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Abstract 
 
Cardiovascular diseases such as heart attacks, strokes, atherosclerosis, stenosis and 

aneurysms have been considered as the world‟s highest cause of death.  The frequently 

affected arteries are the aorta, the coronary, the carotid, and the femoral arteries. It is a 

vital area of research for the flow behavior of blood, as well as the shear-thinning 

viscosity of blood. The study of blood flow has attracted the bioengineers, bio-medical 

researchers and numerical scientists over the past years due to its significant effect on 

several human cardiovascular diseases. In this thesis entitle “Numerical study of blood 

flow through stenotic andaneurysmatic artery of human organ”, three problems have 

been studied. The study on various kinds of stenosis and anuerysm enclousers and 

boundary conditions are summarized below: 

 
Firstly, a computational analysis and simulation of blood flow through symmetric 

stenosis and asymmetric stenosis with various flow rates have been studied. At inlet, the 

parabolic velocity profile is used and fixed pressure is used at outlet. No slip conditions 

are used for velocity and homogeneous Neumann condition for the pressure at blood 

vessel. The governing mass, momentum and Oldroyd-B equation are expressed in a 

normalized primitive variables formulation.  

 
Secondly, the blood flow simulation and numerical investigation have been considered 

through the permeable aneurysmatic artery for Newtonian, Oldroyd-B and their 

generalized fluids. The velocity profile and constant pressure are used at inlet and outlet 

respectively. The first aneurysm blood vessel is permeable and no-slip boundary 

conditions are used for rest of the vessel walls. A set of partial differential equations of 

conservation of mass, momentum and Oldroyd-B equations are expressed in a 

normalized primitive variable formulation. 

 
Finally, a comparative study and numerical investigation have been carried out for blood 

flow through stenotic and aneurysmatic artery with incompressible Newtonian and non-

Newtonian fluids including blood clot. The upper surface of blood clot is heated and 

stenosed vessel wall is cooled down while no slip velocity conditions are applicable for 

all walls. The parabolic velocity profile is considered at inlet and pressure is remained 

unchanged at outlet.  



 x 
 

 
The mathematical models are presented by various sets of partial differential equations 

for different physical problems with the corresponding boundary conditions. The 

dimensionless governing equations have transformed using appropriate nondimensional 

scale. The governing equations have solved using a finite element technique based on the 

Galerkin weighted method.  

 
Results are presented in terms of velocity contour lines, pressure plots, and stream lines 

with vectors along vessel axis for simulation of blood flow. The graphical study have 

shown with the effects of the blood velocity, blood pressure along vessel axis, wall shear 

stress, drag coefficient, stress components, governing parameters namely Reynold 

numbers Re, Weissenbeg number Wi, Schmidt number Sc, and Pectlet number Pe for all 

models. Code validation is performed with previously published work and the results are 

found to be in excellent agreement. Reynold numbers Re, Weissenbeg number Wi, 

Pectlet number Pe 

 
This results indicate that the blood flow and pressure strongly depends on the parameters 

such as Reynold numbers Re, Weissenbeg number Wi, Schmidt number Sc, and Pectlet 

number Pe , the height of stenotic and aneurysmatic artery, permeable aneurysm artery, 

drag coefficient, and wall shear stress.  The following outcomes in the research of  

numerical study of blood flow through stenotic andaneurysmatic artery of human organ 

may also be useful in bio-medical engineering. 

 
(i) It has shown that the effect of blood flow variables related to viscoelasticity is 

more significant at the throat of stenotic and aneurysmatic artery. 

(ii) The reversal flow have found at behind the stenosis and aneurysm region. 

(iii) The confined area or recirculation zones have originated at constriction of 

stenosis and middle of two aneurysm. 

(iv) It is found that the hemodynamical factors- blood velocity, pressure, turbulence, 

stress tensor and wall shear stress, play important roles in the localization of 

arteriosclerotic lesions affecting mass transfer phenomena at the arterial walls. 

https://en.wikipedia.org/wiki/Schmidt_number
https://en.wikipedia.org/wiki/Schmidt_number
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(v) The transport of blood ingredients through permeable walls have played an 

important role to genesis and progression of arterial diseases. 

(vi) At abrupt contraction region having blood clot, the blood flow characteristics are 

affected for all modifications.     

(vii)  The finding of the blood flow behavior on the wall shear stress is an important 

factor in the onset of arterial diseases which may be reported in medical science.  
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CHAPTER 1 
INTRODUCTION AND HISTORICAL REVIEW 

1.1    Introduction 

Blood is a complex multi-phase mixture of solid corpuscles that includes red blood cells 

(RBCs, or erythrocytes), white blood cells (WBCs or leukocytes) and platelets 

(thrombocytes). These corpuscles are suspended in an aqueous polymeric and ionic 

solution, the plasma, containing electrolytes, organic molecules and various proteins. 

Erythrocytes have been shown to exert the most significant influence on the mechanical 

properties of blood, mainly due to their presence in very high concentration compared to 

the other formed elements, comprising about 40% to 45% of its volume in healthy 

individuals (hematocrit). The rheological characteristics of blood are determined by the 

properties of these components and their interaction with each other as well as with the 

surrounding structures. Bondar et al. (2011) have studied that the blood rheology is also 

affected by the external physical conditions such as temperature; however, in living 

organisms in general, and in large mammals, these conditions are regulated and hence 

they are subject to minor variations that cannot affect the general properties significantly. 

Other physicalproperties, such as mass density, may also play a role in determining the 

bloodoverall rheological conduct. Thurston (1972) has studied viscoelasticity properties 

of human blood flow experimentally.  The rheological properties of blood and blood 

vessels are affected by the body intake of fluids, nutrients and medication although in 

most cases the effect is not substantial except possibly over short periods of timeand 

normally does not have lasting consequences have described by Breithupt et al. (1997). 

 
Lee et al. (2011) have illustrated that the viscosity of blood is determined by several 

factors such as the viscosity of plasma, hematocrit level, blood cell distribution, and the 

mechanical properties of blood cells. The blood viscosity is also affected by the applied 

deformation forces, extensional as well as shearing, and the ambient physical conditions. 

While the plasma is essentially a Newtonian fluid, the blood behaves as a non-

Newtonian fluid showing all signs of non-Newtonian rheology which includes 

deformation rate dependency, viscoelasticity, yield stress and thixotropy has presented 

by Dintenfass (1962). Most non-Newtonian effects originate from the red blood cells due 
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to their high concentration and distinguished mechanical properties such as elasticity and 

ability to aggregate forming three-dimensional structures at low deformation rates. 

 
There is a strong evidence that hemodynamical factors such as flow separation, flow 

recirculation, low and oscillatory wall shear stress, as well as changes in the rheological 

properties of blood and its components, play amajor role in the development and 

progression of atherosclerotic plaques and other arterial lesions have analized by 

Leuprect and Perktold (2001). Videman (1997) has studied the viscoelastic non-

Newtonina fluids mathematically. However, their specific role is notcompletely 

understood. The mathematical and numerical study of meaningful constitutive models 

that can accurately capture the rheological response of blood over a range of 

physiological flow conditions is recognized as an invaluable tool for the interpretation 

and analysis of the circulatory system functionality, in both physiological and 

pathological situations have explained by Charm and Kurland (1965). 

  
While plasma is nearly a Newtonian fluid, whole blood exhibits marked non-Newtonian 

characteristics, at low shear rates, like shear-thinning viscosity, thixotropy, 

viscoelasticity, and possibly a yield stress. The non-Newtonian behavior of blood is 

mainly explained by three phenomena: the tendency of erythrocytes to form three-

dimensional microstructures (rouleaux) at low shear rates, their deformability (or 

breakup) and their tendency to align with the flow field at high shear rates have studied 

experimentally and theoriticaly by chien et al. (1966, 1967, 1978 and 1970). When blood 

is at restor at low shear rates (below 1s−1) it seems to have a high apparent 

viscosity,while at high shear rates there is a reduction in the blood‟s viscosity. Quemada 

(1978) has shown there is also experimental evidence that supports the fact that blood 

exhibits stress relaxation. Moreover, Evans and Hochmuth (1976) have found that the 

red blood cell membrane, which is a component of blood, has stress relaxation. On the 

other hand, the experimental results of Thurston (1973) have shown that the relaxation 

time depends on the shear rate. In view of the experimental work performed so far, a 

reasonable non-Newtonian fluid model for blood should capture shear-thinning and 

stress relaxation, with the relaxation time depending on the shear rate. The response of 

such fluids is still almost unfamiliar and is a subject of dynamic research for future.  

 
The aim of this research is to study the numerical investigation and numerical 

simulations of blood flow, using finite element methods (FEM), of the non-linear system 
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of partial differential equations (PDE) of a combined elliptic-hyperbolic type, thatmodels 

the non-Newtonian incompressible viscoelastic Oldroyd-B fluids flows in thesteady case. 

The constitutive equations provide us to characterize the mechanical behavior of fluid 

which relates the Cauchy stress tensor with the kinematics of different quantities.The 

constitutive equations for non-Newtonian viscoelastic fluids consist of highly non-linear 

system of partial differential equations (PDE) of combined elliptic hyperbolic or 

parabolic-hyperbolic type. The Oldroyd-B fluids model is the constitutive model of rate 

type which is capable to describe the viscoelastic behavior of blood flows in the 

polymeric processing. The Oldroyd-B constitutive equations for steady flow are 

decoupled into two auxiliary problems, namely, the Navier-Stokes like problems for the 

velocity and pressure (elliptic part of the system) and the steady tensorial transport 

equation for the extra stress tensor (hyperbolic part of the system). Both the auxiliary 

problems are studied separately. The iterative Newton-Raphson methodis used to obtain 

the numerical solution of the Navier-Stokes problem which is discretized using P2 - P1 

(Hood-Taylor) finite elements. The iterative method based on the application of a fixed-

point method is implemented to solve the steady tensorial transport equation which is 

discretized using the discontinuous Galerkin finite element method. 

1.2    Historical Review 

At the beginning of the discovery that the fatal cardiovascular disease arteriosclerosis or 

stenosis and aneurysm affects the flow of blood in the arteries and leads to serious 

circulatory disorders, this area of biomechanics has been receiving the attention of 

researchers during the recent decades (2009). At present time medical researchers, 

bioengineers and numerical scientists joinefforts with the purpose of providing numerical 

simulations of human blood flow system in different conditions. The exchange of 

knowledge and data information is main purpose of this kind of collaboration that can be 

used in simulations.  
 

Stenotic Aertery: 
In our blood circulation system, there are some strong hemodynamical features (such as 

separation and recirculation of flow, low and oscillatory wall shear stress) that canchange 

in the rheological properties of blood and its components. It plays a major role in the 

development and progression of atherosclerotic plaques and other arterial lesions. Caro 

et al.(1978) have investigate the mechanics of the blood circulation. Tu and Deville 
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(1996) also have shown the pulsatile flow of blood fluids through stenotic artery. Flows 

in stenotic blood vessels have analized by Berger and Jou (2000). Atherosclerosis is a 

common disease of the cardiovascular system, which generates a stenosis of the blood 

vessels, by partially obstructing them. This reduction in the vessel diameter changes in 

particular the mechanical behavior of the blood circulation. In any physiological and 

pathological situations, the numerical study is an important tool for the interpretation and 

analysis of the circulatory system and can capture the rheological response of blood over 

a range of physiological flow conditions accurately are shown by Leuprect and Perktold 

(2001). 
 
Stenosis is the abnormal and unnatural growth on the arterial wall thickness that 

develops at various arterial locations of the cardiovascular system under diseased 

conditions has descriped by Siddique et al. (2009). Marshall et al. (2004) have analyzed 

that stenoses developed in the arteries pertaining to brain can cause cerebral strokes and 

the one developedin the coronary arteries can cause myocardial infarction which leads to 

heart failure. It has been reported by Verdier (2003) that the fluid dynamical properties 

of blood flow through nonuniform crosssection of the arteries play a major role in the 

fundamental understanding and treatment of many cardiovascular diseases. 
 
It has been pointed out by Dwivedi et al. (1982) that the blood vessels bifurcate at 

frequent intervals, and although the individual segments of arteries may be treated as 

uniform between bifurcations, the diameter of the artery decreases quite fast at each 

bifurcation. Hence, Oka and Murata (1969) have examined that the analysis of blood 

flow through tapered tubes is very important in understanding the behavior of the blood 

flow as the taper of the tube. Later Oka (1973) has also determined that the pressure 

development is another important factor in human blood flow. 
 
How and Black (1987) pointed out that the study of blood flow in tapered arteries is also 

very useful in the design of prosthetic blood vessels as the use of grafts of tapered lumen 

has the surgical advantage in the blood vessels being wider upstream. The important 

hydrodynamical factor for tapered tube geometry is the pressure loss which leads to 

diminished blood flow through the grafts have shown theoriticaly and experimentally by 

Yeleswarapu et al. (1998). Hence, the mathematical modeling of blood flow through 

stenosed tapered or stenosis and aneurysm arteries is very important. Several researchers 

(Chiu 1998, Chakravarty and Mandal 2000, Chakravarty et al. 2004, Mandal (2005), Mekheimer 
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and Kot 2008) have studied the blood flow characteristics due to the presence of a stenosis 

in the tapered arteries.  
 
Thurston (1994) was among the earliest to recognize the viscoelastic nature of blood and 

that the viscoelastic behavior is less prominent with increasing shear rate. Thurston‟s 

work  (1973) has suggested to be more applicable to venous or low shear unhealthy 

blood flow than to arterial flows. Other viscoelastic constitutive models for describing 

blood rheology have been proposed in the recent literature. The empirical three constant 

generalized Oldroyd-B model studied by Thurston (1972) in belongs to this class. It has 

been obtained by fitting experimental data in one dimensional flows and generalizing 

such curve fits to three dimensions. This model captures the shear-thinning behavior of 

blood over a large range of shear ratesbut it has its limitations, given that the relaxation 

times do not depend on the shear rate, which does not agree with experimental 

observations.  
 
Anand et al. (2004) has developed  a model that is suitable for blood simulation and it 

containts Oldroyd-B fluid flow characteristics. Rajagopal and Srinivasa (2000, 2011) 

have developed a thermodynamic frame work requiring the knowledge of how the 

material stores energy and how it produces entropy, which is particularly well suited for 

describing the viscoelastic response of bodies with multiple configurations. It is well 

suited model for blood. Non-Newtonian homogeneous continuum models are very 

significant in hemodynamics and hemorheology. However, it should be emphasized that 

blood flow is Newtonian in most parts of the arterial system and attention should be 

drawn to flow regimes and clinical situations where non-Newtonian effects of blood can 

probably be observed. These include, for normal blood, regions of stable recirculation 

like in the venous system and parts of the arterial vasculature where geometry has been 

altered and RBC aggregates become more stable, like down stream a stenosis, inside a 

saccular aneurysm or in some cerebral anastomoses. In addition, several pathologies are 

accompanied by significant changes in the mechanical properties of blood and this 

results in alterations in blood viscosity and viscoelastic properties, as reported by 

Truesdell (1991) and in the recent review articles of Robertson et al. (2008). 
 
However, as shown recently Rajagopal and Srinivasa (2000), not all viscoelastic fluids can 

be described within that earlier framework. In fact, there are (rate type) viscoelastic 

fluids that cannot have a specific Helmholtz potential associated with them. For certain 
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viscoelastic fluids, one cannot associate a specific Helmholtz potential but only a Gibbs 

potential. Rate type fluids stemming from a Gibbs potential approach might be useful in 

describing the response of blood. 
 
Robertson et al. (2009) have explained reliable experimental measurements of velocity, 

shear stress and interactions between the cellular components of blood and plasma are 

essential and need further improvement to develop micro structural blood flow models, 

appropriate in smaller vessels in which the cell and lumen sizes are comparable. For a 

detailed discussion of the physical properties of blood and corresponding mathematical 

models see for instance and references therein. To captures the shear-thinning 

rheological behavior a DA method has developed by Elia et al. (2011) to show the 

numerical simulation of blood flow in 2D idealized stenosis with wall shear stress effect.  

G. Telma et al. (2014) disscussed the blood flow simulations can improved by 

integrating known data  in 2D idealised  stenosis vessels. Radka and kozel (2013) have 

dealed wtih the numerical simulation of genieralized newtonian and oldroyd-B fluid flow 

for four models. Recently, Nasir and Alim (2017) have descriped on numerical study of 

blood flow through symmetry and asymmetric stenosis artery under various flow rates. 

Later, Nasir and Alim (2017) have also studied on numerical investigation of blood flow 

through stenotic artery.  
 

Aneurysmatic Artery 
Up to 75 percent of all patients with a ruptured aneurysm die from the condition before 

reaching the hospital, which makes screening crucial for people at greatest risk. Ingoldby 

et al. (1986) have shown these prehospital deaths are counted, the overall mortality rate 

may exceed 90 percent. Ernst (1993) has studied that the increasing median age of the 

population contributes to an increasing incidence. An aneurysm is defined as a focal 

dilatation (balloon) of a blood vessel involving an increase in diameter above 50 percent 

compared with the expected normal diameter. As an aneurysm increases in size, the risk 

of rupture increases are repoted by Cronenwett et al. (1985). A ruptured aneurysm can 

lead to bleeding. Aneurysms can occur in any blood vessel, with particularly lethal such 

that  including aneurysms of the circle of willis in the brain, aortic aneurysms affecting 

the thoracic aorta, and abdominal aortic aneurysms (AAA). Aneurysms can arise in the 

heart itself following a heart attack, including both ventricular and atrial septal 

aneurysms.  
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An aneurysm may occur when the arterial wall loses its structural integrity and gives 

way to the distending force of the pulsatile intraluminal pressure. A segment of the artery 

expands to form a balloon-like dilatation: an aneurysm.  As the thickness of the wall 

must play a role in the distension and ultimate rupture of an aneurysm, the stress in the 

arterial wall has shown to be also inversely proportional to the wall thickness by Johansen 

(1982). Abdominal aortic aneurysms have usually been characterized as atherosclerotic, 

although no unified concept of pathogenesis has emerged. 
  
The genesis of blood coagulation is a cascade phenomenon of biochemical events 

induced by several clotting factors. Transfer of platelets and other clotting factors to the 

vascular wall is accomplished through diffusive and convective mechanisms. 

Predilection sites of thrombosis in the human arterial system include geometries which 

produce nonparallel streamline flow such as bifurcations, branches, curves, stenoses, and 

aneurysms. Convection of flow aggregates can be locally enhanced or diminished in such 

geometries that produce localized regions of high and low shear, flow separation, 

recirculation, and reattachment. The process of thrombosis may be affected by a series of 

Theological and fluid dynamic parameters. 
  
There are several aneurysm hemodynamics in vitro studies in steady flow have done by 

Budwig et al. (1993). These studies have shown that the flow field through the aneurysm 

is characterized by a jet of fluid surrounded by a recirculating vortex and this 

recirculating vortex effects dramatically the stresses on the aneurysm wall. A typical 

value of the Reynolds number in a healthy human abdominal aorta is approximately 

1800 during peak systole, but this value can dramatically change because of various 

pathologies.  
 
An insight to the mechanism of thrombus formation in aneurysms was given by Muraki 

(1983) who performed ultrasonic studies of AAAs and suggested that the mural thrombi 

in aneurysms is initially formed in the distal area of the expansion and then develops 

proximally. Muraki also observed that aneurysm rupture typically occurs in the distal 

area of the aneurysm. Fukushima et al. (1986) have described in vitro studies include 

numerical studies of pulsatile flow through the aneurysm. Taylor and Yamaguchi (1994) 

have explored the simulation of blood flow in an abdominal aortic aneurysm steady and unsteady 

flow cases with three-dimensional.  
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The role of hemodynamics in the growth of aneurysms has been the subject of several 

studies by Bernsdorf and Wang (2009). Mantha et al. (2009) have studied the stability of 

pulsatile blood flow at the ostium of cerebral aneurysms. Mukhopadhyay and Layek  (2011) 

have analyzed the systematic analysis of flow features in a tube and modelled as artery, 

having a local aneurysm in the presence of hematocrit. Kumar and Naidu (1995) discussed 

the pulsatile suspension flow in a dilated vessel. They discussed the pulsatile suspension 

flow characteristics by analyzing the flow, pressure and stress fields. The interaction and 

combination of aneurysm and stenosis further complicate the hemodynamics in diseased 

arterial vessels. Pincombe et al. (1995) discussed the effects of stenosis and dilatations of 

the coronary arteries with various combinations on the resistance impedance to flow of 

by considering blood as Bingham fluid model. Prasad et al. (2014) discussed the steady 

flow of Jeffrey fluid through a tube with both constriction and dilatations. Numerous 

theoretical and experimental studies of fluid dynamics through differently geometries of 

constriction or expansion have been discussed to evaluate the flow pattern are cited in 
Pincombe and mazumdar (1957). Priyadharshini and Ponalagusamy (2015) analyzed 

biorheological model on flow of Herschel-Bulkley fluid through a tapered arterial stenosis and 

dilatation. Fakour et al. (2015) have discussed on the analytical study of micropolar fluid 

flow and heat transfer in a channel with permeable wall.  

Recently, Nadeem and Ijaz (2015) investigated that the influence of metallic 

nanoparticles reveals that it is important to reduce the significances of the wall shear 

stress and resistance impedance to flow. More literature is available on nanotechnology 

that has many advantages in various fields (Rajagopal and Srinivasa 2000, Akbar et al.2014, 

Zeeshan et al. 2014, Rashidi et al. 2015). 
 
In the present thesis, a numerical investigation of blood flow through stenosis and 

aneurysm have been studied. The parabolic velocity profile is prescribed at the inlet and 

constant pressure is used at outlet. On the walls, no-slip conditions are used for velocity 

and homogeneous Neumann condition for the pressure. The governing mass, momentum 

and Oldroyd-B equation are expressed in a normalized primitive variables formulation. 

In this thesis, a finite element method for steady-state incompressible blood flows has 

been developed. The velocity contour lines and pressure distribution profiles are 

produced. The results show that the velocity and pressure has changed substantially at 

the throat of stenosis for the height of stenosis, effect of wall shear stress, symmetric and 

non-symmetric stenosis effect, different flow rates and dimensionless numbers. 
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 1.3    Constitutive Equations 

A short overview of the continuum mechanics and basic equations are discussed in this 

section. We begin with introducing some fundamental concepts of fluid mechanics of 

continuous medium. Special attention is given to the non-Newtonian viscoelastic fluids 

of Oldroyd type by researchers (Serrin 1969, Chorin and Marsden 2000, Quarteroni. and 

Formaggia 2002, Shaughnessy et al. 2005).  

 
1.3.1   Kinematics of fluids 

We need to introduce some basic concepts of kinematics and quantities, to originate the 

partial differential equations of fluid motions. We assume that a fluid may be treated as a 

continuous medium or continuum, rather than as a group of discrete molecules. In 

continuum hypothesis, the underlying molecular structure of a fluid is conveniently 

ignored and replaced by a limited set of fluid properties, defined at each point in the fluid 

at every instant. Mathematically, this hypothesis allows the use of differential calculus in 

the modellingand solution of fluid mechanics properties. Here each fluid particle is a 

continuous function of position and time. 

 
1.3.2   Blood circulation and arterial diseases 

The blood circulatory system that permits blood to circulate and transport nutrients 

oxygen, carbon dioxide, hormones etc to all cell in the body. It consists of cardiovascular 

and lympathic system. It helps us in fighting against diseases and keep human body in 

stable. The blood circulates by pumping of  heart and spread througout the body by the 

blood vessels. The blood vessels are formed of aorta and capillaries network have refered 

in Menche (2012) and Pschyrembel (2014).  The arteries bear blood away from the heart 

and the veins carry it back to the heart. The blood circulation in humen body are shown 

by Menche (2012) in Figure 1.1, 

https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0023062
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Nutrient
https://en.wikipedia.org/wiki/Oxygen
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Figure 1.1:  Blood circulatory system  

The essential components of the human cardiovascular system are the heart, blood and 

blood vessels. The heart pumps oxygenated blood to the body and deoxygenated blood to 

the lungs.  The right atrium receives  deoxygenated (poor in oxygen) blood from upper 

and lower parts of our body. The blood is passed into the right ventricle to be pumped 

through the pulmonary artery to the lungs for re-oxygenation and removal of carbon 

dioxide. The left atrium receives newly oxygenated blood from the lungs as well as the 

pulmonary vein. It is passed into the strong left ventricle to be pumped through the aorta 

to the different organs of the body. The blood circulation may be poor in humen body for 

accumulate (build up) of blood clot, external force, external pressure, injury of blood 

artery, overgrowth of bone, abnormal growths (Tumor), long-term elevated blood 

pressure (hypertension), Weaken of blood artery, medical surgery, inactive cells, genetic 

conditions, any kind of trauma are main reasons. The development of stenosis (abnormal 

narrowing) and aneurysm (dilation) in artery are the main cause of cardiovascular 

disease arteriosclerosis which leads to serious circulatory disorders. The stenotic and 

anuerysmatic artery are shown in Figure 1.2. 
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Figure 1.2: Plaque deposit in stenosed blood vessel (left) and fatty deposit in 

aneurymatics artery (right) 

1.3.3   The frame indifference 
In fluid mechanics, the material response independent of the observer is the main 

axioms. The principle of frame indifference or material objectivity is demonstrated by 

Coleman et al. (1966). It states that if a given process is compatible with a constitutive 

equation, then all processes obtained from the given process by changes of frame must 

also be compatible with the same constitutive equation. To study the kinematics of 

fluids, the motion of the continuous medium, two reference frames can be used. These 

are Lagrangian and Eulerian descriptions and refer to individual time-rate of change and 

local time-rate of change respectively. 

  
Consider the Euclidean coordinate system Ri (i = 2, 3). We assume that the motionwill 

take place during a time interval I = [t0; t1]  R+. Suppose at the referenceinitial time t0 

0, the domain occupied by the fluid is 0 called initial or referenceconfiguration and at 

time t  I the portion of space occupied by the same fluid (t) is called current or spatial 

configuration. The motion of each fluid particle which is onposition, e0 at initial time 

t0 and on position x  t  at time t  I is described bythe family of mappings Lm. 

Precisely, Lm : 0t  and ex = x(t,e) = Lm(e). Where, Lm is called Lagrangian 

mapping at time t. 
 

We suppose that Lm is continuous and invertible on i
0, with continuous inverse. The 

position x  t of a material particle is a function of time and the position, e0 of the 
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same material particle. We can relate the pairs (t, e) and (t, x) which are respectively 

called the material or Lagrangian variables and spatial or Eulerian variables. We focus 

on a set of specific locations in the flow field for Eulerian variables as independent 

variables. When we use Lagrangian variables as independent variables we focus on the 

position e of a specific fluid particle at the initial time t0. In fact, we are tracking the 

trajectory e describes by the particle during the time interval [t0, t] which was on 

position „e‟ at instant t0. The trajectoryis given by 

e = {(t, x(t, e)) : t I } 
 
Though it is more convenient to work with the Eulerian variables, the basic principlesof 

mechanics are more easily formulated with reference to the moving particles, i.e, in the 

Lagrangian frame. We will mark with the hat symbol „^‟, a quantity expressedas function 

of Lagrangian variables, that is, if f : I  R we have the quantity 

(e)mLxwtihf(t,x),(t,e)F 
  

 

To indicate the gradient with respect to the Eulerian variable x we use the symbol. 
Gradient with respect to Lagrangian variable „e‟ is indicated by the symbol e, defined 
by 

in
3

1i ie
FFe 

 








 

For the other differential operators such as divergence, Laplacian, etc., we use same 

convention. 

 
1.3.4   The fluid velocity 
The fluid velocity is the fundamental variable in fluid dynamics. It is the majorkinematic 

quantity. In the Lagrangian frame it is expressed by means of a vector field 

(t,e)
t
x(t,e)ui.e.

t
xu









  

u is called the Lagrangian velocity field and it denotes the time derivative along 

thetrajectory e of the fluid particle which was located at position „e‟ at the reference 

time. 

For (t, x) I t, the velocity in the Eulerian frame is defined as 

(x))1
m(t,  Luu(t, x)i.e.1

mLuu    

In general, the velocity field is a three-dimensional or two-dimensional time dependent 

vector field. 
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1.3.5   The material derivative 
The derivative of a vector field with respect to a fixed position in space is called a 

Eulerian derivative. On the other hand, the derivative of a vector field following amoving 

particle of fluid along its path is called substantial, material, co-moving orLagrangian 

derivative. This derivative relates the time derivatives computed withrespect to the 

Lagrangian and Eulerian frames. The material or Lagrangian timederivative of a function 

f, which is denoted by ,
Dt
Df  is defined as the time derivativein the Lagrangian frame. It is 

expressed as function in the Eulerian variables. 

