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Abstract

Estimation of ultrasonic attenuation coefficient (AC) is essential for quantifying and

characterizing the features of tissue microstructure. In the conventional AC estima-

tion methods, a well-specified reference phantom is commonly used for minimizing the

diffraction and transmit pulse related effects on the ultrasound radio-frequency (RF)

echo signal. In this thesis, a novel AC estimation technique is proposed avoiding the

need of using any reference data, where the undesired system effects on the RF data are

minimized through point spread function (PSF) separation and band-pass filtering of

the envelope signal of the tissue reflectivity function (TRF). An improved and compu-

tationally efficient non-parametric cepstrum-based technique is used for separating the

TRF and PSF from the measured RF signal. The Hilbert transform based temporal

envelope is introduced to smooth out the unwanted effects of discontinuity and noise in

the TRF and PSF signals. Finally, a band-pass filter based log power approximation

technique is applied to estimate the center frequency component of the attenuating

TRF envelope power spectra with reduced diffraction effect. Assuming continuity of

AC within a small uniform region, an exponentially weighted-average of logarithmic

signal power of the neighboring blocks at the center frequency is measured for different

depths, with a view to fit a regression line for obtaining an average AC value from its

slope. Comparative results of the proposed reference-free AC estimation method with

other conventional reference-based methods are presented for tissue-mimicking (TM)

phantoms, in vivo breast and liver data. For the TM phantoms, the AC estimates using

the proposed algorithm are within 10% deviation of the actual values. The obtained

results for the normal female breasts, normal human livers, and fatty livers are 0.44

± 0.23 dB/cm-MHz, 0.55 ± 0.21 dB/cm-MHz, and 0.61 ± 0.20 dB/cm-MHz, respec-

tively, which are consistent with the literature-reported values of AC. Different from

reference-based methods, the proposed technique is free from the bias that may result

from the dissimilarity between acoustic characteristics of the reference and sample.

xiii



Chapter 1

Introduction

In this Chapter, the motivation for the development of a reference data free attenua-

tion estimation method is incorporated. A detailed review of the relevant and widely

adopted attenuation estimation techniques reported in the literature is also provided.

Later, the primary objectives achieved in this thesis are enlisted. Finally, a short

overview of the thesis organization is presented.

1.1 Motivation of the Thesis

The measurement of attenuation coefficient (AC) in vivo using the ultrasound pulse-

echo system is emerging as a promising technique for quantitative characterization of

different pathological states of soft tissue [1]. Unfortunately, its estimation is a challeng-

ing task as the received radio-frequency (RF) echo signal is distorted by frequency and

depth dependent effects predominantly caused by beam diffraction, tissue backscatter-

ing, and convolutional artifacts with the tissue interrogating pulse [2], thereby causing

inaccurate diagnosis. However, the local attenuation coefficient (AC) in quantitative

ultrasound (QUS) has been studied as an important feature of normal and pathological

conditions within biological tissues (e.g. liver, breast).

In the past few decades, for reliable extraction of core QUS parameter AC (β in

dB/cm/MHz), numerous time- and frequency-domain techniques [3]–[9] have been in-

tensively considered. Technically, spectral methods (i.e., spectral shift, spectral differ-

1



CHAPTER 1. INTRODUCTION 2

ence, hybrid) [5]–[9], of AC estimation from the change of spectral content with depth

are favored over time-domain methods (i.e., zero-crossing density, entropy difference,

and B-mode image analysis) [3], [4], because of easier correction for equipment-related

diffraction effects and frequency-specific estimation. The variance of the estimated

AC values by using these methods is related with the parameters such as window

length, number of data segments per block, transmit pulse bandwidth, and number of

regression points used per attenuation estimation ROI. The major drawback of these

methods is the necessity of a reference RF dataset with similar scattering properties

and acquisition parameter settings as of the sample RF data for the system effects

minimized AC calculation. During the sample dataset collection, when the machine

settings (i.e., depth, gain, focus, transmit power, etc.) are continuously varied, a

mandatory measurement calibration from the reference dataset is required to reduce

system and transducer dependencies. Therefore, these methods might be ineffective to

measure unbiased estimates of AC for the sample datasets with no available reference

dataset. In addition, simple spectral averaging within large spatial blocks is used in

these spectral methods to account for the random scattering effects of sample medium,

limiting the applicability of the spectral methods in clinical settings with higher spatial

resolution. As the acoustic attenuation is undeniably important in characterization of

different pathological states of soft tissue in vivo, hence a reference-free high resolution

AC measurement method with correction for system effects can lead to a promising

technology.

1.2 Attenuation Estimation Techniques: Literature

Review

The absorption and scattering phenomena of ultrasound pulse transmitting through the

tissue are related to various property values of the medium, which are of great interest

for the identification of numerous diseases in soft tissue. In fact the characterization of

different case studies of soft tissue in vivo [10], [11] using the measurement of acous-

tic attenuation has been appearing as a prosperous technique in quantitative ultra-
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sound (QUS). Moreover, accurate estimates of size, shape and distribution of the tissue

backscatterers are also highly dependent on the total attenuation value [12], [13]. The

attenuation is estimated by minimizing the difference of entropies in the two segments

as the attenuation is continuously compensated (time-gain-compensation (TGC)) at

the axial direction for the acquisition of the envelop statistics of the backscattered RF

signal [14]. The TGC compensated pulse echoes returning from any point is represented

by the brightness of that point on the screen, however, the sharp changes of the enve-

lope signal power under the different levels of attenuating regions represent significant

alterations in tissue characteristics. The envelope attenuation profile, obtainable from

the RF images, suggests where there is any characterizing variation of tissue profile, for

example, in breast [15], liver [16], thyroids [17], and prostate [11]. For example, in the

above mentioned tissue regions, AC value of the fatty segments is usually higher than

that of the normal segments. Therefore, there is always a need of computationally

efficient but effective AC estimation technique in ultrasound research because of its

significant importance for non-invasive clinical diagnosis of tissue pathology.

There are several types of echographic signal processing based AC estimation meth-

ods that have been studied in literature, can be classified into two fundamental types

depending on the way of RF signal analysis (time-domain and frequency-domain anal-

yses). Time-domain AC measurement techniques mainly based on the number of sign

changes per unit interval for center frequency estimation of a narrowband signal [3],

statistical analysis of ultrasound echo envelope peak (EEP) [18], minimum entropy

difference finding of the envelope sample values of pulsed echoes for two adjacent re-

gions [19], and video signal analysis of the clinical B-mode scans [4]. However, all these

techniques are vulnerable to depth and frequency dependent system-related artifacts.

To be specific, time-domain attenuation estimation methods do not take into account

the precise depth-frequency dependent diffraction correction in the backscattered RF

signal.

The frequency-domain methods rely on the spectral change with depth, where the

correction of frequency specific system-related effects in attenuation estimation can

be easily done. In the spectral difference methods, a measure of decay of the loga-
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rithmic power spectrum with depth is used to estimate the AC as a function of fre-

quency [20]–[22]. These algorithms are more likely to result in biased estimates due to

the variances of the irregular tissue backscatter [2]. For canceling the transfer functions

related to the ultrasound system (e.g., diffraction effects, PSF), a reference phantom

based normalization process of the sample spectra is implemented in the spectral differ-

ence method [7]. The RF datasets of reference phantom and sample need to be collected

with the same machine settings (i.e., gain, frequency, depth, focus) for this elimina-

tion procedure. In the spectral shift methods, the statistical nature of the spectrum

of backscattered RF signal is taken into account, and the spectral shift toward lower

frequencies with propagation depth is used to determine the AC [3], [23]–[25]. These

methods have difficulty in correcting for local variations (i.e., diffraction effects) during

the AC estimation. For more robust and stable AC estimation from the backscattered

RF signals having inhomogeneities in tissue structure, a measure of spectral shift of

the entire power spectra is provided by the spectral cross-correlation (SCC) [5]. For

the correction of diffraction effects of the sample AC estimates in the SCC method,

a reference phantom dataset is used in calculating the system effects from the differ-

ences between the theoretical and the measured center frequency downshifts of the RF

spectrum.

In other spectral methods, such as spectral normalization-based average attenuation

estimation (SNAAE) and spectral cross-correlation-based average attenuation estima-

tion (SCAAE) [6], the nearest neighbors are utilized for consistent and coherent AC

estimation. Theoretically, the spectral shift algorithms are vulnerable to the diffrac-

tion effects, and the spectral difference algorithms are sensitive to backscatter intensity

variations. To counteract the drawbacks of these methodologies, a more accurate hy-

brid algorithm has been used for AC estimation [8]. However, the above-mentioned

AC estimation methods have one major disadvantage, necessitating a well-specified

reference phantom under the identical transducer and system conditions as in the case

of the sample data. In addition, the AC estimation accuracy can be affected by the dif-

ference between the effective frequencies of the pulse propagation through the sample

and reference medium [26]–[28]. All these facts, as discussed above, lead to the need
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for a reference independent AC estimation technique.

In this thesis, a reference-free average AC estimation (RFAAE) technique is pro-

posed, where the main idea is to measure the power-attenuation of the TRF and PSF

signals with depth. For separating the TRF and PSF signals from the measured back-

scattered RF signal, an improved non-parametric cepstrum-based technique is used.

In the proposed envelope power spectra modeling, the unwanted depth and frequency

dependent diffraction and other system-related effects are counteracted through the

band-pass filtering and regression line fitting over the log power spectrum of the esti-

mated envelope signals. It is shown that this modeling can be used to determine a close

approximate of the attenuated center frequency component of the power spectrum at

a given depth. For further reduction of the system effect (e.g., tissue backscattering)

and consistent estimation of the center frequency component, a nearest neighborhood

exponential averaging technique is applied. The exponentially weighted logarithmic

power estimate of the small uniform tissue portions along the depth is utilized for

linear regression line fitting. Finally, the slope of this line is used for calculating the

sample average AC. The proposed AC estimator is tested on the backscattered RF data

of TM phantom, in vivo breast and liver, along with other familiar reference-based AC

estimators.

1.3 Objectives of the Thesis

The objectives of this work are:

1. To propose a new technique of reference-free minimization of diffraction effect in

the deconvolved backscattered RF signal for ultrasonic attenuation estimation of

soft tissue.

2. To develop an improved non-parametric deconvolution method for extracting the

tissue reflectivity function (TRF) and the point spread function (PSF) from the

measured RF echo signal.
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3. To analyze the impact of an exponential weight function in the neighborhood of

the interrogating window on the reduction of AC estimation variance.

4. To make a comparative performance study of the proposed method with other re-

ported reference-based techniques using known AC CIRS (Computerized Imaging

Reference Systems, Inc., Norfolk, VA) experimental phantom data, and in vivo

breast and liver data.

