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Abstract  

 

The present study investigates the influence of external magnetic field on unsteady 

incompressible flow of water-based nanofluid through a successively expanding or contracting 

channel with porous walls. The basic governing equations with boundary conditions are non-

dimensionalized using appropriate transformation to ordinary differential equations, which are 

then being                                                   -                           T   

bifurcation diagrams of velocity field and wall shear stress are gained which signifies the 

stability of the flow. The regular effects of the different governing physical parameters 

specifically Hartmann number, volume fraction of nanoparticles, non-dimensional wall dilation 

rate and permeable Reynolds number on velocity profiles are depicted graphically. 

This research work also investigates the influence of external magnetic field on unsteady 

incompressible flow of water based different nanofluid (Cu,Ag,Al2O3) through a successively 

expanding or contracting channel with porous walls. 

This research shows the stability of the flow through bifurcation diagram of velocity versus non-

dimensional wall dilation rate.  
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                                                                                                Chapter 1  

INTRODUCTION 

1.1 Fluid 

A fluid is any substance that deforms continuously when subjected to a shear stress (tangential 

force per unit area), no matter how small according to Mc Donough. Though the work of 

Leonardo Da Vinci gave rapid advancement to the study of fluid mechanics more than 500 years 

ago, fluid behavior were much more available by the time of ancient Egyptian. Enough practical 

information had been gathered during the Roman Empire to allow fluid dynamics application. 

More modern understanding of fluids motion was begun through Bernoulli’s equation several 

centuries ago,. Since then, many researchers have done numerous works on fluid mechanics. 

The study of fluid flowing through a porous channel fascinated  mankind for many centuries due 

to its applications in many areas of life. Such areas are: agriculture (e.g. irrigation, land 

drainage), geothermal system, micro-electric heat transfer equipment, coal and grain storage, 

nuclear waste disposal, hydraulic engineering, atmospheric sciences, oceanography, geophysics 

(e.g. convection in earth’s mantle, convection in earth’s molten area). So, also in chemical and 

petroleum engineering (e.g. industrial filtration, fluidization, sedimentation, metallurgy, 

ceramics, powders, drying and wetting of textiles and wood), building engineering and biological 

area (e.g. flow of the blood and water system, action of kidney and rise of juices in plant).  

However, the flow of an electrically conducting viscous fluid between two parallel in the 

presence of a transversely applied magnetic field has an application in many devices such as 

magneto hydrodynamics (MHD) powers generators. 

1.2 Magnetohydrodynamics (MHD)  

The term MHD is comprised of the words magneto- means magnetic, hydro- means fluids, and 

dynamics- means movement. It is the branch concern with the dynamics of electrically 

conducting fluid in magnetic field. These fluids include salt water, liquid metals (such as 

Mercury, gallium, molten Iron) and ionized gases or plasmas (such as solar atmosphere). The 

field of MHD was initiated by Swedish Physicist Hannes Alfven(1908-1995), who received the 



 

2 

noble prize in Physics in 1970 for fundamental works and discoveries in magnetohydrodynamics 

with different parts of plasma physics. 

Magnetohydrodynamics exhibits the phenomena, where, in an electrically conducting field, the 

velocity field V and the magnetic field B are coupled. The magnetic field induces an electric 

current of density J in the moving conductive fluid. The induced current creates forces on the 

liquid and changes the magnetic field B experience and MHD force J B  known as Lorentz 

force. This Lorentz force tends to oppose the fluid motion near the edge. As the velocity is very 

small,  the magnetic force that is proportional to the magnitude of the longitudinal velocity and 

acts in opposite direction is also very small. The set of equations that describe MHD flow are a 

combination of Navier-Stokes equation of Fluid dynamics and Maxwell’s equation of 

electromagnetism.  

 

 

 

 

 

 

 

 

 

 

Fig:- 1.1 Magnetohydrodynamics(MHD) [Ref: Secrets-of-merging-black-holes-4]  
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1.3 Application of MHD 

Many natural phenomena and engineering problems are susceptible to MHD analysis. In natural 

phenomena, since magnetic field exists everywhere in the world, it follows that MHD 

phenomena which must occur whenever conducting fluid are available.  

Some common applications are: - 

 Geothermal system 

 Micro-electric heat transfer equipment 

 Atmospheric sciences   

 chemical and petroleum engineering 

 Defence and Space applications  

 Thermal storage  

 Bio-medical applications  

 Drilling and lubrications   

 

1.4 Nanofluids 

Nanofluids is a term coined by Choi in 1995 of the Argonne National Laboratory, U.S.A. 

(diameter less than 50nm). Nanofluids indicate Fluids with nanoparticles suspended in them. 

Suspended nanoparticles in the various base fluids can alter the fluid flow and heat transfer 

characteristics of the base fluids.  

 Some experimental studies have revealed that the nanofluids have remarkably higher thermal 

conductivities than those of conventional pure fluids and have great potential for heat transfer 

enhancement. Nanofluids are more suited for practical application than existing techniques for 

enhancing heat transfer by adding millimeter and/or micrometer-sized particles in fluids since 

nanofluids incur little or no penalty in pressure drop. Because the nanoparticles are so small 
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(usually less than 100nm) that they behave like a pure fluid without any particles in it. In 

addition, nanoparticles are less likely to cause wear because of their small sizes. 

Nanofluids are a class of heat transfer fluids that have many advantages. They have better 

stability compared to those fluids containing micro- or mille-sized particles; moreover, they have 

higher thermal transfer capability than their base fluids. Such advantages offer important benefits 

for numerous applications in many fields such as transportation, heat exchangers, electronics 

cooling, nuclear systems cooling, biomedicine and food of many types. For example, in cooling 

systems, a 50/50 ethylene glycol (EG) and water mixture is commonly used as an automotive 

coolant. The mixture is a relatively poor heat transfer fluid compared to pure water. Water/EG 

mixtures with additional nanoparticles are currently being studied to enhance heat transfer 

performance. Nanoparticles can improve the heat transfer coefficient of pure ethylene glycol.  

Therefore, the resulting nanofluid performs better at low pressure working conditions and 

smaller coolant system size when compared to the 50/50 mixture. Finally, smaller and lighter 

radiators can be used to increase engine performance and fuel efficiency. Nanofluids can 

significantly reduce the thermal resistance of the heat pipe when compared to conventional 

demonized water. 

 

 

 

 

 

Figure 1.2: Nanofluid [ref: Net collection (pitt.edu)] 

1.5 Application of Nanofluids 

Nanofluids can be used to cool automobile engines and welding equipments and to cool high 

heat flux device such as high power microwave tubes, and high power laser diode array. 

Nanofluid could flow through the tiny passage in MEMS to improve the efficiency. In the 
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transportation industry, nanocars, General Motors (GM), Ford among others are focusing on 

nanofluid research projects.  Some common applications are:-   

 Engine cooling and transmission oil  

 Boiler exhaust flue gas recovery 

 Cooling of electronic circuits  

 Nuclear system cooling 

 Solar water heating 

 Refrigeration (domestic and chillers)  

 Defence and Space applications  

 Thermal storage  

 Bio-medical applications  

 Drilling and lubrications   

The measurement of nanofluid critical heat flux (CHF) in a forced convection loop is useful for 

the nuclear applications. If nanofluid improves the chiller efficiency by 1%, a saving of 320 

billion KWh of electricity or equivalent 5.5 million barrel of oil per year would be released in US 

alone. The nanofluids find the potential for deep drilling operations. A nanofluid can also be 

used for increasing the dielectric strength and life of transformer oil by dispersing nanodiamonds 

particles.    

1.6 Nanoparticles Solid Volume Fraction  

The nanoparticles solid volume fraction is defined as   which is divided by the volume of all 

constituents of the nanofluid.  The volume fraction coincides with the volume concentration in 

ideal solutions where the volumes of the constituents are additive (the volume of the solution is 

equal to the sum of the volumes of its ingredients).  

The sum of all volume fractions of a mixture is equal to 1: 

  
1

1
N

i
i




  
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1.7 Channel Flow 

Channel flow constitutes a very important class of flows in fluid dynamics due to its several 

applications in biological and engineering systems. Therefore, it is necessary to study the 

characteristics of this flow. In the late 19th century, Maurice Marie Alfred Couette (professor of 

physics, University of Angers) discovered the laminar flow of a viscous fluid in the space 

between two parallel plates, one of which is moving relative to other. The flow is driven by 

virtue of drag force acting on the fluid and applied pressure gradient parallel to the plates is 

called Couette flow. J.L.M. Poiseuille (1893) studied steady viscous fluid flow between two 

parallel stationary plates due to an imposed constant pressure gradient generally known as 

Poiseuille flow. Jeffery (1915) and Hamel (1916), which called classical Jeffery-Hamel flow 

through convergent-divergent channel, first analyzed the flow between two plates that meet at an 

angle. Various applications of this type of mathematical models are necessary to understand the 

flow of rivers and canals, enhancing heat transfer of heat exchangers for milk flow, cold drawing 

operation in polymer industry, extrusion of molten polymers through converging dies and blood 

flow of human body. The theoretical study of MHD channel has been a subject of great interest 

due to its extensive applications in designing cooling system with liquid metals, MHD 

generators, accelerators, pumps and flow meters (Cha et al. (2002), Tender (1983)). 

 

                       

Figure 1.3: Porous Channel  
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1.8 Power series       

Consider a function ( )U x  which can be represented by a power series  

0
( ) i

i
i

U x ax




   as  0x          (1.8.1) 

Let us suppose the Nth partial sum is  

1

0
( )

N
i

N i
i

U x ax




           (1.8.2) 

the series said to be convergent if the sequence of partial sums converges. When the series 
converges, the sum ( )U x  can be approximated by the partial sum ( )NU x  and the error can be 
defined by   

( ) ( ) ( ),N Ne x U x U x           (1.8.3) 

 

The absolute error is defined by  

( )( ) ,( )
N

N
e xe x U x   provided  ( ) 0U x         (1.8.4)  

The number of accurate decimals for some particular value of x is given by 

10logN Ne            (1.8.5) 

It is said that the error decays exponentially if there exists a positive constant   such that 

N   as ,Nwhere 

ln N
N

e
N             (1.8.6) 

It is also said that the error decays super exponentially if there exists a positive constant  such 
that 

N   as ,Nwhere 

ln .ln
N

N
e

N N            (1.8.7) 



 

8 

An important characteristic of a series is its domain of convergence. If the series ( )U x converges 
for some cx  it also converges absolutely in the open disc  

{ : }cx x x    

with centre at origin. 

