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Abstract 

 

 Whirling is defined as the rotation of the plane made by the bent shaft and the 

line of centers of the bearing. The phenomenon of whirling of shaft is often explained in 

terms of a “Jeffcott rotor model”. The Jeffcott rotor consists of a simply supported 

flexible shaft with a rigid thin disc mounted at the mid-span. Whirling results from 

various causes such as: a) Mass eccentricity (rotating unbalance), b) Lack of initial 

straightness of the shaft, c) Non-homogenous material, d) Unbalanced magnetic pull in 

case of electrical machinery e) Lubricant viscosity, f) Shaft material’s initial stiffness and 

number of supports, g) Unbalanced centrifugal forces, h) Hysteresis characteristics of 

shaft materials etc.  

 

 In this thesis whirling is extensively studied considering eccentric mass centre of 

the rotor on the shaft. Generally, two modes of whirling (synchronous and asynchronous) 

can be observed in various rotating machines. In the synchronous motion of the shaft, the 

whirl (also called orbital) speed and its own spin speed are equal. However, in case of 

asynchronous whirl motion of the shaft, the orbital speed and its own spin speed are not 

equal.  

               

 Previous studies of Jeffcott rotor mostly dealt with synchronous whirl 

considering steady-state vibration and involving linearly elastic shaft materials. 

Therefore, present thesis aims to focus following unexplored but important points 

concerning whirling of shafts: asynchronous mode of whirl, whirl during transient 

vibration and, the effect of material non-linearity (that is, the shaft material has a non-

linear stress-strain relation and Hook’s law cannot be applied) on the shaft’s response. 

 

 To accomplish the goals, at first, a new theoretical model has been developed to 

predict response of shafts during steady-state whirl (both synchronous mode as well as 

asynchronous mode) in terms of exact solutions. Thus, differences between the shaft 

responses are analyzed for synchronous and asynchronous modes of whirl during steady-

state vibration.  
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 Secondly, a new mathematical model has been developed to predict response of 

shafts during unsteady-state (transient) whirl in terms of numerical solutions. Original 

non-linear second order governing differential equations are solved as an initial value 

problem.  

 

 Next, results from transient solutions and exact solutions are compared. 

 

Thirdly, material non-linearity issue is handled in terms of a mathematical model 

that has been developed to solve pure bending of a shaft (that is whirling), the material of 

which does not follow Hooke’s law. It should be noted here that, SMA inherently has 

highly non-linear stress-strain curves in tension and compression. Thus, bending 

moment-curvature and reduced modulus-curvature relations are obtained for a 

superelastic SMA shaft. Results are used to predict effect of material non-linearity on the 

response of a whirling shaft. 

 

 Effect of various other factors like damping ratio, eccentricity ratio, whirl speed 

ratio and spin ratio on response of whirling shafts are studied and analyzed. Some salient 

findings are as follows. 

 

 The Jeffcott rotor system behaves as a single degree of freedom system. For 

steady-state and synchronous whirl, increased damping greatly reduces whirling 

amplitude and its maximum value is at spin ratio of unity, because of resonance. 

However, for large value of spin ratio, non-dimensional whirling amplitude approaches 

unity. Another interesting finding is that, all load-spin ratio curves intersect at a spin 

ratio of 1.414. 

  

 Interestingly, for asynchronous whirl, resonance does not occur at a spin ratio of 

unity. Rather, it is the whirl speed ratio that determines at what speed resonance will 

occur.  

 

 As material non-linearity is taken into account some portion of the shaft is found 

to experience stresses (different magnitude in tension and compression) beyond 

proportional limit. Effect of material non-linearity becomes prominent as whirl 
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amplitude starts to become large. Moreover, the maximum deflection of a shaft is found 

to be much larger when material non-linearity is considered in comparison to the case of 

linearly elastic shaft material.  

  

 When, unsteady-state whirl of Jeffcott rotor is considered, the peak value of 

whirling amplitude is found to be almost equal to that for steady-state whirl. In turn, it 

proves soundness of the entire mathematical scheme because steady-state solutions are 

exact (obtained analytically from the simplified mathematical model) and transient 

solutions are obtained by numerical method from the original non-linear governing 

equations. Beyond resonance, whirl amplitude increases with the spin ratio. Also 

increased eccentricity increases the whirl amplitude. However, peaks at resonance 

disappear with increasing damping ratio. 

 

 Finally, an experimental setup is constructed and distinct whirling is 

demonstrated at and above resonance. Material non-linearity and inelastic behavior of 

shaft is demonstrated by permanently bent shaft due to whirling. Experimental 

observations are explained in terms of mathematical predictions. 

 

Key words:  Jeffcott rotor, Whirl, Synchronous whirl, Asynchronous whirl, Material 

non-linearity, Steady-state whirl, Unsteady-state whirl, Threshold bending moment, 

Reduced modulus, Transient solution.  
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CHAPTER 1 

INTRODUCTION 
 

1.1 Introduction to Whirling of Rotating Shaft 

             

 Rotating machines are extensively used in diverse engineering applications, such 

as power stations, marine propulsion systems, aircraft engines, machine tools, 

automobiles, household accessories and futuristic micro and nano-machines. The design 

trend of such systems in modern engineering is towards lower weight and operating at 

super critical speeds. An accurate prediction of rotor system dynamic characteristics is 

vitally important in the design of any type of machinery. Of the many published works, 

the most extensive portion of the literature on rotor dynamics analysis is concerned with 

determining critical speeds, natural whirl frequencies, the instability thresholds and 

bands, and the unbalance and transient responses [Rajiv (2017)]. Apart from these 

analyses some works also cover balancing of rotors, the estimation of bearing dynamic 

parameters, the condition monitoring and the non-linear analysis.   

           

 In this thesis, a great interest is shown for the different aspects of whirling of 

rotating shaft and non-linear analysis of shaft materials. 

           

Rotating shafts tend to bow out at certain speeds and whirl in a complicated 

manner [Thomson et al. (2011)]. Whirling is defined as the rotation of the plane made by 

the bent shaft and the line of centers of the bearing. To understand the phenomena of 

whirling of shaft, “Jeffcott rotor model” is considered.                    

 

1.2 Jeffcott Rotor model 

          

 Jeffcott rotor consists of a simply supported flexible shaft with a rigid thin disc 

mounted at the mid-span. The disc center of rotation, C, and its center of gravity, G, is 

offset by a distance e, which is called the eccentricity. The shaft spin speed is ω, and the 

shaft whirls about the bearing axis with a whirl frequency, 𝛳̇. Shaft mass is ignored in 

comparison to disc mass in this Jeffcott rotor. 
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 The vibration theory for rotor-dynamic systems was first developed by August 

Föppl (Germany) in 1895 and Henry Homan Jeffcott (England) in 1919 [Yoon et. al. 

(2013)]. Employing a simplified rotor/bearing system, they developed the basic theory 

on prediction and attenuation of rotor vibration. This simplified rotor system that is 

commonly known as the Föppl/Jeffcott rotor, or simply the Jeffcott rotor, is often 

employed to evaluate rotor-dynamic systems in the real world. Jeffcott (1919) proposed 

this model and Figure 1.1 shows a typical Jeffcott (it is also called Föppl or Laval) rotor 

model [Rajiv (2014)].  

 

1.3 Causes of Whirling of Rotating Shaft 

 

All rotating/spinning shafts, even in the absence of external load, will deflect due 

to various factors during rotation. Whirling is defined as the rotation of the plane made 

by the bent shaft and the line of centers of the bearing. The unbalanced mass of the 

rotating object causes deflection that will create resonant vibration at certain speeds, 

known as the critical speeds. When a shaft is having a rotor or without a rotor, its center 

of gravity usually doesn’t coincide with the axis of rotation of the shaft, this center of 

gravity is normally displaced from the axis of rotation, although the amount of 

displacement may be very small. The phenomenon of whirling of rotating shaft results 

from various causes such as pointed out by various researchers [1, 4-8, 13-15, 17-19, 23]. 

                                        

                           a) Mass eccentricity of the rotor on the shaft. 

                           b) Lack of initial straightness of the shaft. 

                         c) Bending of shaft under the action of gravity in case of horizontal shaft. 

                           d) Non-homogenous material. 

                           e) Unbalanced magnetic pull in case of electrical machinery. 

                           f) Lubricant viscosity. 

                           g) Shaft material’s initial stiffness and number of supports. 

                           h) Unbalanced centrifugal forces. 

                           i) Hysteresis characteristics of shaft materials. 

                            j) Gyroscopic effect.  
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Generally two types of whirling can be observed in various rotating machines. 

These are,                                         

                                                    1. Synchronous whirl motion. 

                                                    2. Asynchronous whirl motion. 

                

In the synchronous motion of the shaft, the whirl (𝛳̇) speed and its own spin 

speed (ω) are equal as shown in Figure 1.2. The sense of rotation of the shaft spin and 

the whirling are also same. The black spot on the shaft represents the unbalance location 

on to the shaft. The unbalance force, in general, leads to synchronous whirl conditions, 

hence this motion is basically a forced response. 

       

In case of asynchronous whirl motion of the shaft, the orbital speed and its own 

speed are not equal (𝑖. 𝑒., 𝛳̇ ≠ 𝜔). Generally asynchronous whirl motion may occur 

when speeds are high (e.g., when gyroscopic effect predominates) or when the rotor is 

asymmetric or when dynamic properties of the bearing are anisotropic. The 

asynchronous whirl motion may occur even in the perfectly balanced rotor, and due to 

this it will have whirl frequency as one of the natural frequencies of the rotor system as 

long as the rotor linear model is considered. The black mark on to the shaft will not be so 

systematic as in synchronous whirl (Figure 1.2) and may occupy various positions 

depending upon the frequency of whirl. 

            

 Other kind of whirl motion, which may occur in real systems is anti-synchronous  

(𝑖. 𝑒, 𝛳̇ = −𝜔); as shown in Figure 1.3. The anti-synchronous whirl may occur when 

there is rubbing between the rotor and the stator, however, it occurs very rarely. For this 

case, the sense of rotation of the shaft spin and the whirling are opposite.  

 

Figure 1.1 illustrates the single mass Jeffcott rotor with rigid bearings. The rotor 

disc with mass m is located at the axial center of the shaft. In this study, mass of the shaft 

in the Jeffcott rotor is assumed to be negligible compared to that of the disc. The 

geometric center of the disc C is located at the point (UxC, UyC) along coordinate axes 

defined about the bearing center line, and the disc center of mass G is located at (UxG, 

UyG). The unbalance eccentricity (eu) is the vector connecting the points C and G, and it 
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represents the unbalance in the rotor disc. This mass unbalance can cause whirling in 

rotating shaft as mentioned in this section earlier.              

                

If it is assumed that the material of a rotating shaft is perfectly elastic and any 

kind of damping is neglected, then on the basis of these two assumptions, two forms of 

whirling of the shaft due to some eccentricity is generally possible, namely (1) below the 

critical speed and (2) above the critical speed [Timoshenko (1955)]. It was found that in 

both cases the plane containing the bent axis of the shaft rotates with the same speed as 

the shaft itself. Both these forms of motion are theoretically stable so that if a small 

deviation from the circular path of the center of gravity of the disc is produced by 

impact, for example, the result is that small vibrations in a radial and in a tangential 

direction are superposed on the circular motion of the center of gravity. The existence of 

such motion can be demonstrated by the use of a suitable stroboscope. In this way it can 

also be shown that due to unavoidable damping the vibrations gradually die out if the 

speed of the shaft is below critical speed (ωcr). However if it is above ωcr a peculiar 

phenomenon sometimes can be observed, namely, that the plane of the bent shaft rotates 

at the ωcr while the shaft itself is rotating at a higher speed ω. Sometimes this motion has 

a steady character and the deflection of the shaft remains constant. At other times the 

deflection tends to grow with time up to the instant when the disc strikes the guard. To 

explain this phenomenon the imperfection in the elastic properties of the shaft must be 

considered. 

 

Experiments with repeated tension-compression show that all materials exhibit 

some hysteresis characteristics so that instead of a straight line AA (Figure 1.4), 

representing Hooke’s law, we usually obtain a loop of which the width depends on the 

limiting values of stresses applied in the experiment. If the loading and unloading is 

repeated several hundred times, the shape of the loop is finally stabilized and the area of 

the loop gives the amount of energy dissipated per cycle due to hysteresis. Timoshenko 

(1955) pointed out that such a hysteresis contributes to the whirling of shaft.   

 

One of the important aspects on dynamic behaviors of the rotor system is the 

gyroscopic effect, which predominates especially for high speed rotor. Gyroscopic 

effects affect the synchronous as well as the asynchronous whirl. Rajiv (2017) analyses 
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gyroscopic effect on rotor system by two different approaches, firstly by the quasi-static 

analysis (which gives a better physical insight into the effect of gyroscopic effects, 

however, can be applied practically to simple systems only), and secondly by the 

dynamic analysis (which can be easily extended to MDOF systems). Rajiv (2017) 

showed that because of the gyroscopic effect the whirl natural frequency becomes 

dependent on the rotor spin speed. Another interesting phenomenon that can be observed 

is that the rotor can have the forward and backward whirling motion.  

          

Whirl also takes place due to fluid trapped in rotor according to Crocker (1998). 

This occurs in hollow rotors, mostly in high-speed rotating machinery, where liquids 

(such as oil in bearing sumps or steam condensates) inadvertently be trapped in the 

internal cavity of the rotors. The spinning surface of the cavity drags fluid in the 

direction of rotation. The deflection of the shaft and the centrifugal forces on the trapped 

fluid produce a force having a tangential component, inducing a forward whirl. Crocker 

(1998) showed that the onset speed for instability is always above the critical speed of 

the rotor and below twice the critical speed.   

   

Dry friction whip is experienced when the surface of the rotating shaft comes in 

contact with an unlubricated stationary surface. This can be caused by inadequate journal 

bearing lubrication, contact between rotors and labyrinth seals, or turbo machinery blade 

rubs. The contact between the surface of the rotating shaft and the stationary surface will 

induce a tangential force on the rotor, which then produces a whirling motion. This 

generates a larger centrifugal force on the rotor. No first-order interdependence of whirl 

speed with rotational speed is established. It has been suggested that the whirl frequency 

is half the rotational speed of the rotor [Crocker (1998)].  

  

 

 

 

 

 

 



 
 

6 
 

1.4 Motivation for the Present Study 

               

As rotating machines have been used extensively in diverse engineering 

applications, an accurate prediction of rotor system dynamic characteristics (often 

dictated by whirling of a shaft) is vitally important in the design of any type of 

machinery. 

               

For the sake of simplicity, researches regarding vibration of shafts have been 

limited mostly to steady-state and synchronous whirl. Obviously in practical applications 

shaft may whirl in asynchronous mode and moreover, stresses in shaft may exceed 

elastic limit during whirling. But literature survey shows no research on asynchronous 

and synchronous whirling considering inelastic shaft material (that is, the shaft material 

has a non-linear stress-strain relation and Hooke’s law cannot be applied). 

         

Therefore, present study aims to focus the above-mentioned unexplored points 

concerning whirling of shafts. 

