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Abstract 

In recent years, researchers have been very excited about the prospects of 2-D transition 

metal dichalcogenides (TMD) as a suitable semiconducting material for the channel in 

transistor devices. In order to evaluate their suitability in next generation transistors, it is 

important to understand their device level performance. A rigorous analytical model can 

play a significant role in this regard. In this work we have developed an analytical compact 

model for monolayer 2-D TMD channel MOSFETs that can replicate device performance 

in all regions of operation. In order to better understand the effects of monolayer TMD, we 

have developed two models, one for the subthreshold region and the other for the inversion 

region. The subthreshold model is centered around the scale length of the device. At first, 

an analytical expression for the scale length was derived from the eigenvalue equation. It 

was important to make sure that the derived expression of scale length precisely 

incorporates all the device and physical parameters. Gauss’s law was applied in an 

infinitely small enclosure in the 2D channel which established a second order differential 

equation that governs the operation in 2D TMD FET. Channel potential and 2D carrier 

density was derived from the solution of this equation. Finally, the channel potential was 

used in the drift-diffusion equation to obtain an all-region closed-form solution for the drain 

current. Non-idealities were incorporated in this model by modifying intrinsic device 

parameters. We verified the applicability of our model by comparing our results with that 

of established numerical simulators and experimental reports. Our model properly 

replicated device performance for both long and short channel devices. Appropriate results 

were produced using this model for channel length as low as 10 nm.  
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Chapter 1 

Introduction 

1.1 Current Trends of Nanoelectronics 

One of the biggest breakthroughs of the 20th century was the invention of transistors. 

Transistors are the building block of today’s microprocessors and computers and they have 

paved the way for the electronic revolution of this era. Since the invention in 1947, 

considerable efforts have been made to miniaturize the size of metal oxide semiconductor 

field effect transistors (MOSFETs). This allowed us to integrate billions of MOSFETs in a 

single chip with an area of 1 square centimeter. The motivation for this aggressive scaling 

comes from the famous prediction of Intel’s cofounder Gordon Moore who said that the 

number of transistors per integrated chip (IC) will double every two years [1]. This famous 

prediction, popularly known as the ‘Moore’s Law’ has remained the guideline for scientists 

and engineers in IC industry. From one technology node to the other, MOSFETs are 

conceived to be smaller, faster and less power consuming.  

As shown in Figure 1.1, the number of MOSFETs has grown steadily so far, in compliance 

with the Moore’s law. Thirty years of aggressive scaling have pushed the device 

dimensions close to the atomic range. The downscaling of MOSFETs has slowed down 

since the 65 nm node was reached. Issues related to the nanoscale dimensions of the devices 

started to arise. With smaller technology nodes, gate length and oxide thickness both shrunk 

heavily. This led to various short-channel effects (SCE) and gate leakage current [2].  

The SCEs for the MOSFETs are important when the channel length becomes comparable 

to the width of the depletion region. When the gate length is scaled down, the gate starts to 

lose the electrostatic control over the channel, on the other hand the source-drain bias (VDS) 

gains a larger influence on the barrier. Such an effect is named drain-induced barrier 

lowering (DIBL). This loss of electrostatic integrity leads to a continuous increase of the 

current and decrease of the off-state potential. Moreover, the electron mobility is reduced 

due to collisions with the semiconductor/oxide interface. This surface scattering effect is 

enhanced by the increase of electric field in the confined regions, which pushes the  
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Figure 1.1: Density of transistors in Intel’s IC 

electrons toward the surface of the device. The reduction of electron mobility is also caused 

by the necessity of using high doping levels in such scaled MOSFET. Finally, the average 

velocity of carriers no longer linearly depends on the electric field in such small devices, 

which is called the velocity saturation effect. 

Another factor that limits the scaling options in modern MOSFETs is the subthreshold 

current. Since operating voltage has been pulled down to a much small value in modern-

day devices, the threshold voltage is barely higher than the off-state voltage. Thus a 

considerable amount of current flows through the channel during off state and the ratio of 

off- and on current is not high enough. The severity of this problem is quantized using the 

expression called Subthreshold Swing (SS) which indicates the reduction in voltage 

required to reduce the drain current by a factor of ten below the threshold value. Traditional 

MOSFETs cannot have SS below 60 mv/dec. All these inherent limitations have motivated 

the scientific community to investigate novel transistor structures with better gate control.  

The electronics industry has resorted to strained Si-Ge channel with tri-gate structure to 

reduce the adverse short channel and nonideal effects. Also high-k gate oxides have been 

used to reduce tunneling while maintaining the desired level of capacitance. Intel’s latest 

‘Coffe Lake’ processors use 14 nm tri-gate Silicon transistors. Beyond 14nm, as we move 
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to 10 and 7nm, a new fin material will be required; probably Si-Ge, or perhaps just pure 

germanium. SiGe and Ge have higher electron mobility than Si, allowing for lower 

voltages, and thus reducing power consumption, tunneling, and leakage. SiGe has been 

used in commercial CMOS fabrication since the late ’80s, too, so switching from silicon 

will not be a massive shift. The primary reason that semiconductor industry has solely relied 

on Silicon for so long is that the entire industry is based on silicon. The amount of time, 

money, and R&D that would be required to deploy new machines for handling new 

materials that we know relatively little about would be astronomical.  

The next era of processors will require less power consuming transistors with lower 

dimension. But it has already been established that Si cannot reach this desired level. 

Hence, scientists are looking for new materials that can replace Si in near future. Several 

potential candidates have surfaced in the past few decades- III-V compound 

semiconductors, Graphene, chalcogenides etc. In order to understand their true potential, 

we need to explore the application of these materials in conventional transistor structures.  

1.2 Two Dimensional Semiconductors 

Layered two dimensional (2-D) semiconductor materials have garnered significant 

attention in recent years. In the past 2-D materials were considered to be unstable. Reports 

suggested that 2-D materials would disintegrate in room temperature under thermal 

fluctuations. However, in 2004 Geim and Novoselov successfully isolated graphene by 

mechanical exfoliation technique and since then Graphene has been at the center of research 

thrust due to its amazing electronic, mechanical and optical properties [3][4].  

While Graphene has been at the center of this research thrust due to its amazing electronic, 

mechanical and optical properties, an absence of bandgap in Graphene led to the extensive 

investigation of other layered 2-D semiconductors. Specially, the out-of-ordinary electronic 

properties of Graphene inspired the research community to concentrate on 2-D material 

based nanoelectronics. Since then, we have seen an exponential increase in the research 

activity in graphene and other 2DMs (such as the transition metal dichalcogenides [5][6], 

h-BN, black phosphorus [7], silicene and gemanene).  
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Figure 1.2: Electronic dispersion in the Graphene lattice. Left: energy spectrum. Right: 
zoom in of the energy bands close to one of the dirac points. Figure adapted from [8].  

One of the most interesting aspects of the graphene is its low-energy band structure, which 

is linear around the K and K’ points of the Brillouin zone, as shown in Figure 1.2. The 

Fermi energy exactly crosses the Dirac points which in turn causes the unconventional 

properties of Graphene with respect to 2-D electron gases (2DEG). Another interesting 

property of graphene is when laterally confined into nanoribbons, its electronic and 

transport properties are strongly affected by the geometry of the edges (armchair, zigzag or 

mixed) and the nature of their passivation [7][9]. For example, under certain conditions the 

ribbon can show a band gap, whose size is proportional to the inverse of the ribbon width. 

Such a gap might be important for applications in logic devices, which are however 

compromised by the huge mobility degradation due to the increase of the effective mass 

from one side, and the presence of edge roughness from the other [10]. Till date the biggest 

hindrance towards a successful adaptation of Graphene in transistor application has been 

its lack of band gap. The very low on-off current ratio thus makes its use impractical in 

logic devices.  

