
M.Sc. Engineering Thesis

Activity-aware Ridesharing Group

Trip Planning Queries for Flexible POIs

By

Mehnaz Tabassum Mahin

Student No.: 2015052020

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of

Masters of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka-1000, Bangladesh

March, 2018



Author’s Contact

Mehnz Tabassum Mahin

Lecturer

Department of Computer Science & Engineering

Bangladesh University of Engineering and Technology.

Email: mehnaz mahin@cse.buet.ac.bd

i







Acknowledgments

First of all, I am grateful to the Almighty Allah for the good health and wellbeing

that were necessary to complete my thesis work.

I would like to express my sincere gratitude to my supervisor Dr.Tanzima Hashem

for her continuous support, patience, motivation and immense knowledge. Her guid-

ance helped me in all the time of research and writing of this thesis. She shared

her knowledge in interpreting subject topics and also valued my way of thinking to

synthesize those topics. Her suggestions pushed me towards the direction of bet-

ter thinking, her brilliant reviews refined me in working out my research problems,

and her support gave me spirit to continue the work. I could not have imagined

having a better supervisor and mentor for research work. I am extremely thankful

and indebted to her for sharing expertise, and sincere and valuable guidance and

encouragement extended to me.

I would also want to thank the members of my thesis committee for their valuable

suggestions. I thank Dr.Md. Mostofa Akbar, Dr. Md. Abul Kashem Mia, Dr. Rifat

Shahriyar and specially the extrenal member Dr. Nova Ahmed.

I would like to express my gratefulness to my parents for their unceasin encour-

agement, never-ending support and attention. I also place on record, my sense of

gratitude to one and all, who directly or indirectly, have lemt their hand in this

thesis work.

iv



Contents

Board of Examiners ii

Candidate’s Declaration iii

Acknowledgments iv

Abstract xii

1 Introduction 1

1.1 ARGTP Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Problem Formulation 7

2.1 Activity-aware Ridesharing Group Trip

Planning (ARGTP) Queries . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Works 16

3.1 Group Trip Planning Queries . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Ridesharing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Dynamic Ridesharing . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Static Ridesharing . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Ridesharing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Context Based Ridesharing Queries . . . . . . . . . . . . . . . . . . . 21

v



CONTENTS vi

4 Efficient Approach 23

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Trivial Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Upper Bound Computation . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Lower Bound Computation . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Pruning Riders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.1 Using Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5.2 Using Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Pruning POI-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Optimal Ridesharing Group Computation . . . . . . . . . . . . . . . 35

4.8 Algorithms for Efficient Approach . . . . . . . . . . . . . . . . . . . . 36

4.8.1 Algorithm ARGTP EA . . . . . . . . . . . . . . . . . . . . . . 38

4.8.2 Function Compute Upper Bound . . . . . . . . . . . . . . . . 40

4.8.3 Function Compute Lower Bound . . . . . . . . . . . . . . . . 41

4.8.4 Function Prune Riders . . . . . . . . . . . . . . . . . . . . . . 43

4.8.5 Function Prune POItypes . . . . . . . . . . . . . . . . . . . . 44

4.9 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Baseline Approach 48

5.1 Algorithms for Baseline Approach . . . . . . . . . . . . . . . . . . . . 49

5.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Experiments 52

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.3 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.3.1 Efficiency Measures . . . . . . . . . . . . . . . . . . . 54

6.1.3.2 Effectiveness Measures . . . . . . . . . . . . . . . . . 54

6.2 Effect of Group Size n . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Effect of Number of Riders . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Effect of Driver’s Trip Length . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Effect of Threshold Distance λ(%) . . . . . . . . . . . . . . . . . . . . 59



CONTENTS vii

6.6 Effect of x(%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.7 Effect of Dataset Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.8 Effect of Number of POI-types . . . . . . . . . . . . . . . . . . . . . . 62

7 Conclusion 64

7.1 Future Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

References 66



List of Figures

1.1 A rider’s flexibility in selecting an intermediary POI (e.g., restaurant)

on the way from source (e.g., office) to destination (e.g., home) . . . . 2

1.2 An example of an ARGTP query for k = 3 . . . . . . . . . . . . . . . 3

2.1 A driver’s trip, 〈s, d, 4, 9:20 am, p, 40 minutes〉 . . . . . . . . . . . . 8

2.2 A rider r1 can visit the restaurant p2 instead of the nearest one p1 on

the way from s1 to d1 to get a ridersharing trip . . . . . . . . . . . . 9

2.3 The rider r1 can get a driver’s trip whose fixed locations are located

within the slugging distance, sd1 = 60 m . . . . . . . . . . . . . . . . 10

2.4 Determination of a complete and suitable ridesharing trip for a rider

r1 with threshold distance, λ1 = 20% . . . . . . . . . . . . . . . . . . 12

2.5 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Overview of the ARGTP EA approach . . . . . . . . . . . . . . . . . 25

4.2 An example scenario for an ARGTP query with k = 5 . . . . . . . . 28

4.3 Upper bound computation for k = 5 . . . . . . . . . . . . . . . . . . 29

4.4 Lower bound computation of a POI-type’s distance . . . . . . . . . . 31

5.1 Overview of the ARGTP BA approach . . . . . . . . . . . . . . . . . 49

6.1 Effect of group size n using California (a–d) and synthetic (e–h) datasets 56

6.2 Effect of number of riders using California (a–d) and synthetic (e–h)

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Effect of driver’s trip length using California (a–d) and synthetic (e–h)

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Effect of threshold distance λ(%) using California (a–d) and synthetic

(e–h) datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



LIST OF FIGURES ix

6.5 Effect of x(%) using California (a–b) and synthetic (c–d) datasets . . 61

6.6 Effect of dataset size using synthetic (a–d) datasets . . . . . . . . . . 61

6.7 Effect of number of POI-types using synthetic (a–d) datasets . . . . . 62



List of Tables

2.1 Notations and their meanings . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Symbols and their meanings . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

x



List of Algorithms

1 ARGTP EA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Compute Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Compute Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Prune Riders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Prune POItypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 ARGTP BA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



Abstract

Ridesharing has become a popular model that enables users to share their rides

with others in recent years. Traditional ridesharing services arrange ridesharing trips

to travel between a fixed source and a fixed destination locations. Users need to visit

point of interests (POIs) such as a supermarket or a pharmacy for performing various

daily activities while traveling between fixed locations like an office and a home. In

current ridesharing services, there is no guarantee that a user gets ridesharing options

for the complete trip, e.g., for visiting from the office to a POI and then from a POI

to the home. Again, the flexibility in visiting a POI a little bit far away instead of

visiting the nearest POI with respect to fixed locations may increase the probability in

getting ridesharing services. In this thesis, we introduce a novel type of ridesharing

query, an Activity-aware Ridesharing Group Trip Planning (ARGTP) query that

exhibit three novel features: (i) ensures a complete trip for visiting more than two

locations, (ii) allows to visit both fixed and flexible locations, and (iii) provides true

ridesharing services instead of a taxi like ridesourcing services by matching a group

of riders’ flexible trips with a driver’s fixed trip. An ARGTP query considers the

spatial proximity of the trips of the riders with that of a driver, and returns an

optimal ridesharing group that minimizes the total cost of the ridesharing group. We

develop the first solution to process ARGTP queries in real time. The efficiency of

the ARGTP query processing algorithms depends on the number of candidate riders

and the number of POIs to be explored. We introduce novel pruning techniques to

prune the riders and refine the POI search space. We perform extensive experiments

using both real and synthetic datasets to validate the efficiency and effectiveness of

our approach, and show that our approach outperforms a baseline approach with a

large margin.

xii



Chapter 1

Introduction

With the proliferation of smart phones and GPS-enabled devices, ridesharing has

become a popular and promising model that enables users to share their rides with

others. Ridesharing combines independent trips of drivers and riders into a single

one. Thus, ridesharing can reduce the road traffic and save energy, and have huge

impact in the environment. Effective usage of the ridesharing applications depends

on the coordination among drivers and riders considering time constraints, distance

constraints, and more importantly the places that need to be visited. In this thesis,

we propose a novel model that provides a true ridesharing service instead of taxi like

existing ridesourcing applications such as Uber1 and Lyft2 by matching riders with a

driver’s predefined trip.

Traditional ridesharing services [1, 2, 3, 4, 5] are arranged considering only two

fixed locations given by the users. To perform various daily activities like buying

groceries and withdrawing money, a rider may want to visit a point of interest (POI)

like a supershop or an ATM booth in between two fixed locations (i.e., source and

destination). Thus, the rider needs two individual ridesharing trips to travel from

source to the POI and then from the POI to the destination. However, there is no

guarantee that the rider will get the second ridesharing trip after reaching the POI.

In this thesis, we focus on arranging complete ridesharing trip to travel from the

source to the destination via a POI.

1www.uber.com
2www.lyft.com

1



CHAPTER 1. INTRODUCTION 2

Usually a rider prefers to visit a POI that is the nearest with respect to her

source and destination locations. A recent work [6] has shown that the flexibility in

selecting the POI (e.g., any branch of a bank) increases the probability of getting a

ridesharing trip. A rider may be happy to visit a POI that is a little bit far away

from the nearest one if in return it increases the probability of getting a suitable

ridesharing trip. Traditional ridesharing services consider neither such flexibility in

selecting POIs nor a complete ridesharing trip including more than two locations.

In this thesis, we introduce a new type of ridesharing query that considers riders’

flexibility in selecting POIs, ensures a complete ridesharing group trip, and provides

a true ridesharing service instead of a taxi like ridesourcing service by matching a

group of riders’ flexible trips with a driver’s predefined trip. We call this query

as Activity-aware Ridesharing Group Trip Planning (ARGTP) query. Ridesharing

services can be dynamic or static. Dynamic ridesharing trips are arranged on a very

short notice, while static trips are known in advance, at least few minutes before the

departure time. Our focus is on static ridesharing services and we propose the first

solution for efficient processing of ARGTP queries.

(a) A fixed POI (i.e., the nearest POI on the
way from source to destination)

(b) Flexible POIs (i.e., POIs located within
the maximum allowed distance)

Figure 1.1: A rider’s flexibility in selecting an intermediary POI (e.g., restaurant) on
the way from source (e.g., office) to destination (e.g., home)



CHAPTER 1. INTRODUCTION 3

1.1 ARGTP Queries

Taxi-like ridesourcing services assume that drivers do not have any planned trips for

themselves and they are available for serving the riders, whereas in our ridesharing

system, a driver is willing to share her vehicle with a group of riders only at a

particular time when the driver has a planned trip. The driver’s trip starts from a

source location, goes through a POI, and ends at a destination location. On the other

hand, a rider is willing to get a complete ridesharing trip for visiting a specific POI

type. A rider can be flexible in visiting any branch of the required POI type within

a distance limit instead of the nearest one. For example, in Figure 1.1(a), the circled

POI is the nearest one with respect to a rider’s source and destination locations, and

in Figure 1.1(b), the circled POIs are located within the rider’s maximum allowed

distance.

Sources                 Destinations          Banks
Supermarkets        Restaurants           Hospitals

s4

s2

s5

s1

s3

d3

d2

d5

d1

d

d4s
p

(a) An ARGTP query takes a driver’s trip
and a set of riders’ trips as input

Sources                 Destinations          Banks
Supermarkets        Restaurants           Hospitals

s4

s2

s5

s1

s3

d3

d2

d5

d1

d

d4s
p

(b) The optimal ridesharing group trip in-
cluding riders r1 and r4

Figure 1.2: An example of an ARGTP query for k = 3

Riders are picked up and dropped off at a driver’s source and destination loca-

tions. The group trip also halts for a specified period at the driver’s POI location.

The drivers whose source, destination and POI locations are within a rider’s specified

slugging distance limit from the rider’s source, destination and POI locations, respec-

tively are eligible to share a vehicle with the rider. Given a driver’s trip and a set of

riders’ trips, An ARGTP query returns a ridesharing group that minimizes the total

travel cost of group members and satisfies all spatial-temporal constraints specified

by the members of the group. A group member’s travel cost is the summation of the



CHAPTER 1. INTRODUCTION 4

distance of her source from the driver’s source, the distance of the nearest required

POI-type from the driver’s fixed POI, and the distance of her destination from the

driver’s destination. Figure 1.2(a) shows trips of a driver and available riders, and

Figure 1.2(b) shows the optimal ridesharing group for the driver.

1.2 Research Challenges

Computing ridesharing groups in real time is an essential criteria for the success of

the ridesharing applications. A major challenge for an ARGTP query is to identify

the optimal group from a large set of riders. For example, let there be 1000 candidate

riders in the system for an ARGTP query and the required ridesharing group size

be 6. Then there are 1000C6 = 1.368e+15 number of possible groups of riders for the

query. Thus there can be a huge number of possible groups to be considered for an

ARGTP query. The efficiency of an ARGTP query processing technique depends on

the number of the candidate ridesharing groups considered for identifying the optimal

ridesharing group.

Another major challenge is to explore the required POIs for the riders from a huge

POI database. For example, California Road Network dataset [7] has about 87635

POIs with 63 different POI-types. For each POI-type, there are on average 1300 POIs.

If there are 6 types of unique POIs required by a group, then the number of candidate

POI sets for an ARGTP query is (1300)×(1300)×(1300)×(1300)×(1300)×(1300) =

(1300)6 = 4.83e+18, a huge number of candidate POI sets. Considering all of the

possible ridesharing groups and POI sets to find the optimal query answer would not

be an efficient solution. Thus, the efficient processing of an ARGTP query depends

on the refinement of the rider and the POI search space.

1.3 Solution Overview

The key ideas behind the efficiency of our approach to evaluate ARGTP queries are

the rider and POI search space refinement techniques. We develop two techniques to

identify the riders that are not eligible to be included in the optimal ridesharing group.



CHAPTER 1. INTRODUCTION 5

For our first technique, we propose a heuristic to compute the upper bound of the

travel cost of an optimal ridesharing group. Using the upper bound, we determine the

maximum distance limit, and show that any rider whose source or destination is not

located within the maximum distance limit from the driver’s source or destination,

respectively, cannot be part of the ARGTP query answer. Thus, all such drivers are

pruned and not considered for processing an ARGTP query. In our second technique,

we compute the minimum cost of a ridesharing group containing a specific rider as

the lower bound, and prune the rider if the lower bound exceeds the upper bound.

Pruning riders may in turn reduce the number of required POI types. Further-

more, we derive the maximum allowed distance for a POI to be located from the

driver’s fixed POI location using the upper bound. If the maximum slugging dis-

tance of the candidate riders is less than the derived maximum distance, then we

consider the maximum slugging distance to bound the POI search space. Otherwise,

we take the derived maximum distance to refine the POI search space and explore

the POIs of required types located within this distance from the driver’s fixed POI.

After refining the rider and POI search space, our approach computes the travel

cost of each rider and identify the rider with the smallest travel costs for identifying

the optimal ridesharing group for an ARGTP query.

1.4 Contributions

The contributions of this thesis are summarized as follows:

• We introduce and formulate ARGTP queries. To the best of our knowledge, we

first address the ARGTP query.