 

In this dissertation, the terms ‘Transient’ and ‘Unsteady-state’ are 

interchangeably used to indicate time dependent solutions. In similar fashion, words 

‘Superelastic SMA’ and ‘SMA’ are used interchangeably to indicate a smart material 

that can regain original size and shape from an apparently plastically deformed state. 
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1.5 Objectives                 

                  

Present study aims to extensively deal with whirling of shafts. However, the work 

will focus specifically on whirl during transient period and asynchronous whirl of shaft 

with a Jeffcott rotor where the shaft material can possess a non-linear stress-strain 

relation. Objectives of this study can be summarized as below:               

 

a) To develop a mathematical model for pure bending of Jeffcott rotor shafts 

while whirling, the material of which may be elastic (stress-strain relation is linear) and 

Hooke’s law can be applied or, inelastic (having a non-linear stress-strain relation). The 

model will be able to handle steady-state as well as transient vibration pertaining to shaft 

whirling.             

b) Based on (a), to develop a generalized computer code for analysis of whirling 

of Jeffcott rotor. 

c) To obtain results (in terms of steady-state shaft response) for synchronous 

whirl of Jeffcott rotor considering elastic material and also inelastic material. It can be 

performed using the computer code. 

d) To repeat step (c) for asynchronous whirl. 

e) To analyze differences between the results obtained in (c) and (d) by changing 

some parameters like damping ratio, eccentricity, geometry, spin ratio, materials etc. 

f) To obtain results for transient vibrations and to compare and validate some 

results with existing available exact results. 

g) To analyze the effect of transient vibration on shaft whirling. 

h) To experimentally demonstrate the effect of inelastic shaft deformation during 

whirling. 

 

1.6 Outline of Methodology 

                 

Major steps of methodology of thesis for comprehensive analysis of whirling of 

Jeffcott rotor are as follows. 
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Handling of Material Non-linearity 

               

Cross-section geometry plays an important role for inelastic bending of beams or 

buckling of columns [Research group of Rahman (2001, 2007, 2008 and 2009)]. In order 

to simulate inelastic bending of a shaft, at first the stress-strain curve of the beam 

material must be known. Next, the moment-curvature relation and reduced modulus-

curvature relation for a particular cross-section should be evaluated. So far, simulation of 

response of beams and columns of rectangular cross-section has been carried out by 

research group of Rahman (2001, 2007, 2008 and 2009). But, a shaft has circular cross-

section. Thus, following the same procedure as by them, present study first aims to 

develop a mathematical model for pure bending of shaft of circular cross-section as 

following paragraph describes briefly. 

              

The non-linear stress-strain relation in tension and compression for the shaft 

material (superelasic SMA) is available in the Ph.D. thesis of Rahman (2001). Using that 

stress-strain relation and considering pure bending of shafts during whirling, following 

relationship will be developed 

                             

                             (i) Moment-curvature (M – 𝛥) relation. 

                            (ii) Reduced modulus-curvature (Er – 𝛥) relation. 

 

Governing Equation of Shaft Deflection and Solution Technique 

               

Governing equations of the Jeffcott rotor [Thomson et al. (2011), Rao (2012)] 

during whirl is determined considering dynamic equilibrium. Steady-state as well as 

transient vibration issues will be considered separately while solving the governing 

equations. In terms of whirl during transient period, integration technique will be used to 

find shaft response at a desired time. Using suitable initial boundary conditions and 

solving the governing equations shaft response at increasing time can be determined. 

While, exact solutions will be obtained for shaft whirl for the case of steady-state 

vibration. 
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(i) Shaft Response Considering Linearly Elastic Material 

              

The governing equations will be solved for elastic shaft material and numerical & 

exact results (shaft response in terms of displacement, velocity, acceleration and the 

maximum stresses etc.) will be obtained. Both, synchronous as well as asynchronous 

whirl will be considered for finding the response. 

 

(ii) Shaft Response Considering Material Non-linearity 

               

Next, results (numerical and exact) will be obtained solving the governing 

equations considering material non-linearity of the shaft. Previously determined 

moment-curvature relation and reduced modulus-curvature relation will be used in this 

step of study. Again, synchronous as well asynchronous whirl will be considered for 

finding the response. 

               

Differences between the results obtained in (i) and (ii) will be analyzed by 

changing some parameters like damping ratio (ξ), eccentricity ratio (w/e), spin ratio (β) 

& materials (Superelastic SMA & SS) etc. Change in shaft response for different 

conditions stated above will be recorded and discussed. Finally, an experimental set-up 

will be constructed to demonstrate whirling of shafts and possibly validate some of the 

results. 

 

(iii) Selecting the Shaft Materials: 

 

Upon unloading SMA can recover large strain (Figure 1.5) by virtue of 

superelasticity (SE) or pseudo elasticity (PE) through a hysteresis [Rahman (2001)]. 

However, conventional engineering material like steel invariably shows large inelastic 

plastic strain upon unloading due to material non-linearity effect. 

 

Therefore, superelastic SMA shafts & Stainless steel (SS) shafts, both types are 

selected to predict and demonstrate material non-linearity effect due to severe shaft 

whirling. 
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CHAPTER 2 
LITERATURE REVIEW 

             

Whirling of rotating shaft is studied in rotor dynamics which is the branch of 

engineering that studies the lateral and torsional vibrations of rotating shafts, with the 

objective of predicting the rotor vibrations and containing the vibration level under an 

acceptable limit [Yoon et al. (2013)]. 

             

A large number of studies are reported in the literature dealing with the whirling 

of rotating shaft, out of which only a few are discussed. For example, Ankit et al. (2014) 

analyzed whirling speed and evaluate self-excited motion of the rotating shaft. Critical 

speed and self-excited vibration in which the exciting forces and induced motion are 

controlled by the motion itself is discussed here. 

 

Swanson et al. (2005) gave a practical review of rotating machinery critical 

speeds and modes. Some important issues are discussed here like how relationship 

between resonance and natural frequencies, change of natural frequencies as shaft 

rotational speed changes. Pradeep et al. (2008) analyzed modal projections for 

synchronous rotor whirl. Here, synchronous whirl of an arbitrary axisymmetric rotor 

supported on ideal (rigid, mass less and frictionless) bearings is analyzed. The rotor is 

not assumed to be a shaft (i.e. a one-dimensional continuum) with or without objects 

attached to it. 

 

Keshav (2014) did experimental investigation of shafts on whirling of shaft 

apparatus. He analyzed theoretical and practical frequencies of different shaft diameters. 

Kolenda and Marynarki (2012) analyzed whirling of asymmetric shaft under constant 

lateral force. This study deals with parametric vibrations of asymmetric shaft subjected 

to constant lateral force. Discrete and continuous undamped models of the vibrating 

system are considered under assumption that the rotational speed of the shaft is constant. 

 

Whalley and Ameer (2009) have studied whirling prediction with geometrical 

shaft profiling. Here distributed parameter shaft-rotor models are considered. The 
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multivariable irrational, hyperbolic and circular function, input-output relationship for 

the system, is derived. Moreover conventional frequency response methods are 

employed in the determination of the critical speed condition.  

             

Nelson (2007) analyzed lateral and torsional motion of spinning rotors with 

applications of Newton’s and Euler’s equations. This paper attempts to explain the 

dynamic behavior of spinning rotors without writing any equations.   

           

Shyong et al. (2014) developed analytical solution for whirling speeds and mode 

shapes of a distributed-mass shaft with arbitrary rigid discs. This paper presents an 

approach for replacing the effects of each rigid disc mounted on the spin shaft by a 

lumped mass together with a frequency-dependent equivalent mass moment of inertia so 

that the whirling motion of a rotating shaft-disc system is similar to the transverse free 

vibration of a stationary beam and the technique for the free vibration analysis of a 

stationary beam with multiple concentrated elements can be used to determine the 

forward and backward whirling speeds, along with mode shapes of a distributed-mass 

shaft carrying arbitrary rigid discs.  

              

Thomson et al. (2011) developed a general mathematical modeling to find out the 

shaft deflection. But for solving the equation, they only considered the synchronous 

whirl condition and simplified the equations. Rao et al. (2012) also developed 

mathematical modeling but like Thomson et al. (2011), they also considered synchronous 

whirl condition for solving the equations. 

              

In all aforementioned work, for the sake of simplicity vibration of shafts has been 

limited mostly to synchronous whirl. Obviously in practical applications shaft may whirl 

in asynchronous mode.  So rigorous analysis has to be done to understand asynchronous 

whirl of Jeffcott rotor.  

              

Moreover, there may be situation where shaft deflection is so high at times where 

stresses in shaft may exceed elastic limit while whirling. But all aforementioned 

literature survey shows no research on whirling considering inelastic shaft material (that 
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is, the shaft material has a non-linear stress-strain relation and Hooke’s law cannot be 

applied). 

               Timoshenko (1956) has developed a mathematical modeling of pure bending of 

rectangular beam the material of which does not follow Hooke’s law. In order to 

simulate inelastic bending, moment-curvature relation and reduced modulus-curvature 

relation for a particular cross-section have been evaluated using known stress-strain 

curve of the material of the beam. 

 

To the best of our knowledge, no work has been found out which deals with the 

combination of different types of whirls along with material non-linearity analysis of 

Jeffcott rotor. It is well known that the rotating shaft or bar often becomes unstable and 

finally bends or breaks down at a rotational speed near its natural frequency of lateral 

vibration, on account of so called whirling phenomena [Kokame et al. (1950)]. So it’s 

necessary to find out at what shaft speed and shaft deflection, the material of shaft will 

exceed elastic limit.  

           

  Stainless Steel is one of the most durable metals. The minimum 12 percent 

chromium contained in stainless steel forms an invisible, protective, corrosion-resistant 

passive film on the surface [Farrissey (2004), kokame et al. (1950)]. Some types of 

stainless steel will retain its original appearance with no corrosion. Rahman & Kowser 

(2009) analyzed stainless steel leaf springs under quasi-static condition considering both 

material non-linearity and geometric non-linearity.  

                

A shape-memory alloy (SMA, smart metal, memory metal, memory alloy, 

muscle wire, smart alloy) is an alloy that ‘remembers’ its original shape and that when 

deformed returns to its pre-deformed shape when heated. And cantilever beams with 

reducing cross-section along the span show much larger deflections compared to those of 

constant cross-section beams [Rahman & Kowser (2009)].  

     

Therefore, to explore this interesting research area, SMA and SS both have been 

selected as shaft materials for a Jeffcott rotor that may whirl in a number of complicated 

modes.  
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With some background knowledge on the response of beams made of SMA and 

SS, both have been selected as shaft materials for a Jeffcott rotor that may whirl in a 

number of complicated modes, to explore this interesting research area.  
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CHAPTER 3 

GOVERNING EQUATIONS 
 

3.1 General              

              

Following Thomson et al. (2011), governing equations of the system are derived 

from the free-body diagram given in Figure 3.1 [Thomson et al. (2011)]. After 

rearranging and employing necessary transformations, 2nd order differential equations are 

converted to first order differential equations. Runge-Kutta 4th order method of 

numerical integration is applied to solve those first order differential equations and 

transient solutions are obtained. While for steady-state vibration of the shaft, exact 

solutions are obtained from simplified form of the governing equations. It should be 

mentioned here that the terms ‘results of transient/unsteady-state’ have been used in this 

thesis to indicate results obtained by solving the original non-linear governing equations 

by numerical method. However, these numerical solutions are time dependent and cover 

both transient (initially) and steady-state (finally) vibration. 

. 

3.2 Governing Differential Equations for Whirling of the Jeffcott Rotor Shaft 

 

A single disc of mass m symmetrically located on a shaft supported by two 

bearings is considered, which is shown in the Figure 3.1 [Thomson et al. (2011)]. The 

center of the mass G of the disc is at a distance e (eccentricity) from the geometric center 

S of the disc. The center line of the bearings intersects the plane of the disc at O, and the 

shaft center is deflected by r = OS. 

                  

It is assumed that the shaft (i.e., the line e = SG) to be rotating at a constant speed 

ω, and in the general case, the line r = OS to be whirling at speed θ that is not equal to ω. 

For the equation of motion, acceleration of the mass center can be developed as follows: 

                                    

                                        𝑎𝐺 = 𝑎𝑆 + 𝑎𝐺
𝑆⁄   ……………………….. (3.2.1) 
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Where as is the acceleration of S and  𝑎𝐺
𝑆⁄  is the acceleration of G with respect to 

S. The later term is directed from G to S, because ω is constant. Resolving aG in the 

radial  

(or, i) and tangential directions (or, j), we have 

 

𝑎𝐺 = [(𝑟̈ − 𝑟𝛳̇2) − 𝑒𝜔2𝑐𝑜𝑠(𝜔𝑡 − 𝛳)]𝑖 + [(𝑟𝛳̈ − 2𝑟̇𝛳̇) − 𝑒𝜔2𝑠𝑖𝑛(𝜔𝑡 − 𝛳)]𝑗 ….…. 

(3.2.2)            

             

Aside from the restoring force (kr) of the shaft, it is assumed that a viscous 

damping force (𝑐𝑟̇) to be acting at S. The equations of motion resolved in the radial and 

tangential directions then become     

                              

                             −𝑘𝑟 − 𝑐𝑟̇ = 𝑚[𝑟̈ − 𝑟𝛳̇2 − 𝑒𝜔2𝑐𝑜𝑠(𝜔𝑡 − 𝛳)]…………….. (3.2.3)  

                             −𝑐𝑟𝛳̇ = 𝑚 [𝑟𝛳̈ − 2𝑟̇𝛳̇ − 𝑒𝜔2𝑠𝑖𝑛(𝜔𝑡 − 𝛳)̇ ] ………............(3.2.4) 

                 

Equations (3.2.3) and (3.2.4) are rearranged to  

                                                    

                             𝑟̈ +
𝑐

𝑚
𝑟̇ + (

𝑘

𝑚
− 𝛳̇2) 𝑟 = 𝑒𝜔2𝑐𝑜𝑠(𝜔𝑡 − 𝛳)………..….….…(3.2.5) 

                             𝑟𝛳̈ + (
𝑐

𝑚
𝑟 + 2𝑟̇) 𝛳̇ = 𝑒𝜔2sin (𝜔𝑡 − 𝛳)  ……………....…..(3.2.6) 

  

The symbols used denote, 

 

   ω = Shaft spin. 

   𝛳̇ = Shaft whirl speed. 

   e  =  Eccentricity. 

   kr = Restoring force due to bending stiffness. 

   𝑐𝑟̇ = Radial damping force. 

   𝑐𝑟𝛳̇ = Tangential damping force. 
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3.3 An Approach to Solve the Governing Equations of Whirling of Jeffcott Rotor in 

Full Form 

 

The general case of whirl as described by the foregoing equations comes under 

the classification of self-excited motion, where the exciting forces inducing the motion 

are controlled by the motion (that is, spin ‘ω’) itself. Because the variables in the last 

couple of non-linear equations are r and θ, the problem is that of 2DOF. 

