functions. 

o Development of a methodology to prioritize risks based on risk magnitude and degree 

of uncertainties involved in individual risk that is needed to setup risk response 

strategies. 

Therefore, the proposed research develops and demonstrates generalized methodologies and 

tools for risk assessment of construction project, which will provide decision support to 

engineers and project managers for achieving better performance and avoiding loss of project 

failure.  

1.3. Outline of Methodology 

The proposed research methodology is outlined below:  

a) A framework for the representation of qualitative and quantitative data through 

triangular fuzzy membership functions has been developed. 

b) Formulations and algorithms for the evaluation of risks magnitude through fuzzy 

inference system under epistemic uncertainty has been proposed based on the 

framework developed in (a).  

c) A methodology using modified form of general ramp type fuzzy membership functions 
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for quantification of degree of uncertainties involved in each risk event has been 

developed based on the framework developed in (a). 

d) Finally, a methodology to categorize risks based on risk magnitudes and their 

associated degrees of uncertainties has been proposed, which will help to setup 

response strategies. 

e) The proposed methodologies have been illustrated for an example problem (a real 

engineering problem). 

1.4. Contributions of the present study 

This thesis proposes a risk assessment methodology for construction project under epistemic 

uncertainty using fuzzy concept. The proposed model expresses each risk event with an interval 

number considering the degree of uncertainties that involved in individual risk event. The 

following four possible factors of uncertainties are considered to represent the degree of 

uncertainties involved in each risk event in risks assessment process. The uncertainty involved in 

probabilistic parameter estimations is basically due to (i) unreliable/ insufficient data or (ii) 

approximation in statistical analysis methods. On the other hand, the factors influencing the 

uncertainties in subjective judgments are: (iii) the complexity of work/conditions and (iv) the 

level of education and experience of the experts.  

The proposed construction project risk assessment model can be characterized as follows: 

a) The proposed risk assessment model evaluates risks considering both values of risk and 

their associated degrees of uncertainty involved in the individual risk event. 

b) All the risks are evaluated under the consideration of epistemic uncertainty. 

c) This approach allows the risk assessment team to handle both quantitative and qualitative 

data in risk evaluation process. 

d) The model provides a ranking of the project risks based on uncertainty intervals. 

1.5. Organization of the Thesis 

This thesis paper has been organized in following manner. The first chapter of the thesis is 

entitled as “Introduction” containing background of the thesis, objectives, methodologies and 

contributions of present study. Chapter 2 presents the literature review of all the relevant topics 

of the thesis. In Chapter 3, the basic theory of fuzzy logics, linguistic variables, fuzzy 
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membership curves, uncertainties in risk assessment and extend VIKOR method are outlined. 

The proposed fuzzy-based risk assessment methodology for construction project under epistemic 

uncertainty has been described in Chapter 4. Here, the details of the formulations and algorithms 

of the proposed model are described step by step. Chapter 5 illustrates the proposed methodology 

with a numerical example (a real engineering problem). Finally, in Chapter 6, the research has 

been concluded with the recommendations for future work for the practitioners and researchers.  
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CHAPTER 2 

LITERATURE REVIEW 

The construction industry is plagued by various risks which are often responsible for poor 

performance with increasing cost and time delay, even project failure (Zeng et al., 2007). Risk is 

inherent in all projects and it can never be eliminate completely, although can be managed to 

reduce its effects to an acceptable level. Therefore, a systematic and proactive risk management 

framework is needed to enhance the chance of success and improve their performance. All 

potential risks and uncertain factors should be identified at the initial phase and managed 

effectively for avoiding potential loss. Risk management is essential for good project 

management (Baloi and Price, 2003), which is concerned with identifying and assessing risk and 

applying corrective actions to mitigate it to an acceptable extent (Tohidi, 2011). The successful 

management of risk requires the identification of risks, assessment of risk magnitude and 

implementation of response strategies to reduce threats to the project objectives (Dikmen et al., 

2006). 

A risk is an uncertain future event that has negative impact on the project objectives, such as 

scope, schedule, cost or quality (Morote and Vila, 2010). Other definitions of risk are available 

in the literature, for example, “risk is the potential barrier for project completion and achieving 

goal” (Mark et al., 2004; Hertz and Thomas, 1994), “the possibility of financial losses, physical 

damages or injuries, delays and detrimental events occurring to the project” (Baloi and Price, 

2003; Chapman and Ward, 1997; Jaafari, 2001), “negative deviation from desired level” 

(Dziadosz and Rejment, 2015). Although various researchers define risk in various ways, some 

common characteristics are found in all definitions. A risk is an uncertain future event that may 

or may not occur and if it occurs, has negative impact on the project objectives. In other words, it 

can be defined as the unexpected future events with the involvement of substantial uncertainties 

that have detrimental effects to the project objectives. 

Risk is raised when there is uncertainty and these uncertainties are integral part in any risk 

assessment process (Carr and Tah, 2001; Olsson, 2007; Jha and Devaya, 2008; Dutta, 2015). 

Therefore, without considering the uncertainty that is associated with risks, the risk assessment 

process will remain inefficient. The uncertainty that involved in risk assessment process can be 

divided into two types: aleatory uncertainty and epistemic uncertainty (Choi and Mahadevan, 
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2008). In real-life problems, both types of uncertainties should be accounted for in risk analysis 

process (Ang and Tang, 2006; Choi and Mahadevan, 2008). Aleatory uncertainty is irreducible 

and also known as random uncertainty. It refers to the inherent randomness that comes from 

natural variability. On the other hand, epistemic uncertainty is reducible and often arises from 

limited or imprecise data, measurement limitations and approximations in mathematical model.  

By gathering more information and precise data, these types of uncertainty can be reduced. In 

literature, epistemic uncertainty previously has been expressed by probability distributions 

(Zaman et al., 2011), subjective probabilities (O’Hagan and Oakley, 2004), fuzzy sets (Fetz and 

Oberguggenberger, 2004), etc. The construction project risk assessment methodology 

considering epistemic uncertainty has been developed using different paradigms to treat 

uncertainty including fuzzy set theory (Cho et al., 2002; Choi et al., 2004), interval probability 

theory (Cui and Blockley, 1990), fuzzy event tree analysis (Hadipriono et al., 1986), and 

merging probability theory and subjective information (Brown, 1980; Choi et al., 2008). 

Construction project risk assessment 

Construction project is associated with greater inherent risks due to the involvement of many 

stakeholders (Serpell et al., 2015). There are many risk sources and factors involved in 

construction projects that should be identified and assessed for effective risk managements. In 

risk analysis process, there exists both qualitative and quantitative data. Basically, risk related 

data are found from experts’ opinions in the qualitative form and from historical records in the 

quantitative form. However, in many circumstances, for construction project, it is very hard to 

obtain sufficient amount of risk data from historical sources due to its non-routine and unique 

characteristics. Due to the scarcity of sufficient data for probabilistic analysis, construction 

project risks are being managed based on experts’ judgments and experiences (Zeng et al., 2007). 

Therefore, the data type for risk studies is mostly qualitative rather quantitative (Islam and 

Nepal, 2016). Note that this qualitative data may induce imprecision and biasness in the 

decision-making process (Sadiq and Husain, 2005). Moreover, these qualitative data are often 

found as linguistic variables. Linguistic variable can be defined as variable which can take words 

in natural language as its value such as “High/Low”, “Good/Bad” or “Major/Minor”, etc. These 

linguistic variables express imprecise and vague information instead of sharp numerical values. 

In these situations, the risk assessment cannot be exact but approximate. Fuzzy set theory 

(Zadeh, 1965) provides an effective tool to quantify or capture the vagueness in the linguistic 
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variables. However, depending on the data types, availability and sources, both probabilistic and 

subjective judgments can be used in risk analysis process simultaneously. Due to its suitability 

for handling both quantitative and qualitative data, fuzzy logic has been used in risk assessment 

process for a long time (Zeng et al., 2007; Morote and Vila, 2010; Choi et al., 2004; Islam and 

Nepal, 2016; Sadiq and Husain, 2005).  Concepts other than fuzzy logic have also been used in 

risk management over the last two decades, such as MCDM approach, (Tamosaitene et al., 2013; 

Zoffani et al., 2016; Erdogan et al., 2016; Zavadskas et al., 2009), Fault tree analysis/Event tree 

analysis (Hadipriono et al., 1986), Influence diagram (Dikmen et al., 2006), Brain storming, 

Merging fuzzy with MCDM tools (Lin and Jianping, 2011; Haghshenas et al., 2016), etc. In real-

life problem, though it is very hard to obtain sufficient statistical data, it may be possible to 

evaluate risk using these insufficient data merging with subjective judgements. A very few 

researchers have attempted to develop their risk assessment models using data from both 

sources: probabilistic analysis on historical data and subjective judgments from experts (Cho et 

al., 2002; Choi et al., 2008).   