After exploring Graphene for nearly a decade, concentration was shifted towards other 2D 

material families. One of the very promising 2-D material family is the transition metal 

dichalcogenides (TMDs) [11]. TMD materials such as molybdenum disulphide (MoS2) and 

tungsten diselenide (WSe2) have been proven to be viable alternative in the post-Silicon 

era due to having desirable bandgap, flexibility, transparency, and surface free of dangling 
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bonds [12]. Especially, monolayer 2-D TMDs have excellent prospect as channel material 

in nanoscale field-effect transistors (FETs). 

1.2.1 Monolayer Transition Metal Dichalcogenides (TMDs) 

Layered 2-D crystals, such as monolayers of transition metal dichalcogenides (TMDs) 

MX2 (e.g., M = Mo, W; X = S, Se, Te) and other metal chalcogenides MXx (e.g., M = Ga, 

Sn; X = O, S, Se) offer a native thickness of about 0.6 nm with a variety of bandgaps and 

band-alignments [11][12]. Furthermore, 2D crystals possess a sharp turn on of density of 

states at the band edges and have no surface dangling bonds; thus potentially enabling a 

low interfacial density of state, which are highly desired for achieving a sharp SS. Recent 

experimental results show that the band alignment in stacked monolayer 2D crystal 

heterostructures can be tuned by an external electric field perpendicular to the 

heterojunction. These properties uphold their candidacy for not only transistors and other 

logic devices, but also for the display devices [13] and various types of nano-sensors [14].  

As shown in Figure 1.3, the TMDs have layered structures similar to graphite: covalently 

bonded 2-D X-M-X layers loosely coupled by weak van der Waals forces [15], [16]. 

Variation in the stacking sequence leads to five different polymorphs or phases [17], [18]. 

Among them, 1T and 2H are usually the most stable states. In the 1T phase, metal atoms 

are coordinated with six neighboring chalcogens, whereas the coordination in 2H is trigonal 

prismatic In general, the TMDs formed from metals of the groups IVB and VIB show semi-

conducting properties, hence they are suitable materials for digital transistor applications.  

 

Figure 1.3: Different polymorphs or phases of single layer and stacked single layer TMDs. 
(A) 1H phase, (B) ideal (a×a) 1T phase, (C) distorted (2a×a) 1T phase, (D) 2H phase and 
(E) 3R phase. Figure adapted from [17].  
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1.2.2 Electronic Properties of 2-D TMDs 

MoS2 is a typical and well-studied TMD material. Its layers consist of hexagons with the 

Mo and S2 atoms located at alternating corners as shown in Figure 1.3 [15], [19]. The most 

striking feature of bulk MoS2 is that, compared to zero-bandgap graphene and insulating h-

BN, it is a semiconductor with an indirect band gap of 1.29 eV [20]. Several studies have 

confirmed a transition from an indirect band gap to a direct band gap for MoS2 as the 

thickness of bulk MoS2 is decreased to that of a monolayer [21]. Similar transition is also 

demonstrated for other TMD materials[22]–[25].  

Kuc et al. performed an extended study of the influence of quantum confinement on the 

electronic structures of monolayer and few-layer MS2 (M = W, Nb, Re) using first-

principles calculations [26]. They found that WS2, which is similar to MoS2, exhibits an 

indirect (bulk, Eg=1.3 eV) to direct (monolayer, Eg=2.1 eV) bandgap transition. Figure 1.4 

exhibits the band alignment of various monolayer semiconducting TMDs.  

 

Figure 1.4: Band alignment of monolayer semiconducting TMDs. The Fermi level is 
indicated by the blue horizontal line and the vacuum is at 0V.  
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Figure 1.5: Bandgap of Graphene and various 2-D TMD materials with respect to Si. 
Figure adapted from [25]. 

Figure 1.5 demonstrates the bandgap of 2-D TMD materials and their position compared 

to Si. It is evident that these materials have bandgap akin to semiconductors. And most 

importantly their bandgap is tunable, as it can be controlled by changing the number of 

layers in the TMD material. Number of layers not only tunes bandgap, but also controls 

other physical properties. For example, electrical characterizations of single-layer MoS2 

have shown n-type conductivity with a room temperature mobility in the range of 10-50 

cm2/(V-s) [27], [28]. Compared to the mobility 200-500 cm2/(V-s) of bulk MoS2 sheets is 

rather low and comparable to that of graphene nanoribbons but still much lower than that 

of either pristine graphene or Si transistors [29]. Because of the low mobility, MoS2 

transistors are probably more suited for low power applications rather than high 

performance usage [30].  

1.3 Compact Models of 2-D TMD Channel MOSFETs 

Large-scale production of complex circuits based on these devices requires efficient circuit 

simulation followed by layout design using EDA tools before realization. To perform 

efficient circuit simulation, a compact model is an essential requirement. The effect of the 

density of state (DOS) on capacitance and consideration of Fermi–Dirac (FD) statistics in 

place of Boltzmann statistics differentiate the modeling of these devices compared with the 

conventional Si channel MOSFET [31]. Several compact models have so far been proposed 

to replicate the circuit level performance of TMD channel FETs [32]–[36]. The capacitive 
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model proposed in [33] is based on drift-diffusion model and does not include non-

idealities. In [36], an analytical I-V model is derived by simplifying surface potential. 

Results of this model deviates from that of numerical simulation for sub-30nm channel 

length. The short channel model proposed by Taur et al. utilizes the concept of scale length 

to calculate current in the subthreshold region [35]. However, the proposed linear relation 

between scale length and oxide thickness fails to incorporate important device parameters 

such as channel thickness and permittivity of oxide as well as channel material. Several 

compact subthreshold models have been proposed by redefining scale length in terms of 

abovementioned device and physical parameters [32], [34]. But eventually they also depend 

on numerical integration in order to calculate device current [37], [38].  

1.4 Thesis Objectives 

The primary objective of this work can be divided in following two parts.  

 First, to develop a compact analytical I-V model for 2D TMD channel FETs 

including non-ideal conditions. 

 Second, to formulate a comprehensive performance analysis of different 2D TMD 

semiconductors as channel material in FET architecture. 

 

1.5 Thesis Overview 

The entire thesis is divided in five chapters. A brief organization of each chapter is 

presented below.  

The first chapter discusses the current technological status of transistors and briefly sheds 

lights on the scaling issues and need for futuristic innovations in every aspect of 

semiconductor devices to uphold the technological progression professed by Moore’s law. 

It also introduces the context of the innovation behind monolayer Transition Metal 

Dichalcogenide (TMDC) channel MOSFETs. 
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The second chapter discusses the formulation of the subthreshold model for 2-D TMD 

channel MOSFET. At first a cubic equation is formed incorporating all physical and device 

parameters. The solution of this equation gives us the scale length. In the next part of this 

chapter we present a new analytical equation to calculate drain current at subthreshold 

region for both double-gate (DG) and semiconductor-on-insulator (SOI) TMD channel 

devices. 

The third chapter introduces an all-region compact drain current model for our device. This 

chapter rigorously studies the mathematical formulation of the device’s system and these 

system equations are used to develop the analytical model. Non-ideal phenomena are 

included later in the drain current equation.  

Our model is verified with established numerical models and experimental results in the 

fourth chapter. The model demonstrates excellent agreement with reported results for both 

long and short channel devices.  