 

For transformations, let r = Y1, 𝑟̇ = 𝑌2, θ = Y3 and 𝛳̇ = 𝑌4 

       

                                        𝑟 = 𝑌1 ……………………………….…... (3.3.1) 

                                                          
𝑑𝑌1 

𝑑𝑡
= 𝑟̇ = 𝑌2…………………….……….. (3.3.2) 

                                                          𝛳 = 𝑌3………………….....…………..….. (3.3.3) 

                                                  
𝑑𝑌3

𝑑𝑡
= 𝛳̇ = 𝑌4 ……………......……..…….. (3.3.4) 

                                            

With those transformations, governing equations of (3.2.5) and (3.2.6) can now 

be rewritten as a set of four first order ordinary differential equations (ODE) as follows: 

                               

                                                   
𝑑𝑌1 

𝑑𝑡
= 𝑟̇ = 𝑌2……...………………………….….…….…(3.3.5) 

                                                   
𝑑𝑌2

𝑑𝑡
= 𝑒𝜔2cos (𝜔𝑡 − 𝑌3) − 

𝑐

𝑚
− (

𝑘

𝑚
− 𝑌4

2) 𝑌1 ……..…..(3.3.6) 

                                                   
𝑑𝑌3

𝑑𝑡
= 𝛳̇ = 𝑌4………...………………………….….……(3.3.7) 

                                  𝑑𝑌4

𝑑𝑡
=

1

𝑌1
[𝑒𝜔2𝑠𝑖 𝑛(𝜔𝑡 − 𝑌3) − (

𝑐

𝑚
𝑌1 + 2𝑌2) 𝑌4]……..….(3.3.8) 

 

Last four governing equations along with suitable boundary conditions are solved 

as an initial value problem by applying numerical method. Thus transient solutions for 

shaft whirl are obtained.              

             

The magnitude of total force (P) acting on the Jeffcott rotor shaft due to 

whirl along with disc weight can be found out from the following Equation.  

 

                                                 𝑃 = 𝑃𝑑 + 𝑚𝑔………...............................(3.3.9) 
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 Where Pd is the dynamic load and mg = disc weight, and Pd can be obtained from 

following Equation. 

 

                               𝑃𝑑 = √(𝑘𝑟)2 + (𝑐𝑟̇)2 + (𝑐𝑟𝛳̇)2 …………………..…..…..(3.3.10) 

 

Dividing both sides of Equation 3.3.10 by mg (disc weight), we get 

     

                               𝑃𝑑

𝑚𝑔
=

√(𝑘𝑟)2+(𝑐𝑟̇)2+(𝑐𝑟𝛳̇)2

𝑚𝑔
 …………………………………..(3.3.11) 

 

Equation 3.3.11 represents the non-dimensional dynamic force acting at the shaft 

center due to whirling during transient/unsteady-state vibration.  
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3.4 Simplified Mathematical Modeling for Analysis of Steady-state Synchronous 

and Asynchronous Whirl of Jeffcott Rotor 

              

          The general case of whirl as described by the non-linear governing Equations 3.2.5 

and 3.2.6 comes under the classification of self-excited motion as discussed earlier, 

where the exciting forces are induced by the motion itself. The problem is that of 2DOFS 

as the variables in these equations are r and θ.  

 

Following simplifications are done in this chapter.  

                       For steady-state motion, 𝛳̈ = 𝑟̈ = 𝑟̇ = 0  

                       and for synchronous whirl condition, whirl speed (𝛳̇) = shaft spin (ω). 

 

Due to above simplifications, the problem reduces to that of a SDOFS in r.  

   

Previous studies [1, 4-8, 13-15, 17-19, 23] about shaft whirl are mostly about 

steady-state but synchronous whirl. So we have modified existing equations of steady-

state synchronous whirl to some extent so that steady-state asynchronous whirl can also 

be analyzed from the similar exact solutions.   

            

Thus, for the analysis of both steady-state synchronous and asynchronous whirl 

simultaneously, instead of 𝛳̇ = 𝜔, we considered 𝛳̇ = 𝜆𝜔 where λ is a real number. Thus 

we have, 

                                                𝜆 = Whirl ratio = 𝛳̇

𝜔
 

                                               𝛳̇ = 𝜆𝜔 ………………………………..…………..(3.4.1) 

 

And on integrating, we obtain 

                                         

                                               𝛳 = 𝜆𝜔𝑡 − 𝜙 

                                               𝜔𝑡 − 𝛳 = 𝜔𝑡 − 𝜆𝜔𝑡 − 𝜙 

                                               𝜔𝑡 − 𝛳 = 𝜔𝑡(1 − 𝜆) + 𝜙………….……..………(3.4.2) 
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Under these circumstances, the phase angle between eccentricity e and whirling 

amplitude r is considered as 

                                         

                                               𝛿 = 𝜔𝑡 − 𝛳 = 𝜔𝑡(1 − 𝜆) + 𝜙…….................…..(3.4.3) 

 

With 𝛳̈ = 𝑟̈ = 𝑟̇ = 0, governing Equations 3.2.5 and 3.2.6 reduce to  

 

                                             (𝑘

𝑚
− 𝜆2𝜔2) 𝑟 = 𝑒𝜔2𝑐𝑜𝑠[𝜔𝑡(1 − 𝜆) + 𝜙]………...(3.4.4) 

                                             𝑐

𝑚
𝑟𝜆𝜔 = 𝑒𝜔2𝑠𝑖𝑛[𝜔𝑡(1 + 𝜆) + 𝜙]…………….…...(3.4.5) 

 

Dividing Equation 3.4.5 by Equation 3.4.4, we obtain the following Equation for 

the phase angle  

                                      

                                           𝑡𝑎𝑛[𝜔𝑡(1 − 𝜆) + 𝜙] =
𝑐

𝑚
𝜆𝜔

(
𝑘

𝑚
−𝜆2𝜔2)

……………….…..(3.4.6) 

                                           𝑡𝑎𝑛 𝛿 =
2̰𝜉𝛽𝜆

1−𝜆2𝛽2………………………………..…….(3.4.7) 

                                           𝛿 = tan−1 2𝜉𝛽𝜆

1−𝜆2𝛽2 …………………………………...(3.4.8) 

 

Where δ (phase angle), critical speed 𝜔𝑛 = √
𝑘

𝑚
 , and damping ratio 𝜉 =

𝑐

𝑐𝑐
. 

Where,  

𝑐𝑐 = (2 × 𝑚 × 𝜔𝑛). Noting from the vector triangle of Figure 3.2, 

 

                                          cos 𝛿 =
(

𝑘

𝑚
−𝜆2𝜔2)

√(
𝑘

𝑚
−𝜆2𝜔2)

2
+(

𝑐

𝑚
𝜔𝜆)

2
……………….………...(3.4.9) 

 

And substituting into the first Equation 3.4.4 gives the amplitude Equation  

 

                                           𝑟 =
𝑚𝑒𝜆2𝜔2

√(𝑘−𝑚𝜆2𝜔2)2+(𝑐𝜆𝜔)2
……………………………(3.4.10) 

             

Employing 𝛽 =
𝜔

𝜔𝑛
 in Equation 3.4.10,                                                   
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                                           𝑟 =  
𝑒𝜆2𝛽2

√(1−𝜆2𝛽2)2+(2𝜉𝛽𝜆)2
……………..……………..(3.4.11) 

 

                                          𝑟
𝑒

=
𝜆2𝛽2

√(1−𝜆2𝛽2)2+(2𝜉𝛽𝜆)2
……………………………..(3.4.12) 

           

Equation (3.4.12) represents non-dimensional whirl amplitude at steady-state in 

which 𝜆 = 1 and λ = −1 stand for synchronous and anti-synchronous whirl, respectively. 

While, 𝜆 ≠ ±1 represents steady-state asynchronous whirl.  

 

           Equations 3.4.8, 3.4.9 and 3.4.11 indicate that the eccentricity line 𝑒 = 𝑆𝐺 leads 

the displacement line 𝑟 = 𝑂𝑆 by the phase angle 𝛿, which depends on the amount of 

damping and the spin ratio 𝜔/𝜔𝑛. When the rotation speed coincides with the critical 

speed 𝜔𝑛 = √𝑘/𝑚 , or the natural frequency of the shaft in lateral vibration, a condition 

of resonance is encountered in which the amplitude is restrained only by the damping.  

 

The magnitude of total force (P) acting on the Jeffcott rotor shaft due to 

whirl along with disc weight can be found out form the following Equation  

                              

                               𝑃 = 𝑃𝑑 + 𝑚𝑔.………...............................(3.4.13) 

 

Where Pd is the dynamic load and mg is the disc weight and Pd is produced due to 

whirl only, and can be obtained from 

 

                               𝑃𝑑 = √(𝑘𝑟)2 + (𝑐𝜆𝜔𝑟)2 …………..…..(3.4.14) 

 

Dividing both sides of Equation 3.4.14 by kr (Restoring force), we get 

                                 

                                  𝑃𝑑

𝑘𝑟
= √1 + (

 𝑐𝜆𝜔

𝑘
)

2

 ……………….…..(3.4.15) 

 

Defining, critical damping coefficient,      𝑐𝑐 = 2𝑚𝜔𝑛 ……………….…(3.4.16) 
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Damping ratio,                     𝜉 =
𝑐

𝑐𝑐
 ………….…...…………...(3.4.17) 

Spin ratio,                            𝛽 =
𝜔

𝜔𝑛
 …………………………..(3.4.18)              

 

Using Equations (3.4.16 – 3.4.18) in Equation 3.4.15, we get, 

 

                                      𝑃𝑑

𝑘𝑟
= √1 + (2𝜉𝛽𝜆)2 …………..…….(3.4.19) 

 

Dividing both sides of Equation 3.4.14 by mg (disc weight), we get 

     

                                     𝑃𝑑

𝑚𝑔
=

√(𝑘𝑟)2+(𝑐𝜆𝜔𝑟)2

𝑚𝑔
 …………..……..(3.4.20) 

 

Thus, Equation 3.4.20 represents the non-dimensional force acting on the shaft 

center due to steady-state whirl, in contrast to Equation 3.3.11 that represents the same 

but due to whirling during transient/unsteady-state vibration. 
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3.5 Handling of Material Non-linearity 

 

For materials having non-linear stress-strain relations Timoshenko (1956) derived 

the M – 𝛥 and Er – 𝛥 relations for a rectangular beam section. He first defined the term 

reduced modulus, Er for inelastic bending of beams. 

 

Following Timoshenko (1956), it is assumed that the cross-section of the shaft 

remains plane during pure bending; hence elongations and contractions of longitudinal 

fibers are proportional to their distances from the neutral surface. Further assuming that 

during bending there exists the same relation between stress and strain as in the case of 

simple tension and compression, the stresses produced can be found out by a bending 

moment of a given magnitude. Considering the shaft of circular cross-section in Figures 

3.3 & 3.4, it is  assumed that the radius of curvature of the neutral surface produced by 

the moments M is equal to ρ. In such a case the unit elongation of a fiber at a distance y 

from the neutral surface is  

 

                                               𝜀 =
𝑦

𝜌
 ……………………………...(3.5.1) 

 

Denoting h1 and h2 (Figure 3.4) the distances from the lower and the upper 

surfaces of the beam respectively to the neutral axis, we find that the elongation in the 

utmost fibers are  

                                    

                                        𝜀1 =
ℎ1

𝜌
, 𝜀2 = −

ℎ2

𝜌
 ………………….…...(3.5.2) 

 

It is seen that the elongation or contraction of any fiber is readily obtained 

provided we know the position of the neutral axis, say ratio ℎ1

ℎ2
, and the radius of 

curvature ρ. These two quantities can be found from the two equations of statics: 

 

                                      ∫ 𝜎𝑑𝐴 = ∫ 𝜎𝑑𝐴
ℎ1

−ℎ2
= 0...................……(3.5.3) 

                                      ∫ 𝜎𝑦𝑑𝐴 = ∫ 𝜎𝑦𝑑𝑦
ℎ1

−ℎ2
= 𝑀…………….(3.5.4) 
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The first of these equations states that the sum of normal forces acting on a cross-

section of the beam vanishes, since those forces represent a couple. The second equation 

states that the moment of the same forces with respect to the neutral axis is equal to the 

bending moment M.  

 

Equation (3.5.3) is now used for determining the position of the neutral axis. For 

finding the area dA at first (Figure 3.4), we consider equation of the circle  

                           

                                𝑥2 + 𝑦2 = 𝑤2, (𝑤 = radius of the circle) ………...……..(3.5.5) 

                                𝑥 = √𝑤2 − 𝑦2………………….…...……….…….…….(3.5.6) 

Here,                       𝑑𝐴 = 𝑏𝑑𝑦 ……………………….…………..……....…...(3.5.7) 

                                 𝑏 = 2𝑥 = 2√𝑤2 − 𝑦2…………….……...…..………....(3.5.8) 

Again                      𝑑𝐴 = 𝑏𝑑𝑦 = 2√w2   ̶ y2 dy…………...….……..…..……(3.5.9) 

 

Now, employing 𝑑𝐴 in Equation 3.5.3, we get                                   

 

                               ∫ 𝜎𝑑𝐴 = 2 ∫ 𝜎
ℎ1

−ℎ2
√𝑤2   ̶ 𝑦2 𝑑𝑦 = 0………………………(3.5.10) 

 

From Equation (3.5.1) 

                                   

                                      𝑦 = 𝜌Ԑ ………….……………….………(3.5.11) 

                                     𝑑𝑦 = 𝜌𝑑Ԑ …………….....….....………....(3.5.12) 

 

Therefore, Equation 3.5.9 becomes  

 

                                     𝑑𝐴 = 2√𝑤2 − 𝜌2𝜀2𝜌𝑑Ԑ…………………….………(3.5.13) 

 

Employing Equation 3.5.13 in 3.5.10, we get, 

         

           ∫ 𝜎𝑑𝐴 = 2 ∫ 𝜎
ℎ1

−ℎ2
√𝑤2   ̶ 𝑦2 𝑑𝑦 = 2𝜌2 ∫ 𝜎√(

𝑤

𝜌
)2 − 𝜀2𝜀1

𝜀2
𝑑𝜀 = 0……….(3.5.14) 
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Hence the position of the neutral axis is such that the integral ∫ 𝜎√(
𝑤

𝜌
)2 − 𝜀2𝜀1

𝜀2
𝑑𝜀 

vanishes.  

 

Therefore,                           ∫ 𝜎√(
𝑤

𝜌
)2 − 𝜀2𝜀1

𝜀2
𝑑𝜀 = 0…………………(3.5.15) 

 

Equation 3.5.15 is rewritten as  

 

                               ∫ 𝜎√(
𝑤

𝜌
)2 − 𝜀20

𝜀2
𝑑𝜀 =∫ 𝜎√(

𝑤

𝜌
)2 − 𝜀2𝜀1

0
𝑑𝜀……….(3.5.16) 

 

Integral on the left hand side of the Equation 3.5.16 represents normal forces 

acting on the compression region of the shaft and right hand side of the equation 

represents normal forces acting on the tension region of the shaft.  

