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ABSTRACT 

 

Electromyography (EMG) measures electrical activity in the muscle due to neuromuscular 

activities. It is acquired either by needle (nEMG) or by surface (sEMG) electrodes. The sEMG is 

getting popularly because of its non-invasive acquisition technique and widely used in prosthetic 

control and human-machine interaction. However, due to noise like characteristics of sEMG 

signals, poor performance may be obtained for classifying similar types of neuromuscular 

actions, especially when only a single lead data are used. In this thesis, efficient schemes are 

proposed to classify neuromuscular activities based on autoregressive (AR) reflection 

coefficients extracted from single lead original and decomposed sEMG signals. At first a given 

frame of raw sEMG signal is divided into short duration sub-frames and considering AR 

modeling, from each sub-frame AR reflection coefficients are extracted. Instead of using the 

entire frame at a time, sub-frame based AR analysis is expected to provide consistent estimates 

and capture short duration variations. The advantages of using AR reflectioncoefficients over the 

conventional AR parameters are that their values are bounded (0 to 1) and they provide better 

consistency, noise immunity and lower computational complexity. The reflection coefficients 

obtained from each sub-frame are finally averaged to construct the proposed feature vector. In 

the second scheme, in view of investigating the effect of utilizing the decomposed sEMG data, 

singular value decomposition (SVD) is performed on each sub-frame of sEMG data. Next, 

instead of using the original sEMG data, decomposed data is used for extracting the AR 

reflection coefficients. In order to analyze the effect of time-frequency domain decomposition of 

the sEMG data on the extracted feature quality, in the third scheme, the discrete wavelet 

transform (DWT) is chosen. Each sub-frame of sEMG data is decomposed by using the DWT 

and then both the approximate and detailed coefficients are then used for extracting AR 

reflection coefficients. For the purpose of classification, the k-nearest neighborhood 

(KNN)classifier is applied in a hierarchical approach. The proposed method is tested on a 

publicly available sEMG dataset containing six different hand movements collected from three 

females and two males. It is observed that the proposed method offers consistently a very high 

accuracy in classifying the hand movements using a very low feature dimension. 
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Chapter 1 
 

Introduction 
 

1.1 Background of Neuromuscular Activity  
 

Biomedical signal means a collective electrical signal acquired from any organ that represents a 

physical variable of interest. This signal is normally a function of time and is describable in 

terms of its amplitude, frequency and phase. The electromyography (EMG) signal is a 

biomedical signal that measures the electrical potentials generated in muscles during 

neuromuscular activities. For example, to conduct any limb movement, first the brain needs to 

generate and transmit neural signal (via neuro-transmitter) and then muscle generates motor unit 

action potentials (MUAPs) in response to those neural signals, which can be observed in the 

recorded EMG signals. Human nervous system always controls the muscle activity 

(contraction/relaxation) in response to several parallel tasks to be carried out by various organs 

and thus the EMG signal corresponding to the neuromuscular activities is a very complicated 

signal. The variation in the amplitudes of EMG signal is controlled by the nervous system and 

depends on the anatomical and physiological properties of muscles. The EMG serves as a 

reliable source of information about different features of muscle function.  

 
Recording of EMG signals can be achieved by placing electrodes on the surface of the skin 

(surface EMG) or fine wire or needle electrodes which are inserted deep in the muscle 

(indwelling/needle EMG). When recording from deep within the muscle, a needle or fine wire 

electrode is inserted into the muscle (approximately 0:25-0.5cm deep). An advantage of needle 

EMG is its selectivity which strongly attenuates cross talk (a phenomenon in which action 

potentials from muscles further away also contribute to the recording through volume conduction 

contributing to the recorded EMG signal), and can be used when targeting small muscles. 

However in most of the applications it is not feasible to use needle EMG because of its invasive 

nature. As a result use of surface EMG (sEMG) is getting popularity and in neuromuscular 

activity detection sEMG is mainly used now-a-days.  
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The study of EMG is originated from the discovery of the role that electricity plays in the 

nervous system of animals. The first written documents on bioelectric events, which describes 

the catfish as a fish that "releases troops" due to the electric shocks it generated, can be found in 

the ancient Egyptian hieroglyph of 4000 B.C. Francesco Redi, in the mid 1600's, documented 

that a highly specialized muscle was the source of an electric ray fish's energy. Direct 

observation of the relationship between muscles and electricity was performed in dissected frogs, 

by Luigi Galvani (1791- 1797). Galvani's results enticed Alessandro Volta to develop the Voltaic 

pile, the earliest known electric battery. He then used it to study animal electricity (such as 

electric eels) and the physiological responses to applied direct-current voltages. Also, following 

Galvani's work, Carlo Matteucci demonstrated that cell membranes had a voltage across them 

and could produce direct current. German physiologist Emil du Bois-Reymond, who was 

inspired by Matteucci's work, went on to discover the action potential in 1848. The conduction 

velocity of action potentials was first measured in 1850 by du Bois-Reymond's friend, Hermann 

von Helmholtz. In 1880, Wollaston hypothesized that a sound is generated during muscle 

contraction. Due to limitations technologically, he proved his theory by comparing the frequency 

of muscle sounds to distant carriages moving along cobblestone roads. A carriage was driven at 

various speeds until the noise frequency generated from the carriage matched that of contracting 

muscle that Wollaston heard through his thumbs. By knowing the size of cobblestones and the 

diameter of the carriage wheels, Wollaston estimated the sound generated by muscles to be 

approximately 25 Hz. In this way, he demonstrated that energy generated by muscles was in a 

range that is audible. To establish that nervous tissue was made up of discrete cells, the Spanish 

physician Santiago Ramny Cajal and his students used a stain developed by Camillo Golgi to 

reveal the myriad shapes of neurons. For their discoveries, Golgi and Ramny Cajal were awarded 

the 1906 Nobel Prize in Physiology. EMG signals were first displayed on an oscilloscope in the 

1920's. This advance intellectually stimulated researchers to further investigate the anatomy and 

physiology of skeletal muscles. As a result, investigators such as Basmajian have been able to 

demonstrate a deeper comprehension of EMG and its application. This knowledge has increased 

the curiosity among several investigators in the field of electromyography. 
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1.2 EMG Signal Collection Process  
 

Methods used to acquire data are heavily dependent on the nature of signals to be acquired. EMG 

signals are complex signals, controlled by the nervous system and are dependent on the 

anatomical and physiological properties of muscles. Also, it is important to realize that just like 

any other signals in transit, the EMG signal gets contaminated with undesirable signals (noise) as 

it traverses from its source to the recording apparatus, making it very difficult to detect. 

Fortunately, there are techniques that can be used to minimize noise embedded in signals. One 

such technique is through the process of differential amplification. As a result, the recording of 

small signals buried in larger common signals is possible. Employing similar techniques, small 

EMG signals can reliably (high signal to noise ratio) be detected and recorded. Care should be 

taken when selecting electrodes and type of amplifiers. Electrode and internal amplifier noise 

may distort the recording of the EMG signal. Filtering is normally performed so that unwanted 

signals such as low frequency motion artifacts are removed from the EMG signal. With regards 

to recording the EMG signal, the amplitude of the motor unit action potential depends on many 

factors which include: diameter of the muscle fiber, distance between active muscle fibers and 

the detection site (adipose tissue thickness), and filtering properties of the electrodes themselves. 

The objective is to obtain a signal free of noise (i.e. movement artifact, 50 Hz artifact, etc.). 

Therefore, the electrode type and amplifier characteristics play a crucial role in obtaining a 

noise-free signal.  

 
For EMG signal acquisition, there are two main types of electrodes: surface and fine wire/ 

indwelling. The surface electrodes are also divided into two groups. The first is active electrodes, 

which have built-in amplifiers at the electrode site to improve the impedance (no gel is required 

for these and they decrease movement artifacts and increase the signal to noise ratio). The other 

is a passive electrode, which detects the EMG signal without a built-in amplifier, making it 

important to reduce all possible skin resistance as much as possible (requires conducting gels and 

extensive skin preparation). With passive electrodes, signal to noise ratio decreases and many 

movement artifacts are amplified along with the actual signal once amplification occurs.  
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Some major advantages of surface electrodes are that there is minimal pain with application, they 

are more reproducible, they are easy to apply, and they are very good for movement applications. 

The disadvantages of surface electrodes are that they have a large pick-up area and therefore, 

have more potential for cross talk from adjacent muscles. Additionally, these electrodes can only 

be used for surface muscles. Fig. 1.1 illustrates some of these EMG electrodes and its placement 

in hand. Fine wire electrodes require a needle for insertion into the belly of the muscle. The 

advantages of fine wire electrodes are an increased band width, a more specific pick-up area, 

ability to test deep muscles, isolation of specific muscle parts of large muscles and ability to test 

small muscles which would be impossible to detect with a surface electrode due to cross-talk.  