If f  be a mapping such that 

(x)1
mLe(t,e),

dt
Fd(t,x)

Dt
DfR,tΩ:I

Dt
Df

thenmLfFandRtΩf:I










 
 

So, for any fixed e0 we can write 

)f(t,x(t,e)
dt
d(t,x)

Dt
Df

  

We can observe that the material derivative represents the rate of variation of f  along the 

trajectory Te. Applying the chain-rule of derivation of composed functions we can write 

(t,x)
idx

df.
d

1i
(t,x)iu(t,x)

dt
df

dt
idx

.
d

1i
(t,x)

idx
df(t,x)

dt
df

1
mL)mL(f

t
(t,x(t,e)

dt
df(t,x)

Dt
Df






















 

 

So, material derivative operator is defined by 





 .

tDt
D u  

The term
t
 is a partial time derivative, and the term u., called the convective 

derivative, involves partial space derivatives. 
 
1.3.6   The acceleration of fluid 
The fluid acceleration is a kinematic quantity. In the Lagrangian frame the acceleration 

(t,e)a


 is a vector field R:Ia 


defined by  

(t,e)
t
x(t,e)

t
u(t,e)a 2

2














 

If we use the definition of material derivative, we can write the acceleration in Eulerian 

frame as 
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uu
uu

a ).(
tDt

D





  

We observe that the total acceleration at a point in a fluid can be written as the sum of 

two different types of acceleration called the local and convective accelerations. The 

components of the acceleration in Cartesian coordinates can be written as 

d1,2,.....,i,
d

1j j
x

i
u

j
u

t
i

u

i
a 

 









 

1.3.7   The deformation gradient tensor 
The deformation gradient tensor is the kinematic quantity necessary for the derivation 

of the mathematical model in fluid dynamics. The deformation gradient tensor gt, which 
is defined, at each tI, as 

e)(t,
e

x
(e)L(e)g,RΩ:g met

dd
0t




   

Where eLm is the derivative of Lm with respect to Lagrangian variable „e‟ 

We can write component wise  

  d1,2,.....,ji,,
e

x
g

i

i

ijt 



  

The Jacobian of the mapping Lm is the determinant, J/t= det gt> 0. In the Eulerian frame 

its counterpart is indicated by Jt. Using the determinant of deformation gradient tensor, 

we can transform integrals from the current to the reference configuration by Chorin and 

Marsden (2000). 

 
1.3.8   The rate of strain and vorticity tensors 
We define the rate of deformation tensor or strain rate tensor by Landau and Lifshitz 
(1997) 

)T(
2
1 uuV   

and the rate of vorticity tensor by  

)(
2
1 TuuV /   

Here, V(u) is the symmetric part of the velocity gradient and V/(u) is the antisymmetric 

part. The rate of deformation gives us information about the rate of change of volume 

element along the time without rotation effects. 

Component wise,  
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  2,3)(dd1,...,ji,,
x

u

x

u

2

1
)

and

2,3)(dd1,...,ji,,
x

u

x

u

2

1

i

j

j

i
ij

i

j

j

i
ij



















































(uV

V(u)

/

 

1.3.9   The forces acting on fluid 
For any continuum, forces acting on a piece of material inside t are three types.   

External or Body forces:  

Body forces are long-range forces whose magnitudes are proportional to the mass. They 

are external forces act on a fluid, but are not applied by a fluid. Body forces are 

represented by a vector field f : I t    Rd called specific body force. Its dimension 

unit is N/kg = m/s2 as like an acceleration. The body force acting on fluid of volume Vt is 

given by 


tv

ρ f  

Gravity force and electromagnetic forces are the familiar examples of body forces.  

 
Surface forces or Forces of Stress: 

Surface forces are short-range forces that act on a fluid element through physical contact 

between the element and its surroundings. Surface forces represent that part of forces 

which are imposed on the media through its surface. The magnitude of a surface force is 

proportional to the contact area between the fluid and its surroundings. Surface forces act 

on a fluid, and also are applied by a fluid to its surroundings. We suppose that the surface 

force can be represented through a vector te: I t    Rd
, called applied stresses, defined 

on a measurable subset of the domain boundary t  t. The resultant force acting 

through the surface is given by 


tΓ

et  

Internal continuity forces: 

The forces that the continuum media particles exert on each other are the internal 

continuity forces. They are responsible for maintaining material continuity during the 

movement.We recall Principle of Cauchy, to model the internal continuity force from 

Chorin and Marsden (2000).  
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1.3.10   Theorems and lemma 
Theorem 1.1.1 
Suppose Vt  t be a subdomain of t and let us consider the function .RVI:F t 

  

Then, f is integrable on Vt if and only if (foLm) Jt is integrable on V0=L-1
m(Vt), and  














0v
tJF

tv
f

Berielfy,

(e)).mf(t,L(t,e)FWhere,detJ

0v
(t,e)Fdx

tv
f(t,x)

 

The next lemma tells us that the time derivative of the Jacobian is linked to the 

divergence of the velocity field. This relation is called Euler expansion formula. Its proof 

can be found in Chorin and Marsden (2000). 
 
Lemma 1.1.1 : Euler expansion formula 
Let Jt denote the Jacobian in the Eulerian frame. Then 

(e))L(t,x)J(t,tJt tt u.x),u(. (x)x),(J
t

(x)J
t tt 








    (1.1) 
 
Theorem 1.1.2: Reynolds Transport Theorem 

Suppose V0 0 and Vtt be its image under the mapping Lt. let us consider the 

function RΩf:I t   be continuously differentiable with respect to both variables. Then,  

 












  










tt t vv v
) .(f

t
f .f

Dt
Dff

dt
d uu      (1.2) 

The proof of this theorem can be found in Chorin and Marsden (2000). 
 
Theorem 1.1.3: Divergence Theorem 

Let  is open bounden domain in Rd, (d=2,3) with a piecewise smooth boundary . If u 

is continuously differentiable vector field on a neighborhood of , then  

 
ΩΩ

)ds. (dΩ).( nuu      (1.3) 

Where n = (n1,n2,....nd) is the unit outward normal vector field to the boundary . 

In index notation, we can write 

d1,2,...,i,nu
u

Ω
ii

Ω

i 




ix
    (1.4) 

Applying the divergence theorem, we can rewrite (1.2) as 





 

 ttt vvv
f

t
ff

dt
d nu.  
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Theorem 1.1.4: The Cauchy Theorem 
 

There exists a vector field, RSΩI: 1t t , called the Cauchy stress with S1 = 

{nRd:n =1} (d = 2,3) such that its integral on the surface of any material domain 

Vt t, given by  


Ω

)dsx,,t( nt  

is equivalent to the resultant of the material continuity forces acting on Vt. Here n is the 

outward normal of Vt and ds is the area element. This principle states that the only 

dependence of the internal forces on the geometry of Vt is through n. We also have  

t = te on Vtt. 

Now, we can write the law of conservation of linear momentum. The momentum of the 

mass at time t of the volume Vt known as linear momentum is defined by 


tv
ρ u  

For any t I and Vt t completely contained in t,  


 ttt vvv

dsn)x,(t,x)(t,x)ρ(t,x)dx(t,x)ρ(t,
dt
d tfu     (1.5) 

The equation (1.5) tells us the property that the variation of the linear momentum of Vt is 

balanced by the resultant of the internal and the body forces.With the following Cauchy 

Stress Tensor theorem, we can relate the internal continuity forces to a tensor field 

assuming some regularity of the Cauchy stresses. The proof can be found in Serrin 

(1969). 

 
Theorem 1.1.5: The Cauchy Stress Tensor Theorem 

Suppose that for all t  I, the body forces f, the density  and the fluid acceleration
Dt
Du

are all bounded functions on t, and let the Cauchy stress vector field t is continuously 

differentiable with respect to the variable x for each n  S1, where S1 is the 

set{nRd:n=1} (d = 2,3) and continuous with respect to n. Then, there exists a 

continuously differentiable symmetric tensor field, called Cauchy stress tensor 
dd

t RΩI: σ such that t(t,x,n)= (t,x).n, tI, xt,  n S1.  

With the hypothesis of the Cauchy stress tensor theorem, we have  

 (t,x).n = t = teon t  t     (1.6) 

and the resultant of the internal forces on Vt is expressed by  . n. So, we can write 



CHAPTER 1   INTRODUCTION AND HISTROCAL REVIEW 

18 
 


 tt v

e

v
tσ.n        (1.7) 

The stress tensor  represents the forces which the material develops in response to 

being deformed.  

1.3.11   Dimensionless parameters 
The dimensionless parameters can be thought of as measures of the relative importance 

of certain aspects of the flow. Some dimensionless parameters related to our study are 

discussed below:  

Reynold number, Re 

The Reynolds number (Re) is an important dimensionless quantity in fluid mechanics 

used to help predict flow patterns in different fluid flow situations. It has wide 

applications, ranging from liquid flow in a pipe to the passage of air over an aircraft 

wing. The Reynolds number is used to predict the transition from laminar to turbulent 

flow, and used in the scaling of similar but different-sized flow situations, such as 

between an aircraft model in a wind tunnel and the full-size version. 

The Reynolds number is the ratio of inertial forces to viscous forces within a fluid which 

is subjected to relative internal movement due to different fluid velocities 

ν
uL

μ
ρuL


forcesViscous

forcesInertialRe  

Where, ρ is the density of the fluid, u is the velocity of the fluid with respect to the 

object, L is a characteristic linear dimension, μ is the dynamic viscosity of the fluid, ν is 

the kinematic viscosity of the fluid. Reynold number (Re) plays important role to 

separation of lamina and turbulent flow regimes. At low Reynolds numbers (Re < 2000), 

viscous forces are dominant and is called laminar flow regimes. On the other hand, 

inertial forces are dominated at high Reynolds numbers (Re>4000) which is turbulent 

flow regimes. At transition regimes, the value of Reynold numbers is between 2000 to 

4000.  The transition Reynolds number is called critical Reynolds number.     

Weissenberg Number, Wi 

A non-Newtonian Fluid is one for which stress is not linearly related to strain-rate. All 

non-Newtonian fluids are elasticoviscous, that is they combine elastic and viscous 

properties. The Weissenberg number (Wi) is a dimensionless number used in the study of 

viscoelastic flows. It is named after Karl Weissenberg. The dimensionless number 
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compares the viscous forces to the elastic forces. Weissenberg numbers have proved 

invaluable for rheologists in quantifying viscoelastic effects. It can be variously defined, 

but it is usually given by the relation of stress relaxation time of the fluid and a specific 

process time. For instance, in simple steady shear, the Weissenberg number, often 

abbreviated as Wi or We, is defined as the shear rate 


  times the relaxation time, . Using 

the Maxwell Model and the Oldroyd Model, the elastic forces can be written as the first 

Normal force.  

L
λUλγWi 



ForcesViscous
ForcesElastic

 

Where,  is the relaxation time, U is the velocity of the fluid with respect to the object, L 

is a characteristic linear dimension. Three ranges of Weissenberg numbers are identified 

as that; if Wi < 1 then the fluid is viscous, if Wi 1, the fluid is viscoelasticity, if Wi > 1, 

the fluid is elastic. If the value of Wi is above a critical value, usually in the order of one, 

the elastic properties of the blood have to be taken into account. The most appropriate 

choice of relaxation time of the RBCs 0.06s and the characteristic time of the flow is 

equal to the period time of the physiological flow pulse. Generally, viscoelastic 

computations in complex flows at high Weissenberg numbers have proven to be a 

tremendous challenge, in particular for systems where singularities are present.A zero 

Weissenber number corrospondes to no elastic response while an infinite Weissenber 

number corrospoindsto a purely elastic response over a given scale.  

 
Peclet Number, Pe 

The Peclet number (Pe) is a vital dimensionless quantity in the study for transport 

phenomena in a continuum and it‟s named by Jean Claude Eugene Peclet. It is used in 

engineering, bio-medical, and biomechanics etc. to predict the transition from laminar to 

turbulent flow.  The peclet number is the ratio of the rate of advection to diffusion of a 

physical quantity by the flow of the same quantity driven by an appropriate gradient. So, 

the Peclet number is defined as 

rate  transportDiffusive
ratetransport Advection 

Pe  

In the case of mass transfer, the Peclet number is the product of the Reynolds number 

(Re) and the Schmidt number (Sc) . It is defined as  

https://en.wikipedia.org/wiki/Advection
https://en.wikipedia.org/wiki/Reynolds_number
https://en.wikipedia.org/wiki/Schmidt_number
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ScRe
D
LuPe   

In the case of heat transfer, the thermal Peclet number is equivalent to the product of the 
Reynolds number (Re) and the Prandtl number (Pr) which can be written as  

PrRe
α
LuPe   

where L is the characteristic length, u the local flow velocity, D the mass diffusion 

coefficient, and α the thermal diffusivity. Peclet number (Pe) plays an important role to 

separatethe laminar and turbulent flow region at the relation Pe = Re Sc when Sc =1. In 

that case Peclet number and Reynold number play same character to illustrate the blood 

flow. 

1.4    Balance Laws 
Balance laws or conservation laws state the physical principles governing the fluid 

motion in a continuum medium. According to the conservation laws, a particular 

measurable property of an isolated physical system does not change as the system 

evolves. Lavoisier states that “in nature nothing is created, nothing is lost, everything is 

transformed". The mathematical formulations of these conservation laws are given 

below. 

 
1.4.1   Conservation of mass 
Conservation of mass is a fundamental principle of classical mechanics governing 

thebehavior of a continuum medium. It states that in a fixed region, the total time rateof 

change of mass is identically zero, i.e, mass is neither created nor destroyed duringthe 

motion. Physically, this interprets that the rate of change of the density of a fluidin 

motion is equal to the sum of the fluid convected into and out of the fixed 

region.Suppose Vt indicates a material volume at time t, i.e. Vt is the image under 

theLagrangian mapping of V00, i.e. Vt= Lm(V0): If m0 is the mass of material in V0 and 

mt is the mass of that material in Vt, then according to the conservation of mass we can 

say m0 = mt: Mathematically,  

m0=m(V0) = m(Lm(V0)) = m(Vt) = mt 

For each time t, we suppose that the uid has well-defined mass density  (mass perunit 

volume of material [] = kg/m3) which is strictly positive, measurable function 

: It R such that on each Vtt 


tv

t ρ)m(V  

https://en.wikipedia.org/wiki/Reynolds_number
https://en.wikipedia.org/wiki/Prandtl_number
https://en.wikipedia.org/wiki/Characteristic_length
https://en.wikipedia.org/wiki/Flow_velocity
https://en.wikipedia.org/wiki/Fick%27s_law
https://en.wikipedia.org/wiki/Fick%27s_law
https://en.wikipedia.org/wiki/Thermal_diffusivity
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If Vt is a fixed region in t, then with the mathematical statement of conservation ofmass 

we can write  


tv

t ρ
dt
d)m(V

dt
d0  

Applying the Reynold Transport theorem, we obtain the integral formof the law of 

conservation of mass 

0)).ρ(
dt
dρ(

0).ρ
Dt
Dρ(

t

t

v

v





u

u
     (1.8) 

We suppose that the terms under the integral are continuous. Since the volume Vt 

isarbitrary, So the equation is equivalent to the differential equation of this law, called 

continuity equation (expressing conservation of mass) 

0)).ρ(
dt
dρ(

tv
 u      (1.9) 

If the density is constant or its material derivative 0
Dt
Dρ

 , then the equation of continuity 

is simplified to  

.u = 0      (1.10) 

The above relation in the case of incompressible fluid is in fact a kinematic constraint. 

Using Euler expansion formula, we can write the above equation as 

0



tJ

t  
 

This is an incompressibility constraint. A flow satisfying the incompressibility 

constraintis called incompressible flow. By the continuity equation we get the following 

implication: 

Constant density fluid  incompressible flow 

but the converse is not always true. Mathematically, we mean that the velocity field 

of an incompressible flow is divergence free. 

 
1.4.2   Conservation of momentum 
The second principal physical law that fluid obeys is the conservation of momentum. 

This quantity is defined as the product of mass and velocity 


tv

dxu  
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Where  =  (x,t) and u = u(x,t). According to the second Newton‟s law, the rate of 

change of the momentum of the fluid contained in the volume v(t) is equal to all forces 

acting on this fluid. There are three types of forces acting on the fluid, body forces, 

surface forces and internal forces. The body force like gravity acts on a fluid particle and 

is proportional to its mass. It can beexpressed as 
tv

dxgρ  where g = g(x,t) denotes the 

density of gravity force. The surface forces are the one acting on the boundaries ∂V(t) of 

the fluid volume V(t), and is usually described by the stress tensor . The stress consists 

of pressureand friction forces, which are coming from the interactions between fluid 

layers slidingone relative to the other. Taking all together, conservation of momentum 

reads as 


 ttt vvv

.ρρ
dt
d nσfu      (1.11) 

Applying theorem 1.1.1 to the left-hand side and theorem 1.1.2 to the second term on the 

right-hand side transforms the above equation to 

  









tt t vv v
)(

Dt
Dρ.ρ)(ρ

Dt
Dρ

dt
d uuuuu  

So the relation (1.11) can be written as  


 ttt vvv

ρ
Dt
Dρ nσ.fu

     (1.12) 

Appplying the divergece theorem and assuming that . is intergrable, the above 

relation (1.12) becomes 


ttt vvv

 .ρdx
Dt
Dρ σfu

     (1.13) 

Which implies 0)ρ .
Dt
D(ρ

tv
  fσu       (1.14) 

Since the volume Vt is arbitrary, with the hypothesis that the terms under the integrals are 

continuous in space, we derive the differential form of principle of linearmomentum 

tΩinfρσ.
Dt
Duρ       (1.15) 

Writing the fluid acceleration uuuu ).(
tDt

D





 , the relation (1.15) finally can be 

written as  

fuuu ρ.).ρ(
t

ρ 



σ       (1.16) 



CHAPTER 1   INTRODUCTION AND HISTROCAL REVIEW 

23 
 

Component wise,  

i
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x
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uρ
t

u
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where, i = 1,2,...d. 

The non linear term (u .)u is called the convective term.  
 

1.5    Formulation and Principles of the Constitutive Relations 

All materials mostly satisfy the fundamental conservation principles stated above. The 

mathematical specification of 'material response' laws is said to be the set of constitutive 

relations. This law relates the Cauchy stress tensor with the kinematics of different 

quantities, in particular, the velocity field. Constitutive relations provide us to 

characterize the mechanical behavior of fluid. In this work, we are concerned with non-

Newtonian fluids type, with the flows of incompressible viscoelastic Oldroyd-B fluids. 

We first give the general form of constitutive equations and then we give the overview of 

differential constitutive equations for viscoelastic fluids of Oldroyd-B having properties 

of elastic solids and viscous fluids characterized by aviscous behavior when subject to 

slow request and elastic behavior subjected to fastrequest. We take into account several 

principles and assumptions to formulate a constitutive equation. 

Principle of determinism: We can determine the stress only by history and present state 

of material. 

Principle of material objectivity: The structure of constitutive equation is independent 

of the motion of an observer. We assume that the stress at a material point is determined 

by the deformationgradient at this point, i.e., we assume the material is simple fluid. 

Under the above principles, for simple, isotropic, incompressible fluid, the Cauchystress 

tensor  can be expressed as 

 = pI + s 

Where, p is the hydrostatic pressure, s is the extra stress tensor and I is the 

identitymatrix or Kronecker tensor. 

 
1.5.1   Newtonian and non-Newtonian fluids 

If for a fluid, the dissipative effects of frictional forces can be described by a 

linearrelation between the extra stress tensor and rate of strain tensor, i.e, 

s = 2V(u)      (1.17) 

then this fluid is called Newtonian fluid. In (1.17),  is the dynamic viscosity coefficient 

expressing the fluid's resistance which it offers to shear strain during the displacement. 
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On the other hand, the fluids for which the relation between the Cauchy stress tensorand 

the strain rate tensor is non-linear (doesn't obey the Stokes law) are called non-

Newtonian fluids. The fluids with complex microstructures such as polymeric liquids, 

foams, inks, magma or biological fluids are some examples of non-Newtonian 

fluids.They are characterized by the fact that they exhibit at least one behavior such as 

shear-thinning or shear-thickening, stress-relaxation, non-linear creep, normal stress 

differences or yielding. Some properties of non-Newtonian fluids: 

(i) The non-Newtonian fluid has the ability to thinning and thickening by the 

action of shear or tangential stress forces, i.e. it has the ability to become 

more or less viscous as the shear rate increases. In a Newtonian fluid, the 

viscosity remains constant in time.  

(ii) The non-Newtonian fluids deform by the presence of constant tensions, with 

strain rate is not constant in time. But the Newtonian fluid does not deform 

under the presence of constant tensions. 

(iii)  In contrast to Newtonian fluids, some non-Newtonian fluids do not relax 

stressimmediately. 

(iv)  In some non-Newtonian fluids, the normal tensions vary in simple flows 

(flowswith one-dimensional velocity and velocity gradients), generally 

normal tension increases with shear rate. 

(v) In the presence of threshold tensions (stress of transfer), some non-Newtonian 

fluids do not flow immediately, they resist until a certain value of tension. 

 
1.5.2   Generalized Newtonian fluid 

Sometimes, it is possible to model the fluid by replacing Newton's law by another 

explicit, nonlinear law. In this case, it is said that the considered fluid is of generalized 

Newtonian type. An example is given by the viscoplastic law 

    E = 2(V) V     (1.18) 

Where, the general viscosity is a nonlinear (power) function of the second invariant V= 

(V:V). Power law models (1.18) have been found to be successful in describing the 

behavior of rubber solutions, adhesives, biological fluids, colloids, suspensions and a 

variety of polymeric liquids. 
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1.5.3   Viscoelasticity and Development of Viscoelasticity 

Continuum mechanics provides the physical laws that materials obey and imparts 

requirements for the constitutive laws. There isn‟t a distinction in a continuum 

mechanical sense between solids and fluids though instinctively the difference is 

obvious: fluids flow whereas solids do not. Alternatively, one can say that a solid is 

elastic that is if a force is applied upon it the solid deforms, with the work stored as 

elastic energy. A fluid is viscous and transforms its work into heat. When the force is 

removed the solid returns to its original state (if it is a purely elastic material) but the 

fluid „forgets‟ its original configuration. Viscoelastic materials lie some where in 

between the purely elastic and Newtonian flow characteristics. Some of the applied work 

done is stored as elastic energy with the rest transformed into heat. At a characteristic 

time λ say, the material forgets its initial form after unloading some of its elastic energy 

into kinetic energy. For purely elastic materials λ = ∞, i.e. the material doesn‟t forget its 

originalstate and for purely viscous materials λ = 0. For materials which show both 

viscousand elastic properties, λ lies within these ranges and is termed a ‟viscoelastic‟ 

material. 

 
It should be said that just knowing the characteristic time isn‟t generally that usefulunless 

it is compared against the timescale of the flow (if the history of deformation 

isimportant). Having a characteristic time of a ratio between characteristic velocity and 

length scales respectively introduces a dimensionless number called the „Weissenbeg 

number‟Wi. This way of characterizing materials by the time it remembers its 

deformation history motivates calculating the total stress in a system over all past 

deformations, thus taking into account the memory of the fluid when calculating stress. 

We canformulate this by defining the total stress  (t) at a time t to be 

))(C(tFpIσ(t) /t
t

/

/



  

where p is the pressure, (t) is decomposed into an isotropic part and the extra-

stresstensor with C a suitable strain tensor. The functional F weights the past 

deformationsless than the most recent ones. As an initial attempt this is too general an 

approach to model many viscoelastic fluids, a better way to do it is to represent the 

functional F asan integral with a weighting function in it, the weighting function chosen 

to calibrate with real data (such as the measured viscosity). 
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As mentioned later in this introduction, the continuum approach to modelling 

viscoelastic fluids is limited and one is better served looking at the microstructure of 

fluids and building up constitutive models this way. The Oldroyd-B fluid is derived this 

way later from the properties of polymer molecules in such a fluid type. The 

development and application of viscoelastic theory has arisen from the wide 

developmentof polymeric materials in industry. These materials display 

characteristicsthat cannot be adequately explained by the classical theories of elasticity 

or viscosity. 

 
Such studies lead to the need for a more general theory encompassing both fields. One 

way to characterize such materials is to measure their response to a uniform stress. 

Astandard elastic material when subject to such a stress, will respond instantaneously 

with a constant rate of deformation. However, materials exist for which such a stress will 

induce an instant deformation that is not constant, i.e. some flow process will 

subsequently happen. This flow process may not be linear and may change with 

magnitude or form as time evolves. Materials which exhibit this are said to show creep 

characteristics and cannot be fully described by either elasticity or viscosity theory. 

 
Further complications arise when the materials show memory properties. Application of 

a stress can produce an instantaneous deformation that in turn responds in a time-

dependent manner to the first applied stress. An elastic material does not showthis 

property: responses are governed at a particular time only by the total stress levels at that 

given moment. This property of „memory‟ is of fundamental importanceto viscoelastic 

fluids. It should be noted, that memory in viscoelastic theory is time-dependent, 

contrasting with other theories such as plasticity theory given by Lubliner (1900). 

 
Viscoelastic fluids retain many of the properties associated with Newtonian Fluids; 

namely that stresses depend upon the current motion of the fluid, along with the 

propertythat stresses are dependent upon the history of its motion. Viscoelastic properties 

are usually measured as responses to an instantaneously applied/removed constant or 

dynamic stress or strain. The fluid can therefore be thought of as having both a 

viscousand an elastic element. The Oldroyd-B model includes both Newtonian and 

Maxwell models, allowing it to model, for example, the case where an elastic fluid 

obeying the Maxwell relation is mixed with a fluid governed by a Newtonian Law. 

Various fluid models exhibit viscoelastic behavior. 
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1.5.4   Derivation of Oldroyd model 

The constitutive equation in differential form or integral form is suitable to use in a 

numerical simulation. Oldroyd observed that the convected time derivative

π).(
t
π

Dt
Dπ





 u of a tensor  is not the objective. The objective form of the time 

derivative of a tensor can be expressed as 

π])V()V(a[π)π(V)(Vπ)π.(
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  (1.19) 

Where -1  a 1 is a parameter. 

 
The case with a = -1, a = 1 and a = 0 are respectively called lower, upper and co-

rotational convected time derivative. Oldroyd suggested a general form of constitutive 

Equation by Hron (1997) as 
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 u

u
uττ

τ
ss

s   (1.20) 

where the tensor s is the extra stress,  is the dynamic viscosity coefficient of fluid 

which is assumed to be constant and positive, x  0 and d   0 are the constants depend 

on the continuous medium, respectively, called the relaxation and retardation time of 

fluid. x characterizes the time it takes the fluid to decrease the tension after have been 

applied a constant deformation and d  characterizes the time it takes thefluid to decrease 

their state of deformation after having an applied tension. (s.u) is a tensor defined by 

the traces of s and /or V(u). There are several types of general model. Here we write 

some models with (s.u) = 0.  

(i)  Maxwell type fluid models (d= 0) 

(ii)  Jeffreys type fluid models (d  0) 

(iii)  Oldroyd-A fluid (x> (d> 0 and a = -1) 

(iv)  Oldroyd-B fluid (x> (d> 0 and a = 1) 

We can generalize these models. For example, the extra-stress s can be written as a sum 

of partial stresses  i
ss ττ .  For each partial stress i

sτ  there is a constitutive equation 

with different relaxation time i
x .  
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1.5.5   Oldroyd-B model for blood flow 

The Cauchy stress tensor is given by  

 = -pI + s 

In viscoelastic fluids, the stresses depend not only on the current motion of the fluid, but 

on the history of the motion. We can say that x and d are the measures of the time for 

which the fluid remembers the flow history. Decomposing the extra-stress tensor s into 

the sum of its Newtonian part n and its viscoelastic part v, we can write  

s = n + v  

Where 
x

d
n

x

d
n λ

λ
μμwith),(

λ
λ

2μ  uVσ
 
the coefficient of Newtonian viscosity 

Therefore, the Cauchy stress tensor can be written as 

v
x

d
vn σV(u)

λ
λ2μpIσσpIσ    (1.21) 

From (1.20), for Oldroyd-B fluid, i.e., for (s.u) = 0, x> (d> 0 and a = 1, thegeneral 

form of the constitutive equation can be written as 
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Where v=- n is the coefficient of elastic viscosity and =v + n.  
So, we have  
 

V(u)2μσ
Dt

σD
λ vv

va
x        (1.22) 

Finally, we can write by (1.19) 
 

 vvv
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(1.23) 

Taking into account (2.21), the conservation law of momentum (1.16) can be written 
as follows 
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If .u = 0, then we have 2. V(u)=u.  