 

To determine the neutral axis position, we use the curve AOB (Figure 3.5a) 

which represents the (σ – ε) diagrams in tension and compression for the material of the 

shaft, and we denote 𝛥, the sum of the absolute values of the maximum elongation and 

the maximum contraction, which is  

 

                            𝛥 = |𝜀1| + |𝜀2| = |
ℎ1

𝜌
| + |

ℎ2

𝜌
| =

ℎ

𝜌
=

𝑑

𝜌
…………………..(3.5.17) 

                            𝜌 =
𝑑

𝛥
…………………………………..…..…………….(3.5.18) 

                            𝜌 =
𝑑

|𝜀1|+|𝜀2|
………………………………………………(3.5.19) 

 

Using Equation 3.5.19 in Equation 3.5.15, we get 

 

                           ∫ 𝜎√(
𝑤
𝑑

|𝜀1|+|𝜀2|

)

2

− 𝜀2𝜀1

𝜀2
 𝑑𝜀 = 0 ………………………..(3.5.20) 

Or,                       ∫ 𝜎√(
|𝜀1|+|𝜀2|

2
)

2

− 𝜀2𝜀1

𝜀2
 𝑑𝜀 = 0………………….…….(3.5.21) 
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Since, integral of Equation 3.5.21 has no closed form solution, numerical solution 

technique has been used. As stress-strain curve of superelastic SMA is asymmetric in 

tension and compression beyond proportional limit, 

 

Therefore,                                           |𝜀1| ≠ |𝜀2| 

 

Therefore, from the stress-strain curve |𝜀2| is chosen. And for any chosen values 

of  |𝜀2|, by applying numerical integration method, |𝜀1| is found out which can make the 

integral zero. In this manner we obtain strain ε2 and ε1 in the utmost fibers; Equation 

3.5.2 then gives 

                                   

                                       ℎ1

ℎ2
= |

𝜀1

𝜀2
|…………….…………………………(3.5.22) 

 

This determines the position of neutral axis. Observing that elongations ε are 

proportional to the distance from the neutral axis, we conclude that the curve AOB 

(Figure 3.5a)  also represents the distribution of bending stresses along the depth of the 

beam, if h is substituted for 𝛥.  

 

Therefore, the equation of moment at any of the point on the shaft is, 

                            

                             𝑀 = ∫ 𝜎𝑦𝑑𝐴 = 2𝜌3 ∫ 𝜎𝜀√(
𝑤

𝜌
)

2

− 𝜀2𝜀1

𝜀2
𝑑Ԑ………..…(3.5.23) 

 

Applying numerical integration method to Equation 3.5.23, moments are known. 

Value of stress in Equation 3.5.23 is taken from corresponding value of strain from 

stress-strain curve. 

 

If the stress-strain curve is known for a specific material, then considering the 

value of strain (piece-wise linear) from the diagram, value of corresponding stress can be 

found out. 

 

Equation of straight line for (𝑥 − 𝑦) coordinate,                  
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                                       𝑦 = 𝑣𝑥 + 𝑧 ………….…....…..(3.5.24) 

 

Here, 𝑣 is the gradient of the straight line. 

Similarly for (𝜎 − 𝜀) curve,                                       

 

                                                           𝜎𝑖+1 = 𝑣Ԑ𝑖+1 + 𝜎𝑖....…………..(3.5.25) 

           

Equations 3.5.23 and 3.5.25 give, 

                 

                           𝑀 = 2𝜌3 ∫ [(𝑣Ԑ𝑖+1 + 𝜎𝑖)√(
𝑤

𝜌
)

2

− Ԑ2]
Ԑ1

Ԑ2
Ԑ𝑑Ԑ………………..(3.5.26) 

                

Incorporating moment of inertia (I) in Equation 3.5.26, we get, 

         

                           𝑀 =
𝐼

𝜌
×

128Ƿ

𝜋𝑑𝛥3 ∫ [(𝑣Ԑ𝑖+1 +
Ԑ1

Ԑ2

𝜎𝑖)√(
𝑤

𝜌
)

2

− Ԑ2] Ԑ 𝑑Ԑ………..…….(3.5.27) 

 

Let, moment of inertia, 

                                 

                                              𝐼 =
𝜋𝑑4

64
 ……………..……..…….…….(3.5.28) 

 

Linear moment-curvature relation, 

                            

                                              𝑀 =
𝐸𝐼

𝜌
………….…….……....……….(3.5.29) 

              

If Equations (3.5.27) and (3.5.29) are compared, then for bending of shaft 

following , we conclude that beyond the proportional limit, the curvature produced by a 

moment M can be calculated from the equation,       

                  

                                            𝑀 =
𝐸𝑟𝐼

𝜌
……………….….......…………(3.5.30) 
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 Here Er is the reduced modulus. Now comparing Equations 3.5.27 and 3.5.30, the 

value of Er (reduced value) can be obtained as follows. 

 

                             𝐸𝑟 =
128𝜌

𝜋𝑑𝛥3 ∫ [(𝑣 + 𝜎𝑖)√(
𝑤

𝜌
)

2

− Ԑ2] Ԑ
Ԑ1

Ԑ2
𝑑Ԑ………….…(3.5.31) 

 

The integral in this expression represents the moment with respect to the vertical 

(σ) axis through the origin O of the shaded area shown in Figure 3.5a. Since the ordinate 

of the curve in the figure represents stresses, and the abscissas, strain, the integral and 

also Er have the dimension of 𝐺𝑃𝑎, i.e., the same dimension as the modulus E. The 

magnitude of Er for a given material is a function of 𝛥 or of h/ρ. Taking several values of 

𝛥 and using each time the curve in Figure 3.5a  as was previously explained, we 

determine for each value of 𝛥 the corresponding utmost elongations ε1 and ε2, and from 

Equation 3.5.31 the corresponding value of Er as a function of (𝛥 = h/ρ) is obtained.  

 

Equations (3.5.26) and (3.5.31) can be solved by applying numerical method to 

obtain values of bending moment and reduced modulus for different values of 𝛥. 

 

From the actual true stress-strain diagram (Figure 3.5b) random values of strain ε2 

from the compression region is chosen like that from Figure 3.5a and by using Equation 

3.5.21 and by applying trial and error method, values of strain ε1 at tension region is 

found out for which result of the integral of Equation 3.5.21 becomes zero each time. 

This determines the position of neutral axis and, value of total strain 𝛥 as well. Romberg 

integration technique [Romberg (1955)] is used to solve this problem in Matlab. 

         

Using values of ε1 and ε2 in Equation 3.5.17, value of Δ and corresponding ρ is 

found out from Equation 3.5.18 as well. Now, taking several values of Δ and using 

Equations 3.5.26 and 3.5.31, values of corresponding bending moment and reduced 

modulus are obtained. Again Romberg method of integration (1955) is used in matlab to 

solve Equations 3.5.26 and 3.5.31. Finally, Figures of Er – 𝛥 and M –   are obtained for 

superelastic SMA shaft. 
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CHAPTER 4 
RESULTS AND DISCUSSION 

 
4.1 General Discussion          

    
 Whirling shaft’s responses for different conditions (steady, synchronous and 

asynchronous etc.) are obtained in terms of exact and numerical solutions considering 

linearly elastic shaft material (Sections 4.2 for SMA and 4.5 for SS). In Section 4.3 and 

4.4 effect of material non-linearity (w.r.t. Figures 3.5b, 4.1, 4.2) on the SMA shaft’s 

response are also analyzed. Transient vibration during whirling is studied in section 4.6. 

Soundness of the mathematical scheme is proven in this section as well. In all cases 

viscous damping of different intensity is considered. It is assumed damping ratio (ξ) will 

be quite low (0.05) when the shaft whirls through air. However, if the shaft whirls in 

liquid (water or, oil) other values of damping ratio of 0.1-0.5 might be more realistic.  

 
 In this dissertation the terms ‘Transient’ and ‘Unsteady-state’ are interchangeably 

used to indicate time dependent solutions. In similar fashion, words ‘Superelastic SMA’ 

and ‘SMA’ are used interchangeably to indicate a smart material that can regain original 

size and shape from an apparently plastically deformed state. 

 

 It should be mentioned here that the terms ‘results of transient/unsteady-state’ 

have been used in this thesis to indicate results obtained by solving the original non-

linear governing equation by numerical method. These numerical solutions are time 

dependent and cover both transient (initially) and steady-state (finally) vibration. 

 

           Experimental issue of SS shaft whirling is discussed in section 4.7. 

 
 Mathematical model that is developed in section 3.5 is used to obtain bending 

moment (M) vs. Δ and reduced modulus (Er) vs. Δ curves. In this research, actual stress-

strain curve of superelastic shape memory alloy (SMA) shaft of diameter of 2 mm 

(Figure 3.5b) obtained by Rahman (2001), is used to find the Er – 𝛥  (Figure 4.1) and M 
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– Δ (Figure 4.2) relations. These relations are used to include material non-linearity issue 

of the whirling shaft in Section 4.3. 

 

4.2 Analysis of Steady-state Whirl of Jeffcott Rotor (Superelastic SMA Shaft)  

           
 This section deals with linearly elastic shaft material of Jeffcott Rotor that whirls 

as a single degree of freedom system (SDOFS). Equation 3.4.12 is solved to obtain non-

dimensional whirling amplitude (r/e). Using Equation 3.4.15, non-dimensional dynamic 

force (Pd/mg) acting at the midpoint of the shaft is found out. Non-dimensional whirling 

amplitude and non-dimensional dynamic force acting on the disc center are found to be 

dependent on spin ratio (β), whirl speed ratio (λ) and the damping ratio (ξ).  

 

Steady-state exact results are obtained for following specifications of the shaft: 

                              

        Shaft length (L) = 200 mm, shaft dia (d) = 2 mm, disc mass, (m) = 300 g, modulus 

of     

        elasticity (E) = 65 GPa, linearly elastic bending stiffness of the shaft (k = 48EI/L3) =  

        306.31 N/m, eccentricity of disc mass (e) = 4.5 mm, natural frequency (ωn) = 31.95  

        rad/s. 

 

4.2.1 Synchronous Whirl Considering Linearly Elastic Materials 

 

 From Figure 4.3 non-dimensional whirling amplitude vs. spin ratio relation can 

be seen. It is observed that increased damping greatly reduces whirling amplitude (r/e). 

For ξ = 0.05, maximum whirling amplitude is 10 whereas in case of ξ = 0.5, maximum 

whirling amplitude is 1.09. In case of low damping ratio (0.05 & 0.1), high whirling 

amplitude is observed at spin ratio of unity, because of resonance. For large value of spin 

ratio, value of whirling amplitude (r/e) remains constant which is approximately equal to 

unity for any damping ratio.  Theoretically, this point is verified in Appendix - A. 

       

 Non-dimensional dynamic force vs. spin ratio considering different damping ratio 

is also obtained (Figure 4.4). Here, it is observed that, for low damping ratio (0.05 and 

0.1) at a spin ratio of around unity, forces are very high. However, for β > 1.414 forces 



 
 

30 
 

notably decrease. But in case of high damping ratio (0.3 and 0.5), up to β = 1.414, forces 

are minimum and after that it is increasing monotonously. It is because damping forces 

contribute more to the force (Pd) acting on the shaft.  

      

 Another interesting finding from Figure 4.4 is that all curves intersect each other 

for a specific value of spin ratio (β = 1.414). Theoretically, this point is verified in 

Appendix - B. 

         

4.2.2 Asynchronous Whirl Considering Linearly Elastic Materials 

           

 Non-dimensional whirling amplitude (r/e) as a function of spin ratio for different 

whirl speed ratio are obtained as in Figures 4.5 - 4.11. From Figure 4.5, it is observed 

that at resonance, the maximum r/e for any whirl speed ratio is 10, the same for all cases, 

and it is theoretically proved in Appendix - C. Interestingly, resonance occurs at different 

spin ratio for different values of whirl speed ratio. Higher the whirl speed ratio, lower the 

value of spin ratio that corresponds to the maximum r/e. For example, from Figure 4.5, 

maximum r/e occurs at spin ratio of unity for whirl speed ratio of unity. Whereas, it 

occurs at spin ratio of 0.5 for whirl speed ratio of 2. Results of steady-state synchronous 

whirl are placed in the same Figures for comparison only. From Figures 4.5 - 4.8, same 

pattern of r/e can be seen though the damping ratio is different for each of the figure. But 

the maximum r/e decreases as the damping ratio increases. As for instance, Figure 4.5 

shows that the maximum r/e is 10 for damping ratio of 0.05 but it is 5 and 1.62 for 

damping ratio of 0.1 and 0.3 in Figures 4.6 & 4.7, respectively.    

 

 From Figures 4.5 - 4.11, it is also observed that as spin ratio increases beyond 

resonance, r/e approaches to unity for any value of whirl speed ratio. Theoretically it is 

verified in Appendix - A. 

 

 Non-dimensional dynamic force (Pd/mg) is a function of damping ratio, whirl 

speed ratio and spin ratio. Any change in these quantities will change the amount of 

force acting on the shaft which will determine whether the shaft will be deformed 

beyond elastic limit or not. From Figures 4.12 - 4.18, it is observed that if the damping 

ratio is constant, then for any value of whirl speed ratio, maximum Pd/mg produced 
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during resonance is constant but it’s occurring at different spin ratio. Moreover, 

increased damping reduces Pd/mg at a great extent thus keeping the shaft material 

linearly elastic. In Figure 4.12, maximum Pd/mg at resonance is 4.71 when the damping 

ratio is 0.05. But, it is 2.39 and 0.985 for corresponding damping ratio of 0.1 and 0.3, 

respectively (Figures 4.13 & 4.14). From Figure 4.15, where damping ratio is very high 

(0.5), for any value of whirl speed ratio, dynamic force is increasing with increasing spin 

ratio.  

          

 Another interesting observation can be noted from Figures 4.12 - 4.15. From 

Figure 4.12, when the damping ratio is quite low (0.05), dynamic force (Pd/mg) is low 

even at quite high spin ratio. But from Figures 4.13 - 4.15, as the spin ratio is increasing 

so does the dynamic force. This is because increased damping ratio contributes more to 

the total force (P) acting on the shaft centre.                 

       

 For large values of whirl speed ratio and spin ratio, the total force (P) is very 

large (Figures 4.17 & 4.18) and may lead to inelastic deformation of the material. So 

careful choice of spin ratio, whirl speed ratio and damping ratio can keep the total force 

(P) acting on the shaft at a safe limit.  

 

4.3 Steady-state Synchronous and Asynchronous Whirl Considering Material Non-

linearity 

 

 As mentioned material non-linearity issue has been conveniently incorporated in 

terms of σ – ε (Figure 3.5b), Er – 𝛥 (Figure 4.1) and M – 𝛥 (Figure 4.2) relations for the 

shaft material. 

           

 Modulus of elasticity (E) of shape memory alloy material that is considered for 

this simulation is 65 GPa [Rahman (2001)]. From Figure 4.1, it is observed that Er = E = 

65 GPa up to Δ = 0.012. Therefore, superelastic SMA shaft will exhibit linearly elastic 

behavior up to Δ = 0.012.  For Δ > 0.012, Er starts decreasing as material non-linearity 

effect starts and the stress applied on the shaft material exceeds elastic limit of the stress-

strain curve (Figure 3.5b). So, material non-linearity effect indicates that the shaft 

undergoes strain which is no more proportional to stress. The lowest value of Er that is 
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calculated is 16.9 GPa for a total strain of 0.226. In such a case the shaft will show less 

bending stiffness (as, Er <<E). 

  

If M – 𝛥 curve (Figure 4.2) of shape memory alloy is analyzed, it can also be seen 

that, up to 𝛥 = 0.012 bending moment curve is a straight line but after that it is increasing 

with a decreasing slope. And, bending moment is 0.3041 Nm corresponding to 𝛥 = 

0.012. So, if the bending moment is more than 0.3041 Nm, then shaft will exhibit 

material non-linearity effect. For this research, M = 0.3041 Nm, is termed as the 

threshold bending moment (bending moment after which shaft exhibits material non-

linearity). This is because, if the value of 𝛥 is more than 0.012, shaft undergoes strain 

which is no more proportional to stress.  

    

 In Figure 4.2, the maximum bending moment is Mf  = 1.5 Nm. According to 

linearly elastic model for the same bending moment corresponding elastic strain (𝛥1) will 

be only 0.059. But by considering material non-linearity effect, for the same intensity 

bending moment of Mf = 1.5 Nm, actual total strain is 𝛥f = 0.226 as seen from Figure 4.2. 

