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A METHODOLOGY FOR SOLVING TWO PERSON GAME UNDER 
INTERVAL UNCERTAINTY 

 
ABSTRACT 

 
In this thesis, robust optimization methodologiesare developed for solving two person 

zero sum and non zero sum games that consider single or multiple interval inputs (i.e., 

interval-valued payoffs). Real life problems are not always deterministic and in 

competitive situations, exact information of competitors is not available. In practice, as 

the sufficient data from historical sources is quite difficult to obtain, this leads to the 

games in an uncertain environment. Thus deterministic assumptions about inputs in 

stochastic environments may lead to infeasibility or poor performance. In such situations, 

conventional methods that usedeterministic payoffs are not appropriate.Therefore, a 

method is necessary that can incorporate interval data uncertainty in the analysis of 

competitive situations. In this thesis,methods for two-person games with interval payoffs 

have been investigated. The proposed approaches are able to aggregate information from 

multiple sources and thereby result in more realistic outcomes. The robust optimization 

methods developed in this thesis can be used to solve two person non-cooperative games 

with interval-valued (single or multiple intervals) payoffs as well as with single-valued 

payoffs or a combination of both. A decoupled approach isalso proposed in this thesis to 

un-nest the robustness-based optimization from the analysis of interval variables to 

achieve computational efficiency. The proposed methodologies are illustrated with 

several numerical examples including an investment decision analysis problem.The 

proposed decoupled approach is compared with some previously developed approaches 

and it is demonstrated that the proposed formulations generate conservative solutions in 

the presence of uncertainty. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Background 
 
Game theory is a collection of mathematical models to study the behaviors of decision 

makers with interest conflict and has been applied extensively to engineering and 

economics (Gao, 2011). Classical game theory has many useful applications in business 

and engineering that include investment decision analysis (Li 2011), capacity expansion 

analysis (Do et al., 2015), and supply chain analysis (Reyes, 2006; Zhang and Huang, 

2010). In classical game theory, it is generally assumed that all inputs (i.e., payoffs) are 

precisely known and the influence of data or distribution parameter uncertainty on the 

optimality and feasibility of the solutions is not explicitly considered. However, real-life 

problems are not deterministic and this deterministic assumption about inputs may lead 

to infeasibility or poor performance. In real-world situations, the players often lack the 

information about the other players’ (or even their own) payoffs, which leads to the 

games in uncertain environments (Li 2011). In the real world, interval data frequently 

occur in many situations such as in measurement, expert opinions, etc.However, entire 

input and output relation of a game is conclusively determined for a deterministic model 

which assumes that input data (i.e. payoffs) are precisely known in advance.The current 

research focuses on developing generalized computational methods of game theory 

under uncertainty arising from interval data. 
 
There exists an extensive volume of methods and applications of game theory under 

interval uncertainty. Li (2011) proposed a liner programming approach to solve two-

person zero-sum game with interval-valued payoff matrix. Collins and Hu (2008) 

proposed fuzzy logic-based methodology to solve interval-valued two-person games. 

Interval-valued two-person games have also been studied extensively by many authors 

including Sohraiee et al (2010), and Alparslan-Gök et al (2013). Most of the existing 

methods for interval game theory consider only single interval data. However, in 

practice, a single interval may not be available due to the availability of data from 

multiple sources, for example, from experts' opinion. Therefore, an approach to solve 
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two-person games by aggregating information from multiple sources is needed.  The 

current research is intended to develop a general robust optimization formulation for 

two-person games under interval uncertainty arising from multiple sources, where 

robustness is achieved by simultaneously optimizing the mean and minimizing the 

variance of the value of the game. 
 
1.2 Objectives of the Study 
 
The specific objectives of this research are- 

 Development of a robust optimization model for two-person zero sum games 

with interval payoff matrix which consists of all possible outcomes of a game, 

where each outcome is described by multiple interval data. 

 Development of a robust optimization model for two-person nonzero sum games 

with interval payoff matrix which consists of all possible outcomes of a game, 

where each outcome is described by multiple interval data. 

Therefore, the proposed research develops and demonstrates generalized methodologies 

for solving two-person games under interval uncertainty arising from multiple sources. 

The methodologies developed in this research can be used to solve problems in various 

domains including business and engineering, for example, investment decision problem, 

capacity expansion problem, supply chain analysis problem, etc. 
 
1.3 Outline of the Methodology  
 
The research methodology is outlined below:  

a) First two moments of interval data have been calculated as bounds using 

moment bounding algorithms (Zaman et al, 2011a). 

b) A framework for the representation of interval data uncertainty in game theory 

analysis model has been developed using the moment bounds obtained in (a). 

c) A decoupled formulation for robust optimization to solve two-player zero sum 

games has been proposed based on the uncertainty representation framework 

developed in (b). 

d) A decoupled formulation for robust optimization to solve two-player non zero 

sum games has been proposed based on the uncertainty representation 

framework developed in (b). 
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e) A computational framework has been proposed to solve the optimization 

formulations developed in (c) and (d). 

f) The proposed methodologies have been illustrated for several example problems 

including an investment decision analysis problem. 
 