1.9 Singularity analysis  

Singularities are the important points of a function, because the expansion of a function into a 
power series depends on the nature of singularities of function. Several types of singularities may 
arise in physical problems. We are interested to analyze those functions, which have several 
types of singularities. Practically, one of these singularities dominates the function. Therefore, it 
is important to know about this singular point to analyze the critical behavior of the function 
around this point.  

The convergence of the sequence of partial sums depends crucially on the singularities of the 
function represented by the series. The dominating behavior of the function ( )u x  is represented 
by a series may be written as  

( )~ 1
c

xu x A x


 
 

 
 as cx x       (1.9.1) 

Where A is constant and cx is the critical point with the critical exponent . If   is a negative 
integer then the singularity is pole, otherwise if it is a nonnegative rational number then the 
singularity point is branch point. We can include the correction terms with the dominating part in 
(1.9.1) to estimate the degree of accuracy of the critical points. It can be as follows  

1 2

1 2( )~ 1 1 1 1 .............
a a a

c c c

x x xu x A A Ax x x
      
           
       

 as cx x    (1.9.2) 

Where 1 20 a a M    and A1, A2, M are constants for some ia a N   i, then the correction 
terms are called confluent. Sometimes the correction terms can be logarithm e.g. 

( )~ 1 1 ln1
a

c c

x xu x A x x
  

    
    

    as cx x    (1.9.3) 

Sometimes the sign of the series coefficient indicates the location of the singularity. If the terms 
are same, the sign of the dominant singular point lies on the positive x-axis. If the terms take 
alternately positive or negative signs then the singular point is on the negative x-axis. Following 
are few examples with different type of singularities: 
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Example:-  

1. Singularities that are pole: 

3( ) (1 ) cos(2 )u x x x   . 

Where ( )u x  is an algebraic function whose singularity at 1cx  , the critical exponent 3 , 
which makes the singularity a pole. 

2. Algebraic singularities with different exponents: 

     
1 1

1 3 4
2( ) 2 1 14 3

x xu x x
 

            
   

. 

Here ( )u x  have several singular points. The singular points are at 2,4,3cx   and the critical 

exponents are 1 1 1, ,2 3 4    respectively. In this example the singular points are branch 

points. Though there are a number of singularities for ( )u x , only one of these singularities will 
dominate the local behavior of ( )u x . 

3. Logarithmic singularity:  

    ( ) ln 1 sin( )7
xu x x    

 
. 

Here ( )u x  has logarithmic singularity at 7cx  . 

4. Exponential singularity:  

3( ) exp(1 4 )u x x   .  

Here ( )u x  has exponential singularity at 1
4cx   with critical exponent 3 . 

5. Algebraic dominant singularity with a secondary logarithm behavior:  

1
2( ) 1 ln 13 5

x xu x


         
   

. 

The algebraic dominant singularity of ( )u x  here is at 3cx   with critical exponent
1
2  

which makes it a branch point and a logarithmic singularity at 5cx  .  
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6. Nth root singularity: 

 
1

( ) 1 exp 35
nxu x x


    
 

. 

Here ( )u x has a branch point with the critical exponent 1
n  at 5cx   . 

1.10 Elementary bifurcation Theory 

A bifurcation occurs where the solution of nonlinear systems alters their qualitative behavior 

while a parameter changes its value. Particular bifurcation theory shows how the number of 

steady solutions of a system depends on parameters. Examples of bifurcation are simple turning 

points in which the number of real solutions become complex conjugate solutions and pitchfork 

bifurcation in which the numbers of real solutions change discontinuously from one to three 

(vice versa). We intend to introduce some basic concepts of bifurcation theory. Drazin (1996) 

discussed the bifurcation theory in detail.  

Consider a function map :F . We seek for the solutions 

                 ( )u u x  of ( , ) 0F x u                 (1.10.1) 

Bifurcation diagrams can show the solutions. In these diagram solution curves are drawn in the 

( , )x u  plane. Let 0 0( , )x u be a solution of (1.10.1) i.e.  

0 0( , ) 0F x u                    (1.10.2) 

Then F can be expanded in Taylor’s series about 0 0( , )x u  and we can study the solution set in that 

neighborhood provided that F is smooth. Thus we obtain  

0 0 0 0 0 0 0 0 0 0 0
10 ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ....2u x uuF x u F x u u u F x u x x F x u u u F x u           (1.10.3) 

If we assume that 0 0( , ) 0uF x u    , then 

            
0 0

0 0 0
0 0

( , )( ) ( ) ( )( , )
u

x

F x uU x u x x O x xF x u      as 0.x x             (1.10.4) 
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This gives only one solution curve in the neighborhood of the point 0 0( , )x u  in the bifurcation 

diagram. However if we replace 0 0( , )x u  with ( , )c cx u  where  

( , ) 0c cF x u                 (1.10.5) 

Then the expression (1.10.5) shows that are at least two curves in the neighborhood of ( , )c cx u . 

The point ( , )c cx u  is called bifurcation point.                  

1.11 Literature review 

 Nanofluid is a new dynamic subclass of nanotechnology-based heat transfer fluids obtained by 

dispersing and stably suspended nanoparticles with typical dimensions of shape and size 1-

100nm Choi (2007). MHD Nanofluid flows through porous medium has received attention of 

many researchers due to its applications in technological and engineering problems such as 

MHD generator; plasma studies, nuclear reactors, geothermal energy extraction. Zubair et al. 

(2016) studied heat and mass transfer analysis in a viscous unsteady MHD nanofluid flow 

through a channel with porous walls and medium in the presence of metallic nanoparticles.  

R.Elahi et al. (2014) studied theoretical study of blood flow of nanofluid through composite 

stenosed arteries with permeable walls. The problem of laminar nanofluid flow in a semi-porous 

channel in the presence of transverse magnetic field was investigated analytically by 

Sheikholeslami et al. (2014). M. Sheikholeslami and D.D. Ganji (2013) studied Heat transfer of 

Cu-water nanofluid flow between parallel plates. M. Sheikholeslami et al.(2014) studied 

Nanofluid flow and heat transfer in a rotating system in the presence of magnetic field. Their 

results showed that velocity boundary layer thickness decreases with the increase of Reynolds 

number and it increases as Hartmann number increases.   

 Majdalani et al. (2002) studied two dimensional viscous flows between slowly expanding, 

contracting walls with weak permeability. H.N. Chang et al (1989) studied velocity field of 

pulsatile flow in a porous tube. Their result found that Seepage across permeable walls is clearly 

important to the mass transfer between blood, air and tissue. Therefore, a substantial amount of 

research work has been invested in the study of the flow in rectangular domain bounded by two 

moving porous walls, which enable the fluid to enter or exit during successive expansions or 

contractions.  Dauenhauer et al. (1999) studied the unsteady flow in semi-infinite expanding 
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channels with wall injection. They are characterized by two non-dimensional parameters, the 

expansion ratio of the wall α and the cross-flow Reynolds number Re. Hatami et al.(2015) 

studied numerical analysis of nanofluid flow conveying nanoparticles through expanding and 

contracting gaps between permeable walls. Boutros et al (2006) studied the solution of the 

Navier-stokes equations which described the unsteady incompressible laminar flow in semi-

infinite porous circular pipe with injection or suction. Through the pipe wall whose radius varies 

with time. The resulting fourth-order nonlinear differential equation is then solved using small 

parameters perturbations. Majdalani and Zuhu (2003) studied moderate to injection and suction 

driven channel flow with expanding and contracting channel. Using perturbations in cross-flow 

Reynolds number Re, the resulting equation is solved both numerically and analytically.      

Zaimi et al. (2014) discussed the unsteady flow, heat and mass transfer analysis for nanofluids 

through a contracting cylinder. Fakour et al. (2015) showed an analytical solution for micropolar 

fluid flow through a channel with porous walls. Jashim et al. (2012) demonstrated the 

mathematical modeling of MHD thermosolute nanofluid flow in porous medium under the 

influence of convection slip conditions. Hayat et al. (2009) presented an analysis of heat transfer 

on the peristaltic flow with porous medium. Sacheti (2003) discussed the Brinkman model for 

the steady poiseulle flow of a viscous incompressible fluid in a porous channel. Various 

researchers have all that much purposeful this idea and the points of interest can be found in 

writing. Hatami et al. (2003) discussed the laminar nanofluid flow in a semi-porous channel with 

magnetic field effect through using porous fins. Kashif et al. (2014) considered the heat and mass 

transfer flow with the impact of penetrable Reynolds number and relaxing/contracting parameter 

in the vicinity of metallic-oxide nanoparticles between orthogonally moving permeable disks.  

Zaimi et al. (2014) discussed the unsteady flow, heat and mass transfer analysis for nanofluids 

through a contracting cylinder.  By using the two-phase model of nanofluid flow, heat and mass 

transfer in a rotating system in the presence of a magnetic field was investigated by 

Sheikholeslami et al.(2014).  The flow and heat transfer in porous tube or channel has been 

studied by a number of authors (Wernert et al. (2005), Jafari et al. (2009), Georke 

(2002)).Berman (1953) described an exact solution of the Navier-Stokes equation for steady two-

dimensional laminar flow of a viscous, incompressible fluid in a channel with parallel rigid 

porous walls driven by uniform suction or injection at the walls. Finally, Hatami et al (2013)   

studied Analytical investigation of MHD nanofluid in Semi porous channel. 
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In discussion unsteady magnetohydrodynamics (MHD) nanofluid flow through expanding and 

contracting channel flow with permeable walls are studied. The reduced non-dimensional fourth 

order differential equation solved by Hermite- Padé approximation method. Then result 

displayed graphically.        