This shows actual strain is much larger than assumed by linear elastic model. In turn, this 

point proves the necessity of taking into account the material non-linearity effect. 

            

 It should be mentioned here that upon unloading, SMA can recover large strain 

by virtue of super/pseudo elasticity through a hysteresis [Rahman (2001)]. Therefore, 

large deformation for SMA can be termed as non-linearly elastic deformation. However, 

conventional engineering material like stainless steel (SS) invariably shows large 

inelastic/plastic strain upon unloading due to material non-linearity effect [Rahman 

(2001)]. 

 

 For analyzing effect of material non-linearity on a whirling shaft, moment vs. 

shaft length of a particular shaft is considered using shaft whirl parameters of section 4.1. 

With reference to Figure 4.12, the maximum value of non-dimensional dynamic force 

acting at the shaft center due to whirl is 4.71 and corresponding total force (P) acting at 

the shaft mid- span is 16.80 N. Therefore, corresponding maximum bending moment (M 

= PL/4) at the shaft center is 0.84 Nm, much more than the threshold value. 
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 From the bending moment vs. shaft length diagram (Figure 4.19) of superelastic 

SMA shaft under consideration, length of the section from 0.0362 m to 0.1638 m is 

experiencing non-linearly elastic deformation because corresponding bending moment is 

higher than the threshold bending moment (0.3041 Nm). Corresponding value of Δ for 

threshold bending moment is 0.012. Corresponding strain ε2 (compressive) is 0.005725 

and strain ε1 (tensile) is 0.006178. While, corresponding compressive stress from Figure 

3.5b (non-linear σ – ε curve of SMA shaft) is 362.81 MPa and tensile stress 389.42 MPa. 

The maximum compressive stress and tensile stress at shaft mid-span is 917.474 MPa 

and 606.542 MPa, respectively. 

               

 Range of spin ratio causing deformation beyond proportional limit can be 

determined from Figure 4.4. For example, threshold bending moment is 0.3041 Nm for β 

= 0.79 to 1.35. So, shaft should not be run within this range for prolonged period. Again, 

if high damping ratio is considered, shaft spin ratio greater than 1.73 is to be avoided to 

avoid deformation beyond elastic limit.  

          

 Whirling shaft’s elastic curve can be known from M/EI vs. shaft length (Figure 

4.20) considering material linearity as well as non-linearity effects. Since reduced 

modulus (Er) is known, therefore, the term M/ErI can be evaluated for any point on the 

shaft axis. Therefore, M/ErI vs. shaft length is incorporated in Figure 4.20 to analyze the 

material non-linearity effect. Two theorems of area moment method (Appendix - D) are 

applied to evaluate the shaft’s elastic curve. The maximum deflection of the shaft is an 

important point of concern. Figure 4.21 shows the predicted shapes of the shaft 

considering linearly elastic as well as non-linearly elastic shaft materials. Maximum 

deflection at shaft mid-span considering the material as linearly elastic is 54.9 mm but it 

is 127.8 mm when material non-linearity is considered (Figure 4.21).  
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4.4 Effect of Reduced Modulus (Er) on Jeffcott Rotor’s Natural Frequency (ωn) 

 

 Points on the shaft will have different bending moments when it is whirling. 

When bending moment at any point along the shaft length exceeds the threshold bending 

moment, corresponding Young’s modulus will be lower than that for initial linearly 

elastic model (Figure 4.1). As a whole, the resultant bending stiffness (k) will decrease. 

But, natural frequency depends on k as explained below, 

 

δ (shaft deflection) = 𝑃𝐿3

48𝐸𝐼
 

   Therefore, 𝑘 =
𝑃

𝛿
=

48𝐸𝐼

𝐿3   and, 𝜔𝑛 = √
𝑘

𝑚
= √

48𝐸𝐼

𝑚𝐿3  

 

 For λ = 1, resonance occurs when ω = ωn. As E reduces to Er, therefore ωn will 

also reduce to √
48𝐸𝑟𝐼

𝑚𝐿3 . Obviously, resonance will occur at a lower speed than that 

expected by linearly elastic model.  

 

4.5 Analysis of Steady-State Synchronous & Asynchronous Whirl of Jeffcott Rotor 

(Stainless Steel Shaft) 

        

 Exact theoretical results (Figures 4.22 – 4.30) are obtained for non-dimensional 

whirling amplitude (r/e) and non-dimensional dynamic force (Pd/mg) acting on the shaft 

center as a function of spin ratio (β), whirl speed ratio (λ) and damping ratio (ξ).  

  

Specifications of the stainless steel shaft are as follows:                              

                              

 Shaft length, L = 890 mm, shaft diameter, d = 8 mm, disc mass, m = 300 g,   

            modulus of elasticity, E = 202 GPa, linearly elastic bending stiffness, k =   

            2765.365 N/m, eccentricity of disc mass, e = 4.5 mm, natural frequency, ωn =  

            96.01 rad/s. 
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 Here, value of eccentricity of disc mass (e) is chosen by comparing it with the 

diameter of circular disc to keep it realistic. Shaft’s linearly elastic bending stiffness (k) 

is calculated using the formula [𝑘 = (
48𝐸𝐼

𝐿3 )].  

 

4.5.1 Analysis on Synchronous Whirl         

 

 From Figure 4.22, it is observed that increased damping ratio greatly reduces r/e. 

For ξ = 0.05, maximum r/e is 10 whereas in case of ξ = 0.5, maximum r/e is 5. In case of 

low damping ratio (0.05 & 0.1), high r/e occurs at a spin ratio of unity, because of 

resonance. However, for large value of spin ratio, value of r/e approaches to unity for 

any damping ratio. Since, results are presented in non-dimensional form, r/e vs. β 

Figures are similar for superelastic SMA shafts and stainless steel shafts. 

 

 Pd/mg vs. β curves considering different damping ratio are shown in Figure 4.23. 

Here, it is observed that, for spin ratio of around unity, for low damping ratio like 0.05 

and 0.1, maximum Pd/mg is very high (42.495 and 21.561, respectively). But for β > 

1.414 forces notably decrease. In case of high damping ratio, 0.3 and 0.5, Pd/mg 

increases monotonously. 

       

 From Figure 4.23, all Pd/mg vs. β curves intersect each other for a particular value 

of spin ratio (β = 1.414) similar to the case of SMA shaft (Figure 4.4).  

 

4.5.2 Analysis of Asynchronous Whirl 

 

 r/e vs. β Figures of stainless steel for different whirl speed ratio and damping 

ratio are skipped here. This is because results are exactly same as respective Figures of 

steady-state asynchronous whirl of shape memory alloy shaft (Figures 4.5 - 4.11). This is 

because value of r/e is governed by damping ratio, spin ratio and whirl speed ratio.  

 

 Pd/mg vs. β Figures as a function of damping ratio, whirl speed ratio and spin 

ratio (Figures 4.24 - 4.30) are obtained for stainless steel shaft. These Figures show 

similar pattern as in Figures 4.12 - 4.18 for shape memory alloy shafts. The only 

difference is magnitude of dynamic forces (Pd/mg) of SS shaft is comparatively larger 



 
 

36 
 

than SMA shaft as the physical and geometrical parameters are different for two types of 

shafts. 

          

4.6 Analysis of Unsteady-state Whirl of Jeffcott Rotor   

 

 In this chapter, firstly, the validation of the code is done in section 4.6.1. Next, 

transient vibration results are presented for SMA and SS shafts.  

 

4.6.1 Code Validation 

 

 A solved problem from Thomson et al. [2011] is simulated by using the code 

developed for this thesis. Statement of the problem: if, critical speed ωn to be reached 

with an initial whirl amplitude for a shaft which is undergoing synchronous whirl with 

zero damping, then amplitude builds up linearly (Appendix - F). 

 

 Following initial boundary conditions (at t = 0 s) are chosen randomly as shown 

below:                             

 Whirl amplitude (r) = 1 mm, radial velocity (𝑟̇) = 100 mm/s, angular 

displacement  

 (θ) = 0 rad, whirling speed (𝛳̇) = 0 rad. 

 

 Above chosen initial conditions are used in subsequent chapters. Other 

specifications for the code validation are same as previously stated in section 4.2. Disc 

mass of (300 g and 400 g) are considered for these simulation. Corresponding natural 

frequencies are 31.95 and 27.67 rad/s, respectively.  From Figure 4.31 (for disc mass = 

300 g), it is observed that amplitude is building up linearly which exactly matches with 

the results in Thomson et al. (2011) (Appendix – F). Simulation with 400 g disc mass 

shows similar result, which is not shown here for the sake of brevity. So, soundness of 

the matlab code is proven partially. More such proofs will be shown in subsequent 

discussion of results.  
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4.6.2 Transient Vibration of Superelastic SMA Shaft           

            

 SMA shaft specifications considered for this section are as that of section 4.2. 

Additionally, different eccentricity of disc mass (e) = 4.5, 11, 20, 25, 30 mm are 

considered. And boundary conditions are same as stated in section 4.6.1.  

 

 It should be mentioned here that the terms ‘results or, solutions of 

transient/unsteady-state’ have been used in this thesis to indicate results obtained by 

solving the original non-linear governing equation by numerical method. However, these 

numerical solutions are time dependent and contain both transient (initially) and steady-

state (finally) vibration. For example, from Figures 4.32 - 4.36, it can be seen that, shafts 

show transient vibration up to specific time (transient period). As transient period 

diminishes, r/e approaches a constant value for the rest of the time indicating steady-state 

period of vibration. However, transient vibration pattern is different for different values 

of β.  

 

 For better understanding of transient phenomena during whirling, r/e vs. β curve 

is presented in (Figure 4.37). To construct such Figure, maximum values of previous 
𝑟

𝑒
𝑣𝑠. 𝑡 curves (Figures 4.32 - 4.36) are taken and corresponding r/e vs. β curve for 

different damping ratio is constructed (Figure 4.37). It is observed form Figure 4.37 that, 

increased damping ratio reduces r/e greatly but eventually it increases as the spin ratio 

increases.  

 

 Some fundamentally 2DOFS behave as a SDOFS. As for instance, Houdaille 

damper, a 2DOFS, exhibits a single resonant speed [Thomson et. al. (2011)]. Similarly, 

original Jeffcott rotor system is a 2DOFS in r and θ. So, there should be two resonant 

speeds and 2 distinct peaks should appear in r/e vs. β (Figure 4.37) curve. However, 

Figure 4.37 shows a single peak corresponding to resonance at β = 1. 

 

 If Figure 4.3 (based on steady-state assumption) and Figure 4.37 (based on 

unsteady– state assumption) are compared, it is seen that at resonance (β = 1), r/e 

assumes a distinct peak value for ξ = 0.05 and 0.1. Interestingly, the peak value is almost 

equal for both steady-state and transient vibration cases. In turn, it proves soundness of 
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the entire scheme because steady-state solutions are exact and transient solutions are 

obtained by numerical method. However, beyond resonance steady-state solution 

approaches unity for large value of β while transient solutions go on increasing. 

 

 For understanding steady-state phenomena from results of transient vibration, r/e 

vs. β curve is presented in (Figure 4.38). To construct such Figure values of r/e at 

apparently steady-state period from previous r/e vs. t curves (Figures 4.32 - 4.36) are 

taken and corresponding r/e vs. β curve (Figure 4.38) for different damping ratio is 

constructed. If Figure 4.3 (exact solutions based on steady-state assumption) and Figure 

4.38 (results obtained by numerical method and without any steady-state assumption) are 

compared, they show very good match which again prove the soundness of the numerical 

scheme.  

  

 Effect of ξ and e on whirl amplitude (r) can be visualized from Figures 4.39 - 

4.42. At resonance distinct peaks are seen for low damping (Figures 4.39 & 4.40). Peaks 

at resonance disappear with increasing damping (Figures 4.41 & 4.42). In all cases r 

increases with β. Also increased value of e increases r.    

 
 Figures 4.43 & 4.44 show θ̇ & ṙ respectively during transient vibration. In Figure 

4.45, dynamic force (Pd) for transient vibration is calculated adding radial restoring force 

(kr) and radial damping force (𝑐𝑟̇) and tangential damping force (cr𝜃̇) at the same 

instant. The time at which r becomes the maximum is recorded and at the same instant 𝑟̇ 

and 𝜃̇ are known from Figures 4.43 & 4.44, respectively. Next, two damping forces are 

evaluated and finally, Figure 4.45 is constructed. In Figure 4.45, maximum Pd is 13.8 N 

and corresponding force P is 16.8 N. Since corresponding moment at shaft mid-span 

exceeds the threshold value, it will exhibit material non-linearity effect. 

 

4.6.3 Transient Vibration of Stainless Steel Shaft 

 

 Stainless steel shaft specifications are stated in section 4.5. However, different 

eccentricity of disc mass (e) = 4.5, 11, 20, 25 & 30 mm are considered. The boundary 

conditions are same as stated in section 4.6.1.  
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 From Figures 4.46 - 4.50, it can be seen that, shafts show transient vibration up to 

specific time (transient period). As transient period diminishes, r/e approaches a constant 

value for the rest of the time indicating steady-state vibration. However, transient 

vibration pattern is different for different values of β.  

 

            Using Figures 4.46 - 4.50, r/e vs. β curves in Figure 4.51 is obtained following 

the same procedure that is used to obtain Figure 4.37 for superelastic SMA shaft. It is 

observed that increased damping ratio greatly reduces r/e but eventually it increases with 

the β. The pattern is similar to that of SMA shaft (Figure 4.37). Interestingly, the 

maximum r/e at resonance are same for both SMA and SS shafts if same values of 

eccentricity, damping ratio and spin ratio are considered. However, for spin ratio other 

than unity r/e will be different during transient vibration. 

 

 Steady-state r/e vs. β curve (Figure 4.52) from r/e vs. t curves (Figures 4.46 - 

4.50) is obtained following the same procedure that is followed in case of superelastic 

SMA shaft (Figure 4.38). If, Figure 4.22 (based on steady-state assumption) and Figure 

4.52 (steady-state results obtained from numerical solution) are compared, they show 

excellent match which again prove the validity of the entire mathematical scheme. Pd/mg 

vs. β (Figure 4.53) shows pattern similar to that of superelastic SMA shaft (Figure 4.45). 

From Figure 4.53, the maximum stress is 553.59 MPa (corresponding to resonant 

amplitude for ξ = 0.05 and considering linearly elastic model). Though threshold bending 

moment of SS is not available, the stress corresponding to resonant amplitude is so high 

that it is likely to cross elastic limit of commercially available SS. This point is evident 

from experiment. 
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4.7 Experiment 

 

4.7.1 Experimental Set-up 

                    

 A set-up made of MS plate with a 0.5 hp Single Phase AC motor, is constructed 

mainly to demonstrate whirling of shaft. Secondly, inelastic deformation of shaft 

material (material non-linearity effect) can also be demonstrated from experiment. The 

setup is shown in Figures 4.54 and 4.55. Shaft material chosen for this experimental 

demonstration is stainless steel with following parameters. 

                     

 Shaft length, L = 890 mm, diameter, d = 6 mm & 8 mm, disc mass, m = 250 g   

 (Figure 4.56), modulus of elasticity, E = 202 GPa, linearly elastic bending 

stiffness  

 of the shaft material k = 48𝐸𝐼

𝐿3  = 874.98 N/m for (shaft dia = 6 mm), 2765.37 N/m 

for  

 (shaft dia = 8 mm). 