• We develop the first approach to process ARGTP queries efficiently in real time.

• We develop techniques to prune riders and POIs and thus, improve the efficiency

of our ARGTP algorithm.

• We present extensive experiments using both real and synthetic datasets, to

validate the effectiveness and the efficiency of our algorithms.



CHAPTER 1. INTRODUCTION 6

1.5 Thesis Organization

The next chapters are organized as follows. Chapter 2 presents the problem for-

mulation of an ARGTP query. Chapter 3 introduces the related works. Chapter 4

presents our proposed efficient approach along with necessary algorithms. In Chap-

ter 5, we discuss a baseline approach for processing ARGTP queries. The extensive

experimental evaluation is presented in Chapter 6. Finally, in Chapter 7 we conclude

the thesis with future research challenges.



Chapter 2

Problem Formulation

In Section 2.1, we present preliminaries and formulate the proposed ridesharing

group trip planning query, i.e., an Activity-aware Ridesharing Group Trip Planning

(ARGTP) query. We also introduce the basic notations and measures used through-

out the thesis. In Section 2.2, we give an overview of the system architecture to

process the ARGTP queries.

2.1 Activity-aware Ridesharing Group Trip

Planning (ARGTP) Queries

In our system, drivers and riders specify their trip information to a ridesharing service

provider (RSP). A trip starts from a source location, then visits a point of interest

(POI) to perform an activity and finally ends at a destination location. An ARGTP

query is initiated when a driver’s trip is sent to the RSP. An ARGTP query enables

riders to have a complete ridesharing trip for visiting more than two locations and

considers riders’ flexibilities in selecting POIs. The ARGTP query determines an

optimal ridesharing group from the available set of riders for the driver that minimizes

the total group cost by considering the spatial proximity of the riders with respect to

the driver in road networks. Thus an ARGTP query requires a driver’s trip and a set

of riders’ trips. Formally a driver’s trip and a rider’s trip can be defined as follows:

7



CHAPTER 2. PROBLEM FORMULATION 8

Definition 1 (Driver’s trip). A driver’s trip is defined by 〈s, d, k, st, p, ht〉, where

s and d represent a source location and a destination location respectively of the trip,

k the car capacity, st the trip starting time and p the fixed POI location of the trip

and ht the halting time at p.

Sources                 Destinations          Banks
Supermarkets        Restaurants           Hospitals

d

s p
9:20 am

40 min

Figure 2.1: A driver’s trip, 〈s, d, 4, 9:20 am, p, 40 minutes〉

Figure 2.1 shows an example of a driver’s trip 〈s, d, 4, 9:20, p, 40 minutes〉. The

driver starts the trip from s at 9:20, halts at a fixed POI p, e.g., a fixed hospital for

40 minutes, and ends the trip at d. The capacity of the driver’s trip is 4.

Definition 2 (Rider’s trip). A trip of a rider ri is defined by 〈si, di, ti, hti, λi,
sdi, sti〉, where the parameters have the following meanings:

• si, di: the source and the destination locations of ri

• ti: the POI-type that ri wants to visit in between si and di

• hti: a duration interval that ri wants to halt at the required ti-type POI

• λi: a threshold distance limit that ri can consider to travel more to get a

ridesharing group trip

• sdi: the maximum allowed slugging distance

• sti: a time interval when ri wants to be picked up at a driver’s source



CHAPTER 2. PROBLEM FORMULATION 9

Sources                 Destinations          Banks
Supermarkets        Restaurants           Hospitals

s1

d1
p1

p2

Figure 2.2: A rider r1 can visit the restaurant p2 instead of the nearest one p1 on the
way from s1 to d1 to get a ridersharing trip

Without loss of generality, an example of a rider’s trip could be 〈s1, d1, restaurant,

30–40 minutes, 20%, 60 meters, 9:00– 9:30〉 (Figure 2.2). The rider wants to travel

from s1 to d1 via a restaurant and also wants to stop at the restaurant for at least 30

minutes and at most 40 minutes. The rider is happy to travel any restaurant (e.g.,

p2) that requires her to travel at most 20% (λi) more distance than the shortest trip

via the nearest restaurant (i.e., p1) with respect to s1 and d1. For ARGTP queries,

we use slugging [1, 2, 8, 9], an effective model for sharing rides instead of ridesourcing

like taxis. In the slugging model, the riders are picked up and dropped off at the

driver’s fixed locations. In the example, the slugging distance is 60 meters, i.e., the

rider can travel at most 60 meters to be picked up and dropped off at the driver’s

fixed locations. The rider needs to start between 9:00–9:30 from a driver’s source

location. Next we elaborate the slugging distance and the threshold distance for a

rider’s trip.

Slugging Distance: Figure 2.3 shows the slugging distance of a rider’s trip for

the same example. Let there be a driver whose source, destination and the fixed POI

are s, d and p respectively such that the driver’s source s and destination d satisfy

the slugging distance sd1 = 60 m, i.e., s and d are located within 60 meters from the

rider’s source s1 and destination d1 respectively (Figure 2.3(a)). The rider can get



CHAPTER 2. PROBLEM FORMULATION 10

Sources                 Destinations          Banks
Supermarkets        Restaurants           Hospitals

s1

d1

d

s
p

sd1 → 60m

sd1 → 60m

(a) The driver’s source s and destination d
satisfy sd1 = 60 m

Sources                 Destinations          Banks
Supermarkets        Restaurants           Hospitals

s1

d1

d

s
p

sd1 → 60m

(b) A restaurant is located from the driver’s
fixed POI p within sd1 = 60 m

Figure 2.3: The rider r1 can get a driver’s trip whose fixed locations are located
within the slugging distance, sd1 = 60 m

the driver’s trip if there exists a restaurant located within 60 meters from the driver’s

fixed POI p (Figure 2.3(b)). Thus, the slugging distance sd1 (= 60 m) states that

the rider can travel at most 60 meters between (i) s and s1, (ii) d and d1, and (iii) p

and the rider’s POI.

In our system, a rider sets her slugging distance by considering that the rider

has to arrive at the driver’s source location within the driver’s departure time, travel

to the required POI and return back to the driver’s fixed POI within the driver’s

halting time at the driver’s fixed POI, and finally travel to her own destination from

the driver’s destination.

Threshold Distance: If a rider visits the nearest POI in between her source

and destination locations, the trip is the shortest one with respect to her source and

destination locations. Considering the fact, for ARGTP queries, it is assumed that

to get a complete, suitable and cost-effective ridesharing group trip, a rider would be

also happy to visit a POI a little bit far away but within a specified distance limit.

We introduce this distance limit as threshold distance. In a rider’s trip, the threshold

distance is the maximum allowed distance that a rider can consider to travel more

than her shortest trip to get the ridesharing group trip.

Let a rider ri want to visit a POI of type ti on the way from her source si to



CHAPTER 2. PROBLEM FORMULATION 11

destination di, and the threshold distance be λi. Let there be a driver’s trip from

source s to destination d via a fixed POI p. If the shortest trip length from si to di

via the nearest POI of type ti is (`ti)shortest and the maximum allowed ridesharing

trip length is (`ti)max, then we can formulate the threshold distance as follows:

λi =
(`ti)max − (`ti)shortest

(`ti)shortest
× 100%

This implies that if the rider gets a ridesharing trip via a POI of type ti, then the

actual ridesharing trip length (`ti)actual must be less then or equal to the maximum

allowed ridesharing trip length (`ti)max, where (`ti)actual is measured as the summation

of the following distances: (i) the distance between s and si, (ii) the distance between

s and p, (iii) twice of the distance between p and the rider’s POI, (iv) the distance

between p and d, and (v) the distance between d and di.

Figure 2.4 shows an example of the fact that how the threshold distance impacts

on the ridesharing group selection. Let a rider r1 wants to visit a restaurant on the

way from source s1 to destination d1. If the rider takes an individual trip, then she

may prefer to get the shortest trip via the nearest restaurant p1. Figure 2.4(a) shows

the shortest trip of the rider r1. Now, let there be a driver whose source, destination

and fixed POI locations are at s, d and p respectively. The restaurant p2, which

is the nearest one from p, satisfies the slugging distance constraint of the rider’s

trip. That’s why, the rider r1 can consider to visit the restaurant p2 other than the

nearest one p1 (Figure 2.4(b)), if it also satisfies the threshold distance constraint.

Figure 2.4(c) shows the complete ridesharing trip for the rider which satisfies the

specified threshold distance, λ1 = 20%. For more clarification, Figure 2.4(d) shows

an unacceptable ridesharing trip via a restaurant p3 for the rider r1 if she gets a

driver’s trip whose source, destination and fixed POI locations are at s′, d′ and p′.

This trip requires more than 20% of the shortest trip, and violates the threshold

distance constraint λ1.

Let P be a set of POIs that are stored in a ridesharing service provider’s (RSP’s)

database using an R∗-tree [61], pti be a POI of type ti, and R be a set of nr riders in

the system. If a driver’s car capacity is k, there are q =
(

nr

k−1

)
possible ways to form

ridesharing group of k−1 members from nr riders. Let U be a set of such q ridesharing



CHAPTER 2. PROBLEM FORMULATION 12

Sources                 Destinations          Banks
Supermarkets        Restaurants           Hospitals

s1

d1
p1

(a) The shortest trip for the rider r1 via the
nearest restaurant p1 on the way from s1 to
d1

Sources                 Destinations          Banks
Supermarkets        Restaurants           Hospitals

s1

d1
p1

p2

d

s p

(b) The rider r1 can visit the restaurant p2

instead of p1 to get the driver’s trip from s
to d via p

Sources                 Destinations          Banks
Supermarkets        Restaurants           Hospitals

s1

d1
p1

p2

d

s
p

(c) A complete and suitable ridesharing trip
for the rider r1 that satisfies the threshold
distance, λ1 = 20%

Sources                 Destinations          Banks
Supermarkets        Restaurants           Hospitals

s1

d1
p1

p2

p'

s'

d'
p3

(d) An unacceptable ridesharing trip for the
rider r1 that violates the threshold distance,
λ1 = 20%

Figure 2.4: Determination of a complete and suitable ridesharing trip for a rider r1

with threshold distance, λ1 = 20%



CHAPTER 2. PROBLEM FORMULATION 13

groups, where, U = {U1, U2, . . . , Uq}. Formally, an Activity-aware Ridesharing Group

Trip Planning (ARGTP) query is defined as follows:

Definition 3 (ARGTP Queries). Given a set of POIs P , a set of nr riders’ trips

R and a driver’s trip with car capacity k, the set of possible ridesharing groups of

k− 1 riders U , an Activity-aware Ridesharing Group Trip Planning (ARGTP) query

returns a ridesharing group Γ ∈ U of k− 1 riders and a set of POIs P required by the

riders ri ∈ Γ such that the cost function C is minimized, i.e., C ≤ C ′ for any Γ′ ∈ U
and Γ 6= Γ′.

The cost function C is measured as follows:

Cost function C: All distances used in this thesis are assumed to be road

network distances. We represent the road network with a graph G(V,E,W ), where

a vertex v ∈ V denotes a road junction, an edge e ∈ E denotes a road between two

vertices, and an weight w ∈ W denotes the length of a road. Function dist(.) returns

the length of the shortest path between two locations in a road network. Suppose a

rider ri visits a POI pti ∈ P of type ti in between si and di. If the rider participates

in a ridesharing group trip, the rider herself first travels to s from si, then comes to

p with the group, then again travels to her POI and returns back to p by herself,

goes to d with the group, and finally travels to di by herself. Let the distance of the

nearest POI of type ti from p be dti , where,

dti = min
pti∈P
{dist(p, pti)} (2.1)

and let the travel cost of a rider ri with respect to the source si and the destination

di be χi, where,

χi = dist(si, s) + dist(d, di). (2.2)

The cost Ci of a rider ri is defined as,

Ci = χi + 2× dti , (2.3)



CHAPTER 2. PROBLEM FORMULATION 14

and the cost C for a ridesharing group Γ is defined as,

C =
∑
ri∈Γ

Ci. (2.4)

Table 2.1 summarizes the notations we commonly used throughout the thesis:

Table 2.1: Notations and their meanings

Notations Meanings

ri A rider’s ID

P A set of POIs in the road network

R A set of riders present in the system

T A set of POI-types required by the riders ri ∈ R

dist(u, v) The shortest path distance from u to v in the road network G

pti A desired POI of type ti

dti The distance of the nearest POI of type ti from the driver’s fixed
POI p

Rti A set of riders whose desired POI-type is ti

RT A set of riders-set Rti for each POI-type ti ∈ T

Γ The optimal ridesharing group

P The set of corresponding POIs of the optimal ridesharing group
Γ

C The optimal ridesharing group cost



CHAPTER 2. PROBLEM FORMULATION 15

2.2 System Overview

Ridesharing
Service Provider

Riders Drivers

Riders
' tr

ips D
rivers' tripsARGTP an

sw
ers

Data Storage
(R*-tree)

Retrieve POIs

A
R

G
TP answ

ers

Figure 2.5: System architecture

Figure 2.5 shows an overview of the system architecture. The riders submit their

required trips to a ridesharing service provider (RSP). Each rider provides the re-

quired POI-type along with source and destination locations. Each rider’s trip also

contains some constraints like slugging distance, threshold distance and time con-

straints defined by the rider. Similarly, the drivers send their trip information to the

RSP. Each driver provides source, destination and fixed POI locations along with

the car capacity. A driver’s trip initiates an ARGTP query. The POI information

is indexed using an R∗-tree [61] in the data storage of the RSP. Considering all the

constraints given by the riders and the car capacity of the driver, the RSP processes

the ARGTP query and returns the optimal ridesharing group trip information as the

ARGTP answer to the riders and the driver included in the group.



Chapter 3

Related Works

In this chapter, we discuss the existing works related to our research problem. In

Section 3.1, we discuss the group trip planning queries, where group members are

predefined and the service provider schedules a group trip for them. In Section 3.2,

we present different existing ridesharing models and their applications. There are

some existing algorithms to provide efficient ridesharing services in the literature.

We elaborately discuss the existing ridesharing algorithms in Section 3.3. Recently,

researchers have shown their interest in some context based ridesharing services be-

sides the traditional ones. In Section 3.4, we discuss the context based ridesharing

queries addressed by the researchers.

3.1 Group Trip Planning Queries

Group trip planning (GTP) queries have been addressed in the literature [10, 11, 12,

13], where a set of POIs of different types are returned for a group that minimizes

the travel distance with respect to the source and destination locations of group

members. In [12], the authors addressed the GTP queries for Euclidean space. The

proposed algorithm to process GTP queries is not scalable and efficient enough for

road networks. Moreover, their appraoch uses independent R-trees [14] for each POI-

types, which is impractical for road networks. Addressing these issues, Hashem et.

al [11] proposed algorithms to process GTP queries efficiently in both Euclidean space

and road networks. The authors also proposed optimal algorithms to evaluate kGTP

16



CHAPTER 3. RELATED WORKS 17

queries which find k sets of POIs that provide the k smallest aggregate trip distance

with less computational overhead.