 

 
 
 

 

 
 
 
 
 
 
 
 
 

Figure 1.1: Surface EMG electrodes and its placement 
 

The disadvantages are that the needle insertion causes discomfort, the uncomfortableness can 

increase the tightness or spasticity in the muscles, cramping sometimes occurs, the electrodes 

are less repeatable as it is very difficult to place the needle/fine wires in the same area of the 

muscle each time. However, for certain muscles, fine wires are the only possibility for obtaining 

their information. The most common indwelling electrodes used to record EMG are monopolar 

and concentric needle electrodes. In addition there are other EMG recording techniques based 

on special needle electrode configurations, namely: single-fiber EMG, macro EMG and 

quadrifilar needle electrode. Fig. 1.2 illustrates some of these EMG needle types. 
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Electrical activity of the muscle is usually of very low voltage (generally less than 5-10mV). It 

is therefore essential to amplify the detected EMG signal so that the signal can be sampled 

reliably by typical analog to digital converters. Boosting a  signal's gain is achieved by using an 

amplifier. The differential input, single-ended output instrumentation amplifier is one of the 

most useful signal processing amplifiers. It is used for precision amplification of differential dc 

or ac signals while rejecting large values of common mode interference. It is essential that the 

EMG signal is amplified without distortion. Ideally, the EMG amplifying circuit should possess 

the following characteristics: 

1. High common mode rejection ratio. 

2. High slew rate/bandwidth. 

3. Very high input impedance. 

4. Short distance to the signal source. 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.2: Different indwelling needle electrode types. A) In the monopolar design, the needle 

is Teflon coated and its exposed tip serves as the active electrode. B) The concentric needle has 

an active electrode running as a thin wire through the needle center and exposed at the tip. The 

canola serves as reference. C) The quadrifilar needle electrode is 25 gauge stainless steel. The 

needle electrode was custom designed with four 50 µm platinum wire electrodes equably 

exposed on the side port of the canola.  



16 
 

1.3 Neuromuscular Activity Classification of  Surface 

EMG Signal 
 

For conducting any limb movement or activities, first brain needs to generate and transmit neural 

signal (via neuro-transmitter). Muscle generates motor unit action potentials in response to 

neural signal, which can be extracted from EMG data. The EMG is a technique utilized to 

evaluate and record electrical activity generated by skeletal muscle. Electromyography (EMG) 

refers to the collective electric signal from muscles, which is controlled by the nervous system 

and produced during muscle contraction. The signal represents the anatomical and physiological 

properties of muscles; in fact, an EMG signal is the electrical activity of a muscle’s motor units. 

Motor unit action potential (MUAP) can be studied by recording muscles electrical activity. In 

clinical EMG MUAPs are recorded using a needle electrode at slight voluntary contraction. The 

MUAP reflects the electrical activity of a single anatomical motor unit. It represents the 

compound action potential of those muscle fibers within the recording range of the electrode. 

EMG testing has a variety of clinical, biomedical and human-machine interaction (HMI) 

applications. It can be used for identifying neuromuscular diseases or to detect level of muscle 

fatigue and disorders of motor control or identifying various limb movements. EMG signals are 

also used as a control signal for prosthetic devices such as prosthetic hands, arms, and lower 

limbs. In Figure 1.3, a sample EMG signal is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

                      Figure 1.3: Electromyography (EMG) Signal 
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Figure 1.4: Surface EMG recording and sample plot 

 

 

There are two kinds of EMG: surface EMG (sEMG) and intramuscular EMG (iEMG) or needle 

EMG (nEMG). Surface EMG assesses muscle function by recording muscle activity from the 

surface above the muscle on the skin as depicted in Figure 1.4. Needle EMG is recorded using  

needle electrode inserted into a muscle for exact detection of the signal from contracted muscle. 

Intramuscular EMG is an invasive process, thus is not applicable for purposes other than disease 

detection. On the other hand surface EMG is non-invasive and can be simply recorded from 

above the surface of the skin. As a result widespread potential applications for surface EMG 

signal classification and control have been reported in the last two decades; including 

multifunction prosthesis, electrical wheelchairs, virtual mouse and keyboard and virtual worlds. 

 

In Figure 1.5, samples of sEMG and nEMG are shown. Surface EMG can be recorded by a pair 

of electrodes or by a more complex array of multiple electrodes (Figure 1.4). More than one  

electrode is needed because EMG recordings display the potential difference (voltage 

difference) between two separate electrodes. But working with surface EMG brings about some 

challenges due to the fact that surface electrode recordings are restricted to superficial muscles, 

influenced by the depth of the subcutaneous tissue at the site of the recording which can be 

highly variable depending of the weight of a patient and cannot reliably discriminate between 

the discharges of adjacent muscles. 
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Figure 1.5: Samples of (a) surface EMG (sEMG) and (b) needle EMG (nEMG) 
 

1.4 Literature Review 
 

More than 100 neuromuscular disorders that attack the spinal cord, nerves or muscles are 

present. Early finding and diagnosis of these diseases by clinical examination and laboratory 

tests is crucial for their management as well as their anticipation through prenatal diagnosis and 

genetic counseling. Such information is also valuable in research, which may lead to the 

understanding of the nature and eventual treatment of these diseases. One of the earliest 

methods for quantitative EMG decomposition was developed by Buchthal et al. [32], where 

MUAPs were recorded photographically and then analyzed heuristically. Manual methods, 

although important at the time, were time consuming and liable to variable errors due to the 

subjective measurement of the MUAP parameters of interest. LeFever and DeLuca [33] used a 

special three channel recording electrode and a visual-computer decomposition scheme based 

on template matching and firing statistics for MUAP identification. Stalberg et al. [34] in their 

original system used waveform template matching, whereas more recently they used different 

shape parameters as input to a template matching technique. Bischoff et al. [35] reported a 

method to identify MUAPs based on power spectrum matching. Fang et al. [36] developed a 

comprehensive technique to identify single MUAP based on one-channel EMG recordings 

measuring waveform similarity of single MUAP in the wavelet domain. Wu et al. [37] 

decomposed MUAPs of needle electrode EMG signal by means of self-organization competing 

 



19 
 

neural network. Chauvet et al. [38] proposed a method that allows decomposition of EMG 

signals based on fuzzy logic techniques. Zennaro et al. [39] designed decomposition software 

for multichannel long-term EMG recordings using a wavelet-based hierarchical cluster analysis 

algorithm, which is suitable for the study of MU discharge patterns in healthy subjects. MUAP 

classification into normal, myopathic and neuropathic categories has been introduced by 

Coatrieux [40].  

 

Features of MUAPs extracted in the time domain such as duration, amplitude and phases proved 

to be very helpful in differentiating between muscle and nerve diseases with the duration 

measure being the key parameter used in clinical practice. With increasing muscle force, the 

EMG signal shows an increase in the number of activated MUAPs recruited at increasing firing 

rates, making it difficult for the neurophysiologist to distinguish the individual MUAP 

waveforms. EMG signal decomposition and MUAP classification into groups of similar shapes 

give significant information for the assessment of neuromuscular pathology. Nevertheless, the 

measurement of the duration parameter is a complicated task depending on the 

neurophysiologist and/or the computer-aided method used. The description of an extensively 

accepted criterion that will allocate the computer aided measurement of this parameter is still 

absent. On the other hand, frequency domain features of MUAPs like the mean or median 

frequency, bandwidth and quality factor give supplementary information for the assessment of 

neuromuscular disorders and it has recently been shown that the discriminative power of the 

MUAP mean or median frequency is comparable to the duration measure or the spike duration 

measure. Recent advances in computer technology have made automated EMG analysis 

feasible. Although a number of computer-based quantitative EMG analysis algorithms have 

been developed, some of them are commercially available, practically none of them have gained 

broad acceptance for widespread routine clinical use. Pattichis and Elia [41] used autoregressive 

and cepstral analyses combined with time domain analysis in classification of EMG signals. 

Also De Michele et al. [42] described how the proper use of the wavelet cross-correlation 

analysis on surface signals of the above two different muscles allows a more comprehensive 

classification of subjects and at the same time, a reliable temporal evolution analysis of 

Parkinson's disease. Pattichis et al. [43] used MUAP parameters as input to a sequential 

parametric pattern recognition classifier. Loudon et al. [44] used eight features as input to a 
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statistical pattern recognition technique for classification. The decomposition of superimposed 

waveforms used a combination of procedural and knowledge-based methods. Finally Hassoun 

et al. [45] proposed a system called neural network extraction of repetitive vectors for 

electromyography (NNERVE) and they used the time domain waveform as input to a three-

layer artificial neural network (ANN) with a "pseudo unsupervised" learning algorithm for 

classification. However, although some of these methods produce adequate results, none can 

offer interpretation of the classification results. In addition, Schizas and Pattichis [46] used 

genetics based machine learning as pattern classifiers in EMG. There are numerous limitations 

in the existing quantitative EMG analysis methods, which limit their wider applicability in 

various applications. Classification of raw EMG signal has also been done with notable 

accuracy. Using fast Fourier transformation the EMG power spectrum was examined to classify 

EMG signals. Autoregressive (AR) and the WT domain feature based classification of EMG 

signals were proposed using neuro-fuzzy classifiers [47]-[48]. 
 