1.4 Organization of the Thesis

This thesis consists of four chapters. Chapter 1 is composed of the motivation and ob-

jectives of the thesis and the limitations of the existing techniques. In Chapter 2, the

basic principle of ultrasound imaging, its system features and concepts are discussed

under respective sections. Chapter 3 has the detailed description of the theoretical as-

pects of the applied reference-free system-related artifacts minimization based average

attenuation estimation using a weighted nearest neighbor method. The graphs shown

in this Chapter are obtained for uniform CIRS phantom (i.e., type D) with specific

attenuation coefficient. In Chapter 4, the experimental results are demonstrated for

both the TMP (Tissue-Mimicking-Phantom) and the in-vivo breast and liver data of

healthy and fatty categories. Here, the processing of the RF images and the infor-

mation of the presets of the ultrasound instrument are also represented. Finally, in

Chapter 5, concluding remarks and suggestions for future research are provided based

on the outcomes and limitations of this thesis work.



Chapter 2

Basics of Medical Ultrasound

Imaging

The basic key concepts of medical ultrasound imaging system are briefly described in

this Chapter. Specially, the important topics concerning the attenuation estimation are

addressed here, including RF echo image formation, array transducers, beam steering

and focusing, mathematical system modeling. This chapter is meant to be the foun-

dations for understanding the particular terms related to the estimation of the QUS

parameters.

2.1 Basic Principle of Ultrasound Imaging: Back-

ground and Literature

Diagnostic medical sonography is the use of non-invasive high frequency ultrasound

which has come into applications since late 1950s [29]. Originally, this technology was

designed for the investigation in obstetric and gynecologic cases with static, simple

black and white, and compound information acquisition techniques termed as A-mode

(amplitude mode), B-mode (brightness mode), and M-mode (motion mode) display

methods [30]. In addition, broad-band transducer technologies facilitated with multi-

channel focus, high resolution scanners, and digital beamforming capabilities such as

7
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Color Doppler and Duplex, were first utilized during the 90s [31]. Because of the con-

tinuous research and development, it becomes possible to use the ultrasound imaging

as a non-invasive diagnostic tool for the quantitative and functional information gain

of the tissue microstructures.

The principle of ultrasound based upon the pulse-echo system where the conversion

between electric pulse and sound energy is made with help of ultrasound piezoelectric

crystals. Medical ultrasound imaging are basically done with frequency ranges between

2 - 15 MHz [32], much higher than the audible frequency for human being. Ultrasound

pulse is usually produced by applying a voltage to a piezoelectric crystal which either

expands or contracts frequently. Then, the crystal vibrates accordingly with the vari-

ation of the applied voltage. This forward and backward motions result in ultrasound.

When ultrasound pulse is reflected from various types of complex microscopic tissue

structures in the body and returns to the ultrasound probe, the reverse occurs and the

electrical signals generated are analyzed and a grayscale (B-mode) image of region of

interest (ROI) is constructed. Here, the final B-mode images are obtained from the

raw backscattered RF signals by using a post-processing pipeline including envelope

detection, time-gain compensation, and dynamic-range (i.e., logarithmic) compression.

Typically, the ultrasound pulse can be distorted, absorbed, detracted and scattered

because of the complicated pattern of tissue, which may cause problems getting actual

profile of the ROI from the reflected ultrasound.

Ultrasound transducer is moved in lateral dimension while its beam is aimed down

the axial direction to generate a B-mode image by scanning the beam in a plane.

The information of scanned image can be divided into multiple lines along the lateral

direction, and each single line is termed as scan line. The number of scan lines is

usually dependent on the number of elements in an array transducer. In addition, the

sample number in a scan line along the axial direction is determined by the sampling

frequency of the transducer. The entire process is illustrated in three dimensional Fig.

2.1 showing axial (z-axis), lateral (x-axis), and elevation (y-axis) directions. The image

resolution in the axial (i.e., z-axis) and lateral (i.e., x-axis) dimensions are proportional

to the frequency and beam-width of the ultrasound waveforms, respectively. At a
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higher frequency, the axial resolution gets better, but the attenuation of the signal

intensity becomes also higher with propagation depth. Therefore, ultrasonic imaging

has a trade-off between the image resolution and penetration depth.

Transducer
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Tissue

RF Plane

Scan line

Probe 
Surface

RF Frames
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Figure 2.1: Working principle of an ultrasound system.

2.2 Imaging with Array Transducers

A large number of frames are captured from the ROI plane at a time, from which the

tissue condition can be observed from different shape and angle. Depending upon the

position and shape of the tissue region, a variety of image can be produced with the

required probe (e.g., linear array, convex array) as shown in Fig. 2.2. The ROI is picked

by firing a set of probe elements (i.e., active elements) located over the interrogated

region. The focused beam is swept across the ROI by the electronic activation of

contiguous array elements (linear and convex array), without changing the transducer

position physically. Focusing and steering of transmitted beam is acquired by delaying

the excitation pulses of the individual elements, resulting in a concave beam shape, as

shown in Fig. 2.2. The beam focusing can also be achieved during the reception process

by delaying and adding the backscattered responses from the multiple elements.

The linear array transducer is used to obtain a rectangular image, where the large
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Imaging
Area

Imaging
AreaActive

Elements

Active
Elements
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(a) Linear Array Imaging (b) Convex Array Imaging

Figure 2.2: Ultrasound probe types and corresponding B-mode images.

arrays employed to get sufficient portion of the ROI. When a comparatively large area

needs to be scanned with a smaller array, it can be done effectively by the convex array

transducer. For the curved (i.e., convex) array transducers, the initially acquired RF

dataset is not geometrically correct to represent the exact tissue structure. Therefore,

a scan conversion process is used to map the data from a curvilinear grid to the actual

geometry of the tissue. For this process, the geometry and location of the transducer

grid and the display grid must be known with respect to each other.
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2.3 Mathematical Representation of Imaging Sys-

tem

Based on the first order Born approximation (i.e, assumption of linear propagation

and weak scattering) [33], [34], the ultrasound RF images can be modeled as a 2D

convolution between the blurring point spread function (PSF) and the tissue reflectivity

function (TRF) [35]–[37]. Here, the PSF can be considered as the signal by which tissue

information is spread about a point. On the other hand, the TRF is related to the way

of how the emitted pulse from the transducer is scattered by the scanned object [1].

Thus, the convolution model can be expressed in the following form [38]:

r(xl, za) = s(xl, za) ∗ h(xl, za) + u(xl, za),

=
∑
i

∑
j

s(xl − i, za − j)h(i, j) + u(xl, za), (2.1)

where s(xl, za), h(xl, za), and u(xl, za) are the PSF, TRF, and additive random noise,

respectively; (xl, za) is the lateral and axial position with respect to the probe, and can

be Cartesian (for rectangular array transducer) or polar (for convex array transducer)

coordinates. The mathematically accurate form of the PSF is determined by the type

and properties of the imaging system, whereas the TRF is largely dependent on the

type of physical interactions that take place within the medium. By considering the

finite beam-thickness, the 2D convolution model could be extended to 3D form model

without loss of generality [39].

For the 2D convolution models that exist in the literature [40]–[42], the PSF is

considered as shift-variant due to non-uniform focusing, diffraction effects, dispersive

attenuation, and phase aberration. In these cases, RF images are usually subdivided

into a number of local image segments in the axial dimension by assuming the PSF to be

shift-invariant for each segment, whereas the lateral variation of the PSF is considered

to be negligible because of aperture weighting (i.e., apodization) and limited amount

of lateral data compared to the axial information [36]. Therefore, it is possible to

counteract the problem of non-stationary global convolution model by several quasi-
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stationary local 1D convolution models. Specifically, attenuation estimation techniques

of soft tissue reliably depend on the 1D convolution model by providing an optimal

balance between estimation accuracy and computational efficiency [43]. Taking into

account all these remarks, the model (2.1) can be approximated as

ri(za) = si(za) ∗ hi(za) + ui(za) =
∑
j

si(za − j)hi(j) + ui(za), j = 1, 2, ... (2.2)

where si(za), hi(za), and ui(a) are the axial smoothing kernel (i.e., PSF), tissue response

(i.e., TRF), and Gaussian noise associated with the i-th scan line.



Chapter 3

Average Attenuation Estimation of

Soft Tissue

Generally, the usefulness of any AC estimation method can be evaluated by investigat-

ing how effectively the minimization process of the diffraction, PSF, and backscattering

effects in the RF data are accomplished. The novelty of the proposed Reference-free

Average Attenuation Estimation method is that AC can be measured from the soft

tissue with proper system effects minimization where no reference data is required. In

this chapter, a detailed discussion of the new methodology is provided with appropriate

signal processing routines and step-wise reasoning.

3.1 Problem Formulation

Modeling of the back-scattered RF signal and rational use of the envelopes of its con-

stituent signals (i.e., TRF and PSF) are the key to devise a technique for reducing

the undesired system effects in the reference-free estimation of AC. The ultrasound

echo signal can be considered as a single-input multiple-output (SIMO) model, where

the measured RF signals of multiple scan lines are formed by the spatially varying

convolution of the same transmitted pulse with the tissue reflectivity functions in the

presence of dispersive attenuation along the axial direction [33], [44]. Usually, AC

13
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value is estimated from small segments within a region of interest (ROI) of the entire

RF frame, where the variation of attenuation properties can be ignored [1]. Thus, the

quasi-stationary backscattered RF data segment ri(n, z) of the i-th scan line can be

modeled as a convolution of the ultrasound pulse or PSF s(n) with the windowed TRF

hi(n, z) at a depth z [44], [45], i.e.,

ri(n, z) = s(n) ∗ hi(n, z). (3.1)

Now, the received RF signal power spectrum PRi
(f, z) of the segmented data ri(n, z),

can be expressed in frequency domain as [2]

PRi
(f, z) = PS(f) · PHi

(f, z) (3.2)

with

PHi
(f, z) = PDi

(f, z) · PBi
(f, z) · PAi

(f, z). (3.3)

Here, PS(f) is the transmit pulse intensity spectrum, and PHi
(f, z) is the tissue reflec-

tivity intensity spectrum of the i-th scan line segment; PHi
(f, z) consists of beam focus-

ing related diffraction term (i.e., PDi
(f, z)), spectral contribution of tissue backscatters

(i.e., PBi
(f, z) = PBi

(f)) within the homogeneous and isotropic ROI, and frequency

dependent attenuation in the soft tissue along the transmitting path (i.e., PAi
(f, z)). In

(3.2), it is assumed that the data segment of the RF echo signals is much smaller than

the focal length of the transducer, and hence the variations of the ultrasound field (i.e.,

beam diffraction) within this segment may be ignored [2], [8]. In order to estimate AC

using (3.2), the depth and frequency dependent system effects (i.e., PS(f), PDi
(f, z),

and PBi
(f, z)) need to be reduced from PRi

(f, z).