1.12 Objectives of this thesis:   

A review of earlier studies indicates that none has used MHD in such a channel. The present 

study investigates the stability of the magnetohydrodynamics flow through the channel. The aim 

is to represent model geometrically and formulate mathematically using governing equations and 

boundary conditions. Then the equations are making dimensionless by using suitable 

transformations. A polynomial series will be determined from the dimensionless equation and 

then analyzed by using approximation method with the help of algebraic programming language. 

The target is to determine the dominating singularity behavior of the problem and to compare the 

result with others. The results will be displayed graphically.  The specific objectives of the 

present research work are: 

 To reproduce Hatami et al. (2015) result by using approximation method. 

 To find bifurcation point using governing equations and boundary conditions. 

 To analyze singularity behavior of the problem numerically and graphically.  

 To investigate the effect of governing parameters namely, Reynolds number Re, Hartmann 

number Ha, non-dimensional wall dilation rate α, nanoparticle solid volume fraction ϕ. 

 To compare the result of the present investigation with similar published work.     

It is expected that the present numerical and graphical investigation will contribute to search 

more efficient finding and to make new dimension in research area.  
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1.13 Organization of Thesis  

In chapter 1, a brief introduction is presented with significance and objective of the study. This 

chapter consists of physical phenomena of fluid, Magneto hydrodynamics (MHD), Nanofluid, 

Nanoparticle solid volume fraction, channel flow with applications. Also consists of power 

series, singularity analysis and elementary bifurcation theory with example.  A literature review 

of the past studies on the above physical facts is included.  

In chapter 2, the numerical procedures for solving nonlinear dimensionless equations are 

discussed. 

In chapter 3, the basic governing equation for the flow fields are shown in standard vector form 

and mathematical modeling of the problem for various case is discussed.  

Magnetohydrodynamics (MHD) nanofluid flow through expanding and contracting channel flow 

with permeable walls are studied in chapter 4. The influence of the governing flow parameters 

namely Reynolds number, Hartmann number, non-dimensional wall dilation rate, nanoparticle 

solid volume fraction on stream function and velocity profile are shown. Shear stress is presented 

for different values of above parameters. Moreover, bifurcation point is found.  

A summary of major conclusions and some schemes of further work are expressed in Chapter 5.   
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                                                                                                    Chapter 2 

                            Approximation Methods 
The numerical procedures as approximation method for solving nonlinear dimensionless governing 
equations of the problem is in this chapter.  

2.1 Introduction 

This thesis is concerned with the techniques for summing power series that can be described 

collectively as approximation method to revel the local behavior of series around its singular 

point and the critical relationship among the solution parameters.  

The approximation methods are widely used to approximate functions in many areas of applied 

mathematics. A function is said to be approximant for a given series if its Taylor series 

expansion reproduces the first terms of the series. 

Padé (1892) and Hermite (1893) introduced a very efficient solution method, known as Hermite- 

Padé approximants. Blanch(1964) evaluated continued function fractions numerically. 

Brezinski(1990) studied history of continued fraction and approximants. Also, application of 

continued fractions and their generalizations of problems in approximation theory have been 

studied by khovanskii (1963). Baker and Graves-Moris (1996) studied Padé approximants and its 

properties. Algebraic and Differential approximants (1978) are some useful generalizations of 

Padé approximants and its properties. Khan (2001) analyzed singularity behavior by summing 

power series. Khan (2002) also introduced a new model of differential approximant for single 

independent variable for the summation of power series called High-order differential 

approximant (HODA). The method is special type of Hermite- Padé class and it is one of the best 

methods of singularity analysis for the problems of single independent variable. High-order 

partial differential approximants discussed in Rahman (2004) is a multivariable differential 

approximants. 

2.2 Hermite- Padé approximants 

The entire one variable approximants that are used or discussed throughout this thesis paper 

belongs to the Hermite- Padé class. In its most general form, this class is concerned with the 
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simultaneous approximation of several independent series and there are some advantages in first 

describing the Hermite- Padé class from that point of view. 

Let d N   and the 1d  power series 

0 1( ), ( ),..., ( )dU x U x U x
 

are given. We say that the (d+1) – tuple of polynomials  

[0] [1] [ ]{ , ,......, },d
N N NP P P

 
where  

[0] [1] [ ]deg deg ..... deg ,d
N N NP P P d N    

                                                                
(2.2.1)  

is a Hermite- Padé form of these series if 
 

[ ]

0
( ) ( ) ( )

d
i N

N i
i

p xU x O x


          as    0x                 (2.2.2) 

Here 0 1( ), ( ),..., ( )dU x U x U x  may be independent series or different form of a unique series.  

We need to find [ ]i
NP  that satisfy the equations (2.2.1) and (2.2.2). These polynomials are 

completely determined by the coefficients. So, the total number of unknowns in equation (2.2.2) 
is 

 [ ]

0
deg 1 1

d
d

N
i

P d N


              (2.2.3) 

Expanding the left hand side of the equation (2.2.2) in powers of x, it is found that the equation 

(2.2.2) is equivalent to equating the first N terms in the expansion to zero. We get a system of N 

linear homogenous equations for the unknown coefficients of the polynomials. To calculate the 

coefficients of the Hermite- Padé polynomials we require some sort of normalization, such as 

 [ ](0) 1i
NP 

 
for some 0≤ i ≤ d.        (2.2.4) 

The equation (2.2.3) simply ensures that the coefficient matrix associated with the system is 

square. One way to construct the Hermite- Padé polynomial is to solve the system of linear 

equations by any standard method such as Gaussian elimination or Gauss-Jordan elimination. 

The computed complexity of this approach is 
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  3( )O N  (work),
 

2( )O N  (storage) as 
 
N . 

It is important to emphasize that the only input required for the calculation of the Hermite- Padé 

polynomials are the first N coefficients of the series 0 1, ,..., dU U U  .   

2.3 Padé Approximants  

Padé approximant is a technique for summing power series that is widely used in applied 
mathematics as Van Dyke (1975). In the Padé method, the approximant is sought in the class of 
rational functions. Padé approximants can be described from the Hermite- Padé class in the 
following sense. 

In the Hermite- Padé class, let d=1 and the polynomials [0]
NP  and [1]

NP  satisfy equations (2.2.1) and 
(2.2.2). One can define an approximant ( )Nu x  of the series ( )U x

 
by 

       
[1] [0] 0,N N NP u P              (2.3.1) 

Where,
 

1U U  and 0 1U    

Then we select the polynomials 

       
[0]

0
( )

n
i

N i
i

P x bx



 
and [1]

0
( )

m
i

N i
i

P x cx


         (2.3.2) 

Such that (n + m) ≤ N, the constants ib ’s and ic ’s are unknown to be determined. So that, 

        
[1] [0] 1( ) ( ) ( ) ( )n m

N N Nu x P x P x Ox             (2.3.3) 

Equating the first (n + m) equations of (2.3.3) equal to zero and the normalization condition in 

equation (3.2.4), we find the values of ib ’s and ic ’s. Then , the rational approximant is known as 

Padé approximant denoted as  

   

[0]

[1]
( )( ) ( )

N
N

N

P xu x P x ,          (2.3.4) 

Padé approximant has often been used to obtain information about the singularity structure of a 

function from its series coefficients. The main idea to examine the behavior of the 

denominators [1]
NP . The Padé approximants is also have been used is tacking slowly convergent, 

divergent and asymptotic series. The zeroes of the denominator [1]
NP give the singular point such 
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as pole of the function ( )u x  if it exists. If a sequence of zeros approaches a limit as N increases, 

then the limit is almost certainly a singularity of ( )U x . In order to evaluate the Padé approximants 

for a given series numerically, we have used symbolic computation language such as MAPLE. 

Examples 2.1: consider 2
2

1( ) ,(1 )
xu x ex 


 a function with a simple pole. After applying the 

normalization condition 0 1c  , we obtain the polynomial coefficients [0]
5P  and [1]

5P  for [0]
5degP n

 
and [1]

5degP m   .when 2m n  , 

            
[0] 2
5

175 1811 61 122P x x  
  

and 

 
[1] 2
5

345 268 321 .122 81 122P x x    

When 3m n  , 

           
[0] 3
7

287 1 471 27 2 27P x x x     

And    [1] 3
7

385 85 125 8 .54 9 54 81P x x x     

The table below will show the convergence to the singular point of Padé approximant. 

Table 2.1: The approximant of cx  by Padé for the function in example 2.1 

m,n cx  

2,2 .1899603214 + .1471159877i 

3,3 2.609057312-.1× 10-8i 
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2.4 Algebraic approximants 

Algebraic approximant is a special type of Hermite- Padé approximants. In the Hermite- Padé 

class, we take  

   
0 11, 1, ,..., .d

dd U U U U U                        (2.4.1) 

An algebraic approximant ( )Nu x  of the series ( )U x  can be defined as solution of the equation 

Since the equation (2.4.1) is a polynomial of the partial sum ( )Nu x  in degree d, the algebraic 

approximants ( )Nu x  , is in general a multivalued function with d branches. At first this may 

appear to be an undesirable feature of the method, in that case we have the problem of 

identifying the particular branch that approximates ( )U x . On the other hand, the series ( )U x is the 

expansion of the particular type of function ( )u x that is itself multivalued. For Algebraic 

approximants, one uses the partial sum ( )Nu x  to construct the (d+1) polynomials 

               

[0] [1] [ ]{ ( ), ( ),......, ( )},d
N N NP x P x P x  

Such that 

               

[ ]

0
( ) ( ) ( )

d
i i N

N N
i

p x u x O x


           (2.4.2) 

And        [ ]

0
deg

d
i

N
i

P d N


   ,         (2.4.3) 

The total number of unknown in the equations (2.4.2) is  

    

[ ]

0
deg 1 1

d
i

N
i

P d N


              (2.4.4) 

In the order of determine the polynomial the coefficient of the polynomials [ ]i
NP  one can 

set [0](0) 1NP   for normalization, without loss of generality. The discriminant of the equation 

(2.4.1) approximates the singularity of function ( )u x .    
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Example 2.2: consider    
1
3( ) (1 3 ) sin(2 ).u x x x    

Let 2d  and [0] [1] [2]
8 8 8deg deg deg 2P P P    to apply the algebraic approximation method on 

the power series of the function. After we set the normalization condition 0
8 1,P   we get the 

polynomials 

[0] 2
8

10246192803431 744734102789( ) 1 2514550532711 2514550532711P x x x  
 

[1] 2
8

3180134571291 5416308772923 828242251983( ) 12572752663555 12572752663555 2514550532711P x x x  
 

[2] 2
8

5765716034292 60179793102 50166000897( ) 12572752663555 12572752663555 12572752663555P x x x    

Here the discriminate gives us the singularity at xc= .2093493364. If we increase the degree of 

the polynomial coefficients, it may give s a better approximation. So again  

 
Let 2d  and [0] [1] [2]

8 8 8deg deg deg 3P P P   , following the same process we get this 

singularity is calculated at .1848860209cx  . 