In literature, different researchers have proposed different models or techniques for assessing, 

handling and managing risk in construction project. All these methodologies developed so far 

use different algorithms and theories for formulating risk assessment models, which are 

applicable to different situations and conditions. A statistical risk assessment model for 

construction project based on quantitative data obtained as a result of questionnaire survey is 

proposed by Khodeir et al. (2015). Beside this, numerous researches based on statistical analysis 

are also available in the literature (Zubaidi and Otaibi, 2008; Deng and Zhou, 2010; Andi, 2006; 

Dada and Jagboro, 2007; Zou and Zhang, 2009; Kululanga and Koutcha, 2010; Manelele and 

Muya, 2008). These models provide quite good results but they require high quality and 

sufficient data. Islam and Nepal (2016) proposed a Fuzzy-Bayesian model for making realistic 

budget and avoiding cost overrun by identifying the critical risk in the preliminary stage of the 

project life-cycle. They used expert’s judgments for developing the model with Bayesian belief 

networks, which overcome the drawback of biasness in subjective judgments. Another risk 

evaluating methodology was developed by Park et al. (2016) considering degree of change for 

mega projects. They showed how risk factors are changed simultaneously over time and its 

impact on projects. Belay et al. (2016) introduced a knowledge management algorithm based on 

conceptual learning and sharing matrix for concurrent construction projects. Zoffani et al. (2016) 



8 
 

developed a hybrid Multi-Criteria Decision Making (MCDM) model to evaluate construction 

project risk regarding environmental sustainability. Purnus and Bodea (2015) described an 

educational simulation-based method to assess financial risk of a construction project. Toth and 

Sebestyen (2015) formulated a model to control the risk changing with time, based on value-

based risk monitoring. Wang and Elhag (2007) proposed a risk assessment methodology that 

allows experts to evaluate risk factors, in terms of occurrence probabilities and consequences of 

risks. All these existing models are developed under aleatory uncertainty alone, which leads poor 

performance in practice as real-life problem includes both aleatory and epistemic uncertainty. 

These models are also found incapable of handling epistemic uncertainty and complex 

relationship among the risk factors properly.  Therefore, as the epistemic uncertainty is reducible, 

this must be incorporated into risk assessment framework for better performance in practice.   

Risk assessment models considering uncertainty 

Several studies on the construction project risk assessment are reported in the literature to deal 

with uncertainty. A model for risk assessment considering associated uncertainty was developed 

by Zeng et al. (2007), based on fuzzy reasoning and Analytic Hierarchy Process (AHP). A Factor 

Index was introduced in this risk analysis process to evaluate all possible uncertainty associated 

with two parameters: risk likelihood and risk severity. However, the biasness in subjective 

judgments is ignored in this model, therefore, evaluation of uncertainty is still not fully covered. 

Asan et al. (2014) proposed a fuzzy prioritizing approach to project risk management considering 

the uncertainty raised from subjective judgments. This model gives satisfactory results in respect 

of handling biasness in subjectivities but still incapable to handle modeling uncertainty. Lu and 

Tzeng (2002) formulated a risk assessment model based on AHP and Fuzzy-MCDM approach. 

This work employed AHP to determine the weights of risk factors and Fuzzy-MCDM approach 

to synthesize the degree of risk of each activity. The uncertainties factors were not explicitly 

considered in this risk analysis model. A risk assessment framework for construction projects 

was proposed by Wang et al. (2004), particularly for developing countries. The research utilized 

literature review, international survey, interviews and discussions to interpret statistical analysis, 

mean criticality and standard deviation to develop the model. The model is capable of 

categorizing risks better and represents the influence relationship among risks at different 

hierarchy levels. Morote and Vila (2010) developed a risk assessment methodology using 

trapezoidal fuzzy membership function to capture the vagueness in the linguistic variable 
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obtained from expert’s judgments. They used an algorithm to handle the inconsistencies in the 

fuzzy preference relation when pair-wise comparison judgments are necessary. Though in this 

model, uncertainties in subjective judgments are considered in computing risk value, its 

uncertainty factors are still not explicitly expressed. Cho et al. (2002) designed a new form of 

fuzzy membership curve to represent the degree of uncertainty involved with occurrence 

probability of a risk event.  However, uncertainties or subjectivities are involved in computation 

of both RL and RS. Therefore, the risk values are calculated ignoring the uncertainties that are 

associated with the evaluation of risk severity. Choi et al. (2008) developed a risk assessment 

model for construction projects by combining existing data and project specific information. This 

model minimizes the uncertainty to a certain level but not significantly because sources of 

uncertainty in risk analysis are not unique. Choi and Mahadevan, (2008) pointed that the 

uncertainties are involved in both probabilistic parameter estimations and subjective judgments. 

The uncertainty involved in probabilistic parameter estimations is basically due to (a) unreliable/ 

insufficient data or (b) approximation in statistical analysis methods. On the other hand, the 

factors influencing the uncertainties in subjective judgments are: (a) the complexity of 

work/conditions and (b) the level of education and experience of the experts. 

Risks are basically assessed for prioritizing them in order to set-up risk response strategies 

against only to the higher order risks because of the limitations of time and cost. The risk 

response strategies are concerned with developing options and actions to enhance opportunities 

and to reduce threats to the project objectives (Morote and Vila, 2010). Most of the researchers 

attempted to compute risk magnitude to prioritize them considering two factors: occurrence 

probability and severity of risk (Zeng et al. 2007; Morote and Vila, 2010; Choi et al., 2004). 

None of the proposed risk assessment methodologies take into account the degree of uncertainty 

involved in the individual risk event. However, in practice, the degree of uncertainty that 

involved in each independent risk event may vary due to the availability of data from multiple 

sources (e.g., from experts’ opinion and statistical data from similar projects). Therefore, 

computation of uncertainty range of individual risk event and ranking with uncertainty range 

may help project manager in better understanding of risk and taking preventive actions to 

mitigate risk impacts.   
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Decision with uncertainty intervals 

In the uncertain environment where exist imprecise and insufficient data, interval-valued 

numbers are the simplest way of representing uncertainty in the decision-making problems. 

Since the assessment of risk is basically the measure of uncertainty, it is difficult or even 

impossible to express the risk with exact point value. Therefore, in this situation, it is more 

appropriate to express them as intervals. When a risk parameter is specified by an interval, it 

does not indicate which value is most likely to occur but it can take any value from within the 

interval (Sayadi et al., 2009). Numerous methods for ranking with interval numbers are available 

in the literature. Song et al. (2012) proposed a two-grade approach for ranking with interval data 

using a dominance degree and an entire dominance degree. Here, in a dominance degree, two 

objects are compared under an attribute whereas in entire dominance degree, all considered 

attributes are used to compare them. Another method for ranking interval data using Monte Carlo 

concept is developed by Jahanshaloo et al. (2008). Various methods are developed over the last 

decade for finding best alternative in multicriteria decision making problems based on interval-

valued intuitionistic fuzzy sets theory (Nayagam et al., 2011; Chen et al., 2011; Sivaraman et al., 

2014). Jahanshaloo et al. (2014) proposed an extension on TOPSIS (i.e. Technique for Order of 

Preference by Similarity to Ideal Solution) method to solve multicriteria decision making 

problems with interval data. This method is more suitable for the risk avoider (i.e., pessimist) 

decision makers, because it is based on the principle that optimal point should have the farthest 

distance from negative ideal solution (NIS). Another extension on VIKOR method based on the 

particular measure of “closeness” to the positive ideal solution (PIS) is proposed by Sayadi et al. 

(2009). This method is a bit different from the extended TOPSIS method based on the principle 

and it is more suitable for profit seeking (i.e., optimist) decision maker. 

Although there is now an extensive volume of work available for ranking methods with interval 

numbers, all these methods have only been studied with respect to the decision-making 

problems. However, this concept may also be employed in construction project risk assessment 

process. Since the construction project is associated with the substantial epistemic uncertainties, 

interval number can be the way of representing the degree of uncertainties involved in each risk 

event. In all the risk assessment methodologies developed so far, it has been assumed that the 

degrees of uncertainties involved in individual risk event are equal. However, in practice, the 

degrees of uncertainties involved in each risk event may vary due to the variations in availability 
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or quality of data. None of the existing risk assessment methods take into account the degree of 

uncertainties that involved among different risk events as a variable factor and interval number to 

express risk value. Therefore, there is a need for an efficient risk assessment methodology that 

evaluates construction project risks with interval numbers considering the degree of uncertainty 

involved in each risk event. 