 

4.7.2 Observation from Experiment 

 

 The stainless steel shafts with different diameters are used to perform the 

experiment and to observe the response at different shaft speed. Here damping ratio is 

practically very low because only air is providing the opposing force. Whether the shaft 

is deformed inelastically during whirling can be observed from Figures 4.57 - 4.60. 

Theoretically, this point of elastic or inelastic deformation can be explained with the help 

of load-spin ratio curve as shown in Figure 4.53 together with the threshold bending 

moment for experimental shaft material. Unfortunately, because of unavailability of 

proper instrument, the stress-strain (σ – ε) curve and hence the M – Δ and Er – Δ relations 

could not be obtained for the experimental shaft material (SS).  As a result the threshold 

bending moment could not be calculated. Hence, an ‘imaginary’ threshold bending 

moment is assumed to explain inelastic shaft deformation due to large amplitude whirl of 

the SS shaft. 
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 During experiment, when the shaft (dia = 8 mm, disc mass = 250 g) is run at a 

low speed 253 rpm (ωn = 1004.33 rpm, β = 0.25), the corresponding shaft whirl was very 

low. Less vibration and less whirling amplitude are observed from the experiment. After 

the rotation, shaft straightness didn’t change which shows elastic recovery (Figure 4.57).  

This point can be explained following Figure 4.53 considering ξ = 0.05 (low damping, 

comparable to experiment). At β = 0.25, corresponding (r/e) = 0.32, r = 1.45 mm, Pd/mg 

= 1.36 N and M = 0.89 Nm. Here, bending moment (M = 0.89 Nm) is assumed to be less 

than threshold bending moment. As a result, the shaft shows elastic recovery (Figure 

4.57). 

  

 Similarly, following Figure 4.53, for ξ = 0.05 and β = 1.13 (in the vicinity of 

resonance), shaft dia = 8 mm, corresponding (r/e) = 5.92, r = 26.63 mm, Pd/mg = 30.2 

and therefore, M = 19.78 Nm. The maximum stress is 553.59 MPa (considering linearly 

elastic model). Though threshold bending moment of SS is not available, the maximum 

stress (553.59 MPa) corresponding to resonant amplitude is so high that it is likely to 

cross elastic limit of commercially available SS. This point is evident from experiment 

showing inelastic deformation of the test piece (Figure 4.58). So, it can be claimed that 

the numerical result shown in Figure 4.53 is indirectly validated by experimental results 

as in Figure 4.58. 

 

 Figure 4.59 shows the test piece is deformed. Following Figure 4.53, for ξ = 0.05 

and   β = 2.29, shaft dia = 8 mm, corresponding (r/e) = 3.6, r = 16.19 mm, Pd/mg= 18.36, 

M = 12.02 Nm. Here, bending moment is greater than threshold bending moment leading 

to inelastic deformation (Figure 4.59). 

 

         Similarly, Figure 4.60 shows the test piece is deformed. For ξ = 0.05 and β =0.94, 

shaft dia = 6 mm, corresponding (r/e) = 6.48, r = 29.14 mm, Pd/mg = 10.44, M = 6.84 

Nm. Here, bending moment must be greater than threshold bending moment again 

leading to inelastic deformation (Figure 4.60). 
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CHAPTER 5 
CONCLUSIONS AND RECOMMENDATIONS 

 
Response of a shaft has been analyzed comprehensively considering effect of 

material non-linearity and all practically possible modes of whirl of a Jeffcott rotor due 

to eccentricity of mass. Soundness of the developed mathematical scheme and computer 

code has been amply demonstrated. Chapter wise, following salient conclusions can be 

drawn at the end of research. 

 

5.1 Steady-State Synchronous & Asynchronous Whirl of Jeffcott Rotor  

            

 It is found that increased damping greatly reduces whirling amplitude (r/e). For 

any damping ratio, maximum r/e is occurred at spin ratio of unity, because of resonance. 

However, for large value of spin ratio, value of r/e approaches to unity. 

 

 Interestingly, all Pd/mg vs. β curves intersect each other for a specific value of 

spin ratio β = 1.414. Shaft response is notably different on two sides of the intersecting 

point. 

 

 As far as asynchronous whirl is concerned, interestingly, resonance is taking 

place at different spin ratio for different values of whirl speed ratio. Higher the whirl 

speed ratio, lower the value of spin ratio that corresponds to the maximum r/e. 

 

5.2 Steady-state Whirl Considering Material Non-linearity  

 

 Material non-linearity issue is incorporated in terms of σ – ε, M – Δ and Er – Δ 

relations for the shaft material. It is found that when whirl amplitude is large enough 

actual strain is much larger than assumed by linear elastic model. Also modulus of 

elasticity decreases significantly as strain increases.  
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 As material non-linearity is taken into account, some portion of the shaft is found 

to experience stresses (different magnitude in tension and compression) beyond 

proportional limit. For a particular SMA shaft, the maximum deflection at shaft center 

considering the material as linearly elastic is 54.9 mm but it is 127.8 mm when material 

non-linearity is considered. Another important point is that, resonance will occur at a 

lower speed than that expected by linearly elastic model. 

 

5.3 Unsteady-state Whirl of Jeffcott Rotor 

                   

 If r/e vs. β Figure obtained from both steady-state and unsteady-state assumption 

are compared, it is seen that at resonance (β = 1), r/e assumes a distinct peak value if ξ is 

kept low. Interestingly, the peak value is almost equal for both exact solutions (steady-

state results) and transient vibration results. In turn, it proves soundness of the entire 

scheme because steady-state solutions are exact and transient solutions are obtained by 

numerical method. However, beyond resonance steady-state solution approaches unity 

for large value of β while transient solutions go on increasing. Beyond resonance, r 

increases with β. Also increased eccentricity e increases r. Peaks at resonance disappear 

with increasing damping ratio. 

 

5.4 Experiment 

 

 Stainless steel shafts with different diameters are used to perform the experiment 

and responses at different shaft speeds are observed. Whether the shaft is deformed 

inelastically during whirling are observed from photographs. These points of elastic or, 

inelastic deformations can be explained in terms of threshold bending moment and 

theoretical/numerical results obtained in this thesis.           

            

5.5 Recommendations for Future Work 

 

 The following recommendations can be made for future works based on the 

experience gained while achieving the set objectives of this thesis. 
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 (1) Jeffcott Rotor shafts’ cross-sections are not always perfectly circular due to 

manufacturing imperfections. Effect of imperfect cross-sections on whirling can be 

considered in future studies.  

 (2) More experimental studies with sophisticated instrumentation can be carried 

out to verify the results obtained from numerical analysis from this thesis. 

 (3) In this study, whirling has been considered only due to mass eccentricity. 

Other factors (for example, gyroscopic effect, unbalanced centrifugal forces, elastic 

hysteresis of shaft material etc.) can be considered for further analysis. 

 (4) Simply supported end-conditions of the shafts have been considered here. 

Different boundary conditions can be considered for further analysis.  

 (5) Resonance speed will change due to material non-linearity. This point can 

also be explored in future. 

 (6) Because of unavailability of proper instrument, the stress-strain (σ – ε) curve 

and hence the M – Δ and Er – Δ relations could not be obtained for the experimental shaft 

material (SS).  As a result the threshold bending moment could not be calculated. Next 

study can address this point rigorously to explain inelastic shaft deformation due to large 

amplitude whirl of the shaft. 
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FIGURES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Jeffcott rotor model. 
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                 Figure 1.2: Definition of whirl parameters. Whirl speed ratio, 𝜆 =
𝛳̇

𝜔
, 

                                  λ = 1 for synchronous whirl, 𝜆 ≠ 1 for asynchronous whirl. 

                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 1.3: Anti-synchronous whirl (𝜆 =
𝛳̇

𝜔
= −1). 
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Figure 1.4: Stress-strain diagram for material possessing elastic hysteresis 

characteristics. 
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      Figure 1.5: Fictitious stress-strain curve showing superelastic SMA’s shape and size                                          

                          recovery through a nonlinear hysteresis. 
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Figure 3.1: Whirling of rotating shaft [Thomson et al. (2011)]. 
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      Figure 3.2: Vector triangle of forces acting on the shaft for steady-state whirl. 
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     Figure 3.3: Bending of the shaft. 
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   Figure 3.4: Circular cross-section of the shaft. 
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      Figure 3.5a: Fictitious non-linear 𝜎 − 𝜀 curve under tension & compression showing   

                           material non-linearity.  

 

 

 

 

 

 

 

 

O 



 
 

56 
 

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

True Strain 

True Stress (MPa)

  

 

 

         

Figure 3.5b: Actual stress-strain curve of superelastic SMA (dia = 2 mm), showing  

                      asymmetric behavior in tension and compression [Rahman, M. A. (2001)]. 
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                        Figure 4.1: Reduced modulus vs. Δ curve of superelastic SMA shaft. 

 

 

 

 

 

 

 



 
 

58 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.05 0.1 0.15 0.2 0.25

M
(N

m
)

Δ = h/ρ

(0.226, 1.5)

 

 

 

 

                         

                       

                        Figure 4.2: Bending moment, 𝑀 vs. Δ curve of superelastic SMA shaft. 
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             Figure 4.3: Steady-state non-dimensional whirling amplitude (𝑟/𝑒) vs. spin ratio  

                              (𝛽) for different damping ratio (𝜉) for synchronous whirl condition  

                              for superelastic SMA shaft [Shaft specification w.r.t section 4.2].   
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            Figure 4.4: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) at shaft center  

                                vs. spin ratio (𝛽) for different damping ratio (𝜉) for synchronous  

                                whirl condition for superelastic SMA shaft [Shaft specification w.r.t  

                                section 4.2].    
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              Figure 4.5: Steady-state non-dimensional whirling amplitude (r/e) vs. spin ratio  

                                  (𝛽) for different asynchronous whirl conditions for superelastic  

                                  SMA shaft [Shaft specification w.r.t section 4.2, ξ = 0.05]. 
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         Figure 4.6: Steady-state non-dimensional whirling amplitude (𝑟/𝑒) vs. spin ratio  

                             (𝛽) for different asynchronous whirl conditions for superelastic SMA  

                             shaft [Shaft specification w.r.t section 4.2, ξ = 0.1]. 
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             Figure 4.7: Steady-state non-dimensional whirling amplitude (𝑟/𝑒) vs. spin  

                                 ratio (𝛽) for different asynchronous whirl conditions for  

                                 superelastic SMA shaft [Shaft specification w.r.t section 4.2, ξ =  

                                 0.3]. 
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Figure 4.8: Steady-state non-dimensional whirling amplitude (𝑟/𝑒) vs. spin ratio  

                   (𝛽) for different asynchronous whirl condition for superelastic SMA  

                   shaft [Shaft specification w.r.t section 4.2, ξ=0.5]. 
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             Figure 4.9: Steady-state non-dimensional whirling amplitude (𝑟/𝑒) vs. spin  

                                 ratio (𝛽) for asynchronous whirl condition (λ = 0.5) for different  

                                damping ratio (𝜉) for superelastic SMA shaft [Shaft specification   

                                w.r.t section 4.2].    
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          Figure 4.10: Steady-state non-dimensional whirling amplitude (𝑟/𝑒) vs. spin ratio  

                               (𝛽) for asynchronous whirl condition (λ = 1.5) for different damping  

                               ratio (𝜉) for superelastic SMA  shaft [Shaft specification w.r.t section  

                               4.2].    
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            Figure 4.11: Steady-state non-dimensional whirling amplitude (𝑟/𝑒) vs. spin  

                                  Ratio (𝛽) for asynchronous  whirl condition (λ = 2) for different  

                                  Damping ratio (𝜉) for superelastic SMA shaft [Shaft specification  

                                  w.r.t. section 4.2].    
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             Figure 4.12: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin  

                                   ratio (𝛽) for different asynchronous whirl conditions for  

                                   superelastic SMA shaft [Shaft specification w.r.t section 4.2, ξ =  

                                   0.05]. 
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                Figure 4.13: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin  

                                      ratio (𝛽) for different asynchronous whirl conditions for  

                                      superelastic SMA shaft [Shaft specification w.r.t section 4.2, ξ =  

                                      0.1]. 
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             Figure 4.14: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin  

                                   ratio (𝛽) for different asynchronous whirl conditions for  

                                   superelastic SMA shaft [Shaft specification w.r.t section 4.2, ξ =  

                                   0.3]. 
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           Figure 4.15: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin ratio  

                               (𝛽) for different asynchronous whirl conditions for superelastic SMA  

                                shaft [Shaft specification w.r.t section 4.2, ξ = 0.5]. 
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             Figure 4.16: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin  

                                   ratio (𝛽) for  asynchronous whirl condition (λ = 0.5) for  different  

                                   damping ratio (𝜉) for superelastic SMA shaft [Shaft specification  

                                   w.r.t section 4.2].    
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           Figure 4.17: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin ratio  

                                (𝛽) for asynchronous whirl condition (λ = 1.5) for  different damping  

                                 ratio (𝜉) for superelastic SMA shaft [Shaft specification w.r.t  

                                 section 4.2].    
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           Figure 4.18: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin ratio  

                                 (𝛽) for asynchronous whirl condition (λ = 2) for  different damping  

                                 ratio (𝜉) for superelastic SMA shaft [Shaft specification w.r.t  

                                 section 4.2].    
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   Figure 4.19: Bending moment (M) vs. shaft length (L) for superelastic SMA shaft  

                         w.r.t. Figure 4.5 & 4.12. [(
𝑟

𝑒
) = 10, (

𝑃𝑑

𝑚𝑔
) = 4.71, 𝑃 = 𝑃𝑑 + 𝑚𝑔 =

                            16.8 𝑁.] Threshold moment at point A & B = 0.3041 Nm. Compressive &  

                         tensile stress at A & B = 362.81 & 389.424 MPa respectively. Maximum  

                         bending moment at mid-span (Point C) of shaft = 0.84 Nm.Compressive  

                         & tensile stress at C = 917.474 and 606.542 MPa respectively. 
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           Figure 4.20: Bending moment (M/EI) vs. shaft length (L) of superelastic SMA  

                                  shaft w.r.t. Figures 4.1 & 4.19. 
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                Figure 4.21: Shaft deflection vs. shaft length considering both linear and  

                                      non - linear model for SMA shaft w.r.t Figure 4.20.  
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          Figure 4.22: Steady-state non-dimensional whirling amplitude (𝑟/𝑒) vs. spin ratio  

                               (𝛽) for different damping ratio (𝜉) for synchronous whirl condition   

                               for Stainless steel shaft [Shaft specification w.r.t section 4.5].      
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          Figure 4.23: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) at shaft center  

                                vs. spin ratio (𝛽) for different damping ratio (𝜉) for synchronous  

                                whirl condition for Stainless steel shaft [Shaft specification w.r.t  

                                section 4.5].       
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           Figure 4.24: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin ratio  

                                 (𝛽) for different asynchronous whirl conditions for Stainless steel 

                                 shaft [Shaft specification w.r.t section 4.5, ξ = 0.05]. 
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              Figure 4.25: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin                  

                                    ratio (𝛽) for different asynchronous whirl conditions for Stainless  

                                    steel shaft [Shaft specification w.r.t section 4.5, ξ = 0.1]. 
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                Figure 4.26: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin  