1.4 Contributions of the Present Study 
 
Life is full of conflict and competition. In competitive situations, a decision does not only 

depend on one’s own strategies but also on opponent’s decisions. In many cases to make 

a decision, we have to rely on interval data from multiple sources. The overall goal of this 

research is to develop and demonstrate robustness-based optimization methods for two-

person games under interval uncertainty. This thesis proposes two decoupled 

formulations for robust optimization to solve two person games-one for zero sum games 

and the other for non zero sum games. 
 
The proposed solution approaches can be characterized as follows: 
 

a) The objective function and the constraint functions of the models are expressed in 

terms of the mean and variance of payoff values.  

b) The robustness-based optimization model provides a conservative solution under 

interval data uncertainty. 

c) Proposed decoupled approachfor solving zero sum and non zero sum game can 

determine game value by considering the variation of multiple interval data.  
 
1.5 Organization of the Thesis 

 
The rest of the thesis is organized as follows. Chapter 2 presents the literature review of 

all the relevant topics of the thesis. Chapter 3 gives an overview of game theory, non-

cooperative game, two person zero sum game and two person non zero sum 

game.Chapter 4 describes the proposed decoupled approaches for solving two-person 

games under interval uncertainty. In chapter 5, the proposed methods are illustrated 

withnumerical examples including an investment decision analysis problem. Chapter 6 

provides conclusions and suggestions for future work. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
Game theory is a powerful tool for modeling the interactions of independent decision 

makers. The internal consistency and mathematical foundations make the game theory a 

prime tool to make decisions in competitive environments where outcomes are 

interdependent. Game theory, a branch of mathematics, gives mathematical expressions 

to the strategies of opposing players and has widely been applied in engineering, 

business, finance and management  that include commercial supply chains (Ketchen and 

Hult, 2007),  investment decision (Nanduri et al, 2009), and marketing strategy (Huang 

and Li, 2001).Moorthy (1985) applied non-cooperative game theory principles to two 

airline companies and asserted that Nash equilibrium, a solution of a game where each 

player's strategy is optimal given the strategies of all other players, is necessary for firms 

to be comfortable with their strategies and the assumptions it foregrounds concerning 

other players of the game. Nadeau (2002) used game theory in the health and safety 

sector in order to model conditions for cooperation between managers and 

workers.Moreover, Smit and Ankum (1993) used the real options approach for project 

timing and Murphy and Smeers (2005) considered three model of investment in capacity 

expansion.  
 
Concepts of game theory began with point data. In deterministic games, it is considered 

that all inputs (i.e., payoffs) are considered fixed point data and precisely known, and the 

influence of natural variability and uncertainty is ignored to determine the game value. 

Game theory can be defined as the study of mathematical models of conflict and 

cooperation between intelligent and rational decision-makers (Myerson, 1991). Some ideas 

of game theory can be traced to the eighteenth century but it was extensively developed 

mainly in the 20th century with the work of John von Neumann (1903–1957) and Oskar 

Morgenstern (1902-1977) who established game theory in a more uniformed way and gave 

the basis for future research. In 1913 Ernst Zermelo published the paper“Über eine 

Anwendung der Mengenlehre auf die Theorie des Schachspiels”.It proved that a game as 

complicated as chess is solvable through backward induction. This paved the way for more 

general theorems for two person non-cooperative games (Screpantiet al, 2005).  
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Minimax theorem is considered as a useful tool to solve games, especially zero-sum games. 

In 1928, this theorem was established and published by John von Neumann(1928).Most 

important and influential was his book Theory of Games and Economic Behavior co-

authored with Oskar Morgensternpublished in 1944 (Von Neumann and Morgenstern, 

1944), which is considered the groundbreaking text that created the interdisciplinary 

research field of game theory. This foundational work consisted of the method for solving 

two-person zero-sum games. It introduced axioms for the concept of the individual rational 

player. Such a player makes consistent decisions in the face of certain and uncertain 

alternatives. Game theory did not really exist as a unique field until the paper "On the 

theory of games of strategy."  was published by Neumann (1959).  
 
In game theory, minimax theorem shows minimax solution of two person games. 

Minimax solution of a game is named Nash equilibrium after John Forbes Nash, Jr. 

Antoine Augustin Cournot in 1838 introduced an initial version of Nash equilibrium in 

his theory of oligopoly (Neumann, 1928). In a non-cooperative game, players try to 

choose their best payoff, which constitutes anoptimum solution for the game. A solution 

of a game is called Nash equilibrium when all the players choose their best payoffs 

(Cachon & Netessine 2004). Nash-equilibrium is a set of strategies that no single player 

can obtain a higher value of expected utility by deviating unilaterally from that strategies. 