This research proposes a methodology for risk assessment of construction project using fuzzy 

concept under epistemic uncertainty. The proposed method evaluates construction project risks 

in terms of uncertainty interval that represents the degree of uncertainties involved in individual 

risk. It also provides a risk ranking based on these uncertainty intervals. In the following 

chapters, this study develops and demonstrates generalized methodologies and tools for risk 

assessment of construction projects that will provide decision support to the engineers and 

project managers to mitigate threat to the project objectives. 
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CHAPTER 3 

THEORETICAL FRAMEWORK 

3.1. Fuzzy Set Theory 

The fuzzy set theory was first introduced by Professor Lotfi A. Zadeh in 1965. Later in 1973, he 

introduced linguistic variables into fuzzy sets in order to capture the fuzziness that exists in 

human judgment, evaluation and decisions. The notion of fuzzy set theory provides a 

mathematical framework in which the vague conceptual phenomena can be precisely and 

rigorously studied. It is well suited for the situation where there is no sharp boundary between 

success and failure (e.g., vagueness), for example, “less than” or “more than” type rather than 

“yes/no” types. Instead of determining the sharp boundary as an ordinary set, fuzzy set defines 

no exact boundary.  

Mathematically, a fuzzy set A within the universal set U in the interval [0, 1] can be defined as 

   )1..(....................................................................................................()(, UxxxA A    

where, µA(x) is called membership function, which maps each element x in U to a real number in 

the interval [0, 1]. The large function value of µA(x) indicates that the grade of membership of x 

in A is strong (Morote and Vila, 2011).  

In the framework of fuzzy set theory, Zadeh (1973) introduced the concept of possibility 

measure and a possibility distribution. The axioms of fuzzy possibility measure for the finite 

universal sets (Nikolaidis et al. 2004) are given below: 

a) The possibility of an event could be either 0 or 1. If false then ᴨ(ø) = 0, and if true then 

ᴨ(Ω) = 1.  

b) If two event A and B in the sample space satisfy the following condition A ≤ B, then the 

possibility of even A is less or equal to the possibility of event B, that is ᴨ(A) ≤ ᴨ(B). 

c) The possibility of union of mutually exclusive events (A1, A2, A3, ….., An) is equal to the 

maximum value of these events' individual possibilities. That is.  

∏ (A1 U A2 U A3…….U An) = Max {ᴨ (Ai)}, where i = 1, 2, 3…….n. 

d) Similarly, the possibility of intersection of mutually exclusive events (A1, A2, A3, ….., An) 

is equal to the minimum value of these events' individual possibilities. That is,  
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∏ (A1 ∩ A2 ∩ A3…….∩ An) = Min {ᴨ (Ai)}, where i =1, 2, 3…….n. 

By the extension principle of fuzzy set theory (Zadeh, 1965), the arithmetic operations of any 

two Triangular Fuzzy Numbers (TFNs) are as follow: 

Fuzzy addition operation:  

  )2......(................................................................................,, 21212121 ccbbaaAA   

For fuzzy subtraction operation: 

  )3......(................................................................................,, 21212121 acbbcaAA   

For fuzzy multiplication operation: 

  )4.......(................................................................................,, 21212121 ccbbaaAA   

For fuzzy division operation: 

  )5....(..........................................................................................,, 21212121 acbbcaAA   

In case of fuzzy addition or subtraction of any Triangular Fuzzy Number (TFN), the resulting 

fuzzy number is also a TFN. However, fuzzy multiplication and fuzzy division operations 

provide only an approximate of a TFN. 

3.2. Fuzzy Membership Function 

Every fuzzy set contains values of a fuzzy variable and its membership function. This 

membership function is basically a curve that defines how the values of a fuzzy variable are 

mapped to a degree of membership to an interval of [0, 1]. Membership Functions (MFs) can 

take any form, but there are some common examples that appear in real applications. There are 

various types or shapes of fuzzy membership curves- Gaussian, triangular, trapezoidal, 

piecewise-linear, S-shaped, bell-shaped, etc. These fuzzy membership curves or functions may 

either be arbitrarily chosen by the user, based on the user’s experience or be designed using 

machine learning methods (e.g., artificial neural networks, genetic algorithms, etc.). In Figure 1, 

a Triangular Membership Function (TMF) is shown, where a, b and c represent the x coordinates 

of the three vertices of µA(x) in a fuzzy set A. Here, a and c represent the lower and upper 

bounds, respectively, where the degree of membership is zero and b denotes the peak point at 

centre where the degree of membership is 1. 
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Figure 1: Triangular fuzzy membership function 

3.3. Linguistic Variable 

In 1973, Professor Lotfi L. Zadeh introduced the concept of linguistic variables in fuzzy logic. 

Qualitative risk assessment methods are still based on linguistic variables that are often obtained 

from expert’s subjective judgment. Linguistic variable may be defined as a variable which can 

take words in natural languages as its value. For example, the occurrence probability of risk (i.e., 

RL) or RS can be expressed with five simple linguistic terms like “Very High”, “High”, 

“Medium” “Low”, and “Very Low”, etc. rather than a sharp numerical value. Here, each 

linguistic term represents a range of risk occurrence probability rather than crisp value. The 

value range of each linguistic term is usually defined by the risk assessment team at the 

beginning stage of fuzzy process.  

3.4. Uncertainty in Risk assessment 

Uncertainty may be defined as a situation which involves imperfect, imprecise and/or 

unknown information. Risk is fully concerned with uncertainty (e.g., the more uncertainty, the 

more involvement of risk). Therefore, uncertainty always exists in any risk assessment process 

that must be considered in risk analysis process. 

In real world situation, uncertainty in risk analysis arises from several different sources that must 

be identified for controlling purpose. Halder and Mahadevan (2000) discussed that the 

uncertainties in a system may come from cognitive (qualitative) and non-cognitive (quantitative) 

sources. They further classified these non-cognitive or quantitative sources of uncertainty into 

three major groups. The first source is the inherent randomness in all physical observations. For 

example, same physical quantity produces different values for repeated measurements due to 
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natural variation in the environment. Limited or insufficient data availability leads to the second 

source of uncertainly, known as statistical uncertainty. The third type of uncertainty is referred to 

as modeling uncertainty. System analysis models are only approximate or partial representations 

of real world situation. Some idealizations or assumptions are made to capture the essential 

characteristics of system behavior in any computational models. Qualitative or cognitive sources 

of uncertainty relate to the haziness of the problem arising from subjective judgments about 

reality. This uncertainty may depend on (a) the complexity level of the problem and (b) skills, 

knowledge, education and experience required to solve the problem. For the research purpose, 

these uncertainties may be classified into two broad types, namely a) uncertainty associated with 

randomness in phenomenon that is due to natural variability of the observed information, and b) 

uncertainty associated with imperfect models because of insufficient data (Choi and Mahadevan, 

2008, Ang and Tang, 2006). These two types of uncertainty may be called aleatory and epistemic 

uncertainty, respectively. Aleatory uncertainty is irreducible where epistemic uncertainty may be 

reduced by gathering more precise or perfect information. 

3.5. VIKOR method 

The basic idea of VIKOR was initially developed by Serafim Opricovic in 1980 and became 

internationally known as VIKOR method later in 2004. The name VIKOR came from Serbian 

word "VIseKriterijumska Optimizacija I Kompromisno Resenje", which means multicriteria 

optimization and compromise solution. This method was originally designed to solve a discrete 

decision-making problem with non-commensurable and clashing criteria. However, over the 

years this method has been used by researchers who used it for ranking the alternatives in various 

MCDM problems with mild modifications. Sayadi et al., (2009) proposed an extended VIKOR 

method to solve the decision-making problem with interval data. Table 1 shows the decision 

matrix with interval numbers. It is seen that A1, A2, …,  Am are the possible alternatives which are 

to be ranked and C1, C2,…… ,Cn are the criteria with which alternative performances are to be 

measured. xij's are the ratings of alternatives Ai with respect to criteria Cj. 