In the final and fifth chapter conclusion is drawn and possible developments are discussed.  
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Chapter 2 

Subthreshold Model  

 

The subthreshold model for 2-D TMD channel FET is obtained by modifying the drain 

current equation in this region of operation. At first a cubic equation is formed 

incorporating all physical and device parameters. The solution of this equation gives us the 

scale length. In the next part we present a new analytical equation to calculate drain current 

at subthreshold region for both double-gate (DG) and semiconductor-on-insulator (SOI) 

TMD channel devices 

2.1 2-D Channel Potential  

The schematic model of a 2-D single layer TMD channel MOSFET is presented in Figure 

2.1. The heavily doped Si substrate of the top-gated SOI structure can be replaced by a back 

electrode to obtain a double gate (DG) FET device. Since mobile charge density is 

negligible in the subthreshold region, the 2-D potential can be solved analytically [39]. The 

zero potential reference is fixed at the edge of source conduction band. The 2-D potential 

corresponding to the conduction band is,  

φ(𝑥, 𝑧) = 𝑉𝑔𝑠 + χ − φ𝑚 + ∑
𝑏𝑛 sinh [

𝜋(𝐿 − 𝑥)
𝜆𝑛

] + 𝑐𝑛 sinh[
𝜋𝑥
𝜆𝑛

]

sinh[
𝜋𝐿
𝜆𝑛

]

∞

𝑛=1
 cosh[

𝜋𝑧

𝜆𝑛
] 

  

(2.1) 

Here x is the channel direction and z is perpendicular to the film. Vgs is the gate voltage, χ 

is the electron affinity of semiconductor material and φm is gate work function. The channel 

potential φ(𝑥, 𝑧) is assumed to have no variation in the 𝑧 direction due to the atomic scale 

thickness of channel material. The summation in the right-hand-side of Equation (2.1) 

consists of a series of eigen functions with discrete eigenvalues λ, which satisfy the 

following equation for odd values of n [40].  
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tan (
𝑇𝑜𝑥

𝜆𝑛 𝜋⁄
) tan (

𝑇𝑐ℎ 2⁄

𝜆𝑛 𝜋⁄
) =

𝜀𝑜𝑥

𝜀𝑐ℎ
 

(2.2) 

where, 𝑇𝑜𝑥 and 𝑇𝑐ℎ are the effective oxide thickness and channel thickness respectively, 

while 𝜀𝑜𝑥 and 𝜀𝑐ℎ are the respective permittivity of the oxide and channel material. This 

generalized scale length formula is derived from [40]. For a SOI device, 𝑇𝑜𝑥 = 𝑇𝑡𝑜𝑥. In DG 

type devices, 𝑇𝑜𝑥 = 𝑇𝑡𝑜𝑥 = 𝑇𝑏𝑜𝑥 is assumed. For 2-D materials,  𝑇𝑐ℎ → 0. Thus we can 

establish a linear relation between oxide thickness and scale length, irrespective of channel 

and oxide permittivity. 

 

 

Figure 2.1:  Schematic of a 2-D TMD channel MOSFET.  Ttox and Tbox are thickness of 

the top and back gate oxide layers, respectively. Tch ≈.65 nm is the thickness of the 

monolayer TMD channel. Length of the channel is denoted by L. Note that the figure is 

not drawn to scale. 
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𝜆𝑛 = 2𝑇𝑜𝑥,
2𝑇𝑜𝑥

3
,
2𝑇𝑜𝑥

5
,……… (2.3) 

We can calculate the coefficients 𝑏𝑛 and 𝑐𝑛by putting boundary conditions in Equation 

(2.1). In subthreshold, potential is known at both source and drain i.e. φ(0, 𝑧) = 0 and 

φ(𝐿, 𝑧) = 𝑉𝑑𝑠. Thus we get from Equation (2.1), 

𝑏𝑛 =
2𝜆𝑛

2 tan (
𝑇𝑜𝑥

𝜆𝑛 𝜋⁄
) sin (

𝑇𝑐ℎ 2⁄
𝜆𝑛 𝜋⁄

)

𝜋2𝑇𝑜𝑥

[
 
 
 
 
 
 

𝑇𝑐ℎ

2 +
sin (

𝑇𝑐ℎ

𝜆𝑛 𝜋⁄
)

𝑠𝑖𝑛 (

𝑇𝑜𝑥

2
𝜆𝑛 𝜋⁄

)

]
 
 
 
 
 
 

(φ𝑚 − 𝑉𝑔𝑠 − χ) 

(2.4) 

𝑐𝑛 =
2𝜆𝑛

2 tan (
𝑇𝑜𝑥

𝜆𝑛 𝜋⁄
) sin (

𝑇𝑐ℎ 2⁄
𝜆𝑛 𝜋⁄

)

𝜋2𝑇𝑜𝑥

[
 
 
 
 
 
 

𝑇𝑐ℎ

2 +
sin (

𝑇𝑐ℎ

𝜆𝑛 𝜋⁄
)

𝑠𝑖𝑛 (

𝑇𝑜𝑥

2
𝜆𝑛 𝜋⁄

)

]
 
 
 
 
 
 

(𝑉𝑑𝑠 + φ𝑚 − 𝑉𝑔𝑠 − χ) 

(2.5) 

The values of 𝑏𝑛 and 𝑐𝑛 decays exponentially with n. A little modification in 𝑏1 and 𝑐1 

terms allows us to consider only the n=1 terms. Thus potential φ(𝑥) can be approximated 

to be,  

 

φ(𝑥) = (𝑉𝑔𝑠 + χ − φ𝑚){1 −
sinh [

𝜋(𝐿 − 𝑥)
𝜆

]

sinh (
𝜋𝐿
𝜆

)
}

+ (𝑉𝑑𝑠 − 𝑉𝑔𝑠 − χ + φ𝑚)
sinh (

𝜋𝑥
𝜆

)

sinh (
𝜋𝐿
𝜆

)
 

(2.6) 

Where scale length 𝜆 is the lowest order solution of Equation (2.2).  



13 
 

2.2 Scale Length Equation 

Solution of Equation (2.2) requires numerical calculation. One straight-forward approach 

is to consider it to be equal to twice of oxide thickness, as shown in Equation (2.3) [35]. 

But this assumption it too crude and claims to have no effect of channel and oxide materials 

on the scale length. Thus we need a scale length equation that can properly incorporate all 

the device and physical parameters. Also as we have entered the era of sub-10nm devices, 

it is unwise to consider the 0.65 nm thickness of monolayer 2-D TMD to be zero.  

One starting point for finding a proper scale length equation is to approximate Equation 

(2.2) using the assumption, 

tan (
𝑇𝑐ℎ 2⁄

𝜆 𝜋⁄
) ≈

𝑇𝑐ℎ 2⁄

𝜆 𝜋⁄
 

Typical values of 𝑇𝑐ℎ for monolayer 2D TMD validates this approximation. Thus Equation 

(2.2) becomes, 

tan (
𝑇𝑜𝑥

𝜆 𝜋⁄
) (

𝑇𝑐ℎ 2⁄

𝜆 𝜋⁄
) ≈

𝜀𝑜𝑥

𝜀𝑐ℎ
 

(2.7) 

The tangent part can be divided in sine and cosine functions of scale length and the rest of 

the parameters are constant for a device.  

sin (
𝑇𝑜𝑥

𝜆 𝜋⁄
)

cos (
𝑇𝑜𝑥

𝜆 𝜋⁄
)

=
2𝜆𝜀𝑜𝑥

𝜋𝑇𝑐ℎ𝜀𝑐ℎ
 

(2.8) 

By expanding both the sine and cosine functions in Taylor series, we get a polynomial 

equation. Since, 𝜆 ≈ 2𝑇𝑜𝑥, only the first three terms of both polynomials are considered. 

Thus (2.8) can be rewritten as, 

1

120
𝑝3 + (−

1

6
−

𝜍

24
) 𝑝2 + (1 +

𝜍

2
) 𝑝 − 𝜍 = 0 (2.9) 

where, 𝑝 = (𝜋𝑇𝑜𝑥 𝜆⁄ )2 and 𝜍 = 2𝑇𝑜𝑥𝜀𝑜𝑥 𝑇𝑐ℎ𝜀𝑐ℎ⁄  
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Equation (2.9) is a cubic equation that can be solved analytically and the solution will give 

the value of scale length. This value of scale length properly incorporates all physical and 

device parameters.  

