
A Model for Automatic Partial Evaluation of SQL Queries

by

Fauhat Ali Khan Panni

MASTER OF ENGINEERING

Department of Computer Science and Engineering

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

January 2018

Acknowledgment

First of all, I would like to express my sincere gratitude to my supervisor Prof. Dr. Abu Sayed

Md. Latiful Hoque for his continuous guidance, direction and support without which this project

could not have been completed. I would like to thank everyone who scored SQL answers in the

data sets. Without their kind help, experimentation for this project would not have been possible. I

would like to thank the examiners of my project report, Prof. Dr. M. Sohel Rahman and Dr. Rifat

Shahriyar for their valuable comments and suggestions. I would also like to thank my family for

helping and supporting me throughout my postgraduate study.

iii

Abstract

Database is the core course in the study of Computer Science and Engineering. In the undergrad-

uate level, one of the major topics for database is SQL. SQL-LES is a Problem-Based e-Learning

(PBeL) system that has been being used in learning and teaching of SQL in undergraduate level.

In SQL-LES, students submit SQL answers in online examinations and assignments. This type

of systems with auto-evaluation feature typically perform evaluation by comparing the result-sets

returned by the answered SQL expression and the correct expression stored in the system for the

respective problem. This approach of evaluation based on result-set comparison gives full marks

when the results match and zero otherwise. This creates a frustration to the students whose answers

are almost correct and is evaluated to zero grade.

In this report, we introduce a model for evaluating the partially-correct SQL answers. The

key idea is to calculate a score based on the syntactic similarity between the answered SQL ex-

pression and the correct SQL expression for the respective problem. In many cases there can be

more than one correct SQL expression. This issue is addressed by calculating a score with re-

spect to every correct expression and assigning the maximum score to the answer. As evaluation

based on comparison of result-set ensures full scores to SQL answers that are completely correct,

this approach can be utilized to filter out the correct SQL answers and after filtering them out,

the partial-evaluation model can be applied to score only the answers which are not completely

correct.

We experimented our model for different real life data sets obtained from database practical

course. In these data-sets, we obtained the human score by database teachers. We have compared

the score generated by the model and human score. The comparison result is found to be quite

satisfactory.

iv

Contents
Board of Examiners i

Candidate’s Declaration ii

Acknowledgment iii

Abstract iv

1 INTRODUCTION 1

1.1 Background . 1

1.2 Problem Definition . 2

1.3 Objectives and Outcome . 2

1.4 Overview of the Project . 3

1.5 Organization of the Project Report . 4

2 Related Works 5

2.1 Automatic Evaluation in Programming . 5

2.2 Automatic Evaluation in Database . 7

2.3 Similarity between Nominal Attributes . 8

3 Partial Evaluation Model 9

3.1 Analysis of SQL Statement . 9

3.2 Scoring SELECT Clause . 14

3.3 Scoring FROM Clause . 15

3.4 Scoring WHERE Clause . 17

3.5 Scoring GROUP BY Clause . 22

3.6 Scoring HAVING Clause . 23

3.7 Scoring ORDER BY Clause . 26

3.8 Overall Score . 27

3.9 Scoring Multiple Queries . 27

v

4 Experimental Results 29

4.1 Evaluation Methodology . 29

4.2 Model Evaluation . 31

5 Conclusion 40

Appendices 44

vi

List of Figures
3.1 Structure of an SQL DML Expression . 10

3.2 Structure of SQL SELECT Clause . 10

3.3 Structure of SQL FROM Clause . 11

3.4 Structure of SQL WHERE Clause . 11

3.5 Structure of SQL GROUP BY Clause . 12

3.6 Structure of SQL HAVING Clause . 12

3.7 Structure of SQL ORDER BY Clause . 13

4.1 Comparison between scores by our model and 1st expert for data-set 1 32

4.2 Chart for similarity and dissimilarity counts of score (in percentage) by 1st expert

and our model for data-set 1 . 33

4.3 Comparison between scores by our model and experts for data-set 2 34

4.4 Chart for similarity and dissimilarity counts of scores (in percentage) by 2nd expert

and our model for data-set 2 . 35

4.5 Chart for similarity and dissimilarity counts of scores (in percentage) by 3rd expert

and our model for data-set 2 . 36

4.6 Comparison between scores by our model and 3rd expert for data-set 3 37

4.7 Chart for similarity and dissimilarity counts of scores (in percentage) by 3rd expert

and our model for data-set 3 . 37

4.8 Comparison between scores by our model and 3rd expert for data-set 4 38

4.9 Chart for similarity and dissimilarity counts of scores (in percentage) by 3rd expert

and our model for data-set 4 . 39

A.1 Database Schema for Data Set 1 . 48

A.2 Database Schema for Data Set 2 and Data Set 4 49

A.3 Database Schema for Data Set 3 . 49

vii

List of Tables
4.1 Types of SQL Query Expressions . 30

4.2 Summery of Data . 30

4.3 Similarity Categories . 31

4.4 Values used for different variables in partial evaluation model 32

4.5 Table for similarity and dissimilarity counts of scores (in percentage) by 1st expert

and our model for data-set 1 . 33

4.6 Table for similarity and dissimilarity counts of scores (in percentage) by 2nd expert

and our model for data-set 2 . 34

4.7 Table for similarity and dissimilarity counts of scores (in percentage) by 3rd expert

and our model for data-set 2 . 35

4.8 Table for similarity and dissimilarity counts of scores (in percentage) by 3rd expert

and our model for data-set 3 . 36

4.9 Table for similarity and dissimilarity counts of scores (in percentage) by 3rd expert

and our model for data-set 4 . 38

A.1 Data Set 1 . 44

A.2 Data Set 2 . 45

A.3 Data Set 3 . 46

A.4 Data Set 4 . 46

A.4 Data Set 4 . 47

A.4 Data Set 4 . 48

viii

Chapter 1

INTRODUCTION

1.1 Background

Problem-based learning (PBL), an interactive learning method originating in medical edu-

cation is one of the most futuristic and outcome-oriented teaching and learning strategy. Problem-

based learning is “an instructional method that initiates students’ learning by creating a need to

solve an authentic problem” [1]. Although the method emerged from medical sciences today it is

no more a monopoly of any discipline. Rather it is a general approach that is being adopted by var-

ious disciplines especially those that are driven by practical and hands-on skills. Computer science

is one of the disciplines where problem-based learning is getting increasing attention. Problem-

based learning has been employed to teach foundational computer science courses [2]. PBL has

also been experimented with for software engineering classrooms [3].

One very useful feature of any type of e-learning system is e-evaluation i.e. automated

evaluation of student’s answers. In a typical database problem-based e-learning system, problems

that students solve either for assignments or exams are generally SQL queries. A problem-based

e-learning system named SQL-LES for conducting practical database course has been described

in [4]. The system contains a question bank containing SQL questions and answers of various

complexities. Instructors can use the question bank to select questions of different complexity

levels and group them together to create test sets for individual students. A challenging problem

that today’s ever-evolving PBL systems need to address is automatic evaluation of the solutions

submitted to the system by the students. Most of the existing systems provide teachers or evaluators

easy to use and flexible user interface to assign evaluated score to individual answers. Most of the

systems that support automatic evaluation evaluate answers as either correct or incorrect. But in

1

most of the cases, the evaluation is still done by the instructor/evaluator and the system merely

makes evaluation easy for the evaluator. The problem of automatic evaluation is not an easy one

to solve. However, solutions can still be formulated so that the system performs better than before.

This project report focuses on automatic evaluation in a PBL (Problem-based e-Learning) system

for database courses. The problem this project tries to solve is evaluating and scoring SQL queries

answered by students in a database PBL system.

1.2 Problem Definition

In a typical database e-learning system generally few common features are present. The system

contains a question bank from which the instructors set questions for assignments and online ex-

ams. In most of the cases, the questions are querying a database and the answers are SQL query

expressions. E-learning systems that have auto-evaluation features generally evaluate the answered

SQL expression as correct or incorrect (or a full mark or zero). Most of the time, the system

achieves this by comparing the result set returned by the answered queries and the correct queries

stored for the respective questions. In this report we will refer the correct SQL expression stored

in the database of the learning system for evaluation as the reference query expression and we will

refer the query expression submitted by a student as an answer as the answered query expression.

This approach of evaluation based on result set returned by the answered and reference SQLs re-

sults in assigning a full score to the answers that are fully correct and assigning a zero to all other

answers even if some of them are almost correct. In this project, we address partial evaluation of

SQL expressions. We describe partial evaluation as assigning a score to an SQL expression that is

not necessarily fully correct. In other words, we address the problem of determining partial scores

for those SQL expressions that are partially correct.

1.3 Objectives and Outcome

The objectives of this project report are to:

1. find the score for the students’ SQL submission that are partially correct,

2

2. evaluate the correctness of the model by comparing the scores given by the instructors and

the scores obtained by using the model.

The outcome of this project is a model to generate scores for answered SQL expressions

whether the answered expression is fully or partially correct.

1.4 Overview of the Project

The main objective of this project is to develop model for scoring SQL expressions. This is

achieved by making comparison between the answered expression and the reference expression for

the respective SQL question. So the key idea behind the scoring is measuring syntactic similarity

between the answered expression (the expression that is being scored) and the reference expression

for the respective question. The greater the similarity is, the better is the score and it is vice versa.

In some cases, the result sets for the answered expression and the reference expression will be an

exact match. In that case, even though the score for the answered expression can still be calculated

using the model it is more straight forward to assign the full score without calculating it. But in

many cases, a near perfect answer may not produce the same result set as the one produced by the

reference expression. There are SQL problems that can be solved in more than one way by more

than one SQL expressions. In other words, multiple correct answers may exist for one question.

In that case, the best solution is to store multiple reference expressions (if they exist) for one SQL

problem. The similarity should be measured between the answered expression and every reference

expression that exist for that question and assigning the best score among all the scores calculated

for different reference expressions to the answer.

To measure the syntactic similarity we analyze all the different clauses an SQL expression

can have. We analyze the syntactic structure of each clause and develop scoring patterns for the

clauses. There are clauses that are similar to each other and that can be scored using a similar

scoring pattern. The scoring of similar clauses follow similar scoring pattern.

So the overall scoring of an SQL expression consists of two basic steps - in the first step all

the clauses the answered and/or reference query contains are scored individually and in the second

3

step all the individual scores are combined to find the overall score of the answered expression.

While combining the individual scores of the clauses the complexity of each of the clauses are

taken into consideration as a lesser complex clause should have lesser impact to the overall score

while a more complex clause should have more impact.