In [15], the authors introduced a Socio-Spatial Group Query (SSGQ) to select a

group of nearby attendees with tight social relation. In [13], the authors proposed a

new variant of a GTP query, subgroup trip planning queries, that return the optimal

trips for different subgroup size. The authors in [16] introduced dynamic group trip

planning queries (DGTP), where the groups change dynamically over the duration

of trips and members are selected from a predefined group. Group members can

dynamically join and leave the group trip at any point of the road network, and

travel the same set of POIs together during the trip.

Thus, in a GTP query, a group is given and the same POIs are visited by the group

members, whereas in an ARGTP query, a group is determined and different POIs are

visited by the group members in between their source and destination locations.

3.2 Ridesharing Models

Ridesharing services has recently become popular among users and researchers [17,

18, 19, 20]. Ridesharing has different variants where the drivers can either require

passenger trips to be inclusive (both of rider’s source and destination are part of the

driver’s trip) or partial (any of source and destination or both fall outside the driver’s

trip). In addition, driver’s trips can be unchanged, or can include detours to pickup

passengers. The drivers might choose to pickup single or multiple passengers. The

ridesharing problem is usually modeled as an optimization problem to minimize the

travel cost [21] or to maximize the number of participants [22].

Furuhata et. al [23] discussed different ridesharing systems such as dynamic

ridesharing [24, 25], static ridesharing [1, 4], carpooling [5], dial-a-ride (DARP) [3, 26].

The authors in [24] first addressed the dynamic taxi ridesharing problem for a large

number of taxis. In a recent work [27], the authors proposed a new ridesharing model

where a driver has an expectation rate which is to be satisfied by the shared route

percentage between the driver and the rider.



CHAPTER 3. RELATED WORKS 18

3.2.1 Dynamic Ridesharing

Dynamic ridesharing is a service that matches up the riders with the drivers and

provides shared vehicle rides in real time or on a short notice. Dynamic ridesharing

services have been gaining attention in the research fields [20, 24, 28, 29, 30]. In

dynamic ridesharing systems, both of the drivers and the riders are the independent

users who can dynamically register for trips. Thus, the riders and the drivers can

leave and enter the system at any point of the road, and so the number of drivers

is continuously varying in the system. In addition, since both drivers and riders are

independent, they can have individual preferences for the rides. Depending on their

preferences, they can accept or decline the ridesharing offers. In [30], the authors

presented a survey on optimization techniques for centralized dynamic ridesharing

problems. The dynamic ridesharing problem that considers to match up multiple

riders to be picked up for a driver’s ride is NP-hard [19, 31].

Dial-a-ride problem (DARP) is a vehicle transport planning problem for planning

to pickup and drop-off the passengers. The objective is to allocate riders’ trip requests

to the available vehicles such that they service all the riders according to their time

windows and minimize the overall trip distance or the number of vehicles used. In

dynamic DARP [24], the drivers are registered in a system, the vehicle requests are

placed in real time, and the matched vehicles are allocated for the eligible riders,

whereas, in dynamic ridesharing the drivers are not employed by any company and

can decide greedily to pick up the riders considering their own privilages.

In [19], the authors proposed a dynamic ridesharing system where the drivers

with similar routes are considered to form groups. A driver is selected from a group

such that her shared ride provides others a cost-effective ride. In all of these dynamic

ridesharing models, the groups are pre-determined and among the group members

either a sub-group is chosen as riders or a group member is chosen as a driver. On

the other hand, for ARGTP queries, ridesharing group is determined for a driver’s

trip such that the group travel cost is minimized. Thus, these types of dynamic

ridesharing models are not suitable for processing ARGTP queries.



CHAPTER 3. RELATED WORKS 19

3.2.2 Static Ridesharing

In static ridesharing model, both of the driver’s trip and the rider’s trip are known

in advance. Sometimes it can be achieved by tracking regular activities of users.

Some popular static ridesharing models are: carpooling, static dial-a-ride (DARP),

slugging etc. The main property for a static model is to know the trip information

in advance, at least for a little bit earlier. Since according to our system, the trips of

riders and drivers are known to the RSP, it can be categorized as a static ridesharing

system.

Carpooling is a popular application of ridesharing static models, where the drivers

need to change their routes to share their rides with the riders. They declare their

availability for pick-up and then bring back riders later. Small size carpooling can be

solved optimally by using linear programming techniques [32, 33]. To deal with large

scale carpooling problems, the authors in [4, 34, 35] proposed heuristics algorithms.

Dial-a-ride problem (DARP) [3, 36] designs vehicle routes and schedules trips for

users in between two fixed locations. If the users’ rides are known in prior, then these

types of problems are static DARP [19, 37, 38]. In [4, 39], the authors focused on the

single vehicle problem where one vehicle is considered to identify the travel route,

determine the ridesharing group and schedule riders’ trips. Some online ridesharing

services [40, 41] focus on the fast responses of the users without concerning about

the optimal solution. Thus there is no guarantee to get a ridesharing trip between

two locations. The large scale static DARP is known to be NP-hard [40]. For small

number of vehicles, DARP can be solved exactly based on integer programming [42],

whereas, heuristics are the most popular methods [3, 37, 39] for large scale DARP.

Slugging [2] is an effective and popular form of ridesharing where a rider walks

to the origin of the driver’s trip, boards at the driver’s departure time, comes to the

driver’s destination along with the driver, and then travels to her own destination

by herself. Slugging is the simplest form of ridesharing in the sense that there is

no detour required for a driver, and the trip is cost-effective for both riders and the

driver. In [1], Ma et. al studied slugging model from a computational perspective

to improve the utilization of vehicles and to reduce the car congestion on the road.

To model the system architecture for processing ARGTP queries, we consider this



CHAPTER 3. RELATED WORKS 20

slugging model where the riders are picked up and dropped off the driver’s fixed

locations. Our slugging model is different from the typical slugging model in the

sense that the riders can travel to the driver’s fixed locations by any means, they can

walk, travel by vehicles, run and so on.

3.3 Ridesharing Algorithms

There exist efficient algorithms [17, 18, 34, 43, 44, 45] that can compute traditional

ridesharing groups for visiting only two fixed locations. The authors in [17, 18]

proposed efficient algorithms to match riders’ trips to vehicles dynamically.

Traditionally, carpooling is a typical ridesharing model that forms a ridesharing

group with a group of riders considering the fact that their travel routes and schedules

are overlapped with each other [46]. The authors mentioned that carpooling is effec-

tive due to the reduced congestion, pollution and the monetary benefits for sharing

the trips among the riders. If same group of riders share their rides with each other

for a long time, then the arrangements become static carpooling. For carpooling, the

user trajectories are used to identify the overlapping routes of the riders [47], and the

groups are suggested accordingly. In [18], the authors proposed a collective transport

system where the riders’ trips are clustered to identify the cost-optimal ridesharing

group who can travel collectively.

Some traditional taxi-sharing services [48, 49, 50, 51] usually send a taxi close

to a passenger according to the passenger’s request. They actually schedules a taxi-

sourcing or ridesourcing trips in lieu of ridesharing. Ma et. al in [24] proposed a

dynamic taxi ridesharing framework for GPS-equipped taxis in a city which serves a

large number of taxis at a time and aims to reduce the total travel distance of these

taxis. Ma et. al [52] proposed a taxi-sharing system using mobile-cloud architecture

where the ride requests of taxi passengers are accepted in real time via smart devices,

and passengers are picked up at their preferred locations. They consider the monetary

issues to guarantee effective ridesharing services.

In [53], the authors proposed an R-tree based scalable ridesharing algorithm to

schedule ridesharing trips where the drivers’ trips are fixed and the riders’ trips are



CHAPTER 3. RELATED WORKS 21

matched to the fixed trips of the drivers based on their social and economical prefer-

ences. In [33], the authors considered to incorporate riders’ daily routine commutes

for scheduling a ridesharing trip. In [54], the authors proved that the time window

problems at the pickup and delivery time can be resolved.

However, these existing ridesharing services schedule ridesharing trips among rid-

ers and the driver for visiting two fixed locations. They do not consider user’s flexi-

bility in the selection of POIs. If a rider wants to visit any branch of a shopping mall

on the way from office to home, then using traditional ridesharing services she has to

manage two separate ridesharing trips. Sometimes it may happen that she may not

get ridesharing options for both trips. Thus, we introduce a new type of ridesharing

query, an ARGTP query, that enables riders to get a complete ridesharing trip for

visiting more than two locations and considers riders’ flexibilities in the selection of

POIs.

3.4 Context Based Ridesharing Queries

Researchers have shown their interest to develop different context based algorithms to

process ridesharing queries in real time. The context like activity, utility, community,

social-awareness, privacy of users are prioritized among researchers.

In [35, 55], the authors addressed trust-conscious ridesharing and involved social

networks to solve the problems. In [44, 56], the authors involved social networks

to retrieve a group of riders where the riders’ trips are similar to the driver’s trip.

Incorporating social networks data by the service provider raises serious threats to

reveal personal data to the untrusted service provide. To address these issues, the

authors in [57] introduced a novel technique to form ridesharing groups that reveals

social data in community levels. Goel et. al [43] developed a privacy preserving

ridesharing model where the riders can choose their ridesharing partners based on

their preferences. In [58], the authors studied the effect of the riders’ privacy and

security by tracking their information precisely and also incorporating imprecision

to design a ridesharing prototype. They focused on the privacy-based techniques to

implement privacy preserving ridesharing.



CHAPTER 3. RELATED WORKS 22

In [59], the authors proposed a variant of DARP to schedule the optimal rideshar-

ing trip that maximizes utilities like spatial-temporal and car capacity constraints.

However, all of these are unable to handle users flexibility in selecting POI locations,

and also the trips for visiting more than two locations. On the other hand, both

fixed and flexible locations are considered in an ARGTP query. An ARGTP query

also considers the spatial-temporal constraints provided by the riders and car ca-

pacity constraints. At the same time, ARGTP queries enable users to get complete

ridesharing trips for visiting more than two locations.

Recently, it has been shown in [6] that the rate of finding a ridesharing trip

between two POIs is improved by incorporating the flexibility in the selection of POIs.

However, in [6] only trips between two locations (fixed or flexible) are considered,

and no ridesharing group is formed for visiting more than two locations. Thus it

is not guaranteed that if a rider goes to a POI other than the nearest one, she can

manage a ridesharing trip for returning from the flexible POI to a fixed destination.

In [60], the authors incorporated the flexibility such that a group of riders agree on

a common destination from a possible set of destination locations. However, they do

not consider to form a ridesharing group for visiting more than two locations. On

the other hand, an ARGTP query enables users to get a complete ridesharing group

trip via intermediary POIs for both fixed and flexible locations.



Chapter 4

Efficient Approach

A ridesharing service provider (RSP) has to explore a large set of riders and a huge

database of point-of-interests (POIs) to identify the optimal ridesharing group as

the answer of an Activity-aware Ridesharing Group Trip Planning (ARGTP) query.

Considering all available riders and a huge POI database for identifying the query

answer would not be an efficient solution. The efficiency of ARGTP queries depends

on the size of the sets of the considered riders and POIs to find the optimal ridesharing

group. We propose an efficient approach ARGTP EA to process ARGTP queries.

Our approach prunes the riders and POIs that cannot be part of the optimal answer

and thereby refines the riders and the POI search space.

In Section 4.1, we give an overview of our efficient approach to process ARGTP

queries. Section 4.2 presents the trivial pruning process of the riders by considering

the spatial-temporal constraints of the specified trips. We discuss the steps of our

efficient approach from Section 4.3 to Section 4.7 in details. Then we propose our

algorithms to process ARGTP queries efficiently in Section 4.8. Finally, we present

the correctness proofs for the algorithms in Section 4.9 and complexity analysis of

the algorithms in Section 4.10.

23



CHAPTER 4. EFFICIENT APPROACH 24

4.1 Overview

In our system architecture, the riders and the drivers submit their trip information

to the RSP. An ARGTP query is initiated as soon as a driver submits her trip to the

RSP. Then the RSP identifies the set of riders’ trips among the available riders’ trips

that minimizes the group cost for the driver’s trip. Though the RSP can prune some

riders based on their spatial and temporal constraints, still the remaining number of

riders is large. Considering such a large set of riders and their required POI types

for processing an ARGTP query incurs a high processing overhead.

We develop an efficient approach (ARGTP EA) for processing ARGTP queries.

The key idea behind the efficiency of our ARGTP EA is to prune a significant number

of riders and POIs that cannot be the part of the optimal query answer. Figure 4.1

shows the steps of ARGTP EA.

ARGTP EA first determines the upper bound of the optimal cost of the rideshar-

ing groups using a heuristic technique. Section 4.3 describes the upper bound com-

putation technique. Then the approach computes the lower bound of the optimal

group cost if the group includes a specific rider. Section 4.4 elaborates the lower

bound computation technique. In the next step, the approach prunes the riders in

two ways: using the derived upper bound and the lower bounds (see Section 4.5).

Then it prunes the POI-types based on the pruned riders and using the upper bound

(see Section 4.6), and thus refines the POI search space. After that, ARGTP EA

explores the refined POI search space and search the nearest POIs for the remain-

ing required POI-types with respect to the driver’s fixed POI location. Again, the

required POI types that are not found in the refined search space further prunes the

riders who want to visit those POI types. Then with the reduced set of riders and

retrieved POIs from the database, the approach computes the cost of each rider that

has not been pruned for the ridesharing trip, and sorts the riders’ list according to

the calculated cost in an ascending order. Finally, ARGTP EA forms the ridesharing

group with the first k − 1 riders from the list. This ridesharing group is the optimal

one that minimizes the group cost function, which is returned as the query answer.



CHAPTER 4. EFFICIENT APPROACH 25

Prune the riders using the upper bound and the lower bound

Compute the cost of each remaining rider for the
ridesharing trip

Sort the list of riders based on the corresponding cost and
form the ridesharing group with first k - 1 riders

Return the group

Determine the upper bound of the optimal cost of the
ridesharing group using a heuristic

Prune the POI-types and refine the POI search space

Find the nearest POIs for the remaining required
POI-types with respect to the driver's fixed POI

within the refined POI search space

Compute the lower bound of a group cost containing a rider

Im
proves 

the e
ffic

ien
cy

Figure 4.1: Overview of the ARGTP EA approach



CHAPTER 4. EFFICIENT APPROACH 26

4.2 Trivial Pruning

Before processing the steps of the efficient approach (ARGTP EA), the RSP applies

the trivial pruning to reduce the available riders to form a ridesharing group. This

trivial pruning phase is based on the constraints given by the riders and the driver.

After this phase, the RSP determines the set of eligible riders for the ARGTP query.