2.3 Subthreshold Current Modeling 

The subthreshold drain current can be obtained from channel potential using the formula 

derived from [39],  

𝐼𝐷𝑆 = 4𝜋𝑚𝜇𝑊
(𝑘𝑇)2

ℎ2
[
1 − exp(−𝑉𝐷𝑆 𝑣𝑡ℎ⁄ )

∫ exp (−
φ(𝑥)
𝑣𝑡ℎ

)𝑑𝑥
𝐿

0

] 
(2.10) 

Where, 𝑚 is the effective mass, 𝜇 is carrier-mobility, 𝑘 is Boltzmann’s constant, ℎ is 

Planck’s constant, T is temperature, and 𝑣𝑡ℎ = 𝑘𝑇/𝑞 is the thermal voltage. It is difficult 

to reduce the integral in the denominator in Equation (2.10) into elementary functions. Thus 

previous works have resorted to numerical calculation.  

Using the expression of channel potential obtained from Equation (2.6) , we can form the 

integral as the multiplication of three exponential functions. 

∫ exp(−
φ(𝑥)

𝑣𝑡ℎ
)𝑑𝑥

𝐿

0

= ∫ exp(−𝑀) exp(−N) exp(−R)𝑑𝑥
𝐿

0

 
(2.11) 

where, 
𝑀 = (𝑉𝑔𝑠 + χ − φ𝑚) 𝑣𝑡ℎ⁄  
 

𝑁 =
1

𝑣𝑡ℎ
(𝑉𝑔𝑠 + χ − φ𝑚)

sinh [
𝜋(𝐿 − 𝑥)

𝜆
]

sinh (
𝜋𝐿
𝜆

)
 

𝑅 =
1

𝑣𝑡ℎ
(𝑉𝑑𝑠 − 𝑉𝑔𝑠 − χ + φ𝑚)

sinh (
𝜋𝑥
𝜆

)

sinh (
𝜋𝐿
𝜆

)
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Figure 2.2: Variation of (a) exp(-R) and (b) exp(-N) functions of (6) in x direction for 

different gate voltages. There is a uniform decay of exp(-R) in the last 2 nm near the drain. 

On the other hand, exp(-N) does not vary with channel length.  

The variation of these exponential functions along the channel direction 𝑥  is plotted in 

Figure 2.2 for various channel lengths and bias conditions. For a given gate voltage, 

exp (−𝑀) is a constant. It is evident from Figure 2.2 that while exp (−𝑅) varies with 

channel length keeping a uniform relation, exp (−𝑁) gives the same values for any length. 
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The uniform variation of exp (−𝑅) suggests a linear relation between channel length and 

the integral of this exponential function. Because, the sine hyperbolic functions in the 

numerator of N and R assume non-zero value in distinct regions in the transport direction. 

For all channel lengths,  

sinh[
𝜋(𝐿 − 𝑥)

𝜆
]

sinh (
𝜋𝐿
𝜆

)
≈ 0 𝑓𝑜𝑟 𝑥 > 8𝑛𝑚 

 
 
(2.12) 

 
And for 𝐿 >10 nm, 

sinh (
𝜋𝑥
𝜆

)

sinh (
𝜋𝐿
𝜆

)
≈ 0 𝑓𝑜𝑟 𝑥 < (𝐿 − 2)𝑛𝑚 

 

(2.13) 

This allows us to rewrite Equation (2.11) as,  

∫ exp (−
φ(𝑥)

𝑣𝑡ℎ
) 𝑑𝑥

𝐿

0
= ∫ exp(−𝑀) exp(−N)𝑑𝑥 +

8 𝑛𝑚

0

                                   ∫ exp (−𝑀)𝑑𝑥
(𝐿−2) 𝑛𝑚

8 𝑛𝑚
+ ∫ exp (−𝑀)exp (−R)𝑑𝑥

𝐿

(𝐿−2)𝑛𝑚
   

(2.12) 

 

If we add the first and the third term of the right hand side of Equation (2.12), we 

approximately get the denominator in Equation (2.10) for a FET with a channel length of 

10 nm. The second term linearly varies with channel length, 𝐿. This reduces Equation (2.12) 

in, 

∫ exp (−
φ(𝑥)

𝑣𝑡ℎ
) 𝑑𝑥

𝐿

0
 ≈ ∫ exp (−

φ(𝑥)10 𝑛𝑚

𝑣𝑡ℎ
) 𝑑𝑥

10 𝑛𝑚

0
+ ∫ exp(−𝑀)𝑑𝑥

𝐿

10 𝑛𝑚
  (2.13) 

where, φ(𝑥)10 𝑛𝑚 is the channel potential for channel length,  𝐿0=10 nm. Thus subthreshold 

current can be calculated for any 𝐿 >10 nm using the following equation,  

𝐼𝐷𝑆 = [
1

𝐼𝐷𝑆,𝐿0

+

ℎ2

(𝑘𝑇)2 exp (−
φ(𝑥)
𝑣𝑡ℎ

) (𝐿 − 𝐿0)

4𝜋𝑚𝜇𝑊(1 − exp (−
𝑉𝐷𝑆

𝑣𝑡ℎ
))

]−1 

 

(2.14) 
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where, 𝐼𝐷𝑆,𝐿0
 is the drain current for a device with channel length 𝐿0=10 nm under the 

conditions in which 𝐼𝐷𝑆 is being calculated. Figure  2.3 shows the subthreshold 𝐼𝐷𝑆 vs. 𝑉𝐺𝑆 

curve obtained from Equation (2.14). 

This model suggests that the calculation of drain current for any channel length greater than 

𝐿0 requires the numerical derivation of 𝐼𝐷𝑆,𝐿0
. However, it is evident from Equation (2.14) 

that 𝐼𝐷𝑆,𝐿0
can be calculated analytically if current for a longer device is known. For 

example, the analytical model proposed in the works of Cao et al. yields perfect results for 

𝐿 >30 nm. This model can be utilized to first calculate current for a long channel device. 

Then 𝐼𝐷𝑆,𝐿0
 is calculated from Equation (2.14), which is later used to formulate the 

subthreshold model for devices with 𝐿 >10 nm. The transfer characteristics in fig. 4 has 

been obtained this way. 

 

Figure 2.3: Ids vs. Vgs in subthreshold for 2D TMD channel MOSFET calculated from 

Equation (2.14). Vds=0.5 V. 
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Chapter 3 

Analytical Modeling of Drain Current 

An all-region analytical drain current model for 2-D TMD channel MOSFETs will be 

developed in this section. It is desirable to formulate a single drain current equation for all 

regions of operation. A good starting point for the all region model would be to derive an 

analytical formula of the surface potential. Surface potential based model are suitable for 

simulating devices with short channel length. Moreover, these type of models can be easily 

upgraded to include non-idealities like mobility degradation, interface traps, and non-ideal 

doping [36].  

3.1 Establishing a Differential System  

In order to capture the physics and operation of an electronic device, the first step is to 

formulate a differential system. Cao et al. presented the first differential model for 2D FET 

devices. It is safe to assume that the channel potential, φ(𝑥, 𝑧) ≈ φ(𝑥), since it has very 

small variation in the z-direction.  

The differential system is established by applying Gauss’s law in an infinitely small closed 

box shown in Figure 4.1. The height of the box is 𝑇𝑐ℎ, width is 𝑊, and length is 

infinitesimally small ∆𝑥. Gauss’s law states that the relation between the charge enclosed 

inside the box and electric field going out of the box can be formulated to be,  

∮ 𝜀 �⃗� . 𝑑𝑠⃗⃗⃗⃗ = 𝑄
𝑠

 
(3.1) 

Where, 𝜀 is the dielectric permittivity of the material at each surface of the encloser. The 

left hand side of the equation can be calculated by considering the electric field going out 

of each of the six surfaces of the box. The positive directions of the surface vectors 𝑑𝑠⃗⃗⃗⃗  are 

outward from each surface.  
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Figure 3.1: Schematic of a typical double gated 2D FET. The inset is the zoomed-in view 
of an infinitely small enclosure along the channel in which Gauss’s law has been applied 
to formulate the differential system.  