1.5 Thesis Motivation  
 

In order to construct an autonomous system for a hand amputee, the control of the robotic 

exoskeleton is a challenge. The utilization of EMG signals seems to be a viable solution since 

every movement has a distinct signature on the produced signal. Several approaches to solve the 

motion command identification problem using EMG signals have been suggested, achieving in 

some cases low classification error, using not necessarily typical daily hand’s movements and a 

large number of electrodes (in most of the cases more than 4). This is an issue that can have a 

negative impact in the expenditure for the construction of a system that consists of sensors and 

electrodes and it may not be so comfortable and acceptable from a hand amputee. Therefore, it 

would be desirable, for a dexterous prosthesis, to let the amputee command a grasp posture and 

force, just by performing the corresponding action with the exoskeleton prosthetic hand. Also, a 

way to finely modulate the force involved in a grasp is paramount in daily life activities, for 

example to hold a credit card, a glass of water, a pencil, a ball without breaking it or to grasp a 

hammer without letting it slip. Moreover, it is more comfortable for a hand amputee to wear a 

glove that includes the EMG electrodes than using the rather promising electroencephalography 

(EEG) electrodes in the area of the head. This issue is of significant importance for using such a 

system in a daily basis [1]. 
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1.6 Thesis Objective 

The objectives of this thesis are:   

I. To analyze sub-frame based characteristic variation of sEMG signal for various 

neuromuscular tasks. 

II. To investigate variations of decomposed sEMG signals by utilizing various types of time 

and frequency domain decompositions techniques. 

III. To extract autoregressive reflection coefficient features from decomposed as well as 

original sEMG data. 

IV. To develop efficient classification scheme to classify various types of neuro-muscular 

movements. 

 
 

1.7 Organization of the Thesis  
 

The rest of the thesis is organized as follows: 

 

In Chapter 2, a method for hand movement classification using autoregressive reflection 

coefficient features extracted from surface EMG Signal is discussed. 

 

In Chapter 3, a method for hand movement recognition using singular value decomposition 

followed by reflection coefficient extraction from surface EMG signal is discussed.   

 

In Chapter 4, a method for hand movement recognition using discrete wavelet transform (DWT) 

of surface EMG signal followed by AR analysis in transform domain is proposed. 

 

In Chapter 5, the contribution of the thesis is summarized. 
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Chapter 2 
 

Hand Movement Classification Using 

Autoregressive Reflection Coefficient 
 

 

2.1 Introduction 
 

Electromyography (EMG) measures electrical activity in the muscle in response to nerve's 

stimulation. The surface EMG is gaining popularity because of its non-invasive acquisition 

technique and now it is being widely used in the field of biomedical engineering for different 

applications, such as prosthetic control, diagnosis of neuromuscular diseases, muscle injury 

detection, and rehabilitation. Prosthetic arms play a very valuable role as replacement to 

amputees [16]. In comparison to EEG, the myoelectric prosthetic arm is more convenient, which 

uses the EMG signals from the patient's available organ and controls movement of the prosthetic 

arm [17]. Accuracy in classifying received sEMG signal dictates the efficient control strategies 

of a robotic hand with the advances in biosensors, pattern recognition and bio-signal processing 

[18]-[20]. The use of sEMG signals for upper limb prosthesis control has attracted several 

researchers for a long time.  

For the identification of motion command from sEMG signals, different approaches have been 

suggested so far, where a large number of electrodes and a typical daily hand movement have 

been utilized. Hand action classification has been investigated by several research groups 

previously by using complex methods of decomposition and extraction of a large number of 

features from the decomposed signals. By performing empirical mode decomposition (EMD) on 

the raw sEMG signals followed by feature extraction, six different hand actions have been 

classified [9]. In this case, eight statistical features are extracted, namely integrated EMG, zero-

crossing, variance, slope-sign change, waveform length, Willison amplitude, kurtosis and 

skewness. In [11], both time and frequency domain features are extracted to classify hand actions 

from sEMG data. In [15], six wrist motions are classified based on two-channel sEMG signals 

using linear kernel support vector machine classifier. In [8], four hand motions are classified by 

the extraction of three time domain features from sEMG signals. In most of the cases, it is 

observed that the classification depends strongly on the action types and due to complicated 
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characteristics of sEMG signals compared to needle EMG signals, poor performance may occur 

for similar types of actions or actions that involve less number of motor neurons. A simple but 

efficient sEMG feature extraction scheme that offers very satisfactory classification performance 

with low feature dimension is still in great demand. 

 

In this chapter, an efficient scheme is developed for classifying different hand movements from 

sEMG signals. The given sEMG signal is split into short duration sub-frames and then in each 

sub-frame autoregressive (AR) modeling is employed to extract reflection coefficients 

recursively from autocorrelation values. These coefficients are used as proposed features in kNN 

classifier, where hierarchical clustering (h.c) approach is followed. Classification into direct six 

class, namely total classification (t.c) had also been performed in order to select an optimum 

classifier. Extensive experimentation is carried out on a publicly available sEMG database to 

evaluate the classification performance of the proposed scheme under various conditions. 

 

2.2 Database 
 
The classification requires data of various basic hand actions that involves slow twitching and 

less motor unit firing. The database also needs to include both soft and tough actions of daily 

hand movements. The database used in this thesis is a freely available online database which was 

first launched at the 35th Annual International Conference of the IEEE EMBS at Osaka, Japan in 

2013 by Christos Sapsanis, George Georgoulas, Anthony Tzes, and Dimitrios Lymberopoulos 

along with their thesis, “Improving EMG based Classification of basic hand movements using 

EMD” [9]. 

 

The database consists of the following six basic hand movements as shown in Figure 2.1: 

a) Spherical: for holding spherical tools 

b) Tip: for holding small tools 

c) Palmar: for grasping with palm facing the object 

d) Lateral: for holding thin, flat objects 

e) Cylindrical: for holding cylindrical tools 

f) Hook: for supporting a heavy load 
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Figure 2.1:  Illustration of the hand movement in the dataset: (a) Spherical, (b) Tip, (c) 

Palmar, (d) Lateral, (e) Cylindrical, (f) Hook. [9]  

 

The dataset was collected from five healthy subjects (two males and three females) of the same 

age approximately (20 to 22 years old). The speed and force were intentionally left to the 

subject’s will. For each movement the subject was asked to perform it for six seconds and the 

whole procedure was repeated 30 times for each basic movement. There were two forearm 

surface EMG electrodes (Flexor Capri Ulnaris and Extensor Capri Radialis, Longus and Brevis ) 

held in place by elastic bands and the reference electrode in the middle, in order together 

information about the muscle activation. Therefore for each subject a total of 180 6-seconds long 

2-channel EMG signals were recorded. The data were collected at a sampling rate of 500 Hz. 

Therefore, each action consists of 30 trials and for each trial the data contains 3000 samples. 

The energy content in each trial for each of the five subjects (two males: m1 and m2) and three 

females: f1, f2 and f3) are analyzed independently for all six basic movements and shown in 

figures 2.2 to 2.7. It can easily observed that for a particular type of hand action, energy content 

significantly differs among various subjects, which indicates the toughness of the problem to be 

handled i.e. classification of different types of hand actions irrespective of the subjects.  
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Figure 2.2: Energy Curve for Spherical Movement 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2.3: Energy Curve for Tip Movement  
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Figure 2.4: Energy Curve for Palmar Movement 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 

Figure 2.5: Energy Curve for Lateral Movement 
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Figure 2.6: Energy Curve for Cylindrical Movement 
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7: Energy Curve for Hook Movement 
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2.3 Proposed Method  

 
The proposed method of hand movement recognition using sEMG signal is comprised of three 

stages: creating sub-frames in each frame of data, extracting features using AR parameter and 

kNN classification. A block diagram explaining the proposed Autoregressive Reflection (AR) 

Coefficient based autocorrelation function analysis method is presented in the following figure. 

The steps involved in the proposed method, which can also be found in the figure are discussed 

in details in the following sub-sections. 

 

 
 

Figure 2.8: Block diagram explaining the Autoregressive Reflection Coefficient  method. 

 

2.3.1 Sub-Framing 
 

Instead of considering the whole duration of the test data, we have divided each trial of the raw 

EMG signal into sub frames. Dividing the long data-set into short sub-frames ensures a constant 

local mean, which is a major advantage in estimation of consistent reflection coefficients by 

assuring stationarity of the data. Computation of reflection coefficients in each sub-frame reduce 

the effect of random fluctuation in the given test frame. Even if there is any inconsistency in a 

whole test frame, it will not have significant effect on the overall performance accuracy due to 

sub-framing. On the other hand, any short duration changes in the whole test frame will be 

reflected in the corresponding sub-frame based estimation. EMG data vary with time, the neural 

firings do not remain same throughout the whole six seconds and the applied stress levels also 

vary from beginning to end of any action. This variation pattern will also be different for 

different movements. Framing of the test data helps to capture these changes in terms of the 
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extracted reflection coefficients. Here we have divided each trial of the test data of 3000 samples 

into an optimum number of 20 sub-frames, each having 150 samples. The sub-frame duration of 

the test data is an important factor. Too large a frame would have no additional advantage over 

taking the whole data-set, resulting non-stationary data with variable mean and non-consistent 

reflection coefficients. Again, if the sub-frame duration is too small, it may not contain any 

significant information that we want to extract from reflection coefficients. The optimum 

number of sub-frame is found to be 20 by experimentation. 