We experiment with our model by applying it to different SQL expressions of data sets and

compare the scores with the scores assigned by human experts.

1.5 Organization of the Project Report

The rest of the report is organized as follows:

In chapter 2, we discuss about the learning systems that have automatic evaluation to some

extent. Also we discuss a related technique to measure similarity between two objects.

In chapter 3, we present our partial evaluation model in details along with the analysis of the

different SQL clauses.

In chapter 4, we present the experimental results for our partial evaluation model.

In chapter 5, we conclude our report with further discussion.

4

Chapter 2

Related Works

In this chapter we discuss a few problem-based e-learning (PBeL) systems for computer program-

ming with auto-evaluation feature. We then discuss different database PBeL systems that accom-

modate some form of auto-evaluation. We also discuss an existing technique in the literature for

measuring similarity or dissimilarity between objects.

2.1 Automatic Evaluation in Programming

Kitaya and Inoue [5] presented a web-based system for automatic evaluation of java pro-

gramming assignments. The system evaluates syntactically-correct student programs that are ei-

ther console programs or programs that contain multiple classes and/or methods. Syntactical cor-

rectness is a requirement for a program to be evaluated. So the programs are first checked for

syntactical correctness before evaluating them. If the program being evaluated contains only a

main method (i.e. a console program) then the results of the program for at least more than one

input are compared with the results of a reference program which is the correct program for the

respective assignment. If for all the inputs the results match then the program is considered as

correct; otherwise incorrect. If a program contains classes or methods other than main as per the

requirement of the respective assignment then first a JUnit test is conducted to verify if the classes

and/or methods are written according to the instructions. Then the step which compares the results

of the program being evaluated and the reference program is followed to find if the program is

correct or not.

Karavirta and Ihantola [6] presented an auto assessment tool for Javascript programming

exercises. The open-source tool named js-assess is written in Javascript and HTML and runs on

students’ browsers. As a result the tool is suitable for self-studying as there is no way to store

5

students’ progresses in a server. The different features of a student’s code that can be assessed

using the tool are functionality, style, programming errors and different software metrics (such as

lines of code, lines of comments, statement count, branch count etc.). There are several open-

source Javascript tools that support many of the features listed above. The tool js-assess sits on top

of these various tools and combine the functionality of these tools for auto-assessment and provide

feedback to the students.

Ala-Mutka et al [7] presented Style++, a tool that automatically assesses styles of students’

C++ programs. The tool has been developed and used in the Tampere University of Technology in

Finland for evaluating students’ programming styles. The goal of the tool is to guide students to

write reliable, maintainable and clear object-oriented C++ code while having a clear understanding

of correct usage of the risky features of C++. Also for the courses where certain features of the tools

are not required, the tool can be configured with a configuration file to turn off certain features.

When no configuration is given the tool works with a default configuration.

Buyrukoglu et al [8] proposed a semi-automated evaluation approach for providing feedback

to novice programming students. In a semi-automated mode, both the system and the Instructor(s)

contribute in evaluation. The study makes observation that even though two programs written by

two different programmers solving the same problem are not likely to be identical, but both the

programs may contain some common code segments. This can be true for a number of programs

solving the same problem. The authors of the study make this observation based on students’

codes. In the proposed approach, logically similar code segments are considered components.

Two code segments are considered similar if they have similar control structure, similar conditions

and similar blocks. In this way, two or more students codes may have many similar components.

The examiner can comment all the components just once and all the students will get comments

for the respective components that their codes contain. This saves a great amount of time for the

instructors while students get prompt comments on their programs.

Singh et al [9] presents a method for providing automated feedback for programming as-

signments of beginner level programming students. The key components for feedback generation

include a reference implementation of the program and an error model that describes the possible

6

errors that students can make. The automated feedback generation tool provides an error model

language that can be used to write possible corrections to errors that students might make while

writing a program. The tool explores a set of candidate programs based on the correction rules to

the student program and finds a program that requires minimal corrections.

2.2 Automatic Evaluation in Database

Chandra et al [10] presented XData system with partial marking as a key feature. The con-

cept behind their partial marking scheme is computing a score for a student query based on how

close it is to the instructor query. This is very similar to our approach to calculate partial scores.

However the detailed model containing the functions that calculate the score was not presented in

the paper. As our central focus is the model containing the mathematical functions that calculate

the partial scores for answered queries the contribution of this report is the mathematics behind the

scoring.

SQL-LES [4] is an interactive system for teaching and learning of different components of

database. One key feature of the system is an extensive SQL question bank containing SQL queries

of all complexities. The question bank allows the teachers to create test sets with the questions it

contains and to assign the test sets to individual students. SQL-LES also supports management of

student projects. The system supports automatic evaluation of SQL expressions to a limited extent.

Soler et al [11] proposes a web-based SQL learning tool for automatic correction of SQL

statements. The authors named the tool SQL-ACME which is integrated in an e-learning frame-

work, ACME. In the SQL-ACME tool, a student enters a solution i.e. an SQL expression for a par-

ticular problem. There is a correct SQL statement for the problem stored in the system database.

The result set returned by the student’s SQL statements is matched with the result set returned by

the correct query statement. If they match the system shows the result of the evaluation as correct.

If the result sets do not match then the system shows incorrect as the result of the evaluation. If a

result set of a submitted SQL statement is in different order it can still get correct as the evaluation

result as long as the result set has all the results that the correct result set contains. For an example,

7

if a submitted SQL expression returns result set in the order of name, id instead of id, name the

statement can be marked as correct if the result set returned matches with the correct one.

Sadiq et al [12] presents SQLator, a web-based tool for learning SQL. Key features of the

system include multimedia tutorials, personalized learning, interaction with teachers, a query ex-

ecution environment, different databases with practice queries and evaluation of practice queries.

A learner starts with selecting a database and then selecting a practice query problem and writing

an SQL statement to solve the problem. One of the key features of SQLator is the evaluator which

evaluates the SQL statement answered by the learner as either correct or incorrect.

2.3 Similarity between Nominal Attributes

There are a few techniques for measuring similarity and dissimilarity between two objects

[13]. A technique for measuring similarity or dissimilarity is chosen based on the type of attributes

the objects have. In this section we will present the similarity measure for two objects having

nominal attributes [13]. In our partial evaluation model, we present some of the equations in a

format very similar to the equation used for measuring similarity of two objects with nominal

attributes.

Let us imagine a matrix containing N rows and M columns. Each row of this matrix repre-

sents an object and each column represents an attribute which implies that we have N objects with

each object having M attributes. We can refer to row 1 as object 1, row 2 as object 2 and similarly

row N as object N . Now the similarity between objects i and j is calculated using the equation

presented below.

sim(i, j) =
m

p

In the above equation m is the number of attributes for which i and j are in the same state and p is

the total number of attributes describing the objects.

8

Chapter 3

Partial Evaluation Model

In this chapter we describe our proposed model for partial evaluation of SQL expressions. Our

model assigns partial score to an answered SQL expression that is partially correct. The scoring

is achieved by comparing the answered query expression with a correct query expression for the

respective question. We call the correct expression as the reference expression. The score of the

answered expression is high if the similarity between the answered expression and the reference

expression is high and it is vice versa. In the following section we discuss the different SQL clauses

and an overview of our partial evaluation model.

3.1 Analysis of SQL Statement

As mentioned earlier, an answered SQL expression is scored by comparing it with the refer-

ence expression and measured how similar the answered expression is to the reference expression.

We have applied a top-down approach to solve the problem of measuring similarity by dividing the

expression into smaller sub-expressions followed by solving the sub-problems and combining the

sub-solutions to form the final solution.

An SQL DML expression can contain at most six clauses (Figure 3.1): SELECT, FROM,

WHERE, GROUP BY, HAVING and ORDER BY. To measure a similarity score in our model, an

SQL expression is first broken into the individual clauses. Then an individual score is measured for

each of the clauses separately. The basis for calculation of the individual scores is similarity. Both

the answered and the reference expressions are broken into individual clauses. Then individual

scores for the clauses are calculated by measuring the similarity of the clauses in the answered

expression with the respective clauses in the reference expression. The individual scores are finally

combined to calculate the final score for the answered expression.

9

Figure 3.1: Structure of an SQL DML Expression

To find the score of individual clause we consider the elements that the clause contains. Fig-

ure 3.2 shows the individual elements that are contained within a SELECT clause. A SELECT

clause may contain columns (or fields), functions and/or keywords. The answered query expres-

sion’s SELECT may contain the elements matched with the reference expression’s SELECT. It

may also contain elements unmatched to the reference SELECT. Both matched and unmatched el-

ements (i.e. fields, functions and/or operator) in the answer’s SELECT and the elements contained

in the reference‘s SELECT are the key elements used to score the SELECT clause.

Figure 3.2: Structure of SQL SELECT Clause

A FROM clause (Figure 3.3) may contain tables, operators, operands and in some cases

sub-queries. While scoring the FROM clause, we consider matched and unmatched elements (i.e.

tables, operators, operands and/or sub-queries) in the answer’s FROM clause and the elements that

reference expression‘s FROM clause contains.

A WHERE clause (Figure 3.4) contains one or more predicates joined by logical operators.

A predicate in turn contains operators, an operand and sometimes sub-query. The predicates are

10

Figure 3.3: Structure of SQL FROM Clause

scored individually using the matched and unmatched operators, operands and/or sub-queries in

the answered expression and those elements contained in the reference expression. The scores for

the conditions are combined along with the score for the logical operators to compute the score of

WHERE clause.

Figure 3.4: Structure of SQL WHERE Clause

Only fields/columns are considered to score a GROUP BY clause (Figure 3.5).

A HAVING clause (Figure 3.6) is very similar to the WHERE clause and contains similar

elements to the latter. Like a WHERE clause, a HAVING clause may contain one or more predi-

cates and logical operators. Also like WHERE, Each predicate in HAVING may contain operators,

operand and/or sub-query. One significant difference is that a predicate in the HAVING clause

11

Figure 3.5: Structure of SQL GROUP BY Clause

may contain an aggregate function which can never be the case in WHERE. Due to the significant

similarity that WHERE and HAVING share, the scoring of HAVING is also very similar to the

scoring of WHERE.

Figure 3.6: Structure of SQL HAVING Clause

An ORDER BY clause (Figure 3.7) may contain columns/fields and operators/keywords

(such as ASC, DESC). To score the ORDER BY clause we take the answered query’s matched

and unmatched elements (columns and operator) and the reference query’s total elements in the

ORDER BY into consideration.