The left hand side component of Equation (3.1) for surface A of figure 3.1, 

−
𝑉𝑔𝑡

′ − 𝜑(𝑥)

𝑇𝑡𝑜𝑥
𝜀𝑡𝑜𝑥∆𝑥𝑊 

(3.2) 

The left hand side component of Equation (3.1) for surface B of figure 3.1, 

𝜑(𝑥) − 𝑉𝑔𝑏
′

𝑇𝑏𝑜𝑥
𝜀𝑏𝑜𝑥∆𝑥𝑊 

(3.3) 

The left hand side component of Equation (3.1) for surface C of figure 3.1, 

𝑑𝜑(𝑥)

𝑑𝑥
𝜀𝑐ℎ𝑇𝑐ℎ𝑊 

(3.4) 

The left hand side component of Equation (3.1) for surface D of figure 3.1, 

−
𝑑𝜑(𝑥 + ∆𝑥)

𝑑𝑥
𝜀𝑐ℎ𝑇𝑐ℎ𝑊 

(3.5) 

Here, 𝜀𝑐ℎ, 𝜀𝑡𝑜𝑥 , 𝜀𝑏𝑜𝑥 are the permittivity of channel material, top gate oxide and bottom gate 

oxide respectively. Contribution from E and F surfaces are zero since there are no electric 

field component along the y axis.  
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𝑉𝑔𝑡
′  and 𝑉𝑔𝑏

′  are effective gate voltage, calculated after subtracting flat band voltages 𝑉𝐹𝐵𝑡/𝑏 

from the input gate bias 𝑉𝑔𝑡/𝑏.  

𝑉𝑔𝑡
′ = 𝑉𝑔𝑡 − 𝑉𝐹𝐵𝑡 

𝑉𝑔𝑏
′ = 𝑉𝑔𝑏 − 𝑉𝐹𝐵𝑏 

(3.6) 

(3.7) 

Flat-band volatage can be defined as the work function difference between the top bottom 

electrodes and the TMD channel.  

By substituting the electric fields from the above four equations in Equation (3.1) and doing 

some reorganizations, we can formulate the second order equation as, 

𝑑2𝜑(𝑥)

𝑑𝑥2
−

𝜑(𝑥)

𝜆′2
+ 𝛾 =

−𝑄𝑠

𝜀𝑐ℎ𝑇𝑐ℎ
 

(3.8) 

Here, charge density 𝑄𝑠 has been established as follows, 

𝑄𝑠 = 𝐶𝑡𝑜𝑥 (𝑉𝑔𝑡
′ − 𝜑(𝑥)) + 𝐶𝑏𝑜𝑥(𝑉𝑔𝑏

′ − 𝜑(𝑥)) (3.9) 

Where, 𝐶𝑡𝑜𝑥 = 𝜀𝑡𝑜𝑥/𝑇𝑡𝑜𝑥 and 𝐶𝑏𝑜𝑥 = 𝜀𝑏𝑜𝑥/𝑇𝑏𝑜𝑥 are the gate oxide capacitances in top and 

bottom gates, respectively. The constant term in the differential equation is, 

𝛾 =
𝐶𝑡𝑜𝑥𝑉𝑔𝑡

′ + 𝐶𝑏𝑜𝑥𝑉𝑔𝑏
′

𝜀𝑐ℎ𝑇𝑐ℎ
 

(3.10) 

Also, the new scale length 𝜆′ is defined as,  

1

𝜆′2
=

𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥

𝜀𝑐ℎ𝑇𝑐ℎ
 (3.11) 

Rearranging this second order equation, we get, 

𝑑2𝜑(𝑥)

𝑑𝑥2
− (

2𝐶𝑡𝑜𝑥 + 2𝐶𝑏𝑜𝑥

𝜀𝑐ℎ𝑇𝑐ℎ
)𝜑(𝑥) +

2𝐶𝑡𝑜𝑥𝑉𝑔𝑡
′ + 2𝐶𝑏𝑜𝑥𝑉𝑔𝑏

′

𝜀𝑐ℎ𝑇𝑐ℎ
= 0 

(3.12) 

 

 



21 
 

So the governing equation for obtaining the electrostatic potential is,  

𝑑2𝜑(𝑥)

𝑑𝑥2
−

𝜑(𝑥)

𝑙2
+ 2𝛾 = 0 

(3.13) 

where,  

𝑙 = √
𝜀𝑐ℎ𝑇𝑐ℎ

2𝐶𝑡𝑜𝑥 + 2𝐶𝑏𝑜𝑥
 

 

(3.14) 

Equation 3.14 is a linear differential equation with constant coefficients. A closed form 

solution of this differential system is possible. The general solution can be assumed to be, 

𝜑𝑔(𝑥) = 𝑐1 cosh (
𝑥

𝑙
) + 𝑐2 sinh (

𝑥

𝑙
)  

(3.15) 

Assuming, 𝑐1 = 𝑑1 sinh(
𝐿

𝑙
) and 𝑐2 = 𝑑2 − 𝑑1 cosh(

𝐿

𝑙
), we can rewrite Equation 3.15 as,  

𝜑𝑔(𝑥) = 𝑑1 sinh(
𝐿

𝑙
) cosh (

𝑥

𝑙
) + 𝑑2𝑠𝑖𝑛ℎ(

𝑥

𝑙
) − 𝑑1 cosh(

𝐿

𝑙
) sinh (

𝑥

𝑙
)  

(3.16) 

Thus channel length L is incorporated in the solution of electrostatic potential.  

𝜑𝑔(𝑥) = 𝑑1 sinh(
𝐿 − 𝑥

𝑙
) + 𝑑2𝑠𝑖𝑛ℎ(

𝑥

𝑙
) (3.17) 

We can further simplify this equation by redefining the 𝑑1 and 𝑑2 constants as follows, 

𝜑𝑔(𝑥) = 𝑒1

sinh(
𝐿 − 𝑥

𝑙
)

sinh(
𝐿
𝑙
)

+ 𝑒2

𝑠𝑖𝑛ℎ(
𝑥
𝑙
)

sinh(
𝐿
𝑙
)
 

 

(3.18) 

Here, 𝑒1 and 𝑒2 constants can be determined by employing boundary conditions of the 

MOSFET. The particular solution of Equation 3.13 can be obtained by assuming 𝜑𝑝(𝑥) =

𝐴. Thus,  

0 −
𝐴

𝑙2
+ 2𝛾 = 0  

(3.19) 

So the complete solution for the electrostatic potential is,  



22 
 

𝜑(𝑥) = 𝑒1

sinh(
𝐿 − 𝑥

𝑙
)

sinh(
𝐿
𝑙
)

+ 𝑒2

𝑠𝑖𝑛ℎ(
𝑥
𝑙
)

sinh(
𝐿
𝑙
)
+ 2𝛾𝑙2 

 

(3.20) 

3.2 Determining the Constants 𝒆𝟏 and 𝒆𝟐 

Boundary conditions of MOSFET allows us to determine the source and drain potentials, 

which in return helps us calculate the constants 𝑒1 and 𝑒2. At source (x=0), the electrostatic 

potential,  

𝜑(0) = 𝑉(0) +
𝑘𝑇

𝑞
ln(

𝑄𝑠

𝑁𝐷𝑂𝑆
) 

 

(3.21) 

Where,  

𝑉(0) = 𝑉𝑠 + 𝑉𝑏𝑖 

 

(3.22) 

Here, 𝑉𝑏𝑖 is the source channel interface given by,  

𝑉𝑏𝑖 =
𝑘𝑇

𝑞
ln(

𝑄𝑠𝑁𝐴

𝑛𝑖
2 ) 

 

(3.23) 

𝑄𝑠 is the mobile electron density and 𝑁𝐷𝑂𝑆 is the effective density of states. The relation 

between these two parameters is given by, 

𝑄𝑠 = ∫ 𝐷𝑂𝑆2𝐷(𝐸)𝑓(𝐸 − 𝐸𝐹)𝑑𝐸 ≈ 𝑁𝐷𝑂𝑆𝑒
𝑞(𝜑−𝑉)

𝑘𝑇

∝

𝐸𝑐

 
(3.24) 