Again taking 2d  and [0] [1] [2]
8 8 8deg deg deg 4P P P    the singularity is calculated 

at 0.01002326757cx  .The table below will show the comparative results of the convergence 

of the algebraic method to the singular point.  

Table 2.2: the approximation of xc by algebraic approximant for the function in upper example. 

[ ]deg i
NP

 
d xc 

2 2 0.2093493364 

3 2 0.1848860209 

4 2 -0.01002326757 

Note that d=3 may be more accurate for this problem. 



 

21 

2.5 Drazin-Tourigney Approximants 

Drazin and Tourigney in (1996) implemented the idea that ( )d O N as N. Their 
method is simply a particular kind of algebraic method, satisfying the equations   

[0] [1] [2] 2 [ ]( ) ( ) ( ) ( ) ( ) ... ( ) ( ) 0d d
N N N N N N NP x P xu x P xu x P xu x    

                                 
(2.5.1)   

In this method they considered 

         

[ ]deg i
NP d i              (2.5.2)  

And  21( 3 2)2N d d   .          (2.5.3) 

There is a recurrence relation for the calculation of the Drazin-Tourigney polynomial, but its 
order increases with N. At present, nothing is known about the convergence of this 
approximants. However, Drazin and Tourigney (2000) present some numerical results that 
suggest that the error for this series of (3.5.1) decays super exponentially.  

Drazin and Tourigney initially motivated in (1996) to solve boundary value problems for 
nonlinear systems of ordinary and partial differential equations.  

2.6 Differential Approximants   

Differential approximants is an important member of Hermite- Padé class. It is obtained by 
taking 

     

1
0 1 22, 1, , ..., .d

dd U U UU DU U D U                              (2.6.1) 

Where
dD dx  is the differential operator, the differential approximants ( )Nu x  of the 

series ( )U x  can be defined as the solution of the differential equation 

       

[0] [1] [2] [ ] 1... 0d d
N N N N N N NP P u P Du P D u           (2.6.2) 

A popular variant is obtained by taking  

       

2
0 1 21, 1, , ..., .d

dd U U DUU DU U DU           (2.6.3) 

Instead of (2.6.1). This gives the homogenous linear differential equation  

       

[0] [1] [2] 2 [ ]... 0d d
N N N N N N N NP u P Du P Du P Du    

     
 (2.6.4)  
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For the approximants.  

Here (2.6.2) is a linear differential equation of order (d-1) with polynomial coefficients. There 
are (d-1) linearly independent solutions, but only one of them has the same first few Taylors 
coefficients as the given series ( )U x . When d > 2, the usual method for solving such an equation 
is to construct a series solution. 

Differential approximants are chiefly for series analysis. They are powerful tools for locating 
singularities of a series and for identifying their nature. In this respect, the key is to note that it is 
not necessary to solve the differential equation (2.6.2) in order to find the singularities 
of ( )Nu x .The only singularities of ( )U x  are located at the zeroes of the leading 

polynomial [ ]( )d
NP x . Hence, some of the zeroes of [ ]( )d

NP x may provide approximations of the 

singularities of the series ( )U x . For instance, if ( )Nu x  has a singularity at ,c N  of the algebraic 
type  

       
0, 1, ,~ ( ) N

N N N c Nu u u    , 

Then the exponents N  is given by the simple formula 

( 1)
,

( )
,

( )2 ( )
d

N c N
N d

N c N

Pd DP







  
 
.  

Example 2.3 Consider  
(1 sin( ))( ) 11 3

xe xu x
x





 .  

Taking d=3 for [ ]

0
deg

d
i

N
i

P d N


 
 
and applying [0] [1] [ ]deg deg ..... deg ,d

N N NP P P d N      

and [ ]

0
( ) ( ) ( )

d
i N

N i
i

p xU x O x


 , we obtain the singular point at 2.991301923cx   . In similar 

procedure taking d=4 gives us more accurate result, i.e. 2.999999734cx  . The table below 
shows a comparative result. 
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Table 2.3: The approximation of xc by Differential approximant for the above function.  

N d xc 

15 2 3.000563091 

21 3 2.991301923 

28 4 2.999999734 

   

2.7 High Order Differential Approximants (HODA) 

Khan (2002) introduced an extension of differential approximant, which he mentioned as High 
order differential approximant. When the function has a countable infinity of branches, then the 
fixed low-order differential approximant may not be useful. So, for these cases he considers d 
increase with N. It leads to a particular kind of differential approximant ( )Nu x , satisfying (2.6.2), 
i.e.  

      

[0] [1] [2] [ ] 1... 0d d
N N N N N N NP P u P Du P D u      

Where   

      

1 ( 3)2N d d              (2.7.1) 

And 

      

[ ]deg i
NP i            (2.7.2) 

From (2.7.2) he deduced that there are  

1

0 0

1( 1) ( 1)( 2)2
d d

i i
i i d d



 

       

Unknown parameters in the definition of the Hermite- Padé form. In order to determine those 
parameters, the N equation used that follow from (2.2.2) 

[0] [ ] 1

1
( ) ( ) ( ) ( )

d
i i N

N N
i

P x P x D U x O x



 
 
as 0x  . 



 

24 

In addition, one can normalize by setting [ ](0) 1d
NP  . Then there remain as many equations as 

unknowns. One of the roots, say ,c Nx  , of the coefficient of the highest derivative, i.e.  

            

[ ]
,( ) 0d

N c NP x  . 

gives an approximation of the dominant singularity cx  of the series U. If the singularity is of 
algebraic type, then the exponent may α be approximated by 

 
( 1)

,
( )

,

( )2 ( )
d

N c N
N d

N c N

Pd DP







   .          (2.7.3) 

It is worth noting that the formulae for the location and the exponent of the dominant singularity 
involve only the coefficients of the highest derivatives in the differential equation that defines the 
approximant. This motivates the choice (2.7.2) with its emphasis on those very coefficients. 

2.8 High-Order Partial Differential Approximants (HPDA)  

Consider the function ( , )f x y  of two independent variables, represented by its power series  

           0 0
( , ) i j

ij
i i

U x y c x y
 

 


 
 as   ( , ) 0,0x y          (2.8.1) 

And the partial sum 

            

1 1

0 0
( , )

N N
i j

N ij
i i

U x y c x y
 

 

           (2.8.2) 

By using that partial sum, the following (2d+1) polynomials can be constructed  

   [0,0] [1,0] [0,1] [ ,0] [0, ], , ,................, ,d dP P P P P         (2.8.3) 

In x and y such that  

[0,0] [1,0] [0,1] [ ,0] [0, ]
0 0

.........
d d

i jN N N N
N d d ijd d

i i

U U U UP U P P P P c x yx y x y
 

 

   
     

    
       

(2.8.4) 

Where    0ije 
     

for           3 1i j N d             (2.8.5)  
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By equating the coefficients of the variables and their powers from (2.8.5), one can obtain a total 
of  

   

13 (3 1)2eN d d 
 
          (2.8.6) 

Equations to determine the unknown coefficients of the polynomials in (2.8.3), the normalization 
condition can be imposed  

          
[0,0] 1,P 

     
or   [ ,0] 1,dP 

 
 or  [0, ] 1dP 

  
for   , 0,0x y   .   (2.8.7) 

Thus, remaining unknowns  

21 ( 6 11)3uN d d d            (2.8.8) 

must be found by the use of Ne    equations. 

It would be helpful to write the system of linear equations , 0i je   into the matrix form with the  

1eN 
 
unknown matrix x.    

Thus, the non-homogenous system of Ne linear equations with Nu unknowns can be written in 
matrix form as  

           
Ax b            (2.8.9) 

Where A is e uN N  matrix and b is the non-zero column matrix of order 1eN  . Thus, system 
will be solvable if  

e uN N                        (2.8.10) 

However, the system may be inconsistent. If the system is consistent, then the system can be 
solved by converting the augmented matrix [ / ]A b  to row echelon or reduced row echelon form 
by using the Gaussian elimination or Gauss-Jordan elimination. It is noted that, there will exist 
some free variables. Naturally the values of the free variables in the multivariable approximant 
methods can be chosen at random. There is no particular reason to pick up these particular 
numbers. It might for instance seek a solution such that the polynomials in (2.8.3) have as few 
high-order terms as possible. Usually the accuracy of the method does not depend critically on 
the particular choice made. Once the polynomials (2.8.3) have been found, it is more practical to 
find the singular points by solving either of the polynomial coefficients of the highest derivatives   

[ ,0]( , ) 0dP x y  or [0, ]( , ) 0dP x y   or both simultaneously.     
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                                                                                                                    Chapter 3 

Governing Equations of the Problem 

The basic governing equations for the flow in standard vector form and the mathematical modeling of the 
problem for various cases with different coordinate systems are represented in this chapter. 

3.1: Introduction  

The basis of computational fluid dynamics is the basic fluid dynamical governing equations; the 
continuity, the momentum (Navier-Stokes equation) and the energy equations. These equations 
depict the physics of various flows. They are the mathematical statements of the three 
fundamental laws or principles upon which fluid dynamics is based: 

 Mass is conserved for a system;  
 Second law of Newton; 
 First law of Thermodynamics; Energy is conserved.   