In this trivial pruning phase, a rider ri is pruned if any of the following cases occurs:

1. The starting time st of the driver’s trip exceeds the late bound of the rider ri’s

start time interval sti.l, i.e., st > sti.l,

2. The halting time at the driver’s fixed POI ht does not satisfy the halting time

interval hti at the required POI type of a rider’s trip, i.e., the early bound

hti.e > ht or the late bound hti.l < ht,

3. Slugging distance constraint sdi of a rider ri for any of the source or destination

or both is violated, i.e., dist (si, s) > sdi or dist (d, di) > sdi or both of them.

4. Considering that the rider’s POI and the driver’s fixed POI are same, threshold

distance constraint is violated, i.e., dist(s, si) + dist(d, di) > (1 + λi)× `shortest,
where, λi represents the rider ri’s threshold distance and `shortest is the shortest

trip length via the nearest POI with respect to si and di.

After performing the initial pruning, the RSP considers the remaining riders as the

eligible riders to process ARGTP queries.

4.3 Upper Bound Computation

In this section, we propose a heuristic technique to find the upper bound of the

optimal group cost for an ARGTP query. This upper bound allows to prune riders

and POIs which cannot contribute in the optimal solution of an ARGTP query. If

the car capacity for an ARGTP query is k, then excluding the driver a ridesharing

group size n will be k − 1, i.e., n = k − 1. It may happen that more than one rider

want to visit a POI of same POI-type. Let there be n′ different number of POI-types

those are required by n riders of a ridesharing group, where, 1 ≤ n′ ≤ n.



CHAPTER 4. EFFICIENT APPROACH 27

The proposed heuristic technique requires the following four steps:

Step 1: The technique retrieves n′ number of nearest POI-types from the driver’s

fixed POI to form a ridesharing group of size n.

Step 2: Then the technique incrementally retrieves nearest POIs until at least x%

of the required POI-types for all candidate riders have been retrieved.

Step 3: After that, the technique considers all the riders who want to visit those

retrieved POIs and computes their cost for the ridesharing trip according to

Equation (2.3).

Step 4: Finally, the technique calculates the upper bound by adding the lowest n

costs of the considered riders in Step 3.

In the heuristic technique, we consider the fact that a rider who wants to visit

the nearest POI from the driver’s fixed POI p can have the source (or destination)

far away from the driver’s source (or destination). If we ignore the fact, then it may

happen that the upper bound becomes a loose bound. We have observed during the

experiments that if we retrieve only n′ number of POI-types to compute the upper

bound, then in most of the cases, some riders are selected whose either source or

destination location is the furthest one from the driver’s source or destination, and

thus the upper bound tends to be loose. On the other hand, if we retrieve some

additional POI-types during the upper bound computation, the bound tends to be

tight for almost all of the cases. Thus to determine a tight upper bound of the group

cost function, in Steps 1 and 2, we retrieve at least x% of the required POI-types for

all candidate riders, where x is decided in experiments. Suppose that the required

number of POI-types for all candidate riders is 30, and n′ is 4. If x = 20, then we have

to retrieve at least 20% of 30 = 6 POI types during the upper bound computation.

Here, n′ < 6, and thus, we retrieve nearest POIs for additional 6− n′ = 2 POI types

in Step 2. If x = 10, then we have to retrieve at least 10% of 30 = 3 POI-types,

which is less than n′. In this case, we retrieve no POI in Step 2.

Figure 4.2 shows an example, where there is a driver’s trip from source s to

destination d via a fixed POI p, and the car capacity k = 5. Thus, for the ARGTP



CHAPTER 4. EFFICIENT APPROACH 28

Sources                        Destinations                 Banks
Supermarkets               Restaurants                  Hospitals

s4

s2

s5

s1

s6

d3

d2

d5

d1

d

d4s
p

d6

s3

r1→ (s1 , d1 ,    )
r2→ (s2 , d2 ,    )
r3→ (s3 , d3 ,    )
r4→ (s4 , d4 ,    )
r5→ (s5 , d5 ,    )
r6→ (s6 , d6 ,    )

Driver's trip, 
(s, d,     )
k → 5

Figure 4.2: An example scenario for an ARGTP query with k = 5

query, the ridesharing group size n = 4. There are 6 candidate riders whose source

and destination pairs are (s1, d1), (s2, d2), (s3, d3), (s4, d4), (s5, d5) and (s6, d6),

respectively. In between their source and destination locations, the riders r1 and r4

want to visit a bank, the riders r2 and r6 want to visit a restaurant, the rider r3 wants

to visit a supermarket, and the rider r5 wants to visit a hospital.

Figure 4.3 shows the steps of the upper bound computation. At first, the hospital

which is also the driver’s fixed POI is considered and the rider r5 is considered accord-

ingly (Figure 4.3(a)). Then the next nearest POI, i.e., the nearest bank, is retrieved

and both of the riders r1 and r4 are considered (Figure 4.3(b)). Since the nearest

POIs for 2 POI types and 3 riders are considered so far, and the required ridesharing

group size is 4, the technique continues to retrieve the nearest POIs from p. The

next nearest POI, i.e., the nearest restaurant, is retrieved and both of the riders r2

and r6 are considered (Figure 4.3(c)). Using these 3 nearest POIs and corresponding

5 riders, the technique can form a ridesharing group of size 4. Here, the number of

different required POI types n′ = 3 for the group of size 4, and the required number

of POI-types for all candidate riders = 4. If x = 20, then we have to retrieve at least

20% of 4 = 0.8 ≈ 1 POI-types. Since n′ > 1, we stop the POI retrieval process for

the upper bound computation.

Then the technique computes the costs of the considered 5 riders for the rideshar-

ing trip according to Equation 2.3. Let the costs be as follows: C1 = 40, C2 = 75, C4



CHAPTER 4. EFFICIENT APPROACH 29

Sources                        Destinations                 Banks
Supermarkets               Restaurants                  Hospitals

s4

s2

s5

s1

s6

d3

d2

d5

d1

d

d4s
p

d6

s3

r1→ (s1 , d1 ,    )
r2→ (s2 , d2 ,    )
r3→ (s3 , d3 ,    )
r4→ (s4 , d4 ,    )
r5→ (s5 , d5 ,    )
r6→ (s6 , d6 ,    )

Driver's trip, 
(s, d,     )
k → 5

(a) The nearest POI, i.e., the driver’s fixed hospital p is consid-
ered and the rider r5 is selected

Sources                        Destinations                 Banks
Supermarkets               Restaurants                  Hospitals

s4

s2

s5

s1

s6

d3

d2

d5

d1

d

d4s
p

d6

s3

r1→ (s1 , d1 ,    )
r2→ (s2 , d2 ,    )
r3→ (s3 , d3 ,    )
r4→ (s4 , d4 ,    )
r5→ (s5 , d5 ,    )
r6→ (s6 , d6 ,    )

Driver's trip, 
(s, d,     )
k → 5

(b) The nearest POI, i.e., the nearest bank is retrieved and the
riders r1 and r4 are selected

Sources                        Destinations                 Banks
Supermarkets               Restaurants                  Hospitals

s4

s2

s5

s1

s6

d3

d2

d5

d1

d

d4s
p

d6

s3

r1→ (s1 , d1 ,    )
r2→ (s2 , d2 ,    )
r3→ (s3 , d3 ,    )
r4→ (s4 , d4 ,    )
r5→ (s5 , d5 ,    )
r6→ (s6 , d6 ,    )

Driver's trip, 
(s, d,     )
k → 5

(c) The nearest POI, i.e., the nearest restaurant is retrieved and
the riders r2 and r6 are selected

Figure 4.3: Upper bound computation for k = 5



CHAPTER 4. EFFICIENT APPROACH 30

= 45, C5 = 75, C6 = 100, where Ci represents the cost for rider ri. Based on these

costs, a ridesharing group Γh = {r1, r2, r4, r5} of size n = 4 is formed with n lowest

costs and the cost Ch of the ridesharing group Γh is Ch = 40 + 45 + 75 + 75 = 235.

Thus the upper bound of the optimal ridesharing group cost, h = Ch = 235.

4.4 Lower Bound Computation

In this section, we present a heuristic technique to compute the lower bound Li of

the optimal group cost if a ridesharing group includes a specific rider ri. To compute

Li, for the ridesharing group of size n, ri’s cost (either actual or the lower bound of

the cost) for the ridesharing trip and the smallest costs (either actual or the lower

bound of the cost) for other n− 1 members are considered.

To compute the upper bound of the optimal group cost, nearest POIs from the

driver’s fixed POI location p for at least x% of the required number of POI types have

been already retrieved from the database. Hence if a rider ri’s required POI-type is

retrieved in this process, then the rider’s cost can be computed accurately using dti ,

where dti is the shortest distance between p and ri’s POI type. On the other hand,

if a rider ri’s POI-type has not been retrieved during the upper bound computation,

then the distance of such POI type must be greater than the distance of the last

retrieved POI from the database. Let the distance can be denoted as dmax. Thus the

lower bound of the corresponding rider’s cost can be computed using dmax instead of

using the real POI distance dti . Then with these computed costs (either actual or the

lower bound of the cost) of the riders, Li can be computed. Specifically, for a group

size n, Li is the summation of the cost of ri and n− 1 smallest costs of other riders.

Now, consider the same example scenario of Figure 4.2. In the example, the car

capacity, k = 5, the ridesharing group size, n = k − 1 = 4, and the computed upper

bound of the optimal group cost, h = 235. During the upper bound computation, 3

POI-types have been explored and thus the actual cost for all riders except r3 can

be computed (Figure 4.3). The costs for r1, r2, r4, r5, and r6 are as follows: C1

= 40, C2 = 75, C4 = 45, C5 = 75, C6 = 100. Let the distance dt3 of the desired

POI-type for r3 be 25, and POIs up to the distance 15 meters has been retrieved, i.e.,



CHAPTER 4. EFFICIENT APPROACH 31

Sources                        Destinations                 Banks
Supermarkets               Restaurants                  Hospitals

s4

s2

s5

s1

s6

d3

d2

d5

d1

d

d4s
p

d6

s3

r1→ (s1 , d1 ,    )
r2→ (s2 , d2 ,    )
r3→ (s3 , d3 ,    )
r4→ (s4 , d4 ,    )
r5→ (s5 , d5 ,    )
r6→ (s6 , d6 ,    )

Driver's trip,
(s, d,     )
k → 5

dist (p,    )

d max

Figure 4.4: Lower bound computation of a POI-type’s distance

dmax = 15 (Figure 4.4). Thus, the lower bound of the distance of the r3’s required

POI-type is equal to dmax. If the distance χ3 for the rider r3 with respect to source

and destination is χ3 = dist(s, s3) + dist(d, d3) = 40, then the lower bound of the

rider r3’s cost is C3 = 40 + 2 × dmax = 70. Thus the derived lower bounds of the

optimal group cost containing specific riders are as follows:

L1 = C1 + 45 + 70 + 75 = 230

L2 = C2 + 40 + 45 + 70 = 230

L3 = C3 + 40 + 45 + 75 = 230

L4 = C4 + 40 + 70 + 75 = 230

L5 = C5 + 40 + 45 + 70 = 230

L6 = C6 + 40 + 45 + 70 = 255

We observe that the lower bound of the optimal group cost containing the rider r6

exceeds the computed upper bound h.

4.5 Pruning Riders

In ARGTP EA, the riders are pruned in the following ways: (i) using the upper

bound of the optimal group cost of the ridesharing group, and (ii) the lower bound

of the optimal group cost of the ridesharing group that includes a specific rider, and

(iii) using the pruned POI types. We discuss the first two techniques in the following

subsections and the third technique in Section 4.6.



CHAPTER 4. EFFICIENT APPROACH 32

4.5.1 Using Upper Bound

We compute the maximum allowed distances γs, γd of the source and destination of

a rider from the driver’s source and destination, respectively, using the upper bound,

and prune the riders based on γs, γd. If the ridesharing group size is n, these maximum

allowed distances can be derived as follows:

• The maximum allowed distance of a rider’s source from the driver’s source γs

is measured as the difference between the upper bound and the summation of

the following values: (i) the smallest distances of (n − 1) riders’ sources from

the driver’s source, (ii) the smallest distances of n riders’ destinations from the

driver’s destination, and (iii) the smallest distances of n riders’ POIs from the

driver’s fixed POI.

• The maximum allowed distance of a rider’s destination from the driver’s desti-

nation γd is measured as the difference between the upper bound and the sum-

mation of the following values: (i) the smallest distances of n riders’ sources

from the driver’s source, (ii) the smallest distances of (n−1) riders’ destinations

from the driver’s destination, and (iii) the smallest distances of n riders’ POIs

from the driver’s fixed POI.

We prune the riders whose source or destination is not located within the correspond-

ing maximum allowable distance from the driver’s source or destination, respectively.

To explain the pruning process, we consider the example scenario of Figure 4.2.

Here, the upper bound of the optimal group cost, h = 235. Suppose we have

• The summation of smallest distances of (n−1) riders’ sources from the driver’s

source s = 35

• The summation of smallest distances of n riders’ destinations from the driver’s

destination d = 75

• The summation of smallest distances of n riders’ POIs from p = 40

Then the maximum allowed distance for a rider’s source from the driver’s source γs

= 235− 35− 75− 40 = 85.



CHAPTER 4. EFFICIENT APPROACH 33

Similarly we can compute γd. Suppose we have

• The summation of smallest distances of n riders’ sources from the driver’s source

s = 60

• The summation of smallest distances of (n − 1) riders’ destinations from the

driver’s destination d = 55

• The summation of smallest distances of n riders’ POIs from p = 40

Then the maximum allowed distance for a rider’s destination from the driver’s desti-

nation γd = 235− 60− 55− 40 = 80.

Thus, for the ARGTP query, we can prune a rider ri if dist (s, si) > 85, or dist

(di, d) > 80, or both of them.

The following lemma shows that if the source or the destination of a rider is

located at a distance more than the maximum allowed distance from the driver’s

source or destination, respectively, then the rider cannot be a part of the optimal

solution.

Lemma 4.5.1. If the distance of a rider’s source (or destination) from the driver’s

source (or destination) exceeds the maximum allowed distance, the rider cannot be a

member of the optimal ridesharing group for an ARGTP query.

Proof. Let there be a driver’s trip from source s to destination d via a fixed POI

p and a set of riders. The riders ris are in the optimal ridesharing group Γ of size

n and group cost of the optimal ridesharing group is C. Let there be a rider rj

(rj 6∈ Γ, i 6= j) with the source and destination pair (sj, dj) in the riders-set whose

dist(s, sj) (or dist(dj, d)) exceeds the maximum allowed distance γs (or γd). C is

measured as the summation of
∑

ri∈Γ Ci. We have to show that Cj > maxri∈Γ Ci.

C is measured as the summation of (i)
∑

ri∈Γ dist(s, si), (ii) 2×
∑

ri∈Γ dti , and (iii)∑
ri∈Γ dist(di, d). On the other hand, the maximum allowed distance γs is measured

by deducting the following components from the upper bound of C: (i) the summation

of the smallest possible distances that (n−1) riders can have to travel to the driver’s

source from their sources, (ii) the summation of the smallest possible distances that n



CHAPTER 4. EFFICIENT APPROACH 34

riders can have to travel to and from the driver’s fixed POI, and (iii) the summation

of the smallest possible distances that n riders can have to travel from the driver’s

destination to their destinations. We know that Cj = dist(s, sj)+2×dtj +dist(dj, d).