In the traditional reference-based AC estimation methods [2], [7], the undesired

system effects given in (3.2) are generally minimized by spectral normalization as in

the following:

10log

[
PRi,2(f, z)

PRi,1(f, z)

]
= 10log

[
PS(f) · PDi

(f, z) · PAi,2(f, z) · PBi,2(f)

PS(f) · PDi
(f, z) · PAi,1(f, z) · PBi,1(f)

]
,

= 10log

[
10−2β2fz/10 · PBi,2(f)

10−2β1fz/10 · PBi,1(f)

]
,

= 10log

[
PBi,2(f)

PBi,1(f)

]
+ 2∆βfz, (3.4)
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where ∆β = (β1−β2), the sample and reference ACs (in dB/cm-MHz) are represented

by β1 and β2, respectively. The slope (i.e., 2∆βf) of the fitted line over (3.4) with depth

z, is evaluated at a particular frequency (i.e., center frequency, fc) to calculate β2 with

the help of known β1 of the reference dataset. This kind of AC estimation method

is highly sensitive to the selection of a reference phantom, because an inappropriate

cancellation of the system transfer functions through spectral normalization given in

(3.4) can lead to erroneous estimates.

The challenge in a reference-free method is to mitigate the impact of these system-

related effects on the accurate estimation of AC, by using only the sample RF data,

ri(n, z).

3.2 Reference-free Average Attenuation Estimation

(RFAAE)

The block diagram of the proposed RFAAE technique is illustrated in Fig. 3.1.

The first step towards the reference-free attenuation estimation is the restoration

of PSF and TRF signals from the RF signal. This is because in presence of beam

diffraction and other random system effects, it is difficult to directly utilize the dis-

torted Gaussian shaped RF spectrum for AC estimation from the derivative of spectral

centroid downshift with depth [5]. The random nature of the RF signal spectrum

is illustrated in Fig. 3.2 for arbitrary blocks with dimensions of 30λ (axial) × 2λ

(lateral) at 0.50 and 1.00 cm depth of an experimental phantom D (details are avail-

able in Table 4.1 of chapter 4), where the spectral averaging of the overlapped gated

windows is used along the two directions for reducing the noise artifacts [8]. In con-

trary, the exponentially decaying nature of the estimated TRF envelope spectrum, as

shown in Fig. 3.2 for the two depths, can be exploited effectively to get rid of the

influence of system artifacts on AC estimation, through the band-pass filtering of the

approximately undistorted power spectrum portion, as explained later in this chapter.

Therefore, the center frequency specific attenuation factor can be easily determined

after the TRF-PSF separation at different depths.



CHAPTER 3. AVERAGE ATTENUATION ESTIMATION OF SOFT TISSUE 16

To separate the TRF and PSF multiplicative spectra, a non-linear and non-parametric

computationally efficient transformation (i.e., cepstrum) is utilized. In order to get the

cepstral coefficients ci(k, z), the real part (Re{·}) of inverse Fourier transform (F−1)
of the log-magnitude spectrum is calculated from (3.1) at a depth z. The relation is

given by

ci(k, z) = Re{F−1(log |Ri(f, z)|)},

= Re{F−1(log |S(f)|+ log |Hi(f, z)|)}, (3.5)

As shown in Fig. 3.3(b), the energy of the cepstrum of PSF signal is mostly con-

centrated at the first few samples (e.g., within 6 samples), whereas the cepstrum of

TRF signal is evenly distributed over the entire quefrency range [46]. Therefore, the

inverse cepstrum transform of the low-pass liftered quefrency components can be used

for recovering a reasonable approximation of the PSF amplitude spectrum. The cut-off
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Figure 3.1: Block diagram of the proposed RFAAE algorithm.
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quefrency Nc of the low-pass lifter, as displayed in Fig. 3.3(a), is calculated from the

inverse of the time (i.e., ∆f/fs, where fs = sampling frequency) that is required to rise

from 10% to 90% value in the RF log-spectrum. In general, there is no drastic change

in the shape of the spectrum due to tissue-related attenuation. For this reason, once

the lifter cut-off is determined for the transducer having a specific sampling frequency,

then it can be utilized in other situations. Therefore, the liftered cepstrum (cp(k)) is

defined as

cp(k) =


0.5ci(k), k = 0

mkci(k), 1 ≤ k ≤ Nc

0, Nc + 1 ≤ k ≤ N − 1

(3.6)

where mk is the multiplier factor of the low-pass lifter, which is dependent on the
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segment length relative to the entire scan line.

Proper selection of a multiplier factor is required for obtaining good approximations

of the desired PSF and TRF as evident by the two lifter cases shown in Figs. 3.3(c)

and 3.3(d). As shown in Fig. 3.3(c), the estimated PSF (red broken line) using the

conventional lifter 1 (i.e., cp(0) = ci(0),mk = 2) [47], is an exponentially decaying

oscillation rather than the desired Gaussian shaped oscillation as known from [48], and

in Fig. 3.3(d), the system effects related TRF (red broken line) obtained from RF

Δf ≈ 8MHz
N

 
 = F /Δf = 40/ 8 = 5
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estimated TRFs of the corresponding backscattered RF signal (ri(n, z)) with different
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by using the estimated PSF, is also not accurate as evident by the presence of high

frequency components under the frequency-dependent attenuation. However, after the

use of new lifter 2 (i.e., cp(0) = 0.5ci(0),mk = 5 except that mNc−1 = mNc = 1), both

the PSF and TRF estimates become closer approximate of the desired shapes. Here,

mk is fixed to 5 depending on the ratio of the number of blocks taken for the entire RF

image and for the ROI along the depth. But, mNc−1 and mNc are set to 1 for minimizing

the artifacts in the estimated PSF spectrum related to the sharp cut-off of the liftered

cepstrum. The amplitude of the transmitted PSF having finite bandwidth can be fixed

when cp(0) is set to zero, but then the PSF amplitude will be strongly influenced by the

out-of-band portion associated with the TRF signal [46]. A reasonable choice preferred

in this method is to suppress cp(0) about 50% of ci(0) for the PSF measurement using

the lifter 2.

Using (3.6), the estimated PSF s′(n) can be obtained as

s′(n) = Re{F−1(exp(Cp(f)))}, (3.7)

where Cp(f) denote the Fourier spectrum of the liftered cepstrum cp(k). The PSF

spectrum S ′(f) calculated from s′(n) by using (3.7) is found to be in accordance with

the Gaussian PSF spectrum model discussed in [5], [48].

With the help of the restored PSF s′(n), now a Wiener filter [47] is employed to

estimate the TRF h′i(n, z) in the following way:

H ′i(f, z) = Ri(f, z) ·G(f), (3.8)

G(f) =
S ′*(f)

|S ′(f)|2 +NSR
, (3.9)

where the Fourier spectra of the backscattered RF and the estimated TRF and PSF

signals are denoted by Ri(f, z), H ′i(f, z), and S ′(f), respectively, and G(f) is a simple

Wiener filter. The parameter NSR is the noise-to-signal power ratio, which can be

set to a specified value depending on the measured RF data. Finally, by performing

inverse Fourier transform of (3.8), the TRF h′i(n, z) can be recovered.

After the TRF-PSF estimation of sample RF data segments, the reference-free

AC measurement through mitigating the influence of remaining system effects (i.e.,
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diffraction, scattering) can be achieved from the band-pass filtered envelope power

spectra of the restored signals. At first, a robust envelope based method is introduced

in the TRF-PSF modeling to counteract the amplitude and phase disturbances due to

system artifacts [49]. The TRF and PSF envelopes, h′i,e(n, z) and s′e(n), respectively,

having the same energy as the actual signal, can be obtained by Hilbert transform [50]

as

h′i,e(n, z) = |h′i(n, z) + jĥ′i(n, z)|, (3.10)

s′e(n) = |s′(n) + jŝ′(n)|, (3.11)

where j is the complex number operator, | · | denotes the modulus, and ĥ′i(n, z) and

ŝ′(n) are the discrete Hilbert transform of h′i(n, z) and s′(n) signals, respectively.

For real-time RF data consisting of all the mentioned system effects, the impact of

taking temporal envelopes is shown in Figs. 3.4(a)-3.4(c). The spectral components

of the signals are shifted towards the baseband by taking envelope as shown by the

broken line of the PSF envelope spectrum compared to solid line of the PSF spectrum

in Fig. 3.4(f). In a similar way, the TRF envelope spectrum (broken line) is shown in

Fig. 3.4(e), where the discontinuity (for example, the spike near 4 MHz) is smoothed

out to a certain extent compared to the TRF spectrum (solid line). As evident from

the spectra shown in Figs. 3.4(d)-3.4(f), discontinuity smoothing, scaling invariance

preservation and elimination of wideband distortion (common case in channel distorted

RF data) are obtained through taking the signal’s Hilbert envelope [51].

Before applying the band-pass filter on the envelope TRF power spectrum for

the center frequency component based AC estimation, the frequency-depth depen-

dent interferences associated with the beam formation and transducer geometry are

investigated. For instance, the beam diffraction related correction equation provided

in [52], [9] is

D̃(f, z) = 1− e−j(2π/s)[J0(2π/s) + jJ1(2π/s)]. (3.12)

In (3.12), J0 and J1 are the zeroth- and first-order Bessel functions of the first kind, j

is the complex number operator, and the Fresnel parameter s = zv/fa2, where z is the
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Figure 3.4: The sequences ((a)-(c)) and the corresponding spectra ((d)-(f)) of the RF

signal (r(n)), the estimated TRF (h′(n)) and PSF (s′(n)) signals, respectively. In the

spectrum, the zero frequency component is not shown (not needed by the envelope

power spectra modeling).
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distance, v is the speed of ultrasound, f is the frequency, and a is the transducer radius.

Eq. (3.12) is illustrated in Fig. 3.5 for an unfocused, single-element transducer with a

radius of 4 mm, indicating the transducer beam diffraction D̃(f, z) related distortion

effects as a function of frequency and depth. It is evident from Fig. 3.5 that the

diffraction function D̃(f, z) has high-pass characteristics and the lower frequency part

of the spectrum (in this case, below 2 MHz) is severely attenuated. At a higher depth,

the diffraction related distortion becomes more spread out beyond 2 MHz, but remains

much below the center frequency of the band over the depth considered, and hence a

proper band-pass filter can be used to recover the undistorted TRF spectrum portion

for AC estimation. This is because, unlike the band-limited effects of diffraction, the

attenuation factor exists in the entire TRF spectrum.

In order to explore the beam spreading or diffraction pattern for multiple elements,

the acoustic pressure field of a linear array transducer having 192 rectangular elements

with a center frequency of 10 MHz was calculated using the ultrasound simulation

program Field II [53], [54], as shown in Fig. 3.6. The lateral width and spacing (i.e.,

kerf) of the elements were 2λ and 0.1λ, respectively. The 64 active elements were

translated over the aperture for scanning. The beam focus was set at 5.1 cm and the

sampling frequency was 40 MHz.