To calculate the final score, the individual scores are combined in such a way that resembles

the clauses according to their complexities. In simple words, a clause with more complexity should

12

Figure 3.7: Structure of SQL ORDER BY Clause

carry more weight in the final score. Even though an SQL expression may contain at most six

clauses all the clauses may not be present in an expression. Furthermore, it may occur that while

the reference expression contains a particular clause, the clause might be absent from the answered

expression. An opposite scenario may also occur.

A clause might be present in both the answered query expression and the reference query

expression, or a clause might be present only in the reference expression, or it might be present only

in the answered expression. If the clause is present in both the answered and reference expressions

a score will be calculated for the clause by measuring the similarity between the clauses present

in both the answered and reference expressions. If the clause is present only in the reference

expression (and absent in the answered expression) then a score of zero will be assigned for that

clause. If a clause is present only in the answered query expression then a negative score will be

assigned to it. Finally if a clause is absent in both the answered and the reference expressions then

it will not be scored and will not be considered while calculating the final score.

For an example, let an answered query expression has three clauses SELECT, FROM and

WHERE. The reference query expression has four clauses SELECT, FROM, WHERE and OR-

DER BY. For simplicity, let’s assume that all the SELECT, FROM and WHERE clauses in the

answered expression are exactly similar to the SELECT, FROM and WHERE clauses in the refer-

ence expression. Now as there is no ORDER BY in the answered expression, it will get a zero in

the ORDER BY clause. But the answered expression will get full marks in the SELECT, FROM

and WHERE clauses as they are exactly same to those clauses in the reference expression and zero

in ORDER BY clause. The final score will be a weighted mean of all the individual scores.

13

Let’s consider a second scenario in which an answered query expression has SELECT,

FROM and WHERE clauses and the reference query expression has SELECT, FROM, WHERE

and ORDER BY clauses. The SELECT and FROM clauses in the answered query expression are

exactly similar to those clauses in the reference query expression but the WHERE clause is not

exactly similar to the reference expression’s WHERE clause. Let’s assume the WHERE clause

in the reference expression has three conditions with two logical operators whereas the answered

expression’s WHERE clause has two conditions that are exactly same to two of the reference ex-

pression’s conditions and one logical operator which is same to the logical operators between those

two conditions in the reference expression. Now as the WHERE clause is not exactly same to that

of the reference query, the answered query will get a partial score (instead of a full score or a zero)

in the WHERE clause. The answered query gets full scores for SELECT and FROM, partial score

for WHERE and zero for ORDER BY. So the answered query will be assigned a lesser score than

the previous one.

Syntax error is an important point to keep in mind while scoring an answer. In our model,

the scoring of an answered expression goes on until a syntax error occurs. At the moment, a syntax

error occurs, the scoring is stopped. It should be noted that most likely a partial score has already

been calculated before stopping the scoring due to a syntax error. In that case the final score at

that point should be the score calculated so far. Also if an answered expression contains only a

SELECT clause then a zero shall be assigned to that answer.

3.2 Scoring SELECT Clause

As discusses already, each of the clauses of the answered expression are scored individually with

respect to the reference query expression. This section presents the scoring technique used for the

SELECT clause. The equation that assigns the score to the SELECT clause is presented below:

Ssl =
m− u/t

p
(3.1)

Ssl: Similarity score for SELECT

14

m: Number of elements i.e. columns(or fields), functions and/or keywords in the answered

expression’s SELECT clause matched with the elements in the reference expression’s SELECT

clause

u: Number of unmatched elements in the answered expression’s SELECT clause

p: Number of columns, functions and/or keywords in reference expression’s SELECT clause

t: How much of u should be considered as penalty (if t is 1 the whole u will be considered

as penalty and greater the t, lesser the penalty; t cannot be zero)

In case the SELECT clauses in both the queries are perfect match the score will be 1 as m

will be equal to p and u will be 0.

When there are no matched fields and functions and/or keyword and one or more unmatched

fields, functions, keywords in the answered expression’s SELECT clause the score will be negative.

It should be noted that no negative score is allowed for any of the clauses unless the clause is an

extra clause. The lowest possible score for SELECT (and other clauses) is 0. So if the score

calculated is lesser than 0, 0 is reassigned to Ssl.

3.3 Scoring FROM Clause

The FROM clause may contain name of tables with or without JOIN operations and/or sub-queries.

This results in three possible scenarios:

1. a FROM clause with only tables with/without JOIN operations,

2. a FROM clause with only sub-queries,

3. a FROM clause where both the tables with/without JOIN and sub-queries are present.

Due to these, to score a FROM clause, two other scores (in case FROM clause contains both tables

and sub-query) might be necessary to be calculated: Sfr0 for the tables with/without JOIN and

15

Sfr1 for sub-queries. The expression for Sfr0 is as follows.

Sfr0 =
m− u/t

p
(3.2)

m: Number of matched elements (i.e. tables, operators and operands) in the answered ex-

pression’s FROM clause

u: Number of unmatched elements in the answered expression’s FROM clause

p: Number of elements in reference expression’s FROM clause

t: How much of u should be considered as penalty (if t is 1 the whole of u will be considered

as penalty and greater the t lesser the penalty; t cannot be zero)

It should be noted that no negative score is allowed for Sfr0. If Sfr0 calculated is lesser than

0, 0 should be reassigned.

As a sub-query is essentially an individual SQL query score Sfr1 is calculated recursively

using the very same technique that is used for determining the overall score of an answered query

expression.

Now when the FROM clause contains only the tables with/without JOIN, the score, Sfr

assigned to the FROM clause is Sfr0. When the FROM clause contains only sub-queries, Sfr

assigned to the FROM clause is Sfr1. If the FROM clause contains both the tables and sub-queries

then Sfr is a weighted average of Sfr0 and Sfr1 with greater weights assigned to Sfr1.

So, for FROM clause with only tables:

Sfr = Sfr0

For FROM clause with only sub-queries:

Sfr = Sfr1

16

For FROM clause with both tables and sub-queries:

Sfr =
wfr0Sfr0 + wfr1Sfr1

wfr0 + wfr1

(3.3)

In the above equation, wfr0 and wfr1 are weights for Sfr0 and Sfr1 respectively.

3.4 Scoring WHERE Clause

To obtain the score for the WHERE clause some other scores, Swpr and/or Swpr sb and Swlp are

required. Swpr and Swpr sb are the scores for the predicates without sub-queries and the predicates

with sub-queries respectively in the WHERE clause. To obtain Swpr/Swpr sb we have to find a score

for every individual predicate (Swpr i/Swpr sb i). Swlp is the score for the logical operators in the

WHERE clause.

A predicate within a WHERE clause may or may not contain sub-queries. Due to this,

predicates that contain sub-queries are scored using a different function than the predicates that

have no sub-queries. When there are no sub-queries, the score for the ith predicate Swpr i is

obtained using the formula below:

Swpr i =
xld i + xrd i + xop i

wopd

(3.4)

xld i, xrd i and xop i: Discrete variables for left operand, right operand and operator respec-

tively.

xld i ∈ {u1, u2}

xld i is u1 if the left operands in the answered and reference expressions match. xld i is u2 if

the left operands do not match. If the answered query expressions match then the answered query

will be rewarded so u1 is a positive real number. On the other hand if they do not match then the

answered query will be penalized so u2 is a negative real number.

xrd i ∈ {v1, v2, v3}

17

xrd i is v1 if the right operands in the answered and reference expressions match. xrd i is v2

if the right operands do not match. The answered expression will be rewarded with v1 assigned to

xrd i if the right operands match and it will be penalized with v2 if the right operands do not match.

So v1 is positive and v2 is negative. In some cases, the right operand in the answered expression

may get close to the right operand in the reference expression but they may no be an exact match.

For an example if the right operand in the reference query is ’%programming%’ whereas in the

answered query the right operand is ’Programming’ the answered query’s right operand neither

will be penalized with v2 nor it will be rewarded with v1. Instead, xrd i will take another value v3

such as v2 < v3 < v1.

xop i ∈ {k1, k2} [k1 if operators match, k1 ≥ 0; k2 otherwise; k2 negative].

wopd: Sum of the highest possible values for xld i, xrd i and xop i.

wopd = u1 + v1 + k1 (3.5)

Here u1, u2, v1, v2, v3, k1, k2 are real numbers.

Swpr i must not be negative. 0 is assigned to Swpr i if it becomes negative. There is an

exception to this if the predicate in question is an extra predicate. If the number of predicates

in the answered query’s WHERE clause that have already been scored is equal to the number of

predicates in the reference query’s WHERE clause then the remaining predicates in the answered

query’s WHERE clause are considered extra predicates. There is no need to score an extra predi-

cate using the respective scoring function. An extra predicate is directly assigned a negative score.

Swpr i gives us the score for an individual predicate (i.e. ith predicate). If a WHERE clause

has n predicates we shall have n such scores. We are yet to calculate the overall score for the

predicates Swpr which is presented below:

Swpr =

n∑
i=1

Swpr i

N
(3.6)

18

In the above function, n is the number of predicates that the answered expression’s WHERE

clause contain and N is the number of predicates that are present in the reference expression’s

WHERE clause. Swpr i is the score of ith predicate.

When there is a sub-query within a predicate then the score Swpr sb i will be:

Swpr sb i =
xld i + wrd iSsb i + xop i

wopd

(3.7)

xop i and xld i: Discrete variables for operator and left operand respectively.

wrd i: Weight for right operand.

xld i ∈ {u1, u2} [u1 if left operand matches, u1 positive; u2 otherwise; u2 negative].

xop i ∈ {k1, k2} [k1 if operator matches, k1 ≥ 0; k2 otherwise; k2 negative].

wopd: Sum of wrd i and the highest possible values for xld i and xop i.

wopd = u1 + wrd i + k1 (3.8)

Ssb i: Score for the sub-query (out of 1) calculated recursively.

If Spr sb i is negative then 0 is reassigned to it.

The overall score for predicates with sub-queries is as follows:

Swpr sb =

n∑
i=1

Swpr sb i

N
(3.9)

Here n is the number of predicates with sub-queries that the answered query’s WHERE

clause contain and N is the number of predicates with sub-queries that are present in the reference

query’s WHERE clause. Swpr sb i is the score of ith predicate.

19

Scoring predicates based on similarity can be challenging as predicates can be in any order.