So, we can also write the conservation of momentum as 

fσuuuu
v ρ.Δ2μp).ρ(

t
ρ n 


  

For the simplicity, we write   instead of v. We have the system of non-linear equations 

formed by the law of conservation of mass (1.10), the momentum equations (1.16) and 

the Oldroyd-B constitutive equation (1.23) as  
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Assuming,  

M(,u) =2µv V(u)-x[ V/(u)- V/(u) -  V(u)- V(u) ] 

M(,u) =2µv V(u) +x[(u) -  (u)t] 

 
The oldroyd-B constitutive equations (2.28) can be written as  

.u = 0 , in  

Ωin,fρσ.Δu2μp)uρ(u.
t
uρ vn 
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      (1.26) 

The above set of equations describes the behavior of an incompressible viscoelasticfluid 

of Oldroyd-B type, in a certain open subset of Rd (d = 2; 3) where the fluid is 

homogeneous. We observe that the conservation of momentum leads the symmetry 

properties of the tensor   i.e. t = .  

 
The first two equations form a parabolic system for (u, p) which is in the form of Navier-

stokes equation. The last equation has a hyperbolic characteristic which is in the form of 

transport equation. 
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If the flow state (velocity, pressure, density, etc.) of a flow does not change with time, 

then it is called a steady or stationary flow. Therefore, in case of steady flow, u is 

independent of time and then 0
t
u




 .So, the Oldroyd-B constitutive equations in case of 

steady flow is a non-linear system of partial differential equations (PDE) of a combined 

elliptic-hyperbolic type  

.u = 0 , in  

Ωin,fρσ.Δu2μp)uρ(u.
t
uρ vn 


  

Ωin),,M( ).(
t

λx uσσσu
σ













       (1.27) 

 

1.5.6   Navier-Stokes equations 
The limit case x = 0 leads us from equation (1.22) 

v = 2vV(u) 

The Cauchy stress tensor is given by  

 = -pI + n + v        (1.28) 

   = -pI + 2nV(u) + 2vV(u) 

   = -pI + 2 (n + v) V(u) 

   = -pI + 2V(u)  

   = -pI +  [u + (u)t] 

The Cauchy stress tensor can be written as a linear function of strain rate tensoror the 

velocity derivative. The fluids for which the above property holds are calledthe 

incompressible Newtonian fluids. The Newtonian fluids are a subclass of 

Stokesianfluids, which are isotropic (with the properties independent of direction) 

viscousfluids where the stress tensor  is the sum of the tension caused by the 

hydrostaticpressure in the fluid, the tension that causes deformation fluid and the tension 

dueto volumetric expansion. Newtonian fluids are modeled by Navier-Stokes equations 

.u = 0 

ρfσ .)uρ(u.
t
uρ 


  

Where,  =    = -pI +  [u + (u)t] 

.u = 0 
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        (1.29) 

The above system defines the Navier-Stokes equations for incompressible fluids. For 

steady flow, the Navier-Stokes equations (2:32) can be written as 

.u = 0  

ρfμΔup)uρ(u.
t
uρ 


        (1.30) 

Considering  as a constant, we define the kinematic viscosity by =/ [m2/s] and the 

scaled pressure p = p/ (m2/s2) still denoted by p and we obtain from (1.30) 

.u = 0 

fΔuυp)u(u.   

1.6    Enthusiasm behind the selection of current work 

According to the World Health Organization (WHO), cardiovascular diseases such as 

heart attacks, strokes, atherosclerosis, stenosis and aneurysms have been accepted the 

world‟s highest cause of death, claiming approximately 17.5 million lives per year is 

repoted in Fuat et al. (2011). The most commonly affected arteries are the abdominal 

aorta, the carotid, the coronary and the femoral arteries. In such cases, it is important the 

study of non-Newtonian blood flow behavior, including the shear-thinning viscosity, 

thixotropy, viscoelasticity, or the yield stress. The Bioengineers, numerical scientists and 

medical researchers have been receiving the additional attention during the recent 

decades to exchange the knowledge and data information that can used to simulation of 

blood flow. 
   
In the present thesis, a computational analysis and simulation of blood flow through 

stenosis and aneurysm in aorta have been studied. At inlet, the parabolic velocity profile 

is used and fixed pressure is used at outlet. No slip conditions are used for velocity and 

homogeneous Neumann condition for the pressure at blood vessel. The governing mass, 

momentum, Oldroyd-B and bioheat equations are expressed in a normalized primitive 

variables formulation. In this thesis, a finite element method for steady-state 

incompressible blood flows has been developed. The velocity contour lines and pressure 

distribution profiles are produced. Numerical investigation and simulation are essential 
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to observe the variation in blood flow and pressure distribution due to the above physical 

changes with boundary conditions, which forms the basis of the motivation behind the 

present study. 

1.7    Main objectives of the present study 

The present study has focused on the development of a mathematical model, numerical 

investigation and simulation regarding the effects of stenosis and aneurysm blood vessel 

on blood flow in cardiovascular system for Newtonian model, Generalized Newtonian 

model, Oldroyd-B model and Generalized Oldroyd-B.   

This thesis aims to contribute: 

 To solve the governing equations using finite element method with various 

boundary conditions 

 To study the blood flow through symmetric and non-symmetric stenotic artery, 

aneurysmatic artery, and stenotic and aneurysmatic artery numerically. 

 To develop a mathematical model regarding the effect of wavy symmetry and non-

symmetry stenosis, permeable aneurysmatic artery, and stenotic and aneurysmatic 

aretery on blood flow for all four models.  

 To study the flow characteristics of blood flow through stenotic and aneurysmatic 

arteries with different flow rates.  

 To visualize the blood flow patterns and pressure distribution of blood flow inside 

the stenotic and aneusymatic artery.  

 To investigate the stress characteristics  and drag coefficient of the blood flow at 

the throat of stenosed vessel.  

 To investigate the effects of Weissenberg number (Wi), Peclet number (Re) and 

Reynold Number (Re) on the blood flow.  

 To show the comparison of symmetric and asymmetric stenosis effect, blood clot 

and without blood clot model effect on blood flow. 

 To carry out the validation of the present finite element model by investigating the 

effect of blood flow through stenotic and aneurysmatic artery. 

 To examine the effects of wall shear stress on blood flow with various flow rates 

and different bloundary conditions. 
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1.8   Structure of the Thesis 
This dissertation contains six chapters and the thesis is organized as follows. 

Chapter 1 has introduced blood rheology and discussed the derivations of the Navier-

Stokes equations and Oldroyd-B fluid as well as literature review. The literature review 

consists of the past studies on blood flow stenosis or aneurysmarteries or cavities. The 

different aspects of the previous studies have been mentioned categorically. This is 

followed by the post-mortem of a recent historical event for the illustration of blood flow 

and various effects in stenosis or aneurysm. The balance laws have been stated, which 

are the equations that we wish to investigate for blood flow analysis and numerical study. 

The aim and specific objectives have been mentioned at end of this chapter. Our study of 

equations has commenced with a preliminary analysis from this chapter. 

Chapter 2, the computational technique and discretized approaches of the problem has 

been discussed for viscous incompressible flow. Throughout the thesis, incompressible 

fluid is considered. Numerical process and finite element method is a vital part in this 

thesis. This chapter describes discretization and numerical methods to solve the system 

of partial differential equations supplemented by the constitutive equations, given in the 

forthcoming Chapters 3, 4 & 5. 

Chapter 3 describes a detailed parametric study on Numerical investigation and 

simulation of blood flow in two-dimensional laminar steady-statethrough symmetry and 

non-symmetry wavy Stenosis under various flow rates. Firstly, we describe the 

governing equations with boundary conditions. The differential constitutive equations 

have expressed in dimensionless form and written as a continuity equation, the 

momentum equations and Oldroyd-B equation which are fully coupled.  Next, the 

numerical procedure used to slove the governing equations and iteration technique is 

used also. Further, the finite element discretization has been used in the blood flow 

simulation.The effects of the major parameters such as Reynold numbers and 

Weissenberg number, symmetric and non-symmetric stenosis, wall shear stress and 

various flow rate of blood flow have been presented for better understanding of the 

velocity and pressure distribution of blood for mention four models. The results of 

velocity and pressure distribution of blood flow with different flow rates have been 

studied. 
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Chapter 4 considers the permeable aneurysm blood flow problem for parameters values 

0<Pe3000 and 0Wi 1. The present problem has been solved numerically using finite 

element method. First, Simulation of Newtonian, Oldroyd-B, generalized Newtonian and 

Oldroyd-B fluids are discussed. In this problem, we have studied that the influence of 

permeable aneurysm on blood flow and the effects of dimensionless numbers, wall shear 

stress and stress tensor for all cases. The mathematical models are expressed in terms of 

continuity equation, momentum and Oldroyd-B equations and a finite element model has 

been developed. The transport of blood elements through the porous walls play a 

significant role on blood flow and recirculation zones have migrated to vessel wall for all 

flour models. Blood turbulence has reduced at porous permeable artery and elliptical 

recirculation bubbles are found between the enlargement arteries. The effects of all blood 

paremeters on blood flow are shown graphically for all modifications. 

In Chapter 5, the blood flow analysis through stenotic and aneurysmaitc artery with 

blood clot is discussed. The bioheat equation has been inserted for the presence of blood 

clot at stenosis region. The consititutive equations can be written as mass of 

conservation, momentum, viscoelatic and bioheat equations, and derive a set of 

dimensionless form using dimensionless scales. The finite element method and iterative 

technique is used to solve the non-linear mathematical equations. The finite element 

discretization has been used to blood flow simulation. It is very important objectives to 

find out the correlation of blood shear thinning and blood variables, and studies the 

effects of dimensionless numbers, stenotic and aneurysmatic artery, wall shear stress and 

drag coefficient on blood flow for all cases. We observe that, the blood flow variables 

have a rigorous transformed at the throat of stenosis for nonblood clot model. The blood 

flow patterns have a significant changed at Re =3000 for generalized Oldroyd-B model 

and immaterial various among models for Wi. At the end of this chapter, we have 

presented the graphical discussion of blood flow behaviors for Newtonian, generalized 

Newtonian, Oldroyd-B, and generalized Oldroyd-B models.  

Finally, an overview of the results in this thesis is presented, as well as possible 

extensions through concluding remarks.     
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CHAPTER 2 
COMPUTATIONAL TECHNIQUE 

2.1    Introduction 
Computational fluid dynamics (CFD) has been rapidly gaining popularity over the past 

several years for technological as well as scientific interests. For many problems of 

industrial interest, experimental techniques are extremely expensive or even impossible 

due to the complex nature of the flow configuration. Analytical methods are often useful 

in studying the basic physics involved in a certain flow problem, however, in many 

interesting problems; these methods have limited direct applicability. The dramatic 

increase in computational power over the past several years has led to a heightened 

interest in numerical simulations as a cost-effective method of providing additional flow 

information, not readily available from experiments, for industrial applications, as well 

as a complementary tool in the investigation of the fundamental physics of turbulent 

flows, where analytical solutions have so far been unattainable. It is not expected (or 

advocated), however, that numerical simulations replace theory or experiment, but that 

they be used in conjunction with these other methods to provide a more complete 

understanding of the physical problem at hand. 

 
Mathematical model of physical phenomena may be ordinary or partial differential 

equations, which have been the subject of analytical and numerical investigations. The 

partial differential equations of fluid mechanics and heat transfer are solvable for only a 

limited number of flows. To obtain an approximate solution numerically, we have to use 

a discretization method, which approximated the differential equations by a system of 

algebraic equations, which can then be solved on a computer. The approximations are 

applied to small domains in space and / or time so the numerical solution provides results 

at discrete locations in space and time. Much as the accuracy of experimental data 

depends on the quality of the tools used, the accuracy of numerical solutions depend on 

the quality of discretizations used. Computational fluid dynamics (CFD) computation 

involves the formation of a set numbers that constitutes a practical approximation of a 

real life system. The outcome of computation process improves the understanding of the 

performance of a system. Thereby, engineers need CFD codes that can make physically 

realistic results with good quality accuracy in simulations with finite grids. Contained 

within the broad field of computational fluid dynamics are activities that cover the range 
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from the automation of well established engineering design methods to the use of 

detailed solutions of the Navier-Stokes equations as substitutes for experimental research 

into the nature of complex flows. CFD have been used for solving wide range of fluid 

dynamics problem. It is more frequently used in fields of engineering where the 

geometry is complicated or some important feature that cannot be dealt with standard 

methods. More details are available in Ferziger &Perić (1997) and Patankar (1980).  

2.2    Elements of Numerical Solution Methods 
Several components of numerical solution methods are available in Reddy and Gartling 

(2001) here only the main steps will be demonstrated in the following. 

2.2.1    Mathematical model 
The starting point of any numerical method is the mathematical model, i.e. the set of 

partial differential equations and boundary conditions. A solution method is usually 

designed for a particular set of equations. Trying to produce a general-purpose solution 

method, i.e. one which is applicable to all flows, is impractical, is not impossible and as 

with most general-purpose tools, they are usually not optimum for any one application.  

2.2.2    Discretization Process 
After selecting the mathematical model, one has to choose a suitable discretization 

method, i.e. a method of approximating the differential equations by a system of 

algebraic equations for the variable at some set of discrete locations in space and time. 

2.2.3    Numerical grid 
The numerical grid defines the discrete locations at which the variables are to be 

calculated, which is essentially a discrete representation of the geometric domain on 

which the problem is to be solved. It divided the solution domain into a finite number of 

sub-domains (elements, control volumes etc). Some of the options available are 

structural (regular) grid, block structured grid, unstructured grids etc.  

2.2.4    Finite approximations 
Following the choice of grid type, one has to select the approximations to be used in the 

discretization process. In a finite difference method, approximations for the derivatives at 

the grid points have to be selected. In a finite volume method, one has to select the 

methods of approximating surface and volume integrals. In a finite element method, one 

has to choose the functions and weighting functions. 
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2.2.5    Solution technique 
Discretization yields a large system of non-linear algebraic equations. The method of 

solution depends on the problem. For unsteady flows, methods based on those used for 

initial value problems for ordinary differential equation (marching in time) is used. At 

each time step an elliptic problem has to be solved. Pseudo-time marching or an 

equivalent iteration scheme usually solves steady flow problems. Since the equations are 

non-linear, an iteration scheme is used to solve them. These methods use successive 

linearization of the equations and the resulting linear systems are almost always solved 

by iterative techniques. The choice of solver depends on the grid type and the number of 

nodes involved in each algebraic equation. 

2.3    Discretization Approaches 
The first step to numerically solve a mathematical model of physical phenomena is its 

numerical discretization. This means that each component of the differential equations is 

transformed into a “numerical analogue” which can be represented in the computer and 

then processed by a computer program, built on some algorithm. Many different 

methodologies were devised for this purpose in the past and the development still 

continues. In order to short them, we can at first divide the spatial discretisation schemes 

into the following three main categories: finite difference (FD), finite volume (FV) finite 

element (FE) methods, Boundary element (BE) method and Boundary volume (BV) 

method. 

In the present numerical computation, Galerkin finite element method (FEM) is used. 

Detailed discussion of this method is available in Chung (2002) and Dechaumphai (1995, 

1999). 

2.3.1   Finite element analysis 
The finite element method (FEM) is a powerful computational method for solving 

problems, which are described with partial differential equations. The fundamental idea 

of the finite element method is to outlook a given domain as an assemblage of simple 

geometric shapes, called finite elements, for which it is possible to systematically 

generate the approximation functions needed in the solution of partial differential 

equations by the weighted residual method. The computational domains with irregular 

geometries by a collection of finite elements makes the method a valuable practical tool 

for the solution of boundary value problems arising in various fields of engineering. The 

approximation functions, which satisfy the governing equations and boundary 
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conditions, are often constructed using ideas from interpolation theory. Approximating 

functions in finite elements are determined in terms of nodal values of a physical field, 

which is required. A continuous physical problem is transformed into a discretized finite 

element problem with unknown nodal values. For a linear problem, a system of linear 

algebraic equations should be solved. Values inside finite elements can be recovered 

using nodal values. 
 
The finite element method is one of the numerical methods that have received popularity 

due to its capability for solving complex structural problem. The method has been 

extended to solve problems in several other fields such as in the field of heat transfer, 

computational fluid dynamics, electromagnetic, biomechanics etc. In spite of the great 

success of the method in these fields, its application to fluid mechanics, particularly to 

convective viscous flows, is still under intensive research. 

The major steps involved in finite element analysis of a typical problem are: 

1. Discretization of the domain into a set of finite elements (mesh generation). 

2. Weighted-integral or weak formulation of the differential equation to be 

analyzed. 

3. Development of the finite element model of the problem using its weighted-

integral or weak form. 

4. Assembly of finite elements to obtain the global system of algebraic equations. 

5. Imposition of boundary conditions. 

6. Solution of equations. 

7. Post-computation of solution and quantities of interest. 
 
2.3.2    Mesh generation 
The area of numerical grid generation is relatively young in practice, although its roots in 

mathematics are old. The arrangement of discrete points throughout the flow field is 

simply called a grid. The determination of a proper grid for the flow through a given 

geometric shape is important. The way that such a grid is determined is called grid 

generation. The grid generation is a significant consideration in CFD. Finite element 

method can be applied to unstructured grids. This is because the governing equations in 

this method are written in integral form and numerical integration can be carried out 

directly on the unstructured grid domain in which no coordinate transformation is 

required. A two-dimensional domain may be triangulated as shown in Figure 2.1. In 
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finite element method, the mesh generation is the technique to subdivide a domain into a 

set of sub-domains, called finite elements. Figure 2.1 shows a domain,  is subdivided 

into a set of sub-domains, e with boundary e.  

 

 

 

 

 

 

 

 

Figure 2.1: A typical FE discretization of a domain, Reddy & Gartling [69]. 

 
Figure 2.2a: Mesh structure of elements for stenotic artery. 

 
Figure 2.2b: Mesh structure of elements for aneusymatic artery. 

 
Figure 2.2c: Current mesh structure of elements for stenotic and aneurysmatic 

artery. 

Figure 2.2: Current mesh structure for physical systems 
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2.3.3    Finite Element Formulation and Computational Technique 
Viscous incompressible blood flows have been the subject of our investigation. The 

problem is relatively complex due to the coupling between the viscoelasticity equation 

and the Navier-Stokes equations, which govern the fluid motion. These equations 

comprise a set of coupled nonlinear partial differential equations, which is difficult to 

solve especially with complicated geometries and boundary conditions. The finite 

element formulation and computational procedure for Navier-Stokes equations along 

with Oldroyd-B equations will be discuss in Chapter 3. 

2.3.4    Algorithm 
The algorithm was originally put forward by the iterative Newton-Raphson algorithm; 

the discrete forms of the continuity, momentum and viscoelasticity equations are solved 

to find out the value of the velocity, pressure and the extra stress tensor. It is essential to 

guess the initial values of the variables. Then the numerical solutions of the variables are 

obtained while the convergent criterion is fulfilled. The simple algorithm is shown by the 

flow chart below. 
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Figure 2.3: Flow chart of the computational procedure 

Stop 

Initial guess values of 
U*, V*, P*,* 

Forming 6x6 matrix 
against an element 

Assemble all 
elements 

Matrix factorization 

Convergence 

Physical model 

Governing equations 

Boundary 
conditions 

Mesh 
generation 

Start 

U,V, P, 

Yes 

No 



CHAPTER 2  COMPUTATIONAL TECHNIQUE 

42 
 

2.3.5    Solution of system of equations 
A system of linear algebraic equations has been solved by the UMFPACK with 

COMSOL MULTIPHYSICS (2013) package interface and in own MATLAB 

programming (2010). UMFPACK is a set of routines for solving asymmetric sparse 

linear systems Ax= b, using the Asymmetric Multi-Frontal method and direct sparse LU 

factorization. Five primary UMFPACK routines are required to factorize Aor Ax = b: 

1. Pre-orders the columns of A to reduce fill-in and performs a symbolic analysis. 

2. Numerically scales and then factorizes a sparse matrix. 

3. Solves a sparse linear system using the numeric factorization. 

4. Frees the Symbolic object. 

5. Frees the Numeric object. 

Additional routines are: 

1. Passing a different column ordering 

2. Changing default parameters 

3. Manipulating sparse matrices 

4. Getting LU factors 

5. Solving the LU factors 

6. Computing determinant 

 
UMFPACK factorizes PAQ, PRAQ, or PR−1AQ into the product LU, where L and U are 

lower and upper triangular, respectively, P and Q are permutation matrices, and R is a 

diagonal matrix of row scaling factors (or R = I if row-scaling is not used). Both P and Q 

are chosen to reduce fill-in (new non-zeros in L and U that are not present in A). The 

permutation P has the dual role of reducing fill-in and maintaining numerical accuracy 

(via relaxed partial pivoting and row interchanges). The sparse matrix A can be square or 

rectangular, singular or non-singular, and real or complex (or any combination). Only 

square matrices A can be used to solve Ax = b or related systems. Rectangular matrices 

can only be factorized. UMFPACK first finds a column pre-ordering that reduces fill-in, 

without regard to numerical values. It scales and analyzes the matrix, and then 

automatically selects one of three strategies for pre-ordering the rows and columns: 

asymmetric, 2-by-2 and symmetric. These strategies are described below. 
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One notable attribute of the UMFPACK is that whenever a matrix is factored, the 

factorization is stored as a part of the original matrix so that further operations on the 

matrix can reuse this factorization. Whenever a factorization or decomposition is 

calculated, it is preserved as a list (element) in the factor slot of the original object. In 

this way a sequence of operations, such as determining the condition number of a matrix 

and then solving a linear system based on the matrix, do not require multiple 

factorizations of the intermediate results. 

 
Conceptually, the simplest representation of a sparse matrix is as a triplet of an integer 

vector i giving the row numbers, an integer vector j giving the column numbers, and a 

numeric vector x giving the non-zero values in the matrix. The triplet representation is 

row-oriented if elements in the same row were adjacent and column-oriented if elements 

in the same column were adjacent. The compressed sparse row (csr) or compressed 

sparse column (csc) representation is similar to row-oriented triplet or column-oriented 

triplet respectively. These compressed representations remove the redundant row or 

column in indices and provide faster access to a given location in the matrix. 

2.4    Chapter Summary 

This chapter has presented an introduction to computational method with advantages of 

numerical investigation. Because numerical method has played a central role in this 

thesis. Various components of numerical method have been also explained. Finally, the 

major steps involved in finite element analysis of a typical problem have been discussed. 

 

b 
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CHAPTER 3 
NUMERICAL STUDY OF BLOOD FLOW THROUGH 
SYMMETRIC AND ASYMMETRIC STENOSIS UNDER 
VARIOUS FLOW RATES 
 

Stenotic artery affects the human blood flow and leads to severe disorders in our 

circulatory system as a result cardiovascular diseases arise in human body. Now a days, 

medical researcher, bioengineers and scientists have been receiving the attention during 

the recent decades. The main purpose of this efforts is to provide numerical simulations 

of blood flow system, exchange of knowledge and data information in different 

conditions. The details are available in Caro et al. (1978), Tu and Deville (1996), 

,Shaughnessy et al. (2005), and Robertson et al. (2008). Stenosis is an abnormal reduction of 

blood vessel that develops various arterial locations of the cardiovascular system under 

diseased conditions has descriped by Siddique et al. (2009). Development of stenosis in 

brain arteries can reason of cerebaral strokes and myocardial infraction which leads to 

heart inactive. Verdier (2003) has studied that the hemodynamical properties of blood 

flow through non uniform cross section of arteries play an important role to identify 

arthrosclerorsis diseases. To have a clear understanding of blood flow behavior through 

the obstacles a number of studies were carried out in the past by many researchers Chien 

et al. (1968), Lowe (1990), Chakravarty and Mandal (2000), Baskurt and Meiselman (2003), 

Mandal (2005). 

The chapter describes the numereical study of blood flow through symmetric and 

asymmetric stenotic artery under various flow rates. The governing equations along with 

appropriate boundary conditions are transformed into a dimensionless equation then 

solved numerically with finite element technique. Numerical investigation and 

simulation are essential to observe the variation in blood flow and pressure distribution 

due to the physical changes with boundary conditions. Mathematical tests are performed 

on an idealized symmetric stenosis and a realistic stenosed carotid bifurcation 

reconstructed from medical images. Model sensitivity tests are achieved with respect to 

the characteristic flow rate to evaluate its impact on the observed non-Newtonian effects. 

Different effects on blood flow of stenosis for these models are presented numerically. 

The remainder of this chapter is as follows. The physical schematic diagram describtions 

of the present work are shown in section 3.1. In section 3.2, the dimensionless governing 
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equations with boundary conditions using dimensionless parameters is considered. After 

that a computaional method is derived in the section 3.3.  Later results are presented in 

section 3.5 with code validation. Finally, section 3.6 gives a summary of this chapter.  

3.1 Physical Configurations  
The physical model considered here is shown in Figure 3.1, along with the important 

geometric parameters. The stenosed vessel is assumed to be two-dimensional with 

diameter D=2R= 6.2 which reduces smoothly to one half in the stenosed region. The 

parabolic velocity profile (Ui)and extra stress tensor (v) are prescribed at the inlet with 

Reynolds number, Re = 100 and Weissenberg number, Wi = 0.6. At outlet, pressure is 

fixed to a constant. On the walls no-slip conditions are used for velocity and 

homogeneous Neumann condition for the pressure. For Oldroyd-B model and generilized 

Oldroyd-B model, the homogeneous Neumann conditions are considered at the walls and 

outlet. The stenosis cross-sectional area ratio is 2:1 and thus a significant local 

acceleration of the flow is expected. 

 
Figure 3.1: Schematic diagram of the physical system 

3.2    Mathematical Modeling 
The several steps of the mathematical formulation for the above physical configurations 

are shown as follows 

3.2.1    Governing equations 
Mathematical model is based on incompressible Navier-Stokes equations which are 

generalized to take into account viscoelasticity and shear-thinning properties of blood 

flow. The modelused to capture viscoelastic properties of the blood flow is the 

generalized Oldroyd-B model.The numerical method used for solution of the governing 

system of equations is based on the Finite Element discretization. The governing system 

of equations is based on Navier Stokes equationsusing Johnson-Segalman model for 

stress tensor. The governing equations can be written as: 
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Continuity Equation  

0u .   (3.1) 

Momentum Equations  

ρfσ.Δuμp)uρ(u.
t
uρ n 


       (3.2) 

Oldroyd-B constitutive equation: 

σ]VVσσVV[σV(u))σ.(uσ[σ // 



 xvx λ2μ

t
λ     (3.3) 

Here u is the velocity vector, u= (u1, u2, u3)T,   is the constant density,   is the extra 

stress tensor,   is dynamic viscosity,  x and d denote the relaxation and retardation 

time respectively, and the symmetric part of the velocity gradient, )uu(
2
1V T

 
i.e. 

=2V. The total viscosity composed of Newtonian viscosity (solvent, n) and 

viscoelasticity (polymer, v) components,  = n+ v. Decomposing the extra-stress 

tensor   into the sum of its Newtonian part n and its viscoelastic part v, we can write 

 = n + v. 
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Where, Velocity gradient for symmetric part  
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The Oldroyd-B constitutive equation for viscoelastic part is  
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3.2.2    Shear-thinning viscosity model 

In the case of blood flow the shear-thinning behaviors, the shear rate dependent viscosity 

function )(   instead of the constant viscosity coefficient μn. 

 The shear rate is defined by V2V:V2γ  . The non-dimensional form of this 

function is 

)μ(μ
μ)γμ()γF(

0 









  

Here μ0 and μ are the asymptotic viscosity values at zero and infinity shear rates. The 

appropriate transition between these values is carried out by the shear rate dependent 

function )(F  which satisfies the limit conditions 

0)γF(lim and 1)γF(lim
γ0γ


 




 

There are many possible choices for such a function )(F . It is very important to select 

the blood viscosity for accuracy in blood flow simulations. For 2D stenosis case, one of 

the most frequently used shear-thinning models for blood is the generalized Cross model 

given by 

ab

0
.

))γ(λ(1

μμ
μ)γμ(










      (3.8)

 
with the parameters a, b , >0 and . 