 

 



16 
 

Table 1: Decision matrix with interval data 

 C1 C2 … Cn 

A1 [𝑥11𝐿 , 𝑥11𝑈 ] [𝑥12𝐿 , 𝑥12𝑈 ] … [𝑥1𝑛𝐿 , 𝑥1𝑛𝑈 ] 

A2 [𝑥21𝐿 , 𝑥21𝑈 ] [𝑥22𝐿 , 𝑥22𝑈 ] … [𝑥2𝑛𝐿 , 𝑥2𝑛𝑈 ] 

… … … … … 

Am [𝑥𝑚1𝐿 , 𝑥𝑚1𝑈 ] [𝑥𝑚2𝐿 , 𝑥𝑚2𝑈 ]  [𝑥𝑚𝑛𝐿 , 𝑥𝑚𝑛𝑈 ] 

 

The necessary steps for ranking with the extended VIKOR method are given below: 

Step 1: Determine the Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS). 
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where, I denotes benefit criteria and J denotes cost criteria. 𝐴∗and 𝐴−are PIS and NIS 

respectively. 

Step 2: In this step, the  SS U
i

L
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Step 3: Compute the interval 𝑄𝑖=[𝑄𝑖𝐿,Qi
U]; i = 1, 2… m, by the following equations: 
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where, 𝑣 represents weight of the strategy of “the dominant part of criteria”. 

Step 4: Based on the VIKOR method, the alternative which has minimum Qi is the best 

alternative and is chosen as compromise solution. However, here Qi, i =1, 2 ... m are interval 

numbers. To find the alternative with minimum interval number, pairwise comparisons are made. 

The following Step 5 shows the method for comparison of two interval numbers. 

Step 5: Suppose that a minimum interval number have to be selected between two interval 

numbers like [aL, aU] and [bL, bU]. Therefore, these two interval numbers may have four 

statuses: 

(a) If there is no intersection between these two interval numbers, the minimum interval is 

that one which has lower values. In different words: if aU≤ bL, then interval [aL, aU] is the 

minimum one. 

(b) If two interval numbers are the same, then two have similar priority for us. 

(c) In circumstances that aL≤ bL< bU≤ aU, the minimum interval number is computed as 

follows: if α(bL- aL) ≥ (1-α)(aU-bU), then [aL, aU] is the minimum interval number, 

else [𝑏𝐿 , 𝑏𝑈] is minimum interval number. 

(d) In circumstances that aL< bL< aU< bU, and if α(bL-aL) ≥(1-α)(bU-aU), then [aL, aU] is 

the minimum interval number, else [bL, bU] is minimum interval number. 

Here, α is introduced as optimism level of the decision maker (0 < α ≤ 1). The optimist decision 

maker has higher value of α than the pessimist decision maker. In this situation, the final ranking 

is obtained by the method of pairwise comparisons of interval numbers as discussed above. 

Based on the theories described above, a risk assessment methodology for construction project 

under epistemic uncertainty is proposed in the next chapter.   
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CHAPTER 4 

PROPOSED RISK ASSESSMENT MODEL 

A typical risk management process consists of four steps: risk identification, risk assessment, 

risk response, and risk monitoring and controlling. It should cover all aspects of risks in 

construction project and demonstrate risks with potential causes, effects and their corrective 

actions. All the previously proposed fuzzy based risk assessment methodologies have three 

common steps as follows: 

  Step 1: definition and fuzzification- all the fundamental parameters are defined basically with 

vague data or linguistic terms and then these parameters are converted into suitable fuzzy 

numbers.  

 Step 2: fuzzy inference system- the relation between inputs and output parameters are defined by 

the appropriated fuzzy mathematical operations or if-then rules.  

Step 3: defuzzification- the output result in the form of fuzzy number is converted into 

appropriate numerical value that can adequately represent it.  

This thesis proposes a risk assessment model under epistemic uncertainty based on fuzzy concept 

as shown in Figure 2. In this risk assessment framework, the algorithm of risk model consists of 

four phases: preliminary phase, data collection phase, risk measurement phase, and uncertainty 

measurement phase. In brief, the risk assessment team must go through these four phases to 

implement the proposed construction project risk assessment model. The following four phases 

are basically concerned with the following tasks: 

Phase 1: The review of risks data, definition of fuzzy linguistic variables and selection of 

their corresponding fuzzy membership function. Here, in this thesis, TFN is used to map 

the membership values to take the advantage of its simplicity and familiarity. 

Phase 2: Identification of risks sources and gathering risk related information (e.g., RL or 

RS) from diversified sources to reduce biasness. 

Phase 3: Application of the appropriate fuzzy operations for aggregation of data obtained 

from multiple sources and computation of risk value through FIS. 
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Phase 4: Determination of uncertainty range of each risk event by selecting appropriate 

fuzzy membership curves and prioritization of risk events based on their uncertainty 

ranges. 

The details of the risk assessment methodology are described in the following sections of this 

chapter. 
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Figure 2: A fuzzy based risk assessment model 

  

 

 

Establish a risk assessment team 

Review risk data and define linguistic variables 

 Define matching MFs for each linguistic variable  
Preliminary phase 

Collect data from diversified sources 

Allocate weights to the data sources 

Data collection 
phase 

Risk measurement 
phase 

Convert the data of RL and RS into matching TFN 

Aggregate TFN of RL and RS into group TFN 

Fuzzy inference system 

Evaluate RV through Defuzzification process 

Uncertainty 
measurement 

phase 

Determine the linguistic term for uncertainty range 

Determine fuzzy membership curves for each risk item 

Evaluate uncertainty intervals through defuzzification 

Risks ranking with uncertainty intervals 



21 
 

4.1. Preliminary Phase 

4.1.1. Establish a risk assessment team 

Risk assessment process is basically a team work and its success mainly depend on how well the 

risk assessment team is formed. Therefore, selection of members in the risk assessment team is 

very crucial and needs great attention of senior management. The team should be formed with 

the experts from different background and discipline and having a high degree of knowledge and 

previous experience of working in similar construction projects. This team may include the 

following experts: project managers, site engineers, construction managers, project team 

members, subject specialists, etc. The size of the team is also important; too big can create many 

opinions which often lead to lack of coordination and too small may lead to biasness due to 

incomplete viewpoints. The author claims that the perfect team size may vary from 

approximately 3 to 7 members depending on the project’s type, size and length. The risk 

assessment team will undertake the review of risk data and information, identification of risk 

sources and determination of risk parameters. 

4.1.2. Review risk data and define linguistic variables 

All the members of risk assessment team are required to review the risk related information and 

should be clarified by themselves if they have any doubts about the risk assessment procedures. 

All the risk parameters such as RL, RS and associated linguistic variables should be defined by 

the risk assessment team at the very beginning of the risk assessment process. It is extremely 

difficult to quantify the construction project risks with an exact numerical value due to the 

involvement of greater uncertainties. If the risk assessment group has imprecise, imperfect or 

lack of information about risks associated with a project, then the assessment of risk cannot be 

exact but approximate. In these situations, the judgments of the risk assessment group members 

are expressed by means of linguistic terms instead of numerical values or real numbers. The 

variable which can take words in natural languages as its value is called linguistic variable. For 

example, the occurrence probability of a risk event can be expressed with simple linguistic terms 

such as “High”, “Low”, “Very Low”, and “Very High”, etc. instead of exact numerical values 

such as 2/10, 4/100, etc. For evaluating the risk parameters with this risk assessment model, RL 

and RS are defined by five linguistics terms: “Very low”, “Low”, “Medium”, “High” and “Very 

high’.      
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4.1.3. Define matching MFs for each linguistic variable 

The linguistics terms must be converted into a matching fuzzy number by using appropriate 

conversion scale for numerical quantification of risks. The linguistics variables are characterized 

by fuzzy membership functions defined in the universe of discourse in which the variable is 

defined. Various types of fuzzy membership functions are available, such as triangular, 

trapezoidal, Gaussian and S-shaped MFs. However, triangular and trapezoidal MFs are the most 

frequently used MFs in construction project risk analysis in practice because of its simplicity. 

Figure 3 shows the TFN for the associated linguistic variables of RS and RL. It is seen that the 

TFN for linguistic term “Very low” is (0, 0, 0.25), for “Low”, it is (0, 0.25, 0.5) and so on. 

 

Figure 3: TFN for linguistic variables 

4.2. Data collection Phase 

4.2.1. Collect data from diversified sources 

In construction project risk analysis, sufficient amount of historical or statistical data is often 

hard to obtain. Therefore, most of the existing models use only data from expert’s judgments. 