Nash gave two existence proofs, one (Nash, 1950) was based on Kakutani’s Fixed Point 

Theorem and other (Nash, 1951) was based on the less general Brouwer’s Fixed Point 

Theorem. A Nash player is not only rational but also assumes that all players are rational 

to such a degree that players can coordinate their strategies so that Nash equilibrium 

exists (Holler, 2002). Nash in his 1951 article defined mixed strategy Nash equilibrium 

for any game with a finite set of actions and proved that at least one (mixed-strategy) 

Nash equilibrium must exist in any game. The Nash equilibrium, a crucial concept in 

non-cooperative games, helped produce a revolution in the use of game theory in 

economics and Nash won Nobel Memorial Prize in Economic Sciences in 1994 as a game 

theorist.The studies mentioned above developed basic concepts of game theory useful to 

analysis in competitive environments when inputs (payoffs) are deterministic. 

 

https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Oskar_Morgenstern
https://en.wikipedia.org/wiki/Game_theory
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However, a deterministic assumption about inputs may result in infeasibility and poor 

performance in supporting decision making, because real-life problems are not always 

deterministic (Sim, 2004). There exists a large volume of work for games under interval 

uncertainty that developed many useful models for analyzing competitive situations in 

engineering and business. This thesis specifically focuses on developing robust 

optimization approach for two-person non cooperative games under interval uncertainty 

arising as single and multiple interval data.  
 
Real-world optimization problems, such as those arising from optimal design of physical, 

medical or engineering systems, often contain parameters whose values cannot be exactly 

determined because of various technical difficulties. Therefore, assuming the availability 

of point data for input variables is infeasible in many cases. Uncertainty arises in 

engineering problems from different sources, quantification with accuracy is necessary 

for analysis. It is challenging to quantify uncertainty arising from different sources. The 

sources and characterization of uncertainties are essential in engineering modeling for 

risk and reliability analysis. Sources of uncertainty may be divided into two types: 

aleatory and epistemic (Oberkampf et. al., 2004). Aleatory uncertainty is inherent 

randomness of a system and irreducible. Examples include phenomena that exhibit 

natural variation like environmental conditions (temperature, wind speed, etc.). System 

failure due to a natural disaster andthe government policy are examples of aleatory 

uncertainty in investment decision problem. In contrast, epistemic uncertainty can be 

reduced by gathering more data or by refining models and results.Liu (2011) introduced 

the importance of uncertainty analysis and the situations where the theory of uncertainty 

is applicable. Liu (2013) proposed the concepts of chance distribution, expected value, 

and variance of uncertain random variables. In practical problems, uncertain data may be 

available in the form of interval due to the availability of data from multiple sources. 
 
Interval data are frequently occurred in engineering analysis and decision making, for 

example, structural design (Du et al, 2005) and aerospace vehicle design (Zaman et al, 

2011b). A number of methods (e.g.  Zaman et al, 2011c; Ferson et al, 2007; Zaman et al, 

2011a) were developed that can deal with interval variables. Du et al. (2005) proposed a 

method of reliability-based design optimization (RBDO) where the uncertain variables 
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characterized by the mixture of probability distributions and intervals. Zaman et al, 

(2010) developed a probabilistic approach for representation and propagation of 

uncertainty in system analysis. Sampling-based and optimization-based methods for the 

propagation of both probabilistic and interval uncertainty are represented and compared 

in term of accuracy and computational expense. Zaman et al. (2011a) developed a 

method using nonlinear programming for calculating the moments from the different 

combination of multiple interval data. Zaman and Kritee (2014) proposed an optimization 

algorithm for construction of confidence interval on mean for interval data with different 

numbers of intervals and type of overlap. A Likelihood-based methodology has been 

developed to estimate the epistemic uncertainty from the interval data for any distribution 

(Dey and Zaman, 2014).  
 
In order to make a decision, we have to rely on expert's opinion when sufficient historical 

data are not available. In many situations, data are available in form of multiple intervals. 

When dataarises from multiple sources, it is needed to evaluate the mean, variance, and 

other high moments for interval data. Finding moments with interval data has been 

generally considered an NP hard problem, because it includes a search among the 

combinations of multiple values of the variables, including interval end points. Zaman et 

al. (2011b) developed a methodology for uncertainty representation in system analysis 

when input parameters are available in either probability distribution or simply interval 

form. Uncertainty in interval data was represented through a flexible family of 

probability distributions. Zaman et al. (2011a) proposed a probabilistic approach to 

represent interval data for input variables in reliability and uncertainty analysis problems, 

using flexible families of continuous Johnson distributions. This is a unified framework 

for representing both aleatory and epistemic uncertainty. Moments of the interval data are 

represented in the form of intervals which have upper and lower bounds. Algorithms to 

evaluate the bounds on second and higher moments of interval data were developed 

based on continuous optimization.  
 