 

Figure 3.2: Viscosity function 
 
To account for the viscoelasticity of blood we consider the equations for the conservation 

mass equation (3.1),  conservation momentum equation (3.2) and Oldroyd-B equation 

(3.3). For the combination of shear-thinning and viscoelasticity we have four models and 

all the following models are tested for different flow rates (q = 0.05, 0.1, 2 cm3/ s), that 

correspond to the common blood flow rates in human body.  
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Table 3.1: Models outline 
 

Name of Model Shear-thinning (n) Viscoelasticity (v) 
Newtonian n = = constant v =0  
Generalized Newtonian n = )(   v =0  
Oldroyd-B n = = constant v 
Generalized Oldroyd-B n = )(   v 

 
3.2.3    Boundary conditions 

The flow is modeled in a bounded computational domain where a boundary isdivided 

into three mutually disjoint parts: a solid wall, an outlet and an inlet.  

(i) At inlet: 

a. Dirichlet boundary conditions for velocity vector are used  on the boundary  

u = g on  with compatibility condition 0g.
Ω




n , where n is the unit outward normal 

vector to  at the boundary . For homogenous case, g=0.  

b. For a pressure and the stress tensor Neumann boundary condition is used on the 

boundary . This boundary condition can be defined by  

. n = ( pI +.u). n = h 

c. The developed parabolic velocity  profile and the corresponding extra stresses 
components  

u=1.5 Ui(1-y2), v = 0 

2
v )

y
(Wi2μ





uσ11 y
μv






uσ 12
,22 = 0  

Where,  y is along the inlet boundary, and Ui is the average fluid velocity at the inlet.  

(ii) At outlet: 

a. At outflow boundary pressure value is constant and for the velocity vector and the 

stress tensor Neumann boundary condition is used.  

b. Due to pressure force (Po) the stress is acting at the boundary, . n =  Pon 

(iii) At boundary wall: 

a. On the walls no slip conditions are used for the velocity together with the condition for 

the normal component of the extra stress:  

u= 0, (. n). n = 0  

Where n is the boundary unit normal vector.  

b. Homogenous Neumann boundary conditions are used for the pressure.  
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3.2.4   Dimensional analysis 

The fundamental laws used to solve for the variables velocity, pressure and shear stress, 

provided the viscosity function, and flow parameters. With respect to boundary 

conditions the problems are the conservation of mass (continuity equations), 

conservation of momentums (momentum equations), and Oldroyd-B (viscoelasticity 

equations), which constitute a set of coupled, nonlinear, and partial differential 

equations.  To obtain a system of dimensionless variables, we use some scaling 

properties of the system to introduce Reynolds number (Re) and Weissenberg number 

(Wi) that measures the effect of viscosity and elasticity on blood flow for steady state.  

Using non-dimensional variables defined in the nomenclature, the non-dimensional 

governing equations 3.1, 3.2 and 3.7 are obtained for 2D stenosis vessel in domain  as 

follows: 
 
Continuity Equation  

0U.            (3.9) 

Momentum Equations  

fσUUU  .Δ λ)(1P] ) .[(Re                 (3.10) 

fσVVV  .λ)Δ(1P])  .[(Re      (3.11) 

Oldroyd-B constitutive equation:    

])( )[(W)V(2μ] ).([W t
ivi UσσUUσσU                  (3.12) 

Equations (3.9)-(3.12) were non-dimensional using the following dimensionless scales: 

x=LX ,  t = Lt*/U ,  u = UUo,  v = VUo p = UP/L ,  T = UT*/L ,  

f = f*U/L2,  =*/L,  Wi = xU/L,  Re= UL/ 

Reynolds number (Re) and Weissenberg number (Wi) are dimensionless numbers. Small 

values of Wi mean that the fluid is little elastic and small values of Re means that the 

fluid is very viscous.   

 
3.3    Numerical Analysis 
The differential constitutive equations are solved by numerical methods, in particular the 

commercial high-level finite element package COMSOL Multiphysics (2013) and 

MATLAB Programming (2010). The Galerkin weighted residual finite element 

techniques discussed below. 
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3.3.1    Finite Element Formulation and Computational Technique 
The numerical procedure used to solve the governing equations for the present work is 

based on the Galerkin weighted residual method of finite-element formulation. The finite 

element technique is explained in appendix A, which includes a detail analysis. 

3.3.2    Grid Independence Test 
Preliminary results are obtained to inspect the field variables grid independency 

solutions. Test for the accuracy of grid fineness has been carried out to find out the 

optimum grid number. 

 

Figure 3.3: Convergence of velocity with grid refinement for Re = 102 and 

Wi = 0.6 with blood flow rate 0.1 cm3/s. 

To obtain grid independent solution, a grid refinement study is performed for a stenosis 

cavity with Re = 102 and Wi = 0.6 with blood flow rate 0.2 cm3/s. Figure 3.3 shows the 

convergence of velocity (U) along the vessel axis with grid refinement. It is observed 

that grid independence is achieved with 22585 elements where there is an insignificant 

change in velocitywith further increase of mesh elements. Six different non-uniform 

grids with the following number of nodes and elements were considered for the grid 

refinement tests: 28442 nodes, 7355 elements; 50346 nodes, 9500 elements; 64240 

nodes, 12586 elements; 69887 nodes, 14371 elements; 92573 nodes, 22585 elements, 

98388 nodes, 29686 elements. From these values, 92573 nodes, 22585 elements can be 

chosen throughout the simulation to optimize the relation between the accuracy required 

and the computing time. 
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Table 3.2: Grid Sensitivity Check at Re = 100, Wi = 0.6 and q= 0.2 cm3/s 
 

Nodes 

(elements) 

28442 

(7355) 

50346 

(9500) 

64240 

(12586) 

69887 

(14371) 

92573 

(22585) 

98388 

(29686) 

U 0.14451252 0.14492982 0.14495304 0.14495446 0.14495578 0.14495579 

Time (s) 255.6 283.43 301.51 332.25 551.61 1007.65 

3.4    Code Validation  
For code validation, the blood flow simulation with above mentioned parameters for 

Newtonian model have solved, and the results have compared with those reported in 

Prokop and Kozel (2013), obtained with an extended computational domain. A 

comparison between the simulations of velocity field is presented in Figure 3.4. The 

results from the present experiment are almost same as Prokop and Kozel (2013). 

 

Prokop and 

Kozel (2013) 

 
 

Present 

Work 

 

 

 

  

 

Figure 3.4: Comparison of velocity contour lines between Prokop and Kozel (2013) 

and present work  

3.5    Results and Discussion 
The objective of the present mathematical model is to understand and bring out the 

effects of symmetric stenosis, non-symmetric stenosis, wall shear stenosis, dimensionless 

numbers and various flow rates on blood flow for the Newtonian (N), generalized 

Newtonian (GN), Oldroyd-B (OD) and generalized Oldroyd-B (GD) models. We have 

used the models mentioned in Section 3.2.2 to investigate the influence of the shear-

thinning and viscoelastic effects on the behavior of blood in different flow situations. 
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The solution of the Naiver-Stoke equations is obtained under the same conditions as the 

solutions of the non-Newtonian equations.  To show the non-Newtonian effects are used 

the comparison of flow field. We assume that the only change of blood viscosity n and 

extra stress v for developed all four models. Numerical simulations and investigation 

have performed and compared for all four models. The following parameters are repoted 

in Prokop and Kozel (2013) and have been used for blood flow simulations in aorta   

0 = 0.16 Pa.s   n = 0.0036 Pa.s  a = 1.23   b=0.64 

  = 8.2s    = 1050 kg.m-3  Lw = 0.003m   L= 0.03m 

The effect of stenosis is examined for all four different models with various flow rates. A 

comparison between velocity and pressure distribution for above mentioned models with 

Wi = 0.6 and Re = 100 is presented in terms of contour lines and stream lines with 

vectors in Figures 3.5-3.7.  The velocity and pressure profiles have a significant changed 

on blood flow at throat of stenosis.  The wall shear stress is another parameter to identify 

the artery diseases and its effect has shown in Figure 3.38. For the effect of 

dimensionless numbers have shown in Figures 3.16 -3.35 at Reynold number, Re (100, 

500 and 1000) and Weissenberg number, Wi (0.0, 0.5, 1.0). The parabolic profile has 

developed at constriction zone in artery and the pattern of blood flow for velocity and 

pressure distributions in terms of contour lines are shown in Figures 3.16 -3.35. The 

velocity and pressure distribution of blood flow which have changed with the change of 

flow rate are presented graphically in Figures 3.24-3.25 and 3.34-3.35 for considerable 

models.   

3.5.1    Symmetric stenosis effects on blood flow field 

The axial velocity contours and stream lines with vectors of the four models Newtonian, 

Generalized Newtonian, Oldroyd-B, Generalized Oldroyd-B are presented in Figures 

3.5-3.7 with the flow rate q = 0.1 cm3/s. Just behind the stenosis the reversal flow regions 

and flow separation are found with respect to the centerline. It is interesting to note that 

there are some permanent recirculation zones or confined zones formed at the throat of 

stenosis for four models. These confined zones are indicative of regions where the blood 

flow is almost identical over a significant portion of each model. The confined zone 

becomes little shorter for generalized Newtonian and Oldroyd-B model.  It is easy to 

comprehend, in the Newtonian case the characteristic blood viscosity is μn and thus a 

shear-thinning viscosity of the form equation (3.8), leads to the increase in the local 

viscosity in the low-shear regions. Different results are found to choices of the other 
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characteristic viscosity for the Newtonian model. The axial velocity profiles are shown in 

Figure 3.8 for all four models at dimensionless number Wi = 0.6 and Re = 100. From 

Figure 3.8, the minimum value of velocity is found in 1st constriction regions. It is 

clearly visible that the main effect of the blood shear-thinning behavior is noticeable in 

the recirculation zone, where the resistance to flow (local viscosity) increases 

substantially. The effects of viscoelasticity are about one order of magnitude lower in 

this case. For pulsatile flow or other flow rates or geometries, the viscoelastic effects 

may become more vital. In Table 3.3, blood velocity obtained along blood vessel axis for 

all four models while Re = 100, Wi = 0.6 and q = 0.1 cm3/s is presented. 

 
Table 3.3: Blood velocity is presented along vessel axis for all four cases while Re = 

100, Wi = 0.6 and q = 0.1 cm3/s . 

 

 
Velocity (U) 

Along 
vessel axis 

Newtonian 
Model 

Generalized 
Newtonian Model 

Oldroyd-B 
Model 

Generalized Oldroyd-
B Model 

0 0.072441613 0.07179703 0.073790151 0.074216232 
1 0.073659585 0.073220394 0.074457772 0.074775967 
2 0.078958292 0.078622927 0.079394602 0.079839732 
3 0.122305168 0.123011724 0.122420933 0.126968168 
4 0.136198205 0.135461351 0.1362318 0.137490551 
5 0.119060907 0.114177162 0.119078516 0.11014374 
6 0.114595236 0.110281144 0.114600092 0.107498954 
7 0.144967463 0.144195034 0.144971072 0.147781529 
8 0.128953238 0.124620332 0.128956833 0.12208713 
9 0.112582709 0.105268318 0.112584813 0.099287073 
10 0.100114693 0.089927309 0.100113836 0.082873143 
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Figure 3.5: Velocity contour plots on blood flow through symmetric stenosis at Re=100 and 

Wi = 0.6 
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Figure 3.6: Stream lines of  blood flow wtih vector through symmetric stenosis at Re=100 and 

Wi = 0.6 
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Figure 3.7: Velocity distribution on blood flow  with  vector arrow through symmetric stenosis 

at Re=100 and Wi = 0.6 
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Figure 3.8: Velocity profile of blood flow along vessel axis for all models when Re = 

100, Wi=0.6 and q = 0.1cm3/s. 

3.5.2    Symmetric stenosis effects on pressure distribution 
In blood flow experiments blood pressure can easily be measured, in particular the 

pressure drops (i.e. the inlet-outlet pressure difference) needed to achieve a prescribed 

flow rate. In Figure 3.9, the axial pressure contours are presented for all the four models 

Newtonian, Generalized Newtonian, Oldroyd-B, Generalized Oldroyd-B with the flow 

rate q = 0.2 cm3/s. These figures clearly show similarities among the four models at the 

inflow and outflow (far from the stenosis) of the artery with a developed pressure profile. 

While the difference in axial pressure profiles are pronounced at the around of stenosis, 

with some departures from the parabolic profile at second stenosis, due to great shear 

acting on the fluid in these regions. The pressure contour obtained relatively steep at far 

from the constriction regions but very intensive pressure gradient at stenosis.  

  
Pressure is more dominated at stenosis regions because of the shear-thinning behavior of 

blood viscosity. It implies that, the flow is quicker than the non-Newtonian ones and its 

patterns remain in a disturbed state compare to others.  In shear-thinning viscosity 

function (3.8) leads to the growth of the local viscosity in the low-shear regions at all 

cases. The axial pressure profiles are shown in Figure 3.10 for all four models at 

dimensionless number Wi = 0.6 and Re=100. Form Figure 3.10, the lowest value of 
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pressure is found in second stenosis region. The main effect of the blood shear-thinning 

behavior is visible in the throat of stenosis, where the local viscosity increases greatly. 

   
In Figure 3.10 the more negative values are found in the second stenosis region for 

generalized Newtonian and Oldroyd-B model which leads to non-Newtonian fluid is 

slower than Newtonian fluid. In Table 3.4, the numerical value of pressure obtained 

along blood vessel axis for all four models while Re = 100, Wi = 0.6 and q = 0.2 is 

presented. 

Table 3.4: Numerical values of pressure are presented along vessel axis for all four 

models while Re = 100, Wi = 0.6 and q = 0.1 cm3/s. 

 
Pressure (P) 

Along 
vessel axis 

Newtonian 
Model 

Generalized 
Newtonian Model 

Oldroyd-B 
Model 

Generalized 
Oldroyd-B Model 

0 0.995079141 0.998610322 0.998448191 0.997242004 
1 0.735498997 0.641601056 0.754884445 0.61650652 
2 0.122876754 -0.055150764 0.154373106 -0.145772918 
3 -4.690719793 -5.066619856 -4.648226035 -5.706156529 
4 -7.049941317 -7.565015747 -7.003165415 -8.66326103 
5 -5.890207742 -6.315599669 -5.843389238 -7.313790517 
6 -6.413371938 -7.092404681 -6.36541262 -8.401036198 
7 -11.51431898 -12.66428871 -11.46724914 -15.03906105 
8 -10.32620926 -11.38024981 -10.27869818 -13.68324387 
9 -9.502362283 -10.50455761 -9.454816021 -12.79217817 
10 -9.041404005 -10.13914344 -8.994475968 -12.51618949 
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Figure 3.9: Pressure distribution on blood flow through Symmetric Stenosis at Re=100,  

Wi = 0.6 and q= 0.1 cm3/s. 
 

 

Figure 3.10: Pressure profile of blood flow along vessel axis for all models when Re 
= 100, Wi = 0.6 and q = 0.1 cm3/s.  

3.5.3    Asymmetric stenosis effect 

It is another remarkable effect on blood flow if the height of stenosis is different for 

velocity pressure distribution of the four dissimilar models as presented in Figures 3.11-

3.12 with the flow rate q = 0.1 cm3/s. The different confine or recirculation zones are 

found in the stenotic height for various models. We observed that the vacuum space 

found which have created back flow of blood at close to the vessel wall after constriction 

zone for Newtonian and Oldroyd-B model.  The parabolic profile has little deformed for 

non-symmetric stenosis. The comparable study of velocity and pressure for symmetric 

and asymmetric models has shown in Figures 3.13-3.15. From Figure 3.13a, the 
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maximum velocity is found in second stenosis but lower velocity atnon-symmetric 

stenosis. 

   
On the other hand, the pressure distribution is presented for our considerable model with 

flow rate in Figure 3.12. There are some clearly dissimilarities among the four models at 

the first stenosis and second stenosis of the artery with developed parabolic pressure 

profile. Due to great shear acting on the fluid at constriction the pressure profile is more 

intensified. The steep pressure gradients are found far the stenosis area but in different at 

stenosis center. The lowest value of pressure is found in the near of second stenosis 

region but higher than symmetric stenosis. The most negative value is originated for 

generalized Oldroyd-B case at second constriction area which leads to non-Newtonian 

fluid. 
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Figure 3.11: Velocity distribution on blood flow through non-symmetric Stenosis at Re=100 and 

Wi = 0.6 and q = 0.1 cm3/s. 
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Figure 3.12: Pressure distribution on blood flow through asymmetric Stenosis at Re=100 and Wi 

= 0.6 and q = 0.1 cm3/s. 
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Figure 3.13a 

 

Figure 3.13b 

Figure 3.13: Comparison of (Figure 3.13a) Blood Velocity and (Figure 3.13b) 
Blood Pressure distribution along vessel axis for asymmetric Stenosis 
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Figure 3.14a 

 
Figure 3.14b 

Figure 3.14: Comparison of velocity profile for symmetric (Figure 3.14a) 
and asymmetric (Figure 3.14b) stenosis effects along vessel axis 
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Figure 3.15a 

 

Figure 3.15b 

Figure 3.15: Comparison of pressure profile for symmetric (Figure 3.15a) 
and asymmetric (Figure 3.15b) stenosis effects along vessel axis 
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3.5.4    Effects of dimensionless number 

Reynold numbers (Re) effects  

The Blood flow patterns affected by different Reynold numbers, Re (100, 500 and 1000) 

are shown in Figures 3.16-3.23 for all four models with Wi = 0.6 and q = 0.2cm3/m. It is 

seen that fluid developed parabolic profile at stenosis area in artery with the increases of 

Re and the pattern of blood flow for velocity and pressure distribution in terms of 

contour lines are shown in Figures 3.16-3.23. In Table 3.5, the average velocity obtained 

along vessel axis for different Reynold numbers while Re = 100, 500 and 1000 is 

presented.  

 
Table 3.5: Velocity are obtained along vessel axis for different Reynold numbers, Re 

= 100, 500 and 1000 while Wi = 0.6 and q = 0.1 cm3/s. 

 
Models Velocity (U) 

At first Stenosis At second Stenosis 
Re=100 Re=500 Re=1000 Re=100 Re=500 Re=1000 

N 0.12285019 0.13841949 0.136573224 0.1544978 0.15062677 0.14515353 
GN 0.12031713 0.13315758 0.13737259 0.15232078 0.15339416 0.14802205 
OD 0.12283797 0.13841511 0.136613092 0.15449957 0.1506474 0.14516427 
GD 0.12031713 0.13315759 0.137361681 0.15232078 0.15339419 0.14760520 

For all models, the graphical representation of the average velocity and pressure 

variation for different Reynold numbers, Re = 100, 500 and 1000 with flow rate 0.2 

cm3/s are shown in Figures 3.24-3.25. From these figures, we observe that average 

velocity speed up around stenosis area with the increases of Reynold numbers and it 

obtained peak value at second stenosis for all four models because of the effect of inertia. 

The velocity profile crosses each other between the stenosis for a little turbulence blood 

flow. In Figures 3.24, we also see that pressure distribution decrease along vessel axis 

with increases of Reynold numbers, Re. The lowest value of pressure is obtained at 

second stenosis for generalized Oldroyd-B model. In the case of generalized Oldroyd-B, 

pressurecontour lines becoming close each other because of blood shear-thinning 

behavior. In Table 3.6, the numerical value of pressureobtained along vessel axis for 

different Reynold numbers while Re = 100, 500 and 1000 is presented. 



CHAPTER 3  NUMERICAL STUDY OF BLOOD FLOW... ... ...  

65 
 

Table 3.6: Numerical value of pressure are obtained along vessel axis for different 

Reynold numbers, Re = 100, 500 and 1000 while Wi = 0.6 and q = 0.1 cm3/s. 

 
Models Pressure (P) 

At first Stenosis At second Stenosis 

Re=100 Re=500 Re=1000 Re=100 Re=500 Re=1000 

N -2.18594129 -4.19061198 -6.81221242 -4.8318908 -7.8255203 -11.207662 
GN -4.07529027 -5.79128785 -8.38520390 -8.2884164 -11.142647 -14.662206 
OD -2.18706481 -4.16916653 -6.75792962 -4.8329671 -7.8034547 -11.152158 
GD -4.07623408 -5.79119330 -8.63268061 -8.2893602 -11.142555 -14.988180 
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Figure 3.16: Renylod Numbers (Re) effects  on Blood flow of Newtonian Model at Wi = 0.6 and 

flow rate 0.1 cm3/s. 
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Figure 3.17: Renylod Numbers (Re) effects  on pressure distribution of Blood flow for 

Newtonian Model at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Figure 3.18: Renylod Numbers (Re) effects  on Blood flow of generalized Newtonian Model at Wi 

= 0.6 and flow rate 0.1 cm3/s. 
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Figure 3.19: Renylod Numbers (Re) effects  on Blood flow of Generalized Newtonian 

Model at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Figure 3.20: Renylod Numbers (Re) effects  on Blood flow of Oldroyd-B Model at Wi = 

0.6 and flow rate 0.1 cm3/s. 
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Figure 3.21: Renylod Numbers (Re) effects  on pressure distribution of Blood flow for 

Oldroyd-B Model at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Figure 3.22: Renylod Numbers (Re) effects  on Blood flow of Generalized Oldroyd-B 

Model at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Figure 3.23: Renylod Numbers (Re) effects  on pressure distribution of Blood flow for 

generalized Newtonian Model at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Figure 3.24c      Figure 3.24d 

 

Figure 3.24: Velocity profile of the Effects of Reynold numbers (Re) on Blood flow 

at Wi = 0.6 and flow rate 0.2 cm3/s for (Figure 3.24a) Newtonian Model, (Figure 

3.24b) Generalized Newtonian Model, (Figure 3.24c) Oldroyd-B Model, and  

(Figure 3.24d) Generalized Oldroyd-B Model. 
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Figure 3.25c     Figure 3.25d 

Figure 3.25: Pressure profile of the Effects of Reynold numbers (Re) on Blood flow 

at Wi = 0.6 and flow rate 0.1 cm3/s for (Figure 3.25a) Newtonian Model, (Figure 

3.25b) Generalized Newtonian Model, (Figure 3.25c) Oldroyd-B Model, and  

(Figure 3.25d) Generalized Oldroyd-B Model. 

 
Weissenberg Numbers (Wi) Effects  
Again, the effects of Weissenberg numbers, Wi (0.0, 0.5, 1.0) on blood flow are shown in 

Figures 3.26-3.33 for all four models with the flow rate at Re = 100. At Wi = 0.0 leads 

that the fluid is pure viscous fluid i.e. no elasticity while an infinite Weissenberg 

numbers limit corresponds to purely elastic response. At Wi = 0.0, we have found small 

confine area for all models. Since at low shear rate, blood aggregate are solid-like bodies, 

and has ability to store elastic energy. We observe that velocity contour lines have dense 

at the stenosis throat which indicate the blood velocity slight enlarged with the increases 

of Wi and create big confine zone at second constriction for Wi = 1.0. Due to less 

dominant of viscous force the velocity is higher at Wi =1.0 which leads to bigger 

recirculation area and blood behave fluid-like bodies. At Wi = 0.5, a small circulation 

area has found at the centre of stenosis and just after stenosis velocity fall down and 

create a back flow adjacent to vessel wall. In Figure 3.34, we attained maximum value of 

velocity at center of stenosis for all four models and have little different at beginning. In 

Table 3.7, the numerical value of velocity obtained along vessel axis at throat of stenosis 

for different Weissenberg numbers while Wi =0.0, 0.5 and 1.0 is presented. 
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Table 3.7: Blood velocity is presented for various Weissenberg numbers, Wi =0.0, 

0.5 and 1.0 while Re = 100 and q = 0.1 cm3/s. 

 
Models Velocity (U) 

At first Stenosis At second Stenosis 
Wi=0.0 Wi=0.5 Wi=1.0 Wi=0.0 Wi=0.5 Wi=1.0 

N 0.13497634 0.13619820 0.13678027 0.14506764 0.14496746 0.14475503 
GN 0.13402507 0.13546135 0.13627702 0.14417983 0.14419503 0.14397909 
OD 0.13490637 0.1362318 0.13683679 0.14506252 0.14497107 0.14474881 
GD 0.13622025 0.13749055 0.13836750 0.14763397 0.14778152 0.14765851 

The pressure is more dominated at the constriction area of the stenosis cavity for all 

models which are shown in odd number Figures 3.26-3.33. At stenosis regions pressure 

is lower than other region because of the shear-thinning characteristics of blood viscosity 

which leads the flow is faster than the non-Newtonian ones and its patterns remain in a 

disturbed state compare to others. From Figure 3.35, the minimum value of pressure is 

found at second stenosis area and pressure profiles are almost similar at generalized 

Oldroyd-B model. In Figure 3.35, the numerical values of pressure distribution are 

presented for all the four models Newtonian, Generalized Newtonian, Oldroyd-B, 

Generalized Oldroyd-B with the flow rate q = 0.2 cm3/s. In Table 3.8, the pressure 

obtained along vessel axis at constriction for different Weissenberg numbers while Wi 

=0.0, 0.5 and 1.0 is presented.  

Table 3.8: Numerical pressure is obtained along vessel axis at constriction for 

different Weissenberg numbers while, Wi = 0.0, 0.5 and 1.0 while Re = 100 and q = 

0.1 cm3/s. 

Models Pressure (P) 
At first Stenosis At second Stenosis 

Wi=0.0 Wi=0.5 Wi=1.0 Wi=0.0 Wi=0.5 Wi=1.0 
N -6.69929172 -7.04994131 -7.09259017 -11.2366119 -11.5143189 -11.5077824 
GN -7.37517020 -7.56501574 -7.58516418 -12.5500529 -12.6642887 -12.6323679 
OD -6.85269457 -7.00316541 -7.03559779 -11.3926709 -11.4672491 -11.4486727 
GD -8.61595339 -8.66326103 -8.65927274 -15.0563381 -15.0390610 -14.9913434 
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Figure 3.26: Weissenberg Numbers (Wi) effects  on blood flow of Newtonian model at Re 

= 100 and flow rate 0.1 cm3/s. 
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Figure 3.27: Weissenberg Numbers (Wi) effects  on pressure distribution of blood flow 

for Newtonian model at Re = 100 and flow rate 0.1 cm3/s. 
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Figure 3.28: Weissenberg Numbers (Wi) effects  on velocity distribution of blood flow for 

Generalized Newtonian model at Re = 100 and flow rate 0.1 cm3/s. 
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Figure 3.29: Weissenberg Numbers (Wi) effects  on pressure distribution of blood flow 

for Generalized Newtonian model at Re = 100 and flow rate 0.1 cm3/s. 
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Figure 3.30: Weissenberg Numbers (Wi) effects  on velocity distribution of blood flow for 

Oldroyd-B model at Re = 100 and flow rate 0.1 cm3/s. 
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Figure 3.31: Weissenberg Numbers (Wi) effects  on pressure distribution of blood flow 

for Oldroyd-B model at Re = 100 and flow rate 0.1 cm3/s. 
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Figure 3.32: Weissenberg Numbers (Wi) effects on velocity distribution of  blood flow for 

Generalized Oldroyd-B model at Wi = 0.6 and flow rate 0.1 cm3/s.   
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Figure 3.33: Weissenberg Numbers (Wi) effects  on pressure distribution of blood flow for 

generalized Oldroyd-B model at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Figure 3.34a     Figure 3.34b 

 

 

Figure 3.34c      Figure 3.34d 

 

Figure 3.34: Velocity profile of the Effects of Reynold numbers (Re) on Blood flow 

at Wi = 0.6 and flow rate 0.1 cm3/s for (Figure 3.34a) Newtonian Model, (Figure 

3.34b) Generalized Newtonian Model, (Figure 3.34c) Oldroyd-B Model, and  

(Figure 3.34d) Generalized Oldroyd-B Model. 
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Figure 3.35a     Figure 3.35b 

 

Figure 3.35c      Figure 3.35d 

Figure 3.35: Pressure profile of the Effects of Weissenbegr numbers (Re) on Blood 

flow at Re =100 and flow rate 0.1 cm3/s for (Figure 3.35a) Newtonian Model, 

(Figure 3.35b) Generalized Newtonian Model, (Figure 3.35c) Oldroyd-B Model, and  

(Figure 3.35d) Generalized Oldroyd-B Model. 
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The axial pressure profiles are shown in Figures 3.36-3.37 at various flow rates for the 
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Oldroyd-B model compare to others. At flow rate 2 cm3/s, the Newtonian and Oldroyd-B 

model very close and same result for generalized models. On the other hand, the pressure 

distributions along vessel axis are presented in Figure 3.37 with different flow rates. The 

pressure is decreased with respect to vessel axis for all four models. At second stenosis, 

we obtained lowest value of pressure. For higher flow rate, the pressure profiles almost 

same for all models because of less viscoelastic response of blood with increases of 

blood flow rate. The numerical date is shown in Table 3.9 and 3.10 as follows.  In Tables 

3.9 and 3.10, the blood velocity and pressure obtained along vessel axis at first and 

second stenosis for different flow rate (q) while q =0.05, 0.2 and 2.0 cm3/s are presented. 