Thus, if dist(s, sj) > γs, then Cj > maxri∈Γ Ci for dtj and dist(dj, d) having greater

than or equal to the smallest one. Similarly we can show that if dist(d, dj) > γd, then

Cj > maxri∈Γ Ci for dtj and dist(sj, s) having greater than or equal to the smallest

one.

4.5.2 Using Lower Bound

A rider is pruned if the lower bound of the cost of a ridesharing group containing

the rider exceeds the upper bound of the optimal group cost. In the example of

Section 4.4, we can observe that the lower bound of group cost containing the rider

r6 exceeds the upper bound of the optimal group cost, h = 235. Thus, a ridesharing

group that includes r6 cannot be the optimal ridesharing group and r6 can be pruned.

4.6 Pruning POI-types

In addition to pruning the riders, the efficiency of an ARGTP query processing de-

pends on the number of required POI-types to be retrieved from the POI database.

The POI types are pruned in the following ways: (i) using the pruned riders, and (ii)

refining the POI search space. The pruned POI types using the refined search space

can further prune the riders who want to visit those pruned POI types.

After pruning the riders using the upper bound and the lower bounds, we prune

a POI-type if all the riders who want to visit the POI-type are pruned. This pruning

technique reduces the number of POI-types significantly. However, we can further

prune the POI-types by refining the POI search space. The search space is pruned

using the upper bound of the optimal group cost (see Section 4.3).

Considering the upper bound and the maximum slugging distance of the candidate

riders, the maximum allowed distance γp for a POI from the driver’s fixed POI is

derived.



CHAPTER 4. EFFICIENT APPROACH 35

If the ridesharing group size is n, γp is measured by deducting the following com-

ponents from the upper bound of the optimal group cost: (i) the smallest distances of

n riders’ sources from the driver’s source, (ii) the smallest distances of n riders’ desti-

nations from the driver’s destination, and (iii) the smallest distances of (n−1) riders’

POIs from the driver’s fixed POI. If the maximum slugging distance max slug of the

candidate riders is less than γp, max slug is assigned to γp. We refine the POI search

space using γp and retrieve only those POIs that have distances from the driver’s

fixed POI less than or equal to γp.

For example, consider again the example scenario of Figure 4.2. the upper bound

of the optimal group cost, h = 235. Suppose we have

• The summation of smallest distances of n riders’ sources from the driver’s source

s = 60

• The summation of smallest distances of n riders’ destinations from the driver’s

destination d = 75

• The summation of smallest distances of (n− 1) riders’ POIs from p = 20

Then the maximum distance γp for a POI from the driver’s fixed POI = (235−60−75)
2

−20

= 30.

Thus we retrieve only those POIs for different required POI-types located within

30 meters from the driver’s fixed POI. If the maximum slugging distance of the

candidate riders is 25, then we retrieve the POIs for different required POI-types

located within 25 meters from the driver’s fixed POI.

4.7 Optimal Ridesharing Group Computation

After pruning the riders and POI types, ARGTP EA computes cost for the remaining

riders and sorts the set of riders in an ascending order based on the computed costs

for the ridesharing trip. Now, for the car capacity k, the optimal ridesharing group

is computed with the first k − 1 riders from the sorted set of riders.



CHAPTER 4. EFFICIENT APPROACH 36

4.8 Algorithms for Efficient Approach

The efficiency of the ARGTP algorithms depends on the number of riders and the

number of POI-types. Thus our efficient approach (ARGTP EA) applies some novel

pruning techniques to prune significant number of riders and POI-types. In this

section, we present the algorithms to evaluate ARGTP queries efficiently. Our algo-

rithm uses best first search (BFS) to incrementally retrieve nearest POIs from the

data storage. We assume that, POIs are indexed using an R∗-tree in the database.

Our algorithm retrieves POIs upto a derived maximum distance for a POI and de-

termines the optimal ridesharing group for the ARGTP query. We have proved that

no rider or POI-type is pruned by our algorithms that can be a part of the optimal

ridesharing group.

Table 4.1 summarizes the symbols we used for the algorithms:

Table 4.1: Symbols and their meanings

Symbols Meanings

X A set of riders’ cost with respect to source and destination,
i.e., X = {χi}, ∀ri ∈ R

∆p A set of (pti , dti , ti) pairs, where, dti is the distance of the
nearest POI pti of type ti from the driver’s fixed POI p

dmax The distance of the last retrieved POI from the POI
database

max slug The maximum slugging distance of the riders ri ∈ R

γp The maximum allowable distance for a POI from the
driver’s fixed POI p, where, γp ≤ max slug

γs, γd The maximum allowable distance for riders’ source and des-
tination from the driver’s source s and destination d

GrpCmin The minimum cost with respect to source and destination
for a group of n riders

L A set of lower bounds Li for riders ri ∈ R

The following functions are used by the algorithms described in this section:



CHAPTER 4. EFFICIENT APPROACH 37

Compute Dist (s, d, R): Computes dist(s, si) and dist(d, di) for each rider ri ∈
R, and stores the values in ∆s and ∆d respectively.

Compute h (CL, n): Computes the upper bound h of the optimal group cost of

size n using the lowest n riders’ cost from the set CL.

Compute MinCost (RT ,∆p, n): Considers the minimum dti values for ti POI-

type, where (pti , dti , ti) ∈ ∆p, and the riders’ set RT to compute the minimum distance

required to travel from p by n riders.

Compute Riders Cost (s, d, τ,∆p): Computes the cost of riders ri ∈ τ such

that Ci = dist(s, si) + dist(d, di) + 2× dti , where (pti , dti , ti) ∈ ∆p.

FindMin (X,n): Returns the summation of minimum n values from the set X.

RefineRiders (R,∆p): Removes a rider ri from the set of riders R, if ri want to

visit a POI-type ti and there is no such POI in the set ∆p, i.e., (pti , dti , ti) 6∈ ∆p.

RefineTypes (RT , T ): Removes a POI-type ti from the set of POI-types T , if

all the riders of Rti who want to visit the POI-type are pruned, i.e., Rti 6∈ RT .

Retrieve NextPOIs (p, T,∆p, d
max, η): Starting from dmax, incrementally re-

trieves the η number of nearest unique POIs pti of types ti ∈ T, (pti , dti , ti) 6∈ ∆p with

respect to the POI p, and returns the retrieved POI-set P ′, the set D of corresponding

distance and the distance dmax of the last retrieved POI.

Retrieve POIs (p, dmax, γp, T,∆p): Starting from dmax, incrementally retrieves

the nearest unique POIs pti of types ti ∈ T, (pti , dti , ti) 6∈ ∆p with respect to the POI

p upto the maximum distance γp and updates ∆p accordingly.

In Section 4.8.1, we briefly discuss the algorithm to process ARGTP queries ef-

ficiently by our ARGTP EA approach as we mentioned in Section 4.1. Then we

present the details of the function to compute the upper bound in Section 4.8.2, the

function to compute the lower bound in Section 4.8.3, the function to prune riders in

Section 4.8.4 and the function to prune POI-types in Section 4.8.5.



CHAPTER 4. EFFICIENT APPROACH 38

4.8.1 Algorithm ARGTP EA

Algorithm 1 describes the process to determine the optimal ridesharing group Γ for

an ARGTP query that minimizes the group cost function C. The inputs of the

algorithm are s, d, p, k, st, ht, R, x, where 〈s, d, p, k, st, ht〉 is a driver’s trip, R is the

set of available riders’ trips in the system and x is the factor for processing the

ARGTP query. The algorithm returns the optimal ridesharing group Γ with the set

of corresponding POIs P and the optimal group cost C.

Algorithm 1 ARGTP EA

Input: s, d, p, k, st, ht, R, x
Output: Γ,P, C

1: n← k − 1, X ← φ,Λ← φ, P ′ ← φ
2: R← TrivialPruning(s, d, st, ht, R)
3: Initialize(R,RT , T )
4: for each ri ∈ R do
5: χi ← dist(si, s) + dist(d, di)
6: X ← X ∪ {χi}
7: end for
8: 〈h, dmax,∆p〉 ← Compute Upper Bound(s, d, p, n,RT , T, x)
9: L← Compute Lower Bound(n,R,X, dmax,∆p)

10: 〈R,RT 〉 ← Prune Riders(s, d, n,R,RT , h, L,∆p)
11: 〈γp, T 〉 ← Prune POItypes(n,R,RT , T, h,X,∆p)
12: ∆p ← Retrieve POIs(p, dmax, γp, T,∆p)
13: R← RefineRiders(R,∆p)
14: for each ri ∈ R do
15: Ci ← χi + 2× dti
16: Λ← Λ ∪ {Ci}
17: P ′ ← P ′ ∪ {pti}
18: end for
19: 〈Γ,P, C〉 ← Compute Optimal Group(k,R,Λ, P ′)
20: return Γ,P, C

The algorithm starts with initializing the group size n to k−1 and the sets X,Λ, P ′

to φ, where, X is the set of riders’ cost with respect to source and destination,

i.e., X = {χi}, ∀ri ∈ R, Λ is the set of riders’ cost, and P ′ is the set of retrieved

POIs. After the initialization, using Function TrivialPruning, some riders are trivially

pruned according to time, slugging distance and threshold distance constraints. Then



CHAPTER 4. EFFICIENT APPROACH 39

the set RT of riders-set Rti (Rti is a set of riders who want to visit a POI-type ti)

and the set of unique POI-types T are initialized using Function Initialize. Then for

each rider ri ∈ R, χi is calculated and X is updated accordingly.

In the next step, the algorithm computes the upper bound h of optimal ridesharing

group cost using Function Compute Upper Bound. The function returns the upper

bound h, the set ∆p of (pti , dti , ti) for each nearest retrieved POI pti of type ti, and

the distance dmax of the last retrieved POI. The details of the function is presented

in Section 4.8.2. Then the algorithm computes the set L of lower bounds Li of the

group containing the rider ri using Function Compute Lower Bound. Section 4.8.3

shows the algorithm of the function. After that, using the upper bound h and the

lower bound L, Function Prune Riders prunes riders from R and RT who cannot be

members of the optimal ridesharing group. Then using Function Prune POItypes, the

algorithm prunes some POI-types from T and also determines the maximum distance

γp for a POI-type to be retrieved from the driver’s fixed POI p. Thus the algorithm

prunes the set of riders R and the set of POI-types T as described in Section 4.5 and

Section 4.6. The functions Prune Riders and Prune POItypes are briefly described

in Section 4.8.4 and Section 4.8.5 respectively.

With the refined sets of riders and POI-types, then the algorithm retrieves the re-

quired POIs to compute the optimal ridesharing group using Function Retrieve POIs

that incrementally retrieves POIs from the POI database upto the maximum distance

γp and returns the set ∆p such that within γp the nearest POI-types ti ∈ T from the

fixed POI p are retrieved. After that, the algorithm refines the set of riders R whose

POI-types are not retrieved using Function RefineRiders. Then in Lines 14–18 of

the algorithm, for each rider ri ∈ R, the riders’ cost Ci for the ridesharing trip are

calculated, and the sets Λ and P ′ are updated accordingly. Finally, using Function

Compute Optimal Group, the algorithm sorts the riders’ list based on the calculated

cost Ci and determines the optimal ridesharing group Γ along with the corresponding

POI-set P and the optimal group cost C.



CHAPTER 4. EFFICIENT APPROACH 40

4.8.2 Function Compute Upper Bound

The key idea behind the efficiency of our ARGTP EA approach is to prune a sig-

nificant number of riders and POI-types. The pruning techniques require an upper

bound of the optimal ridesharing group cost, and so at first our ARGTP EA approach

computes the upper bound.

Algorithm 2 Compute Upper Bound

Input: s, d, p, n, RT , T, x
Output: h, dmax,∆p

1: τ ← φ,∆p ← φ, dmax ← 0
2: η ← |T | × x%
3: while |τ | < n do
4: 〈ptj , dtj , dmax〉 ← Retrieve NextPOIs(p, T,∆p, d

max, 1)
5: ∆p ← ∆p ∪ {(ptj , dtj , tj)}
6: τ ← τ ∪Rtj

7: end while
8: if |∆p| < η then
9: η ← η − |∆p|

10: 〈P ′,D, dmax〉 ← Retrieve NextPOIs(p, T,∆p, d
max, η)

11: for each ptj ∈ P ′, dtj ∈ D do
12: ∆p ← ∆p ∪ {(ptj , dtj , tj)}
13: τ ← τ ∪Rtj

14: end for
15: end if
16: CL← Compute Riders Cost(s, d, τ,∆p)
17: h← Compute h(CL, n)
18: return h, dmax,∆p

The details of the upper bound computation is discussed in Section 4.3. Algo-

rithm 2 shows the pseudocode to compute the upper bound of the optimal rideshar-

ing group cost. The function takes s, d, p, n,RT , T, x as inputs, where s, d, p are the

driver’s source, destination and fixed POI respectively, n is the ridesharing group

size, RT is the set of riders-set Rti , T is the set of unique POI-types and x is the

factor to process the ARGTP query. The algorithm returns the upper bound h of

the optimal group cost, the set ∆p of (pti , dti , ti) for each nearest retrieved POI pti of

type ti, and the distance dmax of the last retrieved POI.



CHAPTER 4. EFFICIENT APPROACH 41

At first, the algorithm initializes τ,∆p to φ, dmax to 0 and η to |T | ×x%, where τ

is a set of riders considered to compute h and η is the minimum number POI-types

that we aim to retrieve during the upper bound computation. After the initializa-

tion, the function retrieves the nearest POI ptj of POI-type tj ∈ T from p using

Retrieve NextPOIs and updates dmax,∆p, τ accordingly. The function incrementally

retrieves nearest POIs from p until a group of size n can be formed from the set τ

of considered riders, i.e., |τ | < n (Lines 3–7). Then the function checks whether at

least η number of POI-types have already been retrieved or not. If |∆p| < η, then

Function Retrieve NextPOIs incrementally retrieves POI-types until total η number

of POI-types are retrieved, and stores these nearest POIs in P ′ and the corresponding

distances in D. In the next step, the function updates the set ∆p and τ according

to P ′ and D (Lines 11–14). Then using Function Compute Riders Cost, the function

computes the rider’s cost for each rider ri ∈ τ to join the driver’s trip, and sorts the

considered riders’ list to store them in a sorted list CL. Finally, from the sorted list

CL, Function Compute h determines the upper bound h of the optimal group cost

of size n.

4.8.3 Function Compute Lower Bound

The pruning techniques require the lower bound of group cost containing a rider

(see Section 4.4). Algorithm 3 shows the pseudocode to compute the lower bound of

group cost containing a rider. The inputs of the function are n,R,X, dmax,∆p, where

n is the ridesharing group size and R is a set of available riders and X is a set of

riders’ cost with respect to source and destination, i.e., X = {χi} = {(dist(s, si) +

dist(d, di))},∀ri ∈ R. The function returns the a set L of lower bound Li for each

rider ri ∈ R.