3.2: Continuity Equation  

The continuity equation is based on the mass conservation principle, which states that mass can 
neither be created nor be destroyed. Conservation of mass is inherent to a control mass system 
(closed system). The above law is stated mathematically as: 

0,m
t





            (3.2.1) 

Where m= mass of the system.  

The equation of continuity in vector form is written as 

 . 0,qt
 
 

            
 (3.2.2) 

Where ˆˆ ˆq ui vj wk      is the velocity of flow at a point and  the density of the fluid.  

For a steady flow 
 

0,t




  thus  

   
 . 0,q              (3.2.3) 

For incompressible fluid flow,   = constant, hence the continuity equation becomes  

. 0.q             (3.2.4)  
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3.3 Momentum Equation (Navier-Stokes Equation)   

This equation is formed by applying another fundamental physical principle to a model of the 
flow, namely Physical principle. Newton’s second law on the moving fluid element, states that 
the net force on the fluid equals its mass times the acceleration of the element.  

F ma            (3.3.1) 

The momentum equations are called the Navier-Stokes equations in honour of two men-the 
Frenchman M. Navier and the Englishmen G. Stokes, who independently obtained the equations 
in the first half of the nineteenth century.  

The Navier-Stokes equations for viscous incompressible fluid with constant viscosity in vector 
form is expressed as  

   2.q q q g p q Mt  
 
        

       (3.3.2) 

Where g  denotes the body force per unit mass acting on the fluid element,  p  is the pressure,   

is the viscosity of the fluid and M is the other external force.  

3.4 The Governing equations in Cartesian coordinate system  

The governing equations (3.2.2) and (3.3.2) in vector form are transformed into the following 
equations in Cartesian form.  

Mass Conservation (continuity) equation  

( ) ( ) ( ) 0u v w
t x y z
      
   

   
 

For incompressible steady fluid flow; 

0u v w
x y z
  
  

  
 

Momentum (Navier-Stokes) Equations  

X- direction:
 

2 2 2

2 2 2 x
u u u u p u u uu v w gt x y z x x y z  

         
                   

 

Y- direction: 
2 2 2

2 2 2 y
v v v v p v v vu v w gt x y z y x y z  

         
                   
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Z- direction: 
2 2 2

2 2 2 z
w w w w p w w wu v w gt x y z z x y z  

         
                   

 

3.5 The Governing equations in Cylindrical coordinate system   

The  del () operator in cylindrical coordinate system is defined as  

 

 

The governing equations (3.2.2) and (3.3.2) in vector form are transformed into the following 
equations in cylindrical coordinate system. 

Mass Conservation (continuity) equation 

( )( ) ( )1 1 0r zqqr q
t r r r z

 


 
   

   
 

For incompressible steady fluid flow; 

1 0r r zqq q q
r r r z




 

   
  

 

where rq  , q  and zq   be the velocity components in the r,  , z  directions respectively.  

Momentum (Navier-Stokes) Equations  

2 2 2 2

2 2 2 2 2 2
1 1 2r r r r r r r r r

r z r
q q qq q q q q q q q qpq q gt r r r z r r r r r r r r z
    
 

          
                         

 

2 2 2

2 2 2 2 2 2
1 1 1 2r r

r z
q q q q qq q q q q q qqpq q gt r r r z r r r r r r r r z
          

  
  

                                  
 

2 2 2

2 2 2 2
1 1z z z z z z z z

r z z
qq q q q q q q qpq q gt r r z z r r r r z
  
 

                              
 

where rg  , g  and zg   be the  components body force in the r,  , z  directions respectively. 

 

 

 

     1 1r
r r r z

  



  

   
  
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3.6 Maxwell’s Equations  

Magnetohydrodynamic equations are the ordinary electromagnetic and hydrodynamic equations 
modified to take account of the interaction between the motion of the fluid and the 
electromagnetic field. Formulation of the electromagnetic theory is known as Maxwell’s 
equation. Maxwell’s basic equations show the relation of basic field quantities and their 
construction. Maxwell’s equations are: 

Charge continuity  

. eD              (3.6.1) 

Current continuity 

. eJ t


 


           (3.6.2) 

Magnetic field continuity  

. 0B             (3.6.3) 

Ampere’s Law 

0
DB J t


  


          (3.6.4) 

Faraday’s Law 

BE t


 


          (3.6.5) 

Constitutive equations for D and B  

D E
      

and  0eB B          (3.6.6)  

Total current density flow  

( ) eJ E q B q              (3.6.7) 

The equations (3.6.1) to (3.6.7) are Maxwell’s equation where D is the electron displacement, e  
is charge density, E is the electric field, B is the magnetic field,  B0 is the magnetic field 

intensity, J  is the current density, 
D
t

  is the displacement current density,   is the electric 

permeability of medium, qis the velocity vector,   is the electrical conductivity and eq  is the 

convection current due to charge moving with the field.  
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In MHD, a fluid is considered as grossly neutral. Then the charge density e  in Maxwell’s 
equation is interpreted as an excess charge density, which is generally not large. If the access 
charge density is ignored, then the displacement current is also ignored. In most problems the 
current due to convection of the excess charge are small. Therefore, the electromagnetic 
equations can be reduced to the following form: 

Charge continuity  

. 0D             (3.6.8) 

Current continuity  

. 0J             (3.6.9) 

Ampere’s Law  

0B J                       (3.6.10) 

Total current density flow 

( )J E q B  
                   

(3.6.11) 

3.7 General Equations Governing Magnetohydrodynamic Nanofluid flow  

3.7.1 The Continuity Equation     

The MHD continuity equation for viscous incompressible electrical conductive nanofluid 
remains as that of usual continuity equation 

. 0.q             (3.7.1) 

3.7.2 The Momentum (Navier-Stokes) Equation   

The equation of momentum (3.3.2) governing the flow of a nanofluid is expressed as 

  2.nf nf nf
q q q g p q Mt  
 
        

      (3.7.2) 

Where M is the other external forces acting on the flow.  

Taking into account the force due to gravity, thermal expansion and the force per unit volume 
when an electrical current density J  flows through the fluid i.e. the Lorentz force J B  due to 
the presence of magnetic field, the Navier-Stokes equation (3.7.2) becomes, 



 

31 

   21 1. nf nf
nf nf

q q q p q g T J Bt  
 


           

     (3.7.3)  

Where q is the velocity vector, p  is the pressure, nf  is the density of the nanofluid, nf  is the 

dynamic viscosity of the nanofluid and nf   is the thermal expansion coefficient of nanofluid.   

 Following Sheikholeslami et al.(2012), the relationship between the thermo physical properties 
of the nanofluid and convectional base fluid together with nanoparticles are given as:  

 2.5
,

1
f

nf






     

,)1( sfnf  
 

1 3 1 / 2 1 ,nf s s s

f f f f

    
   

       
                          

     (3.7.4)  

Where f density of base fluid, s  is the density of the nanoparticles,  is the volume fraction of 

the nanoparticles, f  is the density base fluid, f  is the electric conductivity of the base fluid, 
s is the electric conductivity of the nanoparticles.      
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                                                                                                   Chapter 4  

Magnetohydrodynamics Nanofluid Flow through Expanding or 
Contracting Channel with Permeable Walls 

4.1 Introduction  

Attained by dispersing and stably suspended nanoparticles into base water with typical 

dimensions of shape and size 1-100nm Choi(2007),Nanofluid is established as a new dynamic 

subclass of nanotechnology-based heat transfer fluids. Many researchers initiated their research 

on MHD Nanofluid flow through porous medium for its applications in technological and 

engineering sectors such as MHD generator; plasma studies, nuclear reactors, geothermal energy 

extraction. Akbar et al. (2016) studied heat and mass transfer analysis in a viscous unsteady 

MHD nanofluid flow through a channel with porous walls and medium in the presence of 

metallic nanoparticle. Elahi et al. (2014) researched theoretical study of blood flow of nanofluid 

through composite stenosed arteries with permeable walls. The problem of laminar nanofluid 

flow in a semi-porous channel in the presence of transverse magnetic field was investigated 

analytically by Sheikholeslami et al. (2013). Their results showed that velocity boundary layer 

thickness decreases with increases of Reynolds number and it increases as Hartmann number 

increases.   

Majdalani et al. (2002) analyzed two dimensional viscous flows between slowly expanding, 

contracting walls with weak permeability. H.N. Chang et al (1989) studied velocity field of 

pulsatile flow in a porous tube. Their results found that Seepage across permeable walls is clearly 

important to the mass transfer between blood, air and tissue. Therefore, a substantial amount of 

research work has been invested in the study of the flow in rectangular domain bounded by two 

moving porous walls, which enable the fluid to enter or exit during successive expansions or 

contractions.  Dauenhauer et al. (1999) studied the unsteady flow in semi-infinite expanding 

channels with wall injection. They characterized the two non-dimensional parameters, the 

expansion ratio of the wall and the cross-flow Reynolds number. Hatami et al. (2015) studied 

numerical analysis of nanofluid flow conveying nanoparticles through expanding and contracting 

gaps between permeable walls. 

The  present study of the research  is to investigate the influence of magnetic field on 

nanofluid flow through expanding or contracting channel with permeable walls. The reduced 
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ordinary differential equations are solved using Hermite-Pade` approximation method. The 

bifurcation point of wall shear stress and velocity field are obtained due to wall dilation rate and 

the effects of physical governing parameters on velocity profile are also analyzed graphically. 

4.2. Mathematical configuration  

Considering the laminar unsteady and incompressible flow between two porous plates that 

enable the fluid to enter or exit during successive expansions or contractions shown in Figure 

4.1. Water based different nanofluids are considered and assumed that the base fluid and the 

nanoparticles are in thermal equilibrium and no slip occurs between them. A uniform magnetic 

field Bo is acting in direction normal to the right plate. The walls expand and contract uniformly 

at a time dependent rate
' daa dt . The fluid inflow velocity is independent of position assumed to 

be Vw. A two-dimensional Cartesian coordinate system is considered and the flow is chosen 

along the x-axis.      