 

 

 

 

2.3.2 Feature Extraction 

 
A feature extraction scheme is proposed based on analysis of sub-framed EMG signal in order to 

perform the basic hand movement classification. Each sub-frame of 150 samples can be regarded 

as locally stationary. Each of these sub-framed data can be modeled as the output of a linear time 

invariant (LTI) autoregressive (AR) system [21] expressed as  

          

                                     (2.1) 
 
Where u(n) is white Gaussian noise with a mean equal to zero and non-zero variance σu

2, {ak} 

are the AR parameters (generally referred to as linear prediction coefficients) and x(n) is the 

modeled output. Another point to be noted is that the AR system in question is causal. AR 

parameters have found extensive use as features in one-dimensional signal processing. Yule-

Walker equations are employed to make an estimation of the AR parameters. These equations 

are given  
 

 
  (2.2) 

Where δ(m) is the Kronecker delta function and rx(m), the autocorrelation function of  x(n) with 

length N, can be estimated as 
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                       (2.3) 

 
0, 1, 2,…, P. This will make matrix inversion compulsory, which may in turn end up being 

problematic considering the database in question. One other hurdle to be faced when using AR 

parameters as the only features during feature extraction is the significant variation in the values 

of the coefficients. Such variation in feature may lower the classification accuracy to a 

significant extent. With these obstacles in view, we have forgone the use of AR parameters as 

features. In lieu of AR parameters, we have opted for the use of reflection coefficients to 

distinguish the six basic hand movements. The i-th reflection coefficient (ki) is in effect a 

measure of correlation between current output x(n) and i samples past output x(n−i) after having 

filtered the intermediary observations x(n−1) to x(n−i+1). The reflection coefficients can be 

determined by making use of the following set of recursive equations for i = 1, 2,…, M. 

              
             (2.4) 

 
 
 
 
Here initially, E0 = rx(0) and a0 = 0. Keeping in view the disadvantages of using AR parameters 

to construct our feature set, utilizing reflection coefficients in this regard is the much better 

option. The points made below are some of the reasons why it is advantageous to use reflection 

coefficients for signal classification: 

 
1. The absolute value of each reflection coefficient is less than 1 when the AR 

system is not unstable. As EMG signal is essentially the electrical activity of muscle and 

as it is safe to assume that EMG signal is locally stationary with the ability to be modeled 

as the output of a stable system, reflection coefficients will not exceed the value of 1. 

Such limitation in value is not achievable in the case of AR parameters seeing as their 

values differ from one another significantly. 

 
2.  EMG signals recorded in a laboratory setup are bound to get corrupted by 

different types of noise, especially if the equipment being used for signal extraction is of 

poor quality or if procedural mistakes are made. Reflection coefficients have much higher 
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immunity to noise than AR parameters. So using reflection coefficients as features to 

perform signal classification is the prudent course of action. 

 
3. For slight differences in values of coefficients, reflection coefficients have the 

ability to render localization of spectral errors. 

 

4. In order to determine reflection coefficients we do not have to go for the 

computationally expensive matrix inversion approach. Rather, a simple set of recursive  

equations afford us the required coefficients. 

 
5. The reflection coefficients are determined iteratively by utilizing autocorrelation 

values. So increasing the number of reflection coefficients from P to P+1will provide us 

with simply one new coefficient; the rest of the coefficients will remain unchanged. On 

the contrary, increasing the AR model order by 1 will give us a completely new set of AR 

parameters. 

 
Therefore, reflection coefficients can be used effectively to construct our feature vector for EMG 

signal classification. Another point of consideration, however, is the determination of the 

optimum model order for the database in question which will afford us with satisfactory 

classification accuracy. Here, the optimum number of reflection coefficients has to be chosen 

based on experimentation. In our case the best accuracy was obtained for an order of 20. 

Therefore, 20 reflection coefficients were obtained for each sub-frame, the mean of which are 

computed in order to reduce the feature dimension, thus each feature is converted from 20x20 to 

20x1. 

 

2.3.3 Classification 
 

In the proposed method, classification was done by the k-nearest neighborhood (kNN) classifier. 

The kNN algorithm is a non-parametric method used in pattern recognition. For the purpose of 

classifying the hand movements, the value of k was set equal to 5. The classifier in question 

considers a distance function that is computed between the feature set of the test data and 5 

neighboring patterns in the training data set. In the proposed method, classification is done using 
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just the reflection coefficients obtained by fitting the EMG data to a twentieth order AR model. 

These coefficients are the only extracted features of the filtered EMG data and no additional 

statistical features need to be cascaded with these coefficients in order to perform the hand 

movement classification satisfactorily. Thus a lot of computational time can be saved. Here we 

have performed signal classification by adopting two different approaches. One approach 

constitutes the classification of the EMG signals into two different classes in the beginning, and 

then further classifying each class into three different classes, referred to as hierarchical 

classification (h.c). The second approach constitutes the direct classification of the signals into 

six different classes, namely total classification (t.c). It is observed that for the dataset used in 

this thesis, the first approach is more suitable as the classifier faces a relatively easier task at the 

beginning: two class problem with significant class separation. Three of the actions (cylindrical, 

hook and spherical) are far more forceful than the other three (palmar, lateral and tip). So, going 

ahead with two class classification and then classifying the members of these two classes into 

three different classes is expected to offer better classification performance. 

 

2.4 Simulation Results 
 

The performance of the above proposed method has been investigated by simulation in terms of 

classification accuracy. A brief overview of the major steps involved in the proposed method is 

presented with the help of a block diagram shown in figure 2.8. First the raw data is preprocessed 

where basically the overlapping sub-frames are constructed from the filtered data. Next the 

proposed feature, that is AR reflection coefficients are extracted using autocorrelation function. 

After feature extraction, the reflection coefficient vectors have been directly fed into kNN 

classifier. The features have been classified first into two classes and then three classes, referred 

to as hierarchical classification (h.c). Classification into direct six classes namely total 

classification (t.c) had also been performed in order to select an optimum classifier. In order to 

investigate the classification performance results obtained are shown in the Table 2.1. 
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Table 2.1 Comparison of Classification Accuracy Using Autoregressive Reflection Coefficient  

 

Subject Percentage Accuracy (%) 

Proposed method 

h. c(Class 2 then class 3) 

Proposed method 

t. c (Direct Class 6) 

[9] 

Female-1 94.333   (%) 89.556   (%) 85.24 (%) 
Female-2 82.444   (%) 81.444   (%) 83.88 (%) 
Female-3 97.778   (%) 97.889   (%) 84.82 (%) 
Male-1 98.333   (%) 94.667   (%) 86.92 (%) 
Male-2 96.444   (%) 95.000   (%) 92.38 (%) 
Average 
Accuracy 

93.8664 (%) 91.7112 (%) 86.65 (%)  

 
 

Table 2.2 depicts the confusion matrix showing which hand movement is obtained in the output 

for corresponding input movement. For instance, in the fifth row of table II we can see that the 

lateral action is detected 28 times when the input action is lateral. However, the lateral action is 

erroneously detected as palmar once and it is also wrongly detected as tip once. These errors are 

not unexpected since these three actions can be categorized as actions requiring less force. So it 

is only to be expected that the lateral hand movement will not be confused with actions requiring 

greater force. 

 

As mentioned before, only reflection coefficient of the AR parameters has been used as the 

feature for classification in comparison to eight features of the decomposed EMG signals 

mentioned in [9]. A major problem of AR modeling is to determine the model order appropriate 

for a given data. However, increasing the number of reflection coefficients by one means only 

one new coefficient is generated. This provides an opportunity to determine the optimum order 

which gives the maximum accuracy. Thus by means of iterative methods, an optimum order of  

20 has been found to provide the highest accuracies as shown in the table above. 
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Table 2.2 Confusion Matrix for Female 2 
 
Actions Actions 

Cylindrical Hook Spherical Palmar Lateral Tip 
Cylindrical 30 0 0 0 0 0 
Hook 0 30 0 0 0 0 
Spherical 0 0 30 0 0 0 
Palmar 0 1 0 29 0 0 
Lateral  0 0 0 1 28 1 
Tip 0 0 0 0 3 27 
 
 
 

Table 2.3 Confusion Matrix for Male 2 
 
Actions Actions 

Cylindrical Hook Spherical Palmar Lateral Tip 
Cylindrical 30 0 0 0 0 0 
Hook 0 30 0 0 0 0 
Spherical 0 0 30 0 0 0 
Palmar 0 0 0 30 0 0 
Lateral  0 1 0 0 29 0 
Tip 0 0 0 0 0 30 
 
 

The effect of sub-framing the signals on the classification accuracy is also shown in the tables. In 

order to get a visual feel of how changing the order of the AR model affords us different results, 

we have plotted the variation of reflection coefficients corresponding to different trials for each 

action. Here only the effects of AR model of order 20 and 10 have been compared. But all orders 

less than 20 had been put to the test and the optimum order had ended up being 20. In Figure 2.9 

we have shown how the sixth reflection coefficient (picked arbitrarily for the purpose of 

visualizing feature changes) varies for each action of female 1 when the AR model order is 20 

and how the fourth reflection coefficient varies for each action of the same subject when the AR 

model order is 10. In Figure 2.10 feature variations have been depicted in the same manner but 

for female 2. In Figure 2.11 two plots are shown; in the first plot we have depicted how the 

eighth reflection coefficient varies with trial of each action of male 2 when the AR model order 

is 20 and in the second plot we have shown how the fourth reflection coefficient varies with trial 

for each action of the same subject when the AR model order is 10.  
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Figure 2.9: How reflection coefficient vary with trial in the case of each action of female 1 when 

filter order is 20 and when filter order is 10 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: How reflection coefficient vary with trial in the case of each action of female 2 

when filter order is 20 and when filter order is 10 
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Figure 2.11: How reflection coefficient vary with trial in the case of each action of male 2 when 

filter order is 20 and when filter order is 10 

 
Figure 2.9, Figure 2.10 and Figure 2.11 prove that the actions are more distinguishable when the 

AR model order is 20. When the order is less than 20, the six actions of a particular subject lose 

their distinguish ability to a considerable extent. The variation of accuracy for different AR 

model order for male 2 is depicted in Figure. 2.12. It can be inferred from the figure that the 

optimum number of reflection coefficients that affords the best classification accuracy is 20. 