From Figs. 3.6(a) and 3.6(b), it is visible that the magnitude of the pressure field is

decreased at the shallow (i.e., segment 1) and deep (i.e., segment 3) regions compared

to that at the central focal depth (i.e., segment 2). As a result, in the presence of

beam focusing, AC will be underestimated and overestimated in these two regions

(i.e., segment 1 and 3), respectively [55], [56]. For the two depths before and beyond

the focal zone of the center scan line (i.e., segment 1 and 3), it is observed from Fig.

3.6(c) that the small spectral region between 0 to 2 MHz frequency is largely affected

by the beam diffraction, and the rest of the spectra remains approximately unchanged,

which is similar to the single-element transducer case.

Now, for the AC estimation model, the TRF envelope power spectrum PH′i,e(f, z)

calculated from h′i,e(n, z) by using (3.10) can be expressed as

PH′i,e(f, z) ' Fe
(
PB′i(f), PD′i(f, z)

)
· PA′i,e(f, z), (3.13)



CHAPTER 3. AVERAGE ATTENUATION ESTIMATION OF SOFT TISSUE 23

0
2

4
6

8
10 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1
 

Frequency, f (MHz)

 

D
ep

th, z (cm
)

M
a

g
n

it
u

d
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

at 1 cm depth

at 5 cm depth

at 10 cm depth

Figure 3.5: Absolute magnitude of the diffraction function (D̃(f, z)) for a transducer

radius of 4 mm.



CHAPTER 3. AVERAGE ATTENUATION ESTIMATION OF SOFT TISSUE 24

where the TRF power spectrum PH′i(f, z) related to its envelope spectrum PH′i,e(f, z)
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can be written by modifying (3.3) as

PH′i(f, z) = PB′i(f) · PD′i(f, z) · PA′i(f, z), (3.14)

Here, PB′i(f), PD′i(f, z), and PA′i(f, z) are the power spectra of the backscattering,

diffraction, and attenuation, respectively, with the effects of estimation incorporated.

The function Fe given in (3.13) is for mapping the effects of PB′i(f) and PD′i(f, z) in the

envelope domain. The attenuation power spectrum PA′i,e(f, z) of the TRF envelope is

shown separately in (3.13), because it is closely related to the actual attenuation profile

PAi
(f, z) as both the TRF and its envelope power spectra have similar exponentially

decaying characteristics with depth. For a homogeneous medium, PA(f, z) can be

defined by using the AC β (in dB/cm-MHz) as [3], [57]

PA(f, z) = e−4βfz/8.686 = 10−2βfz/10. (3.15)

In order to recover the factor 10−2βfcz/10 at a given depth z and center frequency fc,

the attenuation power spectrum with and without the diffraction effects (i.e., PA(f, z) ·
PD̃(f, z), and PA(f, z), respectively) are shown in Fig. 3.7, as calculated by using

(3.12) and (3.15). Since the distortion of exponentially decaying attenuation due to

diffraction lies in the low frequency region, the less distorted region (e.g., 8 - 20 MHz,

beyond the knee point) of the attenuation-diffraction spectrum (blue line) of the TRF

stays very near to the attenuation spectrum (red line) at different depths, as illustrated

in Fig. 3.7 and thus can be band-pass filtered as

PH′i,e,BPF (f, z) = PH′i,e(f, z) · F (f), (3.16)

where

F (f) =

 1, f1 ≤ f ≤ f2

0, otherwise
(3.17)

In (3.17), the lower and upper cut-off frequencies f1 and f2, respectively, are selected

based on the frequency band, where the diffraction effects are supposed to be negligible.

Now, the logarithm of the band-pass filtered power spectrum, PH′i,e,BPF (f, z), can

be used for a regression line fitting with frequency to estimate attenuation at the center
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frequency (fc). In Fig. 3.8, the logarithm of the TRF’s attenuation-diffraction power

spectrum PBPFfit(fc, z) obtained from the log-linear fit, and of the theoretical center

frequency attenuation factor PA(fc, z)(= 10−2βfcz/10) are shown for different depths and

for three AC values. As obvious from Fig. 3.8, the slope of the estimated log power

line remains very close to that of the log attenuation line (i.e., −2βfcz/10), and thus

can be used to estimate the AC value.

After performing the band-pass filtration and log-linear regression, the envelope

TRF power spectrum with reduced diffraction effects can be approximated at fc as

PH′i,e,BPFfit
(fc, z) ' Fe

(
PB′i(fc)

)
· 10−2βfcz/10, (3.18)
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Figure 3.7: The attenuation and diffraction effects on the TRF power spectrum at two

depths (z1 = 1.0 cm, z2 = 2.0 cm) and for β = 0.5 dB/MHz-cm, fc = 10 MHz.
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Taking logarithm on both sides of (3.18) yields

dBP ′(fc, z) = dBP ′0(fc)− 2βfcz, (3.19)

where dBP ′(fc, z) and dBP ′0(fc) are decibel representations of PH′i,e,BPF
(fc, z) and

Fe
(
PB′i(fc)

)
, respectively.

The backscatter coefficient power spectrum PB(f) of random scatterers has a nor-

mal distribution when averaged for the neighborhood within a homogeneous and isotropic

ROI [58], and thus its effect can be neutralized by calculating the average TRF power

spectrum with depth. The average dBP ′(f, z) at fc within a neighborhood can be
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Figure 3.8: The log magnitude of the estimated power PBPFfit(fc, z) of the band-

pass filtered (8 − 20 MHz) TRF and the center frequency attenuation power content

PA(fc, z) for different depths and for three AC values (β1 = 0.2, β2 = 0.5, and β3 =

1.0 dB/MHz-cm), where fc = 10 MHz.
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written by using (3.19) as

dBP ′(fc, z) = dBP ′0 − 2βfcz, (3.20)

where dBP ′0 is the decibel representation of the depth-invariant expected value of the

backscatter power spectrum function Fe
(
PB′i(fc)

)
modeled as a Gaussian random pro-

cess within the small ROI [3], [58]. The averaging process of dBP ′(fc, z) of the target

Exponentially decaying weight 

is indicated by color fading

Interrogative window

a
i

l
i

(a
t 
, l

t
)

Figure 3.9: Illustration of the weighted exponential contribution of NN in the estima-

tion of effective AC at an investigating point (at,lt).
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window is done with the closest neighboring windows having size of La × Ll. In order

to give more weightage to the target window (at (at, lt)) in the averaging, a 2-D (axial

and lateral dimensions) exponential weighting function wt,(ai,li) is utilized (shown in

Fig. 3.9). The averaging operation is carried out as

dBP ′(fc, z)

=

at+La∑
ai=at−La

lt+Ll∑
li=lt−Ll

wt,(ai,li) × dBP ′(ai,li)(fc, z)

at+La∑
ai=at−La

lt+Ll∑
li=lt−Ll

wt,(ai,li)

, (3.21)

where

wt,(ai,li) = e−
∣∣ (ai−at)

2

∣∣−∣∣ (li−lt)

2

∣∣
. (3.22)

Now, an estimate of AC for the ROI can be calculated from the slope of the fitted

line over (3.20) with depth.

It is shown in [48] that the PSF spectrum is depth independent Gaussian function

centered at a specific frequency, and thus it is assumed that the attenuation and other

system effects are incorporated in the TRF signal as given by (3.3). However, in

the estimated average PSF spectra for a particular homogeneous ROI (experimental

phantom D, as stated in chapter 4) at different depths, as shown in Fig. 3.10, some

variations of the center frequency and magnitude are visible. In Fig. 3.11, by using the

estimated power content (with neighborhood technique) of the filtered TRF and PSF

envelope signals within the homogeneous ROI, it is shown that the deviation between

the attenuation-related depth dependent function (i.e., −2βfcz) of power spectrum (in

dB) of the TRF-PSF combined and TRF-only is very small, resulted from the depth-

dependency of PSF power spectrum (in dB). Methodically, the depth invariant PSF

is indicated by the red broken line in Fig. 3.11, and it will be kept as a constant

(i.e., intercept) if included in (3.20), as like the backscattering effect Fe
(
PB′i(fc)

)
. In

practical cases, the depth dependent portion shown by the PSF can be considered as

a negligible estimation error of the TRF-PSF separation process, which is found to be

within 5− 10% of the AC value measured by the RFAAE method.
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Hence, the AC estimation accuracy from (3.20) can be further improved by adding

(3.18) with the bias obtained from the average power of the baseband envelope PSF

spectrum (PS′e(z), proportional to PSF power centered at fc) as

10log[PH′i,e,BPFfit,S
′
e
(fc, z)] = 10log[PH′i,e,BPFfit

(fc, z)]

+10log[PS′e(z)],

dBP ′′(fc, z) = dBP ′′0 − 2βfcz, (3.23)

where dBP ′′(fc, z) and dBP ′′0 are the modified versions of dBP ′(fc, z) and dBP ′0 given

in (3.20).

0 2 4 6 8 10 12 14 16 18 20

Frequency, f (MHz)

M
a

g
n

it
u

d
e

0

1

2

3

4

5

6

7

8

9

10
x 10

2

at z = 0.00 cm

at z = 0.17 cm

at z = 0.33 cm

at z = 0.50 cm

at z = 0.67 cm

at z = 0.83 cm

at z = 1.00 cm
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At a given depth z, the linear regression-line centered at fc over the log power spectrum

defined in (3.23) can be expressed as

Y (fc, z) = I(fc)− 2βfcz, (3.24)

where Y (fc, z) is the regression-line value at the center frequency fc in the presence of

a linear frequency dependent AC β (dB/cm-MHz). The intercept, I(fc) corresponds

to Y (fc, z) at z = 0.

The impact of taking weighted averaged logarithmic intensities (i.e., from line seg-

ments i−5 to i+5) on the AC determination of the i-th interrogative scan line segment

using (3.24), is shown in Fig. 3.12. Here, the plots are shown for the 1 cm RF scan line
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segments of a type D experimental phantom (details are given in Table 4.1 of chapter

4) partitioned into seven 1-D blocks with 50% overlapping in the axial direction. In

fact, the proposed RFAAE method becomes more robust by using the neighborhood

(La × Ll) technique given in (3.21), as the i-th weighted average plot (La = Ll = 5)

is almost aligned with the fitted straight line and is more linear in nature than any

of the instantaneous logarithmic intensity plots (i.e., i− 5 to i+ 5) without using the

neighborhood (La = Ll = 0). The obtained AC value (0.74 dB/cm-MHz) from the i-th

fitted line is also very close the actual value (0.70 dB/cm-MHz). This fact can be taken

as an evidence of proper system effects mitigation in AC estimation in the absence of

reference data.
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Figure 3.12: The regression lines (i−5 to i+5) of instantaneous logarithmic intensities,

and the regression line (i) of weighted average logarithmic intensity along with the

corresponding intensity (in dB) plots for the proposed RFAAE method. Here, the

estimated AC (i.e., β in dB/cm-MHz) value from each of regression lines is shown.