However, these insufficient statistical data along with expert’s judgments can be used in risk 

evaluation process for better performance. Although, the projects are characterized as unique, 

one-time endeavor, there are some common risk events that exist for all types of projects and 

some are specific for particular project. Therefore, risk data are available for these common risk 

events in the historical sources. This thesis evaluates risks considering both data from historical 

source (i.e., insufficient statistical data) and subjective judgments from many experts. If data are 

collected from m number of experts, then total number of data source will be n = m+1, because 
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data from statistical source should be considered as one source. It is important to note that data 

should be collected from as diversified and multiple sources as possible to reduce biasness, 

because different experts will see the problems from their own viewpoints. Here, the term 

diversified is used to mean the experts from different backgrounds and sectors. 

4.2.2. Allocate weights to the data sources 

As different sources of data have different impacts on the final decision, weights are introduced 

into the project risk analysis model. Weights (Ws) will be allocated to experts on the basis of 

experience, knowledge and expertise and to the statistical source on the basis of data quality, 

quantity and credibility. If data are collected from n number of sources, then the kth data source 

Sk is assigned a weight factor Wk, where Wk ∈ [0, 1], and W1 + W2 + ……. + Wn = 1. 

4.3. Risk Measurement Phase 

4.3.1. Convert the data of RL and RS into matching TFN 

In this step, all the risk data related to RL and RS obtained from expert’s opinions and historical 

source should be converted into appropriate fuzzy number. In this risk assessment model, TFN is 

used for its simplicity and popularity. Expert’s judgments in the form of linguistic variables are 

needed to convert into matching TFN as defined earlier by the risk assessment team. For 

example, an expert might say that the occurrence probability for the kth risk events is “High”, 

then according to the definition, the matching TFN is (0.5, 0.75, 1.0). Experts are also allowed to 

give any intermediate values of TFN about RL and RS directly without any help of linguistic 

variables. Suppose, it is possible to put (0.3 0.4 0.5) directly as TFN for both RL and RS. In case 

of statistical data source, single numerical values are obtained about RL and RS from 

probabilistic analysis such as frequency analysis, Monte Carlo simulation, Bayesian approach, 

etc.  Data obtained from probabilistic analysis also need to be converted into TFN to take 

advantages of merging with TFN obtained from other sources in the aggregation process. If “a” 

be the measured value of RS or RL by probabilistic analysis, then TFN is converted as (a, a, a). 

For example, if the occurrence probability of a risk event is found as 0.3, then TFN will be (0.3, 

0.3, 0.3). 
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4.3.2. Aggregate individual TFN of RL and RS into group TFN  

The aim of this step is to apply appropriate operator to aggregate the individual TFN of RL and 

RS obtained from various sources into group TFN. The aggregation of TFN scores is performed 

by applying the fuzzy weighted triangular averaging operator, which is defined by 

  )11.(.................................................................... *
2

*
21

*
1

* WAWAWAA kiniik   

where, 𝐴𝑘 ∗ is the fuzzy aggregated TFN score and 𝐴𝑖𝑘∗  (for  𝑘 = 1, 2… .𝑚 + 1) are the measured 

TFN of m numbers of experts from diversified field and one from statistical source. Here, ⊗   

and   ⊕   denote the fuzzy multiplication and fuzzy addition operators, respectively. W1, W2,… 

,Wm+1 are the weights allocated to experts, E1, E2,….,Em and W1 + W2 + ……. + Wm+1 = 1. 

4.3.3. Fuzzy Inference system 

Fuzzy Inference System (FIS) is the process of transferring from a given input mapping to an 

output mapping using fuzzy logic. In the fuzzy inference phase, the aggregated TFNs of RL and 

RS are converted into matching fuzzy sets of RV. Therefore, this fuzzy inference system has two 

inputs RL and RS and one output variable RV. Here, the value of the output RV depends on both 

values of RL and RS. Therefore, according to fuzzy set theory, the logical operation between RL 

and RS is “fuzzy intersection" or “AND”. In other words, according to truth table of standard 

Boolean logic, RV is “truth” when both RL and RS are “truth”. The classical fuzzy operator for 

this function is: min, but the fuzzy T-norm operator (i.e., triangular norm) enables us to 

customize the AND operator. The intersection of two fuzzy sets A and B is defined in general by 

a binary mapping T, which aggregates two membership functions as follows: 

)12.....(................................................................................))........(),(()( xxTx BABA    

where, binary operator T represents the product of 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥). 

The classical method of fuzzy intersection (i.e., “min”) considers only the minimum value of the 

two input variables. This implies that the value of RV is equal to the minimum value between 

them that may come from either RL or RS value ignoring the maximum value. However, there is 

great impact of both inputs RL and RS to the output RV. In this respect, prod operator considers 

the effects of both inputs to the output RV, which is desirable. 
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4.3.4. Evaluate RV through Defuzzification 

Defuzzification of fuzzy numbers is the process of producing non-fuzzy number that is needed 

for decision making in a fuzzy environment. There are many defuzzification methods available; 

any one of which can be selected according to the requirements for reflecting the real situation 

and viewpoints of the decision maker. Centroid, bisector, middle of maximum, largest of 

maximum, smallest of maximum, and α-cut are the very popular defuzzification methods. In this 

phase, the centroid method is selected as it is relatively easy to apply, which can be 

mathematically defined as: 

)13.....(....................................................................................................
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where, f(x) denotes the membership function of RV. 

4.4. Uncertainty measurement Phase 

4.4.1. Determine the linguistic variables for uncertainty range. 

This risk assessment model uses both expert’s judgments and insufficient historical data in risk 

analysis. Therefore, uncertainties are involved in both processes: probabilistic analysis and 

subjective judgments. The uncertainties involved in probabilistic estimations of RV and RS are 

basically due to (i) unreliable/ insufficient data or (ii) approximation in statistical analysis 

methods. On the other hand, the factors influencing the uncertainties in subjective judgments are: 

(iii) the complexity of work/conditions and (iv) the level of education and experience of the 

experts. Based on these four factors, a linguistic variable of “Close to ~” type is determined to 

consider the degree of uncertainties involved in each risk event as shown in Table 2. It is seen 

that five linguistic variables such as “Very very close to”, “Very close to”, “Close to”, “Fairly 

close to” and “Fairly fairly close to” are used to evaluate a proper uncertainty range. Here, this 

“Close to ~” type linguistic variables are basically used to mean how close the determined risk 

value to the actual value (i.e., the RV with zero degree of uncertainty). In general, four possible 

grades of uncertainties such as “Very Small”, “Small”, “Normal” and “Large” are assumed in 

these four uncertainty factors. Table 2 shows the classification of linguistics variables that 

represent the degree of uncertainties according to different combinations of the four possible 

uncertainty grades. 
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Table 2: Factors for determining uncertainty range of RV (proposed by Choi et al., 2008) 

  Subjective judgments Probabilistic parameter estimations Determined 

uncertainty range Complexity of 

work 

Level of education, 

experience & confidence 

Unreliable/ 

Insufficient data 

Approximation in 

statistical analysis 
Very small Very small Very small Very small Very very close 

Very small Small Very small Small 

Small Very small Small Very small  

Very close Very small Normal Very small Normal 

Normal Very small Normal Very small 

Small Small Small Small  

Close 

 

Small Normal Small Normal 

Normal Small Normal Small 

Very small Large Very small Large 

Large Very small Large Very small  

Fairly close Normal Normal Normal Normal 

Small Large Small Large 

Large Small Large Small  

Fairly fairly close Normal Large Normal Large 

Large Large Large Large 

 

4.4.2. Determine fuzzy membership curve for each risk item 

In this step, after determination of appropriate linguistic variables for the degree of uncertainties 

involved in each risk event, a fuzzy membership curve is drawn based on the determined 

linguistic variables. The fuzzy membership functions of “Close to ~” type have been developed 

earlier by Choi et al. (2008) to represent the uncertainty range involved in probability of 

occurrence. Here, in this thesis, these membership functions are used to compute the uncertainty 

interval involved in individual risk event. Figure 4 shows the sample membership curves for a 

risk event with RV of 0.5 which are drawn for all the five defined linguistic variables as 

described in the previous section. If x be the RV of a risk event, then the fuzzy memberships 

curve is defined for “Close to x” type as below: 
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where, 𝑥′ is the transformed axis such that estimated or determined value of each risk event is 

located at the midpoint (0.5) of x-axis. Thus xy = x′; where y is calculated by using the value of 

the fuzzy number at the midpoint, so that 0.5𝑦 = 𝑥′. Here,𝑦  is the midpoint transfer function 

and 𝑝 is the coefficient of power according to linguistic variables. 