Also, it is seen from Fig. 2.13 that order 20 is the optimum AR order for which satisfactory 

classification accuracy can be achieved for all five subjects. 
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Figure 2.12:  How accuracy varies for different AR model order for male 2 

 
 

 
Figure 2.13. How accuracy varies for different AR model order for all five subjects 
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2.5 Conclusion 

 
For the classification of six basic hand movements, it is observed that reflection coefficients 

offer quite satisfactory feature quality when the AR model order is chosen relatively higher, such 

as 20 due to wide spectral characteristics of sEMG signal. The hand movements can easily be 

divided into two classes depending on number of neural firing and motor unit engagement. This 

difference in biomedical phenomena is clearly reflected in the proposed feature vectors; 

especially the six types of movements can easily be classified into two types and each of these 

two types can be further classified. Hence, hierarchical kNN classification is proposed to obtain 

better performance. Instead of extracting the feature considering the entire frame, sub-frames are 

created and then AR reflection coefficients are computed on each of those sub-frames. Finally 

the average of the extracted reflection coefficients is considered as feature. Conventional 

techniques involve computation of several statistical features. However, the advantage of the 

proposed method is that it only requires computation of reflection coefficients which can provide 

consistently high classification accuracy. But the study in question is limited to just six basic 

hand movements. It remains to be seen how well the proposed method holds up in the case of a 

greater number of hand actions. Further development of our proposed method can surely 

contribute in the sector of prosthetic arms development and even in the classification of various 

neuromuscular diseases. 
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Chapter 3 

Hand Movement Recognition Using Singular 

Value Decomposition of Surface EMG Signal 
 

3.1 Introduction 

 
Electromyography (EMG) is a representation of electrical activity of muscle cells, which 

originates in response to a nerve's stimulation. It can either be obtained via needle or via surface 

electrodes (sEMG). The use of sEMG is of great interest to researchers because of its non-

invasive acquisition technique and now-a-days it is being extensively used in various 

applications, such as prosthetics development, identification and classification of several 

neuromuscular diseases, muscle injury identification, and rehabilitation. Prosthetic arms provide 

a new lease on life to the people who have had to be amputated [22]. Unlike 

electroencephalogram (EEG), the myoelectric prosthetic arm is easier to manipulate. It makes 

use of the EMG signals from the patient's organs and manipulates movement of the prosthetic 

arm [17]. Success in classifying acquired sEMG signal influences the degree of effectiveness of 

control strategies of a robotic hand with advancements in biosensors, pattern identification and 

biological signal processing. Hand movement recognition has been looked into in the past by 

several scholars and they had used complicated and time consuming techniques of signal 

decomposition and extraction of quite a few features from the decomposed signals. By 

decomposing the sEMG signals via empirical mode decomposition (EMD) and then obtaining 

features from the EMD decomposed signals, different hand movements are classified with the 

help of the linear discriminant analysis [9]. Some commonly used measures used as features are 

zero-crossing, slope sign change, waveform length, Willison amplitude, integrated EMG, 

variance, kurtosis and skewness [9],[11]. In [15], two-channel sEMG signals are classified via a 

linear kernel support vector machine (SVM). In [8], four hand actions are differentiated 

employing various time domain features. It is observed from these studies that due to noise like 

characteristics of sEMG signals, poor classification accuracy may be obtained for similar types 

of movements. A straightforward yet effective feature extraction technique that results in 
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relatively acceptable classification performance with a reasonably small feature dimension is yet 

to be put forth. 

 

In this chapter, an effective scheme is brought to light for the purpose of identifying different 

hand movements from sEMG signals. A frame of sEMG signal is divided into overlapping sub-

frames and then singular value decomposition is applied. The singular value decomposed data 

are then used for AR analysis and obtaining reflection coefficients. The average values of the AR 

reflection coefficients obtained from different sub-frames are proposed as features to be used by 

the k nearest neighbor (kNN) classifier to perform the classification. Experimentation is carried 

out on the same sEMG database mentioned in the previous chapter to examine the classification 

accuracy of the technique put forward here under several different conditions. 

 
3.2 Proposed Method 
 
The proposed method of hand movement recognition using sEMG signal is comprised of three 

stages: creating sub-frames in each frame of data, extracting features using the SVD based AR 

analysis and kNN classification. A block diagram explaining the proposed SVD based AR 

analysis method is presented in the following figure. The steps involved in the proposed method, 

which can also be found in the figure are discussed in details in the following sub-sections. 

 

 

 

 

 

 

 

Figure 3.1: Block diagram explaining the proposed SVD based method. 
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3.2.1 Sub-Framing 
 
Instead of working on the entire duration of the sEMG signals, we have first created several sub-

frames from each sEMG signal. Obtaining short sub-frames from each trial of sEMG signal 

removes the possibility of inconsistency in the computation of singular values to a considerable 

extent by assuring stationarity of the data. Even if there are any inconsistencies present in the 

whole test data, it will not noticeably affect the overall classification accuracy owing to the fact 

that we are working with short duration sub-frames. On the contrary, any short duration 

fluctuations in the whole test data due to hand movement variation will be reflected in the 

corresponding sub-frame based estimation. sEMG data generally change with time; the neural 

firings keep changing throughout the whole six seconds and the applied pressures also do not 

remain constant from the beginning to the end of any action. The pattern of the changes will also 

be different for different hand actions. Sub-framing of the sEMG signals helps to identify these 

changes indirectly through changing singular values feature. 

 
Each trial of the test data is divided into overlapping sub-frames. The length of the sub-frame 

and overlaps are chosen in such a way that the SVD can be performed. The overlapping nature of 

the sub-frames ensures smooth variation of the features across the sub-frames. The sub-frame 

duration is an important factor as the SVD is to be employed. Too large a frame would have no 

additional advantage over taking the whole data-set, resulting nonstationary data with variable 

mean and nonconsistent features. Again, if the sub-frame duration is too small, it may not 

contain any significant information and will be very difficult to carry out SVD analysis.  

 
 
3.2.2 Feature Extraction 
 
A feature extraction scheme is proposed based on analysis of sEMG signal with a view to 

performing hand movement classification. From a given frame of sEMG data, some overlapping 

sub-frames are extracted and it is ensured that each sub-frame contains reasonably small number 

of samples. The reason behind considering the small duration of sub-frames is to extract 

precisely the local variation of motor unit action potentials (MUAPs) due to various hand 

actions. If large duration frames or sub-frames are taken, one may expect less consistency in the 
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behavior of MUAPs. Moreover, a very small time shift is preferred to increase the chance of 

getting more sub-frames that are capable of capturing the entire characteristics of muscle firing. 

In general, sEMG data are very noisy unlike needle EMG signals. In order to exclusively observe 

the behavior of MUAPs due to various hand actions, it is desirable to design a feature extraction 

algorithm which is immune to noise or which can extract features after reducing the effect of 

noise. One possible way that is proposed in this thesis is to construct sub-frames of  sEMG data 

with overlapping between sub-frames assuming that a very small time shift is chosen while 

creating the sub-frames. The singular value decomposition (SVD) algorithm is well known for its 

application in noisy data. The noise in sEMG data can be considered to be an unwanted signal 

with small but randomly changing amplitude added to the signal we want to work with. Singular 

value decomposition (SVD) expresses an m-by-n matrix X can be written as 

 
X = U*S*V' 

Here, S is an m-by-n diagonal matrix with singular values of X on its diagonal. The columns of 

the m-by-m matrix U are the left singular vectors for corresponding singular values. The 

columns of the n-by-n matrix V are the right singular vectors for corresponding singular 

values. V' is the Hermitian transpose (the complex conjugate of the transpose) of V. We have 

opted SVD by using widely acceptable matlab built-in function. It is expected that the singular 

values are very much distinguishable for different actions and can provide better features. The 

Figure.3.1 shows the sub-frame signal versus SVD signal.   