For source and drain region, carrier concentration 𝑄𝑠 is given by the source and drain 

doping concentration. Thus the source and drain potential can be written as,  

𝜑𝑠 = 𝜑(0) = 𝑉𝑠 + 𝑉𝑏𝑖 +
𝑘𝑇

𝑞
ln(

𝑁𝐷

𝑁𝐷𝑂𝑆
) 

(3.25) 

𝜑𝐷 = 𝜑(𝐿) = 𝑉𝐷 + 𝑉𝑏𝑖 +
𝑘𝑇

𝑞
ln(

𝑁𝐷

𝑁𝐷𝑂𝑆
) 

(3.26) 

At x=0, Equation 3.20 becomes, 
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𝜑𝑠 = 𝜑(0) = 𝑒1 + 2𝛾𝑙2 (3.27) 

At x=L, Equation 3.20 becomes, 

𝜑𝐷 = 𝜑(𝐿) = 𝑒2 + 2𝛾𝑙2 (3.28) 

Thus the constants 𝑒1 and 𝑒2 can be calculated to be, 

𝑒1 = 𝜑𝑠 − 2𝛾𝑙2 (3.29) 

𝑒2 = 𝜑𝐷 − 2𝛾𝑙2 (3.30) 

 

3.3 Calculation of Effective Density of States 

Effective density of states for 2-D semiconductor materials is given by [36],  

𝐷𝑂𝑆2𝐷 = ∑ 𝑔𝑠𝑔𝑖
𝑖

𝑚𝑖
∗/2𝜋ħ2 (3.31) 

Here, 

𝑔𝑠 =spin degeneracy 

𝑔𝑖 = valley degeneracy 

𝑚𝑖
∗ =effective mass of mobile carrier 

ħ =Reduced Plank’s constant 

i= valley index 

Due to the relatively large DOS (in the order of 1014 eV-1cm-2) of 2-D TMD materials, FETs 

based on them generally work on non-degenerate conditions. While considering spin 

degeneracy from the valleys, the second lowest valley is also considered since there are six 

such valleys in the first Brillouine zone and ∆𝐸𝑐 is only around 2kT. Other valleys are too 

high to contribute and thus neglected in the calculation of effective density of states.  

Considering the above effects, the effective density of states is calculated to be,  
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𝑁𝐷𝑂𝑆 =
𝑔𝑠𝑔1𝑚1

∗𝑘𝑇

2𝜋ħ2 +
𝑔𝑠𝑔2𝑚2

∗𝑘𝑇

2𝜋ħ2 𝑒−
∆𝐸𝑐
𝑘𝑇  

(3.32) 

 

 

Figure 3.2: E-k diagram of WSe2 obtained from first principle DFT simulation in Quantum 
Espresso Software. The diagram shows lowest conduction valley at K-point. The nearest 
low point is between K and Gamma points. The energy difference between these two lowest 
valets is around 50 meV.  

3.4 Drain Current Modeling 

Carrier transport is governed by the drift-diffusion equation, 

𝐼𝑑𝑠(𝑥) = 𝜇(𝑥)𝑊𝑄𝑠

𝑑𝑉(𝑥)

𝑑𝑥
 

(3.33) 

 

Here, 𝜇(𝑥) is the channel electron mobility.  

For a 2-D TMD channel MOSFET, it is safe to assume that the drain current remains 

constant throughout the channel. The pristine TMD-oxide contact ensures that the gate 

leakage current remains negligible. So, we can write, 𝐼𝑑𝑠(𝑥) = 𝐼𝑑𝑠. Also if we consider a 
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constant electron mobility throughout the channel, 𝜇(𝑥) can be approximated as 𝜇0. Thus, 

Equation 3.33 can be modified as, 

𝐼𝑑𝑠 = 𝜇0𝑊𝑄𝑠

𝑑𝑉(𝑥)

𝑑𝑥
 

(3.34) 

Integrating Equation 3.34 with respect to x from x=0 to x=L we get, 

∫ 𝐼𝑑𝑠𝑑𝑥
𝐿

0

= 𝜇0𝑊 ∫ 𝑄𝑠𝑑𝑉(𝑥)
𝑥=𝐿

𝑥=0

 
(3.35) 

We can change the limit of the integral in the right hand side by applying the source and 

drain voltages as limiting value for V.  

𝐼𝑑𝑠 = 𝜇0

𝑊

𝐿
∫ 𝑄𝑠𝑑𝑉

𝑉𝐷

𝑉𝑠

 
(3.36) 

From Equation (3.24), we can write, 

𝑉 = 𝜑 −
𝑘𝑇

𝑞
ln(

𝑄𝑠

𝑁𝐷𝑂𝑆
) 

(3.37) 

From Equation (3.9) we can put the expression of charge density 𝑄𝑠 as, 

𝑉 = 𝜑 −
𝑘𝑇

𝑞
ln(

𝐶𝑡𝑜𝑥𝑉𝑔𝑡
′ + 𝐶𝑏𝑜𝑥𝑉𝑔𝑏

′ − (𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑(𝑥)

𝑁𝐷𝑂𝑆
) 

(3.38) 

Differentiating V with respect to potential 𝜑, 

𝑑𝑉

𝑑𝜑
= 1 +

𝑘𝑇

𝑞

(𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑(𝑥)
𝑁𝐷𝑂𝑆

𝐶𝑡𝑜𝑥𝑉𝑔𝑡
′ + 𝐶𝑏𝑜𝑥𝑉𝑔𝑏

′ − (𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑(𝑥)

𝑁𝐷𝑂𝑆

 

(3.39) 

𝑑𝑉

𝑑𝜑
= 1 +

𝑘𝑇

𝑞

(𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑(𝑥)

𝐶𝑡𝑜𝑥𝑉𝑔𝑡
′ + 𝐶𝑏𝑜𝑥𝑉𝑔𝑏

′ − (𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑(𝑥)
 

(3.40) 

𝑑𝑉

𝑑𝜑
= 1 +

𝑘𝑇

𝑞

(𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑(𝑥)

𝑄𝑠
 

(3.41) 
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Using this final expression of 𝑑𝑉

𝑑𝜑
 we can rewrite Equation (3.36), 

𝐼𝑑𝑠 = 𝜇0

𝑊

𝐿
∫ 𝑄𝑠

𝑑𝑉

𝑑𝜑
𝑑𝜑

𝑉𝐷

𝑉𝑠

 
(3.42) 

𝐼𝑑𝑠 = 𝜇0

𝑊

𝐿
∫ 𝑄𝑠{1 +

𝑘𝑇

𝑞

(𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑(𝑥)

𝑄𝑠
}𝑑𝜑

𝜑𝐷

𝜑𝑠

 
(3.43) 

𝐼𝑑𝑠 = 𝜇0

𝑊

𝐿
∫ (𝑄𝑠 +

𝑘𝑇

𝑞
(𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑)𝑑𝜑

𝜑𝐷

𝜑𝑠

 
(3.44) 

𝐼𝑑𝑠 = 𝜇0

𝑊

𝐿
∫ {𝐶𝑡𝑜𝑥𝑉𝑔𝑡

′ + 𝐶𝑏𝑜𝑥𝑉𝑔𝑏
′ − (𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑

𝜑𝐷

𝜑𝑠

+
𝑘𝑇

𝑞
(𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑}𝑑𝜑 

 

(3.45) 

𝐼𝑑𝑠 = 𝜇0

𝑊

𝐿
∫ {𝐶𝑡𝑜𝑥𝑉𝑔𝑡

′ + 𝐶𝑏𝑜𝑥𝑉𝑔𝑏
′ + (

𝑘𝑇

𝑞
− 1)(𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)𝜑}𝑑𝜑

𝜑𝐷

𝜑𝑠

 
(3.46) 

𝐼𝑑𝑠 = 𝜇0

𝑊

𝐿
[(𝐶𝑡𝑜𝑥𝑉𝑔𝑡

′ + 𝐶𝑏𝑜𝑥𝑉𝑔𝑏
′ )(𝜑𝐷 − 𝜑𝑆) +

𝑘𝑇 − 𝑞

2𝑞
(𝐶𝑡𝑜𝑥 + 𝐶𝑏𝑜𝑥)(𝜑𝐷

2 − 𝜑𝑆
2)] (3.47) 

 

We have utilized the potential profile derived before, by replacing V with 𝜑. With the 

known source voltage 𝑉𝑠 and drain voltage 𝑉𝐷, the lower limit 𝜑𝑠 and upper limit 𝜑𝑑 can 

be obtained by applying Newton-Raphson’s approximation. Equation (3.47) can be used as 

the final closed form expression for the drain current under all regions of operations.  