Now, the comparison of linearity of the attenuation function (i.e., −2βfcz) with

depth obtained by proposed RFAAE method with that of the reference-based SNAAE

method [6] is shown in Fig. 3.13 for the i-th scan line segment (mentioned in the

previous paragraph). The measured ACs of the arbitrary ROI by using the neigh-
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spectrum along the regression line (broken line) using the same RF data for (a) RFAAE

method and (b) conventional SNAAE method.

borhood weighted averaging based RFAAE and SNAAE methods are very close (i.e.,

0.74 and 0.76 dB/cm-MHz, respectively). However, the estimate of the attenuation

function (i.e., −2βfcz) with depth provided by the RFAAE method (using (3.24)) is

more linear (better line fit) than that obtained from the SNAAE method, as evident

from Fig. 3.13. Therefore, the proposed RFAAE method is expected to perform well

in a realistic environment.



Chapter 4

Experimental Results and

Discussion

The main focus of this chapter is to assess the viability of the proposed RFAAE algo-

rithm under different clinical conditions. For this purpose, the experiments performed

on the tissue-mimicking (TM) phantoms, in vivo human breast and liver data are dis-

cussed in detail here. The performance of this new estimator is analyzed comparing its

results with those obtained by the conventional reference-based AC estimation methods

(spectral shift [5], spectral difference [7], hybrid [8], SNAAE and SCAAE [6]).

4.1 Analysis of RF Data

To apply the proposed RFAAE and other reference-based spectral domain AC estima-

tion methods, the homogeneous ROI of the RF data is subdivided into a number of

overlapping, rectangular 2-D blocks. The 2-D block size is required to be optimized

in such a way that the frequency and spatial resolutions are sufficient for correct es-

timation of AC. Regarding these conditions, full width at half maximum (FWHM) of

the RF power spectrum [5] is used as a benchmark for assessing the dimensions of the

block. However, for the purposes of estimating AC at a higher spatial resolution, like

the proposed RFAAE method, the block size is chosen to be 4.70 mm (axial) × 3.13

34
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mm (lateral) for the spectral difference, spectral shift, and hybrid methods. Based on

the findings in the literature [5], [7], [8], 50% overlapping is used in axial direction, but

one scan line (i.e., around 10% overlapping) in lateral directions. Every block consists

of three windows, and the overlap and length of the windows in the axial direction are

50% and 2.35 mm (i.e., 15λ), respectively, as demonstrated in Fig. 4.1. The power

spectrum within the data block at a particular depth is calculated axially by an aver-

aging of the fast Fourier transform of the 1-D gated (i.e., Hamming window) windows.

The Hamming window is utilized here to reduce the effects of spectral leakage [59].

Each of the blocks has 10 scan lines as suggested by its lateral dimension. There-

fore, the averaged power spectrum of the entire block of the ROI is measured from

10× 3 number of 1-D axial windows for obtaining an accurate estimate of the spectral

information.

L
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1-D Block
(single scan line)

2-D Block
(multiple scan lines)

lateral

L axial

Window
Size

Window
Overlap

(50%)

Ultrasound Probe

RF echo signal
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Figure 4.1: Illustration of the blocks in a RF frame.
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Fundamentally, for the RFAAE algorithm, 1-D blocks of length 4.70 mm (axial) are

used, which have only one scan line. Additionally, at the higher spatial resolution, the

AC estimation becomes better with the neighborhood utilization within the ROI [6].

In this approach, 10 neighboring scan line segments (in lateral direction) are used along

with the scan line segment of the interrogated 1-D block for the exponentially weighted

average and, therefore, result in an effective lateral width of 3.13 mm.

The length of the linear line fitting window over the logarithmic center frequency

component of the ROI blocks, is taken as half of the axial length of that RF data (i.e., 2

cm for a 4×4 cm2 RF data). This is a common standard that is followed in estimating

the local AC using the RFAAE and other discussed reference-based methods.

4.2 Simulation Results

To validate the usefulness of the proposed methodology in the presence of diffraction

effects, realistic RF data generated by the state-of-the-art ultrasound simulation pro-

gram Field II [53] were utilized. A homogeneous phantom (40 × 10 × 40 mm3 cube)

was made for the simulation, where the scatterer number density is 15 per resolution

cell. The backscatterers in the phantom are randomly distributed, and with a Gaussian

distributed scattering amplitude. The phantom was scanned with a 192 element linear

array transducer, and 64 active elements were used for receiving and transmitting with

a Hanning apodization. The rectangular elements of the transducer are 0.3 mm in

width (azimuthal direction), 5 mm in length (elevation direction), and with a kerf (i.e.,

lateral distance between the adjacent elements) of 0.015 mm. The transducer was ex-

cited with 2 cycles of a 10 MHz Hanning windowed sinusoid. The sampling frequency

was 40 MHz and the focal distance from the top surface of the phantom was set at 20

mm. The simulated backscattered RF data were acquired with 128 scan-lines.

The B-mode images of the phantom and the two types of RF datasets obtained are

shown in Figs. 4.2(a)-4.2(c) along with their amplitude-depth plot for the lateral center

line. The RF data of Fig. 4.2(b) and Fig. 4.2(c) were simulated by transmitting the

pulse into the homogeneous phantom medium with two different AC values. In both
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the cases, the diffraction effects are present due to beam focusing. For the RF datasets,

as represented in Fig. 4.2(b) and Fig. 4.2(c), the frequency independent attenuation

values were set to 5 dB/cm and 7.5 dB/cm, respectively, and the frequency dependent

attenuation values (i.e., AC values) were set to 0.5 dB/cm-MHz and 0.75 dB/cm-MHz,

respectively,. Three ROIs X, Y, and Z each with a dimension of 10×10 mm2 are chosen

from the two RF datasets for obtaining the AC estimates.

The average estimates of the normalized center frequency components of the depth

dependent function (DDF) at three different depths of the ROIs are measured by

using (3.2), (3.13), and (3.23), as shown in Figs. 4.2(d)- 4.2(f), 4.2(g)- 4.2(i), and

4.2(j)- 4.2(l), respectively. Here, an estimate of the changed center frequency value of

the RF datasets is obtained from the restored PSF spectrum rather than using the

provided value. The equations given in (3.2) and (3.13) are used to estimate the AC

values without and with PSF-TRF separation in the absence of the diffraction related

band-pass filtering, as illustrated in 4.2(g)- 4.2(i) and 4.2(j)- 4.2(l), respectively. For

the ROIs (X, Y, and, Z) of the homogeneously attenuating medium with an AC of

0.5 dB/cm-MHz, the ultimate average AC values (βavg) estimated from the slopes of

the regression lines by using (3.23) are 0.55, 0.50, and 0.49 dB/cm-MHz, and for the

attenuating medium with an AC of 0.75 dB/cm-MHz, these values (β′avg) are 0.75,

0.72, and 0.78 dB/cm-MHz, as shown in 4.2(j)- 4.2(l). It can be observed that these

AC estimates are close to the actual values after the PSF separtion and diffraction

minimization procedures. The diffraction effects are known to distort the regions that

are before and after the focal zones along the depth, thus the estimated AC values are

supposed to be underestimated and overestimated in that regions, respectively [55]. As

suggested by the demonstrated results, the proposed RFAAE technique is shown to be

capable of determining the accurate AC values in those regions.
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Figure 4.2: B-mode images and estimated AC values of the simulated phantom for

two different sets of attenuation. (a) A homogeneous phantom, (b) the attenuated

B-mode image with AC = 0.5 dB/cm-MHz, (c) the attenuated B-mode image with

AC = 0.75 dB/cm-MHz, with RF intensity (normalized) plots along the indicated

broken lines, respectively; and (d)-(f), (g)-(i), and (j)-(l) the average depth dependent

functions (DDF), and the corresponding regression lines for the three ROIs (X, Y, and

Z, indicated in (b) and (c)), calculated by using (3.2), (3.13), and (3.23), respectively.
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Table 4.1: Properties of the four types of TM phantoms used in the study

Property Type A Type B Type C Type D

Size 4× 4 cm2 4× 4 cm2 5× 4 cm2 4× 4 cm2

Inc. type — — Spherical Cylindrical

Inc. size — — 0.70 cm

(Diameter)

1.67 cm

(Diameter)

Inc. Distance

(from upper side)

— — 4 cm 2 cm

AC

(dB/cm-MHz)

0.50 (Bg.) 0.70 (Bg.) 0.50 (Bg.),

0.95 (Inc.)

0.50 (Bg.),

0.70 (Inc.)

* Inc. (inclusion), Bg. (background)
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Figure 4.3: B-mode images of the TM phantom type C and D with inclusions (proper-

ties are given at Table 4.1). ROIs X and Z are from the background and ROIs Y from

the inclusion areas, with dimension of 1.00 × 1.00 cm2 each (except ROI Y of 0.70 ×
0.70 cm2 in type C).
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4.3 TM Phantom Experiments

4.3.1 Data Collection

To validate the proposed technique, four types (A, B, C, and D) of CIRS (Computerized

Imaging Reference Systems, Inc., Norfolk, VA, USA), TM phantom datasets were used.

In Table 4.1, all the relevant information of these TM phantom datasets provided

by the manufacturer are incorporated. Among these phantoms, type A and B are

Figure 4.4: SonixTOUCH ultrasound Research instrument used at BUET Medical

Center.
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homogeneous in nature with AC of 0.5 and 0.7 dB/cm-MHz, respectively. The ROIs

of heterogeneous type C and D phantoms are chosen from these phantoms are termed

as X, Y, and Z, as depicted in Fig. 4.3. Among these ROIs, X and Z were taken

from homogeneous background with dimension of 1.0× 1.0 cm2 and AC of 0.5 dB/cm-

MHz. ROI Y was taken from the inclusion part of the phantoms having AC of 0.95

and 0.70 dB/cm-MHz for type C and D phantoms, respectively. All the segments of

the TM phantoms were constructed from hydrogel-based Zerdine, having an acoustic

velocity of 1540 m/s. The raw data were recorded in .rf format on a SonixTOUCH

ultrasound Research instrument (Ultrasonix Medical Corp., Richmond, BC, Canada)

(shown in Fig. 4.4) at the Medical Center of Bangladesh University of Engineering and

Technology (BUET), Dhaka, Bangladesh. The L14-5/38 linear array transducer was

used here with a center frequency of 10 MHz, 65% bandwidth at FWHM of the power

spectrum, sampling frequency of 40 MHz, and geometric focus at 2 cm away from the

probe surface. During the data acquisition, no TGC was used.