 

After performing the SVD on each sub-frame of sEMG data, on the resulting singular value 

decomposed data, AR analysis is carried out to extract AR reflection coefficients in a similar 

way as presented in Section 2.3.2. From the extracted sub-frame based AR reflection 

coefficients, an averaging is performed to construct the final feature vector, which depends on 

the order of the AR model.  
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Figure 3.2: Sub-frame signal versus SVD signal  

 

  
3.2.3 Classification 
 
In our proposed method, classification was performed by the K-nearest neighborhood (kNN) 

classifier. The K-nearest neighbor algorithm is a non-parametric method widely employed in 

pattern recognition. In order to perform the classification of the hand movements in question, the 

value of K was set equal to 5. The kNN classifier happens to consider a distance function [1] that 

is determined between the feature vector of the test data and the training data set.  

 

3.3 Simulation Result 

 
In the method put forward here, classification is performed using the mean AR reflection 

coefficient features obtained from the singular values of the sub-frames of sEMG signal. Each 

trial (or frame) of the test data consists of 3000 samples and we divide the frame into an 

optimum number of 20 sub-frames, each having 150 samples, which is found suitable for 

employing SVD. The mean AR reflection coefficients are the only extracted features of the sub-



44 
 

frames generated from a frame of sEMG data and no additional statistical features need to be 

added to these parameters obtained via singular value decomposition in order to perform the 

hand movement classification. In this way a great deal of computational time can be saved. 
 
The performance of the method proposed above has been examined via simulation with regards 

to classification performance. Right after feature extraction, the feature vector comprised of 

mean AR reflection coefficient extracted from the singular values of the sub-frames has been 

directly used in the kNN classifier to perform the classification. The features have been 

categorized first into two classes and then three class (h.c). Classification into direct six classes 

(t.c) had also been performed, but it is found from the accuracies that the former method 

provides comparatively better accuracy. The comparative performance analysis is shown in the 

Table 3.1. 
 

 

 

Table 3.1 COMPARISON OF CLASSIFICATION ACCURACY USING SINGULAR 
VALUES DECOMPOSITION 

Subject Percentage Accuracy (%) 

Proposed method 

h. c (Class 2 then 

class 3) 

Proposed method 

t. c (Direct Class 6)  

[9] 

Female-1 94.333 (%) 90.667 (%) 85.24 (%) 
Female-2 80.556 (%) 80.667 (%) 83.88 (%) 
Female-3 98.889 (%) 97.889 (%) 84.82 (%) 
Male-1 97.778 (%) 95.333 (%) 86.92 (%) 
Male-2 96.889 (%) 96.222 (%) 92.38 (%) 
Average 
accuracy 

94.333 (%) 90.667 (%) 86.65 (%)  

 

This is because three of the actions in the database we are working require greater force 

(cylindrical, hook and spherical) and the rest three do not require a great amount of force 

(palmar, lateral and tip). As such it stands to reason that first identifying whether the action being 

classified is a more forceful action or not will ultimately ensure greater classification accuracy. 

The last column of Table 3.1 contains the classification accuracy obtained via the method 

proposed in [9]. But in order to make a fair comparison kNN classifier has been used to 
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implement the method of [9] in lieu of LDA classifier with the value of K being 5 in all the 

cases. 

The confusion matrix shown in Table 3.2 depicts which hand movement is obtained in the output 

for corresponding input movement for Male 2. 

 

Table 3.2 CONFUSION MATRIX FOR MALE 2 
 
Actions Actions 

Cylindrical Hook Spherical Palmar Lateral Tip 
Cylindrical 28  0  2  0  0  0  
Hook 0  30  0  0  0  0  
Spherical 2  0  28  0  0  0  
Palmar 0  0  0  28  0  2  
Lateral 0  0  0  1  21  8  
Tip 0  0  0  2  1  27  
   

Table 3.3 CONFUSION MATRIX FOR FEMALE 1 
 

Actions Actions 

Cylindrical Hook Spherical Palmar Lateral Tip 
Cylindrical 22  8  0  2  0  0  
Hook 10  17  3  0  0  0  
Spherical 1  4  25  0  0  0  
Palmar 0  0  0  28  2  0  
Lateral 0  1  0  1  28  1  
Tip 0   0  0  2  1  29  
 
 

For instance, in the fifth row of Table 3.2 we can see that the lateral action is detected 21 times 

when the input action is lateral. However, the lateral action is erroneously detected as palmar 

once and as tip no less than 8 times. These mistakes made by the classifier can be justified seeing 

as these three actions are movements associated with a lower amount of force. Therefore it is 

quite natural that the lateral hand movement will not be mistaken for actions associated with 

greater force. In the same way, in the sixth row of Table 3.2 it can be observed that the tip action 

is recognized as itself twenty-seven times. But twice the classifier has been misled to believe that 

the tip action is the palmar hand movement and once the tip action is wrongly detected as the 

lateral hand movement. As the palmar, lateral and tip actions belong to the category of less 

forceful hand actions, such error is really not surprising. We can think that movements requiring 
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force of a similar range have similar neural firing. Therefore it can be said that the sEMG signals 

of the database in question can be easily differentiated into two separate categories on the basis 

of corresponding neural firing. The confusion matrix depicted in Table 3.3 is exactly the same as 

that of Table 3.2 except that it represents how input and output vary for Female 1. As can be 

inferred from observing the tables, the classification accuracy for Male 2 is higher than that of 

Female 1, which is consistent with our findings presented in Table 3.1. 

 

               
 

 
Figure 3.3: How energies vary with singular values of trials in the case of each action of Male 1 

  
 

Only mean AR reflection coefficients have been used as the features for classification in 

comparison to the eight features of the decomposed EMG signals mentioned in [9]. Here, we 

have divided an entire frame of data into overlapping sub-frames and then SVD is performed. 

This approach requires optimum selection of sub-frame duration and also optimum number of 

sub-frames. Sub-frame duration of 150 samples has been found suitable to provide better 

accuracies as shown in the tables above. The classification accuracy for each subject computed 

by our proposed method is compared with the classification accuracy computed with the method 

proposed in [9] in Table 3.1. 

 
In order to visualize how distinguish ability between the energies in singular values of different 

actions, we have plotted the variation of energies in singular values corresponding to different 

trials of each action of the same subject (Male 1) in figure 3.3 considering 20 sub-frames. As can 

be seen quite clearly from figure 3.3, distinction among the actions can be made more easily. A 
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similar analysis is shown in figure 3.4 for female 2. As we can see, the distinguish ability 

between the singular values is quite high. So, singular values were used to compute AR 

reflection coefficients. The variation of accuracy for different sub-frame durations for Female 2 

and Male 1 are depicted in figure 3.5 and figure 3.6, respectively. Similar graphs for the other 

three subjects are achieved for all five subjects.  

 
 

 
 
Figure 3.4:  How energies vary with singular values of trials in the case of each action of Female 
2 when sub-frame is 20 
 
From figure 3.5 and figure 3.6, it can be observed that 300 ms duration for a sub-frame can be 

chosen with satisfactory performance. The reason why we get high classification accuracy taking 

short sub-frames is that each trial of each sEMG signal representing an action is made up of 

several Motor Unit Action Potentials (MUAPs). Neural firing of muscle cells are the reason 

these MUAPs originate. It stands to reason each MUAP of a particular action will have 

characteristics distinct from the other constituent MUAPs. As neural firing of muscles occurs for 

an infinitesimally short duration we have opted for short duration sub-frames. 
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Figure 3.5: How accuracy happens to vary for different sub-frame duration in case of Female 2 
 

 
 

Figure 3.6: How accuracy happens to vary for different sub-frame duration in the case of Male 1 
 
The study that has been conducted here is a contribution to the sector of prosthetic arms 

development. Amputees can gradually go back to leading normal lives if they are provided with 

successfully developed prosthetic arms. These arms detect the sEMG generated by the 

undamaged nerve cells and in response to the nerve activity these arms perform the tasks that the 

patient wants accomplished. The alternate approaches to prosthetic arms development are brain 

controlled prosthetic arm and voice controlled prosthetic arm. However, it should be kept in 

mind that the EEG signals (representations of the electrical activity of the brain) are exceedingly 

weak. On top of that they are quite noisy and additionally EEG sensors are quite expensive. As 
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for voice regulated arms, they will disrupt the normal conversational flow of the patient. A 

cheaper and more convenient approach, therefore, is the use of sEMG signals in order to control 

the prosthetic arm. Furthermore, our study can also contribute to the detection and classification 

of various neuromuscular diseases minor ones like muscle fatigue or even major ones like 

Parkinson’s. It is indisputable that sEMG signals are different in a healthy subject and a subject 

suffering from a neuromuscular disease or disorder. 