3.4.1 Velocity Saturation Effect 

In long channel devices, effects of lateral electric field on velocity saturation is negligible. 

Moreover, TMD materials have been found to exhibit a relatively high critical electric field. 

Thus the effect of velocity saturation does not play a significant role in long channel 2-D 

TMD devices. However, the prominent vertical electric field in 2-D channel shifts the 

charge centroid toward the dangling bonds of the gate dielectric, increasing scattering and 

thus reducing the mobility. A rigorous mobility model for 2D FETs is still not available. 



27 
 

Hence, we used an widely accepted model for Si-MOSFET and applied it for 2-D TMD 

channel FETs.  

The new corrected mobility μ is, 

μ =
μ0

√1 + (
μ0

𝐿𝜈𝑠𝑎𝑡
(𝜑𝐷 − 𝜑𝑆))2

  

(3.36) 

In order to incorporate this velocity model in the drain current equation, we need to put it 

inside the integral instead of treating it as a constant.  

μ =
μ0

√1 + (
μ0

𝐿𝜈𝑠𝑎𝑡
(𝜑𝐷 − 𝜑𝑆))2

  

(3.36) 

This last step requires numerical calculation to properly find the drain current.  

3.4.2 Interface Trap Effects 

Trapping is a major issue in the realization of 2-D TMD devices. It is very important to 

include them to any compact model, otherwise the model can predict unrealistic high drain 

currents. The interface trap states occupied by electrons are as follows,  

𝑁𝑡𝑟𝑎𝑝 = ∑
𝐷𝑡𝑟𝑎𝑝,𝑖

1 + 𝑒
𝑉−𝜑+𝐸𝑖𝑡

𝑣𝑖

 
 

(3.37) 

Here, 𝐷𝑡𝑟𝑎𝑝,𝑖 and 𝐸𝑖𝑡 are trap density and trap energy level calculated at ith subband. In 

order to incorporate this trap equation we need to modify carrier density function and 

subtract trap density for mobile carrier density.  
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Chapter 4 

Results and Discussions 

In this chapter, we present the validation of our model and its application in conducting a 

comprehensive study of the 2-D TMD channel MOSFET. Our model is validated against 

established numerical models and experimental results.  

4.1 Validation of the Subthreshold Model 

In order to verify the subthreshold model, transfer characteristics and output characteristics 

are calculated using the model and put into test against numerical simulations for both SOI 

and DG type structures. We have initially used MoS2 as the channel material due to its 

promising features and applications in semiconductor industry. The device and physical 

parameters of the FET are m=0.48m0, μ=300 cm2/Vs, εch=4.8εch, and Tch=0.65 nm. Here 

m0 is electron rest mass and ε0 is vacuum permittivity. In later part of the work, we have 

used different channel materials and their properties will be noted when used. Channel 

length has been varied from 10 nm to 50 nm. 2nm thick HfO2 and SiO2 serve as the top and 

bottom gate oxides respectively. For SOI structure, bottom gate oxide is much thicker (90 

nm).   

 

Figure 4.1: Ids vs. Vgs in subthreshold for 2D TMD channel MOSFET. Vds=0.5 V. 
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Figure 4.1 and 4.2 shows that our model is in good agreement with previously established 

numerical models for long channel devices. But in case of short channel devices, the 

renowned model proposed by Cao et al. deviates from actual value. This stems from an 

assumption during the establishment of the differential system in the beginning that the 

electric field in the oxides is along the vertical direction. In fact, electric field in the top and 

bottom oxides also has lateral component similar to that considered in the channel. The 

preassumption that electric field in the gate dielectric is vertical to the channel, is only valid 

when the channel is much thicker than the gate dielectric.  

 

Figure 4.2: Comparison of our subthreshold model with models proposed in [5] and [6]. 

Our model is in perfect agreement with that of Taur et al. for both short and long channel 

devices. On the other hand, the model proposed by Cao et al. produces erroneous results 

for sub-30 nm devices. Subthreshold profile of the 10 nm device is extracted from long 

channel model in [5] using (11). Then it is used to model transfer characteristics for the 12 

nm device. Bias was kept constant at Vds=0.5 V. 

 

Taur et al. have proposed a short channel model that can correctly produce device behavior 

in channel length well below 30 nm. However, their model has assumed a constant scale 
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length which is exactly double of gate oxide thickness. This constant value of scale length 

fails to consider other important factors like permittivity of channel and dielectric material, 

channel thickness, thus it fails to incorporate the effect of different oxide materials. Our 

analytical solution of scale length accounts for these device and physical parameters and is 

verified against numerical solution of Equation (2.2) for different oxide materials. It should 

be noted that the scale length exponentially decays for oxides with higher dielectric 

constant. This makes the deviation in Taur model less prominent in high-K materials. Since 

the scale length is a key parameter in determining the subthreshold current, lower accuracy 

in determining this will eventually lead to erroneous results.  

 

Figure 4.3: Variation of scale length with the permittivity of oxide materials for Tox= 2 
nm. Taur et al. proposed a constant scale length of 2Tox in all cases. 

  

It should be noted that our subthreshold model is valid for 𝑉𝐺𝑆 < φ𝑚 − χ and 𝐿 >10 nm. 

For higher gate voltages, velocity saturation model needs to be employed. On the other 

hand, when channel length is scaled down below 10 nm, the approximation in the 

calculation of subthreshold current yields erroneous results. For 𝐿 >10 nm, the constituents 

of the right hand side of Equation (2.11) produces a plateau-shaped distribution where the 

two halves of normal distribution have a rectangle in between. The width of this rectangle 



31 
 

varies linearly with channel length. However, for  𝐿 <10 nm the rectangle vanishes and a 

Gaussian curve of lower magnitude is formed. Figure 4.4 shows the Gaussian for sub-10 

nm devices and the plateau shape for other channel lengths. The exponential functions are 

equally distant from each other since their channel lengths are equally distributed. This 

linear relation with channel length works as the basis of our analytical model, as it allows 

us to calculate the integral without involving numerical calculations.  

 

Figure 4.4: Variation of exp(-N-R) from Equation (2.11) with channel length in constant 

bias condition (Vgs=0.1V and Vds=0.5V). In long channel devices, the width of the plateaus 

uniformly varies with channel length, while the magnitude remains same. In lower channel 

lengths the plateau shape is transformed into a Gaussian with lower magnitude. 

One of the key features that distinguishes 2-D TMD channel MOSFETs from other 

transistors is its low subthreshold swing i.e. the inverse of the derivative of the subthreshold 

slope. Figure 4.5 demonstrates the subthreshold swing for TMD transistors. For long 

channel devices, SS is very close to its theoretical limit of 60 mv/dec. Although SS is 

considerably low for these long channel devices, it exponentially increases as channel One 

of the key features that distinguishes 2-D TMD channel MOSFETs from other transistors 

is its low subthreshold swing i.e. the inverse of the derivative of the subthreshold slope. 

Figure 4.5 demonstrates the subthreshold swing for TMD transistors. For long channel 

devices, SS is very close to its theoretical limit of 60 mv/dec. Although SS is considerably 
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low for these long channel devices, it exponentially increases as channel length comes 

below 15 nm. The model proposed by Cao et al. underestimates this variation of SS. 

 

Figure 4.5: Variation of subthreshold swing with channel length. 