The algorithm starts with initializing a priority queue SL of (C ′i, ri) pair with

key C ′i for each rider ri’s computed cost C ′i. Then in Lines 2–9, for each rider,

the function checks ∆p whether the required POI-type is already retrieved or not,

computes the rider’s cost and includes the (C ′i, ri) pair in SL. If dti 6= ∞, then the

POI-type is retrieved and dti is used to compute the rider’s cost. If dti == ∞, then

the POI-type is not retrieved yet, and so it requires at least the distance of dmax. So



CHAPTER 4. EFFICIENT APPROACH 42

Algorithm 3 Compute Lower Bound

Input: n, R, X, dmax,∆p

Output: L
1: SL← φ
2: for each ri ∈ R do
3: if (pti , dti , ti) ∈ ∆p then
4: C ′i ← χi + 2× dti
5: else
6: C ′i ← χi + 2× dmax

7: end if
8: SL← SL ∪ {(C ′i, ri))}
9: end for

10: for each ri ∈ R do
11: count← 0, j ← 0, Li ← C ′i
12: while count < n− 1 do
13: (υ, τ)← ElementAt(SL, j)
14: if ri 6= τ then
15: Li ← Li + υ
16: count← count+ 1
17: end if
18: j ← j + 1
19: end while
20: L← L ∪ {Li}
21: end for
22: return L



CHAPTER 4. EFFICIENT APPROACH 43

dmax is used instead of dti to compute the lower bound of the rider’s cost. After that,

in Lines 10–21, the algorithm computes Li for each rider ri ∈ R using the rider’s cost

C ′i and the priority queue SL as we discussed in Section 4.4.

4.8.4 Function Prune Riders

Algorithm 4 Prune Riders

Input: s, d, n, R, RT , h, L,∆p

Output: R,RT

1: 〈∆s,∆d〉 ← Compute Dist(s, d, R)
2: NCmin ← Compute MinCost(RT ,∆p, n)
3: SDmin ← FindMin(∆s, n− 1) + FindMin(∆d, n)
4: γs ← h− (SDmin +NCmin)
5: SDmin ← FindMin(∆s, n) + FindMin(∆d, n− 1)
6: γd ← h− (SDmin +NCmin)
7: for each ri ∈ R, Li ∈ L do
8: if dist(si, s) > γs or dist(d, di) > γd then
9: Remove(ri, R,RT )

10: else if Li > h then
11: Remove(ri, R,RT )
12: end if
13: end for
14: return R,RT

Algorithm 4 presents the pseudocode of the process to prune riders. It takes

s, d, n,R,RT , h, L,∆p as the inputs and returns the refined sets R,RT after pruning

riders. At first, the function computes dist(s, si) ∈ ∆s and dist(d, di) ∈ ∆d for each

rider ri ∈ R using Function Compute Dist. Then the function determines the mini-

mum distance to travel from p for n riders using Function Compute MinCost. After

that, the function computes the maximum allowed distance γs and γd for a rider’s

source and destination from the driver’s source s and destination d respectively. Then

in Lines 7–13, the function prunes a rider ri if any of the constraints, dist(s, si) ≤ γs,

dist(d, di) ≤ γd and Li ≤ h violates. Finally, the function returns the refined riders’

sets R,RT .



CHAPTER 4. EFFICIENT APPROACH 44

4.8.5 Function Prune POItypes

Algorithm 5 Prune POItypes

Input: n, R, RT , T, h, X, ∆p

Output: γp, T
1: max slug ← 0
2: T ← RefineTypes(RT , T )
3: NCmin ← Compute MinCost(RT ,∆p, n− 1)
4: GrpCmin ← FindMin(X,n)
5: γp ← (h−GrpCmin)/2−NCmin

6: for each ri ∈ R do
7: if sdi > max slug then
8: max slug ← sdi
9: end if

10: end for
11: if max slug < γp then
12: γp ← max slug
13: end if
14: return γp, T

Algorithm 5 shows the pseudocode of the process to prune POI-types. It takes

n,R,RT , T, h,X,∆p as the inputs, and returns the maximum allowed distance γp for

a POI and the refined set of POI-types T . The algorithm starts with initializing the

maximum slugging distance max slug of the riders ri ∈ R to 0, and then refining the

set T according to the refined set RT . Then the function determines the minimum

distance to travel from p for n− 1 riders using Function Compute MinCost, and also

the minimum cost of a group of n riders with respect to source and destination using

FindMin from X. After that, the function determines maximum distance γp (Line 5).

In the next step, the function computes the maximum slugging distance max slug

of riders ri ∈ R (Lines 6–10). Finally, the derived maximum distance γp is compared

with max slug and if max slug < γp, then γp is replaced with max slug.



CHAPTER 4. EFFICIENT APPROACH 45

4.9 Proof of Correctness

Theorem 4.9.1. Prune Riders prunes only those riders who cannot be members of

the optimal ridesharing group of size n for an ARGTP query.

Proof. If the optimal ridesharing group of size n is Γ, and the upper bound of the

optimal group cost is h, then the optimal cost of Γ is C ≤ h. Let there be a rider

rj ∈ R, rj 6∈ Γ who is pruned by Algorithm 4. According to the algorithm, the rider

rj can be pruned, if any of the followings is true: (i) dist(s, sj) exceeds the maximum

allowed distance γs, (ii) dist(d, dj) exceeds the maximum allowed distance γd, (iii) the

lower bound Lj exceeds the upper bound h. We have to show that Cj > maxri∈Γ Ci.

Case (i), (ii): Let dist(s, sj) > γs. We have proved in Lemma 4.5.1 that if a

rider’s source (or, destination) exceeds the maximum allowed distance γs (or, γd),

she cannot be a member of the optimal ridesharing group. Thus Cj > maxri∈ΓCi,

and the rider rj can be pruned obviously. Similarly, if dist(d, dj) > γd, then according

to the lemma, Cj > maxri∈Γ Ci and so, the rider rj can be pruned.

Case (iii): Let Lj > h, where h is the upper bound of the optimal group cost.

The lower bound Lj is computed using the rider rj’s cost Cj, and the minimum cost

of (n− 1) riders of the riders’ set R − {rj}. If the optimal ridesharing group cost is

C, then C ≤ h, whereas Lj > h. That’s why, it is obvious that Cj > maxri∈Γ Ci.

Theorem 4.9.2. The required POI-types to compute the optimal ridesharing group

Γ of size n can be found within γp distance from the driver’s fixed POI p.

Proof. (By Contradiction) Let there be a POI ptj of type tj such that dtj > γp, and

the POI-type tj is required by a rider rj ∈ R. If the rider rj can be in an optimal

ridesharing group Γ′ with the group cost C ′, then C ′ ≤ C.

According to our assumption, dtj > γp. Let there be a rider rm ∈ R whose cost Cm

is maximum in Γ, i.e., Cm = maxri∈Γ Ci and the distance of the POI-type required

by rm is dtm ≤ γp. Let the rider rm’s cost with respect to source and destination

locations be χm. The rider rj can be in the optimal ridesharing group if Cj ≤ Cm.



CHAPTER 4. EFFICIENT APPROACH 46

Since dtj > γp, it is obvious that dtj > dtm , and χj < χm. If Γ′ = Γ − {rm} ∪ {rj},
then the optimal cost C ′ will be

C ′ =
∑

ri∈Γ−{rm}

Ci + χj + 2× dtj .

If χj is in the lowest n values of X, then according to Algorithm 5,

GrpCmin + 2×NCmin ≤
∑

ri∈Γ−{rm}

Ci + χj,

and dtj > γp, thus

C ′ ≥ GrpCmin + 2×NCmin + 2× dtj > h.

We know that C ≤ h. Thus if C ′ > h, then C ′ > C, which contradicts our assump-

tion.

Theorem 4.9.3. For an ARGTP query, if R is a set of nr riders’ trips, 〈s, d, k, st, p, ht〉
is a driver’s trip and U = {U1, U2, . . . , Uq} is a set of possible ridesharing groups,

where, q =
(

nr

k−1

)
, then ARGTP EA returns a ridesharing group Γ ∈ U with the set

of corresponding POIs P such that C < C ′ for any group Γ′ ∈ U and Γ 6= Γ′.

Proof. Let Γ′ ∈ U be a ridesharing group that is not returned by Algorithm 1. Let

rl be a rider that is not considered, where, rl ∈ Γ′ and rl 6∈ Γ. If rl is considered,

then Γ′ has the minimum group cost C ′, i.e., C ′ < C. There can be two reasons that

rl is not considered: (i) rl has been pruned for the current ARGTP query, and (ii)

the required POI ptl of type tl for the rider rl is not retrieved. From Theorem 4.9.1

and Theorem 4.9.2, there can be no such rider rl. Thus ARGTP EA always returns

a ridesharing group Γ with the corresponding POI-set P which minimizes the group

cost function C.



CHAPTER 4. EFFICIENT APPROACH 47

4.10 Complexity Analysis

If there are |P | number of POIs stored in R∗-tree and B is the branching factor,

then the total number of pages on disk is κ = |P |/B. There are total |R| number

of available riders in the system and after applying the pruning techniques, there are

nr eligible riders and |P ′| number of POIs for an ARGTP query, where, nr � |R|
and |P ′| � |P |. Thus the maximum number of pages to be accessed is κ′ = |P ′|/B
and κ′ � κ. Now, we can analyze the time complexity of the ARGTP EA algorithm

using the following lemmas.

Lemma 4.10.1. The time complexity of Function Compute Upper Bound is O(κ).

Proof. The time complexity of Function Compute Upper Bound depends on the num-

ber of page access in the R∗-tree to retrieve n′, (1 ≤ n′ ≤ n) or at least η number

of POI-types. We use the incremental nearest neighbor search method to retrieve

the POI-types. Thus the worst case time complexity to search these POI-types is

O(κ).

Lemma 4.10.2. The time complexity of Function Compute Lower Bound is O(|R|
+ |R| log |R|).

Lemma 4.10.3. The time complexity of Function Prune Riders is O(|R| + |R| log |R|).

Lemma 4.10.4. The time complexity of Function Prune POItypes is O(|R| + |R| log |R|).

With the pruned set of nr riders and the pruned set of |P ′| POIs, the time com-

plexity of the ARGTP EA algorithm is,

O(κ′ + |R|+ |R| log |R|) ≈ O(κ′ + |R| log |R|) ≈ O(κ′).

If we do not apply the pruning techniques, then the time complexity will be O(κ) =

O(|P |/B)� O(κ′), which requires a lot of time to compute the ARGTP query.



Chapter 5

Baseline Approach

To the best of our knowledge, we develop the first approach ARGTP EA to process

ARGTP queries efficiently (see Chapter 4). Thus there exists no work to process

ARGTP queries in the literature. To validate the efficiency of ARGTP EA in experi-

ments, we develop a baseline approach (ARGTP BA) for processing ARGTP queries.

To process an ARGTP query, ARGTP BA considers full set of available riders

and required POI-types by the riders for computing the optimal ridesharing group,

whereas, the efficient approach (ARGTP EA) prunes a large number of riders and

POI-types before computing the optimal ridesharing group. It is guaranteed that

the pruned riders and POI-types cannot be part of the optimal solution. Figure 5.1

shows the steps of the ARGTP BA approach.

In this approach, first of all, the nearest POIs for the required POI-types with

respect to the driver’s fixed POI location are retrieved from the database. Then the

approach computes the cost of each available rider in the system for the ridesharing

trip. After that, the riders’ list is sorted according to the calculated costs of the riders

in an ascending order. Finally, the ridesharing group is formed with the first k − 1

riders from the riders’ list and the ridesharing group is returned as the query answer.

However, the limitations of the ARGTP BA approach is extremely high processing

overhead for considering a large set of riders and their required POI-types to form

the optimal ridesharing group. On the other hand, the pruning techniques used in

the ARGTP EA approach reduces the processing overhead significantly, and thus

48



CHAPTER 5. BASELINE APPROACH 49

Find the nearest POIs for the required POI-types with 
respect to the driver's fixed POI

Compute the cost of each rider for the ridesharing trip

Sort the list of riders based on the corresponding cost and
form the ridesharing group with first k - 1 riders

Return the group

Figure 5.1: Overview of the ARGTP BA approach

overcomes the limitations of the ARGTP BA approach.

5.1 Algorithms for Baseline Approach

Algorithm 6 shows the process to determine the optimal ridesharing group Γ for

an ARGTP query that minimizes the group cost function C. The inputs of the

algorithm are s, d, p, k, st, ht, R, where 〈s, d, p, k, st, ht〉 is a driver’s trip and R is

the set of available riders’ trips in the system. The algorithm returns the optimal

ridesharing group Γ with the set of corresponding POIs P and the optimal ridesharing

group cost C.

The algorithm starts with initializing the sets T,∆p,Λ, P
′ to φ and the values

dmax,max slug to 0, where T is a set of unique POI-types required by the riders of

R, ∆p is a set of (pti , dti , ti) for the distance dti of each nearest POI pti of type ti from

the driver’s fixed POI p, Λ is the set of riders’ cost for the riders ri ∈ R, P ′ is the

set of POIs those are retrieved from the POI database, max slug is the maximum



CHAPTER 5. BASELINE APPROACH 50

Algorithm 6 ARGTP BA

Input: s, d, p, k, st, ht, R
Output: Γ,P, C

1: T ← φ,∆p ← φ,Λ← φ, P ′ ← φ
2: dmax ← 0,max slug ← 0
3: R← TrivialPruning(s, d, st, ht, R)
4: for each ri ∈ R do
5: if sdi > max slug then
6: max slug ← sdi
7: end if
8: if ti 6∈ T then
9: T ← T ∪ {ti}

10: end if
11: end for
12: ∆p ← Retrieve POIs(p, dmax,max slug, T,∆p)
13: for each ri ∈ R do
14: if (pti , dti , ti) ∈ ∆p then
15: χi ← dist(si, s) + dist(d, di)
16: Ci ← χi + 2× dti
17: P ′ ← P ′ ∪ {pti}
18: else
19: Ci ←∞
20: end if
21: Λ← Λ ∪ {Ci}
22: end for
23: 〈Γ,P, C〉 ← Compute Optimal Group(k,R,Λ, P ′)
24: return Γ,P, C



CHAPTER 5. BASELINE APPROACH 51

slugging distance of riders ri ∈ R, and dmax = 0 denotes that the distance of the last

retrieved POI from the POI database is 0.

After the initialization, using Function TrivialPruning, some riders are trivially

pruned according to the time, slugging distance and threshold distance constraints.