4.3.2 Results and Discussion

The AC map calculated from the RF data of type A and type B phantoms, by using

the RFAAE and the traditional reference-based AC estimation schemes, are shown

in Figs. 4.5(b)-(i) and 4.6(b)-(i) along with the B-mode images in Figs. 4.5(a) and

4.6(a). Because of the requirement of a homogeneous reference phantom dataset with

identical system parameters as of the sample, type A and type B phantoms were used

alternatively to each other by the mentioned reference-based methods. For the spectral

difference, spectral shift, and hybrid methods, simple spectral averaging of overlapping

windows is accomplished in both the directions within the 2-D blocks. However, the

variances within the AC figures produced by the spectral shift and hybrid techniques

are comparatively higher, which are clearly observable from Figs. 4.5(c)-4.5(d), and

4.6(c)-4.6(d). The spectral difference method tends to provide lower variances, but the

estimated AC values are gradually overestimated and underestimated with depth after

the focal zones, as shown in 4.5(b) and 4.6(b), respectively. On the other hand, the

reference-based SCAAE and SNAAE methods utilizing the 1-D blocks with exponen-
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Figure 4.5: Figure (a) represents the B-mode image, and the corresponding AC map-

ping ( (b), (c), (d), (e), (f), (g), (h), and (i)) are obtained by employing the spectral

difference, hybrid, spectral shift, SCAAE (for La = Ll = 5), SNAAE (for La = Ll = 0),

SNAAE (for La = Ll = 5), proposed RFAAE (for La = Ll = 0), and RFAAE (for

La = Ll = 5) methods, respectively, for the TM phantom type A (The actual AC value

is mentioned in Table 4.1). Except the RFAAE method, for other reference-based

methods, type B phantom is used as reference here.
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Figure 4.6: Figure (a) represents the B-mode image, and the corresponding AC map-

ping ( (b), (c), (d), (e), (f), (g), (h), and (i)) are obtained by employing the spectral

difference, hybrid, spectral shift, SCAAE (for La = Ll = 5), SNAAE (for La = Ll = 0),

SNAAE (for La = Ll = 5), proposed RFAAE (for La = Ll = 0), and RFAAE (for

La = Ll = 5) methods, respectively, for the TM phantom type B (The actual AC value

is mentioned in Table 4.1). Except the RFAAE method, for other reference-based

methods, type A phantom is used as reference here.
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Figure 4.7: Average AC estimates with SD of type A TM phantom at different axial

depths obtained by the discussed reference-based (spectral shift (a), spectral difference

(b), hybrid (c), SCAAE (for La = Ll = 5) (d), SNAAE (for La = Ll = 5) (e)), and the

proposed RFAAE (for La = Ll = 5) (f) methods. Here, the actual AC value of type A

is 0.5 dB/cm-MHz.

tially weighted neighborhood (La×Ll) resulted in AC values within acceptable limits,

as evident from Figs. 4.5(e), 4.5(g), and 4.6(e), 4.6(g). By using the idea of 1-D block

with the integrated neighborhood, the extent of the smoothed AC map obtained by the

RFAAE method is similar to the SNAAE and SCAAE methods without compromising

the accuracy of the AC value at a given depth, as shown in Figs. 4.5(i) and 4.6(i). The

idea of using the neighborhood (La = Ll = 5) was previously introduced for variance

reduction, but its impact gets much emphasized for the proposed RFAAE method in

the absence of reference data, as obvious from the larger variances in Figs. 4.5(h) and

4.6(h) compared to Figs. 4.5(f) and 4.6(f).

Figs. 4.7 and 4.8 are presented to show the exactness and variability of the AC

estimates at different axial depths from the probe surface within type A and B phan-

toms, respectively. Here, the spectral difference method resulted in variable estimated
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Figure 4.8: Average AC estimates with SD of type B TM phantom at different axial

depths obtained by the discussed reference-based (spectral shift (a), spectral difference

(b), hybrid (c), SCAAE (for La = Ll = 5) (d), SNAAE (for La = Ll = 5) (e)), and the

proposed RFAAE (for La = Ll = 5) (f) methods. Here, the actual AC value of type B

is 0.7 dB/cm-MHz.

average value of the AC along the depth as shown in Figs. 4.7(b) and 4.8(b), although

the variances are very small in lateral direction. The average AC estimates generated

by the spectral shift and the hybrid methods have moderate variations with depth, but

the estimates near the ultrasound probe surface have higher deviations as evident from

Figs. 4.7(a), 4.8(a), and 4.7(c), 4.8(c), respectively. The SD of the later method is

also relatively higher towards the lateral dimension. However, the neighborhood-based

(La = Ll = 5) SNAAE and SCAAE methods resulted in almost accurate average AC

values at all depths, as obvious from the lines that are nearly parallel to depth axis in

Figs. 4.7 and 4.8 (at the second row). The SCAAE method has been found to provide

the lowest variance in lateral direction among all the methods, at the cost of putting

more weightage to the neighborhood than the SNAAE method [6]. Actually, for AC cal-

culation, SCAAE method does not rely on the direct utilization of the instantaneous
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cross-correlation based spectral downshift. In this method, an approximate diffrac-

tion correction is made in the sample AC estimates by using a well-specified reference

phantom. Considering these facts, the new RFAAE method is capable of providing

approximately similar average AC estimates along the depth with moderate SD in the

lateral direction, as obvious from Figs. 4.7(f) and 4.8(f), without using any reference

data.

A
C

 (
d

B
/c

m
-M

H
z)

0 5 10 15 20 25 30 35 40 

window length =  15λ

(a)

window length =  20λ

(b)

0 5 10 15 20 25 30 35 40 

window length =  25λ

(c)

0 5 10 15 20 25 30 35 40

window length =  15λ

0 5 10 15 20 25 30 35 40

window length =  20λ

0 5 10 15 20 25 30 35 40 

(d) (e) (f )

 

Depth (mm)
0 5 10 15 20 25 30 35 40

−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Depth (mm)Depth (mm)

A
C

 (
d

B
/c

m
-M

H
z)

window length =  25λ

−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

T
y

p
e

 B
T

y
p

e
 A

Figure 4.9: Average AC estimates with SD of type A ((a)-(c)) and type B ((d)-(f))

TM phantom datasets at different axial depths by using the proposed RFAAE (for

La = Ll = 5) method with window lengths of 15λ, 20λ, and 25λ. Here, the actual AC

values of type A and type B are 0.5 and 0.7 dB/cm-MHz, respectively.

In Fig. 4.9, the average and SD values of AC estimates at different axial depths

within type A and type B TM phantom datasets are compared for three window lengths

(i.e., 15λ, 20λ, and 25λ). Here, the minimum window length (i.e., 15λ) is chosen based

on the FWHM criterion in order to get stable block power spectra [5]. Visually assessing

the plots for type A (Figs. 4.9(a)-4.9(c)) and type B (Figs. 4.9(d)-4.9(f)) TM phantom

datasets, it is observed that the decrease in the SD values is small with the increase of

window length. Moreover, the deviations of the average AC estimates from the actual
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values become significant at the higher window lengths. By considering the spatial

resolution of AC mapping, the optimum window length was selected to be 15λ for the

proposed RFAAE (for La = Ll = 5) method.

Table 4.2: Type C: Average AC estimates with SD (inside brackets) by the proposed

RFAAE and other reference-based methods

Methods ROI X ROI Y ROI Z

(dB/cm-MHz) (dB/cm-MHz) (dB/cm-MHz)

Spectral shift [5] 0.56 (±0.34) 0.79 (±0.72) 0.51 (±0.25)

Spectral difference [7] 0.80 (±0.39) 0.76 (±0.82) 0.73 (±0.37)

Hybrid [8] 0.56 (±0.42) 0.71 (±0.37) 0.45 (±0.34)

SNAAE (La=Ll=0) [6] 0.60 (±0.16) 0.22 (±0.29) 0.49 (±0.14)

SNAAE (La=Ll=5) [6] 0.48 (±0.29) 1.00 (±0.27) 0.51 (±0.25)

SCAAE (La=Ll=5) [6] 0.54 (±0.11) 0.91 (±0.10) 0.48 (±0.09)

RFAAE (La=Ll=5) 0.48 (±0.24) 0.90 (±0.25) 0.51 (±0.26)

Actual AC values (dB/cm-MHz): 0.50 (ROI X), 0.95 (ROI Y), 0.50 (ROI Z)

Next, AC estimates given in Tables 4.2 and 4.3 are obtained from the chosen ROIs

(shown in Fig. 4.3) of the type C and D TM phantoms, by using the RFAAE and

other above-mentioned methods. Here, type B phantom is selected for providing the

reference ROI of the same size and at the same depth for the reference-based methods.

In case of type C phantom, some deviations are shown by the spectral difference,

spectral shift and hybrid methods from the actual AC values. The SD values are

also large especially for the inclusion ROI Y. On the other hand, the spectral shift

and hybrid methods resulted in close estimate of actual AC values for the ROIs of

data D, excluding the ROI Y for spectral shift where the estimated average value is

relatively high. The spectral difference method becomes unsuccessful for the ROIs of

data C and D, as apparent from the average and SD values. The SNAAE and SCAAE

methods depend highly on the neighborhood for the accuracy and coherence of the AC

estimates at the ROIs for both types of phantoms, in addition to utilizing the reference
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Table 4.3: Type D: Average AC estimates with SD (inside brackets) by the proposed

RFAAE and other reference-based methods

Methods ROI X ROI Y ROI Z

(dB/cm-MHz) (dB/cm-MHz) (dB/cm-MHz)

Spectral shift [5] 0.43 (±0.24) 0.87 (±0.22) 0.34 (±0.23)

Spectral difference [7] 0.35 (±0.60) 0.42 (±0.46) 0.47 (±0.39)

Hybrid [8] 0.51 (±0.08) 0.68 (±0.16) 0.52 (±0.07)

SNAAE (La=Ll=0) [6] 0.54 (±0.25) 0.37 (±0.23) 0.37 (±0.39)

SNAAE (La=Ll=5) [6] 0.52 (±0.30) 0.66 (±0.23) 0.44 (±0.27)

SCAAE (La=Ll=5) [6] 0.48 (±0.08) 0.72 (±0.11) 0.47 (±0.09)

RFAAE (La=Ll=5) 0.47 (±0.22) 0.74 (±0.16) 0.53 (±0.24)

Actual AC values (dB/cm-MHz): 0.50 (ROI X), 0.70 (ROI Y), 0.50 (ROI Z)

data for system effects compensation. Methodically, RFAAE is used to measure the

center frequency component of the envelope power spectrum within a neighborhood of

the RF data as like the SNAAE, except that no reference is used here. Therefore, the

results acquired by the RFAAE, have similar average and SD values as like the SNAAE

method, which are within 10% of the actual AC values.