  
Table 3.9: Blood velocity is obtained along vessel axis at first and second stenosis for 

different flow rate , q = 0.05, 0.2 and 2.0 cm3/s at Re=100 and Wi = 0.6. 

 
Flow 
rates / 
Models 

Velocity (U)  
First stenosis Second stenosis 

q= 0.05 0.2 2.0 q= 0.05 0.2 2.0 
N 0.1362328 0.136398205 0.136251668 0.145971072 0.144967463 0.144995957 
GN 0.135461351 0.135461351 0.135461351 0.144195034 0.144195034 0.144195034 
OD 0.1362318 0.1362318 0.1362318 0.144971072 0.144971072 0.142971072 
GD 0.137490551 0.137490551 0.137490551 0.147781529 0.147781529 0.147781529 

 
Table 3.10: Pressure are presented  at first and second stenosis along vessel axis for 

different flow rate, q = 0.05, 0.2 and 2.0 cm3/s at Re=100 and Wi = 0.6. 

 
Flow 
rates / 
Models 

Pressure (P)  
First stenosis Second stenosis 

q = 0.05 0.2 2.0 q= 0.05 0.2 2.0 
N -7.00016541 -7.0499413 -8.6632610 -11.4172491 -11.467249 -21.0498156 
GN -7.56501574 -7.5650157 -8.6632610 -14.7070610 -12.464288 -21.0598156 
OD -7.00426541 -7.0031654 -8.6632610 -11.4683491 -11.5143189 -21.0398156 
GD -8.66326103 -8.6632610 -8.6632610 -15.0390610 -12.6642887 -21.0798156 
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Figure 3.36: Velocity profile on Blood flow with various flow rate (q = 0.05, 0.1, 2 

cm3/s) at Wi = 0.6 and Re= 100 
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Figure 3.37: Pressure profile on Blood flow with various flow rate (q = 0.05, 0.1, 2 

cm3/s)  at Wi = 0.6 and Re= 100 
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3.5.6   Wall Shear Stress effects 
The effect of the blood flow behaviour on the wall shear stress is a significant factor in 

the onset of arterial deseases. In Figure 3.38  show the variation of the wall shear stress 

for the four models Newtonian, Generalized Newtonian, Oldroyd-B, Generalized  

Oldroyd-B with the flow rate q = 0.1 cm3/s. The wall shear stress (Wss) is another vital 

parameter in blood flow simulation. It represent  the tangential component of the surface 

force at the vessel wall, acting against the fluid flow and can define as follows 

 
Here n is the local wall normal vector (pointing towards the fluid) and t is the 

correspoinding unit tangential vector. The wall shear stress profiles for all the models at 

Wi = 0.6 and Re = 100 are shown in Figure 3.38. At the genesis of stenosis region, the 

wall shear stress hav a significant changed for all cases.  It is found that the wall shear 

suddenly at the beging of recirculatin zones and devressed in non stenosis area. It is 

observed that the wall shear stress of generalized Newtonian and Oldroyd-B model is 

marginally lower than the others model and the wall shear stress is the lowest for 

generalized  Oldroyd-B model. It is alsor found that the wall shear stress is higher for 

higher value of  Weissenberg numbers.  The negative values of wall shear stress are 

found in the region of reversal flow area. In Table 3.11, the numerical value of wall shear 

stress obtained along blood vessel axis for all four models while Re = 100, Wi = 0.6 and 

q= 0.1 cm3/s are presented. 

 
Table 3.11: Numerical values of wall shear stress are obtained at begining of 1st and 

2nd stenosis of artery  for all four models while Re = 100, Wi = 0.6 and q = 0.2 cm3/s. 

 

 Wall shear stress (Wss) 

 
1st Stenosis  2nd Stenosis 

Newtonian Model  0.0064 0.0062 
Generalized Newtonian Model 0.0061 0.0058 

Oldroyd-B Model 0.0051 0.057 
Generalized Oldroyd-B Model 0.0458 0.0455 
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Figure 3.38: Wall shear stress distribution on blood flow along vessel axis through 
symmetric stenosis at Re=100 and Wi = 0.6 with various flow rate q = 0.05(top) and 2 
(bottom) cm3/s. 
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3.6    Chapter Summary 

The blood flow in wavy stenosis artery is simulated by finite element method. Four 

constitutive laws (Newtonian model, generalized Newtonian model, Oldroyd-B models 

and generalized Oldroyd-B models) have been proposed to describe the non-Newtonian 

shear-thinning blood viscosity. The numerical investigation of Newtonian and Oldroyd-

B models, and their generalized (shear-thinning) models have been considered to the 

blood flow through symmetric and asymmetric stenosis in steady flow simulations. From 

the computational results, we conclude that the effect of flow variables and wall shear 

stress are related to viscoelasticity (shear-thinning) are more noticeable than the 

viscoelastic ones. At the throat of stenosis, the flow variables are predominant and 

increased with the flow rate decreased consequently.  The specific choice of the 

characteristic viscosity μn for the reference Newtonian and (non-generalized) Oldroyd-B 

solution is main reason. The apparent viscosity is close to 0 in the large part of vessel at 

low shear rates and the difference for the Newtonian solution at high flow rate. For the 

given problems, the numerical method used to solve the governing equations seems to be 

sufficiently robust and efficient for the appropriate resolution.  

 
The finite element equations derived from the governing flow equations that consist of 

the conservation of mass, momentum, and Oldroyd-B equations. The derived finite 

element equations are nonlinear requiring an iterative technique solver. The Newton-

Raphson iteration method has been applied to solve these nonlinear equations for 

solutions of the nodal velocity component, tensor component, and pressure by 

considering Weissenberg numbers of 0.0, 0.5 and 1.00 and Reynold numbers of 102 to 

103. The results show the following aspects: 

 
  The effect of flow variables (velocity and Pressure) have more significant changed 

at the throat of stenosis for all four models. The Peak value of blood velocity and 

lowest value of blood pressure are found at second constriction region for our 

considerable models.  

 The effect of the blood flow behavior on the wall shear stress is an important factor 

in the onset of arterial diseases.  
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 In blood flow, the effect of dimensionless numbers Re and Wi are remarkable and 

flow variables are more affected at stenosis area. With increase of Wi the blood 

flow patterns and pressure distribution are almost alike for generalized Oldroyd-B 

model.  

 It is another remarkable effect on blood flow if the height of stenosis is different of 

the four dissimilar models.  

 Various types of recirculation zones are originated at the throat of stenosis regions 

for all four models.  
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CHAPTER 4 
BLOOD FLOW STUDY THROUGH ANEURYSMATIC 
ARTERY WITH PERMEABLE WALLS 
 

The study of the blood flow has attracted many researchers over the past years. Due to its 

significant effect on several human cardiovascular diseases such as heart attacks, strokes, 

atherosclerosis, bleeding, stenosis and aneurysms, detailed knowledge of blood flow in 

physiological conditions is required. The frequently affected arteries are the aorta, the 

coronary, the carotid, and the femoral arteries. It is a vital area of research for the flow 

behavior of blood, as well as the shear-thinning viscosity of blood. Medical problems, 

genetic conditions, and trauma can damage or injure artery walls. The force of blood 

pushing against the weakened or injured walls can cause an aneurysm. An aneurysm can 

grow large and rupture (burst) or dissect. A rupture causes dangerous bleeding inside the 

body. A dissection is a split in one or more layers of the artery wall. The split causes 

bleeding into and along the layers of the artery wall. Cronenwett et al. (1985) have studied 

that the risk of rupture increses and size of aneurysm of artery. Theoretical and 

experimental studies of fluid dynamics through differently geometries of constriction or 

expansion have been discussed to evaluate the flow pattern are cited in Pincombe and 

mazumdar (1957), Muraki (1983), Pincombe et al. (1995), and Fakour et al. (2015).    

In the present chapter the main objective is to examine the effects of the blood flow 

behaviour through anuerysmatic artery with permeable wall for Newtonian, Oldroyd-B 

and their generalized fluids. A set of partial differential equations of conservation of 

mass, momentum and Oldroyd-B equations are expressed in a normalized primitive 

variables formulation and then a finite element model has been developed for the present 

problem.  

The blood flow patterns have shown in terms of velocity contour lines, pressure plots, 

streamlines with vectors and we have found that the blood flow variables are correlated 

to blood shear thinning properties for all four models. The blood variables have a 

significant changed along vessel axis for the presence of porosity at vessel walls.  It is 

found that the hemodynamical factors- blood velocity, pressure, stress components and 

wall shear stress, permeability play important roles in the localization of healthy and 

unhealthy conditions of cardiovuscular diseases. The effects on blood flow of 

aneursymatic artery are presented graphically for all modifications.   
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This chapter has covered the following contents. The problem descriptions of the current 

investigation are presented in section 4.1. It has carried out the mathematical model with 

boundary conditions in section 4.2. The computational analysis have discussed in section 

4.3 with grid freedom test for problem accuracy. In section 4.4, the result discussion of 

the current problem are presented and finally chapter summary in section 4.5.  

 

4.1    Problem Statement 
In the present study, the aneurysmatic model is considered along with the important 

geometric parameters as shown in Fig. 4.1. Thetwo-dimensional partial permeable 

aneurysmatic vessel is assumed with diameter D=2R= 6.2mm which enlarge smoothly to 

one half  of the vessel width. At inlet, the parabolic velocity profile and extra stress 

tensor is prescribed and pressure is fixed to constant at outlet with Peclet number, 

Pe=1000 and Weissenberg number,Wi = 0.6.On the walls no-slip conditions are used for 

velocity and homogeneous Neumann condition for the pressure. The blood fluid is 

uniformly injected or removed with speed V0 at first aneurysmatic vessel wall. A 

significant local acceleration of the blood flow is expected for the aneurysmatic cross- 

sectional area.  

 
Figure 4.1: Geometry of the physical system 

4.2    Mathematical Formulation 
The Mathematical formulation of the above problem are shown as follows  

4.2.1    Non-dimensional governing mathematical equations 
The steady state laminar blood flow is generalized to consider viscoelasticity and shear-

thinning properties based on incompressible Navier-Stokes equations. To capture 

viscoelastic properties of the blood flow, the generalized Oldroyd-B model is used. The 

solution of the governing system of equations is based on the finite element 

discretization.  The governing equations for steady  state blood flow can be written as: 
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Continuity Equation  

0u .   (4.1) 

Momentum Equations  

fσuuuu  ρ.Δμp).ρ(
t

ρ n 


       (4.2) 

Oldroyd-B constitutive equation: 

][λ)(2μ).(
t

[λ xvx σVVσσVVσuVσuσσ // 



 ]   (4.3) 

Here u is the velocity vector, u= (u1, u2, u3)T,   is the constant density,  is the extra 

stress tensor, is dynamic viscosity, x the relaxation and the symmetric part of the 

velocity gradient, )uu(
2
1V T

 
i.e.  =2V.  

To obtain a system of dimensionless variables, we use some scaling properties of the 

system to introduce Peclet number (Pe), Schmidt number (Sc) and Weissenberg number 

(Wi) that measures the effect of viscosity and elasticity on blood flow for steady state. 

We introduce the following dimensionless variables for the non-dimensional governing 

equations are the continuity equation,momentum equation, and Oldroyd-B equation. 

x=LX ,  t = Lt*/U ,  u = UUo,  v = VUo p = UP/L ,   = U*/L ,  

f = f*U/L2,  =*/L,  Wi = xU/L,  Pe= UL/ = Re Sc,   Sc =  /L,   

Peclet number (Pe), Schmidt number (Sc) and Weissenberg number (Wi) are 

dimensionless numbers. The fluid is very viscous for small Pe and the fluid is more 

elastic at big Wi. For two dimensional anuerysmatic vessel in domain , the non-

dimensional governing equations are as follows:  

Continuity Equation  

0U.            (4.4) 

Momentum Equations  

f.λ)Δ(1P]).[(
Sc
Pe

 σUUU                 (4.5) 

f.λ)Δ(1P]).[(
Sc
Pe

 σVVV      (4.6) 

Oldroyd-B constitutive equation:    

)(2μ])( )( -  ).([W v
t

i UVUσσUσUσ                 (4.7) 
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4.2.2    Boundary conditions 

The confined computational domain is divided into four mutually disjoint parts: a solid 

wall, an outlet, an inlet and porous wall. 

(i) At inlet: 

a. Dirichlet boundary conditions for velocity vector are used  on the boundary  

u = g on  with compatibility condition 0g.n
Ω




, where n is the unit outward 

normal vector to  at the boundary . For homogenous case, g=0.  

b.  For a pressure and the stress tensor Neumann boundary condition is used on the 

boundary . This boundary condition can be defined by  

. n = ( pI +.u). n = h 

c. The developed parabolic velocity  profile and the corresponding extra stresses 

components  

u=1.5 Ui(1-y2), v = 0 

2
v11 )

y
(Wi2μσ





u
y

μσ v12





u
,22 = 0  

Where  y is along the inlet boundary, and Ui is the average fluid velocity at the inlet.  

(ii) At outlet: 

a. At outflow boundary pressure value is constant and for the velocity vector and the 

stress tensor Neumann boundary condition is used.  

b. Due to pressure force (Po) the stress is acting at the boundary  

. n =  Pon 

(iii) At boundary wall: 

a. On the walls no slip conditions are used for the velocity together with the condition 

for the normal component of the extra stress:  

u= 0 and (. n). n = 0  

Where n is the boundary unit normal vector.  

b. Homogenous Neumann boundary conditions are used for the pressure. 

(iv) Permeable walls: 

a. Permeable conditions is used at first aneurysmatics wall for the velocity V=V0. 

b. No slip condtion is used for velocity at second  aneurysmatics wall.  
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4.3    Computational  Analysis 
The discretized momentum and Oldroyd-B equations subjected to the boundary 

conditions simultaneously will be solved using the Matlab programming & Mathematical 

programming package COMSOLMULTIPHYSICS for the dependent variables 

(velocity, pressure and stress tensor). The numerical procedure to be used in this work is 

based on the Galerkin weighted residual method of finite element formulation.  

4.3.1    Computational procedure 
In present work, the non-linear parametric solution method is chosen to solve the 

governing differential equations which are based on the Galerkin weighted residual 

method of finite-element formulation. For brevity in at this time, the detailed formulation 

scheme is provided in Appendix A.  

 
4.3.2    Grid independence test 
Preliminary results are obtained to inspect the field variables grid independency 

solutions. Test for the accuracy of grid fineness has been carried out to find out the 

optimum grid number. 

 
Figure 4.2:  Convergence of average velocity with grid refinement for  

Pe = 102, Sc =1 and Wi = 0.6 with blood flow rate 0.1 cm3/s 

To obtain grid independent solution, a grid refinement study is performed for 

ananeurysm cavity with Pe = 103, Sc=1 and Wi = 0.6 with blood flow rate 0.1 cm3/s. 

Figure 4.2 shows the convergence of the average velocity (U) along the vessel axis with 

grid refinement. It is observed that grid independence is achieved with 17218 elements 

where there is insignificant change in velocity with further increase of mesh 

elements.Fivedifferent non-uniform grids with the following number of nodes and 
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elements were considered for the grid refinement tests: 3118 nodes, 5460 elements; 4219 

nodes, 7787 elements; 6199 nodes, 11359 elements; 8936 nodes, 17218 elements; 13629 

nodes, 26471 elements. From these values, 8936 nodes, 17218 elements can be chosen 

throughout the simulation to optimize the relation between the accuracy required and the 

computing time. 

Table 4.1: Grid Sensitivity Check at Pe = 100, Sc=1, Wi = 0.6 and q= 0.1 cm3/s 
 

Nodes 

(elements) 

3118 

(5460) 

4219 

 (7787) 

6199 

 (11359) 

8936 

(17218) 

13629 

(26471) 

U[ms-1] 0.0729824 0.0729720 0.0729687 0.0729685 0.0729685 

Time (s) 358.6 483.53 611.51 832.5 981.71 

 

4.4    Results and Discussion 
The aim of this mathematical model is to know and discuss the effects of permeable 

anuerysmatic artery, wall shear stress, and dimensionless numbers and stress 

tensorcomponents on blood flow forall fourmodels. We have used the Newtonian (N), 

generalized Newtonian (GN), Oldroyd-B (OD) and generalized Oldroyd-B (GD) models 

to study the influence of the shear-thinning and viscoelastic behavior of blood with blood 

flow. To develop models, we have only changed blood viscosity n and extra stress v. 

We have used same parameters for blood flow simulations and numerical investigation 

of all models which is detailed in Prokop and Kozel (2013).   

The effect of permeable anuerysmatic blood vessel wall is examined for four different 

models with flow rates at Pe = 1000 and Wi = 0.6. A contrast blood flow simulation 

between velocity and pressure distribution is presented in Figures 4.3- 4.5 and 4.7- 4.9 

respectively for above mentioned models with Wi = 0.6 and Pe = 1000. The blood 

velocity and pressure profile have a significant changed between twoaneurysms. The 

important parameter wall shear stress is used to identify the artery diseases and its effect 

have shown in Figure 4.34. The effects of dimensionless numbers have been shown in 

Figures 4.11- 4.30 at Peclet number, Pe (1000, 2000 and 3000) and Weissenberg 

number, Wi (0.0, 0.5, 1.0). The axisymmetric profile has developed at inlet and outlet of 

blood vessel and the pattern of blood flow for velocity and pressure distribution are 

shown in Figures 4.1- 4.14 and 4.16-4.19 in terms of contour lines. The graphical 

presentation of the velocity, pressure, wall shear stress and stress tensor of blood flow 

are shown in Figures 4.6, 4.10, 4.15, 4.20, 4.31- 4.35 respestively.   
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4.4.1    Aneurysm blood vessel effects on blood flow field 

The velocity profiles are of particular interest, since they provided a detailed description 

of the blood flow field. The velocity distribution of blood flow of the four different 

models Newtonian, Generalized Newtonian, Oldroyd-B, Generalized Oldroyd-B are 

presented in Figures 4.3-4.11 with the flow rate q = 0.1 cm3/s. It is very interesting that 

the only confine or recirculation zones are originated in generalized Oldroyd-B model 

and absent at rest of the models for simple aneurysm (no permeability) blood vessel. At 

permeable aneurysm, there are some permanent oval or recirculation zones are found 

between the aneurysms. It is noted that the recirculation zones are migrating toward the 

proximal end of the aneurysm cavity and adjacent to vessel wall for all models. These 

recirculation zones are symbolic of regions over a significant portion of each model 

where the flow is reparated. At generalized Newtonian and Oldroyd-B model the 

recirculation zone has shrunk considerably. Because of a shear-thinning viscosity of 

blood which leads to the increase of the local viscosity in the low-shear regions.  

In Figure 4.3, the flow separation regions are initiated at the beginning of both aneurysm 

and blood flow patterns are symmetric along vessel axis. But in the case of permeable 

boundary conditions, the flow separation regions are created at the bottom section of first 

aneurysm but different in second aneurysm and the blood flow patterns are migrating 

towards upper vessel wall.  

 
The graphical presentation of velocity profiles is shown in Figure 4.12 for all four 

models at dimensionless number Wi = 0.6 and Pe = 1000 with absent of permeable, 

partial permeable and both permeable aneurysm. Form the Figure 4.12a, the minimum 

value of velocity is found in second enlargement regions and peak value is at outlet of 

both permeable aneurysm blood vessels. Due to permeability, the velocity has increased 

and provides highest velocity at generalized models. In the recirculation zone, the blood 

shear-thinning behavior is remarkable and local viscosity increases significantly. The 

viscoelastic effects may become more important for other cases. In Table 4.2, numerical 

value of velocity of partial permeable aneurysm obtained along blood vessel axis for all 

four models while Pe = 1000, Wi = 0.6 and q = 0.1 cm3/s is presented. 
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Table 4.2: Blood velocity is presented for partial permeable aneurysm along  vessel 

axis for all cases while Pe = 1000, Wi = 0.6 and q = 0.1 cm3/s. 

 
 Velocity (U) 

Along 
vessel axis 

Newtonian 
Model 

Generalized 
Newtonian Model 

Oldroyd-B 
Model 

Generalized Oldroyd-
B Model 

0 0.07219593 0.071947966 0.072666483 0.073896793 
1 0.072034546 0.072317805 0.072571894 0.073940868 
2 0.067408478 0.068766528 0.067882095 0.070420396 
3 0.054435704 0.057225749 0.054882349 0.059043454 
4 0.048987098 0.05208039 0.049244453 0.053982804 
5 0.057362406 0.059983122 0.057406782 0.062135892 
6 0.060962859 0.062899398 0.060963094 0.064755497 
7 0.060212369 0.061026684 0.060212788 0.061905042 
8 0.063881523 0.063957738 0.063878267 0.064483371 
9 0.069802714 0.069574757 0.069783652 0.070465528 
10 0.073008783 0.072444045 0.072996248 0.074037812 

 

Newtonian 

 

Generalized 
Newtonian 

 

Oldroyd-B 

 

Generalized  
Oldroyd-B 

 
Figure 4.3: Velocity contour line on blood flow through anuerysmatic (without 

permeable) blood vessel at Pe =1000 and Wi = 0.6 with q = 0.1 cm3/s. 
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Figure 4.4: Velocity contour line on blood flow through partial permeable anuerysmatic 

blood vessel at Pe=1000 and Wi = 0.6 with q = 0.1 cm3/s. 
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Generalized  
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Figure 4.5: Velocity distribution on blood flow through permeable anuerysmatic blood 

vessel at Pe=1000 and Wi = 0.6 with q = 0.1 cm3/s. 
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Figure 4.6: Steam lines on blood flow through anuerysmatic (without permeable) blood 

vessel at Pe=1000 and Wi = 0.6 with q = 0.1 cm3/s. 
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Figure 4.7: Blood flow with vectors through anuerysmatic (without permeable) blood 

vessel at Pe=1000 and Wi = 0.6 with q = 0.1 cm3/s. 
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Oldroyd-B 

 

Generalized  
Oldroyd-B 

 
Figure 4.8: Stream lines on blood flow through permeable anuerysmatic blood vessel at 

Pe=1000 and Wi = 0.6 with q = 0.1 cm3/s. 
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Figure 4.9: blood flow patterns with vectors through anuerysmatic (without permeable) 

blood vessel at Pe=1000 and Wi = 0.6 with q = 0.1 cm3/s. 
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Figure 4.10: Stream lines on blood flow through partial permeable anuerysmatic blood 

vessel at Pe=1000 and Wi = 0.6 with q = 0.1 cm3/s. 
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Figure 4.11: Blood flow patterns with vectors through permeable anuerysmatic blood 

vessel at Pe=1000 and Wi = 0.6 with q = 0.1 cm3/s. 

 
 

 
Figure: 4.12a 

 
Figure: 4.12b 

[m
s-1

]  
[m

s-1
]  

[m] 

[m] 



CHAPTER 4  BLOOD FLOW STUDY THROUGH… … … 
 

100 
 

 
Figure: 4.12c 

Figure 4.12: Velocity profile with no permeable (Figure: 4.12a), partial permeable 
(Figure: 4.12b) and both permeable (Figure: 4.12c) aneurysm along vesselwhen 
Pe=1000 and Wi = 0.6 with q = 0.1 cm3/s.  

4.4.2    Aneurysm blood vessel effects on pressure distribution 
The blood flow simulation of pressure circulation is present in terms of contour plot for 

all models in Figures 4.13-4.15 with absence and presence of permeability aneurysm. In 

Figure 4.13, the iso-pressure contours show how the pressure reached a minimum at the 

separation point and decreased monotonously along aneurysm. The pressure has peaked 

at the reattachment point, which constituted a stagnation point, and fell sharply at the 

beginning of first aneurysm. Due to presence of permeability, the pressure has decreased 

rapidly and gained minimum value at outlet in Figure 4.14. The flow separation points 

and stagnation point has migrated towards upper blood vessel wall. The patterns of 

pressure distribution have a magnificent changed along aneurysm for porosity of vessel 

wall and pressure contour lines converted steep to slant gradually at second aneurysm. 

The pressure gradient is very intensive at the end of second aneurysm and has a 

substantial changed throughout the blood vessel. The pressure distribution results 

indicate that twice aneurysm is formed, the blood flow have increased the blood pressure 

at dilating area.  The significant changes occur in blood pressure at first dilating 

(aneurysm) because of penetrable vessel wall. At generalized Oldroyd-B model, the 

pressure is more dominated compare to others due to the shear-thinning behavior of 

blood viscosity.  
 
The numerical graph of pressure profiles is shown in Figure 4.16 for all four models at 

dimensionless number Wi = 0.6 and Pe = 1000. At Figure 4.16, the minimum pressure is 

[m
s-1

]  

[m] 
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originated after second dilating for all models and the lowest value is found at Oldroyd-B 

model due to porosity which leads to non-Newtonian fluid flow is faster than Newtonian 

fluid. In Table 4.3, the numerical value of pressure of partial permeable aneurysm 

obtained along blood vessel axis for all four models while Pe = 1000, Wi = 0.6 and q= 

0.1 cm3/s are presented.  

 
Table 4.3: Pressure values of partial permeable aneurysm are inserted along blood 

vessel axis for all four models while Pe = 1000, Wi = 0.6 and q= 0.1 cm3/s. 

  Pressure (P) 
Along 

vessel axis 
Newtonian 

Model 
Generalized 

Newtonian Model 
Oldroyd-B 

Model 
Generalized 

Oldroyd-B Model 
0 0.990206222 0.992790641 0.998823145 0.998325827 
1 0.831946358 0.719133323 0.799768498 0.654964065 
2 0.698421401 0.523341697 0.663150523 0.404624475 
3 0.705252861 0.525934623 0.672721642 0.401161015 
4 0.475433218 0.277996342 0.443540628 0.144958716 
5 -0.124029503 -0.371917792 -0.151624087 -0.563501083 
6 -0.321290012 -0.598710361 -0.348799865 -0.822656053 
7 -0.238563933 -0.526592766 -0.266772408 -0.75798542 
8 -0.438662504 -0.80084777 -0.46613986 -1.090741714 
9 -0.880410311 -1.335971676 -0.90656169 -1.718021646 
10 -1.227242454 -10.13914344 -8.994475968 -12.51618949 
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Oldroyd-B 

 

Generalized  
Oldroyd-B 

 
Figure 4.13: Pressure distribution on blood flow through anuerysmatic(without 

permeable) blood vessel at Pe=1000 and Wi = 0.6  with q = 0.1 cm3/s. 

Newtonian 

 

Generalized 
Newtonian 

 

Oldroyd-B 

 

Generalized  
Oldroyd-B 

 
 

Figure 4.14: Pressure distribution on blood flow through partial permeable anuerysmatic 

blood vessel at Pe=1000 and Wi = 0.6 with q = 0.1 cm3/s. 
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Newtonian 

 

Generalized 
Newtonian 

 

Oldroyd-B 

 

Generalized  
Oldroyd-B 

 
 

Figure 4.15: Pressure distribution on blood flow through permeable anuerysmatic blood 

vessel at Pe=100 and Wi = 0.6  with q = 0.1 cm3/s. 
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Figure 4.16: Pressure profile with no permeable (top), partial permeable (middle) 
and both permeable (bottom) aneurysmalong vesselwhen Pe =1000 and Wi =0.6. 

4.4.3    Effects of dimensionless number 

Peclet Numbers (Pe) Effects 

The laminar blood flow patterns have obtained at Peclet numbers, Pe = 1000 and 2000 

which is based on the diameter, length of the model and the average velocity at inlet 

computed from the corresponding flow rates of 0.13 L/min, and 0.25 L/min. For the flow 

rate 0.4 L/min., the Peclet number, Pe = 3000 which is indicative of turbulent blood 

flow. 
  
The permanent recirculation zones are created between the dilated regions near the upper 

blood vessel wall for all models. For the laminar cases, the maximum core flow velocity 

through the aneurysm essentially remained the same as that of the entrance of the cavity 

in Figures 4.17 – 4.20. Therefore, the main hemodynamic mechanism for thrombus 
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formation in the aneurysm is the slowly recirculation vortex. For the turbulent case in 

Figures 4.17-4.20, the maximum core flow velocity through the aneurysm (average 

velocity) has 6 percent slower than that of the upstream. The difference between laminar 

and turbulent cases stems from the fact that the recirculation zone has shrunk 

significantly for the turbulent case, leaving more space for the core flow to expand and 

slow down. It is observed that the recirculation bubbles have migrated approximately 45, 

55 and 70 percent at Pe =1000, 2000 and 3000 respectively from the vessel axis for all 

models. The reverse blood flow and blood back flow is formed at the second 

enlargement with the adjacent to vessel wall for higher peclet number.    
 