 

 

Figure 4.6: Threshold voltage roll-off calculated from our model and the model proposed 
by Taur et al.  
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The Vt roll-off curve in figure 4.6 is obtained by taking a constant current value cut through 

the subthreshold transfer characteristics curve. It is apparent that the roll-off problem starts 

to appear in a channel length below 15 nm. Above this length, the little variation in 

threshold voltage is ignorable. However, this roll-off problem becomes very prominent for 

low drain voltage operation.  

4.2 Validation of the All Region Compact Model 

The proposed compact model is validated against numerically simulated results. The 

compact model shows excellent match of surface potential both at the source side (𝜑𝑠) and 

the drain side (𝜑𝑑) against numerical simulation data with respect to applied gate voltage 

and drain bias. The proposed drain current model is then compared to a long channel device. 

The devices in Figure 4.7 has top oxide thickness of 2 nm. HfO2 is used as the top dielectric.  

Bottom oxide has thickness of 2 nm  for DG MOSFET and a long thickness of 90 nm for 

the SOI structure. In both cases, SiO2 has been used as the bottom oxide material. Both 

figures demonstrate excellent agreement with simulation data. Non ideal effects like 

velocity saturation has not been considered in preparing figure 4.8. Same device topology 

was investigated by Cao et al. as well.  

 

Figure 4.7: Output characteristics of an ideal 2D MOSFET in DG and SOI modes. 



34 
 

A real test of any realistic model is to quantitatively fit experimental results. Therefore, we 

validated our results with experimentally reported TMD materials-based nFET and pFET 

devices. We have found that the trap states play a very significant role in determining device 

performance in these devices. The physical parameters used in model verification are given 

in table 4.1.  

Table 4.1: Physical Properties of TMD Materials 

Material Bandgap 

(eV) 

Effective Mass 

(𝑚𝑛

𝑚0
/

𝑚ℎ

𝑚0
) 

Dielectric 

Constant 

Mobility 

(cm2/Vs) 

MoS2 1.8 0.56/0.64 4.8 200 

MoTe2 1.10 0.64/0.78 8.0 9.5 

WSe2 1.62 0.35/0.46 4.5 10 

 

The MoS2-based nFET reported by Sachid et al. for a device with 2 μm channel length, 20 

nm thick ZrO2 front gate oxide, and 260 nm thick SiO2 back oxide, is verified with the 

model and is shown in Figure 4.8 [41]. The transfer and output characteristics of 

mechanically exfoliated WSe2 nFET with Lch = 6.4μm, ttox = 17.5 nm (ZrO2), and tbox = 270 

nm (SiO2) are used to compare with the model as well in Figure 4.9 [42]. In addition to the 

MoS2 and WSe2 nFETs, experimentally reported 1 μm channel length MoTe2 nFET is also 

used to validate the model behavior (see Figure 4.10), where ttox is 1 nm with dielectric 

value of 5 and bottom oxide is 285 nm thick SiO2 [43]. In all the three nFET devices used 

in validation, the model accurately fits the experimental data for the transfer as well as the 

output characteristics. It should be noted that the model matched experimental results only 

after incorporating trap density in the drain current. This demonstrates the necessity of 

using interface trap models in the compact model design. All the experimental data are 

available for SOI structure. Back gate voltage Vbg =0 in all cases.  
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Figure 4.8: Drain current model behavior against the data of 2.0 μm long channel MoS2 

nFET experimental device reported by Sachid et al. (a) Output characteristics for Vgs= 0.4V 

to Vgs =2 V .(b) Transfer characteristics for Vds=0.05 V(blue) and Vds= 1 V(red). 
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Figure 4.9: Drain current model behavior against the data of 6.2 μm long channel WSe2 

nFET experimental device reported by Fang et al. (a) Output characteristics for Vgs=0.4 V 

to 1.2 V (b) Transfer characteristics for Vds=0.05 V(blue) and Vds= 1 V(red) 
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Figure 4.10: Drain current model behavior against the data of 1.0 μm long channel MoTe2 

nFET experimental device reported by Xu et al. (a) Output characteristics for Vgs=0.1 to 

Vgs=0.5 V (b) Transfer characteristics for Vds=0.05 V(blue) and Vds= 1 V(red) 
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The dashed line in the transfer characteristics exhibits the impact of traps on the device 

characteristics (threshold voltage, subthreshold slope, and ON current) and highlights the 

importance of including the trap effects in drain current. It should be noted that while 

mobility degradation affects the ON current, it does not alter the threshold voltage. 

However, traps have a direct and significant effect on threshold voltage. This increase in 

the threshold voltage also leads to reduction in the drain current with increasing trap states 

density. In addition, trap states also contribute to mobility degradation, on account of 

increased scattering. Thus, any realistic model should include the impact of the trap states 

on the threshold voltage and mobility. The output characteristics deviation from the long 

channel square law behavior specify the presence of the velocity saturation effect.  

 

 

Figure 4.11: Drain current model behavior against the data of 6.2 μm long channel WSe2 

pFET experimental device reported by Sachid et al. Output characteristics for Vgs=-.5 V to 

-1.5 V.  
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The developed model for the p-type FET is validated against the experimental data of 

WSe2-based long channel (Lg = 9.4 μm) top-gated pFET at Vbg = 0.0 V, as shown in Figure 

4.11 [41]. The model efficiently captures the impact of the trap states on the threshold and 

in the drain current. The model also shows a good match for the output characteristics for 

the multiple values of the applied front gate voltage. 
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Chapter 5 

Conclusion 

This chapter summarizes the entire work and the limitations of our model. It also proposes 

some future developments that will help us evaluate the prospects of TMD channel 

MOSFETs in the post-Silicon era.  

5.1 Summary 

The compact analytical model developed in this work can play a significant role in ongoing 

research on 2-D TMD channel FETs. It will pave the way for a better understanding of 

these devices. Present models mostly concentrate on long channel devices and often include 

cumbersome numerical calculation. A complete analytical model that can specifically 

replicate the properties of short channel devices will definitely help the researchers. This 

urgency to have a robust, yet less complex model has motivated us in developing our model. 

We have first established a subthreshold model from the scale length equation. Since our 

model is primarily established on the concept of scale length, it is important to be able to 

calculate scale length with minimum room for error. This is why, we at first derived a cubic 

equation for scale length and later used that length in our subthreshold current equation.  

We also deployed a new mathematical technique to calculate the integral of surface 

potential. This technique enables us to formulate a linear relation between channel length 

and the integral in the denominator of drift-diffusion equation in subthreshold. Previous 

models used numerical integration in this step.  

Finally we derived an all-region model for drain current from surface potential. The results 

of our model are matched with reported experimental results. However, most experimental 

results are available for very long channel devices (L=1-20 μm). We have verified our 

model with results from reported long channel devices. For short channel devices 

numerically calculated results are used for the verification of our model. Our model 

properly predicts device performance for channel lengths as small as 10 nm. At a lower 
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length quantum mechanical effects play a prominent role and demands more careful 

handling.  

5.2 Limitations and Possible Future Developments 

 Our subthreshold model fails for channel length less than 10 nm. In those lengths, 

the plateu shape of the exponential of potential function does not hold anymore. 

Rather a Gaussian shape is formed that requires a different approach to have an 

analytical solution. Both these approaches can be merged together to develop a 

rigorous model in the subthreshold region. 

 We have approximated a linear relation between mobile carrier density and 

potential, which simplifies the model in a great deal. But as a trade-off, the model 

fails to produce correct result in ultrashort length devices.  

 The model can better predict device performance if nonidealities can be 

incorporated   properly. Although we implemented trap models and velocity 

saturation models, both were modified from that of Si MOSFET. By developing 

proper mobility degradation models for 2D TMD channel devices, we can expect 

better agreement among the model and experimental results.  

 The quasi Fermi level is assumed to be linear in the derived analytical model. For 

higher drain voltage assuming a parabolic quasi Fermi level with respect to the 

channel dimension can provide better estimation of charge carriers at those 

voltages, although the computational complexity will increase greatly in that case.  

 This compact model can be further developed to make circuit models for 2D TMD 

devices. These models would facilitate EDA tools.  
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