 

 

 

         Vw 

   

 

 

Fig: – 4.1 Physical configuration of the problem. 

 

 



 

34 

 

4.3 Physical properties  

The thermo physical properties of different nanoparticles and base water are given:  

Table 4.1: Thermo physical properties 

Physical 
properties 

Water Al2O3 
(Alumina) 

Ag 
(Silver) 

Cu  
(Copper) 

)( 3mkg  997.1 3970 10500 8933 

)/( sPa  0.001 _ _ _ 

)( mS  6105.5   61035  _ 6106.59   

 
Here the symbol   denotes dynamic viscosity, ρ denotes effective density and σ denotes 
effective electrical conductivity of the nanofluid.   

4.4 Mathematical formulation   

The continuity and momentum equations for the unsteady flow are as follows 

0







y
v

x
u

                                                    (4.4.1)                              

uB
y
u

x
u

x
p

y
uvx

uut
u

nf

nf

nf

nf

nf

2
02

2

2

21













































                              (4.4.2)  






































2

2

2

21
y
v

x
v

y
p

y
vvx

vut
v

nf

nf

nf 


               (4.4.3) 

Where u and v are the velocity components in x and ydirections, prepresents the dimensional 

pressure, t is the time, B0 is the magnetic field intensity acting vertically downward on the right 

plate.  

The boundary conditions are 

 0, atw
au v V y a tc   
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0at0,0 

 yvx
u

            
0at0  xv

         (4.4.4)
 

and 
a
Vc w  is the injection/ suction coefficient. 

The stream functions and mean flow vorticity can be written as 

, , v uu vy x x y
     

   
   

 

y
uB

yxyvxut nf

nf

nf

nf




































 2

02

2

2

2







                            (4.4.5)
 

Similarity variables are considered due to mass conservation as follows, 

( , ),nf x f y t
a




  
 

2
,, ,nf yx f f y tu v aa

 
  , y

y fy f ya


 
      (4.4.6)  

Substitution of Eq. (4.4.6) into Eq. (4.4.5) reduces to 

y
nf

nf
yyynfyyxyty uBuuvuuu 0


 
                  (4.4.7)  

The chain rule is used to solve Eqn. (4.4.7) 

 
1

2 3
03 0nf nf

yyyy yyy yy yy y yy yyt yy
nf nf

f yf f f f f f a f a B f 


 


   

            
   

                    (4.4.8)     

With the following boundary conditions 

            0, 0 at 0yyf f y  
 
    

and      2.5Re (1 ) , 0 at 1yf A f y                 (4.4.9)     

Where  
'

f

aat


  is the non-dimensional wall dilation rate, which is positive for expansion and 

negative for contraction, Re f w

f

aV


    is the permeable Reynolds number and 
f

fBaH



0  is 

Hartmann number.  
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Equation (7), (9) and (10) can be normalized by taking 

 AB
ffa

vva
uuaa Re,,, 


                      

(4.4.10)     

and then  , , , Re
xf xf fu v cc c c AB

 
                               (4.4.11)     

   ' '23 Re 0iv iii ii iii i ii iif yf f AB ff f f Ha Cf                                 (4.4.12)     

Boundary conditions (10) is reduced to 

       
0: 0, 0iiy f f  

      
and 1: 1, 0iy f f  

 
              (4.4.13)     
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For normalization, substituting 

eRRe 

  and 

aHHa 

   into equation (13) becomes 

      23 Re 0iv iii ii iii i ii iif yf f AB ff f f Ha Cf                                   (4.4.14)   

Another important quantity is the shear stress. Shear stress can be determined from Newton’s 
law for viscosity:  

                        
2

3( )
ii

nf
nf x y

v xfv u a


                    (4.4.15) 

Introducing non-dimensional shear stress 2
nf w

WV



  , we have   

    Re
iixf
AB                      (4.4.16) 

4.5 Series analysis 

A power series considered in terms of in the following form as equation (15) is non-linear 

                                 0
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k
k

f y f
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

                                                                             (4.5.1) 
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Substituting the equation (4.5.1) into equation (4.4.14)    and equating the coefficient of power 

series, with the help of MAPLE, we have computed the first 13 coefficients for the series of 

the stream function )(yf . The first few coefficients of the series of )(yf are as follows: 
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(4.5.2) 

The series is then analyzed by using various form of Approximation method. 

4.6. Results and discussion 

By differentiating the series (4.5.2), we have computed the velocity function f  as a series in 

power, Re and Ha respectively. To apply Hermite-Pade` approximation method to obtain an 

explicit solution of laminar unsteady incompressible different nanofluid in a parallel channel 

bounded by two moving porous walls, which enable the nanofluid to enter or exit due to 

successive expansion or contractions.  

Fig: 4.2(a) and Fig: 4.2(b) is showing the effect of non dimensional wall dilation rate on 

stream function and fluid velocity respectively. The fluid velocity increases along the centerline 

with the positively increasing values of dimensionless wall dilation rate due to successive 

expansion of channel width. On the other hand, velocity decreases at the centre of the channel 

whereas increases near the two plates when decreases negatively. The magnetic field has a 

significant effect on the velocity profile with the variation of.Fig: 4.3(a) and Fig: 4.3(b) have 

shown the effect of nanoparticles volume fraction on stream function and velocity profiles 

respectively. As nanoparticles volume fraction increases, fluid velocity )(yf  also increases while 

the stream function )(yf decreases. It can be seen from Fig: 4.4(a) and fig: 4.4(b) that fluid 

centerline velocity reduces while increases near the two walls by the decreasing values of 
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permeation Reynolds number Re. It is also shown that in absence of Hartmann number stream 

function )(yf  increases slightly while velocity )(yf   increases sharply.  
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Fig:- 4.2(a)Non-dimensional wall dilation rate effect on stream function and comparison.    
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Fig:- 4.2(b) Non-dimensional wall dilation rate effect on velocity profile and comparison.          
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Fig:- 4.3(a) Nanoparticles volume fraction effect on stream function and comparison.                
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Fig:- 4.3(b) Nanoparticles volume fraction effect on velocity profile and comparison.                
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 Reproduced Hatami et al. (2015) Results            Present Results 

 

 

 

 

 

 

 

 

 

Fig:- 4.4(a) Reynolds number effect on stream function and comparison.  
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       Reproduced Hatami et al. (2015) Results                       Present Results 

 

 

 

 

 

 

 

 

 

Fig:- 4.4(b) Reynolds number effect on velocity profile and comparison.  
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The effects of different nanoparticles volume fraction on )(yf and )(yf   are noticed in Fig 

4.5(a) and 4.5(b). It shows that the Ag-nanoparticles produce larger horizontal velocity near the 

walls. Moreover, Cu-nanoparticles enhance centerline velocity in absence of magnetic field. 
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Fig:- 4.5(a) Nanoparticles volume fraction effect on stream function and comparison.          
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 Reproduced Hatami et al. (2015) Results          Present Results 

 

 

 

 

 

 

 

 

 

Fig:- 4.5(b) Nanoparticles volume fraction effect on velocity profile and comparison. 
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The wall shear stress for different values of permeable Reynolds number over a range of non-

dimensional wall dilation rate and Hartmann number are represented in Fig 4.6. The absolute 

value of shear stress decreases when the non-dimensional wall dilation rate increases. Moreover, 

it is also noticed that the wall shear stress decreases rapidly by the positive variation of Ha.   
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Fig:- 4.6 Shear stress for different parameters 
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4.7 Special case study:  
Section (A): Stability of MHD Cu- water based nanofluid flow through expanding and 
contracting channel with permeable wall.  

                                    

      (a) 

 

 

                           

    

                                                                                     

 

 

   (b)        (c) 

Fig:- 4.7(A)-1 (a) Stream function (b) Velocity profile (c) Shear stress for cu- water based 

nanofluid flow for different value of α , where Re = 1; Ha= 1, 2; Φ = 0.04.  

Fig: (a), Fig: (b) and Fig: (c) show the effects of non-dimensional wall dilation rate on stream 

function, fluid velocity and shear stress respectively. The fluid velocity increases along the 

centerline with the positively increasing values of dimensionless wall dilation rate due to 

successive expansion of channel width. On the other hand, velocity decreases at the centre of the 

channel whereas increases near the two plates when decreases negatively. The absolute value 
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of shear stress decreases when the non-dimensional wall dilation rate increases.  The magnetic 

field has a significant effect on the velocity profile with the variation of. 

 

 

  

 

 

 

 

 

   (a)                 (b) 

 

 

 

 

 

 

        (c) 

Fig:- 4.7(A)-2 (a) Stream function (b) Velocity profile (c) Shear stress for cu- water based 

nanofluid flow for different value of Ha, where Re = 1; α = 1; Φ = 0.04. 

Fig: (a), Fig: (b) and Fig: (c) show the effects of Hartmann number on stream function, fluid 

velocity and shear stress respectively. It is seen that velocity at the centre of the channel reduces 

while enhances around the two plates when Ha increases. The transverse magnetic field opposes 

the alteration phenomena clearly. Because the variation of Ha leads to the variation of the 
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Lorentz force due to magnetic field and the Lorentz force produces more resistance to the 

alternation phenomena. The stream function is fluctuated while Hartmann number Ha increases. 

The absolute value of shear stress increases when Hartmann number increases.  

 

 

    

 

 

 

 

  (a)                            (b) 

 

      

 

 

 

 

              (c) 

Fig:- 4.7(A)-3 (a) Stream function (b) Velocity profile (c) Shear stress for cu- water                  

based nanofluid flow for different value of  Re, where α = 1; Ha= 1, 2; Φ = 0.04.  

Fig: (a), Fig: (b) and Fig :(c) show the effects Reynolds number on stream function, fluid 

velocity and shear stress respectively.  It can be seen from Fig: (a) and Fig: (b) that fluid 

centerline velocity reduces while increases near the two walls by the decreasing values of 

permeation Reynolds number Re. Fig:(c) shows that the absolute value of shear stress increases 

when Reynolds number increases.  
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          (a)                          (b)  

 

 

 

 

 

                (c) 

Fig:- 4.7(A)-4 (a) Stream function (b) Velocity profile (c) Shear stress for cu- water based 

nanofluid flow for different value of Φ , where α = 1; Ha= 1, 2; Re = 1.  