 
3.4 Conclusion 
 
For the classification of hand movements, it is observed that the features provide satisfactory 

feature quality when the number of sub-frames is 20. The hand movements can be categorized 

into two classes depending on number of neural firing and motor unit engagement. This 

difference in biomedical phenomena is clearly reflected in the proposed feature vector. The six 

types of movements can easily be classified into two types and each of these two types can be 

further classified into three types. Hence, hierarchical kNN classification is proposed to obtain 

better results. Instead of extracting the feature considering the entire frame, sub-frames are 

created and then singular values are computed from each of those sub-frame matrices. Finally 

these singular values along with the mean are considered as features. Conventional techniques 

involve computation of several statistical features [9]. However, the advantage of the proposed 

method is that it requires computation of features which can provide consistently higher 

classification accuracy than the results obtained in [9]. But the study in question is limited to just 

six basic hand movements. It remains to be seen how well the proposed method holds up in the 

case of a greater number of hand actions. Further development of our proposed method can 

surely contribute in the sector of prosthetic arms development and even in the classification of 

various neuromuscular diseases. 
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Chapter 4 

Hand Movement Recognition Using Discrete 

Wavelet Transform of Surface EMG Signal 
 

4.1 Introduction 
 
Electromyography (EMG) refers to the collective electric signals from muscles, which is 

controlled by the nervous system and produced during muscle contraction. The signal represents 

the anatomical and physiological properties of muscles; in fact, an EMG signal is the electrical 

activity of a muscle’s motor units. EMG signal has a variety of clinical and biomedical 

applications. EMG is used as a diagnostics tool for identifying neuromuscular diseases, or to 

detect level of muscle fatigue, and disorders of motor control. EMG signals are also used as a 

control signal for prosthetic devices, such as prosthetic hands, arms and lower limbs [16]- [17]. 

There are two kinds of EMG: surface EMG (sEMG) and needle EMG (nEMG). Surface EMG 

assesses muscle function by recording muscle activity from the surface above the muscle on the 

skin. Needle EMG is recorded using needle electrode inserted into a muscle for exact detection 

of the signal from contracted muscle. Needle EMG is an invasive process, thus is not applicable 

for purposes other than disease detection. On the other hand surface EMG is non-invasive and 

can be simply recorded from above the surface of the skin. As a result widespread potential 

applications for surface EMG signal classification and control have been reported in the last two 

decades including multifunction prosthesis, electrical wheelchairs, virtual mouse and keyboard, 

and virtual worlds. Surface EMG can be recorded by a pair of electrodes or by a more complex 

array of multiple electrodes. More than one electrode is needed because EMG recordings display 

the potential difference (voltage difference) between two separate electrodes. But working with 

surface EMG brings about some challenges due to the fact that surface electrode recordings are 

restricted to superficial muscles, are influenced by the depth of the subcutaneous tissue at the site 

of the recording which can be highly variable depending of the weight of a patient, and cannot 

reliably discriminate between the discharges of adjacent muscles. For the identification of 

motion command from sEMG signals, different approaches have been suggested where typical 

neuromuscular tasks and a large number of electrodes are considered [3]. In [6], four 
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neuromuscular tasks are differentiated employing various time domain features. By 

decomposing the sEMG signals via empirical mode decomposition (EMD) and then obtaining 

features from the EMD decomposed signals, different hand movements are classified with the 

help of the linear discriminant analysis [9]. Some commonly used features are zero-crossing, 

waveform length, Willison amplitude, and integrated EMG [9]-[11]. Frequency domain analysis 

is also performed to classify sEMG signal [12]-[14]. In [15], six wrist motions are classified 

utilizing wavelet decomposition on the entire frame and linear kernel support vector machine 

(SVM) classifier. It is observed from these studies that due to noise like characteristics of sEMG 

signals, poor classification accuracy may be obtained for similar types of neuromuscular actions. 

To overcome the problem, in many cases, a very high feature dimension is used. An efficient 

scheme of extracting features from decomposed subframe of sEMG signal, which offers very 

satisfactory classification performance with low feature dimension is still in great demand.  

 
In this thesis, we propose an EMG based basic hand movement detection using discrete wavelet 

transform (DWT) data and unlike previous proposed methods, extracted the reflection 

coefficients from the DWT of sEMG data for features. The goal is to develop efficient 

classification scheme to detect various types of hand movements where six classes of movements 

are to be classified. Wavelet coefficients were extracted from preprocessed raw EMG data. Then 

autoregressive reflection coefficients were calculated. The kNN classifier was used to recognize 

the signal of different movement classes from features extracted from wavelet coefficients. This 

method increases the classification accuracy as well as reduces the computational time as only 

one feature set is used. 

 

4.2 Proposed Method 
 

The method proposed in this chapter for the classification of basic hand movements using 

surface EMG constitutes the following steps: sub framing of the surface EMG signal, feature 

extraction and classification. A block diagram explaining the proposed method is presented in 

the following figure. The steps involved in the proposed method, which can also be found in the 

figure are discussed in details in the following section. 
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Figure 4.1: Block diagram explaining the proposed DWT based method 
 

 

4.2.1 Sub-Framing 
 

Instead of considering the whole duration of the test data, we have divided each trial of the raw 

EMG signal into sub frames. Dividing the long data-set into short sub-frames ensures a constant 

local mean, which plays a major role in applying the DWT followed by AR analysis assuring 

stationarity of the data. Computation of DWT based features in each sub-frame, instead of 

computing in the whole frame, reduces the effect of random fluctuation in the given test frame. 

Even if there is any inconsistency in a whole test frame, it will not have significant effect on the 

overall performance accuracy due to sub-framing. On the other hand, any short duration changes 

in the whole test frame will be reflected in the corresponding sub-frame based estimation. 

 
EMG data vary with time, the neural firings do not remain same throughout the whole six 

seconds and the applied stress levels also vary from beginning to end of any action. This 

variation pattern will also be different for different movements. Framing of the test data helps to 

capture these changes in the DWT coefficients and consequently in AR analysis on those 

coefficients. Here we have divided each trial of the test data of 3000 samples into an optimum 

number of 20 sub-frames, each having 150 samples, which is found suitable for employing 

DWT. The sub-frame duration of the test data is an important factor as the DWT is to be 

employed. Too large a frame would have no additional advantage over taking the whole data-set, 

resulting nonstationary data with variable mean and nonconsistent coefficients. Again, if the sub-

frame duration is too small, it may not contain any significant information and will be very 

difficult to employ the DWT. The optimum number of sub-frame is found to be 20 by 

experimentation. Since our target is to focus on each of the points in the signal where muscle is  
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Figure 4.2: 300 msec long overlapping windows to compute the DWT 

 

 

contracted, in this work we selected the overlapping approach with time windows of 300 msecs 

(150 data points) and an overlap of 270 msecs (or a time leap of 30 msecs) which is shown in 

Figure 4.2. 

  
 

4.2.2 DWT Based Feature Extraction  
 
The DWT is a multi-resolution technique that offers localization both in time and frequency 

[25]–[30]. It exhibits good frequency resolution at low frequencies and good time resolution at 

high frequencies. Moreover, it offers the advantages of low computational cost and ease of 

implementation. Hence, the DWT is chosen to extract features from the EMG signal. The DWT 

of a signal x[n] can be obtained as 
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   𝐶(𝑎, 𝑏) = ∑ 𝑥[𝑛]𝑛𝜖𝑍 𝜓𝑎,𝑏 [𝑛]                   (4.1) 
        
where a is the dilation or scale, b the translation, and  ψa,b  represents the discrete wavelet which 

is expressed as  

   𝜓𝑎,𝑏 (𝑛) = (
1

√𝑎
) ∗ 𝜓(

𝑛−𝑏

𝑎
)         (4.2) 

 

For dyadic wavelet transform, a=2-j,   b=k*2-j ,      𝜓𝑎,𝑏 (𝑛) = 2𝑗/2 ∗ 𝜓[2𝑛−𝑘
𝑗

] with k𝜖𝑍,   𝑗𝜖𝑁. 

The DWT analyzes decomposing the signal into a coarse approximation and detail information. 

The original signal x[n]  being filtered via high pass filter h[n]  and a low pass g[n]  produces 

output of the first level decomposition, which can be respectively expressed as 
 

    𝑦ℎ𝑖𝑔ℎ  [𝑘] = ∑ (𝑥𝑛 [𝑛] − ℎ[2𝑘 − 𝑛])                          (4.3) 

   𝑦𝑙𝑜𝑤  [𝑘] = ∑ (𝑥𝑛 [𝑛] − 𝑔[2𝑘 − 𝑛])                                               (4.4) 
 

It is to be mentioned that yhigh[k] and ylow[k] are obtained after performing a down sampling by 2 

operation. The above procedure can be repeated for further decomposition. A simplified block 

diagram explaining the above DWT operation at level 1 is depicted in Figure 4.3. after the low 

pass filtering and downsampled operation, one will obtain approximate coefficients (cA1) and 

after the high pass filtering and downsampled operation, one will obtain detail coefficients (cD1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Block diagram representing the level-1 DWT on sEMG signal s[n] 
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Figure 4.4: Sub-frame Signal versus DWT (cA and cD) Signal  

 

Considering a sub-frame of sEMG data, the output of the level-1 DWT operation is shown in 

Figure 4.4. It is to be mentioned that, at every level of decomposition, the filtering and down-

sampling will result in half the number of samples and half the frequency band spanned which is 

shown in Figure 4.4.  