For an example, the first predicate in the answered expression may be very similar to the second

predicate in the reference query. In that case scoring the first predicate in the answered expression

with respect to the first predicate in the reference query expression may result in a poor score (or

zero) but for the second predicate in the reference query the answered query predicate may obtain

a good score. Choosing the predicate right in the reference query is crucial to accurately score

the predicates. A solution to this problem is with respect to each predicate in the reference query

expression all the predicates that have not been assigned a score yet in the answered query is scored

and the predicate for which the score is maximum is considered scored. The steps for calculating

scores for the predicates is presented below:

1. Select the first predicate in the reference query

2. Consider the currently selected predicate as the current reference predicate

3. Calculate a score for every available predicate in the answered query with respect to the

current reference predicate

4. Select the predicate in the answered query for which the score is the maximum and consider

the predicate scored and discard the predicate from the list of available predicates

5. Now select the next predicate in the reference query and repeat steps 2-4 until there is no

predicate left in the reference query or until there is no predicate left in the answered query

6. Consider the remaining predicates in the answered query as extra predicates and assign them

appropriate negative scores

Calculation for the score for logical operators, Swlp is presented below:

Swlp =
m− u/t

p
(3.10)

m: Number of matched logical operators in the answered expression’s WHERE clause.

u: Number of unmatched logical operators in the answered expression’s WHERE clause.

20

t: How much of u to be considered for penalty.

p: Number of logical operators in the reference query expression.

If there are no sub-queries then the weights for the predicates and logical operators are

chosen carefully such that the predicates have much greater weight than the logical operators. But

if there are predicates with sub-queries then weight assignment is not as straight forward as in the

former scenario. Generally the idea is to assign greater weight to the predicates with sub-queries

and lesser weight to the predicates that contain no sub-queries. But we need to know the ratio

of the number of predicates with sub-queries to the number of predicates without sub-queries to

assign weights that are consistent with the actual scenario. In other words, if there are predicates

with sub-queries, then we need to calculate the weights before assigning them.

In case there are sub-queries in the WHERE clause, the weights for predicates without sub-

queries and predicates with sub-queries as well as the weight for the logical operators are calculated

using the following equations:

wwpr =
Npr

N
(3.11)

wwpr sb = c
Npr sb

N
(3.12)

wwlp =
1

2
Min(wwpr, wwpr sb) (3.13)

wwpr, wwpr sb and wwlp are weights for predicate without sub-queries, predicates with sub-

queries and logical operators respectively.

Npr: Number of predicates without sub-queries in the reference query.

Npr sb: Number of predicates with sub-queries in the reference query.

N : Total number of predicates in the reference query i.e. N = Npr +Npr sb

c: A factor that adds more importance to the predicates with sub-queries.

21

Generally the weight for predicates with sub-queries should be larger than the weight for

predicates without sub-queries. If the number of predicates with sub-queries and the number of

predicates without sub-queries are equal i.e. Npr = Npr sb the weight for predicates with sub-

queries must be larger. If the number of predicates without sub-queries (Npr) is slightly greater

than the number predicates with sub-queries (Npr sb) the weight for the predicates with sub-queries

wwpr sb should still be larger than or equal to or atleast closer (depending on how much greater Npr

is) to the weight for predicates without sub-queries (wwpr). However, if Npr is significantly greater

than Npr sb then wwpr must be greater than wwpr sb. To ensure this c must be greater than 1 but c

should not be too large.

Now the score for the WHERE clause, Swh is calculated from the following function:

Swh =
wwprSwpr + wwpr sbSwpr sb + wwlpSwlp

wwpr + wwpr sb + wwlp

(3.14)

Swpr, Swpr sb and Swlp: Scores for predicates without sub-queries, predicates with sub-

queries and logical operators respectively.

wwpr, wwpr sb and wwlp: Weights for predicates without sub-queries, predicates with sub-

queries and logical operators respectively.

3.5 Scoring GROUP BY Clause

Scoring for Group By clause is very similar to that of SELECT and FROM. For GROUP BY

clause, the function for calculating the score is presented below:

Sgb =
m− u/t

p
(3.15)

Sgb: Similarity score for GROUP BY clause

m: Number of matched columns in answered expression’s GROUP BY clause

u: Number of unmatched columns in the answered expression’s GROUP BY clause

22

p: Number of columns in reference query’s GROUP BY clause

t: How much of u should be considered as penalty; t cannot be zero

No negative score is allowed for Sgb. In case Sgb becomes negative, 0 will be reassigned.

3.6 Scoring HAVING Clause

Scoring of HAVING clause is very similar to the scoring of WHERE clause as they are very similar.

Like the WHERE clause, scoring the HAVING clause requires scores for the predicates

without sub-queries and predicates with sub-queries, Shpr, Shpr sb and a score for the logical op-

erators, Shlp. To find Shpr/Shpr sb, the scores for the individual predicates, Shpr i/Shpr sb i must be

calculated.

A predicate within a HAVING clause may or may not contain sub-queries. So predicates

that contain sub-queries are scored differently than the predicates with no sub-queries. When there

are no sub-queries, Shpr i is obtained using the below function:

Shpr i =
xld i + xrd i + xop i

wopd

(3.16)

xld i, xrd i and xop i: Discrete variables for left operand, right operand and operator respec-

tively.

xld i ∈ {u1, u2} [u1 if left operand matches, u1 positive; u2 otherwise; u2 negative].

xrd i ∈ {v1, v2, v3} [v1 if right operands match, v1 positive; v2 if right operands do not match,

v2 negative; v3 if the operands do not perfectly match but they somewhat match, v2 < v3 < v1].

xop i ∈ {k1, k2} [k1 if operator matches k1 ≥ 0; k2 otherwise; k2 negative].

23

wopd: Sum of the highest possible values for xld i, xrd i and xop i.

wopd = u1 + v1 + k1 (3.17)

Here u1, u2, v1, v2, v3, k1, k2 are all real numbers.

Shpr i must not be negative. So the lowest possible value for Shpr i is 0. 0 is reassigned to

Shpr i if it becomes negative.

We are yet to calculate the overall score for the predicates Shpr which is presented below:

Shpr =

n∑
i=1

Shpr i

N
(3.18)

In the above equation, n is the number of predicates that the answered query’s HAVING

clause contain and N is the number of predicates that are present in the reference query’s HAVING

clause. Shpr i is the score of ith predicate.

When there is a sub-query within a predicate then the score Shpr sb i will be:

Shpr sb i =
xld i + wrd iSsb i + xop i

wopd

(3.19)

xld i and xop i: Discrete variables for left operand and operator respectively.

wrd i: Weight for right operand which is a sub-query.

Ssb i: Score for the sub-query (out of 1) calculated recursively.

xld i ∈ {u1, u2} [u1 if left operand matches, u1 positive; u2 otherwise; u2 negative].

xop i ∈ {k1, k2} [k1 if operator matches, k1 ≥ 0; k2 otherwise; k2 negative].

wopd: Sum of wrd i and the highest possible values for xld i and xop i.

24

wopd = u1 + wrd i + k1

If Shpr sb i is negative then 0 is reassigned to it.

The overall score for predicates with sub-queries is as follows:

Shpr sb =

n∑
i=1

Shpr sb i

N
(3.20)

Here n is the number of predicates with sub-queries that the answered query’s HAVING

clause contains and N is the number of predicates with sub-queries that are present in the reference

query’s HAVING clause. Shpr sb i is the score of ith predicate.

As discussed in section 3.4 scoring the predicates in the correct order can be challenging.

We already presented the solution to this problem in the said section. The same solution is appli-

cable for scoring predicates in the HAVING clause. If there are extra predicates in the answered

expression, each of the extra predicates will be assigned a negative score.

Calculation for the score for logical operators, Shlp is presented below:

Shlp =
m− u/t

p
(3.21)

m: Number of matched logical operators in the answered expression’s HAVING clause.

u: Number of unmatched logical operators in the answered expression’s HAVING clause.

t: How much of u to be considered for penalty.

p: Number of logical operators in the reference query expression.

If there are sub-queries in the HAVING clause then the weights for the predicates with sub-

queries, predicates without sub-queries and the logical operators are calculated. The calculation

25

for these weights are presented below:

whpr =
Npr

N
(3.22)

whpr sb = c
Npr sb

N
(3.23)

whlp =
1

2
Min(whpr, whpr sb) (3.24)

whpr, whpr sb and whlp: Weights for predicates without sub-queries, predicates with sub-

queries and logical operators respectively.

Npr: Number of predicates without sub-queries in the reference SQL expression.

Npr sb: Number of predicates with sub-queries in the reference SQL expression.

N : Total number of predicates in the reference expression i.e. N = Npr +Npr sb

c: Factor that adds more importance to the predicates with sub-queries. c > 1. c should not

be too large.

Now, the score for the HAVING clause, Shv is calculated from the following function:

Shv =
whprShpr + whpr sbShpr sb + whlpShlp

whpr + whpr sb + whlp

(3.25)

Shpr, Shpr sb and Shlp: Scores for predicates without sub-queries, predicates with sub-queries

and logical operators.

3.7 Scoring ORDER BY Clause

For ORDER BY clause, the score is obtained from the same function used for SELECT, FROM

and GROUP BY clause:

Sob =
m− u/t

p
(3.26)

26

Sob: Similarity score for ORDER BY clause

m: Number of elements (columns, operator) in the answered expression’s ORDER BY

clause matched with the elements in the reference expression’s ORDER BY clause

u: Number of unmatched elements in the answered query expression

p: Number of elements in reference expression’s ORDER BY clause

t: How much of u should be considered as penalty; t cannot be zero

3.8 Overall Score

The scores obtained for all the clauses present in the reference query discussed in the previous

sections are finally combined to obtain the final overall score for the answered query. The final

score is obtained from the following function:

Sf =
WslSsl +WfrSfr +WwhSwh +WgbSgb +WhvShv +WobSob

Wsl +Wfr +Wwh +Wgb +Whv +Wob

M (3.27)

In the above equation, Wsl is the weight assigned for SELECT clause and Ssl is the score

calculated for the SELECT clause. Similarly, Wfr, Wwh, Whv, Wgb and Wob are weights and Sfr,

Swh, Shv, Sgb and Sob are scores for FROM, WHERE, HAVING, GROUP BY and ORDER BY

clauses respectively. M is the mark that a given question carries.

3.9 Scoring Multiple Queries

Some SQL queries may have multiple queries joined by set operators such as union, minus and

intersect. In the case of those queries, scores are calculated for the sub-queries separately.