Fig: (a), Fig: (b) and Fig: (c) show the effects of Nanoparticle on stream function, fluid velocity 

and shear stress respectively. As nanoparticles volume fraction increases, the value of fluid 

velocity )(yf   at the centre of the channel increases also around the two plates while the value of 

stream function )(yf  increases at the centre of the channel while decreases around the two 

plates. The absolute value of shear stress increases when nanoparticles volume fraction increases.    
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Table 4.2: Significant differences among different value of Φ for cu- water based nanofluid: 

Value of y 
Value of  f( y) Value of  f `( y) 

 Φ=0.0  Φ=0.02 Φ=0.04  Φ=0.0  Φ=0.02  Φ=0.04 

y = 0 0.000000e-01 0.000000e-01 0.000000e-01 1.520104e+00 1.521615e+00 1.522859e+00 

y = ± 0.2 2.887321e-01 2.878144e-01 2.875581e-01 1.456301e+00 1.457512e+00 1.458506e+00 

y = ± 0.4 5.740328e-01 5.744740e-01 5.747508e-01 1.265290e+00 1.265640e+00 1.265922e+00 

y = ± 0.6 7.975802e-01 7.979769e-01 7.983003e-01 9.502829e-01 9.495213e-01 9.488938e-01 

y = ± 0.8 9.462312e-01   9.463118e-01 9.463629e-01 5.343879e-01 5.444338e-01 5.534769e-01 

y = ±0.99 9.974374e-01 9.967364e-01 9.960567e-01 1.471616e-01 1.601279e-01 1.712881e-01 

 

From table, it is shown that as nanoparticles volume fraction increases, the value of fluid 
velocity )(yf   at the centre of the channel increases also around the two plates while the value of 
stream function )(yf  increases at the centre of the channel while decreases around the two 
plates.   
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Section (B): Stability of MHD Ag- water based nanofluid flow through expanding and 
contracting channel with permeable wall.  
 

 

   

        

 

 

          (a)       (b) 

 

 

 

 

 

 
                     (c) 

Fig:- 4.7(B)-1 (a) Stream function (b) Velocity profile (c) Shear stress for Ag - water based 
nanofluid flow for different value of α , where Φ = 0.04; Ha= 1, 2; Re = 1, 4. 

Fig: (a), Fig: (b) and Fig: (c) show the effects of non-dimensional wall dilation rate on stream 
function, fluid velocity and shear stress respectively. The fluid velocity increases along the 
centerline with the positively increasing values of dimensionless wall dilation rate due to 
successive expansion of channel width. On the other hand, velocity decreases at the centre of the 
channel whereas increases near the two plates when decreases negatively. The absolute value 
of shear stress decreases when the non-dimensional wall dilation rate increases.  The magnetic 
field has a significant effect on the velocity profile with the variation of. 
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           (a)                     (b) 

 

 

 

 

 

 

            (c) 

Fig:- 4.7(B)-2 (a) Stream function (b) Velocity profile (c) Shear stress for Ag - water based 

nanofluid flow for different value of Ha, where α = 1; Re = 1, 4; Φ = 0.04. 

Fig: (a), Fig: (b) and Fig: (c) show the effects of Hartmann number on stream function, fluid 

velocity and shear stress respectively. It is seen that velocity at the centre of the channel reduces 

while enhances around the two plates when Ha increases. The transverse magnetic field opposes 

the alteration phenomena clearly. Because the variation of Ha leads to the variation of the 

Lorentz force due to magnetic field and the Lorentz force produces more resistance to the 

alternation phenomena. The stream function is increases while Hartmann number Ha increases. 
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The absolute value of shear stress decreases primarily then increases when Reynolds number is 

positive as well as Hartmann number increases.  

 

    

 

 

 

 

 

   (a)           (b) 

 

 

 

 

 

 

                          (c) 

Fig:- 4.7(B)-3 (a) Stream function (b) Velocity profile (c) Shear stress for Ag – water based 

nanofluid flow for different value of Re, where α = 1; Ha = 1; Φ = 0.04.  

Fig: (a), Fig: (b) and Fig: (c) show the effects of Reynolds number on stream function, fluid 

velocity and shear stress respectively.  It can be seen from Fig: (a) and Fig: (b) that fluid 

centerline velocity reduces while increases near the two walls by the decreasing values of 

permeable Reynolds number Re. Fig: (c) shows that the absolute value of shear stress increases 

when Reynolds number increases.  
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         (a)                      (b) 

 

 

 

 

 

 

 

                 (c) 

Fig:- 4.7(B)-4 (a) Stream function (b) Velocity profile (c) Shear stress for Ag – water based 

nanofluid flow for different value of Φ, where α = 1; Re = 1; Ha = 1. 

Fig: (a), Fig: (b) and Fig: (c) show the effect of nanoparticle on stream function, fluid velocity 

and shear stress respectively. As nanoparticles volume fraction increases, fluid velocity )(yf   at 

the centre of the channel reduces while enhances around the two plates while the value of stream 

function )(yf decreases. The absolute value of shear stress increases when nanoparticles volume 

fraction increases.    
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Table 4.3: Significant differences among different values of Φ for Ag- water based nanofluid: 

Value of y 
Value of  f( y) Value of  f `( y) 

 Φ=0.0  Φ=0.02 Φ=0.05  Φ=0.0  Φ=0.02  Φ=0.05 

y = 0 0.000000e-01 0.000000e-01 0.000000e-01 1.578552e+00 1.578429e+00 1.578280e+00 

y = ± 0.2 3.104048e-01 3.103822e-01 3.103544e-01 1.499286e+00 1.499191e+00 1.499074e+00 

y = ± 0.4 5.897256e-01 5.896906e-01 5.896479e-01 1.270756e+00 1.270734e+00 1.270709e+00 

y = ± 0.6 8.104559e-01 8.104257e-01 8.103889e-01 9.188524e-01 9.189192e-01 9.190011e-01 

y = ± 0.8 9.515264e-01 9.515139e-01 9.514985e-01 4.810668e-01 4.811639e-01 4.812819e-01 

y = ±1.0 9.999651e-01 9.999613e-01 9.999568e-01 8.482054e-06 6.225556e-06 1.998789e-06 

 

From the table it is seen that, as nanoparticles volume fraction increases, the value of fluid 

velocity )(yf   at the centre of the channel reduces while increases around the two plates while 

the value of stream function )(yf decreases. 
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Section(C): Stability of MHD Al2O3- water based nanofluid flow through expanding and 
contracting channel with permeable wall.  
 
 
 

        

 

 

 

 

      (a)            (b) 

 

 

 

 

 

 

 
              (c) 
Fig:- 4.7(C)-1(a) Stream function (b) Velocity profile (c) Shear stress for Al2O3 -water                     

based nanofluid flow for different value of α ,where Φ = 0.04; Ha= 1; Re = 1.  

Fig: (a), Fig: (b) and Fig: (c) show the effects of non-dimensional wall dilation rate on stream 

function, fluid velocity and shear stress respectively. The fluid velocity increases along the 

centerline with the positively increasing values of dimensionless wall dilation rate due to 

successive expansion of channel width. On the other hand, velocity decreases at the centre of the 

channel whereas increases near the two plates when decreases negatively. The absolute value 
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of shear stress decreases when the non-dimensional wall dilation rate increases.  The magnetic 

field has a significant effect on the velocity profile with the variation of. 

 

         

 

 

 

 

 

           (a)            (b) 

 

 

 

 

 

 

          (c) 

Fig:- 4.7(C)-2(a) Stream function (b) Velocity profile (c) Shear stress for Al2O3 - water based 

nanofluid flow for different value of Ha,where α = 1 ; Re = 1; Φ = 0.04.  

Fig: (a), Fig: (b) and Fig: (c) show the effect of Hartmann number on stream function, fluid 

velocity and shear stress respectively. It is seen that velocity at the centre of the channel reduces 

while enhances around the two plates when Ha increases. The transverse magnetic field opposes 

the alteration phenomena clearly. Because the variation of Ha leads to the variation of the 

Lorentz force due to magnetic field and the Lorentz force produces more resistance to the 
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alternation phenomena. The stream function decreases while Hartmann number Ha increases. 

The absolute value of shear stress increases when Hartmann number increases.  

 

        

 

 

 

 

 

          (a)         (b) 

 

 

 

 

 

 

        (c) 

Fig:- 4.7(C)-3 (a) Stream function (b) Velocity profile (c) Shear stress for Al2O3 - water based 

nanofluid flow for different value of Re,where α = 1; Ha = 1; Φ = 0.04.  

Fig: (a), Fig: (b) and Fig: (c) show the effect of Reynolds number on stream function, fluid 

velocity and shear stress respectively.  It can be seen from Fig: (a) and Fig: (b) that fluid 

centerline velocity reduces while increases near the two walls by the decreasing values of 

permeation Reynolds number Re. Fig: (c) shows that the absolute value of shear stress increases 

when Reynolds number increases.  
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           (a)                                 (b) 

 

     

 

 

 

 
 
            (c) 

Fig:- 4.7(C)-4 (a) Stream function (b) Velocity profile (c) Shear stress for Al2O3 - water based 

nanofluid flow for different value of Φ,where α = 1; Ha = 1; Re=1.  