 

The efficiency of DWT decomposition is dependent on the appropriate selection of the mother 

wavelet function. Wavelet transform is mostly based on the mother wavelet function which 

identifies the correlated coefficients across multiple signals [24]. The classification and 

identification accuracy of the analyzing signal depends on the similarity between the mother 

wavelet function and the wavelet coefficients. The Daubechies (db) wavelet functions have been 

applied in several areas of research with the lower orders (db1 to db20) used most often [23].  

There are some general guidelines to select the wavelets, such as Db4 is more suitable for signals 

that have linear approximation over the support of four samples. While Db6 is better suited for a 

signal approximated by a quadratic function over the support of six. Coiflet6 provides better data 

compression results while Db4 is more suitable for feature extraction [31]. For the feature 

extraction Db4 has been used here. According to Phinyomark et al. Daubechies wavelet function 
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with 2nd orders (db2) provide marginally better performance with a suitable decomposition level 

four. Some showed that db7 at level two works better. We choose db4 at level 1.  

 

After performing the DWT on each sub-frame of sEMG data, the resulting wavelet transformed 

data are used for AR analysis and extracting AR reflection coefficients in a similar way as 

presented in Section 2.3.2. From the extracted sub-frame based reflection coefficients, an 

averaging is carried out to get the final feature vector, which depends on the order of the AR 

model.  

  

4.2.3 Classification 
 

In the proposed method classification is done by the k-nearest neighborhood (kNN) classifier. 

The k nearest neighbor algorithm is a nonparametric method used in pattern recognition. For the  

purpose of classifying the hand movements, the value of K is set equal to 5. The classifier in 

question considers a distance function [11] that is computed between the feature set of the test 

data and 5 neighboring patterns in the training data set. In the proposed method, classification is 

done using just the reflection coefficients obtained by fitting the DWT coefficients extracted 

from the sEMG data. As mentioned before, here a twentieth order AR model is chosen. These 

coefficients are the only extracted features of the filtered EMG data and no additional statistical 

features need to be cascaded with these coefficients in order to perform the hand movement 

classification satisfactorily. Thus a lot of computational time can be saved. Here we have 

performed signal classification by adopting two different approaches. One approach constitutes 

the classification of the EMG signals into two different classes in the beginning and then sorting 

them into six classes afterwards, referred to as hierarchical classification (h.c.). The second 

approach constitutes the direct classification of the signals into six different classes, total 
classification (t.c.).We have seen that for our particular dataset, the first approach is more fruitful 

seeing as the six actions can be distinguished into two distinct categories with little to no error. 

This is because three of the actions (cylindrical, hook and spherical) are far more forceful than 

the other three (palmar, lateral and tip). So, going ahead with two class classification and then 

sorting the members of these two classes into six different classes later on results in better 

classifier performance which automatically implies higher classification accuracy (depicted in 

Table 4.1).  



57 
 

4.3 Simulation Results 
 

The performance of the proposed method described above has been investigated by conducting 

simulation on the dataset described before for six class hand movement classification. After 

feature extraction, the mean value of the subframe features are fed into kNN classifier. The 

features have been classified first into two classes and then three classes (h.c). Classification into 

direct six classes (t.c) have also been performed, but it was seen from the accuracy that the 

former method provides comparatively better accuracy, as observed in the Table 4.1.  

 
Table 4.1 COMPARISON OF CLASSIFICATION ACCURACY USING DISCRETE 
WAVELET TRANSFORM 
 

Subject Percentage Accuracy (%) 

Proposed method 

h. c (Class 2 then 

class 3) 

Proposed method 

t. c (Direct Class 6) 

[9] 

Female-1 93.556 (%) 87.667 (%) 85.24 (%) 
Female-2 81.000 (%) 80.222 (%) 83.88 (%) 
Female-3 98.000 (%) 96.778 (%) 84.82 (%) 
Male-1 97.778 (%) 94.556 (%) 86.92 (%) 
Male-2 97.444 (%) 95.667 (%) 92.38 (%) 
Average 
accuracy 

93.556 (%) 87.667 (%) 86.65 (%) 

 

For better evaluation of our performance, the results have been compared to the results obtained 

using the method mentioned in [9]. In that study [9], they have used eight statistical features. 

Also they have used linear classifier whereas kNN classifier has been used in our case.   

 

4.4 Conclusion 
 

Basic hand action movements can be classified by different types of conventional methods which 

can sometimes be tedious and computationally difficult. In this thesis, a simplified method is 

presented which helps in smoothening of the sEMG signal, enhancing correct extraction of 

feature values and thus appropriate classification. The hand movements can easily be divided 

into two classes depending on the number of neural firing and motor unit engagement. This 

difference assists in the classification of various number of movements, especially the six types 
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which can be classified into two types and each of these two types can further be classified. 

Hence, hierarchical kNN classification is proposed to obtain better performance. Instead of 

extracting the features directly from the preprocessed data, each sub-frame of sEMG data is 

decomposed by using the DWT and then both the approximate and detailed coefficients are used 

for extracting AR reflection coefficients. It is to be noted that these AR reflection coefficients are 

not similar to those obtained in last two methods described in the previous chapters. Finally the 

average of all the extracted AR reflection coefficients is used in  classification. As observed from 

Table 4.1, the result obtained by the proposed method is better than that is reported in the ref [9]. 

Therefore, the novelty of the proposed method is that, it can extract improved quality of DWT 

based AR reflection coefficient features and due to shorter feature dimension the proposed 

method is comparatively faster.  
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Chapter 5 

Conclusion 
 

5.1 Contribution of the Thesis  

Our proposed method gives us good results with the four simple steps as follows: 

5.1.1 Sub-Framing 

 

Instead of considering the whole duration of the test data, we have divided each trial of the raw 

EMG signal into sub frames. Dividing the long data-set into short sub-frames ensures a constant 

local mean, which is a major advantage in estimation of consistent reflection coefficients by 

assuring stationary of the data. Computation of reflection coefficients in each sub-frame reduce 

the effect of random fluctuation in the given test frame. Even if there is any inconsistency in a 

whole test frame, it will not have significant effect on the overall performance accuracy due to 

sub-framing. On the other hand, any short duration changes in the whole test frame will be 

reflected in the corresponding sub-frame based estimation. 

 

5.1.2 No Use of AR Parameter,  Rather AR Reflection Coefficients is Used: We have used 

reflection coefficients instead of AR parameter because reflection coefficients are advantageous 

to use for signal classification. 

 

1. The absolute value of each reflection coefficient is less than 1 when the AR 

system is not unstable. Such limitation in value is not achievable in the case of AR 

parameters seeing as their values differ from one another significantly. 

 

2. Reflection coefficients have much higher immunity to noise than AR parameters. 

So using reflection coefficients as features to perform signal classification is the 

prudent course of action. 
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3. For slight differences in values of coefficients, reflection coefficients have the 

ability to render localization of spectral errors. 

4. In order to determine reflection coefficients we do not have to go for the 

computationally expensive matrix inversion approach. Rather, a simple set of 

recursive equations affords us the required coefficients. 

 
5. The reflection coefficients are determined iteratively by utilizing autocorrelation 

values. So increasing the number of reflection coefficients provide us with simply one 

new coefficient; the rest of the coefficients will remain unchanged. On the contrary, 

increasing the AR model order by 1 will give us a completely new set of AR 

parameters. 

 
6. Therefore, reflection coefficients have been used effectively to construct our 

feature vector for EMG signal classification. 

 
5.1.3 Unlike the nEMG signal decomposition of the sEMG signal into motor unit action 

potentials (MUAPs) is extremely difficult and there is no guarantee to obtain consistent 

MUAPs. Two different decomposition techniques are investigated in this thesis. 

 

1. Singular Value Decomposition (SVD): A frame of sEMG signal is divided 

into overlapping sub-frames to construct a matrix and then singular values and 

principal components are computed using the singular value decomposition (SVD) 

of that sub-frame matrix. These singular values and the mean of the first five 

principal components are proposed as features to be used by the K nearest neighbor 

(kNN) classifier to perform the classification. 

 

2. Discrete Wavelet Transform (DWT) : In order to analyze the effect of time-

frequency domain decomposition of the sEMG data on the extracted feature quality, 

the discrete wavelet transform (DWT) is chosen. Each sub-frame of sEMG data is 

decomposed by using the DWT and then both the approximate and detailed 

coefficients are then used for extracting AR reflection coefficients. For the purpose 
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of classification, the k-nearest neighborhood (k-NN) classifier is applied in a 

hierarchical approach.  

 

5.1.4 In this thesis our experiment has been tested on real data which gives the result with more 
accuracy. The result shows the competitive performance where different method offers good 
result for different person. 
 

5.2 Scope and Future Work 

It is quite possible that using our proposed method we will be able to analyze and classify other 
types of EMG signals. For instance, our proposed method may be put into use for the 
classification of different types of neuromuscular diseases like muscle fatigue, Parkinson’s 
disorder etc. We may also think about applying this method in the analysis and classification of 
other types of bioelectric signals.  

But the study in question is limited to just six basic hand movements. It remains to be seen how 
well the proposed method holds up in the case of a greater number of hand actions. Further 
development of our proposed method can surely contribute in the sector of prosthetic arms 
development and even in the classification of various neuromuscular diseases. 
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