In the real-world competitive situations, the payoffs may be unknown or available as 

intervals.Therefore, the outcome of a game is not feasible under deterministic 

assumptions about inputs in the uncertain environment. There are different types of 
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games based on the number of players, the number of strategies and the structure of 

payoff matrix (Von Neumann and Morgenstern, 1953). After1944 when a book published 

by Von Neumann and Morgenstern,  the researchers have been working to add new 

features such as data uncertainty, interval data and so on to make broader application 

areas of non-cooperative games. On the other hand, some work on game theory are 

primarily focused on cooperative games. The differences between cooperative and non-

cooperative games were introduced by Aumarm (1959) and Shubik (2002).In the present 

thesis, a methodology for two-person non-cooperativegames is developed where the 

payoffs represent by interval data. In the rest of the chapter, we focus on two-person non-

cooperative games under uncertain interval inputs. 
 
There exists a large volume of work for non-cooperative games that consider interval 

payoffs. Within the framework of uncertainty theory, Gao (2011) examined the 

uncertain-payoffs of two player nonzero-sum games. He introduced three decision 

criteria to define the behaviors of players, which lead to three types of games. For each 

type, he presented a new definition of Nash equilibrium as well as one sufficient and 

necessary conditions that provide a way to find such Nash equilibrium. In order to 

determine the probability distribution or density function of a random variable, it needs 

enough historical data for probabilistic reasoning. However, things often go contrary to 

our wishes. People resort to the concept of fuzzy set that was initiated by Zadeh (1965) 

when enough historical data is not available. Fuzzy games have been studied by many 

authors including Garagic and Cruz (2003), Russell and Lodwick (2002) and Wu and Soo 

(1998). Collins and Hu (2005) extended the strategies for classical strictly determined 

matrix into fuzzily determined interval matrix games by defining fuzzy binary 

comparison. Loganthan and Christi (2012) considered payoffs as interval values in two-

person zero-sum game. 
 
Liu and Kao (2009) developed a methodology for solving two-person zero-sum games 

where the payoffs were expressed with intervals (i.e., data having lower and upper 

bounds). A pair of mathematical models was used for obtaining upper and lower bounds 

of the value of the game. Based on the duality theorem and by applying a variable 

substitution technique, the pair of two-level mathematical programs had been 
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transformed into a pair of ordinary one-level linear programs. Solving the pair of linear 

programs produces the value of the game as an interval. Li (2011) developed a simple 

and effective linear programming method in which payoffs were imprecise and 

represented by intervals instead of deterministic point values. The value (interval) of the 

two-player zero-sum interval-valued matrix game is obtained by using lower and upper 

bounds of the payoff intervals. This method was also compared with other established 

methods such as Liu and Kao (2009) to check validity.Most of the existing approaches 

determine game value by using upper and lower bounds on separate models. Those 

models don’t consider variance of interval data. 
 
A few papers (e.g., Kuhn, 1961; Lemke and Howson, 1964; Mangasarian and Stone, 

1964) specifically dealt with an actual numerical method for finding equilibrium points of 

two-person non-zero sum games. Lemke and Howson (1964) gave an algebraic proof of 

the equilibrium point which is Nash equilibrium point for two-person non-zero-sum 

(bimatrix) games.Two-person non-zero sum game under interval and unknown payoffs is 

investigated based on Linear Complementarity Problem (LCP) by Sohraiee et al, (2010). 

They showed that the two-person games with interval data can be transformed to LCP. 

Mangasarian and Stone (1964) proposed a methodology to solve two-person non-zero-

sum games with a finite number of strategies. They developed a quadratic programming 

model with linear constraints and a quadratic objective function (not concave) that has a 

global maximum of zero. Meng and Zhan (2014) introduced a two-step method for 

constrained bimatrix games. In this thesis, thequadratic programming model 

(Mangasarian and Stone, 1964)is converted into a robust optimization problem that 

considers uncertainty in payoff values. 
 
Game theory is a useful tool to analyze real-life competitive situations in order to make 

decisions. A deterministic model results in low-performance efficiency and infeasible 

solution under the condition of uncertainty. Variations are common in manufacturing 

processes, service processes, and users’ environment. Effects of the variations are 

considered explicitly in robust optimization in order to minimize their consequences 

without eliminating their sources. The origins of robust optimization date back to the 

establishment of modern decision theory in the 1950s and the use of the worst case 
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analysis and Wald's maximin model as a tool for the treatment of severe uncertainty. 

Taguchi (1924-2012) has played a vital role in popularizing the notion of robust design 

by introducing his well-known statistical or robust design method. He considered noise 

and control factors and their effect in order to minimize their effects in manufacturing 

processes. Taguchi (1993) proposed robust design method that is insensitive to noise to 

achieve product and process quality. The method focuses on design and development to 

create efficient, reliable products. Taguchi method has been used in Operations Research, 

Control Theory, Finance, Portfolio Management, Logistics, Manufacturing Engineering, 

Chemical Engineering that include process improvement (Rosa et al, 2009) and 

production (Rao et al, 2004). 
 