It is very important findings that the turbulent velocities are reduced due to permeability 

aneurysm which leads to blood flow stability for all four models at Figure 4.21. The 

velocity has decreased 26, 46 and 62 percent for Pe = 1000, 2000 and 3000 at Newtonina 

case compare to impermeable aneurysm artery. In the case of Oldroyd-B, with the 

increase of Pe (1000, 2000 & 3000) the blood flow has reduced 26, 42 and 56 percent 

respectively at leaky aneurysm. From these figures, the maximum velocity deviation 

between upstream to downstream is 32 percents for Oldroyd-B case and minimum 

difference is 26.9 percent for Genelized Oldroyd-B case. In Figure 4.21, the least and 

most distinction of velocity between laminar and turbulent blood flow is 23 and 42.5 

percent for generalized Oldroyd-B and Newtonian model respectively. In Table 4.4, the 

velocities deviation obtained for different Peclet numbers while Pe = 1000, 2000 and 

3000 is presented. 
 
Table 4.4: Velocity deviation are included for various Peclet numbers while Pe = 

1000, 2000 and 3000. 
 

Models 

 Velocity (U) 
Pe = 3000 Difference between Laminar and Turbulent 

flow 
Up stream 

(inlet) 
Down stream 

(1st Anuerysm) 
Deviation 

(Percentage) 
Pe=1000 
(Laminar) 

Pe=3000 
(Turbulent) 

Deviation 
(Percentage) 

N 0.0721959 0.048987098 32.1470095 
 0.0489870 0.02810394 42.6298973 

 

GN 0.0723178 0.05208039 27.9840015 
 0.0520803 0.03524744 32.3210743 

 

OD 0.0726664 0.049244453 32.2322318 
 0.0492444 0.03068620 37.6859591 

 

GD 0.0739408 0.053982804 26.9919256 
 0.0539828 0.04105782 23.9427791 
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The pressure contour plots are shown in Figures 4.22 through 4.25 (odd numbers) for 

various Peclet numbers (Pe=1000, 2000 & 3000). At the entrance of the aneurysm cavity 

the pressure gained maximum value at the reattachment point and which constituted a 

stagnation point.  The iso-pressure contour lines are indicative the minimum value of 

pressure at the end of second aneurysm and form a separation point. With the increase 

Peclet number the pressure contour lines are migrating to upper vessel wall and show the 

extreme value at reattachment point. Muraki (1983) observed that aneurysm rupture 

typically occurs at the bulge area and the pressure peak the highest value at the 

reattachment point. 
  
In Figure 4.26, A dramatic change have occurred for blood pressure at Newtonian model 

Peclet number, Pe=3000 and pressure is intensified. The pressure has decreased along 

with vessel axis and highest pressure are found at turbulent blood flow (Pe = 3000) for 

Newtonian and generalized Newtonian models.  But in the case of Oldroyd-B and 

generalized Oldroyd-B, a slight different are seen in pressure between laminar 

(Pe=1000) and turbulent (Pe=3000) blood flow due to permeability aneurysm. For blood 

shear-thinning behavior, the pressure is reverse after first aneurysm that is the lowest 

value are found at Pe = 3000 for generalized Oldroyd-B case. The pressure has dropped 

35, 48 and 7 percent for different Peclet number (Pe= 1000, 2000 and 3000) at 

Newtonian case compare to impermeable aneurysm artery where maximum and 

minimum pressure throw down is 48% and 7% at Pe=2000 and 3000 respectively. On the 

other hand, the blood pressure has felled 40, 60 and 57 percent respectively at leaky 

aneurysm for Pe = 1000, 2000 and 3000 respectively at Oldroyd-B model. The pressure 

variation has mentioned in the following Table 4.5 for all models.  
 
Table 4.5: Pressure variation at inlet and 1st aneurysm for different Pe with Wi = 

0.6 and q = 0.1 cm3/s. 

 
Models 

Pressure (P) 
Pe = 3000 Difference between Laminar and 

Turbulent flow 
Up stream 

(inlet) 
Down stream 

(1st Anuerysm) 
Deviation 

(Percentage) 
Pe=1000 
(Laminar) 

Pe=3000 
(Turbulent) 

Deviation 
(Percentage) 

N 0.95847779 1.543063817 60.9910860 0.7052528 1.5430638 118.795825 
GN 0.96214671 1.060316066 10.2031578 0.5259346 1.0603160 101.606058 
OD 1.00532439 0.960631919 4.44557714 0.6727216 0.9606319 42.7978318 
GD 1.00154300 0.617309048 38.3641995 0.4011610 0.6173090 53.8806175 
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Pe - 2000 

 
 

 

Pe - 3000 

 
 

 
Figure 4.17:  Peclet Numbers (Pe) effects  on Blood flow of Newtonian Model at Wi = 0.6 

and flow rate 0.1 cm3/s. 
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Figure 4.18: Peclet Numbers (Pe)effects  on Blood flow of Generalized Newtonian Model 
at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Figure 4.19: Peclet Numbers (Pe) effects  on Blood flow of Oldroyd-B Model at Wi = 0.6 
and flow rate 0.1 cm3/s. 
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Figure 4.20: Peclet Numbers (Pe) effects  on Blood flow of Generalized Oldroyd-B Model 

at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Figure 4.21a      Figure 4.21b 

 
Figure 4.21c      Figure 4.21d 

 
Figure 4.21e      Figure 4.21f 

Figure 4.21: Velocity profile of Peclet numbers (Pe) on Blood flow at Wi = 0.6 and 

flow rate 0.1 cm3/s for(Figure 4.21a) Newtonian Model, (Figure 4.21b) Generalized 

Newtonian Model, (Figure 4.21c) Oldroyd-B Model, (Figure 4.21d) Generalized 

Oldroyd-B Model (Figure 4.21e) Newtonian Model without permeability, and 

(Figure 4.21f) Generalized Oldroyd-B Model with impermeable aneurysm wall.  
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Figure 4.22: Peclet Numbers (Pe) effects on pressure distribution of Blood flow for 
Newtonian Model at Wi = 0.6 and flow rate 0.1 cm3/s.   
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Figure 4.23: Peclet Numbers (Pe) effects on pressure distribution of Blood flow for 
Generalized Newtonian Model at Wi = 0.6 and flow rate 0.1 cm3/s.    
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Figure 4.24: Peclet Numbers (Pe) effects on pressure distribution of Blood flow for 
Oldroyd-B Model at Wi = 0.6 and flow rate 0.1 cm3/s.    
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Figure 4.25: Peclet Numbers (Pe) effects  on pressure distribution of Blood flow for 
Generalized Oldroyd-B Model at Wi = 0.6 and flow rate 0.1 cm3/s.    
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Figure 4.26a      Figure  4.26b 

 
Figure 4.26c     Figure 4.26d 

 
Figure 4.26e     Figure 4.26f 

Figure 4.26: Pressure profile of Peclet numbers (Pe) on Blood flow at Wi = 0.6 and 

flow rate 0.1 cm3/s for (Figure 4.26a) Newtonian Model, (Figure 4.26b) Generalized 

Newtonian Model, (Figure 4.26c) Oldroyd-B Model, and  (Figure 4.26d) 

Generalized Oldroyd-B Model (4.26e) Newtonian Model without permeability, and 

(4.26f) Generalized Oldroyd-B Model with impermeable aneurysm wall. 

[P
a]

 

[P
a]

 

[P
a]

 

[P
a]

 

[P
a]

 

[P
a]

 

[m] [m] 

[m] [m] 

[m] [m] 



CHAPTER 4  BLOOD FLOW STUDY THROUGH… … … 
 

113 
 

Weissenberg Numbers (Wi) Effects  

Again, the simulation of blood flow is shown in Figures 4.27 through 4.30 for different 

Weissenberg numbers, Wi (0.0, 0.5, 1.0) in terms of velocity and pressure contour lines. 

The very small Wi (Wi = 0.0) corresponds to no elasticity and big Wi leads to pure elastic 

response fluid. As seen in the figures, the length of the recirculation bubble is strongly 

affected by the Weissenberg numbers, with small abridgment occurring as the 

Weissenberg numbers increases. The numbers of recirculation bubbles have increased 

with respect to Weissenberg numbers. The ellipse-like bubbles have originated at center 

of aneurysm it is shifting toward the upper vessel wall. Due to porosity, the velocity 

contours have developed a non-axisymmetric profile at entrance while it forms 

axisymmetric profile at exit of the cavity. We observe that velocity decreases at the 

permeable aneurysm and then increases with the increases of Wi. At Wi =1, the velocity 

is higher except inlet velocity because of less dominant viscous force and blood behave 

fluid-like bodies. Just behind the porous aneurysm the separation zone has formed at the 

adjacent to vessel wall.  In Figure 4.31d, the velocity profiles are almost same with 

various Wi for generalized Oldroyd-B case. We have gained minimum velocity at 

permeable aneurysm and maximum velocity at outlet is illustrated in Figure 4.31. It is 

shown from the Figures 4.31a and 4.31e that 26 to 32 percent velocity has decreased in 

the presence of porosity wall compare to nonporous aneurysmatic artery with the 

increases of Wi for Newtonian models.In the case of generalized Oldroyd-B model, the 

velocity variations are almost same which is approximately 16% for different 

Weissenberg numbers. The maximum and minimum velocity have inserted in the 

following table 4.6 along vessel axisfor different Weissenberg numbers while Wi = 0.0, 

0.5, 1.0. 

 
Table 4.6: Optimal value of velocity are added for various Wi when Pe= 1000 and 

flow rate, q = 0.1 cm3/s. 

Models Velocity (U) 
Maximum Minimum 

Wi=0.0 Wi=0.5 Wi=1.0 Wi=0.0 Wi=0.5 Wi=1.0 

N 0.07846123 0.07300878 0.07317073 0.04576681 0.04898709 0.04917550 
GN 0.07609075 0.07244404 0.07254959 0.05159760 0.05208039 0.05206627 
OD 0.07468072 0.07299625 0.07316210 0.04854258 0.04924445 0.04932107 
GD 0.07535079 0.07403781 0.0741205 0.0539636 0.05398280 0.05396784 
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Figure 4.27: Weissenberg Numbers (Wi) effects  on Blood flow of Newtonian Model at Re 

= 1000 and flow rate 0.1 cm3/s.   
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Figure 4.28: Weissenberg Numbers (Wi) effects  on velocity distribution of Blood flow for 

Generalized Newtonian Model at Re = 1000 and flow rate 0.1 cm3/s.    

 

 



CHAPTER 4  BLOOD FLOW STUDY THROUGH… … … 
 

115 
 

Wi – 0.0 

 
 

Wi -0.5 

 

 
 

 

Wi – 1.0 

 
 

Figure 4.29: Weissenberg Numbers (Wi) effects  on velocity distribution of Blood flow for 

Oldroyd-B Model at Re = 1000 and flow rate 0.1 cm3/s.    
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Figure 4.30: Weissenberg Numbers (Wi) effects on Velocity distribution of  Blood flow 
for Generalized Oldroyd-B Model at Pe = 1000 and flow rate 0.1 cm3/s.   
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Figure 4.31a     Figure 4.31b 

 
Figure 4.31c      Figure 4.31d 

 
Figure 4.31e      Figure 4.31f 

Figure 4.31: Velocity profile of the Effects of Weissenbug numbers (Wi) on Blood 
flow at Pe = 1000 and flow rate 0.1 cm3/s for (Figure 4.31a) Newtonian Model, 
(Figure 4.31b) Generalized Newtonian Model, (Figure 4.31c) Oldroyd-B Model, and  
(Figure 4.31d) Generalized Oldroyd-B Model (Figure 4.31e) Newtonian Model 
without permeability, and (Figure 4.31f) Generalized Oldroyd-B Model with 
impermeable aneurysm wall. 
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The simulation of pressure is shown in Figures 4.32 through 4.35 for different 

Weissenberg numbers, Wi (0.0, 0.5, 1.0) in terms of contour lines. The pressures are 

more intensified at the permeable aneurysm area compare to other area in the aneurysm 

cavity and provide greater value at the reattachment point. At the end of second 

enlargement the pressure contour plots are alike and its show how the pressure reached a 

minimum at the separation point and decreased monotonously along the aneurysm. The 

pressure patterns have a little changed in non-porous aneurysm with the increases of Wi. 

The shear-thinning characteristic of blood viscosity which leads the flow is faster in 

leaky aneurysm. 

  

The pressure decreases with the increases of Weissenberg number, Wi = 0.0 , 0.5 & 1.0 

and it is explained in Figure 4.36 graphically. From the Figure 4.36, the maximum 

pressure is found at Wi = 0.0 for Newtonian case and pressure profiles are almost similar 

at generalized Oldroyd-B model. In Figure 4.36, the numerical values of pressure 

distribution are presented for all the four models Newtonian, Generalized Newtonian, 

Oldroyd-B, Generalized Oldroyd-B with the flow rate, q =0.1 cm3/s. In Table 4.7, the 

pressure obtained along vessel axis for different Weissenberg numbers while Wi = 0.0, 

0.5 and 1.0 is presented. 

 
Table 4.7:  Minmax pressure are obtained along vessel axis for different 

Weissenberg numbers while Wi = 0.0, 0.5 and 1.0. 

 
Models Velocity (U) 

Maximum Minimum 
Wi=0.0 Wi=0.5 Wi=1.0 Wi=0.0 Wi=0.5 Wi=1.0 

N 1.13254511 0.99020622 0.99314531 -0.7092817 -1.22724245 -1.29422096 
GN 0.98168668 0.99279064 0.99573846 -1.5861485 -1.76730261 -1.80307929 
OD 0.99465079 0.99882315 1.00083803 -1.1473296 -1.25541537 -1.28516133 
GD 0.99418609 0.99832582 0.99955809 -2.1869402 -2.23774696 -2.25434182 
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Figure 4.32: Weissenberg Numbers (Wi) effects  on pressure distribution of Blood flow 

for Newtonian Model at Re = 1000 and flow rate 0.1 cm3/s. 
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Figure 4.33: Weissenberg Numbers (Wi) effects  on pressure distribution of Blood flow 

for Generalized Newtonian Model at Re = 1000 and flow rate 0.1 cm3/s. 
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Figure 4.34: Weissenberg Numbers (Wi) effects  on pressure distribution of Blood flow 

for Oldroyd-B Model at Re = 1000 and flow rate 0.1 cm3/s. 
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Figure 4.35: Weissenberg Numbers (Wi) effects  on pressure distribution of Blood flow for 

Generalized Oldroyd-B Model at Pe =1000 and flow rate 0.1 cm3/s. 
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Figure 4.36a     Figure 4.36b 

 
Figure 4.36c      Figure 4.36d 

 
Figure 4.36e      Figure 4.36f 

Figure 4.36: Pressure profile of the Effects of Weissenbegr numbers (Wi) on Blood 
flow at Pe =1000 and flow rate 0.1 cm3/s for (Figure 4.36a) Newtonian Model, 
(Figure 4.36b) Generalized Newtonian Model, (Figure 4.36c) Oldroyd-B Model, and  
(Figure 4.36d) Generalized Oldroyd-B Model (Figure 4.36e) Newtonian Model 
without permeability, and (Figure 4.36f) Generalized Oldroyd-B Model with 
impermeable aneurysm wall.  
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4.4.4   Stress tensor effects on blood flow  

Contours of extra stress components 11, 12 and 22 for Newtonian, Generalized 

Newtonian, Oldroyd-B, Generalized Oldroyd-B are shown in Figures 4.36-4.39. The 

stress components 11 and 22 on blood flow are oscillating along vessel axis for all 

models. The component 12 provides highest stress on blood flow at the beginning of 

permeable aneurysm and then decreases along vessel axis for all cases. In the case of 11 

and 22, the stress oscillations are opposite each other and big difference is found at 

commencement of permeable aneurysm. We observe that the stresses areadjacent at 

nonpermeable aneurysm and proximate at Newtonian and Oldroyd-B model. The stress 

tensor component 11 is fluctuating along the vessel axis and originateminimum value at 

the early of first aneurysm. On the other hand, the stress tensor component 12 provide 

higher value compare to other components along blood vessel axis and peak topmost at 

initial enlargement area for Newtonian model. From the figure 4.33, the topmost value 

leads the blood fluid particles exerted highest forces each other and minimum forces are 

applied at lowest value. For the blood viscoelasticity and shear thinning behavior, the 

blood particles have employed less force in generalized models compare to non-

generalized models. The influence of Weissenberg numbers is shown in Figure 4.38 with 

Pe =1000 and flow rate, q = 0.1cm3/sec at permeable aneurysm. With the increase of Wi, 

the blood fluid particles have applied more stress each other for Newtonian case but 

different behavior are found for 22. The lowest stress is originated at generalized 

Oldroyd-B case for stress components 11 and 12 because of intensified of elastic 

behavior with increasing Wi. The effect of 11, 12 and 22 on blood flow for various Pe 

are depicted in Figure 4.39. The stresses have increased with respect to Pe at 11 and 12 

but decreased at 22 for all models. The peak value of stress infers that the blood fluid 

particles have employed more forces each other and vice versa for lowest value. In the 

case of generalized models, the stress value is minimum and maximum values have 

produced at Newtonian case. In Table 4.8, the numerical value of stress tensor 

components along vessel axis at permeable aneurysmand impermeable aneurysm while q 

=0.1cm3/s,  Pe = 1000 and Wi = 0.6 are presented.  
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Table 4.8: Numerical value of stress components along vessel axis at permeable 

aneurysm and impermeable aneurysm while q =0.1cm3/s,  Pe = 1000 and Wi = 0.6. 

 
Models Stress tensor components 

First aneurysm (permeable) Second aneurysm (Impermeable) 

11 12 22 11 12 22 
N 0.010381439 0.053788133 -0.00826444 0.003558385 0.049829594 -0.00178346 

GN 0.008899055 0.046426186 -0.00731837 -0.000148 0.03810832 0.0011851 
OD 0.009623097 0.053839372 -0.00750608 0.003541684 0.049683179 -0.00177912 
GD 0.008903874 0.042776382 -0.00755166 -0.00294549 0.032432659 0.003709123 

 

 
Figure 4.37a     Figure 4.37b 

 
Figure 4.37c     Figure 4.37d 

Figure 4.37: Stress tensor profile on Blood flow at Wi= 0.6, Pe =1000 and flow rate 

0.1 cm3/s for (Figure 4.37a) Newtonian Model, (Figure 4.37b) Generalized 

Newtonian Model, (Figure 4.37c) Oldroyd-B Model, and  (Figure 4.37d) 

Generalized Oldroyd-B Model. 
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Figure 4.38: The components of 11 (top), 12 (middle) and 22 (bottom) with Pe= 

1000 and different Wi for all models at permeable aneurysm. 
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Figure 4.39: The components of 11 (top), 12 (middle) and 22 (bottom) with Wi=0.5 

and different Pe for all models at permeable aneurysm. 
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4.4.5   Wall shear stress effects on blood flow 

The wall shear stress effects on blood flow is an important factor to identify the fatal 

cardiovascular diseases in the arteries. The impact of wall shear stress on blood flow 

have been shown in Figures 4.40-4.41 for models Newtonian, Generalized Newtonian, 

Oldroyd-B, Generalized  Oldroyd-B with impermeable and permeable aneurysm at the 

flow rate q = 0.1 cm3/s. It represents  the tangential component of the surface force at the 

vessel wall, acting against the fluid flow and a vital parameter in blood flow simulation. 

In Figure 4.40, The wall shear stress profiles of bottom wall are shown at Pe = 1000 and 

Wi = 0.6 for impermeable model. The profiles have displayed oscillations of wall shear 

stress at bottom wall for all models. The maximum value are found at the begining of 

impearmeable aneurysm and minimum value is in dialation zones. It speeds up 

dramatically at the genesis of aneurysm and suddenly fall down and provides negative 

values in enlargement area for all models. These negative values are indicative of 

reversal blood flow region in the aneurysm zones. From Figure 4.41, the lowest value is 

found in the commencement of  permeable aneurysm in the case of Oldroyd-B fluid. We 

observe that the wall shear stress for generalized Oldroyd-B model is marginally higher 

than the others model for the presence of  porous dialation.  

 
The comparable graphical study of impermeable and permeable aneurysm for the wall 

shear stress are shown in Figure 4.40 and 4.41 with various Wi = 0.0, 0.5 and 1.0. At Wi 

= 1.0, the wall shear stress is dominated in the case of impermeable aneurysm because of 

viscous effect on flood flow. The influence of porosity aneurysm the wall shear stress is 

lower at Wi=1.0 in Newtonian case. From the Figure 4.41, it is clear that the wall shear 

stresses have a significant change due to permeability.  
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Figure 4.40: Wall shear stress effects on bottom wall of  impermeable aneurysm for all 
cases with different Wi at  Pe=1000 and q = 0.1 cm3/s. 
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Figure 4.41: Wall shear stress effects on bottom wall of  partial permeable aneurysm for all 
cases with different Wi at  Pe=1000 and q = 0.1 cm3/s. 
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4.5 Chapter Conclusion 

The finite element method is used to simulate the blood flow through permeable 

aneurysm artery.  The Newtonian model, generalized Newtonian model, Oldroyd-B 

models and generalized Oldroyd-B models for non-Newtonian fluid blood viscosity. The 

numerical study of all cases (Newtonian and Oldroyd-B models, and their generalized 

models) have been considered to the blood flow through permeable aneurysm in steady 

flow simulations. We inferred that the outcomes of blood flow characteristics, wall shear 

stress and stress tensor components are correlated to blood viscoelasticity and more 

significant. The blood flow variables are foremost and decreased for all models along 

vessel axis at permeable aneurysm.  The porosity aneurysm and blood viscosity are main 

factors for the Newtonian and Non-Newtonian solution. At the present problems, the 

numerical method is used to solve the governing equations seems to be sufficiently 

strong and effective for the appropriate resolution. 

  
The finite element equations derived from the governing blood flow equations that 

consist of the continuity equation (conservation of mass), momentum equation, and 

viscoelastic (Oldroyd-B) equation. An iterative technique solver is required to derive the 

finite element equations. To solve these nonlinear equations, the Newton-Raphson 

iteration method is used for solutions of the nodal velocity component, tensor 

component, and pressure by considering Weissenberg numbers of 0.0, 0.5 and 1.00 and 

Pectel numbers of 103 to 3103. 

The outcomes demonstrate the following features: 

 

  The blood flow characteristics have significant change at permeable anuerysm for 

all four cases.  

 
 To determine the fatal arterial diseases, the effect of the blood flow on the wall 

shear stress is an important factor.   

 
 

 The minimum value of blood velocity and maximum value of pressure are found at 

porous aneurysm. But in impermeable aneurysm, the lowest velocity are found at 

second aneurysm for all cases.    
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 The dimensionless numbers (Pe and Wi) effect are more striking at porous region 

and blood flow variables have a dramatic  change. The pressure distribution have 

increased with increases of Pe at permeable aneurysm but pressure pattens have 

decreased with increases of Wi for generalized Oldroyd-B cases.  

 
 It is very important findings that the turbulent velocity is reduced due to presence of 

permeability at aneurysm.   

 
 

 Elliptic types of recirculation zone are originated between the aneurysm regions for 

all four models and non-axisymmetric profiles are found at entrance.  
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CHAPTER 5 
NUMERICAL INVESTIGATION OF BLOOD FLOW 
THROUGH STENOTIC AND ANEURYSMATIC ARTERY 
HAVING BLOOD CLOT 
 

 

The blood circulation may be poor in humen body due to build up of blood clot, external 

force, external pressure, injury of blood artery, overgrowth of bone, tumor, hypertension, 

weaken of blood artery, medical surgery, inactive cells, genetic conditions, any kind of 

trauma are main reasons. The development of stenosis and aneurysm in artery are the 

main cause of cardiovascular disease arteriosclerosis which leads to serious circulatory 

disorders. Taylor and Yamaguchi (1994) have discussed the blood flow simulation through 

abdominal aortic aneurysm for unsteady flow in three dimensions. Menche (2012) and 

Pschyrembel (2014) have repoted that the blood vessels are in network form of aorta and 

capillaries. Using Bingham fluid model, the effects of stenosis and dilatations of the 

coronary arteries with various combinations on the resistance impedance have explained 

by Pincombe et al. (1995).  

 
In this chapter the major goal is to be study a numerical investigation of blood flow 

through stenotic and aneurysmatic artery for incompressible Newtonian and non-

Newtonian fluids having blood clot. The parabolic velocity profile and stress tensor is 

considered at inlet and pressure is kept constant at outlet. The stenosed vessel wall is 

cooled and the upper surface of blood clot is heated and while no-slip velocity conditions 

are applicable for all walls. A set of partial differential equations for continuity, 

momentum, Oldroyd-B and bioheat transport have been considered and derived 

dimensionless equations using appropriate scale with boundary conditions. The aim of 

this problem is to present the influence of blood clot on blood flow in a blood vessel 

artery for all cases. The numerical solution is obtained using a finite element method for 

all models. The effects of dimensionless numbers, flow variables, drag coefficient and 

wall shear stress on blood flow have been examined. At low shear region, the 

recirculation bubbles have increased with the increase in dimensionless numbers Re and 

Wi. The computational results also indicate that the hemodynamical factors of blood 

flow depend on the various parameters.  
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This chapter is consists of following items. Section 5.1 provides the problem formulation 

of our present work. Mathematical equations with appropriate boundary condtion are in 

cited in section 5.2. Numerical analysis of computation have discussed in section 5.3 

along with grid sensitivity test. In section 5.4, simulation and graphical result are 

presented. At last, section 5.5 gives a summary of this chapter. 

  

5.1    Problem Formulation 
The treated stenotic and aneurysmatic model is a two-dimensional cavity with  stenosed 

and aneurysm vessel wall. The physical system considered in the present study is 

displayed in Fig. 5.1. The model is assumed with stenosed and aneurysm hight hs and ha 

respectively where hs=R(3.1mm) and ha=3R.  The top and bottom stenosed vessel walls 

are cool (Tc) and heated (Th)  while the rest of the walls are adiabatic and impermeable. 

The velocity profile is prescribed at entrance and pressure is fixed to constant at outlet. 

No slip conditions are used for velocity and pressure on the vessel walls. The blood flow 

acceleration is expected for stenotic and aneurysmatic cross-sectional area.  

 

Figure 5.1: Structure of the computational domain 

5.2    Mathematical Model 
The Standard Mathematical equation of the above problem are exposed as follows   

5.2.1  Dimensionless eoverning equations 
The functioning fluid is assumed to be laminar blood flow and incompressible with 

shear-thinning and viscoelasticity properties. The generalized Oldroyd-B model is used 

to capturenon-Newtonian properties of the blood flow. The leading differential equations 

are as follows:  

Continuity Equation  

0u .   (5.1) 

U

v 

10R 

P
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2R R 3R 
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2R 3R 2R 3R 
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Momentum Equations  

fσuuuu ρ.Δμp).ρ(
t

ρ n 


  (5.2) 

Oldroyd-B Constitutive Equation: 

][λ)2μ]).(
t

[λ xvx σVVσσVVσV(uσuσσ // 



    (5.3) 

Bio-heat Equation 

-T)(TwcρqTK)T].(
t
T[cρ bbbb

2
p 



 u      (5.4) 

Here u is the velocity vector, u= (u1, u2, u3)T,   is the constant density,  is the extra 

stress tensor,  is dynamic viscosity, x denote the relaxation, the symmetric part of the 

velocity gradient, )(
2
1 TuuV  i.e. =2V, b is the blood density, Tb is arterial 

blood temperature, wb is blood perfusion rate, cb is specific heat capacity of blood, cp is 

tussue specific heat and q heat source due to metabolic activity.  

To non-dimensionalized the above equations we incorporating the dimensionless 

variables given below: 

x=LX ,  y=LY , t = Lt*/U ,  u = UUo,  v = VUo p = UP/L ,   

= U*/L , f = f*U/L2,   =*/L,  Wi = xU/L,  Re= UL/,   

Pr = cp /k,   =k(T-Tc)/q0L2,  q = Qq0,  wb = fk / cbL2. 

 
Where, the dimensionless quantities X and Y are the coordinates varying along horizontal 

and vertical dirctions respectively. U and V are the velocity components along the X and 

Y axes respectively, P is the pressure, L is the charactertise length, * stess tensor, Q is 

heat source, f  is perfusion coefficient, and Weissenberg number (Wi),  Reynold number 

(Re), Prandtl number (Pr) are dimensionless numbers.  