The following function gives us the final score of the entire query:

Sf =
Sf1 + Sf2

2
xsp (3.28)

27

Sf1 and Sf1 are the scores for the first query and the second query.

xsp ∈ {u, v}

xsp = u if set operators match; v if set operators do not match.

28

Chapter 4

Experimental Results

In this chapter, we evaluate our model by applying it to score various query expressions with

respect to respective reference expressions. We have collected scores from experts for a set of

SQL query expressions to make comparison. Our experiments show promising results.

4.1 Evaluation Methodology

We have prepared four data sets that contain SQL expressions of various complexities. The data

sets have been presented in Appendices. Table 4.1 shows different types of queries we considered

to test our model. We consider 7 types of queries. For a query to be labeled as a certain TYPE

the query must contain the components required for the TYPE. Additionally it may (or may not)

contain the optional components for that TYPE. Table 4.2 presents a summery of the four data

sets. Two of the data sets (2nd and 4th data sets) contain real world data that have been part of

SQL-LES, an e-learning system used in a database course.

We have approached three experts to score the SQL answers in our data sets. We have applied

our model to score the same answers in our data sets. Finally we have analyzed the performance of

our model by comparing the scores generated from our model and the scores assigned by experts.

We show the results of comparison in tables and charts. We categorize the scores generated by

our model in different similarity categories based on how similar they are with respect to the

scores assigned by human experts. A score is considered Extremely Similar for an answer if the

difference between the score by the expert and the score by the model is within 5 percent. A score

is Very Similar if the difference is within 10 percent. A score is considered Extremely Dissimilar

if the difference is more than 40 percent. We have created 6 such categories. Table 4.3 shows

the categories and their criteria. We will use these categories to analyze our result throughout this

29

Table 4.1: Types of SQL Query Expressions

Type Required Components Optional Components
TYPE-1 SELECT, FROM Functions in SELECT

TYPE-2
SELECT, FROM, WHERE with at
most 2 predicates

ORDER BY, Functions in SELECT

TYPE-3
SELECT, FROM, WHERE with at
least 3 predicates

ORDER BY, Functions in SELECT

TYPE-4
SELECT, FROM, WHERE,
GROUP BY

ORDER BY, Functions in SELECT

TYPE-5
SELECT, FROM, WHERE,
GROUP BY, HAVING

ORDER BY, Functions in SELECT

TYPE-6
SELECT, FROM, WHERE, Sub-
query in WHERE

GROUP BY, HAVING, ORDER
BY, Functions in SELECT

TYPE-7
Multiple queries with set operator
(union, minus, intersection)

Any other components

Table 4.2: Summery of Data

Data Set Number of SQL Questions Number of SQL Answers Types of Queries Present
Data-Set 1 7 12 TYPE-2, TYPE-3

Data-Set 2 9 16
TYPE-2, TYPE-3, TYPE-4,
TYPE-6, TYPE-7

Data-Set 3 8 10
TYPE-1, TYPE-3, TYPE-4,
TYPE-5

Data-Set 4 8 12 TYPE-6, TYPE-7

chapter.

For experimentation we calculated scores by counting the number of matched/unmatched

elements, determining values for left/right operands and operators by checking if they match or

not. We prepared the numerical data set manually for all matched and unmatched elements. We

wrote python program to implement the equations in the model. The program takes the manually

determined values as parameters and returns a score.

We present results for each data set individually. For each data set we first present the

comparison of scores assigned by experts and our model in a clustered bar-chart. We then count the

similar and dissimilar scores based on the categories presented in Table 4.3. We show these results

as frequency tables and bar-charts. Table 4.4 shows different values for weights and variables

30

Table 4.3: Similarity Categories

Categories Score Difference between model and expert
Extremely Similar Score Difference ≤ |5%|

Very Similar |5%| < Score Difference ≤ |10%|
Similar |10%| < Score Difference ≤ |20%|

Dissimilar |20%| < Score Difference ≤ |30%|
Very Dissimilar |30%| < Score Difference ≤ |40%|

Extremely Dissimilar Score Difference > |40%|

present in the model that we use to calculate our score.

While evaluating our model we had an interesting observation. As data-set 2 was evaluated

by two experts separately, the scores by the experts for the same answer varied significantly in

some cases. This reminded us of a human factor that is involved in scoring. As there is no single

guideline in scoring/grading and the scoring policy differs from one scorer to the next scoring in

most cases is a subjective task.

4.2 Model Evaluation

In this section, we present the result of our experimentation with four data sets. We first present

our evaluation with data-set 1. We collected evaluation from 1st expert for the first data set. We

show the comparison between the scores assigned by the 1st expert and our model for the 1st data

set in Figure 4.1. We show the similarity and dissimilarity counts for the 1st data set as a frequency

table in Table 4.5 and as a bar-chart in Figure 4.2.

As the result shows in 25% of the cases scores generated by our model is extremely similar

to the scores assigned by the first expert for data-set 1. If we create just two categories ’similar’

and ’dissimilar’ and if similar includes the categories Extremely Similar, Very Similar and Similar

while dissimilar includes the categories Dissimilar, Very Dissimilar and Extremely Dissimilar then

for 83.34% of the answers the scores generated by our model is similar to the scores assigned by

the 1st expert for data-set 1.

31

Table 4.4: Values used for different variables in partial evaluation model

Variable Values
t 2

{u1, u2} [if no sub-query] [WHERE and HAVING clauses] {1,−1}
{v1, v2, v3} [WHERE and HAVING clauses] {1,−1, 0}

{u1, u2} [if sub-query] [WHERE and HAVING clauses] {0.5,−0.5}
wrd i [WHERE and HAVING clauses] 1.5
{k1, k2} [WHERE and HAVING clauses] {0,−0.5}

wwpr [if no sub-query] 0.8
wwlp [if no sub-query] 0.2
whpr [if no sub-query] 0.8
whlp [if no sub-query] 0.2

c [WHERE and HAVING clauses] 3
xsp 0.7
Wsl 10
Wfr 10
Wwh 35
Wgb 14
Whv 25
Wob 10

Figure 4.1: Comparison between scores by our model and 1st expert for data-set 1

32

Table 4.5: Table for similarity and dissimilarity counts of scores (in percentage) by 1st expert and
our model for data-set 1

Similarity Frequency (in percentage)
Extremely Similar 25%

Very Similar 16.67%
Similar 41.67%

Dissimilar 8.33%
Very Dissimilar 8.33%

Extremely Dissimilar 0%

Figure 4.2: Chart for similarity and dissimilarity counts of score (in percentage) by 1st expert and
our model for data-set 1

33

Figure 4.3: Comparison between scores by our model and experts for data-set 2

Table 4.6: Table for similarity and dissimilarity counts of scores (in percentage) by 2nd expert and
our model for data-set 2

Similarity Frequency (in percentage)
Extremely Similar 25%

Very Similar 12.5%
Similar 31.25%

Dissimilar 12.5%
Very Dissimilar 12.5%

Extremely Dissimilar 6.25%

Now we present results for the second data set. We have collected evaluation scores from

two experts (2nd expert and 3rd expert) and then compared the scores by the experts with scores

computed using our model. We present the comparison between scores by the experts and our

model in the form of clustered bar graph in Figure 4.3. We label the scores into the predefined

categories showed in Table 4.3 and present them in percentage in Table 4.6, Table 4.7 and Figure

4.4 and Figure 4.5 respectively.

For data-set 2, our model generated scores are similar (Extremely Similar, Very Similar and

Similar) to the scores by expert 2 for 68.75% of the cases.

34

Figure 4.4: Chart for similarity and dissimilarity counts of scores (in percentage) by 2nd expert
and our model for data-set 2

Table 4.7: Table for similarity and dissimilarity counts of scores (in percentage) by 3rd expert and
our model for data-set 2

Similarity Frequency (in percentage)
Extremely Similar 25%

Very Similar 18.75%
Similar 18.75%

Dissimilar 12.5%
Very Dissimilar 0%

Extremely Dissimilar 25%

35

Figure 4.5: Chart for similarity and dissimilarity counts of scores (in percentage) by 3rd expert
and our model for data-set 2

Table 4.8: Table for similarity and dissimilarity counts of scores (in percentage) by 3rd expert and
our model for data-set 3

Similarity Frequency (in percentage)
Extremely Similar 20%

Very Similar 20%
Similar 20%

Dissimilar 20%
Very Dissimilar 0%

Extremely Dissimilar 20%

For data-set 2, our model based scores are similar (Extremely Similar, Very Similar and

Similar) to the scores by 3rd expert for 62.5% of the cases.

We have collected scores from the 3rd expert for data-set 3. We present comparison between

scores by 3rd expert and our model in Figure 4.6. We present the similarity and dissimilarity counts

for data-set 3 in Figure 4.7 and Table 4.8.

For data-set 3, our model based scores are similar (Extremely Similar, Very Similar and

Similar) to the scores by 3rd expert for 60% of the cases.

36

Figure 4.6: Comparison between scores by our model and 3rd expert for data-set 3

Figure 4.7: Chart for similarity and dissimilarity counts of scores (in percentage) by 3rd expert
and our model for data-set 3

37

Figure 4.8: Comparison between scores by our model and 3rd expert for data-set 4

Table 4.9: Table for similarity and dissimilarity counts of scores (in percentage) by 3rd expert and
our model for data-set 4

Similarity Frequency (in percentage)
Extremely Similar 8.33%

Very Similar 16.67%
Similar 50%

Dissimilar 16.67%
Very Dissimilar 8.33%

Extremely Dissimilar 0%

We present comparison between scores by 3rd expert and our model for fourth data set in

Figure 4.8. We present the similarity and dissimilarity counts for data-set 4 in Figure 4.9 and Table

4.9.

For data-set 4, our model based scores are similar (Extremely Similar, Very Similar and

Similar) to the scores by 3rd expert for 75% of the cases.

38

Figure 4.9: Chart for similarity and dissimilarity counts of scores (in percentage) by 3rd expert
and our model for data-set 4

39

Chapter 5

Conclusion

Despite the ongoing developments of various PBeL systems for teaching databases automatic par-

tial evaluation is still not getting enough attentions. Most of the useful database e-learning/PBeL

systems found in the literature adopted a common approach to automatic evaluation that evaluates

answers as either correct or incorrect and ignore partial evaluation. One particular system that we

found in the literature that employed partial evaluation had not described the particular model or

framework used for evaluation.