Although Taguchi’s methods have extensive applications in engineering, the statistics 

community pointed to inefficiencies in the method (Box, 1988) and these methods cannot 

solve problems with multiple measures of performances and design constraints (Wei et 

al, 2009). There is now an extensive volume of literature for robust optimization methods 

and applications. Du and Chen (2000) examined several feasibility modeling methods for 

robust optimization under the effect of uncertainties. Although many real-life 

optimization problems are nonlinear and nonconvex, most studies in robust optimization 

focused on convex programming with linear performance function. To overcome these 

drawbacks, Zhang (2007) introduced a nonlinear robust optimization method(the first 

order method) with uncertain parameters involving both equality and inequality 

constraints. However, the method is applicable when variations are moderate. Hale and 

Zhang (2007) solved some robust nonlinear programming problems in order to assess the 

effectiveness of the first order method. They showed that the method is inexpensive and 

produces reasonable solutions when the level of uncertainty is small to moderate. 
 
Over the years, robust optimization techniques have been used in many areas, such as 

operations research (Bertsimas and Sim, 2004), control theory (Khargonekar et al, 1990), 

logistics (Yu and Li, 2000), finance (Fabozzi et al, 2007), and chemical engineering 

(Bernardo and Saraiva, 1998).These methods had only been studied with respect to 

physical or natural variability represented by probability distributions. Uncertainty in 

system design also arises from other contributing factors. A few studies on robust design 
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optimization to deal with epistemic uncertainty arises due to limited data and knowledge. 

A possibility-based method was integrated with robust optimization under epistemic 

uncertainty by Youn et al, (2007) to redefine the performance measure of robust design 

using the most likely values of fuzzy random variables.Dai and Mourelatos (2003) 

proposed two-step methods for robust design optimization to achieve robustness under 

both aleatory and epistemic uncertainty using a range method and a fuzzy sets approach. 

Zaman et al. (2011b) proposed robustness-based design optimization formulations that 

work under both aleatory and epistemic uncertainty using probabilistic representations of 

different types of uncertainty; it deals with both sparse and interval data without any 

assumption about probability distributions of random variables. Dey and Zaman(2015) 

proposed the maximum likelihood estimation based robust optimization model that is 

computationally inexpensive. 
 
Zaman (2010) and Zaman et al. (2011b) mentioned that the essential elements of robust 

design optimization are: (1) maintaining robustness in the objective function (objective 

robustness); (2) maintaining robustness in the constraints (feasibility robustness); (3) 

estimating mean and measure of variation (variance) of the performance function; and (4) 

multi-objective optimization. 
 
Objective robustness 
 
Robustness in the objective function can be achieved by simultaneously optimizing mean 

and minimizing variance of the objective function. Two major robustness measures are 

available in the literature: one is the variance, which is extensively discussed in the 

literature (Du and Chen, 2000; Lee and Park, 2001 and Doltsinis and Kang, 2004) and the 

other is based on the percentile difference (Du et al, 2004).  
 
Feasibility Robustness 
 
Constraints robustness or feasibility robustness means satisfying the constraints in the 

presence of uncertainty. The methods of feasibility robustness classified by Du and Chen 

(2000) fall into two categories: methods that use probabilistic and statistical analysis, and 

methods that do not require them. A probabilistic feasibility formulation (Du and Chen, 

2000 and Lee et al, 2008) and a moment matching formulation (Parkinson et al, 1993) 
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have been proposed for the methods that require probabilistic and statistical analysis. Du 

and Chen (2000) proposed a sampling method based on most probable point (MPP) to 

achieve computational efficiency. The moment matching formulation is a simplified 

approach that assumes the performance function is normally distributed. The feasible 

region reduction method (Park et al, 2006) is more general and does not require the 

normality assumption.This method requires the mean and variance of the performance 

function and a user-defined constant. On the other hand, Worst case analysis (Parkinson 

et al, 1993), corner space evaluation (Sundaresan et al, 1995), and manufacturing 

variation patterns (MVP) (Yu and Ishii, 1998) are also available for the methods that do 

not require probabilistic and statistical analysis. A comparison study of the different 

constraint feasibility methods can be found in Du and Chen (2000). 
 
Estimating mean and variance of the performance function 
 
A number of methods are developed to estimate mean and variance of a function, those 

methods can be classified into three major classes: (i) Taylor series expansion methods, 

(ii) sampling-based methods and (iii) point estimate methods (Huang and Du, 2007). 
 
The Taylor series expansion method (Haldar and Mahadevan, 2000; Du and Chen, 2000; 

and Lee et al, 2001) is a simple approach to estimate mean and variance. However, when 

the function is nonlinear and the variances of random variables are large, this 

approximation may result in large errors (Du et al., 2004). A second-order Taylor series 

expansion is generally more useful than the first-order approximation in terms of 

accuracy, but it is computationally expensive. 
 