4.4 In vivo Experiments

4.4.1 Data Collection

For accuracy assessment of the AC estimates in soft biological tissues (e.g., breast,

liver), a comparative analysis of the newly developed RFAAE and other reference-based

methods is further conducted involving human participants. In order to accomplish

the task, three female participants (participant-I/age: 48 years, participant-II/age: 40

years, and participant-III/age: 58 years; mean: 48.67, SD: 9.02 years) were chosen for

the in vivo breast RF datasets and seventeen male-female participants (14 participants
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(normal liver)/age range: 23-60, mean: 35.18, SD: 13.78 years, and 3 participants (fatty

liver)/age range: 27-51, mean: 42.67, SD: 13.58 years) were selected for the in vivo liver

RF datasets. These datasets were acquired in .rf format using a SonixTOUCH ultra-

sound Research machine (Ultrasonix Medical Corporation, Richmond BC, Canada), by

an expert radiologist at BUET Medical Center, Dhaka, Bangladesh. To be specific, a

L14-5/38 linear transducer (operating frequency: 10 MHz, bandwidth: 65% at FWHM

of power spectrum, sampling frequency: 40 MHz, and focus: 2 cm) and a C5-2/60

convex transducer (operating frequency: 3.3 MHz, bandwidth: 75.76% at FWHM of

power spectrum, sampling frequency: 20 MHz, and focus: 5 cm) were applied for ac-

quiring the breast and liver RF data, respectively, as shown in Fig. 4.10. For the whole

procedure, permission was taken from the institutional review board (IRB), and the

participants have granted research analysis on the datasets. The dimension of the in

(a) (b)

Figure 4.10: (a) The L14-5/38 Linear Transducer, and (b) The C5-2/60 Convex Trans-

ducer of the sonixTOUCH ultrasound research device.



CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 50

vivo breast and liver RF acoustic images were 4 × 4 cm2 and 16 × 6 cm2, respectively.

The block related parameters were kept similar as in the case of AC estimation of the

TM phantoms. During the data acquisition, no TGC was used.
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Figure 4.11: In vivo human breast RF data in the form of B-mode images collected

from (a) participant-I, (b) participant-II, and (c) participant-III. ROIs X, Y, and Z are

homogeneous regions of 1.00 × 1.00 cm2 each.
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Figure 4.12: In vivo human liver RF data in the form of B-mode images collected from

(a) sample (Normal Liver), (b) sample (Fatty Liver). ROIs X are homogeneous regions

of 7.00 × 2.00 cm2 each.

In Figs. 4.11 and 4.12, the B-mode images of the sample breast and liver data,

respectively, are illustrated along with the ROIs. For the breast datasets, three ROIs
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(X, Y, and Z) were chosen at different depths with approximate homogeneous regions

of 1 × 1 cm2. In case of the liver datasets, one large ROI (X) is obtained from the

greater part of the sample liver, having dimension of 7 × 2 cm2. The calculated AC

values along with SD for breast and liver datasets using the particular techniques are

given in Tables 4.5–4.7, and Tables 4.8, 4.9, respectively. To implement the reference-

based traditional methods, a previously used homogeneous reference TM phantom of

type A is applied for the breast data of the research participants. For the liver data, a

homogeneous TM phantom with AC value of 0.5 dB/cm-MHz and dimension of 16 ×
6 cm2 is used as reference, where the phantom RF data were recorded by the convex

transducer under the same conditions involved in the sample data collection.

4.4.2 Results and Discussion

Table 4.4: Literature-reported AC values in soft tissue

Tissue types AC Reference

(dB/cm-MHz)

Soft tissue 0.2–0.5 [60]

Soft tissue (Average) 0.60 [61]

Soft tissue (Average) 0.54 [62]

Fat 0.60 [61]

Fat 0.48 [62]

Fat 0.35 [63]

Fat 0.44 [64]

Normal Liver (Average) 0.49–0.59 [65], [66]

Fatty Liver (Average) 0.57–0.83 [65], [66]

The acoustic images of heterogeneous soft tissues consist of various homogeneous

regions like muscles, skin, tendons, ligaments, fascia, fat, fibrous tissue, nerves and

blood vessels. The literature-reported AC values for different types of tissue are enlisted
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in Table 4.4, which are needed to assess the robustness of the AC estimation techniques.

Table 4.5: participant-I (Breast Dataset): Average AC estimates with SD (inside brack-

ets) by the proposed RFAAE and other reference-based methods

Methods ROI X ROI Y ROI Z

(dB/cm-MHz) (dB/cm-MHz) (dB/cm-MHz)

Spectral shift [5] 0.79 (±0.51) 0.98 (±0.64) 0.42 (±0.24)

Spectral difference [7] 0.57 (±0.57) 0.93 (±0.64) 0.47 (±0.36)

Hybrid [8] 0.49 (±0.08) 0.50 (±0.08) 0.51 (±0.06)

SNAAE (La=Ll=0) [6] 0.52 (±0.06) 0.49 (±0.12) 0.49 (±0.28)

SNAAE (La=Ll=5) [6] 0.46 (±0.24) 0.58 (±0.30) 0.53 (±0.34)

SCAAE (La=Ll=5) [6] 0.43 (±0.10) 0.57 (±0.10) 0.50 (±0.03)

RFAAE (La=Ll=5) 0.38 (±0.26) 0.42 (±0.24) 0.55 (±0.29)

Table 4.6: participant-II (Breast Dataset): Average AC estimates with SD (inside

brackets) by the proposed RFAAE and other reference-based methods

Methods ROI X ROI Y ROI Z

(dB/cm-MHz) (dB/cm-MHz) (dB/cm-MHz)

Spectral shift [5] 0.14 (±0.12) 0.47 (±0.21) 0.38 (±0.28)

Spectral difference [7] 0.40 (±0.57) 0.76 (±0.49) 0.26 (±0.33)

Hybrid [8] 0.48 (±0.08) 0.49 (±0.06) 0.47 (±0.09)

SNAAE (La=Ll=0) [6] 0.52 (±0.45) 0.66 (±0.31) 0.36 (±0.27)

SNAAE (La=Ll=5) [6] 0.48 (±0.33) 0.46 (±0.26) 0.47 (±0.20)

SCAAE (La=Ll=5) [6] 0.45 (±0.08) 0.50 (±0.06) 0.53 (±0.11)

RFAAE (La=Ll=5) 0.48 (±0.24) 0.40 (±0.21) 0.41 (±0.21)

From the results shown in Tables 4.5–4.7 for the ROIs of breast datasets, it can be

noticed that the average AC values provided by the spectral difference and spectral



CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 53

Table 4.7: participant-III (Breast Dataset): Average AC estimates with SD (inside

brackets) by the proposed RFAAE and other reference-based methods

Methods ROI X ROI Y ROI Z

(dB/cm-MHz) (dB/cm-MHz) (dB/cm-MHz)

Spectral shift [5] 0.17 (±0.13) 0.68 (±0.44) 0.60 (±0.34)

Spectral difference [7] 0.59 (±0.54) 0.62 (±0.52) 0.18 (±0.35)

Hybrid [8] 0.50 (±0.05) 0.51 (±0.08) 0.46 (±0.07)

SNAAE (La=Ll=0) [6] 0.59 (±0.38) 0.45 (±0.27) 0.70 (±0.23)

SNAAE (La=Ll=5) [6] 0.35 (±0.20) 0.62 (±0.34) 0.53 (±0.14)

SCAAE (La=Ll=5) [6] 0.45 (±0.05) 0.55 (±0.13) 0.50 (±0.10)

RFAAE (La=Ll=5) 0.37 (±0.14) 0.49 (±0.21) 0.46 (±0.17)

shift methods in most cases are not within the desired range (i.e., 0.35–0.60 dB/cm-

MHz for fatty and soft tissue, as given in Table 4.4). The hybrid method tends to

be invariant to some extent in all the breast ROI cases with AC values close to 0.50

dB/cm-MHz, and the SD values are also low due to the equally-weighted average of

the spectra in the axial and lateral dimensions. In cases of the SNAAE method, the

variances are much higher than that for the SCAAE method because of the relatively

higher susceptibility to the backscatter variations in the breast tissues. The AC values

estimated by the proposed RFAAE algorithm are reasonable (i.e., ranging from 0.37

to 0.55 dB/cm-MHz), as given in Tables 4.5–4.7. However, considering the variation of

tissue microstructure characteristics and the absence of reference data, this technique

resulted in moderate SD values for all the ROIs mentioned in Tables 4.5–4.7.

In case of liver, mainly two categories of tissue (i.e., normal and fatty) were em-

ployed for getting the AC estimates enlisted in Tables 4.8 and 4.9. Because of the

homogeneity of liver tissue, as shown in Fig. 4.12, a close estimate of the actual AC

value can be obtained from the measured RF data. Considering the reported values

for liver tissues in Table 4.4, the AC estimates obtained between 0.2 and 1.0 dB/cm-

MHz (outside this range is considered unrealistic) by using the reference-based and the
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Table 4.8: Average (Normal Liver - 14 Datasets): Average AC estimates with SD

(inside brackets) by the proposed RFAAE and other reference-based methods

Methods ROI

(dB/cm-MHz)

SNAAE (La=Ll=5) [6] 0.48 (±0.11)

SCAAE (La=Ll=5) [6] 0.53 (±0.07)

RFAAE (La=Ll=5) 0.55 (±0.21)

Table 4.9: Average (Fatty Liver - 3 Datasets): Average AC estimates with SD (inside

brackets) by the proposed RFAAE and other reference-based methods

Methods ROI

(dB/cm-MHz)

SNAAE (La=Ll=5) [6] 0.61 (±0.12)

SCAAE (La=Ll=5) [6] 0.53 (±0.06)

RFAAE (La=Ll=5) 0.61 (±0.20)

proposed RFAAE methods are employed for the average and SD calculation. As repre-

sentatives of the reference-based methods, the SNAAE and SCAAE methods tend to

produce fair results for normal liver cases compared to the reported values of 0.49–0.59

dB/cm-MHz given in Table 4.4. But the SCAAE method leads to inaccurate average

AC value for fatty liver cases (reported values: 0.57–0.83 dB/cm-MHz, as listed in

Table 4.4), implying the improper system effects compensation caused by using the

reference phantom with AC value of 0.5 dB/cm-MHz. On the other hand, the new

RFAAE technique proves to be effective in both the cases as shown by the results (0.55

and 0.61 dB/cm-MHz for the normal and fatty livers, respectively). However, for the

new method, the SD of the AC estimates is relatively higher within the ROIs X than

for the reference-based methods.