In this report, we introduce a model for partial evaluation of SQL answers. The key idea

behind our model is comparison of an SQL answer and the correct answer for the respective ques-

tion and calculate a score that basically reflects how much similar the answered SQL expression is

with respect to the reference SQL expression. We achieve this by calculating an individual score

for every clause and then combining the individual scores along with appropriate weights for each

clause to find the final score for the SQL answer.

We applied our model to 4 different datasets consisting of SQL expressions of various com-

plexities including sub-queries. We collected scores for all the datasets from human experts and

then we compared our model based scores with scores assigned by the experts. In the worst case,

our model based scores were similar in 60% of the cases to the scores assigned by the expert while

in best case our model based scores were similar to the expert-assigned scores for 83.34% of the

cases. Based on the promising experimental results, we come to the conclusion that our model for

partial evaluation is capable of assigning scores automatically to SQL answers of all complexities

with high accuracies.

40

Weights play a crucial role in our partial evaluation model. The final score for an answered

SQL expression is the weighted mean of the scores for all the individual clauses. In the model

evaluation phase, we selected weights for different clauses such that the weights reflect the com-

plexities of the respective clauses. We tuned the weights to achieve accuracy of partial scoring

compared to the human graders. However we cannot state with certainty that our selected weights

were optimal. This creates a scope for future study to use optimization techniques such as genetic

algorithms to optimize the weights.

41

Bibliography
[1] W. Hung, D. H. Jonassen, and R. Liu, “Problem-based learning,” Handbook of research on

educational communications and technology, vol. 3, pp. 485–506, 2008.

[2] J. Kay, M. Barg, A. Fekete, T. Greening, O. Hollands, J. H. Kingston, and K. Crawford,

“Problem-based learning for foundation computer science courses,” Computer Science Edu-

cation, vol. 10, no. 2, pp. 109–128, 2000.

[3] I. Richardson and Y. Delaney, “Problem based learning in the software engineering class-

room,” in 2009 22nd Conference on Software Engineering Education and Training, pp. 174–

181, Feb 2009.

[4] A. Hoque, M. M. Islam, M. I. Hossain, and M. F. Ahmed, “Problem-based e-learning and

evaluation system for database design and programming in sql,” International Journal of

E-Education, E-Business, E-Management and E-Learning-IC4E, pp. 537–542, 2013.

[5] H. Kitaya and U. Inoue, “An online automated scoring system for java programming assign-

ments,” International Journal of Information and Education Technology, vol. 6, no. 4, p. 275,

2016.

[6] V. Karavirta and P. Ihantola, “Automatic assessment of javascript exercises,” in CEUR Work-

shop Proceedings: WECU-2010 1st Educators’ Day on Web Engineering Curricula, vol. 607,

July 2010.

[7] K. Ala-Mutka, T. Uimonen, and H.-M. Järvinen, “Supporting students in c++ programming

courses with automatic program style assessment,” Journal of Information Technology Edu-

cation, vol. 3, 2004.

[8] S. Buyrukoglu, F. Batmaz, and R. Lock, “Semi-automatic assessment approach to program-

ming code for novice students,” in Proceedings of the 8th International Conference on Com-

puter Supported Education, pp. 289–297, 2016.

[9] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback generation for introduc-

tory programming assignments,” ACM SIGPLAN Notices, vol. 48, pp. 15–26, June 2013.

42

[10] B. Chandra, M. Joseph, B. Radhakrishnan, S. Acharya, and S. Sudarshan, “Partial mark-

ing for automated grading of sql queries,” Proceedings of the VLDB Endowment, vol. 9,

pp. 1541–1544, Sept. 2016.

[11] J. Soler, F. Prados, I. Boada, and J. Poch, “A web-based tool for teaching and learning sql,” in

International Conference on Information Technology Based Higher Education and Training,

ITHET, 2006.

[12] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin, “Sqlator: An online sql learning workbench,”

ACM SIGCSE Bulletin, vol. 36, pp. 223–227, June 2004.

[13] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.

43

Appendices
Table A.1: Data Set 1

Question Reference Query Answered Query
Expert-1’s
Score (Out
of 10)

Model’s
Score (Out
of 10)

Find the names
of all current/active
Database Engineers.

SELECT name
FROM EMPLOYEE
WHERE designation = ’Database Engineer’ and active=’yes’

SELECT name
FROM EMPLOYEE
WHERE designation = ’Database Engineer’

5 6.82

Find the names
of all current/active
Database Engineers.

SELECT name
FROM EMPLOYEE
WHERE designation = ’Database Engineer’ and active=’yes’

SELECT *
FROM EMPLOYEE
WHERE designation = ’Database Engineer’

4 5

Find the number
of current employees
with salary
more than 25000.

SELECT COUNT(*)
FROM EMPLOYEE
WHERE salary>25000 and active=’yes’

SELECT COUNT(*)
FROM EMPLOYEE
WHERE salary>=25000 OR active=’yes’

7 8.1

Find the names and
designations of employees
who are currently
working in the Application
Development department.

SELECT EMPLOYEE.name,EMPLOYEE.designation
FROM EMPLOYEE,DEPARTMENT,EMPLOYEE DEPARTMENT
WHERE EMPLOYEE.id=EMPLOYEE DEPARTMENT.e id
AND DEPARTMENT.id=EMPLOYEE DEPARTMENT.d id
AND DEPARTMENT.name=’Application Development’
AND EMPLOYEE DEPARTMENT.active=’Yes’

SELECT EMPLOYEE.name, EMPLOYEE.designation
FROM EMPLOYEE,DEPARTMENT,EMPLOYEE DEPARTMENT
WHERE EMPLOYEE.id=EMPLOYE DEPARTMENT.e id
AND AND DEPARTMENT.name=’Application Development’
AND EMPLOYEE DEPARTMENT.active=’Yes’

5 8.28

Find the names and
designations of employees
who are currently
working in the Application
Development department.

SELECT EMPLOYEE.name, EMPLOYEE.designation
FROM EMPLOYEE,DEPARTMENT,EMPLOYEE DEPARTMENT
WHERE EMPLOYEE.id=EMPLOYEE DEPARTMENT.e id
AND DEPARTMENT.id=EMPLOYEE DEPARTMENT.d id
AND DEPARTMENT.name=’Application Development’
AND EMPLOYEE DEPARTMENT.active=’Yes’

SELECT EMPLOYEE.name, EMPLOYEE.designation
FROM EMPLOYEE,EMPLOYEE DEPARTMENT
WHERE DEPARTMENT.name=’Application Development’

2 4.31

Find all the employees
names, current or not,
along with their
respective departments.

SELECT EMPLOYEE.name, DEPARTMENT.name
FROM EMPLOYEE,DEPARTMENT,EMPLOYEE DEPARTMENT
WHERE EMPLOYEE.id=EMPLOYE DEPARTMENT.e id
AND DEPARTMENT.id=EMPLOYEE DEPARTMENT.d id

SELECT EMPLOYEE.name
FROM EMPLOYEE,EMPLOYEE DEPARTMENT
WHERE EMPLOYEE.id=EMPLOYEE DEPARTMENT.e id

5 5.31

Find all the employees
names, current or not,
along with their
respective departments.

SELECT EMPLOYEE.name, DEPARTMENT.name
FROM EMPLOYEE,DEPARTMENT,EMPLOYEE DEPARTMENT
WHERE EMPLOYEE.id=EMPLOYE DEPARTMENT.e id
AND DEPARTMENT.id=EMPLOYEE DEPARTMENT.d id

SELECT EMPLOYEE.name, DEPARTMENT.name
FROM EMPLOYEE,DEPARTMENT,EMPLOYEE DEPARTMENT 3 3.64

Find the average salary
of the employees
currently working in the
Software Quality
Assurance department.

SELECT AVG(EMPLOYEE.salary)
FROM EMPLOYEE,DEPARTMENT,EMPLOYEE DEPARTMENT
WHERE EMPLOYEE.id=EMPLOYE DEPARTMENT.e id
AND DEPARTMENT.id=EMPLOYEE DEPARTMENT.d id
AND DEPARTMENT.name=’Software Quality Assurance’
AND EMPLOYEE DEPARTMENT.active=’Yes’

SELECT AVG(EMPLOYEE.salary)
FROM EMPLOYEE,DEPARTMENT,EMPLOYEE DEPARTMENT
WHERE DEPARTMENT.name=’Software Quality Assurance’

5 4.91

Find the average salary
of the employees
working in the
Software Quality
Assurance department.

SELECT AVG(EMPLOYEE.salary)
FROM EMPLOYEE,DEPARTMENT,EMPLOYEE DEPARTMENT
WHERE EMPLOYEE.id=EMPLOYEE DEPARTMENT.e id
AND DEPARTMENT.id=EMPLOYEE DEPARTMENT.d id
AND DEPARTMENT.name=’Software Quality Assurance’
AND EMPLOYEE DEPARTMENT.active=’Yes’

SELECT COUNT(EMPLOYEE.salary)
FROM EMPLOYEE,DEPARTMENT,EMPLOYEE DEPARTMENT
WHERE EMPLOYEE.id=EMPLOYEE DEPARTMENT.e id
AND DEPARTMENT.name=’Software Quality Assurance’
AND EMPLOYEE DEPARTMENT.active=’Yes’

8 6.46

Find all employees
with their designations
that are manager
of atleast one project.

SELECT DISTINCT EMPLOYEE.name,EMPLOYEE.designation
FROM EMPLOYEE,PROJECT
WHERE EMPLOYEE.id = PROJECT.manager

SELECT DISTINCT EMPLOYEE.name,EMPLOYEE.designation
FROM EMPLOYEE,PROJECT 2 3.64

Find all employees
with their designations
that are manager
of atleast one project.

SELECT DISTINCT EMPLOYEE.name,EMPLOYEE.designation
FROM EMPLOYEE,PROJECT
WHERE EMPLOYEE.id = PROJECT.manager

SELECT EMPLOYEE.name,EMPLOYEE.designation
FROM EMPLOYEE,PROJECT
WHERE EMPLOYEE.id = PROJECT.manager

9 9.09

Find all employees
with their designations
that are currently
assigned to the project
’HRM System development
of ABC Corp’.