                                      ratio (𝛽) for different asynchronous whirl conditions for   

                                      Stainless steel shaft [Shaft specification w.r.t section 4.5, ξ =  

                                      0.3]. 
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              Figure 4.27: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin  

                                    Ratio (𝛽) for different asynchronous whirl conditions for Stainless  

                                    steel shaft [Shaft specification w.r.t section 4.5, ξ = 0.5]. 
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          Figure 4.28: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin ratio  

                                (𝛽) for asynchronous whirl condition (λ = 0.5) for  different damping  

                                Ratio (𝜉) for Stainless steel shaft [Shaft specification w.r.t section  

                                4.5].       
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               Figure 4.29: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin 

                                     ratio (𝛽) for asynchronous whirl condition (λ = 1.5) for  different  

                                     damping ratio (𝜉) for Stainless steel shaft [Shaft specification 

                                     w.r.t section 4.5].       
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              Figure 4.30: Steady-state non-dimensional dynamic force (𝑃𝑑/𝑚𝑔) vs. spin  

                                    ratio (𝛽) of asynchronous whirl condition (λ = 2) for  different  

                                    damping ratio (𝜉) for Stainless steel shaft [Shaft specification  

                                    w.r.t section 4.5].       
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           Figure 4.31: Ever increasing, linear whirling amplitude (𝑟) vs. time curve for 

                                 superelastic SMA shaft [ Shaft specification w.r.t section 4.2, 𝑚 =  

                                 300 g, 𝜉 = 0, 𝛽 = 1]. 
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             Figure 4.32: Unsteady-state whirl analysis: Non-dimensional whirling amplitude  

                                   (𝑟/𝑒) vs. time curve for superelastic SMA shaft [ Shaft 

                                   specification w.r.t section 4.2, 𝑚 = 300 g, 𝜉 = 0.05, 𝛽 = 0.5]. 
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            Figure 4.33: Unsteady-state whirl analysis: Non-dimensional whirling amplitude  

                                  (𝑟/𝑒) vs. time curve for superelastic SMA shaft [ Shaft   

                                   specification w.r.t section 4.2, 𝑚 = 300 g, 𝜉 = 0.05, 𝛽 = 1]. 
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          Figure 4.34: Unsteady-state whirl analysis: Non-dimensional whirling amplitude  

                               (𝑟/𝑒) vs. time curve for superelastic SMA shaft [ Shaft specification  

                               w.r.t section 4.2, 𝑚 = 300 g, 𝜉 = 0.05, 𝛽 = 1.5]. 
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             Figure 4.35: Unsteady-state whirl analysis: Non-dimensional whirling amplitude  

                                  (𝑟/𝑒) vs. time curve for superelastic SMA shaft [ Shaft 

                                  specification w.r.t section 4.2, 𝑚 = 300 g, 𝜉 = 0.05, 𝛽 = 2]. 

 

 

 

 

 

 



 
 

92 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    

            Figure 4.36: Unsteady-state whirl analysis: Non-dimensional whirling amplitude  

                                 (𝑟/𝑒) vs. time curve for superelastic SMA shaft [ Shaft specification  

                                 w.r.t section 4.2, 𝑚 = 300 g, 𝜉 = 0.05, 𝛽 = 5]. 
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             Figure 4.37:  Unsteady-state whirl analysis: Maximum non-dimensional  

                                    Whirling amplitude (𝑟/𝑒) vs. spin ratio (𝛽) for different damping  

                                     ratio (𝜉) for superelastic SMA shaft [ Shaft specification w.r.t  

                                     section 4.2]. 
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                Figure 4.38: Unsteady-state whirl analysis: Maximum non-dimensional 

                                      whirling amplitude (𝑟/𝑒) vs. spin ratio (𝛽) after transient period  

                                      for different damping ratio (𝜉) for superelastic SMA shaft [ Shaft                                   

                                      specification w.r.t section 4.2]. 
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            Figure 4.39: Unsteady-state whirl analysis: Whirling amplitude (𝑟) vs. spin ratio  

                                 (𝛽) curve for superelastic SMA shaft for different eccentricity  

                                 [Shaft specification w.r.t section 4.2, ξ = 0.05]. 
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               Figure 4.40: Unsteady-state whirl analysis: Whirling amplitude (𝑟) vs. spin  

                                     ratio (𝛽)curve for superelastic SMA shaft for different  

                                     eccentricity [Shaft specification w.r.t section 4.2, ξ = 0.1]. 
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                 Figure 4.41: Unsteady-state whirl analysis: Whirling amplitude (𝑟) vs. spin                    

                                       ratio (𝛽) curve for superelastic SMA shaft for different  

                                       eccentricity [Shaft specification w.r.t section 4.2, ξ = 0.3]. 
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            Figure 4.42: Unsteady-state whirl analysis: Whirling amplitude (𝑟) vs. spin ratio  

                                 (𝛽) curve for superelastic SMA shaft for different eccentricity      

                                 [Shaft specification w.r.t section 4.2, ξ = 0.5]. 
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              Figure 4.43: Unsteady-state whirl analysis: Radial velocity (𝑟̇) vs. time (𝑡)  

                                    curve for superelastic SMA shaft. [Shaft specification w.r.t section  

                                    4.2, ξ = 0.05, 𝛽 = 1]. 
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   Figure 4.44: Unsteady-state whirl analysis: Whirl speed (𝛳̇) vs. time (𝑡) curve for  

                            superelastic SMA shaft. [Shaft specification w.r.t section 4.2, ξ = 0.05,  

                             𝛽 = 1]. 
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Figure 4.45: Unsteady-state whirl analysis: Non-dimensional dynamic force  

                                     (𝑃𝑑/𝑚𝑔) w.r.t maximum whirling amplitude (𝑟) vs. spin ratio  

                                     (𝛽) curve for different damping ratio (𝜉) superelastic SMA shaft  

                                      [Shaft specification w.r.t section 4.2]. 
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       Figure 4.46: Unsteady-state whirl analysis: Non-dimensional whirling amplitude  

                                  (𝑟/𝑒) vs. time curve for Stainless steel shaft [ Shaft specification  

                                   w.r.t. section 4.5,𝜉 = 0.05, 𝛽 = 0.5]. 
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             Figure 4.47: Unsteady-state whirl analysis: Non-dimensional whirling amplitude  

                                 (𝑟/𝑒) vs. time curve for Stainless steel shaft [ Shaft specification  

                                 w.r.t. section 4.5, 𝑚 = 300 g, 𝜉 = 0.05, 𝛽 = 1]. 
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Figure 4.48: Unsteady-state whirl analysis: Non-dimensional whirling amplitude  

                      (𝑟/𝑒) vs. time curve for Stainless steel shaft [ Shaft specification             

                      w.r.t. section 4.5, 𝑚 = 300 g, 𝜉 = 0.05, 𝛽 = 1.5]. 
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        Figure 4.49: Unsteady-state whirl analysis: Non-dimensional whirling amplitude  

                             (𝑟/𝑒) vs. time curve for Stainless steel shaft [ Shaft specification w.r.t.  

                              section 4.5, 𝑚 = 300 g, 𝜉 = 0.05, 𝛽 = 2]. 
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            Figure 4.50: Unsteady-state whirl analysis: Non-dimensional whirling amplitude  

                                  (𝑟/𝑒) vs. time curve for Stainless steel shaft [ Shaft specification  

                                  w.r.t. section 4.5, 𝑚 = 300 g, 𝜉 = 0.05, 𝛽 = 5]. 
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Figure 4.51: Unsteady-state whirl analysis: Maximum non-dimensional whirling   

                    amplitude (𝑟/𝑒) vs. spin ratio (𝛽) for different damping ratio (𝜉)  

                    for Stainless steel  shaft [ Shaft specification w.r.t section 4.5]. 
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 Figure 4.52: Unsteady-state whirl analysis: Maximum non-dimensional whirling   

                       amplitude (𝑟/𝑒) vs. spin ratio (𝛽) after transient period for  

                       different damping ratio (𝜉) for Stainless steel shaft [ Shaft                      

                       specification w.r.t section 4.5]. 
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              Figure: 4.53: Unsteady-state whirl analysis: Non-dimensional dynamic force  

                                     (𝑃𝑑/𝑚𝑔) w.r.t maximum whirling amplitude (𝑟) vs. spin ratio  

                                     (𝛽) curve for different damping ratio (𝜉) for Stainless steel shaft  

                                     [Shaft specification w.r.t section 4.5]. 
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Figure 4.54: Experimental whirl test set-up. 
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Figure 4.55: Control unit of the set-up. 
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Figure 4.56: Circular disc of variable mass and diameter [Disc mass = 250 g, dia = 15.4  

                      cm]. 
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 (Before experiment) 

 

 

 (After experiment) 

 

       Figure 4.57: Shaft’s shapes before and after experiment [dia = 8 mm, disc mass 250   

                             g, ω = 253 rpm, 𝛽 = 0.25]. 
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(Before experiment) 

 

 

(After experiment) 

 

     Figure 4.58: Shaft’s shapes before and after experiment [Shaft dia = 0.008 m, disc  

                           mass = 250 g, ω = 2298 rpm, 𝛽 = 2.29]. 

 

 

 

 

 



 
 

115 
 

  

 

 

 

 

 

 

 

  (Before experiment) 

 

(After experiment) 

 

Figure 4.59: Shaft’s shapes before and after experiment [Shaft dia = 0.008 m,  

                      Disc mass = 250 g, ω = 1133 rpm, 𝛽 = 1.13]. 
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(Before experiment) 

 

 

 

(After experiment) 

 

Figure 4.60: Shaft’s shapes before and after experiment [Shaft dia = 0.006 m, disc mass  

                      = 250 g, ω = 531 rpm, 𝛽 = 0.94]. 
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APPENDIX - A 

Steady-state Synchronous and Asynchronous Whirl (Whirling Amplitude 

Calculation at High Spin Ratio)                                         

 

Equation of steady-state (synchronous and asynchronous) non-dimensional 

whirling amplitude is 

 

                                        𝑟
𝑒

=
𝜆2𝛽2

√(1−𝜆2𝛽2)2+(2𝜉𝛽𝜆)2
................................(1) 

     

Dividing both numerator and denominator of R.H.S of equation 1, we obtain, 

                                       

                                        𝑟
𝑒

=
1

√(1−𝜆2𝛽2)
2

+(2𝜉𝛽𝜆)2

𝜆4𝛽4

 

                               Or,   𝑟
𝑒

=
1

√(
1

𝜆2𝛽2−1)
2

+(
2𝜉𝛽𝜆

𝜆2𝛽2)
2
 ………………..…..(2) 

            

From equation 2, if β≫0, 𝑟
𝑒

≈ 1. 
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APPENDIX - B 

Steady-state Synchronous and Asynchronous Whirl (Force Calculation) 

 

Equation of steady-state (synchronous and asynchronous) non-dimensional 

dynamic force is 

 

                                               𝑃𝑑

𝑚𝑔
=

√(𝑘𝑟)2+(𝑐𝜆𝜔𝑟)2

𝑚𝑔
 ……………..(1) 

  

             For superelastic SMA shaft (shaft specification w.r.t. section 4.2), for ξ = 0.05, λ 

= 1 (synchronous whirl condition), and β = 1.414, 

                                           

                                   Pd/mg = 0.94       

             

Similarly, for ξ = 0.1, λ = 1,  & β = 1.414, 

     

                                   Pd/mg = 0.94  

      

For ξ = 0.3, λ = 1 & β = 1.414, 

                                         

                                 Pd/mg  =  0.94  

     

             Therefore, all curves in (Pd/mg vs. β) Figure for synchronous whirl condition for 

any value of damping ratio intersect each other for a specific value of spin ratio (β = 

1.414). 
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APPENDIX - C 

Steady-state Synchronous and Asynchronous Whirl (Maximum whirling amplitude 

r/e calculation for a particular damping ratio )                                         

 

Equation of steady-state (synchronous and asynchronous) non-dimensional 

whirling amplitude is 

                              

                                  𝑦 =
𝑟

𝑒
=

𝜆2𝛽2

√(1−𝜆2𝛽2)2+(2𝜉𝛽𝜆)2
 ……………………..(1) 

            

Differentiating both sides of Equation 1 w.r.t β, 

       

                 𝑑𝑦

𝑑𝛽
=

2𝜆2𝛽√(1−𝜆2𝛽2)2+(2𝜉𝜆𝛽)2−𝜆2𝛽2[
−4𝜆2𝛽(1−𝜆2𝛽2)+8𝜆2𝜉2𝛽

2√(1−𝜆2𝛽2)
2

+(2𝜉𝜆𝛽)2
]

(1−𝜆2𝛽2)2+(2𝜉𝛽𝜆)2 ………………(2) 

 

For maximum whirling amplitude (r/e), 𝑑𝑦

𝑑𝛽
= 0. 

Therefore, from Equation 2, 

 

            4𝜆2𝛽{(1 − 𝜆2𝛽2)2 + (2𝜉𝜆𝛽)2} − 𝜆2𝛽2{−4𝜆2𝛽(1 − 𝜆2𝛽2) + 8𝜆2𝜉2𝛽} =

0……(3) 

      

Solving Equation 3,  

  

                                        𝛽 =  
1

𝜆√1−2𝜉2
 …………….(4) 

 

For λ = 1 (Synchronous whirl condition) and ξ = 0.05, 

                                   

                                        β = 1.003 
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Putting value of β = 1.003, λ = 1 (Synchronous whirl condition)  and ξ = 0.05 in 

Equation 1, corresponding non-dimensional whirling amplitude (r/e) is 10 for 

synchronous whirl condition. 

 

For λ = 2 (Asynchronous whirl condition) and ξ = 0.05, from Equation 4, 

 

                                β = 0.5013 

   

Putting value of β = 0.5013, λ = 2 (Asynchronous whirl condition) and ξ = 0.05 in 

Equation 1, corresponding non-dimensional whirling amplitude (r/e) is 10 for 

asynchronous whirl condition. 
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APPENDIX - D 

Moment Area Method 

 

Two theorems of this method are used to predict the whirling shafts’ shapes in 

this thesis. Brief description is provided in terms of Figures a-c. 

 

Moment-area method - Theorem 1 

The change in slope between the tangents drawn to the elastic curve at any two 

points A and B (Figure b) is equal to the product of (1/𝐸𝐼) multiplied by the area of the 

moment diagram (Figure c) between these two points.                              

𝛳𝐴𝐵 =
1

𝐸𝐼
(𝐴𝑟𝑒𝑎𝐴𝐵) 

Moment-area method - Theorem 2 

The deviation of any point B relative to the tangent drawn to the elastic curve 

(Figure c) at any other point 𝐴, in a direction perpendicular to the original position of the 

beam, is equal to the product of (1/𝐸𝐼) multiplied by the moment of an area about 𝐵 of 

that part of the moment diagram (Figure b) between points A and B. 

𝑡𝐴/𝐵 = ∑
1

𝐸𝐼
(𝐴𝑟𝑒𝑎𝐴𝐵) • 𝑋̅𝐴 

 

 

 

 

 

 

       Figure (a): Simply-supported beam with force acting at the mid-span of the shaft. 

 

Here, it is considered that, moment-area method can be applied to the Jeffcott 

rotor shaft which is whirling. Shaft specification stated in section 4.2 is considered here 

for the calculation. Maximum total force P = 16.8 N acting at the shaft center is w.r.t. 