For two dimensional anuerysmatic vessel in domain , the non-dimensional 

governingequations are as follows:   

Continuity Equation  

0U.            (5.5) 

Momentum Equations  

fσUUU  .λ)Δ(1P]) .[(Re                 (5.6) 
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fσVVV  .λ)Δ(1P]).[(Re      (5.7) 

Oldroyd-B constitutive equation:    

])( )[(W)V(2μ] ).([W t
ivi UσσUUσσU                (5.8) 

Bio-heat Equation: 

θQ-ρθθ).(PrRe f
2 u        (5.9) 

5.2.2  Boundary conditions 

The boundary conditions for the present problem are specified as follows: 

 (i) At inlet: 

The poiseuille (parabolic) velocity  profile and the corresponding extra stresses 

components are 

u=1.5 Ui (1-y2), v = 0 

2
v )

y
(Wi2μ





u
σ 11  

y
μv






u
σ 12

,22 = 0  

Where  y is along the inlet boundary, and Ui is the average fluid velocity at the inlet.  

(ii) At outlet: 

At outlet homogeneous Neumann conditions for the velocity components and a 

constant pressure are prescribed. 

(iii) At boundary wall: 

a. On the vessel walls no-slip homogeneous Dirichlet conditions are prescriber for 

velocity field. In the case of the Oldroyd-B and generalized Oldroyd-B models, 

homogeneous Neumann conditions are imposed for the components of the extra stress 

tensor at all boundaries.  

b. Homogenous Neumann boundary conditions are used for the pressure. 

(iv) At stenosed vessel walls: The top and bottom walls are cooled and heated 

respectively.The rest of the walls of the present model are adiabatic. 

5.3    Numerical Technique 
 
The discretized momentum and Oldroyd-B equations subjected to the boundary 

conditions simultaneously will be solved using the MATLAB programming & 
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Mathematical programming package COMSOLMULTIPHYSICS for the dependent 

variables (velocity, pressure and stress tensor).The numerical procedure to be used in this 

work is based on the Galerkin weighted residual method of finite element formulation.  

5.3.1    Computational procedure 
By using the Galerkin weighted residual finite element method, the mass conservation, 

momentum, viscoelasticity and bio-heat equations have been solved that are the 

combinations of mixed elliptic-parabolic system of partial differential equations. More 

details of numerical technique are in appendix B for shortness.  

5. 3.2   Grid sensitivity test 
A grid freedom test is reported with Wi = 0.5, Re = 1000, and flow rate q = 0.1cm3/s to 

decide the appropriate grid size for this study. Figure 5.2 shows the convergence of the 

velocity with refinement for generalized Newtonian model. 

 
Figure 5.2: Convergence of average velocity with grid refinement for Re = 

103, and Wi = 0.6 with blood flow rate 0.1 cm3/s 

 

The following six kinds of meshes are consider for the investigation of grid sensitivity. 

These grid densities are 1846 nodes, 3050 elements; 5638 nodes, 9642 elements; 7276 

nodes, 12918 elements; 8489 nodes, 15342 elements; 14079 nodes, 25009 elements, 

17976 nodes, 32803 elements.The extreme values of the average velocity of the blood 

flow are used as sensitivity measures of the correctness of the solution. The current 

formulation is performed with 14079 nodes and 25009 elements grid system by 

considering both the accuracy of numerical computation. 
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Table 5.1: Grid Sensitivity Check at Wi = 0.5, Re = 1000 and q= 0.1 cm3/s 

 
Nodes 

(elements) 
1846 

(3050) 

5638 

(9642) 

7276 

(12918) 

8489 

(15342) 

14079 

(25009) 

17976 

(32803) 

U 0.13623268 0.13603243 0.13596163 0.13596162 0.13596162 0.13596162 

Time (s) 46 308 558 193 354 782 

 
5.4    Results and Discussion 

The characteristics of the blood flow and pressure distribution in the stenotic and 

aneurysmatic artery are examined by exploring the effects Weissenberg numbers (Wi), 

Reynold numbers (Re), stress tensor components, drag coefficient, wall shear stress and 

permeable aneurysm. The blood fluid variables are analyzed by outlaying the steady state 

version of the velocity contour plots, pressure distribution and average temperature.  In 

the present numerical study, the following thermal properties and tissue are considered 

by Shih et al. (2007):  0  Wi 1,0 < Re   3000, 0 = 0.16 Pa.s, n = 0.0036 Pa.s, a = 

1.23,b = 0.64,  = 8.2s, =1050 kg.m-3,Tb= 370c,Cb=3770(J/Kg.k),Wb= 0.5(Kg/sec.m3), 

K= 0.5(J/s.m.k), Pf = 400, Lw = 2R, L= 0.03m, R= 3.1mm, hs= R and  ha = 3R. 

 
It is very important investigation to findout the effects of Reynold numbers, Weissenberg 

number, wall shear stress, stenotic and aneurysmatic artery, and drag coefficient at 

stenosed wall on blood flow for the various models Newtonian (N), generalized 

Newtonian (GN), Oldroyd-B (OD) and generalized Oldroyd-B (GD). The comparative 

study of blood flow simulation is shown in Figures 5.3 - 5.8 with the presence and 

absence of blood clot at the present model in terms of velocity, pressure contour, stream 

lines with vectors for all cases. The blood flow characteristics have a significant changed 

at the throat of stenosis. For the variations of Re and Wi, the overall features of the blood 

flow are depicted in Figures 5.12 -5.32. These figuers also provides the graphical 

illustration of the velocity, pressure, wall shear stress and drag coefficient of blood flow.    

5.4.1    Stenotic and aneurysmatic effects on blood flow 

The blood flow simulation is shown in Figures 5.3, 5.5 and 5.7 with the presence of 

blood clot at bottom stenosed wall through velocity contour plots, pressue contour lines, 

stream lines with vectors for all models. In Figure 5.3, the indelible recirculation zones 
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are originated at the constriction region of the stenotic and aneurysmatic artery for all 

cases. The shapes of recirculation zoens are oval-like and it has reduced at generalized 

Oldroyd-B model. This recirculation zones are indicative of iso-blood flow at stenotic 

artery. The blood shear-thinning properties are important reason to form the recirculation 

zone and dominate the low-shear area of stenotic and anuerysmatic artery.  At aneurysm, 

the velocity contour lines are almost alike for Newtonian and Oldroyd-B models but little 

dissimilarity are found at the rest of models. In the absence of blood clot, the blood flow 

simulation is presented in Figure 5.4 for mentioned models where the recirculation zones 

are found at the throat of stenosis. These recirculation zones are symbolic of regions over 

a significant portion of each model where the flow is moving with same values. The 

recirculated area is comparable bigger at blood cloted model than non-blood cloted 

model for all cases.The shape of recirculation zone is another significant influence of 

blood clot among the models. At aneurysm, the reversal flow regions and flow separation 

are found with respect to vessel axis in Figures 5.5 but greater flow separation regions 

are created in non-blood cloted model. 

Figure 5.9 provides the corresponding effects on blood velocity numerically at the being 

and absence of blood clot for all models where Re= 1000 and Wi=0.5. It is observed that 

the velocity profile almost opposite for the blood clot model and non-blood clot model. 

The maximum blood velocity is found at the throat of stenosis for non-blood clot model 

and the lowest value is in blood clot model. For the existence of blood clot, the blood 

velocity is comparable lower to another model which leads local viscosity increases 

significantly. Numerical value of velocity of blood clot and non-blood clot models is 

presented in Table 5.2 for all four models along blood vessel axis when Re = 1000, Wi= 

0.5 and q = 0.1 cm3/s.  

Table 5.2: Numerical value of velocity for all four models along blood vessel axis 

when Re = 1000, Wi = 0.5 and q = 0.1 cm3/s. 
 

 
Models 

 Velocity (U) 
Blood clot Model Non-blood clot model 

Stenosis Aneurysm Stenosis Aneurysm 
Newtonian Model 0.048039528 0.043678407 0.135949907 0.094392773 

Generalized 
Newtonian Model 

0.05124471 0.046487735 0.125501881 0.080989077 

Oldroyd-B 
Model 

0.048328235 0.043668155 0.135936884 0.094290511 

Generalized 
Oldroyd-B Model 

0.053240661 
 

0.049115308 
 

0.137238422 
 

0.0779935 
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Oldroyd-B 

 
Figure 5.3: Velocity contour line on blood flow through stenosed and anuerysmatic vessel 

with blood clot at Re=1000 and Wi = 0.6 
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Figure 5.4: Velocity contour line on blood flow through stenosed and anuerysmatic vessel 

without blood clot at Re=1000 and Wi = 0.6 
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Figure 5.5: Velocity contour line on blood flow through stenosed and anuerysmatic vessel 

with blood clot at Re=1000 and Wi = 0.6 
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Figure 5.6: Velocity contour line on blood flow through stenosed and anuerysmatic vessel 

without blood clot at Re=1000 and Wi = 0.6 
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Figure 5.7: Velocity contour line on blood flow through stenosed and anuerysmatic vessel 

with blood clot at Re=1000 and Wi = 0.6 
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Figure 5.8: Velocity contour line on blood flow through stenosed and anuerysmatic vessel 

without blood clot at Re=1000 and Wi = 0.6 
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Figure 5.9: Comparison of Velocity profile with blood clot (left) and without blood 
clot (right) 

5.4.2    Stenotic and aneurysmatic effects on pressure distribution 

The pressure distribution of blood flow is exhibited for all cases in Figures 5.10 and 5.11 

having blood clot and without blood clot. In Figure 5.10, the steep contour plots display 

the pressure gained a minimum value at the separation point and decline gradually along 

vessel axis. Due to clump of blood, the pressure peaked at reattachment point at stenosis 

region and the pressure gradient is high for all events. The pressure gradient has changed 

slowly and dense at clotted area. In the case of generalized Oldroyd-B model, the 

pressure contour lines become more compact and make distort curve withing clotted area 

because of shear-thinning properties of blood. The different pressure contour plots of 

blood flow are found in Figure 5.11 (without clotting) for all situations. The parabolic 

profile has developed at the throat of stenosis and separation points are originated which 

leads how the pressure reached a minimum point. The main difference is visible between 

two models at constriction area for all models. The pressure is more dominated at 

stenosis regions compare to blood clot model because of blood viscosity. In Figure 5.11, 

The pressure patterns are almost alike for all models and show the similarities at the far 

of stenosis, but various pressure contour plots are produce at blood clotted models. From 

the Figure 5.12, the blood pressure has decreased gradually in the presence of blood clot 

and have dramatical changed for non-blood clotting case. In the absence of blood clot, 

the pressure has gained the lowest value at the throat of stenosis and increased after 

stenosis. The Newtonian fluid is faster than non-Newtonian fluid for both cases which 

leads to minimum value at generalized Oldroyd-B model.  The numerical value of 

[m] [m] 

[m
s-1

]  

[m
s-1

]  
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pressure of blood clot and non-blood clot models is inserted in Table 5.3 for all four 

models along blood vessel axis when Re = 1000, Wi= 0.5 and q=0.1 cm3/s.  
 

Table 5.3: Numerical value of pressure for blood clotted and non-blood clotted 

models is inserted when Re = 1000, Wi = 0.5 and q = 0.1 cm3/s. 
 

 
Models 

Pressure (P) 
Blood clot Model Non-blood clot model 

Stenosis Aneurysm Stenosis Aneurysm 
Newtonian Model 0.448706443 -0.618620928 -7.05419599 -4.96725825 

Generalized Newtonian 
Model 

0.251788761 
 

-0.889645999 
 

-6.260098627 
 

-4.36123117 
 

Oldroyd-B 
Model 

0.416478804 
 

-0.644510712 
 

-6.947428004 
 

-4.84829253 
 

Generalized Oldroyd-B 
Model 

0.119392855 
 

-1.115787143 
 

-8.58277051 
 

-6.20055391 
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Newtonian 

 

Oldroyd-B 

 

Generalized  
Oldroyd-B 

 
 

Figure 5.10: Pressure distribution on blood flow through stenosed and anuerysmatic 
vessel with blood clot at Re=1000 and Wi = 0.6 
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Figure 5.11: Pressure distribution on blood flow through stenosed and anuerysmatic 

vessel without blood clot at Re=1000 and Wi = 0.6 
 

 
 

Figure 5.12: Comparison of pressure profile with blood clot (left) and without blood 
clot (right) 
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5.4.3    Effects of dimensionless number 

Reynold numbers (Re) effects 

The various Reynold numbers (0 < Re  3000) effects on blood flow are shown in 

Figures 5.13 through 5.16 having blood clot for all models. The different Re is computed 

on the based on the blood density, blood viscosity, length of the model and various 

velocity at inlet. The recirculation zones are produced at the near of blood clot region for 

all events. The recirculation shape of blood flow has changed from oval to elliptic with 

the increases of Re at stenosis for all models. At Re=1000, the blood flow patterns have 

remained same at the inlet and outlet but size of recirculation zone is tiny at generalized 

Oldroyd-B models. At Re=2000, the flow separation area is comparable bigger to 

laminar blood flow (Re=1000) at aneurysm and recirculation zone have increased for all 

four models. At the turbulent blood flow (Re=3000), the blood flow velocity has changed 

gradually after blood lump at stenosis as a result the recirculation zones become long 

elliptic shape. The recirculation zones have expanded for turbulent case and occupy more 

space for the core blood flow and grow up swiftly at the throat of stenosis. But in the 

case of laminar blood flow, the blood velocity is higher compare to another Re numbers 

at the constriction area as a result the mini recirculation zones are developed and blood 

flow go down slow which is indicated by iso-velocity contour lines. Due to lump of 

blood, the turbulent flow of blood has reduced at stenosis which leads to blood flow 

stability for all cases. The graphical presentation of blood velocity is shown in Figure 

5.17 for all models. The blood velocity has a significant changed and it gains maximum 

value at blood clotted regions and peak minimum value at the end of aneurysm of the 

vessel for Newtonian case. The lowest velocity is found at generalized Oldroyd-B model 

due to blood viscosity. In Table 5.4, the velocities obtained for different Reynold 

numbers while Re = 1000, 2000 and 3000 are presented. 

Table 5.4:  Velocities are obtained for different Reynold numbers, Re = 1000, 2000 

and 3000 when Wi = 0.6 and q= 0.1 cm3/s. 

Models 

Velocity (U) 
Re = 1000 Re = 2000 Re = 3000 

Upstream 
(Stenosis) 

Downstream 
(Aneurysm) 

Upstream 
(Stenosis) 

Downstream 
(Aneurysm) 

Upstream 
(Stenosis) 

Downstream 
(Aneurysm) 

N 0.0906721 0.0749423 0.0876923 0.08053922 0.0851597 0.08198339 
GN 0.0891384 0.07098498 0.0872179 0.07693232 0.0862179 0.07993232 
OD 0.0895202 0.07476200 0.0862124 0.07995660 0.0832586 0.08085481 
GD 0.0899349 0.06925514 0.0889029 0.07621299 0.0868359 0.07923295 
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Re - 1000 

 
 

 

Re - 2000 

 
 

 

Re - 3000 

 
Figure 5.13: Reynold Numbers (Re) effects  on Blood flow of Newtonian Model at Wi = 0.6 
and flow rate 0.1 cm3/s.   

 

Re - 1000 

 
 

Re - 2000 

 
 

Re - 3000 

 
 

Figure 5.14: Reynold Numbers (Re) effects  on Blood flow of Generalized Newtonian 
Model at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Re - 1000 

 
 

Re - 2000 

 

 
 

Re - 3000 

 

 
 

Figure 5.15: Reynold Numbers (Re) effects  on Blood flow of Oldroyd-B Model at Wi = 
0.6 and flow rate 0.1 cm3/s. 

Re - 1000 

 
 

Re - 2000 

 
 

 

Re - 3000 

 
 
Figure 5.16: Reynold Numbers (Re) effects on Blood flow of Generalized Oldroyd-B 
Model at Wi = 0.6 and flow rate 0.1 cm3/s.   



CHAPTER 5  NUMERICAL INVESTIGATION… … … 
 

147 
 

 
Figure 5.17a      Figure 5.17b 

 
Figure 5.17c      Figure 5.17d 

Figure 5.17: Velocity profile of the Effects of Reynold numbers (Re)on Blood flow 

at Wi = 0.5 and flow rate 0.1 cm3/s for (Figure 5.17a) Newtonian Model, (Figure 

5.17b) Generalized Newtonian Model, (Figure 5.17c) Oldroyd-B Model, and  

(Figure 5.17d) Generalized Oldroyd-B Model. 
 
The simulation of blood flow is exhibited in Figures 5.18 and 5.21 in terms of pressure 

contour plots with the range of 0 < Re  3000 for all cases. At the center of obstacle, the 

pressure contour lines are almost same for all Re numbers which indicate the rock-

bottom value of blood pressure for all models. With the increases of Re numbers the 

pressure contour lines are having curls within coagulated blood which infer the minimum 

blood pressure level. Before aneurysm of the cavity the pressure gradient is increased 

and decreased at the outlet of cavity.  The wavy curves are produced within coagulated 

blood for generalized Oldroyd-B model because of viscoelasticity and shear-thinning 

features of blood.  
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The influence of Reynold numbers on the blood flow is shown in Figure 5.22 for all four 

models. The pressure level is extremely lowest level at blood clot area in low shear 

region and it is up in the high shear area of the stenotic and aneuysmatic artery. The 

pressure has almost changed proportionately with respect to Reynold numbers. At Re = 

3000, due to the presence of blood clot and viscoelastic features of blood the pressure 

has picked the lowest value at generalized Oldroyd-B case. The numerical value of 

pressure is inserted in the following Table 5.5 for different Reynold numbers while Re = 

1000, 2000 and 3000. 

Table 5.5: Pressue value are shown at stenosis and aneurysm with different Re 

when Wi= 0.6 and q = 0.1 cm3/s. 

Models 
Pressure (P) 

Re = 1000 Re = 2000 Re = 3000 
Upstream 
(Stenosis) 

Downstream 
(Aneurysm) 

Upstream 
(Stenosis) 

Downstream 
(Aneurysm) 

Upstream 
(Stenosis) 

Downstream 
(Aneurysm) 

N -1.8844043 -1.14521587 -3.0714253 -1.88400558 -4.0050992 -2.68453688 
GN -2.1970627 -1.4898275 -3.4514261 -2.14221481 -4.4514261 -2.69221492 
OD -1.7083235 -1.00507796 -2.7907693 -1.65382281 -3.6937299 -2.41230110 
GD -2.6835676 -2.04029926 -3.7740594 -2.3944662 -4.7713939 -2.95738266 
 

Re - 1000 

 
 

Re - 2000 

 
 

Re - 3000 

 
 

Figure 5.18: ReynoldNumbers (Re) effects  on pressure distribution of Blood flow for 
Newtonian Model at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Re - 1000 

 
 

Re - 2000 

 
 

Re - 3000 

 
 

Figure 5.19: Reynold Numbers (Re) effects  on pressure distribution of Blood flow for 
Generalized Newtonian Model at Wi = 0.6 and flow rate 0.1 cm3/s. 

 

Re - 1000 

 
Re - 2000 

 
Re - 3000 

 
 

Figure 5.20: Reynold Numbers (Re) effects  on pressure distribution of Blood flow for 
Oldroyd-B Model at Wi = 0.6 and flow rate 0.1 cm3/s. 
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Re - 1000 

 
 

Re - 2000 

 

 
 

Re - 3000 

 
 

Figure 5.21: Reynold Numbers (Re) effects  on pressure distribution of Blood flow for 
Generalized Oldroyd-B Model at Wi = 0.6 and flow rate 0.1 cm3/s. 

 

 
 

Figure 5.22a      Figure  5.22b 
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Figure 5.22c     Figure 5.22d 

Figure 5.22: Pressure profile of the Effects of Reynold numbers (Re) on Blood flow 

at Wi = 0.5 and flow rate 0.1 cm3/s for (Figure 5.22a) Newtonian Model, (Figure 

5.22b) Generalized Newtonian Model, (Figure 5.22c) Oldroyd-B Model, and  

(Figure 5.22d) Generalized Oldroyd-B Model. 

 
Weissenberg Numbers (Wi) Effects  

In this section, the blood flow simulation is demonstrated throughthe velocity and 

pressure contour lines in Figures 5.23 to 5.26 with the range of Weissenberg numbers (0 

 Wi  1) for all cases. The pure elastic response fluid and pure fluid corresponds to 

larger Wi (Wi > 1) and tiny Wi (Wi =0) respectively. From the figures, the recirculation 

bubbles are seen at stenosis area and they have insignificant changed by the Weissenberg 

numbers. With the increases of Wi, a little bit elongate of recirculation of blood flow at 

the constriction region has done. We observed that the bubbles are shorter in Oldroyd-B 

and generalized Oldroyd-B model compare to another model for blood visocosity 

behavior and lump of blood.The velocity contour lines are almost symmetric along the 

vessel axis for all models. The reverse blood flow regions are found at aneurysm to the 

adjacent of vessel walls and trivial change occur for different Wi.  

  
The graphical presentations of blood velocity are described in Figure 5.27 for all events. 

In the low shear regions and blood clotted area, the velocity has a great important 

changed and provided apex value of the velocity. On the contrary, the lowest velocity is 

found in aneurysm due to local viscosity is dominated. A little different at inlet is 
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noticeable and the minor variation is seen in Figure 5.27. The velocity at the throat of 

stenosis and aneurysm have introduced in the following table 5.6 along vessel axisfor 

different Weissenberg numbers while Wi = 0.0, 0.5, 1.0. 

 
Table 5.6: Velocity at the throat of stenosis and aneurysm with various Wi when 

Re=1000 and q= 0.1cm3/s. 

Models 

 Velocity (U) 
Wi = 0.0 Wi = 0.5 Wi = 1.0 

Up stream 
(Stenosis) 

Down stream 
(Anuerysm) 

Up stream 
(Stenosis) 

Down stream 
(Anuerysm) 

Up stream 
(Stenosis) 

Down stream 
(Anuerysm) 

N 0.09035163 0.07542726 0.09050904 0.07542334 0.09073528 0.07556485 
GN 0.08898240 0.07091897 0.08913842 0.07098498 0.08932517 0.07106860 
OD 0.08907139 0.07514768 0.08933925 0.07522795 0.08962555 0.07534929 
GD 0.08983876 0.06923700 0.08993499 0.06925514 0.09003013 0.06927763 

 

 

Wi -0.0 

 
 

 

Wi -0.5 

 
 

 

Wi -1.0 

 
 

Figure 5.23: Weissenberg Numbers (Wi) effects  on Blood flow of Newtonian Model with 

blood clot at Re = 1000 and flow rate 0.1 cm3/s. 
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Wi – 0.0 

 
 

Wi – 0.5 

 
 

Wi – 1.0 

 
 

Figure 5.24: Weissenberg Numbers (Wi) effects  on velocity distribution of Blood flow for 

Generalized Newtonian Model with blood clot at Re = 1000 and flow rate 0.1 cm3/s. 

 

Wi – 0.0 

 
 

Wi -0.5 

 
 

Wi – 1.0 

 
 

Figure 5.25: Weissenberg Numbers (Wi) effects  on velocity distribution of Blood flow for 

Oldroyd-B Model with blood clot at Re = 1000 and flow rate 0.1 cm3/s. 
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Wi – 0.0 

 
 

 

Wi – 0.5 

 
 

 

Wi – 1.0 

 
 

Figure 5.26: Weissenberg Numbers (Wi) effects  on Velocity distribution of  Blood flow 
for Generalized Oldroyd-B Model with blood clot at Re = 1000 and flow rate 0.1 cm3/s. 

 
 

 

 

Figure 5.27a     Figure 5.27b 
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Figure 5.27c      Figure 5.27d 

Figure 5.27: Velocity profile of the Effects of Weissenbug numbers (Wi) on Blood flow at 

Pe = 1000 and flow rate 0.2 cm3/s for (Figure 5.27a) Newtonian Model, (Figure 5.27b) 

Generalized Newtonian Model, (Figure 5.27c) Oldroyd-B Model, and  (Figure 5.27d) 

Generalized Oldroyd-B Model. 

 

The pressure is more dominated at blood clot area and achieved the lowest value at 

separation point which are portray in Figures 5.28-5.31 for all four models. The iso-

pressure contour lines are found at the end of bulge region and provide how the pressure 

changed to meet minimum value. For generalized Oldroyd-B model, the vertical fold 

curves are shown within coagulated blood region caused by high viscoelasticity factor of 

blood.    

The computed pressures are visible in Figure 5.32 with respect to Weissenberg number 

for all cases. The pressure has swiftly decreased at blood lump area and increased in 

swelling region of the artery for all four models. At Newtonian model, the pressure 

provides higher value for Wi =0 compare to others value of Wi. With the increases of 

Wi, the blood fluid behave like elastic response is main reason. For the blood 

viscoelasticity and shear thinning, the pressure are identical at generalized Oldroyd-B. In 

Table 5.7, the calculated pressure at blood lump and swell area of artery along vessel 

axis for different Weissenberg numbers while Wi =0.0, 0.5 and 1.0 is presented. 
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Table 5.7:  Pressure at blood lump and swell area of artery along vessel axis for 
different Weissenberg numbers, Wi =0.0, 0.5 and 1.0. 

 

Models 
 Velocity (U) 

Wi = 0.0 Wi = 0.5 Wi = 1.0 
Upstream 
(Stenosis) 

Downstream 
(Aneurysm) 

Upstream 
(Stenosis) 

Downstream 
(Aneurysm) 

Upstream 
(Stenosis) 

Downstream 
(Aneurysm) 

N -1.62131008 -0.83623052 -1.93433161 -1.16051297 -1.96568474 -1.19961551 

GN -2.01090580 -1.29762653 -2.19706271 -1.4898275 -2.24834425 -1.546702 

OD -1.65246867 -0.90632655 -1.75469901 -1.01716673 -1.80175259 -1.07195888 

GD -2.63812641 -1.99110761 -2.68356769 -2.04029926 -2.70928755 -2.07050651 

 
 
 

Wi -0.0 

 
 

 

Wi -0.5 

 
 

 

Wi -1.0 

 
 

Figure 5.28: Weissenberg Numbers (Wi) effects  on pressure distribution of Blood flow 
for Newtonian Model with blood clot at Re = 1000 and flow rate 0.1 cm3/s. 

 



CHAPTER 5  NUMERICAL INVESTIGATION… … … 
 

157 
 

Wi – 0 

 
 

 

Wi – 0.5 

 
 

 

Wi – 1.0 

 
 

Figure 5.29: Weissenberg Numbers (Wi) effects on pressure distribution of Blood flow for 
Generalized Newtonian Model with blood clot at Re = 1000 and flow rate 0.1 cm3/s. 
 

Wi – 0.0 

 
 

Wi – 0.5 

 
 

Wi – 1.0 

 
 

Figure 5.30: Weissenberg Numbers (Wi) effects on pressure distribution of Blood flow for 
Oldroyd-B Model with blood clot at Re = 1000 and flow rate 0.1 cm3/s. 
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Wi – 0.0 

 
 

 

Wi – 0.5 

 
 

 

Wi – 1.0 

 
 

Figure 5.31: Weissenberg Numbers (Wi) effects on pressure distribution of Blood flow 

for Generalized Oldroyd-B Model with blood clot at Re = 1000 and flow rate 0.1 cm3/s. 

 

 

 

Figure 5.32a     Figure 5.32b 
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Figure 5.32c      Figure 5.32d 

 
Figure 5.32: Pressure profile of the Effects of Weissenbegr numbers (Wi) on Blood 

flow at Re =1000 and flow rate 0.1 cm3/s for (Figure 5.32a) Newtonian Model, 

(Figure 5.32b) Generalized Newtonian Model, (Figure 5.31c) Oldroyd-B Model, and  

(Figure 5.32d) Generalized Oldroyd-B Model. 

 
5.4.4    Wall shear stress effects on blood flow 

The effects of wall shear stress at bottom wall are described  in Figures 5.33 and 5.34 

having blood clot and without blood clot respectively for all four models with blood flow 

rate q = 0.1 cm3/s. It is  one of the main ingredient to findout the cardiovascular diseases 

in the arteries.   

 
The friction or resistance among the fluids and between the fluid and the blood vessel 

wall, and is related to the fluid viscosity which leads to the pattern of the blood flow. 

This resistance generates a force (tangential force) exerted by the flowing fluid and is 

called the wall shear stress. The magnitude of wall shear stress is maximum at the 

beginning of blood clot area and minimum value is found at the throat of stenosis which 

leads  how fast the blood fluid velocity changes when blood is flowing from the center of 

the vessel to bottom wall. The similar behavior are found for another model (without 

blood clot) but it attained the greatest amount of wall shear stress at the genesis of 

stenosis area for Newtonian case. We have found most minimum value of wall shear 
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stress for without blood clot model and maximum value for Newtonian models. In the 

case of non-blood clot, the profile of Wss has decreased slowly after senosis region 

compare to blood clot model. In Figures 4.33, the rapid change of wall shear stress has 

occured  between blood clotted and aneurysm zone for all cases and negative values are 

originted at dilation area. 