Then the algorithm determines the maximum slugging distance max slug of riders

ri ∈ R and updates the POI-type set T accordingly. In the next step, the algorithm

retrieves the required POIs to compute the optimal ridesharing group using Func-

tion Retrieve POIs that incrementally retrieves POIs from the POI database upto

the maximum slugging distance max slug and returns the set ∆p such that within

max slug the nearest POIs from p whose types are included in T are retrieved. Then

in Lines 13–22 of the algorithm, for each rider ri ∈ R, the rider’s cost Ci for the

ridesharing trip are calculated, and updates the sets Λ with the calculated cost Ci

and P ′ if a POI pti is retrieved from the POI database. Finally, using Function

Compute Optimal Group, the algorithm sorts the riders’ list based on the calculated

cost Ci and determines the optimal ridesharing group Γ along with the set of corre-

sponding POIs P and the optimal group cost C.

5.2 Complexity Analysis

If there are |P | number of POIs stored in R∗-tree and B is the branching factor, then

the total number of pages on disk is κ = |P |/B. Now, with a set of |R| available

riders in the system, the time complexity of ARGTP BA algorithm is,

O(κ+ |R|+ |R| log |R|) ≈ O(κ+ |R| log |R|) ≈ O(κ).

Thus the time complexity is O(κ) = O(|P |/B), which requires a lot of time to

compute the ARGTP query for a huge POI database and a large set of riders’ trips.



Chapter 6

Experiments

In this chapter, we evaluate the performance of our efficient approach for process-

ing ARGTP queries in experiments. Since there is no existing work for ARGTP

queries, we compare our proposed efficient approach (ARGTP EA) with the baseline

approach (ARGTP BA). The details of the approaches are described in Chapter 4

and Chapter 5 respectively.

In Section 6.1, we briefly describe the parameters of our experiment with their

default values, and also the measures to evaluate the performance of our proposed

approach. In the following Sections 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 present the

effects of group size n, the number of riders in the system, the driver’s trip length,

the threshold distance λ(%), the factor x(%), the dataset size and the number of

POI-types in the POI dataset respectively.

6.1 Experimental Setup

In this section, we present the details of the datasets (both POI and road network

datasets) used for the experiments, different parameters varied in the experiments,

and the measures for the comparative analysis.

52



CHAPTER 6. EXPERIMENTS 53

6.1.1 Datasets

We use the California dataset [7] that consists of 63 types of 87635 POIs. The road

network of California has 21048 nodes and 21693 edges, where a node represents a

junction and an edge represents a road segment between two junctions in the road

network. We generate the synthetic datasets of POIs of different types using the

uniform random distribution. The data space is normalized to a span of 1000 ×
1000 square units. An R∗-tree [61] is used to index all the POIs of a dataset and a

in-memory graph data structure is used to store the road network.

We generate 100 sample drivers’ trips (which initiate 100 ARGTP queries), and

8000 sample riders’ trips, evaluate each experiments with 100 generated sample

ARGTP queries and compute the average experimental results. For these trips,

the source and destination locations are randomly generated over the road network,

and the driver’s fixed POI location and the rider’s POI-type are selceted for the POI

dataset using the uniform random distribution.

The algorithms described in this thesis are implemented in C++ platforms. We

run all experiments using a computer with Intel Core i5 2.30 GHz CPU and 4GB

RAM.

6.1.2 Parameters

In the experiments, we vary the following parameters: (i) the group size n, (ii) the

number of riders in the system, (iii) the driver’s trip length, (iv) the threshold distance

λ (%), (v) the factor x(%), (vi) the dataset size, and (vii) the number of POI-types in a

dataset. We have run each experiments using both California and synthetic datasets,

and have recorded the average results as the performance measurements. Table 6.1

shows range and default values of each parameter. While varying a parameter, we

set other parameters to their default values.



CHAPTER 6. EXPERIMENTS 54

Table 6.1: Parameter settings

Parameter Range Default

Group Size, n 2, 3, 4, 5, 6, 7 4

Number of Riders 1k, 2k, 4k, 8k 2k

Driver’s Trip Length 500, 1000, 1500, 2000, 2500 1500

Threshold Distance, λ(%) 1, 2, 3, 4 2

x(%) 10, 20, 30, 40, 50 30

Dataset Size 5k, 10k, 20k, 40k, 80k, 160k 20k

Number of POI-types 5, 10, 20, 40 10

6.1.3 Measures

We run extensive experiments to validate the efficiency of our approach and the effec-

tiveness of ARGTP queries. We measure the the efficiency of our approach in terms

of the query processing time and the I/O overhead, and estimate the effectiveness of

ARGTP queries in terms of the quality loss (%) and the rider’s drop rate (%).

6.1.3.1 Efficiency Measures

We measure the the efficiency of our approach in terms of the query processing time

and the I/O overhead.

Processing Time: We record the execution time of an ARGTP query to be

processed as the query processing time in seconds.

I/O Overhead: The I/O overhead is measured as the number of page access in

the R∗-tree. We consider the page size as 1024 bytes in the R∗-tree.

6.1.3.2 Effectiveness Measures

We estimate the effectiveness of ARGTP queries in terms of the quality loss (%) and

the rider’s drop rate (%).



CHAPTER 6. EXPERIMENTS 55

Quality Loss (%): We define the quality loss (%) as the percentage of the

shortest trip distance that a rider needs to travel more for a ridesharing trip. Let a

rider ri want to visit a POI of type ti on the way from her source si to destination

di, and there be a driver’s trip from source s to destination d via a fixed POI p. If

the shortest trip length from si to di via the nearest POI of type ti is (`ti)shortest and

the actual ridesharing trip length to get the driver’s trip is (`ti)actual, then

Quality loss (%) =
(`ti)actual − (`ti)shortest

(`ti)shortest
× 100%

where (`ti)actual is measured as the summation of the following distances: (i) the

distance between s and si, (ii) the distance between s and p, (iii) twice of the distance

between p and the rider’s POI, (iv) the distance between p and d, and (v) the distance

between d and di.

Rider’s Drop Rate (%): We measure the rider’s drop rate (%) as the percentage

of riders’ trips that would fail to get a ridesharing trip if the flexibility in the POI

selection is not allowed, i.e., if the nearest POI is not located within the specified

slugging distance from the driver’s fixed POI, then the rider’s trip fails. For the

ridesharing group of size n, if the number of riders who fail to get a ridesharing trip

is nf , then

Rider’s drop rate (%) =
n− nf

n
× 100%

6.2 Effect of Group Size n

In this section, we study the effects of group size n at the time of processing ARGTP

queries. We vary the group size n by 2, 3, 4, 5, 6, 7 using both California and

synthetic datasets, and measure the processing time, the I/O overhead, the quality

loss (%) and the rider’s drop rate (%).

Figure 6.1 shows the performance for varying the group size n using Califor-

nia dataset (Figure 6.1(a)–(d)) and synthetic dataset (Figure 6.1(e)–(h)). For both

datasets, we can observe that the processing time and I/O overhead slightly increase



CHAPTER 6. EXPERIMENTS 56

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: Effect of group size n using California (a–d) and synthetic (e–h) datasets

with the increase of group size n. The ARGTP EA approach requires significantly

less processing time and I/O overhead than the ARGTP BA approach, as expected.

The ARGTP BA approach considers all available riders and their required POI-types

to compute the optimal ridesharing group, whereas, the ARGTP EA approach prunes

significant number of riders and POI-types and thus determines the optimal rideshar-

ing group efficiently.

On the other hand, quality loss (%) increases and the rider’s drop rate (%) de-

creases slightly with the increase of group size n. With the increase of group size n,

the optimal rideharing group cost increases which increases the average quality loss

(%) in a ridesharing group. For example, the quality loss is 1.47% for n = 6, whereas

the quality loss is 1.48% for n = 7. We can observe from the graphs that with a

very low quality loss (%) (ranges from 0.95%–1.48%) and flexibility in the selection

of POIs, ARGTP queries can ensure complete ridesharing trips. If the flexibility is

not allowed, then about 97%–99% riders’ trips can be dropped.



CHAPTER 6. EXPERIMENTS 57

6.3 Effect of Number of Riders

In this section, we study the effect of number of riders available in the system at the

time of processing ARGTP queries. We vary the number of riders by 1000, 2000,

4000, 8000 using both California and synthetic datasets, and measure the processing

time, the I/O overhead, the quality loss (%) and the rider’s drop rate (%).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: Effect of number of riders using California (a–d) and synthetic (e–h)
datasets

Figure 6.2 shows the performance for varying the number of riders using Cal-

ifornia dataset (Figure 6.2(a)–(d)) and synthetic dataset (Figure 6.2(e)–(h)). We

can observe that the performance is almost constant for synthetic dataset. Using

California dataset, with the increase of the number of riders, the processing time

increases and the I/O overhead for ARGTP EA decreases, whereas the I/O overhead

for ARGTP BA remains almost constant. The reason behind such effect is that dur-

ing the upper bound computation, the ARGTP EA approach retrieves at least x% of

POIs which is more effective for the large number of riders. That’s why, the I/O over-

head decreases for the ARGTP EA approach. On ther other hand, to process larger



CHAPTER 6. EXPERIMENTS 58

number of riders, the query requires more time. We can observe that the ARGTP EA

approach outperforms the ARGTP BA approach in terms of the processing time and

the I/O overhead.

Similarly for California dataset, quality loss (%) decreases and the rider’s drop

rate (%) increases slightly with the increase of the number of riders, as the candidate

number of riders to compute the optimal ridesharing group cost increases. For ex-

ample, the quality loss (%) decreases from 1.59% to 1.46% if the number of riders in

increased from 1000 to 2000. We can observe from the graphs that using synthetic

dataset, both of the quality loss (%) and the rider’s drop rate (%) are almost constant

except for 1000 number of riders in the system.

6.4 Effect of Driver’s Trip Length

In this section, we study the impact of driver’s trip length on the processing of

ARGTP queries. The driver’s trip length is the road network distance from the

driver’s source to the driver’s destination via a fixed POI. All the group members

share their trips for at least this length. We vary the driver’s trip length by 500,

1000, 1500, 2000, 2500 using both California and synthetic datasets, and measure the

processing time, the I/O overhead, the quality loss (%) and the rider’s drop rate (%).

Figure 6.3 shows the performance for varying the driver’s trip length using Cal-

ifornia dataset (Figure 6.3(a)–(d)) and synthetic dataset (Figure 6.3(e)–(h)). For

both datasets, the processing time and I/O overhead decreases with the increase of

the driver’s trip length, as expected. The number of candidate riders decreases with

the increase of the driver’s trip length, which implies that the number of required

POI-types also decreases and so do the I/O overhead and the processing time. On

the other hand, the increasing trip length obviously increases the quality loss (%)

and the rider’s drop rate (%). Quality loss (%) is directly related to the driver’s trip

length, and so it increases with the increase of the driver’s trip length.



CHAPTER 6. EXPERIMENTS 59

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3: Effect of driver’s trip length using California (a–d) and synthetic (e–h)
datasets

6.5 Effect of Threshold Distance λ(%)

In this section, we study the impact of threshold distance λ(%) on the processing of

ARGTP queries. The threshold distance is specified by the riders. By specifying the

threshold distance λ, a rider mentions that she can travel at most λ% more than the

shortest trip to get a ridesharing trip. We vary the threshold distance by 1, 2, 3,

4 using both California and synthetic datasets. Thus in these experiments, we can

consider only those riders whose threshold distance are within these values to process

ARGTP queries.

Figure 6.4 shows the performance for varying the threshold distance using Califor-

nia dataset (Figure 6.4(a)–(d)) and synthetic dataset (Figure 6.4(e)–(h)). For both

datasets, the processing time, I/O overhead, quality loss (%) and the rider’s drop

rate (%) increases with the increase of threshold distance. The reason behind such

performance is that the increase of threshold distance increases the number of candi-

date riders for an ARGTP query, and so does the processing time. If the number of

candidate rider increases, then the number of required POI-types also increases and



CHAPTER 6. EXPERIMENTS 60

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.4: Effect of threshold distance λ(%) using California (a–d) and synthetic
(e–h) datasets

so it requires more I/O access. On the other hand, if the rider’s threshold distance

increases, then it incurs more quality loss (%) (though it is very low, ranges from

96.5% to 98.5%).

6.6 Effect of x(%)

In this section, we present the effect of x(%) at the time of processing ARGTP

queries for the ARGTP EA approach. To process an ARGTP query efficiently, the

ARGTP EA appproach retrieves at least x% of the required POI-types during the

upper bound computation. We record the performance for both datasets in terms of

processing time and I/O overhead.

Figure 6.5 shows the performance for varying x% using California dataset (Fig-

ure 6.5(a)–(b)) and synthetic dataset (Figure 6.5(c)–(d)). From the graphs, we can

observe that both of the processing time and the I/O overhead decrease with the

increase of x%, except the I/O overhead for the synthetic dataset which is almost



CHAPTER 6. EXPERIMENTS 61

(a) (b) (c) (d)

Figure 6.5: Effect of x(%) using California (a–b) and synthetic (c–d) datasets

constant. The number of POI-types (5–40 POI-types) in synthetic dataset is much

less than that (63 POI-types) of California dataset, and so x% does not have much

significant effect for synthetic dataset.

6.7 Effect of Dataset Size

In this section, we study the impact of dataset size on the processing of ARGTP

queries. To process an ARGTP query efficiently, we retrieve the required POI-types

from the POI database. Our ARGTP EA approach prunes the set of POI-types and

thus refines the POI search space significantly. In these experiments, we observe the

processing time and the I/O overhead to measure the efficiency of the ARGTP EA

approach.

(a) (b) (c) (d)

Figure 6.6: Effect of dataset size using synthetic (a–d) datasets

Figure 6.6 shows the performance for varying the dataset size using synthetic



CHAPTER 6. EXPERIMENTS 62

dataset (Figure 6.6(a)–(d)). The processing time and the I/O overhead increase with

the increase of dataset size, which is obvious. With the increase of dataset size,

the POI search space increases which requires more I/O access and more processing

time. We can observe that the ARGTP EA approach outperforms the ARGTP BA

approach in terms of processing time and I/O overhead.

Similarly, the more the datasize is, the more options for a POI-type to satisfy is,

which increases the rider’s trip length and the quality loss (%) (only 0.5%–1.5% for

varying dataset size 5k–40k). On the other hand, the increase of the dataset size

decreases the rider’s drop rate (%) at a low rate (ranges from 98.5% to 95%). With

the increase of the dataset size, the probability of a POI for the required POI-type to

be within the slugging distance increases, and so the rider’s drop rate (%) decreases.

6.8 Effect of Number of POI-types

In this section, we present the effect of number of POI-types at the time of processing

ARGTP queries. We vary the number of POI-types by 5, 10, 20, 40 using synthetic

datasets, and measure the processing time, the I/O overhead, the quality loss (%)

and the rider’s drop rate (%).

(a) (b) (c) (d)

Figure 6.7: Effect of number of POI-types using synthetic (a–d) datasets

Figure 6.7 shows the performance for varying the number of POI-types using syn-

thetic dataset (Figure 6.7(a)–(d)). The performance is similar as the performance for

varying the dataset size, except the quality loss (%). With the increase of the number



CHAPTER 6. EXPERIMENTS 63

of POI-types, the probability to get closer POIs for different POI-types required by

the riders increases, which decreases the quality loss (%).