Fig: (a), Fig: (b) and Fig: (c) show the effect of Nanoparticle on stream function, fluid velocity 

and shear stress respectively. As nanoparticles volume fraction increases, fluid velocity )(yf   at 

the centre of the channel decreases while increases around the two plates  while the value of 

stream function )(yf decreases .The absolute value of shear stress increases when nanoparticles 

volume fraction increases.    
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Table 4.4: Significant differences among different values of Φ for Al2O3-water based nanofluid: 

Value of y 
Value of  f( y) Value of  f `( y) 

 Φ=0.0  Φ=0.02 Φ=0.05  Φ=0.0  Φ=0.02  Φ=0.05 

y = 0 0.000000e-01 0.000000e-01 0.000000e-01 1.578542e+00 1.578419e+00 1.578270e+00 

y = ± 0.2 3.104048e-01 3.103822e-01 3.103542e-01 1.499276e+00 1.499181e+00 1.499064e+00 

y = ± 0.4 5.897256e-01 5.896816e-01 5.896476e-01 1.270746e+00 1.270724e+00 1.270699e+00 

y = ± 0.6 8.104559e-01 8.104158e-01 8.103887e-01 9.188514e-01 9.189182e-01 9.190001e-01 

y = ± 0.8 9.515264e-01 9.515040e-01 9.514982e-01 4.810658e-01 4.811629e-01 4.812809e-01 

y = ±1.0 9.999651e-01 9.999601e-01 9.999565e-01 8.482044e-06 6.225546e-06 1.998779e-06 

 

From the table we have that as nanoparticles volume fraction increases, the value of fluid 

velocity )(yf   at the centre of the channel reduce while enhances around the two plates while the 

value of stream function )(yf decreases. 
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Section (D): Stability of MHD fluid (with absence of Nanoparticle) flow through expanding 
and contracting channel with permeable wall.  
 

 

        

 

 

 

 
        (a)             (b) 

  

 

 

 

 

 

             (c) 
Fig:- 4.7(D)-1 (a) Stream function (b) Velocity profile (c) Shear stress with absence of nanofluid 

flow for different value of α, where Ha = 1, 2; Re= 1, 4; Φ=0.04. 

Fig: (a), Fig: (b) and Fig: (c) show the effect of non-dimensional wall dilation rate on stream 

function, fluid velocity and shear stress respectively. The fluid velocity increases along the 

centerline with the positively increasing values of dimensionless wall dilation rate due to 

successive expansion of channel width. On the other hand, velocity decreases at the centre of the 

channel whereas increases near the two plates when decreases negatively. The absolute value 

of shear stress decreases when the non-dimensional wall dilation rate increases.  The magnetic 

field has a significant effect on the velocity profile with the variation of. 
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           (a)                      (b) 
 

 

 

 

 

 

     
   (c) 

Fig:- 4.7(D)-2(a) Stream function (b) Velocity profile (c) Shear stress with absence of nanofluid 

flow for different value of Ha, where α = 1; Re= 1, 4; Φ=0.04.  

Fig: (a), Fig: (b) and Fig: (c) show the effects of Hartmann number on stream function, fluid 

velocity and shear stress respectively. It is seen that velocity at the centre of the channel reduces 

while enhances around the two plates when Ha increases. The transverse magnetic field opposes 

the alteration phenomena clearly. Because the variation of Ha leads to the variation of the 

Lorentz force due to magnetic field and the Lorentz force produces more resistance to the 

alternation phenomena. The stream function is decreased while Hartmann number Ha increases. 

The absolute value of shear stress increases when Hartmann number increases. 
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       (a)             (b) 

 

 

      

 

 

 

 
      (c) 

Fig:- 4.7(D)-3 (a) Stream function (b) Velocity profile (c) Shear stress with absence of nanofluid 

flow for different value of Re, where α = 1; Ha= 1, 2; Φ=0.04.  

Fig: (a), Fig: (b) and Fig: (c) show the effect of Reynolds number on stream function, fluid 

velocity and shear stress respectively.  It can be seen from Fig: (a) and Fig: (b) that fluid 

centerline velocity reduces while increases near the two walls by the decreasing values of 

permeation Reynolds number Re. Fig: (c) shows that the absolute value of shear stress increases 

when Reynolds number increases.  
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Section (E): Comparison of Stability for Different MHD Nanofluid Flow through Expanding 

or Contracting Channel with Permeable Walls. 

 

 

 

 

 

             
  

         (a)             ( b) 

 

 

 

 

 

 

 
                   (c) 
Fig:- 4.7(E)(a) Stream function (b) Velocity profile (c) Shear stress for different nanofluid flow, 

where α = 1; Ha= 1, 2; Re=1, 4; Φ=0.04.  

The effect of different nanoparticles volume fraction on stream function, velocity profile and 

shear stress are noticed in Fig: (a), Fig: (b) and Fig: (c). They show that the Ag-nanoparticles 

produce larger horizontal velocity near the walls. Moreover, Cu-nanoparticles enhance centerline 

velocity. It shows that the absolute value of shear stress is high for Ag and low for Al2O3.  
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Table 4.5: Significant comparison of stability for different MHD nanofluid: 

Value of y 
Value of  f( y) Value of  f `( y) 

 Cu  Ag Al2O3  Cu  Ag Al2O3 

y = 0 0.000000e-01 0.000000e-01 0.000000e-01 1.521615e+00 1.578429e+00 1.578419e+00 

y = ± 0.2 2.878144e-01 3.103832e-01 3.103822e-01 1.457512e+00 1.499191e+00 1.499181e+00 

y = ± 0.4 5.744740e-01 5.896916e-01 5.896816e-01 1.265640e+00 1.270734e+00 1.270724e+00 

y = ± 0.6 7.979769e-01 8.104258e-01 8.104158e-01 9.495213e-01 9.189192e-01 9.189182e-01 

y = ± 0.8 9.463118e-01 9.515140e-01 9.515040e-01 5.444338e-01 4.811639e-01 4.811629e-01 

y = ±1.0 9.967364e-01 9.999611e-01 9.999601e-01 1.601279e-01 6.225556e-06 6.225546e-06 

 

It shows that the value of stream function f(y) and velocity profile )(yf   produces larger 

horizontal velocity near the walls for Ag-nanoparticles. Moreover, Cu-nanoparticles enhance 

centerline velocity. 
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4.8 Bifurcation  

Employing the algebraic approximation method to the series (4.5.2) it obtained the dominating 

singularity behavior of the function   21)( cyf 
 
with 2.752214c   . Figure 4.8 shows the 

bifurcation diagram of velocity versus with the effect of Cu-water nanofluid. We say that there 

is a simple turning point, fold or a saddle-node bifurcation at .c  It is interesting to notice 

that there are two solutions branches of velocity when ,c one marginal solution 

when c and no solution when ,c where c is the critical value of for which the 

solution exists. The stability analysis indicates that the lower solution branch (I) is stable and 

physically realizable. For different values of , the upper solution branch (II) is unstable and 

physically unacceptable shown in Fig: 4.8.   

 

 

 

 

 

 

 

 

 

 

Fig:- 4.8: Bifurcation diagram of velocity at the porous wall for Cu-water based nanofluid.  
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4.9 Conclusion  

The stability of MHD unsteady nanofluids flow through expanding or contracting channel 

with porous wall in presence of an external magnetic field has been studied numerically. The 

effects of Hartman number, permeable Reynolds number, non-dimensional wall dilation rate and 

nanoparticles volume fraction on velocity profile, stream function and shear stress are 

investigated numerically. The major results of the current study are given as follows. 

 As nanoparticles volume fraction increases fluid velocity at the centre of the channel 

reduces while enhances around the two plates while the value of stream function 

decreases with presence of Hartmann number. 

  The velocity function and stream function is also increased by the increasing values of 

permeable Reynolds number.  

  Ag-nanoparticles accelerate horizontal velocity near the walls whereas Cu-nanoparticles 

enhance centerline velocity. 

   The wall shear stress decreases swiftly by the positive variation of Hartmann number. 

   The fluid velocity at the wall has two branches bifurcating at the critical wall dilation 

rate namely an upper branch and a lower branch. It is found that at the lower solution 

branch, which is physically acceptable, the value of velocity enhances with the 

increasing in the nanoparticles volume fraction.  
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                                                                                                  Chapter 5  

 Conclusions   
 

5.1 Conclusion  

The thesis has investigated Magnetohydrodynamics (MHD) nanofluid flow through expanding or 

contracting channel with permeable walls. The governing differential equation for mass 

momentum is derived according to the physical model of problem. These governing equations 

with boundary conditions are then made dimensionless by using suitable transformations. The 

resulting dimensionless nonlinear differential equations are solved numerically using power 

series with Hermite- Padé approximation method. 

A general conclusion of the work is presented below: 

 As nanoparticles volume fraction increases, fluid velocity reduces at the centre of the 

channel and enhances around the two plates while the value of stream function decreases. 

 Fluid centerline velocity reduces while increases near the two walls by the decreasing 

values of permeable Reynolds number. 

 The fluid velocity increases along the centerline with the positively increasing values of 

dimensionless wall dilation rate due to successive expansion of the channel width. On the 

other hand, velocity decreases at the centre of the channel whereas increases near the two 

plates when non-dimensional wall dilation rate decreases negatively.  

 The Ag-nanoparticles produce larger horizontal velocity near the walls. Moreover, Cu-

nanoparticles enhance centerline velocity in absence of magnetic field. 

 Effect of Hartmann number on stream function and velocity profiles shows that velocity 

at the centre of the channel reduces while enhances around the two plates when Hartmann 

number increases. The transverse magnetic field opposes the alteration phenomena 

clearly.  
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 The absolute value of shear stress decreases when the non-dimensional wall dilation rate 

increases. Moreover, it is also noticed that the wall shear stress decreases rapidly by the 

positive variation of Hartmann number. 

 There are two solutions branches of velocity when ,c   one marginal solution when 

2.752214c   and no solution when ,c  where c is the critical value of 
 
for 

which the solution exists. The stability analysis indicates that the lower solution branch 

(I) is stable and physically realizable. For different values of   , the upper solution 

branch (II) is unstable and physically unacceptable.  

5.2 Possible future works based on this thesis  

The present study can be extended by considering the following cases: 

 Temperature dependent physical properties like viscosity, Prandtl number with different 

physics like heat generation, stress work may be considered. 

 The study can be considered for three-dimensional flow.  

 This work can be extended by considering stretchable, porous wall of the convergent-

divergent channel. 

 Investigation can be carried out on nanofluids for turbulent flow.  
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