Sampling based methods are expensive and require distributions information. Importance 

sampling, Latin hypercube sampling, etc. (Robert and Cesalla, 2004) are efficient 

sampling techniques and may be used to reduce the computational effort, but prohibitive 

in the context of optimization. Surrogate models (Ghanem and Spanos 1991; Bichon 

etal., 2008; Cheng and Sandu, 2009) are also sampling techniques and can be used to 

further reduce computational effort.  
 
A point estimation method (Rosenlblueth, 1975) was proposed to overcome the 

difficulties associated with the computation of derivatives required in Taylor series 
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expansion to compute the first few moments of the performance function. Although point 

estimate methods are easier to implement, the accuracy may be low and may generate 

points that lie outside the domain of the random variable. 
 
Multi objective optimization 
 
In robust optimization, the robust solution is achieved by optimizing the mean and 

minimizing the variance of the performance function. Among the available methods, 

weighted sum approach is the simplest approach and probably the most widely used 

method to multi-objective optimization and has been extensively used in robust 

optimization (Lee and Park, 2001; Doltsinis and Kang, 2004; Zou and Mahadevan, 2006). 

In weighted sum method, all objectives functions convert into a single objective function. 

The weighted sum strategy converts the multi-objective problem of 

minimizing/maximizing the vector into a scalar problem by constructing a weighted sum 

of all the objectives. Although a simple method, the weighted sum method may not 

obtain potentially desirable solutions (Park et al, 2006). 
 
Another useful method is  -constraint methodthat involves minimizing/maximizing a 

primary objective, and solves multiobjective optimization problem by transforming the 

other objectives in the form of constraints. This approach is able to identify a number of 

non-inferior solutions that are not obtainable using the weighted sum technique. In spite 

of its advantages over weighted sum method, the  -constraint method is computational 

expensive for more than two objective functions.  
 
Other methods include goal programming (Zou and Mahadevan, 2006), compromise 

decision support problem (Bras and Mistree,1993, 1995; Chen et al, 1996), compromise 

programming (CP) (Zelney, 1973; Zhang, 2003; Chen et al, 1999) and physical 

programming (Messac, 1996; Messac et al, 2001; Messac and Ismail-Yahaya, 2002; Chen 

et al, 2000). Each method has its own advantages and limitations.  
 
Robustness based optimization model proposed by Zaman et al. (2011b) can be used in 

game theory. In present research, a robustness-based optimization formulation is 

proposed for two-person games under interval uncertainty arising from multiple sources.  

First two moments of interval data are determined by moment bounding 
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algorithmsproposed by Zaman et al. (2011a). The resulted mean and standard deviation 

are used in multi-objective robust optimization algorithms to get possible solution space 

of a two-person game.We use variance as a measure of variation of the performance 

function in order to achieve objective robustnessand the feasible region reduction method 

to achieve feasibility robustness. Mean and variance of functions with independent 

variables are estimated by first order Taylor series expansion.In the robust optimization 

of games, the weighted sum method and the -constraint method are used to obtain game 

values. In the following chapters, this study develops and demonstrates generalized 

methodologies and tools for solving two-person games under interval uncertainty that 

will provide support to make decisions in competitive environments. 
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CHAPTER 3 
 

THEORETICAL FRAMEWORK 
 

3.1 Game Theory 
 
Game theory is a collection of mathematical models  to study competitive situations and 

cooperation between decision-makers. Competitive situations are ubiquitous; numerous 

examples involving adversaries in conflict include investment decision, supply chain 

analysis, advertising and marketing campaigns by competing business firms, and so forth. 

An important characteristic in thesesituations is that the final outcome depends primarily 

on the combination of strategies selected by the adversaries. Interdependent decisions are 

everywhere, potentially including almost any endeavor in which self-interested agents 

cooperate and/or compete and game theoretic concepts apply whenever the actions of 

several agents are interdependent. A game (in strategic or normal form) consists of the 

following three elements: a set of players, a set of actions available to each player, and a 

payoff (or utility) function for each player (Cachon and Netessine, 2004). The payoff 

functions represent each player’s preferences over action profiles, where an action profile 

is simply a list of actions, one for each player (Pereira and Ferreira, 2011). It is assumed 

that all adversaries behave rationally and desire to win. Before the game begins, each 

player knows the strategies she or he has available. The actual play of the game consists 

of each player simultaneously choosing a strategy without knowing the opponent’s 

choice. The two branches of game theory differ in how they formalize interdependence 

among the players. In the non-cooperative theory, a game is a detailed model of all the 

moves available to the players. In contrast, the cooperative theory abstracts away from 

this level of detail and describes only the outcomes that result when the players come 

together in different combinations. In this thesis, a robust optimization algorithm for the 

non-cooperative game is developed in order to incorporate interval uncertainty in making 

the decision in competitive environments. 
 