For example, assume that the risk value (RV) of a risk event A is determined as 0.204 through 

fuzzy inference system, then the corresponding value of midpoint transfer function y will be 

2.293 as shown below: 

0.5y = 0.204 or y = 2.293 

Table 3 shows the equations which are associated with the five linguistic variables. 

Table 3: Membership functions to capture uncertainty ranges (Cho et al., 2002) 

Linguistic variable Values (f(x′)) Limit  

Very very close (VVC)   x y y
2 1

4
 5.00.0 yy x   

  x y y
22 1

4
 0.15.0 yy x   

Very close (VC)   x y y
2 1

2
 5.00.0 yy x   

  x y y
22 1

2
 0.15.0 yy x   

Close (C)  x y y
2 1  5.00.0 yy x   

 x y y
22 1  0.15.0 yy x   

Fairly close (FC)   x y y
2 1 2

1
 5.00.0 yy x   

  x y y
22 1 2

1
 0.15.0 yy x   

Fairly fairly close (FFC)   x y y
2 1 4

1
 5.00.0 yy x   

  x y y
22 1 4

1
 0.15.0 yy x   
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Figure 4. Membership curves with different degrees of uncertainty  

4.4.3. Evaluate uncertainty intervals through defuzzification 

The uncertainty ranges of these linguistic expressions of each risk event are evaluated 

quantitatively by using α-cut defuzzification method. Although there exists numerous 

defuzzification methods, especially for this defuzzification step, α-cut method is recommended 

due to its capability to produce interval data from membership functions. Here, α represents the 

degree of membership functions or belief functions. The optimistic decision makers will have 

higher values of α than the pessimistic decision makers.  

4.5. Risks ranking with uncertainty intervals 

In this section, risks are ranked based on uncertainty range by applying extended VIKOR method 

(Sayadi et al., 2009) described in the previous chapter. In the proposed methodology, a minor 

modification is needed because the method was proposed for general purpose of solving MCDM 

problem. However, in this risk analysis model, the problem is more specific and ranking or 

prioritizing of risks is based on only uncertainty interval of each risk event. Therefore, a minor 
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modification is made in order to simplify the model for ranking risks with the help of uncertainty 

intervals. The modified extended VIKOR method consists of the following steps: 

Step 1: Determine the positive ideal solution (PIS) and negative ideal solution (NIS). 
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where, 𝐴∗and 𝐴−are the PIS and NIS, respectively and J denotes uncertainty range as cost 

criterion 

Step 2: The original extended VIKOR method (Sayadi et al., 2009) has been developed aiming to 

solve problems with conflicting multi-criteria in which different criteria represent different 

dimensions of the alternatives. In this case, the risk ranking based on uncertainty interval is a 

single dimensional problem (minimization problem).  Since uncertainty range is the only 

criterion and there is no benefit criteria in ranking the construction project risks by using this 

modified VIKOR method, the values of the intervals  [𝑆𝑖𝐿,𝑆𝑖𝑈], [𝑅𝑖𝐿,𝑅𝑖𝑈] and [𝑄𝑖𝐿,𝑄𝑖𝑈] will be 

same. Therefore, the equations for computation of these intervals can be simplified as follows: 
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Step 3: According to the VIKOR method, the alternative which has minimum 𝑄𝑖 is the best 

alternative and it is chosen as compromise solution. However, here in risk analysis model, 𝑄𝑖 

intervals are being used to rank the risks. The risks with higher values of 𝑄𝑖 will get higher 

priority in the ranking order as opposed to the VIKOR method. To rank all construction risks 

with 𝑄𝑖 interval numbers, pairwise comparisons among all risks are made. The next step shows 

the method for comparison of two interval numbers. 

Step 4: Suppose that [𝑎𝐿 , 𝑎𝑈] and [𝑏𝐿 , 𝑏𝑈] are two interval numbers and the maximum interval 

number has to be chosen from them. Therefore, these two interval numbers may have four 

possible states: 
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(a) If there is no intersection between these two interval numbers, the maximum interval is 

that one which has higher values. In different words: if 𝑎𝑢 ≤ 𝑏𝐿, then interval [𝑏𝐿 , 𝑏𝑈] is 

the maximum one. 

(b) If two interval numbers are the same, then two have similar priority. 

(c) In circumstances that 𝑎𝐿 ≤ 𝑏𝐿 < 𝑏𝑈 ≤ 𝑎𝑈, the maximum interval number is computed as 

follows: if 𝛼(𝑏𝐿 − 𝑎𝐿) ≥ (1 − 𝛼)(𝑎𝑈 − 𝑏𝑈), then [𝑏𝐿 , 𝑏𝑈] is the maximum interval 

number, else  [𝑎𝐿 , 𝑎𝑈] is maximum interval number. 

(d) In circumstances that 𝑎𝐿 < 𝑏𝐿 < 𝑎𝑈 < 𝑏𝑈, and if 𝛼(𝑏𝐿 − 𝑎𝐿) ≥ (1 − 𝛼)(𝑏𝑈 − 𝑎𝑈), then 

[𝑏𝐿 , 𝑏𝑈]  is the maximum interval number, else[𝑎𝐿 , 𝑎𝑈] is maximum interval number. 

Here α is introduced as optimism level of the decision maker (0 < 𝛼 ≤ 1). The optimistic 

decision maker will use higher value of α than the pessimistic decision maker. In this situation, 

the final ranking is obtained by the proposed modified VIKOR method with pairwise 

comparisons of interval numbers. 

Therefore, once the ranking of the construction project risk is obtained by the method described 

above, risk response strategies are taken against only for the higher order risks due to the 

limitation of time and cost. In the following Chapter, an example problem (a real engineering 

problem) has been illustrated to demonstrate the applicability of the proposed risk assessment 

methodology.   
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CHAPTER 5 

NUMERICAL EXAMPLE  

5.1 A Case Study on Building Construction Project 

In this chapter, a case study of risk assessment on the building construction project is presented 

to illustrate the applicability of the proposed risk assessment methodology. As the construction 

project is associated with a large numbers of risk events, nevertheless a very few common risk 

events are considered in this building construction project’s risk assessment case study as shown 

in Figure 5. After a critical review of these risks data, all the possible risks events that involved 

in a construction project can be categorized into some major groups such as technical risks, 

operational risks, managerial risks, political risks, etc. For example, the risk events, design 

mistakes and design changes can be grouped into the technical risk, whereas delays, 

injuries/accidents, construction mistakes are the operational type risk. To demonstrate the 

proposed model and to simplify the calculations, only the technical and operational risks are 

assessed in this case study. Rest of the risk groups can also be assessed in the similar way. 

 
 
 
    
 
 
 
 
 
Project Risks 

Technical Risks: -Design mistakes 
-Design Changes 

  
Operational Risks: 
 

-Delays 
-Injuries/Accidents 
-Construction mistakes 

  
Management Risks: 
 

-Inexperience team members 
-Lack of adequate process 
-Lack of resource 

  
Financial Risks:  -Cost overrun 
  
Logistics: -Raw materials supply delay 
  
Political: -Political instability 
  
Natural: -Flood 

  -Heavy rainfall etc. 
 

Figure 5. Risks on building construction project  
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The step by step risk assessment procedures of the proposed model are discussed in the 

following subsections. 

5.2. Preliminary Phase 

5.2.1. Establish a risk assessment team 

A risk assessment team of three members are formed for undertaking risk assessment of the 

building construction project by using the proposed methodology. Details about the team 

members are given in Table 4. A team leader is selected among the members based on their 

knowledge, experiences and qualifications who were the overall in-charge. This team has carried 

out the whole risk assessment process from data collection to the final risk ranking. All the 

members of the risk assessment team are allowed to give their own judgments about risks along 

with the data obtained from other sources.  

5.2.2. Review risk data and define the linguistic variables 

First, the risk data of similar previous projects are critically reviewed by the risk assessment team 

and the potential risks with their sources are identified. Before data collections, all the linguistic 

variables related to RL and RS are defined by the risk assessment team. These linguistic 

variables help the team in collecting data from experts in the form of defined linguistic terms. In 

this case study, five simple linguistic variables such as “Very High”, “High”, “Medium” “Low”, 

and “Very Low” are defined for both RL and risk RS with different meanings. For clarification, 

in case of RL, linguistic variable “Low” means “unlikely to occur” while for the case of RS it 

means “involved small impact”. The details with their corresponding interpretations are shown in 

Table 4.  