After the inspection of all the results provided in this Chapter, it can be inferred
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that the derived RFAAE (with La = Ll = 5) technique is able to estimate acceptable

AC values, without the use of reference data that is compulsory in other methods for

canceling the diffraction and other undesired system effects. Adding to this point, the

method is also computationally efficient for estimating AC from 1-D blocks resulting

higher resolution with the help of the neighborhood technique within the sample ROI.



Chapter 5

Conclusion, Limitation and Future

Scope

5.1 Conclusion

A novel reference-free average AC estimation method has been presented in this thesis,

which is based on the envelope TRF and envelope PSF power spectra models of the

RF signal. With a non-reference based ultrasound system-related effects (e.g., beam

diffraction, transmit pulse) reduction process, the proposed RFAAE method is capa-

ble of providing reasonable estimates of AC. In order to separate the PSF from the

TRF containing the attenuation function, an improved cepstral liftering process for

the RF signal is proposed in the RFAAE technique. In the power spectra modeling,

the high-pass spectral characteristic of the diffraction function is utilized for estimat-

ing the center frequency component of the exponential attenuation function. Under

the continuity assumption of attenuation within the block surroundings, AC estimates

are obtained from the slope of the regression line that is fitted to the exponentially

weighted logarithmic power content of the neighborhood blocks with depth. Further,

to cope with the random tissue backscattering effects in the AC estimation of a homo-

geneous ROI, inclusion of the neighboring blocks is necessary in the weighted averaging

process together with the target block. The results obtained by the proposed RFAAE

56
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method from the experimental tests done in this thesis, are in good agreement with the

actual and other literature-reported AC values. Different from the traditional ones, the

proposed RFAAE method with weighted neighborhood utilization of the 1-D blocks,

resulted in reasonable AC estimates of the sample data at a higher spatial resolution.

The estimates are also free from the external biases that are usually introduced by the

dissimilar properties (i.e., effective frequency) of sample and reference data. Further-

more, the RFAAE method may be effective in measuring the mean AC values of those

data for which the reference data are not available.

5.2 Limitation and Future Scope

The main concentration of this research work is set on the accurate determination

of AC as a clinical diagnostic parameter within a small homogeneous tissue segment

in the absence of any reference data. The moderate AC variance obtained in the

proposed RFAAE method suggests that intensive studies are required on the random

tissue structures. Although the vulnerability of the AC estimates to the system effects

(i.e., diffraction and backscattering effects) is counteracted effectively by the participa-

tion of the band-pass filtering and neighbourhood averaging, better estimation can be

achieved by the data based adaptive utilization of the signal processing tools. The po-

tential future works are focused on improving the estimation consistency of the RFAAE

technique and using this AC estimator with other features for tissue characterization.



Bibliography

[1] J. M. Blackledge, Quantitative Coherent Imaging: Theory, Methods and Some

Applications. Elsevier Academic Press, 2012.

[2] Y. Labyed and T. A. Bigelow, “A theoretical comparison of attenuation measure-

ment techniques from backscattered ultrasound echoes,” J. Acoust. Soc. Am., vol.

129, no. 4, pp. 2316–2324, 2011.

[3] S. W. Flax, N. J. Pelc, G. H. Glover, F. D. Gutmann, and M. McLachlan, “Spectral

characterization and attenuation measurements in ultrasound,” Ultrason. Imaging,

vol. 5, no. 2, pp. 95–116, 1983.

[4] B. Knipp, J. Zagzebski, T. Wilson, F. Dong, and E. Madsen, “Attenuation and

backscatter estimation using video signal analysis applied to B-mode images,”

Ultrason. Imaging, vol. 19, no. 3, pp. 221–233, 1997.

[5] H. Kim and T. Varghese, “Attenuation estimation using spectral cross-

correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 3, p.

510, 2007.

[6] M. K. Hasan, M. A. Hussain, S. R. Ara, S. Y. Lee, and S. K. Alam, “Using

nearest neighbors for accurate estimation of ultrasonic attenuation in the spectral

domain,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 60, no. 6, pp.

1098–1114, 2013.

58



BIBLIOGRAPHY 59

[7] L. X. Yao, J. A. Zagzebski, and E. L. Madsen, “Backscatter coefficient mea-

surements using a reference phantom to extract depth-dependent instrumentation

factors,” Ultrason. Imaging, vol. 12, no. 1, pp. 58–70, 1990.

[8] H. Kim and T. Varghese, “Hybrid spectral domain method for attenuation slope

estimation,” Ultrasound Med. Biol., vol. 34, no. 11, pp. 1808–1819, 2008.

[9] Z. Klimonda, M. Postema, A. Nowicki, and J. Litniewski, “Tissue attenuation

estimation by mean frequency downshift and bandwidth limitation,” IEEE Trans.

Ultrason. Ferroelectr. Freq. Control, vol. 63, no. 8, pp. 1107–1115, 2016.

[10] K. Dines and A. Kak, “Ultrasonic attenuation tomography of soft tissues,” Ultra-

son. Imaging, vol. 1, no. 1, pp. 16–33, 1979.

[11] P. D. Lui, M. K. Terris, J. E. McNeal, and T. A. Stamey, “Original articles:

Prostate cancer: Indications for ultrasound guided transition zone biopsies in the

detection of prostate cancer,” J. Urol., vol. 153, no. 3, pp. 1000–1003, 1995.

[12] J. Mamou, M. L. Oelze, W. D. O’Brien Jr, and J. F. Zachary, “Identifying ultra-

sonic scattering sites from three-dimensional impedance maps,” J. Acoust. Soc.

Am., vol. 117, no. 1, pp. 413–423, 2005.

[13] M. L. Oelze and W. D. O’Brien Jr, “Frequency-dependent attenuation-

compensation functions for ultrasonic signals backscattered from random media,”

J. Acoust. Soc. Am., vol. 111, no. 5, pp. 2308–2319, 2002.

[14] G. Treece, R. Prager, and A. Gee, “Ultrasound attenuation measurement in the

presence of scatterer variation for reduction of shadowing and enhancement,”

IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 12, pp. 2346–2360,

2005.

[15] G. Berger, P. Laugier, J. Thalabard, and J. Perrin, “Global breast attenuation:

Control group and benign breast diseases,” Ultrason. Imaging, vol. 12, no. 1, pp.

47–57, 1990.



BIBLIOGRAPHY 60

[16] B. Oosterveld, J. Thijssen, P. Hartman, R. Romijn, and G. Rosenbusch, “Ul-

trasound attenuation and texture analysis of diffuse liver disease: methods and

preliminary results,” Phys. Med. Biol., vol. 36, no. 8, p. 1039, 1991.

[17] T. Wilson, Q. Chen, J. A. Zagzebski, T. Varghese, and L. VanMiddlesworth,

“Initial clinical experience imaging scatterer size and strain in thyroid nodules,”

J. Ultrasound Med., vol. 25, no. 8, pp. 1021–1029, 2006.

[18] P. He and J. F. Greenleaf, “Application of stochastic analysis to ultrasonic echoes:

estimation of attenuation and tissue heterogeneity from peaks of echo envelope,”

J. Acoust. Soc. Am., vol. 79, no. 2, pp. 526–534, 1986.

[19] H. S. Jang, T. K. Song, and S. B. Park, “Ultrasound attenuation estimation in soft

tissue using the entropy difference of pulsed echoes between two adjacent envelope

segments,” Ultrason. Imaging, vol. 10, no. 4, pp. 248–264, 1988.

[20] R. Kuc and M. Schwartz, “Estimating the acoustic attenuation coefficient slope

for liver from reflected ultrasound signals,” IEEE Trans. Sonics Ultrason., vol. 26,

no. 5, pp. 353–361, 1979.

[21] M. Insana, J. Zagzebski, and E. Madsen, “Improvements in the spectral difference

method for measuring ultrasonic attenuation,” Ultrason. Imaging, vol. 5, no. 4,

pp. 331–345, 1983.

[22] K. J. Parker, R. M. Lerner, and R. C. Waag, “Comparison of techniques for in

vivo attenuation measurements,” IEEE Trans. Biomed. Eng., vol. 35, no. 12, pp.

1064–1068, 1988.

[23] M. Fink, F. Hottier, and J. Cardoso, “Ultrasonic signal processing for in vivo

attenuation measurement: Short time Fourier analysis,” Ultrason. Imaging, vol. 5,

no. 2, pp. 117–135, 1983.

[24] K. J. Parker and R. C. Waag, “Measurement of ultrasonic attenuation within

regions selected from B-scan images,” IEEE Trans. Biomed. Eng., no. 8, pp. 431–

437, 1983.



BIBLIOGRAPHY 61

[25] P. Narayana and J. Ophir, “The measurement of attenuation in nonlinearly atten-

uating media by the zero crossing method,” Ultrasound Med. Biol., vol. 10, no. 6,

pp. 715–718, 1984.

[26] D. E. Sosnovik, S. L. Baldwin, S. H. Lewis, M. R. Holland, and J. G. Miller,

“Transmural variation of myocardial attenuation measured with a clinical imager,”

Ultrasound Med. Biol., vol. 27, no. 12, pp. 1643–1650, 2001.

[27] E. Omari, H. Lee, and T. Varghese, “Theoretical and phantom based investigation

of the impact of sound speed and backscatter variations on attenuation slope

estimation,” Ultrasonics, vol. 51, no. 6, pp. 758–767, 2011.

[28] H. Tu, J. Zagzebski, and Q. Chen, “Attenuation estimations using envelope echo

data: Analysis and simulations,” Ultrasound Med. Biol., vol. 32, no. 3, pp. 377–

386, 2006.

[29] A. Kurjak, “Ultrasound scanning–Prof. Ian Donald (1910–1987),” Eur. J. Obstet.

gynecol. Reprod. Biol., vol. 90, no. 2, pp. 187–189, 2000.

[30] N. M. Tole, H. Ostensen, W. H. Organization, et al., “Basic physics of ultrasonic

imaging,” 2005.

[31] G. H. Mostbeck, Duplex and Color Doppler Imaging of the Venous System: With

27 Tables. Springer Science & Business Media, 2004.

[32] F. Calliada, R. Campani, O. Bottinelli, A. Bozzini, and M. G. Sommaruga, “Ul-

trasound contrast agents: basic principles,” Eur. Radiol., vol. 27, pp. S157–S160,

1998.

[33] J. A. Jensen, J. Mathorne, T. Gravesen, and B. Stage, “Deconvolution of in vivo

ultrasound B-mode images,” Ultrason. Imaging, vol. 15, no. 2, pp. 122–133, 1993.

[34] S. J. Norton and M. Linzer, “Ultrasonic reflectivity imaging in three dimensions:

exact inverse scattering solutions for plane, cylindrical, and spherical apertures,”

IEEE Trans. Biomed. Eng., no. 2, pp. 202–220, 1981.



BIBLIOGRAPHY 62
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