3.2 Non-Cooperative Game 
 
The theory of non-cooperative games studies and models conflict situations among 

players (agents). It studies situations where the profits (gains, utility or payoffs) of each 

player (agent) depend not only on his/her own acts but also on the acts of the other 
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agents. A fundamental characteristic of non-cooperative games is that it is not possible to 

sign contracts among players. That is, there is no external institution (for example, courts 

of justice) capable of enforcing the agreements. In this context, co-operation among 

players only arises as an equilibrium or solution proposal if the players find it in their best 

interest. The equilibrium is called Nash equilibrium where none of the players cannot 

improve her payoff by a unilateral move. The game theory provides an appropriate 

solution to a problem if its conditions are properly satisfied. These conditions are often 

termed as the assumptions of the game theory. Some of these assumptions are as follows: 
 

o The number of players (competitors) is finite. 

o A player can adopt multiple strategies for solving a game. 

o There is a set of pre-defined outcomes. 

o All players act rationally and intelligently. 

o There is a conflict of interest among the players. 
 
A non-cooperative game is called a two person game when the number of players is 

limited to two. Each player tries to maximize (a utility function or benefit function) or 

minimize (a cost function or a loss function) his/her objective function. The objective 

function of a player depends on the strategies of the other player and a player cannot 

simply optimize her own objective function because it depends onthe strategies of the 

other player. Here, a decoupled approach for solving two person non-cooperative games 

is proposed that can aggregate information from multiple sources. 
 
3.3 Two-Person Zero-Sum Game 
 
In game theory, a non-cooperativetwo person zero-sum game is a mathematical 

representation of a competitive situation in which one person’s gain (or loss) is 

equivalent to another’s loss (or gain), so the net change in benefit or loss is zero. In the 

game, players are rational and choose their strategies solely to promote their own welfare. 

Deterministic payoff matrix for two person zero sum game  mn  is given below. 
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Table 1: Two person zero sum game payoff matrix 
 

        Player 2 
Strategy     j 

i 
 

  1        2         3          m 
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Here, the intention of player 1 is to maximize the game value, but players 2 tries to 

minimize it. By applying probability theory, the definition of expected game value of 

player 1 is given below.  
 

Expected game value for player 1 
 


n

i

m

j
jiij yxa

1 1
            (1) 

 

ix  represents the probability that player 1 uses pure strategy i , jy represents the 

probability that player 2 uses pure strategy j , n and m are the numbers of available 

strategies for player 1 and player 2 respectively and ija  is the payoff value for player-

1where player 1 uses pure strategy i and player 2 uses pure strategy j . Nash equilibrium 

is the solution of zero-sum games. Any game can be solved by transferring the problem 

to a linear programming problem. Whenever a game does not possess a saddle point, 

game theory advises each player to assign a probability distribution over his/her set of 

strategies.To find equilibrium point(s) and the probability of selecting strategies for zero 

sum game, it is necessary and sufficient to solve the following linear programming 

problems(Hillier and  LieBerman, 1982).  
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
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ix

                 (2) 
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where,  and  are the same and the game value of player 1 obtained by solving 

maximizing and minimizing the linear programming problems respectively. Equations (2) 

and (3) are used to determine ix  and jy  respectively. Then, by putting these values in 

Eq. (1), we can calculate the game value of player 1. 
 
In the real world, a payoff matrix might be uncertain and the game value of the problem 

is sensitive to the variations. Robustness-based optimization method considers the 

variation of input variables. In this thesis, a decoupled approach for robustness-based 

optimization is developed by considering the mean and variance of payoff values. In the 

following chapter, the description of the proposed decoupled approach for robust 

optimization is given. 
 
3.4Two-Person Non-Zero Sum Game 
 
A non-cooperative two-person non-zero sum game is a mathematical representation of 

competitive situations where one player’s gain (or loss) is not necessarily the other 

player’s loss (or gain). In other words, the profits and losses of all players do not sum up 

to zero and everyone can gain/loss. Payoff matrix for non-zero sum game  mn is shown 

in the following table. 
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Table 2: Two person non zero sum game payoff matrix 
 

 Player 1: Payoff  matrix Player 2: Payoff matrix 
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In non zero sum games, both players intention is to maximize their game values. The 

expected game values of both players are given below. 
 
 

Expected game value for player 1 
 


n

i

m

j
jiij yxa

1 1
            (4) 

 

Expected game value for player 2 
 


n

i

m

j
jiij yxb

1 1
            (5) 

 

where, 𝑛  and 𝑚  are the number of available strategies for player 1 and player 2, 

respectively,𝑎𝑖𝑗and 𝑏𝑖𝑗 are the payoff values of the 1st and 2nd playersrespectively when 

player 1 uses pure strategy 𝑖 and player 2 uses pure strategy 𝑗. The game values of two 

person non zero sum games can be obtained by solving a quadratic programming 

problem (Mangasarian and Stone 1964) with linear constraint functions and quadratic 

objective function. Also, the probability of selecting strategies is obtained by solving the 

quadratic programming problem proposed by Mangasarian and Stone (1964), which is 

given below. In the following optimization problem,  and  are variables whose 

maximum values are the game values of player 1 and 2, respectively.  
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In many practical situations, payoff values may be available in the form of intervals (or a 

combination of point and interval data) instead of the deterministic payoff values. 