SELECT EMPLOYEE.name, EMPLOYEE.designation
FROM EMPLOYEE,PROJECT,EMPLOYE PROJECT
WHERE EMPLOYEE.id=EMPLOYEE PROJECT.e id
AND PROJECT.id=EMPLOYEE PROJECT.p id
AND PROJECT.title = ’HRM System development of ABC Corp’
AND EMPLOYEE PROJECT.active = ’Yes’

SELECT EMPLOYEE.name, EMPLOYEE.designation
FROM EMPLOYEE,PROJECT,EMPLOYEE PROJECT
WHERE EMPLOYEE.id=EMPLOYEE PROJECT.e id
AND PROJECT.id=EMPLOYEE PROJECT.p id
AND PROJECT.title = ’HRM System development of ABC Corp’
AND EMPLOYEE.active = ’Yes’

7 8.73

44

Table A.2: Data Set 2

Question Reference Query Answered Query
Expert -2’s
Score (Out
of 10)

Expert-3’s
Score (Out
of 10)

Model’s
Score (Out
of 10)

Find DId for
DName =’Mechanical
Engineering’.

select DId
from Lib Department
where DName =’Mechanical Engineering’

select did
from lib department
where dname=’mechanical engineering’

8 7 6.8

Find DId for
DName =’Mechanical
Engineering’.

select DId
from Lib Department
where DName =’Mechanical Engineering’

select dcodename
from lib department
where Did=1

2 1.5 1.8

Find PAddress for
PName ’SoftSolution’ .

select PAddress
from Lib Publisher
where PName = ’SoftSolution’

select paddress
from lib publisher
where pname=’softsolution’

8 7 6.8

Find PAddress for
PName ’SoftSolution’.

select PAddress
from Lib Publisher
where PName = ’SoftSolution’

select DateDiff
from lib publisher
where PName= ’SoftSolution’

6 3 8.2

Find total number
of publishers
from USA.

select count(*)
from Lib Publisher
where PCountry = ’USA’

select count(BookId)
from Lib Publisher,lib Book
where Lib Publisher.PId=lib Book.PId

3 1 0.9

Find total number
of publishers
from USA.

select count(*)
from Lib Publisher
where PCountry = ’USA’

select sum(bookid)
from lib book
where placeofpublication= ’USA’

4 2 0

Find the country
and number of
publishers in
each country.

select pcountry, count(*)
from Lib Publisher
group by PCountry

select count(*)
from lib publisher
group by ’pcountry’

8 7 4.4

Find the country
and number of
publishers in
each country.

select pcountry, count(*)
from Lib Publisher
group by PCountry

select pcountry, pname
from lib publisher 2 3 3.7

Find bookcopyid
and book title
of all the books
having keyword “grammin”.

select bookcopyid,title
from lib bookcopy,lib book,lib publisher
where lib bookcopy.bookid=lib book.bookid
and lib book.pid=lib publisher.pid
and bookkeywords like ’%grammin%’

select lbc.BookCopyId,lb.Title
from Lib Book lb , Lib BookCopy lbc
where lb.BookId=lbc.BookId
and lb.BookKeywords like ’grammin’

8 5.5 6.2

Find bookcopyid
and book title
of all the books
having keyword “grammin”.

select bookcopyid,title
from lib bookcopy,lib book,lib publisher
where lib bookcopy.bookid=lib book.bookid
and lib book.pid=lib publisher.pid
and bookkeywords like ’%grammin%’

select bookcopyid,title
from lib bookcopy,lib book
where title like ’%grammin%’
and lib book.bookid=lib bookcopy.bookid

5 6 5.01

Find the title
of the books
whose purchase date
is equal to
that of book
’Database’ in descending
order of title.

select a.title
from lib book a,lib book b
where a.purchasedate=b.purchasedate
and b.title=’Database’
order by title desc

select Title
from Lib Book
where purchaseDate in
(select purchaseDate
from Lib Book
where Title = ’Database’)

10 8 2.31

Find the title
of the books
whose purchase date
is equal to
that of book
’Database’ in descending
order of title.

select a.title
from lib book a,lib book b
where a.purchasedate=b.purchasedate
and b.title=’Database’
order by title desc

select purchasedate
from lib book,lib author
where lib book.purchasedate=’Database’
order by lib book.title desc

1 4 1.9

Find title,subtitle and
publisher name (pname)
of the books
that have been
printed in years
1998 or 2000
in descending order
of publisher name.

select title,subtitle,pname
from lib bookcopy,lib book,lib publisher
where lib bookcopy.bookid=lib book.bookid
and lib book.pid=lib publisher.pid
and yearofprint in (1998,2000)
order by pname desc

select Title,SubTitle,PName
from Lib Book,Lib Publisher
where Lib Book.PId=Lib Publisher.PId
and (YearOfPublication=1998
or YearOfPublication=2000)

6 6 4.2

Find title,subtitle and
publisher name (pname)
of the books
that have been printed
in years 1998 or 2000
in descending order
of publisher name.

select title,subtitle,pname
from lib bookcopy,lib book,lib publisher
where lib bookcopy.bookid=lib book.bookid
and lib book.pid=lib publisher.pid
and yearofprint in (1998,2000)
order by pname desc

select Title,Subtitle,PName
from Lib Book,Lib Publisher,Lib Bookcopy
where YearOfPrint=1998
or YearOfPrint=2000
and Lib Publisher.PId=Lib Book.PId
and Lib Bookcopy.BookId=Lib Book.BookId

8 6 7.2

Find title and
subtitle of the book
those have the same
pid as books
of the publisher
from pcity ’Chicago’
in descending order
of title.

select title,subtitle
from lib book
where lib book.pid in
(select pid
from lib publisher
where pcity=’Chicago’)
order by title desc

select lib book.title, lib book.subtitle
from lib book , lib bookcopy,lib publisher
where lib book.bookid=lib bookcopy.bookid
and lib book.pid=lib publisher.pid

2 6.5 1.5

Find Title and
ISBN numbers
of all books
that belongs to
’CE’ department
but not to
’IPE’ department.

select Title, ISBN
from Lib Book, Lib BookDepartment, Lib Department
where Lib Book.bookid=Lib BookDepartment.bookid
and Lib BookDepartment.did=Lib Department.did
and DcodeName=’CE’
minus select Title, ISBN
from Lib Book, Lib BookDepartment, Lib Department
where Lib Book.bookid=Lib BookDepartment.bookid
and Lib BookDepartment.did=Lib Department.did
and DcodeName=’IPE’

select title,isbn
from lib book l1,lib department l2,lib bookdepartment l3
where l1.bookid = l3.bookid
and l2.did = l3.did
and l2.dcodename = ’CE’
and l2.dcodename != ’IPE’

2 7 2.46

45

Table A.3: Data Set 3

Question Reference Query Answered Query
Expert-3’s
Score (Out
of 10)

Model’s
Score (Out
of 10)

Find the total sales
in the year 2017.

SELECT sum(price)
FROM ‘sales‘,‘customer‘,‘product‘
WHERE ‘customer‘.‘id‘ = ‘sales‘.‘customer id‘
AND ‘product‘.‘id‘ = ‘sales‘.‘product id‘
AND ‘sales‘.‘year‘ = 2017

SELECT sum(price)
FROM ‘sales‘,‘customer‘,‘product‘
WHERE ‘customer‘.‘id‘ = ‘sales‘.‘customer id‘
AND ‘product‘.‘id‘ = ‘sales‘.‘product id‘
AND ‘sales‘.‘year‘ = 2017
GROUP BY ‘product‘.‘brand‘

6 8.7

Find the total sales
in the year 2017
for each brand.

SELECT ‘brand‘ ,sum(price) AS ‘sales‘
FROM ‘sales‘,‘customer‘,‘product‘
WHERE ‘customer‘.‘id‘ = ‘sales‘.‘customer id‘
AND ‘product‘.‘id‘ = ‘sales‘.‘product id‘
AND ‘sales‘.‘year‘ = 2017
GROUP BY ‘product‘.‘brand‘

SELECT ‘brand‘ ,sum(price) AS ‘sales‘
FROM ‘sales‘,‘customer‘,‘product‘
WHERE ‘customer‘.‘id‘ = ‘sales‘.‘customer id‘
AND ‘product‘.‘id‘ = ‘sales‘.‘product id‘
AND ‘sales‘.‘year‘ = 2017

6 8

Show the total sales
for the year 2017
for only those brands
with minimum sales
of 100000 Tk.

SELECT ‘brand‘ ,sum(price)
FROM ‘sales‘,‘customer‘,‘product‘
WHERE ‘customer‘.‘id‘ = ‘sales‘.‘customer id‘
AND ‘product‘.‘id‘ = ‘sales‘.‘product id‘
AND ‘sales‘.‘year‘ = 2017
GROUP BY ‘product‘.‘brand‘
HAVING sum(price) >= 100000

SELECT ‘brand‘ ,sum(price)
FROM ‘sales‘,‘customer‘,‘product‘
WHERE ‘customer‘.‘id‘ = ‘sales‘.‘customer id‘
AND ‘product‘.‘id‘ = ‘sales‘.‘product id‘
AND ‘sales‘.‘year‘ = 2017
AND sum(price) >= 100000
GROUP BY ‘product‘.‘brand‘

8 7

Show the total
sales for
the year 2017
for only those
brands with minimum
sales of 100000 Tk.

SELECT brand ,sum(price)
FROM ‘sales‘,‘customer‘,‘product‘
WHERE ‘customer‘.‘id‘ = ‘sales‘.‘customer id‘
AND ‘product‘.‘id‘ = ‘sales‘.‘product id‘
AND ‘sales‘.year = 2017
GROUP BY ‘product‘.‘brand‘
HAVING sum(price) >= 100000

SELECT brand ,sum(price)
FROM ‘sales‘,‘customer‘,‘product‘
WHERE ‘customer‘.‘id‘ = ‘sales‘.‘customer id‘
AND ‘product‘.‘id‘ = ‘sales‘.‘product id‘
AND ‘sales‘.year = 2017
HAVING sum(price) >= 100000

8 8.5

Show the number
of products sold
for each brand.

SELECT brand ,count(*)
FROM ‘sales‘,‘customer‘,‘product‘
WHERE ‘customer‘.‘id‘ = ‘sales‘.‘customer id‘
AND ‘product‘.‘id‘ = ‘sales‘.‘product id‘
AND ‘sales‘.‘year‘ = 2017
GROUP BY ‘product‘.‘brand‘

SELECT brand ,count(*)
FROM ‘sales‘,‘customer‘,‘product‘
WHERE ‘customer‘.‘id‘ = ‘sales‘.‘customer id‘
AND ‘product‘.‘id‘ = ‘sales‘.‘product id‘
AND ‘sales‘.‘year‘ = 2017

5.5 8

Show the number
of products
the shop has
for each brand.