Figure 4.12 is used to calculate the shaft maximum deflection considering material 

linearity and non- 

L/2 L/2 
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linearity as well. For linearly elastic model, the change in slope between the tangents 

drawn to the elastic curve at A and B (Figure b), 

 

𝛳𝐴𝐵 = ∫ 𝑑𝛳
𝐵

𝐴
= ∫

𝑀

𝐸𝐼
𝑑𝑥

𝐵

𝐴
=

1

2
×

𝐿

2
×

𝑃𝐿

4𝐸𝐼
=

𝑃𝐿2

16𝐸𝐼
= 0.823 rad. 

 

 
Figure (b): Elastic curve of a superelastic SMA Jeffcott rotor shaft while whirling  

                  considering material linearity and non-linearity. [Shaft specification w.r.t 
section  

                  4.2]. 

𝜃𝐵 

𝛳𝐶 
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 The deviation of point B relative to the tangent drawn to the elastic curve (Figure 

b) at point A, in a direction perpendicular to the original position of the shaft, is equal to, 

 

                           𝑡𝐵/𝐴 = ∫ 𝑥𝑑𝛳 = ∫
𝑀𝑥

𝐸𝐼
𝑑𝑥 = (

1

3
×

𝐿

2
) ×

𝑃𝐿2

16𝐸𝐼
=

𝑃𝐿3

96𝐸𝐼

𝐵

𝐴

𝐵

𝐴
 = 27.4 mm. 

 

The deflection at the center of the shaft can be obtained with the help of the 

second moment area theorem between points A and B i.e. 

 

                             𝑟𝐵 = (𝛳𝐴𝐵 ×
𝐿

2
) − 𝑡𝐵

𝐴

= (
𝑃𝐿2

16𝐸𝐼
×

𝐿

2
) −

𝑃𝐿3

96𝐸𝐼
=

𝑃𝐿3

48𝐸𝐼
 = 54.9 mm. 

           

Next, material non-linearity effect is handled as follows. When moment at the 

shaft center exceeds threshold bending moment, then shafts corresponding deflection 

will be higher. Under this consideration, the change in slope between the tangents drawn 

to the elastic curve at A and C, 

                                       𝛳𝐴𝐶 =
𝑃𝐿2

16𝐸𝐼
+

1

2
× 𝑙1 × (

𝑀𝑟−𝑀

𝐸𝐼
) = 1.75 rad. 

 

 

 

 

 

 

 

 

 

  Figure (c): (M/EI) vs. Shaft length (L) diagram of a superelastic SMA Jeffcott rotor 

shaft  

                    while whirling considering material linearity and non-linearity. [Shaft  

                    specification w.r.t section 4.2]. 

 

 

𝑙1 
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The deviation at point C relative to the tangent drawn to the elastic curve at point 

A, in a direction perpendicular to the original position of the beam, is equal to, 

                 

𝑡𝐶/𝐴 =
𝑃𝐿3

96𝐸𝐼
+ [

1

3𝐸𝐼
× 𝑙1 × {

1

2
× 𝑙1 × (𝑀𝑟 − 𝑀)}] = 47.2 mm. 

             

The deflection at the center of the beam can be obtained with the help of the 

second moment area theorem between points A and B i.e. 

 

                                                  𝑟𝑐 = (𝛳𝐴𝐶 ×
𝐿

2
) − 𝑡𝐶/𝐴 = 127.8 mm. 
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APPENDIX – E 

Matlab Code 

 

E - 1: ** Program for Unsteady-state (Transient) Asynchronous Whirl of Jeffcott 
Rotor** 

 

clear;clc 

h=0.0001; 

tfinal=0.6; 

  

t(1)=0; 

w(1)=0.001; x(1)=.1; y(1)=0; z(1)=0; 

a=0.000025; b=115.98; c=14.5; d=0.2; e=1050.863;  

  

f1=@(t,w,x,y,z) x; 

f2=@(t,w,x,y,z) ((a*b^2)*cos(b*t-y)) + (w*(z)^2) - ((e*w)/d) - ((c*x)/d); 

f3=@(t,w,x,y,z) z; 

f4=@(t,w,x,y,z) (1/w)*((a*(b^2)*sin(b*t-y)-(c/d)*w*z - 2*x*z));  

  

for i=1:ceil(tfinal/h) 

    t(i+1)=t(i)+h; 

    

    k1=f1(t(i), w(i), x(i), y(i), z(i)); 

    l1=f2(t(i), w(i), x(i), y(i), z(i)); 

    m1=f3(t(i), w(i), x(i), y(i), z(i)); 

    n1=f4(t(i), w(i), x(i), y(i), z(i)) 

     

    k2=f1(t(i)+.5*h, w(i)+0.5*k1*h, x(i)+.5*l1*h, y(i)+.5*m1*h, z(i)+.5*n1*h); 

    l2=f2(t(i)+.5*h, w(i)+0.5*k1*h, x(i)+.5*l1*h, y(i)+.5*m1*h, z(i)+.5*n1*h); 

    m2=f3(t(i)+.5*h, w(i)+0.5*k1*h, x(i)+.5*l1*h, y(i)+.5*m1*h, z(i)+.5*n1*h); 
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    n2=f4(t(i)+.5*h, w(i)+0.5*k1*h, x(i)+.5*l1*h, y(i)+.5*m1*h, z(i)+.5*n1*h); 

     

    k3=f1(t(i)+.5*h, w(i)+0.5*k2*h, x(i)+.5*l2*h, y(i)+.5*m2*h, z(i)+.5*n2*h); 

    l3=f2(t(i)+.5*h, w(i)+0.5*k2*h, x(i)+.5*l2*h, y(i)+.5*m2*h, z(i)+.5*n2*h); 

    m3=f3(t(i)+.5*h, w(i)+0.5*k2*h, x(i)+.5*l2*h, y(i)+.5*m2*h, z(i)+.5*n2*h); 

    n3=f4(t(i)+.5*h, w(i)+0.5*k2*h, x(i)+.5*l2*h, y(i)+.5*m2*h, z(i)+.5*n2*h); 

     

    k4=f1(t(i)+h, w(i)+k3*h, x(i)+l3*h, y(i)+m3*h, z(i)+n3*h); 

    l4=f2(t(i)+h, w(i)+k3*h, x(i)+l3*h, y(i)+m3*h, z(i)+n3*h); 

    m4=f3(t(i)+h, w(i)+k3*h, x(i)+l3*h, y(i)+m3*h, z(i)+n3*h); 

    n4=f4(t(i)+h, w(i)+k3*h, x(i)+l3*h, y(i)+m3*h, z(i)+n3*h); 

     

    w(i+1)= w(i) + (h/6)*(k1+2*k2+2*k3+k4); 

    x(i+1)= x(i) + (h/6)*(l1+2*l2+2*l3+l4); 

    y(i+1)= y(i) + (h/6)*(m1+2*m2+2*m3+m4); 

    z(i+1)= z(i) + (h/6)*(n1+2*n2+2*n3+n4); 

     

end 

  

%% 

subplot (221) 

plot (t,w,'MarkerFaceColor', 'k', 'MarkerEdgeColor','k', ... 

    'LineWidth', 2); 

ax = gca; 

ax.FontSize = 14; 

ax.FontWeight = 'bold'; 

xlabel ('t(s)'); 

ylabel ('r(m)'); 

grid on; 

subplot (222) 



 
 

127 
 

plot (t,x,'MarkerFaceColor', 'k', 'MarkerEdgeColor','k', ... 

    'LineWidth', 2); 

ax = gca; 

ax.FontSize = 14; 

ax.FontWeight = 'bold'; 

xlabel ('t(s)'); 

ylabel ('r(m/s)'); 

grid on; 

subplot (223) 

plot (t,y,'MarkerFaceColor', 'k', 'MarkerEdgeColor','k', ... 

    'LineWidth', 2); 

ax = gca; 

ax.FontSize = 14; 

ax.FontWeight = 'bold'; 

xlabel ('t(s)'); 

ylabel ('Theta(rad)'); 

grid on; 

subplot (224) 

plot (t,z,'MarkerFaceColor', 'k', 'MarkerEdgeColor','k', ... 

    'LineWidth', 2); 

ax = gca; 

ax.FontSize = 14; 

ax.FontWeight = 'bold'; 

xlabel ('t(s)'); 

ylabel ('Whirling speed (rad/s)'); 

grid on; 
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E - 2: ** Program for Finding Out of Reduced Modulus of Jeffcott Rotor shaft ** 

 

%number of steps must be even 

n = 4; 

  

d = .002; 

radius = 0.001; 

e1 = -0.107432661; 

e2 = 0.15:0.01:0.17 

del = e2-e1; 

  

iterations = size(e2,2); 

Ep = zeros(1,iterations); 

  

%% 

tic 

for i = 1:iterations 

    disp(sprintf('iter: %d, e1: %f e2: %f', i, e1, e2(i))); %#ok<DSPS> 

    constant = (2*(d^2)); 

    r = romberg_manual(e1, e2(i), n); 

    eppp = constant * r(n,n)/(e2(i)-e1) 

    Ep(i) = eppp; 

    if(eppp>0) 

        break; 

    end 

    toc 

end 

%% 

plot(del , Ep); 

grid on; 
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xlabel('Del', 'FontSize',12,'FontWeight','bold','Color','r'); 

ylabel('Ep', 'FontSize',12,'FontWeight','bold','Color','r'); 

 

function dat = getData() 

%% Import the data 

% [~, ~, raw] = xlsread('streesVstrain.xlsx','Sheet1','A2:B41'); 

  

[~, ~, raw] = xlsread('final_sma2.xlsx','Sheet1','A2:B53'); 

%% Create output variable 

dat = reshape([raw{:}],size(raw)); 

clearvars data raw; 

 

% All the vaues are randomly selected 

%number of steps must be even 

n = 8; 

del = 0.228382; 

d = .002; 

radius = .001 

e1 = -0.09395828 

e2 = 0.134422 

  

iterations = size(e1,2); 

Ep = zeros(1,iterations) 

  

%% E vs DEL 

  

%% 

tic 

for i = 1:iterations 

    i 
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    rho = d/del; 

    constant = (128 *rho)/(pi * d * del^3) 

     

    f =@(x) getStress(x)*x *(sqrt(abs((radius/rho)^2 - x.^2))); 

    f(e1) 

    f(e2) 

    r = romberg(f, e1, e2, n) 

    eppp = 10^6 * constant * r 

%     Ep(i) = eppp;  

    toc 

end 

%% 

plot(del , Ep); 

grid on; 

xlabel('Del', 'FontSize',12,'FontWeight','bold','Color','r'); 

ylabel('Ep', 'FontSize',12,'FontWeight','bold','Color','r'); 
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E - 3: ** Program for Finding of Bending moment of Jeffcott Rotor Shaft ** 

 

%number of steps must be even 

n = 4; 

  

d = .002; 

radius = 0.001; 

e1 = -0.107432661; 

e2 = 0.15:0.01:0.17 

del = e2-e1; 

  

iterations = size(e2,2); 

Ep = zeros(1,iterations); 

  

%% 

tic 

for i = 1:iterations 

    disp(sprintf('iter: %d, e1: %f e2: %f', i, e1, e2(i))); %#ok<DSPS> 

    constant = (2*(d^2)); 

    r = romberg_manual(e1, e2(i), n); 

    eppp = constant * r(n,n)/(e2(i)-e1) 

    Ep(i) = eppp; 

    if(eppp>0) 

        break; 

    end 

    toc 

end 

%% 

plot(del , Ep); 

grid on; 
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xlabel('Del', 'FontSize',12,'FontWeight','bold','Color','r'); 

ylabel('Ep', 'FontSize',12,'FontWeight','bold','Color','r'); 

 

function dat = getData() 

%% Import the data 

% [~, ~, raw] = xlsread('streesVstrain.xlsx','Sheet1','A2:B41'); 

  

[~, ~, raw] = xlsread('final_sma2.xlsx','Sheet1','A2:B53'); 

%% Create output variable 

dat = reshape([raw{:}],size(raw)); 

clearvars data raw; 

 

% All the vaues are randomly selected 

%number of steps must be even 

n = 8; 

del = 0.228382; 

d = .002; 

radius = .001 

e1 = -0.09395828 

e2 = 0.134422 

  

iterations = size(e1,2); 

Ep = zeros(1,iterations) 

n=8; 

del = 0.228382; 

d = .002; 

radius = .001 

e1 = -0.09395828 

e2 = 0.134422 
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iterations = size(e1,2); 

Ep = zeros(1,iterations) 

  

%% E vs DEL 

  

%% 

tic 

for i = 1:iterations 

    i 

    rho = d/del; 

    constant = 2 * d^3 / (del(i)^3); 

     

    f =@(x) getStress(x)*x *(sqrt(abs((radius/rho)^2 - x.^2))); 

    f(e1) 

    f(e2) 

    r = romberg(f, e1, e2, n) 

    eppp = 10^6 * constant * r 

%     Ep(i) = eppp;  

    toc 

end 

%% 

plot(del , Ep); 

grid on; 

xlabel('Del', 'FontSize',12,'FontWeight','bold','Color','r'); 

ylabel('Ep', 'FontSize',12,'FontWeight','bold','Color','r'); 
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Appendix – F 

A Problem and Solution (Example 3.4.1) from Thomson et. al. (2011) 

     

Turbines operating above the critical speed must run through dangerous speed at 

resonance each time they are started or stopped. Assuming the critical speed ωn to be 

reached with amplitude ro, determine the equation for the amplitude buildup with time. 

Assume zero damping. 

 

Solution 

          

We will assume synchronous whirl as before, which makes 𝛳̇ = 𝜔 = constant 

and 𝛳̈ = 0. However, 𝑟̈ & 𝑟̇ terms must be retained unless shown to be zero. With 𝑐 = 0 

for the undamped case, the general equations of motion reduce to  

                                     

                             𝑟̈ + (
𝑘

𝑚
− 𝜔2) 𝑟 = 𝑒𝜔2 cos 𝜙…………………..(1) 

                             2𝑟̇𝜔 = 𝑒𝜔2 sin 𝜙  ……………………….....…..(2) 

 

The solution of the second equation with initial deflection equal to ro is  

 

                             𝑟 =
𝑒𝜔

2
𝑡 sin 𝜙 + 𝑟0……………………………..(3) 

 

Differentiating this equation twice, we find that 𝑟̈ = 0; so the first equation with 

the above solution for r becomes  

  

                           (𝑘

𝑚
− 𝜔2) (

𝑒𝜔

2
𝑡 𝑠𝑖𝑛 𝜙 + 𝑟0) =  𝑒𝜔2 cos 𝜙……..(4) 

 

            Because the right side of this equation is constant, it is satisfied only if the 

coefficient of t is zero: 

                         

                                              (𝑘

𝑚
− 𝜔2) sin 𝜙 = 0……………….……(5) 
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Which leaves the remaining terms: 

 

                                          (𝑘

𝑚
− 𝜔2) 𝑟0 = 𝑒𝜔2 cos 𝜙…………………(6) 

 

              With 𝜔 = √𝑘/𝑚, the first equation is satisfied, but the second equation is 

satisfied only if cos 𝜙 = 0 or 𝜙 = 𝜋/2. Thus, we have shown that at 𝜔 = √𝑘/𝑚, or at 

resonance, the phase angle is π/2 as before for the damped case, and the amplitude builds 

up linearly according to the equation shown in following Figure. 

 

 

  

 

 

 

 

 

 

 

 

 

 