 
The contrast graphical study with the being and non existence of blood lump for the wall 

shear stress are shown in Figures 5.33 and 5.34 in various models. The influence of 

blood clot on the wall shear stress is clear from the figures and high Wss have exerted at 

the starting of  stenotic area compare to another region. We observed that the magnitude 

of Wss has quickly decreased just after stenosis area for blood clot model. The negative 

magnitude of the wall shear stress have found in the reversalflow zones at blood clot 

model but the wall shear stress down significantly at non blood clot model. It is 

important finding that the minimum values of wall shear stress have reduced due to the 

presence of blood lump at stenotic arteries. In Table 5.8, the maxmini numerical value of 

wall shear stress along vessel axis for blood clot or non-blood clot model while q = 

0.1cm3/s,  Re = 1000 and Wi = 0.6 are presented.  

 

 
Table 5.8: The optimal value of wall shear stress along vessel axis for blood clotted 

and non-blood clotted model while q = 0.1cm3/s,  Re = 1000 and Wi = 0.6. 

 

Models 
Wall shear stress (Wss) 

Blood clot model Non-blood clot model 
Maximum Mimimum Maximum Mimimum 

N 0.5523 -0.04214 9.8954 -1.9864 
GN 0.5512 -0.04113 8.7635 -1.1563 
OD 0.4595 -0.04534 8.8972 -1.8752 
GD 0.4535 -0.04956 7.5486 -1.2573 
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Figure 5.33: Effects of wall shear stress at upper wall without blood clot at stenotic artery 

for all cases with different Wi when Re = 1000 and q = 0.1 cm3/s. 
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Figure 5.34: Effects of wall shear stress on blood flow through stenotic and anuerysmatic 

artery without blood clot  for all casesat Re=1000 and Wi = 0.6. 
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5.4.5    Drag coefficient effects on blood flow 
In Figure 5.35, the drag coefficient (resistance) of blood flow increases at blood clot 

model and non-blood clot model. The drag coefficient value is very high at nonblood 

lump case for the Newtonian, Generalized Newtonian, Oldroyd-B, Generalized  

Oldroyd-B models with the flow rate q = 0.1 cm3/s.  In the case of non-blood clot, the 

resistance of blood flow is almost same for Newtonian and Oldroyd-B model but the 

stenotic zones (by external force) have created more obstacle to blood flow at 

generalized Oldroyd-B model because of viscoelastic behavior. The hindrance of blood 

flow over blood lump has increased for all cases but the hurdle is more at generalized 

model. From the Figure 5.36, the blood flow resistance increases with the increases 

Reynold numbers and Weissenberg numbers for all four models. The magnitude of drag 

coefficient is higher for generalized modeland lower for Oldroyd-B modelwith increases 

of Reynold numbers. With increases of Weissenberg numbers the resistance of blood 

flow is more intensive at generalized Oldroyd-B model in low shear region. The 

magnitude of drag Coefficient (Cd) at stenosed vessel is shown in the following table 5.9 

for dimensionless numbers Re and Wi. 
 

Table 5.9: The coefficient of drag at at stenosed vessel are presented with different 

dimensionless numbers. 
 

 

Models 

Drag coefficient (Cd) 

Re Wi 

1000 2000 3000 0.0 0.5 1.0 

N 1.09257 1.61492 2.10357 0.40431 1.02115 1.36377 
GN 0.94687 1.76125 2.10124 0.65042 0.94687 1.26045 
OD 0.76539 1.27577 1.75481 0.57313 0.73852 0.99432 
GD 1.16816 1.61028 2.07177 1.08912 1.16816 1.33003 
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Figure 5.35: Drag effectsof blood at bottom stenosed vessel wall with blood clot (left) and 
without blood clot (right) when Re = 1000 and Wi = 0.6. 

 

 

Figure 5.36: Drag effects of blood at bottom stenosed vessel wall with blood clot with 

respect to Re (left) and Wi (right) for all models. 

5.5  Chapter Ending 
This work is focused on the study of numerical investigation of blood flow through 

stenotic and aneurysmatic artery havingor not blood clot. The simulation of the blood 

flow through the physical model has done by finite element method. The effect of blood 

flow variables, wall shear stress, dimensionless number and drag coefficients are very 

momentous. Theabove factors are correlated to blood viscoelasticity, blood shear 
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thininng behavior and influence the blood flow.The blood flow variables have intensive 

change at the throat of stenosis (no blood clot) compare to blood clot stenosis model. The 

blood flow patterns have more affected by high Reynold numbers (turbulence flow) at 

generalized Oldroyd-B case on the contrary insignificant changed occur for different 

Weissenberg numbers in present problem. Effects of wall shear stress and drag 

coefficient on blood flow at blood clot regimes are highlighted to explore their impacts 

on blood flow structure and its characteristics.  

The governing differential equations that consist of conservation of mass, momentum 

equation, Oldroyd-B equations and bio-heat equation which is derived by finite element 

method. To solve the nonlinear differential equations the Newton-Raphson iteration is 

used for the dependent variables of blood velocity, pressure, drag coefficient and wall 

shear stress with the certain range of Reynold numbers and Weissenberg numbers.  

Based on the above computational results we conclude that: 

 The shear-thinning effects are related to the blood flow variables velocity and 

pressure are more pronounce than the viscoelastic ones.   

 The blood flow parameters are predominant in the recirculation zones compare to 

blood clot model.  

 The wall shear stress areintensifiedat the throat of stenosis having no blood clot for 

generalized models.  

 The effect of drag coefficient on blood flow is more extreme in stenotic (without 

blood clot) artery for all models.  

 The prominent changes have found on blood flow with respect to the Re through 

stenotic and aneruysmatic artery and the highest and lowest values are attained at 

stenosis and aneurysm region respectively for all cases. 

 The significant change of blood flow are found with the increase of Weissenberg 

numbers but negligible variation among models. 

 Due to presence of blood clot at the throat of stenosis the recirculation zones are 

more elliptic for all models.  



 

166 
 

CHAPTER 6 
CONCLUSIONS 
6.1    Conclusions 
This thesis deals with modeling aspects of Newtonian, non-Newtonina and their 

generalized fluids (shear thinning) modifications, as well as with devlopment and 

validation of algorithms used in simulation of such blood fluids.  

 
The main contribution in the modeling part is the introduction and analysis of a new 

model for the Newtonina, generalized Newtonian, Oldroyd-B and generalized Oldroyd-B 

where constitutive equations are of Partial differential form. The mathematical and 

numerical study of the non-linear system of partial differential equatins that model the 

motion of incompresible Newtonina and non-Newtonina fluids, in two dimensional, in 

case of steady flow. The numerical simulations and investigation to the problems have 

obtained computationally by the implementation of the finite elemnts method in the 

mathematicalsoftware COMSOL MULTIPHYSICS and MATLAB programming. The 

Hood-Taylor finite elemnts have been used to discretized the Navier-Stokes and 

Oldroyd-B equations and the iterative Newton-Raphson mehotd has been applied to 

obtain the numerical solution of the corresponding algebraic system.In chapter-3, 

Numerical results have been obtained in a abrupt contraction for symmetric and non-

symmetric stenosis, wall shear stress, different values of  Weissenberg numbers and 

Reynolds numbers with various flow rates.We conclude that the effect of blood 

viscoelasticity are correlated to blood flow variables and wall shear stress which is more 

significant than non-viscoelastic ones. The blood flow variables pressure and velocity are 

predominant at the throat of stenosis and substantial change occured with flow rates. 

With respect to the height of stenosis, the blood charactersistics have a significant 

changed at the centre of stenosis.  According to the investigation, the growth of the 

recirculation zone at constriction regions are found, contrary to the shear-thinning blood 

fluid only due to the specific choice of the viscosity characteristic. The reversal blood 

flows have found at behind the stenosis region to the adjacent vessel wall. The finding of 

the blood flow behavior on the wall shear stress is an important factor in the onset of 

arterial diseases which may be reported in medical science. 

 
The Second contribution of the thesis consist of development and numerical analysis of 

robust and reliable algorithm for blood flow simulation of Newtonina, Oldroyd-B and 
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their generilized fluids through permeable aneurysm. It is shown in this thesis at chapter-

4, the objective of this mathematical model is to understand and bring out the effects of 

permeable anuerysmatic, wall shear stress, dimensionless numbers and stress tensor on 

blood flow forall fourmodels.Moreover, to study the influence of the shear-thinning and 

viscoelastic behavior of blood, we have used the Newtonian (N), generalized Newtonian 

(GN), Oldroyd-B (OD) and generalized Oldroyd-B (GD)models.We have observed that 

the viscoelastic behavior of the blood fluids by comparing the results from the simulation 

and graphical presentation of velocity, pressure, stress tensor and wall shear stress for 

various values of Peclet number and Weissenberg numbers.  It is shown, that the blood 

flow patterns have shown in terms of contour plots and developed an axisymmetric 

profile at entrance and exit of the model. Finally, we have inferred that the outcomes of 

model parameters are related to blood shear thinning properties and more significant at 

low shear regions. Due to permeablity of aneurysm, the blood velocity and pressure have 

decreased at aneurysm along vessel axis for all cases. The blood flow variables have 

affected by wall shear stress which a vital ingradient to identify the fatal arterial diseases. 

The Peclet numbers and Weissenberg numbers effects are more striking at porous region 

and blood flow variables have a dramatic changed. The turbulent blood flow have 

reduced for the presence of porosity at aneurysm of the model. It has also shown the 

elliptic recirculation bubbles have originated between the aneurysm and migrated to 

upper vessel wall. The numerical method is used to solve the partial differential 

equations seems to be sufficiently strong and effective for the appropriate resolution in 

this problem.  

 
The third contribution consist of comparison and numerical study of Navier stoke‟s, 

Oldroyd-B and bio-heat equation for incompressible Newtonina and non-Newtonina 

fluids in two dimensional steady state flow. The numerical investigation and simulation 

have perfomed through the stenotic and aneurysmatic artery and it is shown in ch-5. The 

govering equations are consist of a set of partial differential equations of continuity, 

momentum, viscoelastic  and bio-heat for all four models. The blood flow velocity and 

pressure distribution through the stenotic and aneurysmatic artery are examined by 

exploring the effects Weissenberg numbers (Wi), Reynold numbers (Re), stress tensor 

components, drag coefficient, wall shear stress and aneurysm. The blood flow simulation 

have shown in terms of velocity and pressure contour plots for this model with blood clot 

and without clot at the contraction stenosis. The result have shown that the blood flow 
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variables have a significant changed at the abrupt contraction region having blood clot. 

At high Reynold numbers, the blood flow patterns is more affected for generalized 

Oldroyd-B and insignificant change are found for the range of  Weissenberg numbers (0 

 Wi  1) in present problem. The effects of drag coefficient on blood flow at thrombus 

area are explored but more extreme in non-blood clot model compare to clotted model 

for all cases. It has also shown that the wall shear stresses are less intensified at the throat 

of stenosis at blood clot model of generalized models because of low shear regions. The 

reciculation bubbles are more elliptic shape due to blood clot at the constriction region 

for all four models. Finally, the viscoelasticity of blood is highly correlated to blood flow 

variables and highlighted to explore their influences on blood flow structure and its 

charactersitics. 

   
Summarizing, in this thesis four classes fluids descirbed by the set of partial differential 

equations are considerd. We have introduced new isotropic viscosity model and 

viscoelasticity model, describing the generalized Newtonina fluids and Oldroyd-B type 

fluids, which gives the ability to predict the change of the reciculation zones even if 

shear thinning fluid is considered. Moreover, it is shown that the constitute equations, 

describing viscoelastic fluids, allow to perform stable simulations for various 

dimensionless numbers Reynold numbers ans Weissenberg numbers. Finally, systematic 

analysis of solution techniques for Newtonian, generalized Newtonian, Oldroyd-B and 

generalized oldroyd-B fluids has been performed.   The above outcomes of the research 

may also be useful in bio-medical engineering.  

6.2    Remarks on Cardiovascular Diseases 

Studies have shown that atherosclerosis is a slow and progressive disease in human 

organ that may start in childhood. It changes faster as you age and very severe after 50 

years. There are some factors such as unhealthy levels of fats and cholesterol in the 

blood, smoking, high blood pressure, high amounts of diabetes, obesity, physical 

incapability, genetic problems, abnormal growth, any kind of trauma can damage the 

inner layers of blood vessel. Many scientists believe plaque begins when an artery‟s 

inner layer „endothelium‟ becomes damaged.  Over time, deposit of plaque become 

hardens and contract the blood vessel which leads to barrier of blood circulation. 

Consequently, plaque area can blast or rupture which creates an aneurysm in arteries and 
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form blood clots through platelets in the injury cell. Blood clots reduced the blood flow 

in different human organ and create cardiovascular diseases (angina, stroke etc.). For 

treatment of these diseases, the familiarphrase of„Prevention is better than cure‟ is more 

applicable. In the case of prevention, the following risk factors may be controlled which 

can help prevent or delay atherosclerosis and its related diseases. 

 Blood cholesterol levels: Elevated levels of cholesterol and triglycerides in the 

blood are one of the main causes of cardiovascular diseases. Heart healthy diet is 

one of the best way to control these diseases taking unsaturated foods such as 

nuts, seeds, walnuts, olive oil, avocados, oily fish etc. to keep maintain standard 

level of cholesterol.  

 Cigarette smoking:Smoking play a vital role in the growth of atherosclerosisin 

the coronary arteries, aorta and arteries in the legs. It also raises the blood 

pressure, cholesterol levels and creates barrier to move enough oxygen in our 

body‟s tissues. Smokers should quit as soon as possible and find out the ways to 

give up the habit to safe themselves of severe diseases.  

 High blood Pressure: If the blood pressure is 140/90 mmHg or above leads high 

blood pressure and it is sources of many chronic diseases such as heart failure, 

stoke, diabetes, kidney disease etc.The continuous hypertension of blood on 

vessel wall are main reason to bulge or aneurysm in arteries. To control of high 

blood pressure depends on several factors, such its severity, associated risks of 

developing stroke or cardiovascular, disease, etc. However, change in lifestyle, 

exercise, keeping standard weight, regular sleep, meditation, stress reduces can 

help to keep in standard blood pressure. 

 Obesity: Over weight of human being is another factor of arthrosclerosis and 

foundation of many diseases.  WHO has shown that 39% of adults aged 18 years 

and 41 million children under the age of 5 were overweight in 2016. The obesity 

can be prevented under controlling of high fat foods, increasing in physical 

activities and overall consciousness of health.  

 Diabetes: It is a disease in which blood sugar or glucose levels are too high leads 

to many diseases such as kidney, eye, nerves, heart diseases, stoke etc. Exercise, 

weight control and sticking to your meal plan can help control your diabetes. We 

should also monitor our blood glucose level and take medicine if prescribed. 

http://www.heart.org/HEARTORG/Conditions/Cholesterol/HDLLDLTriglycerides/HDL-Good-LDL-Bad-Cholesterol-and-Triglycerides_UCM_305561_Article.jsp
http://www.heart.org/HEARTORG/HealthyLiving/QuitSmoking/QuittingResources/Smoking-Cardiovascular-Disease-Heart-Disease_UCM_305187_Article.jsp
https://medlineplus.gov/diabeticdiet.html
https://medlineplus.gov/diabetesmedicines.html
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 Unhealthy diet: It can raise our risk for cardiovascular diseases and other‟s 

diseases.  High saturated foods, sodium, sugar, cholesterol and trans fats are risk 

factors for atherosclerosis. Adopt healthy eating habits, which include eating 

different fruits and vegetables (including beans and peas), whole grains, lean 

meats, poultry without skin, seafood, and fat-free or low-fat milk and dairy 

products. A heart-healthy diet is very helpful to reduce cardiovascular diseases.  

 Older age:With the increase of age the risk for atherosclerosis will increase. 

Unhealthy diet, genetic or lifestyle factors cause plaque to build up in arteries during 

middle -aged. At studies show that the risk increases after age 45 for men and age 55 

for women. Taking healthy diet, changing lifestyle and regular physical activities 

helps to control risk factors of such diseases at middle-aged. 

 Insulin resistance: Insulin is a hormone that helps move blood sugar into cells 

where it's used as an energy source. Insulin resistance may lead to diabetes. 

 Lack of Physical activity: It is other risk factors for atherosclerosis, such as 

unhealthy blood cholesterol levels, high blood pressure, diabetes, and overweight and 

obesity. Exercise will improve fitness levels, lower or higher blood pressure, and 

help reduce weight.  

 Genetic Problem: A family history of early heart disease are risk factors for growth 

of atherosclerosis. Controlling other risk factors often can lessen genetic influences 

and prevent atherosclerosis, even in older adults. 

If the above preventions arenot enough to control atherosclerosis risk factors. we may 

take advises from doctor about cardiovascular diseases. General treatment to cure from 

these diseases are adopting medicines and medical procedures which are given bellows: 

 Medicines: Sometimes preventions or lifestyle changes alone are not enough to control 

your cholesterol levels. Doctors usually prescribe statin medications to control or lower 

cholesterol for coronary heart disease, peripheral artery disease, or stroke, diabetes and 

high low-density lipoprotein cholesterol levels. By controlling cholesterol level, we can 

change of having a heart attack or stroke. We can also take medicines to control blood 

pressure, sugar levels, prevent blood clots, relieving symptoms and stop swelling.  We 

should still follow a heart healthy lifestyle, even if we take medicines to treat our 

cardiovascular diseases. 
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 Medical Procedures and Surgery: In the case of severe atherosclerosis, doctor may 

recommend a medical procedure or surgery to prevent cardiovascular diseases and some 

important surgery are discussed as follows. 

 Percutaneous coronary intervention (PCI) or coronary angioplasty: 

The Percutaneous coronary intervention (PCI) is a nonsurgical procedure that 

improves blood flow to our heart. It is used to open coronary arteries that are 

blocked or narrowed coronary (heart) arteries by the buildup of atherosclerotic 

plaque. PCI can improve blood flow to the heart, relieve chest pain, to relieve 

symptoms of coronary heart disease or to reduce heart damage during or after a 

heart attack. Sometimes a small mesh tube called a stent is placed in the artery to 

keep it open after the procedure. 

 Coronary artery bypass grafting (CABG): The Coronary artery bypass 

grafting (CABG) is a type of surgery that improves blood flow to the heart. It is 

used for people who have severe coronary heart disease (CHD) or coronary artery 

disease. In CABG, arteries or veins from other areas in your body are used to 

bypass or go around your narrowed coronary arteries. This creates a new passage, 

and oxygen-rich blood is routed around the blockage to the heart muscle. 

Through the surgery we can improve blood flow to your heart, relieve chest pain, 

and possibly prevent a heart attack. Bypass grafting also can be used for leg 

arteries. For this surgery, a healthy blood vessel is used to bypass a narrowed or 

blocked artery in one of the legs. The healthy blood vessel redirects blood around 

the blocked artery, improving blood flow to the leg. It is also known as an open-

heart surgery.  

 Carotid endarterectomy: The Carotid endarterectomy is a surgical procedure to 

open or clean plaque buildup from the carotid arteries to prevent stroke. This 

procedure restores blood flow to the brain, which can help to avoid brain 

hemorrhage, clotting, bleeding etc. Taking anticlotting medicines before and after 

surgery can reduce this risk.  

Atherosclerosis is a severedisease in our human organ which creates some obstacles to 

move blood smoothly throughout body. Despite a lot development in medical sector, 

http://www.nhlbi.nih.gov/health/health-topics/topics/cad/
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researchs are still going on about cardiovascular diseases to know the sources, 

identification and proper treatment of these diseases.  

6.3    Further Research 
The consequent can be aheaded for the additional works on the base of the present 

research as. 

 In the future, the study can be extended by dissimilar physics like bending artery, 
vertical artery and corss sectional arteryand arterial bifurcation effects on blood flow. 

 Stenotic and Aneurysmatic artery effects on Blood flow with Magneto-
hydrodynamics (MHD) for Newtonian, Oldroyd-B and their generalized models may 
be discussed later. 

 The next work will be devoted to an extension of this numerical study to unsteady 
blood flow and fluid-structure interaction simulations in stenotic and anuesymatic 
vessels, to provide a deeper understanding of the significance of the non-Newtonian 
characteristics of blood and its correlation with the cardiovascular diseases like 
atherosclerosis.   

 The study can be extended for non-uniform blood vessel with different blood flow 
rates. 

 The present model can be explained within heat sinkor source of blood vesselfor 
Newtonina and non-Newtonina models.  

  Two-dimensional steady blood fluid flow has been analyzed in this thesis. So, this 
consideration may be extended to three-dimensional analyses to explore the effects of 
parameters on blood flow fields in cavities.  

 The analytical solution of the two or three dimensional transient bioheat equation 
with different boundary conditions may be done further.  

 Investigation can be performed by using magnetic fluid throughstenotic or 
aneurysmaticartery with changing the boundary conditions of the blood vessel walls. 

 We analyzed the simulation and mathematical properties of the blood flow for all 
four models in the case of incompressiblebut we did not verify their performance for 
compressible flows. Therefore, this remains for future investigation. 
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As mentioned in section 3.3.1, the finite element method can be considered to solve the 

governing equations. The non-linear parametric solution method is chosen to solve the 

governing equations. This approach will result in substantially fast convergence 

assurance. A non-uniform triangular mesh arrangement is implemented in the present 

investigation especially near the walls to capture the rapid changes in the dependent 

variables. For convenience, the governing Equations (3.9-3.12) to be solved are relisted 

below: 

Continuity Equation  
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Oldroyd-B constitutive equation:    
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The velocity and viscoelasticity Equations (3A-3D) result in a set of non-linear coupled 

equations for which an iterative scheme is adopted. To ensure convergence of the 

numerical algorithm the following criteria is applied to all dependent variables over the 

solution domain  

   51n
ij

n
ij 10ψψ  

Where,   represents a dependent variable U, V, P, ; the indexes i, j indicates a grid 

point; and the index n is the current iteration at the grid level. The six-node triangular 

element is used in this work for the development of the finite element equations. All six 

nodes are associated with velocities as well as stress tensor; only the corner nodes are 

associated with pressure. This means that a lower order polynomial is chosen for 
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pressure and which is satisfied through continuity equation. The velocity component and 

the stress tensor distributions and linear interpolation for the pressure distribution 

according to their highest derivative orders in the differential Equations (3A-3D) as  

  αα UNYX,U   (A.1) 

  αα VNYX,V   (A.2) 

  ασαNYX,σ   (A.3) 

  λλ PHYX,P   (A.4) 

Where, α = 1, 2,…, …, 6; λ= 1, 2, 3; Nα are the element interpolation functions for the 

velocity components and the stress tensor, and Hλ are the element interpolation functions 

for the pressure. 

To derive the finite element equations, the method of weighted residuals is applied to the 

continuity equation (3A), the momentum Equations (3B-3C) and the viscoelasticity 

Equation (3D), we get 

0dAA Y

V

X

U
α

N  

















 
(A.5) 

dAA fαNdAA 2Y

U2

2X

U2
αNλ)(1

)dA
YA X

(αNdAA X
P

λHdAA Y
UV

X
UUαNRe

 


























 









 
















 

 

(A.6)
 

dAA fαNdAA 2Y

V2

2X

V2
αNλ)(1

)dA
YA X

(αNdAA Y
P

λHdAA Y
VV

X
VUαNRe

 


























 









 
















 

 

(A.7) 

dAA X
Uσ

Y
Uσσ

Y
Uσ

X
U

αNiW

dAA )
Y
U

X
U(αNvμdAA σαNdAA Y

σV
X
σUαNiW

 




































 


















 

(A.8) 

Where, A is the element area. Gauss‟s theorem is then applied to Equations (A.6-A.8) to 

generate the boundary integral terms associated with the surface tractions and extra stress 

tensor. Then Equations (A.6-A.8) become,  
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Here Equations (A.6-A.7) specify surface tractions (Sx, Sy) along outflow boundary S0 

and equation (A.8) specifies velocity components and stress tensor that can be applied 

from domain along wall boundary Sw. Substituting the element velocity component 

distributions, the stress tensor distribution, and the pressure distribution from Equations 

(3.9 -3.12) the finite element equations can be written in the form,  
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(A.15) 

Where, the coefficients in element matrices are in the form of the integrals over the 

element area and along the element edges S0 and Sw as, 

dAxβ,NA αNxαβ
K  , (A.16a) 
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dAyβ,NA αNyαβ
K  , (A.16b) 
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These element matrices are evaluated in closed-form ready for numerical analysis. 

Details of the derivation for these element matrices are omitted herein for brevity. 

The derived finite element equations, Equations (A.12-A.15), are nonlinear. These 

nonlinear algebraic equations are solved by applying the Newton-Raphson iteration 

technique by first writing the unbalanced values from the set of the finite element 

Equations (A.12-A.15) as  
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This leads to a set of algebraic equations with the incremental unknowns of the element 

nodal velocity components, temperatures, and pressures in the form, 
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The iteration process is terminated if the percentage of the overall change compared to 

the previous iteration is less than the specified value. To solve the sets of the global 

nonlinear algebraic equations in the form of matrix, the Newton-Raphson iteration 

technique has been adapted through PDE solver with COMSOL MULTIPHYSIS 

interface and developed MATLAB script. 
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To derive the finite element equation, which is mentioned in section 5.3.1, the method of 
Zienkiewicz and Taylor methods (1991) is applied to the governing equations. We recall 
the system of partial differential Equations (5.5 -5.9) as follows.  

Continuity Equation  

.U = 0           (5A) 

Momentum Equations  

Re[(U.) U] = -P + (1-) U + .  + f                 (5B) 

Re[(V.) V] = - P + (1-) V + .  + f      (5C) 

Oldroyd-B Constitutive Equation:    

 + Wi [(U.)  - ( U)  -  (U)t] = 2 µv V(U)                 (5D) 

Bio-heat Equation: 

Re Pr (U.)  = 2 + Q - f        (5E) 

After the appling the weighted residual method then   
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To generate the boundary integral terms associated with the surface tractions, extra stress 

tensor and temperature the Equations (C.2-C.5) become after appling Gauss‟s theorem. 
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Here Equations (C.2-C.3) specify surface tractions (Sx, Sy) along outflow boundary S0, 

Equations (C.4-C.5) specify velocity components, stress tensor and fluid temperaturethat 

can be appled force from domain along wall boundary Sw.  

The six-node triangular element is used for the development of the finite element 

equations. All six nodes are associated with velocities, temperature as well as stress 

tensor; only the corner nodes are associated with pressure. This means that a lower order 

polynomial is chosen for pressure and which is satisfied through continuity equation.The 

basic unknowns for the above differential equations are the velocity components U, V the 

stress tensor,  and the pressure, P. The velocity component and the stress tensor 

distributions and linear interpolation for the pressure distribution according to their 

highest derivative orders in the differential Equations (5A-5E) as 
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Where, α = 1, 2, … …, 6; λ= 1, 2, 3; Nα are the element interpolation functions for the 

velocity components and the stress tensor, and Hλ are the element interpolation functions 

for the pressure.Substituting the element velocity component distributions, the stress 

tensor distribution, and the pressure distribution from Equations (5A-5E) the finite 

element equations can be written in the form,  
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Where, the coefficients in element matrices are in the form of the integrals over the 
element area and along the element edges S0 and Sw as, 

dANK A αα   (C.20a)
 

dAxβ,NA αNxαβ
K  , (C.20b) 

dAyβ,NA αNyαβ
K  , (C.20c) 

dAxγ,NβNA αNxαβγ
K  , (C.20d) 

dAyγ,NβNA αNyαβγ
K  , (C.20e) 

dAβNA αNαβK  , (C.20f) 



Appendix B 

181 
 

dAxβ,NA xα,Nxxαβ
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Using the Newton-Raphson iteration technique the set of nonlinear algebraic Equations 

(C.15-C.19) are transferred into linear algebraic equations. Finally, these linear equations 

are solved by applying triangular factorization method and reduced integration technique 

of Zeinkiewicz and Taylor (1991) and the finite element Equations (C.15-C.19) as,  
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This leads to a set of algebraic equations with the incremental unknowns of the element 
nodal velocity components, temperatures, and pressures in the form, 
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Where,  
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If the percentage of the overall change compared to the previous iteration is less than the 

specified value then the iteration process is terminated. The mathematical software 

COMSOL MULTIPHYSIS interface and inhouse MATLAB script have been used to 

solve the nonlinear algebraic equation in the matrix form.  
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