Chapter 7

Conclusion

In this thesis, we have introduced a new type of ridesharing query, an Activity-aware

Ridesharing Group Trip Planning (ARGTP) query for road networks that enables a

group of riders to get a complete ridesharing trip for both fixed and flexible locations

and returns the optimal ridesharing group that minimizes the group cost function.

If a rider want to visit a POI (e.g., any branch of a bank) in between her source

location and destination location, then traditional ridesharing services require two

separate ridesharing trips and there is no guarantee that the rider will get ridesharing

options for both trips. Thus, to provide a rider a complete ridesharing trip via an

intermediary POI, we introduce ARGTP queries. To process an ARGTP query, the

spatial proximity of riders’ trips are considered to match with that of the driver.

In addition, ARGTP query allow riders to be flexible for visiting POI-types within

their distance limits. For example, a rider may be happy to visit the second or third

nearest branch of a bank instead of the first one, if in turn the probability to get a

ridesharing trip is increased.

The major challenges to process ARGTP queries are to identify the optimal

ridesharing group from a large set of riders and to explore the huge POI database

for the required POI-types of the riders in the system. It requires high processing

overhead and time to consider the large riders-set and the whole POI database for

processing an ARGTP query. Thus the efficiency of processing an ARGTP query

depends on the number of riders and the POI search space considered for processing

an ARGTP query. We have proposed the first solution to process ARGTP queries

efficiently. The key idea behind the efficiency is to prune significant number of riders

64



CHAPTER 7. CONCLUSION 65

and POI-types that cannot be part of the ARGTP answer. We measured the effi-

ciency of our approach in terms of processing time and I/O overhead to process an

ARGTP query, and estimated the effectiveness of an ARGTP query in terms of the

quality loss (%) and rider’s drop rate (%).

Experiments show that the efficient approach requires on average 9 times less

processing time and 11 times less I/O access than the baseline approach. In all

experiments, we observed that the flexibility in selecting POIs incurs a very low

quality loss (%) (ranges from 0.6% to 3.0%), and in return almost eliminates the

rider’s drop rate, whereas without allowing flexibility in selecting POIs causes 90%–

99.5% rider requests to be dropped.

7.1 Future Challenges

In this research work, we have introduced an ARGTP query which enables a rider

to visit an intermediary POI and allows flexibility in selecting the POI. However,

ARGTP queries can be extended to visit more than one intermediary POIs. We have

considered the slugging model for processing ARGTP queries, and there are other

ridesharing models that can be applicable to process ARGTP queries. Thus some

remarkable future challenges for this research are proposed below:

• In future, we aim to develop the solution to process ARGTP queries with mul-

tiple intermediary POI-types instead of a single one.

• In this thesis, we have considered a ridesharing model, slugging, where there is

no detour required by the drivers. In future, we plan to apply other ridesharing

models for processing ARGTP queries.

• We have involved a ridesharing service provider (RSP) in the system. Both

riders and drivers submit their trip information to the RSP, and thus there

is a possibility to reveal some private information from the RSP to others.

To address these issues, we aim to develop a framework to process privacy-

preserving ARGTP queries.



References

[1] S. Ma and O. Wolfson, “Analysis and evaluation of the slugging form of rideshar-

ing,” in SIGSPATIAL/GIS, 2013, pp. 64–73.

[2] E. Badger, “Slugging – the people’s transit,” March 2011.

[3] A. Attanasio, J.-F. Cordeau, G. Ghiani, and G. Laporte, “Parallel tabu search

heuristics for the dynamic multi-vehicle dial-a-ride problem,” Parallel Comput-

ing, vol. 30, no. 3, pp. 377 – 387, 2004.

[4] K. Tsubouchi, K. Hiekata, and H. Yamato, “Scheduling algorithm for on-demand

bus system,” Information Technology: New Generations, vol. 10, pp. 189 – 194,

May 2009.

[5] S. Yan and C.-Y. Chen, “An optimization model and a solution algorithm for

the many-to-many car pooling problem,” Ann. Oper. Res., vol. 191, pp. 37 – 71,

August 2011.

[6] Y. Wang, R. Kutadinata, and S. Winter, “Activity-based ridesharing: Increasing

flexibility by time geography,” in GIS, 2016, pp. 1:1–1:10.

[7] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng, “On trip

planning queries in spatial databases,” in SSTD, 2005, pp. 273–290.

[8] F. Spielberg and P. Shapiro, “Mating habits of slugs: Dynamic carpool formation

in the i-95/i-395 corridor of northern virginia,” Transportation Research Record,

vol. 1711, pp. 31 – 38, 2000.

[9] (2010, June) Map of slugging sites in washington d.c. slug-lines.com. Forel

Publishing Company, LLC. [Online]. Available: www.slug-lines.com

66



REFERENCES 67

[10] E. Ahmadi and M. A. Nascimento, “A mixed breadth-depth first search strategy

for sequenced group trip planning queries.” in MDM (1), 2015, pp. 24–33.

[11] T. Hashem, S. Barua, M. E. Ali, L. Kulik, and E. Tanin, “Efficient computation

of trips with friends and families,” in CIKM, 2015, pp. 931–940.

[12] T. Hashem, T. Hashem, M. E. Ali, and L. Kulik, “Group trip planning queries

in spatial databases,” in SSTD, 2013, pp. 259–276.

[13] S. Samrose, T. Hashem, S. Barua, M. E. Ali, M. H. Uddin, and M. I. Mahmud,

“Dynamic group trip planning queries in spatial databases,” in MDM, 2015, pp.

122–127.

[14] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in

SIGMOD, 1984, pp. 47–57.

[15] D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen, “On socio-spatial group

query for location-based social networks,” in KDD, 2012, pp. 949–957.

[16] A. Tabassum, S. Barua, T. Hashem, and T. Chowdhury, “Dynamic group trip

planning queries in spatial databases,” in SSDBM, 2017, pp. 38:1–38:6.

[17] Y. Huang, F. Bastani, R. Jin, and X. S. Wang, “Large scale real-time ridesharing

with service guarantee on road networks,” VLDB, vol. 7, no. 14, pp. 2017–2028,

2014.

[18] G. Gidofalvi, T. B. Pedersen, T. Risch, and E. Zeitler, “Highly scalable trip

grouping for large-scale collective transportation systems,” in EDBT, 2008, pp.

678–689.

[19] E. Kamar and E. Horvitz, “Collaboration and shared plans in the open world:

Studies of ridesharing,” in IJCAI, 2009, pp. 187–194.

[20] P. M. d’Orey, R. Fernandes, and M. Ferreira, “Empirical evaluation of a dynamic

and distributed taxi-sharing system,” in ITSC, 2012, pp. 140–146.

[21] A. P. Amey, “A proposed methodology for estimating rideshare viability within

an organization, applied to the mit community,” in TRB Annual Meeting, 2010,

pp. 1–16.



REFERENCES 68

[22] A. Kleiner, B. Nebel, and V. A. Ziparo, “A mechanism for dynamic ride sharing

based on parallel auctions,” in IJCAI, 2011, pp. 266–272.

[23] M. Furuhata, M. Dessouky, F. Ordez, M.-E. Brunet, X. Wang, and S. Koenig,

“Ridesharing: The state-of-the-art and future directions,” Transportation Re-

search, vol. 57, pp. 28 – 46, 2013.

[24] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic taxi rideshar-

ing service,” in ICDE, 2013, pp. 410–421.

[25] T. Pedersen, “Cab-sharing: An effective, door-to-door, on-demand transporta-

tion service,” in ERTICO, 03 2018, pp. 1–8.

[26] W. E. de Paepe, J. K. Lenstra, J. Sgall, R. A. Sitters, and L. Stougie, “Computer-

aided complexity classification of dial-a-ride problems,” INFORMS Journal on

Computing, vol. 16, no. 2, pp. 120–132, 2004.

[27] N. Ta, G. Li, T. Zhao, J. Feng, H. Ma, and Z. Gong, “An efficient ride-sharing

framework for maximizing shared route,” TKDE, vol. PP, pp. 1–1, 10 2017.

[28] W. Zhao, Y. Qin, D. Yang, L. Zhang, and W. Zhu, “Social group architecture

based distributed ride-sharing service in vanet,” International Journal of Dis-

tributed Sensor Networks, vol. 2014, pp. 1–8, 2014.

[29] M. Rigby, A. Krüger, and S. Winter, “An opportunistic client user interface to

support centralized ride share planning,” in SIGSPATIAL, 2013, pp. 34–43.

[30] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimization for dynamic

ride-sharing: A review,” European Journal of Operational Research, vol. 223,

no. 2, pp. 295 – 303, 2012.

[31] D. O. Santos and E. C. Xavier, “Dynamic taxi and ridesharing: A framework

and heuristics for the optimization problem,” in IJCAI, 2013, pp. 2885–2891.

[32] R. Baldacci, V. Maniezzo, and A. Mingozzi, “An exact method for the car pooling

problem based on lagrangean column generation,” Operations Research, vol. 52,

no. 3, pp. 422–439, 2004.



REFERENCES 69

[33] R. W. Calvo, F. de Luigi, P. Haastrup, and V. Maniezzo, “A distributed ge-

ographic information system for the daily car pooling problem,” Computers &

Operations Research, vol. 31, no. 13, pp. 2263 – 2278, 2004.

[34] N. Jing Yuan, Y. Zheng, L. Zhang, and X. Xie, “T-finder: A recommender

system for finding passengers and vacant taxis,” TKDE, vol. 25, no. 10, pp.

2390–2403, 2012.

[35] N. Agatz, A. L. Erera, M. W. Savelsbergh, and X. Wang, “Sustainable passenger

transportation: Dynamic ridesharing,” Erasmus Research Institute of Manage-

ment, Tech. Rep., 2009.

[36] J.-F. Cordeau and G. Laporte, “The dial-a-ride problem (darp): Variants, model-

ing issues and algorithms,” Quarterly Journal of the Belgian, French and Italian

Operations Research Societies, vol. 1, no. 2, pp. 89–101, 2003.

[37] J. F. Cordeau and G. Laporte, “The dial-a-ride problem: Models and algo-

rithms,” Annals of Operation Research, vol. 153, no. 1, pp. 29 – 46, 2007.

[38] K. I. Wong and M. G. H. Bell, “Solution of the dial-a-ride problem with multi-

dimensional capacity constraints,” International Transactions in Operational Re-

search, vol. 13, no. 3, pp. 195–208, 2006.

[39] Z. Xiang, C. Chu, and H. Chen, “A fast heuristic for solving a large-scale static

dial-a-ride problem under complex constraints,” European Journal of Operational

Research, vol. 174, no. 2, pp. 1117 – 1139, 2006.

[40] J. W. B. JR., G. K. R. Kakivaya, and J. R. Sone, “Intractability of the dial-a-ride

problem and a multiobjective solution using simulated annealing,” Engineering

Optimization, vol. 30, no. 2, pp. 91–123, 1998.

[41] S. B. Seidman, “Network structure and minimum degree,” Social Networks,

vol. 5, no. 3, pp. 269 – 287, 1983.

[42] J.-F. Cordeau, “A branch-and-cut algorithm for the dial-a-ride problem,” Oper-

ations Research, vol. 54, no. 3, pp. 573–586, 2006.

[43] P. Goel, L. Kulik, and K. Ramamohanarao, “Privacy-aware dynamic ride shar-

ing,” TSAS, vol. 2, no. 1, pp. 4:1–4:41, 2016.



REFERENCES 70

[44] Y. Li, R. Chen, L. Chen, and J. Xu, “Towards social-aware ridesharing group

query services,” TSC, vol. PP, no. 99, pp. 1–1, 2017.

[45] Y. Wu, L. J. Guan, and S. Winter, “Peer-to-peer shared ride systems,” in GSN,

2006, pp. 252–270.

[46] R. F. Teal, “Carpooling: Who, how and why,” Transportation Research Part A:

General, vol. 21, no. 3, pp. 203 – 214, 1987.

[47] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery of

convoys in trajectory databases,” Proc. VLDB Endow., vol. 1, no. 1, pp. 1068–

1080, 2008.

[48] R. K. Balan, K. X. Nguyen, and L. Jiang, “Real-time trip information service

for a large taxi fleet,” in MobiSys, 2011, pp. 99–112.

[49] K. Yamamoto, K. Uesugi, and T. Watanabe, “Adaptive routing of cruising taxis

by mutual exchange of pathways,” in Knowledge-Based Intelligent Information

and Engineering Systems, I. Lovrek, R. J. Howlett, and L. C. Jain, Eds., 2008,

pp. 559–566.

[50] D. Santani, R. K. Balan, and C. J. Woodard, “Spatio-temporal efficiency in a

taxi dispatch system,” 2008.

[51] D. Zhang, T. He, Y. Liu, and J. A. Stankovic, “Callcab: A unified recommen-

dation system for carpooling and regular taxicab services,” in Int. Conf. on Big

Data, 2013, pp. 439–447.

[52] S. Ma and Y. Zheng, “Real-time city-scale taxi ridesharing,” TKDE, vol. 27,

no. 7, pp. 1782–1795, 2015.

[53] B. Jin and J. Hu, “Towards scalable processing for a large-scale ride sharing

service,” in UIC/ATC, 2012, pp. 940–944.

[54] Y. Dumas, J. Desrosiers, and F. Soumis, “The pickup and delivery problem with

time windows,” European Journal of Operational Research, vol. 54, no. 1, pp. 7

– 22, 1991.



REFERENCES 71

[55] B. Cici, A. Markopoulou, E. Frias-Martinez, and N. Laoutaris, “Assessing the

potential of ride-sharing using mobile and social data: A tale of four cities,” in

UbiComp, 2014, pp. 201–211.

[56] F. Bistaffa, A. Farinelli, and S. D. Ramchurn, “Sharing rides with friends: A

coalition formation algorithm for ridesharing,” in AAAI, 2015, pp. 608–614.

[57] S. Anwar, S. Nabila, and T. Hashem, “A novel approach for efficient computation

of community aware ridesharing groups,” in CIKM, 2017, pp. 1971–1974.

[58] K. Radke, M. Brereton, S. Mirisaee, S. Ghelawat, C. Boyd, and J. G. Nieto,

“Tensions in developing a secure collective information practice - the case of

agile ridesharing,” in INTERACT, 2011, pp. 524–532.

[59] P. Cheng, H. Xin, and L. Chen, “Utility-aware ridesharing on road networks,”

in SIGMOD, 2017, pp. 1197–1210.

[60] A. K. M. M. R. Khan, O. Correa, E. Tanin, L. Kulik, and K. Ramamohanarao,

“Ride-sharing is about agreeing on a destination,” in SIGSPATIAL/GIS, 2017,

pp. 6:1–6:10.

[61] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: An efficient

and robust access method for points and rectangles,” in SIGMOD, 1990, pp.

322–331.


	Activity-aware Ridesharing Group Trip Planning Queries for Flexible POIs_1015052020
	Board of Examiners
	Candidate's Declaration
	Activity-aware Ridesharing Group Trip Planning Queries for Flexible POIs_1015052020