5.2.3. Define matching MFs for each linguistic variable 

In this step, a matching TFN are defined for each linguistic term to evaluate the risks of building 

construction project. The matching TFN for each linguistic variable of both factors RL and RS 

are shown in the last column of Table 4. It is seen that the matching TFNs are defined for the 

linguistic terms “Very High” as (0.75, 1, 1), whereas for the linguistic term “High”, it is (0.5, 

0.75, 1) and so on for the rest. Experts are allowed to give their judgments about RL and RS with 

these defined linguistic terms as well as with TFN directly. For instance, it is possible to put any 

intermediate value of TFN for both RL and RS, if any expert wishes to do that. Therefore, (0.20, 
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0.3, 0.45) is also possible to take as TFN for RL or RS. In Table 5, it is seen that expert E2 gives 

his judgments about RL and RS with his own defined TFN such as (0.25, 0.35, 0.50) for RL and 

(0.50, 0.70, 0.90) for RS, respectively. 

Table 4: Descriptions of WDS, RL, RS and RV 

Weights of the Data Source (WDS) Descriptions  Weight (Wi) 

Expert 1 (E1) Project manager W1= 0.23 

Expert 2 (E2) Construction Manager W2= 0.20 

Expert 3 (E3) Chief Engineer W3= 0.30 

Statistical Data (SD) Data from previous project W4= 0.27 

Total  ∑Wi = 1.0 

Risk Likelihood (RL) Descriptions Fuzzy Number 

Very Low Very rarely to occur (0.0, 0.0, 0.25) 

Low Unlikely to occur (0.0, 0.25, 0.5) 

Medium Occurrence is usual (0.25, 0.5, 0.75) 

High Very likely to occur (0.5, 0.75, 1.0) 

Very High Occurrence is almost inevitable (0.75, 1.0, 1.0) 

   

Risk Severity (RS) Descriptions Fuzzy Number 

Very Low Impact is quite negligible (0.0, 0.0, 0.25) 

Low Involved small impact (0.0, 0.25, 0.5) 

Medium Moderate impact is involved (0.25, 0.5, 0.75) 

High Involved highly impact (0.5, 0.75, 1.0) 

Very High Very high impact is involved (0.75, 1.0, 1.0) 
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5.3. Data collection Phase 

5.3.1. Collect data from diversified sources 

For the purpose of risk assessment of the illustrated building construction project, data are 

collected from three experts who are working in diversified working area to reduce biasness. The 

first expert is a project manager with 12 years of experiences, second expert is a construction 

manager with 10 years of experiences and third expert is chief engineer with 15 years of 

experience. All the collected data are shown in Table 5, in the form of TFN system. Here, E1, E2, 

and E3 represent the first, second and third experts, respectively. The data from historical source 

of previously completed similar projects are also taken in risk analysis. The simple frequency 

analysis or Monte Carlo simulation methods are employed to analysis the Statistical Data (SD). 

A crisp or single numerical value about RL and RS for each risk event is obtained from statistical 

source by probabilistic analysis. However, this value is also converted into TFN to make ease in 

calculation with the data from subjective judgment. For example, in Table 5, RL value for design 

mistakes is found 0.20 by statistical analysis, then converted to the corresponding TFN value as 

(0.20, 0.20, 0.20). 

5.3.2. Allocate weights to the data sources 

Weights (Ws) are allocated to three experts on the basis of their experience, knowledge and 

expertise and to the statistical data on the basis of quality, quantity and credibility. These weights 

are allocated by risk assessment team. Here, for four data sources such as E1, E2, E3 and SD, the 

weights are determined as W1, W2, W3, and W4 respectively. Table 4 shows the weights for four 

data sources as W1= 0.23, W2 = 0.20, W3 = 0.30 and W4= 0.27, respectively.  

5.4. Risk Measurement Phase 

5.4.1. Convert the data of RL and RS into matching TFN 

The risk data of RL and RS are found in different forms from different sources. For example, 

data from experts-some are found in the linguistic forms, some are found as TFNs directly and 

data from statistical source are found as point data by probabilistic analysis. Therefore, in this 

step, all the collected data from different sources in different forms are converted into matching 

TFN as defined in the previous chapter. Table 5 shows the summary of data from four sources 

about RL and RS in the converted TFN forms. 
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Table 5: Measure of RL and RS parameters and aggregation. 

Risks  Data Sources Measure of RL Measure of RS 

 

 

Design mistakes 

E1 (0.25, 0.50, 0.75) (0.50, 0.75, 1) 

E2 (0.25, 0.35, 0.50) (0.50, 0.70, 0.90) 

E3 (0.20, 0.30, 0.40) (0.25, 0.40, 0.60) 

SD (0.30, 0.30, 0.30) (0.35, 0.35, 0.35) 

Ag.  (0.258, 0.356, 0.474) (0.384, 0.527, 0.686) 

     

 

Changes in design 

E1 (0.30, 0.50, 0.75) (0.40, 0.70, 0.90) 

E2 (0.30, 0.45, 0.65) (0.50, 0.70, 0.90) 

E3 (0.20, 0.35, 0.50) (0.25, 0.40, 0.60) 

SD (0.32, 0.32, 0.32) (0.29, 0.29, 0.29) 

Ag. (0.275, 0.396, 0.539) (0.345, 0.498, 0.645) 

    
 

 

Delays 

E1 (0.50, 0.75, 1.0) (0.25, 0.50, 0.75) 

E2 (0.50, 0.75, 1.0) (0.50, 0.75, 1.0) 

E3 (0.50, 0.75, 1.0) (0.25, 0.50, 0.75) 

SD (0.63, 0.63, 0.63) (0.30, 0.30, 0.30) 

Ag. (0.585, 0.768, 0.9) (0.314, 0.496, 0.678) 

    
 

 

Injuries/Accidents 

E1 (0.0, 0.25, 0.50) (0.0, 0.25, 0.50) 

E2 (0.25, 0.50, 0.75) (0.25, 0.50, 0.75) 

E3 (0.0, 0.25, 0.50) (0.25, 0.50, 0.75) 

SD (0.26, 0.26, 0.26) (0.28, 0.28, 0.28) 

Ag. (0.12, 0.303, 0.485) (0.201, 0.383, 0.565) 

 

 

Construction mistakes 

E1 (0.0, 0.25, 0.50) (0.0, 0.25, 0.50) 

E2 (0.25, 0.50, 0.75) (0.25, 0.50, 0.75) 

E3 (0.20, 0.40, 0.60) (0.15, 0.25, 0.45) 

SD (0.10, 0.10, 0.10) (0.25, 0.25, 0.25) 

Ag. (0.137, 0.305, 0.472) (0.163, 0.3, 0.467) 
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5.4.2. Aggregate TFN of RL and RS into group TFN 

In this step, the collected risk data of RL and RS from four individual sources are aggregated into 

group TFN. The aggregation of TFN scores is performed by applying fuzzy weighted triangular 

averaging operator which is defined with the equation (11) as illustrated in Chapter 4. This 

aggregated TFN scores of RL and RS are used as inputs in the next fuzzy inferences phase to 

evaluate output RV. The aggregated TFNs of RV are shown in Table 5. 

5.4.3. Fuzzy inference phase 

In the fuzzy inference process, there are two input variables RL and RS and one output variable 

RV. The aggregated TFNs of RL and RS are converted into TFN of RV through the fuzzy 

inference system where fuzzy intersection operator is employed. Using Eq. (12), described in 

Chapter 4, the input TFNs of RL and RS are converted into output TFN of RV. The RV values in 

TFN forms are shown in the fourth column of Table 6. 

5.4.4. Evaluate RV through defuzzification 

Since the output RV of fuzzy inference system is a fuzzy number, an appropriate defuzzification 

method is employed to convert it into matching numerical value. Center of area or centroid 

method (Eq. (13)) is applied as defuzzification method to convert the triangular fuzzy number 

into matching numerical value of RV. The defuzzied RV are shown in the last column of the 

Table 6. 