SELECT ‘product‘.‘brand‘ ,count(*)
FROM ‘product‘
GROUP BY ‘product‘.‘brand‘

SELECT ‘product‘.‘brand‘ ,sum(*)
FROM ‘product‘
GROUP BY ‘product‘.‘brand‘

9 8.5

Show the brand, model
and price of
the product that
has the maximum price.

SELECT ‘brand‘,‘model‘,max(price)
FROM ‘product‘

SELECT ‘brand‘,‘model‘,price
FROM ‘product‘
HAVING ‘price‘>max(price)

8 3.33

Show the brands
along with the number
of products that
have atleast 3 products.

SELECT ‘brand‘, count(*)
FROM ‘product‘
GROUP BY ‘brand‘
HAVING count(*) >2

SELECT ‘brand‘, count(*) FROM ‘product‘ GROUP BY ‘brand‘ HAVING count(*) >3 7.5 5.8

Show brands and
the average prices
of their products
for only those brands
whose average price
do not exceed 30000.

SELECT ‘brand‘,avg(price)
FROM ‘product‘
GROUP BY ‘brand‘
HAVING avg(price) <=30000

SELECT ‘brand‘,avg(price)
FROM ‘product‘
HAVING avg(price) <=30000

7 7.63

Show brands and
the average prices
of their products
for only those brands
whose average price
do not exceed 30000.

SELECT ‘brand‘,avg(price)
FROM ‘product‘
GROUP BY ‘brand‘
HAVING avg(price) <=30000

SELECT ‘brand‘,avg(price)
FROM ‘product‘
WHERE avg(price) <=30000

5 1.4

Table A.4: Data Set 4

Question Reference Query Answered Query
Expert-3’s
Score (Out
of 10)

Model’s
Score (Out
of 10)

Find publisher id,
purchase date
and total price
in taka (pricetaka)
of books purchased
in different dates
for those publishers
who lives in
the same country
as the publishers
who have
yahoo email address.
Result must be in
descending order of price.

select lib publisher.pid,purchasedate,sum(pricetaka)
from lib bookcopy,lib book,lib publisher
where lib bookcopy.bookid=lib book.bookid
and lib book.pid=lib publisher.pid
and pcountry in
(select pcountry
from lib publisher
where pemail like ’%yahoo%’)
group by lib publisher.pid, purchasedate
order by sum(pricetaka) desc

select p.pid,b.purchasedate,c.pricetaka
from lib book b,lib publisher p,lib bookcopy c
where c.bookid=b.bookid
and b.pid=p.pid and p.pcountry in
(select pcountry
from lib publisher
where pemail like ’%@yahoo.com’)
order by pricetaka desc

6 7.38

Continued on next page

46

Table A.4: Data Set 4

Question Reference Query Answered Query
Expert-3’s
Score (Out
of 10)

Model’s
Score (Out
of 10)

Find Title of
all books of
’EEE’ department that
were published in
the same year or
after the year
of publication of book
titled ’Database’.

select Title
from Lib Book, Lib BookDepartment, Lib Department
where Lib Book.bookid=Lib BookDepartment.bookid
and Lib BookDepartment.did=Lib Department.did
and DCodeName=’EEE’
and yearofpublication >=
(select yearofpublication
from Lib Book
where title=’Database’)

SELECT TITLE
FROM Lib Book, Lib BookDepartment, Lib Department
WHERE Lib BookDepartment.BookId = Lib Book.BookId
AND Lib BookDepartment.Did = Lib Department.Did
AND Lib Department.DCodeName = ’EEE’
AND YearOfPublication >
(SELECT distinct YearOfPublication
FROM Lib Book, Lib BookDepartment, Lib Department
WHERE Lib BookDepartment.BookId = Lib Book.BookId
AND Lib BookDepartment.Did = Lib Department.Did
AND Title = ’Database’)

7 8.03

Find Title of
all books of
’EEE’ department that
were published in
the same year or
after the year of
publication of book
titled ’Database’.

select Title
from Lib Book, Lib BookDepartment, Lib Department
where Lib Book.bookid=Lib BookDepartment.bookid
and Lib BookDepartment.did=Lib Department.did
and DCodeName=’EEE’
and yearofpublication >=
(select yearofpublication
from Lib Book
where title=’Database’)

select DName,count(BookId)
from Lib BookDepartment,Lib Department
where Lib Department.DID=Lib BookDepartment.DID
group by Lib Department.Dname
having count(BookId)>=3

2 0.02

Find Title of
all books with
pricebase greater than
average pricebase of
’EEE’ department.

select Title
from Lib Book
where pricebase >
(select avg(pricebase)
from Lib Book, Lib BookDepartment, Lib Department
where Lib Book.bookid=Lib BookDepartment.bookid
and Lib BookDepartment.did=Lib Department.did
and DcodeName=’EEE’)

select Lib Book.Title
from Lib Book
where Lib Book. PriceBase >
(select avg(PriceBase)
from Lib Book,Lib BookDepartment,Lib Department
where Lib Book.BookId = Lib BookDepartment.BookId
and Lib BookDepartment.DId = Lib Department.DID
and Lib Department.DName=’EEE’)

7 8.98

Find the name of
those borrowers and
book titles booked by
them who has booked
some book before
the date of ”Mr. Kamal”
has booked some book.
in descending order
of both name of
the borrowers and title.

select bName, title
from lib book, Lib Booking, Lib Borrower
where Lib book.bookId = Lib Booking.bookID
and Lib Booking.bid = Lib Borrower.bid
and BookingDate <
(select min(BookingDate)
from Lib Booking, Lib Borrower
where Lib Booking.bid = Lib Borrower.bid
and bName = ’Mr. Kamal’)
order by bname desc, title desc

select BNAME , TITLE
from LIB BORROWER a,LIB BOOKING b,LIB BOOK c
where a.BID=b.BID
and b.BOOKID=c.BOOKID
and BOOKINGDATE>
(select BOOKINGDATE
from LIB BORROWER a,LIB BOOKING b
where b.BID=a.BID
and BNAME=’Mr.Kamal’)

7 9.11

Find the number
of book which
was published in
the same year of
the book ”Database”.

select count(bookID)
from lib book
where yearofpublication =
(select yearofpublication
from lib book
where title = ’Database’)

select count (bookid)
from lib book
where yearofpublication =
(select yearofpublication
from lib book
where title =’database’)

8 8.47

Find the title
and pricebase of
books which were
not published in ’USA’
and which have
a pricebase greater than
twice the averag
e pricebase of all books
published in ’USA’.

select title,pricebase
from lib book
where placeofpublication !=’USA’
and pricebase >
(select 2*avg(pricebase)
from lib book
group by placeofpublication
having placeofpublication=’USA’)

select Title, PriceBase
from Lib Book
where PlaceOfPublication=’Singapore’
or PlaceOfPublication=’India’
and PriceBase>800

2 3.64

Find the title
and pricebase of
books which were not
published in ’USA’
and which have a pricebase
greater than twice
the average pricebase
of all books
published in ’USA’.

select title,pricebase
from lib book
where placeofpublication !=’USA’
and pricebase >
(select 2*avg(pricebase)
from lib book
group by placeofpublication
having placeofpublication=’USA’)

select title,pricebase
from lib book,lib publisher
where lib book.pid=lib publisher.pid
and pcountry <>’USA’
and pricebase >(select 2*avg(pricebase)
from lib book,lib publisher
where lib book.pid=lib publisher.pid
and pcountry = ’USA)

7 4.45

Find distinct
isbn,title,publisher name
of the most recently
printed books in
the library.
Output : isbn,title,pname
Order by : isbn,title,pname

select distinct
isbn,title,pname
from lib bookcopy,lib book,lib publisher
where lib bookcopy.bookid=lib book.bookid
and lib book.pid=lib publisher.pid
and yearofprint in
(select max(yearofprint)
from lib bookcopy)
order by isbn,title ,pname

select distinct
isbn, title, pname
from lib bookcopy, lib book, lib publisher
where lib bookcopy.bookid= lib book.bookid
and lib book.pid= lib publisher.pid
and yearofprint=
(select min(yearofprint)
from lib bookcopy)
order by isbn, title, pname

7 8.35

Find distinct
isbn,title,publisher name
of the most recently
printed books in
the library.
Output : isbn,title,pname
Order by : isbn,title,pname

select distinct
isbn,title,pname
from lib bookcopy,lib book,lib publisher
where lib bookcopy.bookid=lib book.bookid
and lib book.pid=lib publisher.pid
and yearofprint in
(select max(yearofprint)
from lib bookcopy)
order by isbn,title ,pname

select distinct
isbn,title,PName
from lib book,Lib Publisher,Lib BookCopy
where lib book.bookid=Lib BookCopy.bookid
and Yearofprint=
(select max(Yearofprint)
from Lib BookCopy)
order by isbn,title,PName

9 8.09

Continued on next page

47

Table A.4: Data Set 4

Question Reference Query Answered Query
Expert-3’s
Score (Out
of 10)

Model’s
Score (Out
of 10)

Find DCodeName of
departments having books
with total pricebase¿=1500
and the departments
do not have
a book titled ’Database’.

select DCodeName
from Lib Book, Lib BookDepartment, Lib Department
where Lib Book.bookid=Lib BookDepartment.bookid
and Lib BookDepartment.did=Lib Department.did
group by DcodeName
having sum(pricebase)>1500
minus
select DCodeName
from Lib Book, Lib BookDepartment, Lib Department
where Lib Book.bookid=Lib BookDepartment.bookid
and Lib BookDepartment.did=Lib Department.did
and Title=’Database’

select * from DCodeName 1 0

Find DCodeName of
departments having books
with total pricebase¿=1500
and the departments
do not have
a book titled ’Database’.

select DCodeName
from Lib Book, Lib BookDepartment, Lib Department
where Lib Book.bookid=Lib BookDepartment.bookid
and Lib BookDepartment.did=Lib Department.did
group by DcodeName
having sum(pricebase)>1500
minus
select DCodeName
from Lib Book, Lib BookDepartment, Lib Department
where Lib Book.bookid=Lib BookDepartment.bookid
and Lib BookDepartment.did=Lib Department.did
and Title=’Database’

select DCodeName
from Lib Book,Lib BookDepartment,Lib Department
where Lib BookDepartment.DId = Lib Department.DId
and Lib Book.BookId=Lib BookDepartment.BookId
and Title not in (’Database’)
group by DCodeName
having sum(pricebase)>=1500

6.5 3.01

Figure A.1: Database Schema for Data Set 1

48

Figure A.2: Database Schema for Data Set 2 and Data Set 4

Figure A.3: Database Schema for Data Set 3

49