Table 6: Evaluation of RV through defuzzification 

Risks RL RS TFN of RV RV 

Design mistakes (0.258, 0.356, 0.474) (0.384, 0.527, 0.686) (0.096, 0.188, 0.324) 0.204 

Change in design (0.275, 0.396, 0.539) (0.345, 0.498, 0.645) (0.095, 0.198, 0.348) 0.214 

Delays (0.585, 0.768, 0.9) (0.314, 0.496, 0.678) (0.183, 0.381, 0.611) 0.392 

Injuries/Accidents (0.12, 0.303, 0.485) (0.201, 0.383, 0.565) (0.024, 0.116, 0.274) 0.138 

Construction mistakes  (0.137, 0.305, 0.472) (0.163, 0.3, 0.467) (0.022, 0.091, 0.221) 0.111 
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5.5. Uncertainty measurement phase 

5.5.1. Determine the linguistic variable for each risk event 

The linguistic variables that represent the degree of uncertainties involved in each risk event are 

selected based on four factors as described in the previous chapter. Table 7 shows the determined 

linguistic variables for five risk events that are selected subjectively considering the four 

uncertainty factors as described in Chapter 4.  For instance, the linguistic variable “Fairly close” 

is selected for the risk event “Design mistakes”. It means that the calculated RV is fairly close to 

the actual RV indicating that a high level of uncertainty is involved.   

Table 7: Degree of uncertainties involved in each risk event 

 

Risks 

Subjective judgements Probabilistic parameter estimations Determined 

linguistic variable Complexity 
of work 

Level of education 
& experience  

Unreliable/ 
Insufficient data 

Approximation in 
statistical analysis 

Design mistakes Small Large Small Large Fairly Close 

Change in design Very small Normal Very small Normal Very close 

Delays Very small Large Very small Large close 

Injuries/Accidents Very small Small Very small Small Very very close 

Construction mistakes Normal Large Normal Large Fairly fairly close 

 

5.5.2. Determine the fuzzy membership curve for each risk event 

Fuzzy membership function for each risk event is selected based on linguistic variables as 

described in the previous chapter. The fuzzy membership curves for the representation of the 

degrees of uncertainty for the risk events are shown in Figures 6-10. 
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Figure 6: Membership curve for “design mistakes” 

 
 

Figure 7: Membership curve for “Change in design” 



39 
 

 

Figure 8: Membership curve for “delays” 

 

Figure 9: Membership curve for “injuries/accidents” 
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Figure 10: Membership curve for “construction mistakes” 

5.5.3. Evaluate uncertainty intervals through defuzzification 

The uncertainty ranges for each risk event are evaluated quantitatively through the application of 

appropriate defuzzification process. In this step, α-cut defuzzification method is employed 

because of its pertinence. Here, α represents the degree of belief or membership function that is 

represented by y axis of the fuzzy membership curve. At α = 0.8, uncertainty range for the risk 

event “Delays” is obtained as 0.31 – 0.48, from the membership curve shown in Figure 8. The 

ranges of uncertainties of all technical and operational risks at α = 0.8 are shown in Table 8.  

Table 8.  Calculated uncertainty interval for each risk event 

Risks RV Degree of uncertainty Uncertainty range 

Design mistakes 0.204 Fairly Close 0.13 - 0.298 

Changes in design 0.214 Very close 0.185 – 0.243 

Delays 0.392 close 0.31 – 0.48 

Injuries/Accidents 0.138 Very very close 0.13 – 0.146 

Construction mistakes 0.111 Fairly fairly close 0.046 – 0.22 
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5.6. Risks ranking with uncertainty intervals  

In this section, the proposed modified VIKOR method is used to rank the risks with their 

uncertainty intervals. In order to solve the example problem by modified VIKOR method, risk 

assessment team must go through the following steps: 

(1) PIS and NIS are computed by Eqs. (15a) and (15b), respectively as shown in Table 9. 

(2) The 𝑄𝑖 intervals are computed by using Eqs. (16a) and (16b). The results are presented in 

Table 10. 

(3) Using step 4, described in Section 4.5 and taking optimism level α = 0.8, final ranking of 

technical and operational risks is obtained by pairwise comparison as follows: 

 

Pairwise comparisons

{
 
 
 
 
 

 
 
 
 
 

Design mistakes > Changes in design
Design mistakes < Delays

Design mistakes > Injuries/Accidents
Design mistakes > Construction mistakes

Changes in design < Delays
Changes in design > Injuries/Accidents

Changes in design > Construction mistakes
Delays > Injuries/Accidents

Delays > Construction mistakes
Injuries/Accidents > Construction mistakes

 

The final ranking is: 

→ Delays > Design mistakes > Changes in design > Construction mistakes > 

Injuries/Accidents 

Table 9: Interval decision matrix and PIS and NIS 

Risks Uncertainty range PIS and NIS 

Design mistakes 0.13 - 0.298  

 

{
 𝐴∗ = 𝑥∗ = 0.046 
𝐴− = 𝑥− = 0.48

 

Changes in design 0.185 – 0.243 

Delays 0.31 – 0.48 

Injuries/Accidents 0.13 – 0.146 

Construction mistakes 0.046 – 0.22 
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Table 10: 𝑄𝑖interval numbers 

Risks  [𝑄𝑖𝐿 , 𝑄𝑖𝑈] 

Design mistakes  [0.194, 0.581] 

Change in design  [0.320, 0.454] 

Delays  [0.608, 1.000] 

Injuries/Accidents  [0.194, 0.230] 

Construction mistakes  [0.000, 0.401] 

 

5.7. Results and discussion 

Table 11 shows the ranking of operational and technical risks of the studied building 

construction project based on both RV and uncertainty intervals. It is seen that ranking based on 

uncertainty intervals is slightly different from the ranking based on RV. In both cases, the risk 

“Delays” comes first in the ranking, but the ranking of the rest of the risks have been changed. 

The consideration of the degree of uncertainty involved in the individual risk event has brought 

this change into the results. For example, the risk “Design mistakes” comes up with position 2 in 

the ranking based on uncertainty interval, where it was at position 3 in the ranking based on RV. 

This change is basically due to the involvement of higher degree of uncertainty than that of the 

risk “Change in design”.   Therefore, the results indicate that there is a great impact of the degree 

of uncertainty that involved in individual risk in case of risks ranking or prioritization. Since the 

preventive actions are taken against only higher order risks, a logical question arises that which 

ranking should be followed for better performances. 

Table 11: Risks ranking based on RV and uncertainty interval. 

Risks Ranking based on RV Ranking based on uncertainty interval 

Design mistakes 3 2 

Changes in design 2 3 

Delays 1 1 

Injuries/Accidents 4 5 

Construction mistakes 5 4 
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The application of the proposed risk assessment methodology to the case on the building 

construction project in Bangladesh leads to the following conclusions. In real-life problems, the 

involvement of uncertainty level varies from one risk event to another due to the existence of 

variations in the data availability, data quality and complexity level. Therefore, its quantification 

is quite logical and effective in case of risk ranking. Note that the change in α value may leads to 

change in risks ranking. However, in comparison with conventional method, the result using the 

proposed method is found reliable and reasonable. This result provides valuable information to 

the risk assessment team in making risk response strategies.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

The construction projects are becoming more complex and dynamic in nature day by day. 

Additionally, the sources of uncertainties are also increasing with the involvement of too many 

stakeholders. Therefore, project risk management is an essential and crucial task for the project 

team to avoid project losses. This thesis proposes a fuzzy-based risk assessment methodology for 

construction project incorporating epistemic uncertainties into conventional risk assessment 

framework. Because of the fact that determining the sharp or exact value of the risk is difficult or 

even impossible, it is more appropriate to consider them as interval numbers. This thesis presents 

the risks values as interval numbers and ranks them by using modified VIKOR method with their 

associated interval numbers.  Basically, risks are assessed at the earlier stage for taking 

preventive measures against only the identified top order risks which have tremendous impact on 

project failure or loss. It is not always possible and will not even be a wise decision to take 

actions against too many risk events because of the limitations in time, cost and budget. Also, 

impacts of all risks to the project objectives are not severe and considerable.   

Based on the results from the case study, it may be stated that the proposed risk assessment and 

uncertainty representation methodology is capable of solving any construction risk assessment 

problem effectively and efficiently.  In conclusions, the proposed methodology could be very 

much useful for risk assessment problem especially where epistemic uncertainty exists. The 

proposed methodology is quite general and it may be expected that it could be successfully 

applied to any kind of project risk assessment with only minor modifications. 
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6.2. Future work 

There are many factors that are responsible for the uncertainty involvement. These factors have 

not always been dealt with adequately, often resulting in poor performance with increasing costs 

and delays. In this thesis, four major factors are considered in uncertainty evaluation process. 

Therefore, this research can be expanded with the consideration of more uncertainty factors. In 

additions, other types of fuzzy membership functions like Gaussian, trapezoidal and S-shaped 

membership functions also can be applied to estimate the uncertainties in risk assessment 

process. Many methods for ranking with interval numbers are available such as extended 

TOPSIS, fuzzy intuitionistic approach, etc., which could also be applied in this situation.  
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