Robustness-based optimization method considers the uncertainty of interval inputs. A 

decoupled approach for solving two-person nonzero-sum games is proposed that 

incorporates the mean and variance of interval-valued payoffs.The description of the 

proposed decoupled approach for robust optimization to solve two person non zero sum 

games is given in the following chapter. 
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CHAPTER 4 
 

PROPOSED ROBUST OPTIMIZATION METHODOLOGY 
 

This research proposes decoupled approaches for robust optimization of two person 

games. Proposed methods can be used to solve two-person zero sum and non-zero 

gameswith interval-valued payoffs. In this chapter, details of the proposed decoupled 

approaches for solving two-person games under interval uncertainty are given. 
 
4.1 Robust Optimization Algorithm for Two Person Zero Sum Game 
 
This research develops a decoupled approach for robust optimization of two person zero 

sum games. This algorithm requires that the mean and the variance of the interval data be 

available as bounds. We use variance as a measure of variation of the performance 

function in order to achieve objective robustness and the feasible region reduction 

method to achieve feasibility robustness. Mean and variance of functions with 

independent variables are estimated by the first order Taylor series expansion. Finally, a 

weighted sum method is used to solve multiple objectives (mean and standard deviation) 

optimization problem. The proposed robust optimization problem can be formulated as 

follows:  
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In Eqs. (7)-(9),  xE and  x are the vectors of the mean values and standard deviations 

of the performance function, w is weight coefficient  0,1 ww . 
ija is the mean 

vectorof the payoffs, and,LB and UB are the vectors of lower and upper bounds of 
ija .In 

Eq. (7),  and  are the mean and standard deviation of the variable,  and in Eq. (8),

 and   are the mean and standard deviation of the variable,  . k  is a constant that 

adjusts the robustness of the method against the level of conservatism of the solution. It 

reduces the feasible region by accounting for the variations and is related to the 

probability of constraint satisfaction. For example, if a constraint function is normally 

distributed, 1k  corresponds to the probability 0.8413, 2k  to the probability 0.9772, 

etc.Eqs (7)- (9) are solved iteratively until convergence.In the optimization problems in 

Eqs. (7) and (8), *
ija

  is a set of fixed quantities. The optimization in Eq.  (9) is the 

analysis for the variables 
ija  , where the optimizer searches among the possible values 

of 
ija  for a conservative game value. Therefore, the proposed decoupled approach gives 

the conservative game value for player 1.The objective function in Eq. (9) consists of the 

mean and variance of player 1 game value. The method proposed in Zaman et al. (2011a) 

is used to compute moments (e.g. mean and variance) of interval data. After computing 

moments of interval data, the upper bounds of variances are used in the decoupled 

approaches of two-person games. Therefore, the game value becomes least sensitive to 

the uncertainty of interval-valued payoffs. Figure 1 illustrates the decoupled approach for 

two person zero sum game. 
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4.2 Robust Optimization Algorithm for Two Person Non Zero Sum Game 
 
This research also proposes a decoupled approach for robust optimization of two person 

non-zero sum games. Theproposed algorithm for robustness-based optimization under 

interval uncertainty can be formulated as follows:  
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Figure 1: Proposed decoupled approach for two person zero sum game 
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In Eqs. (10) and (11), 

ija and 
ijb  are the mean vector of payoffs, and LBandUBare the 

vectors of lower and upper bounds of
ija  and

ijb . The optimization problems in Eqs (10) 

and (11) are solved iteratively until convergence. It should be noted that *
ija

 and *
ijb

 are 

fixed quantities in the optimization in Eq.(10), and the fixed quantities in Eq. (11) are 

i
x ,



jy , and  .After convergence, the mean and standard deviation of the game values for 

both players can be determined from Eqs. (12)-(15) asgiven below by using optimum 

values of   ix , jy , 
ija  and 

ijb . 
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For Player 2’s game value, 

Mean 












 

 

n

i

m

j
jiij yxbE

1 1
                                              (14) 

Standard deviation 












 

 

n

i

m

j
jiij yxb

1 1
                                  (15) 

 
The decoupled approach for two person non zero sum games is illustrated in Figure 2. 
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In the decouple approaches for robust optimization the weighted sum method is used for 

multiobjective optimization. Other optimization methods such as  -constraint method 

can be used for the purpose. The mean and variance of performance function and first 

two moments of interval payoffsare needed to determine the game value. A first-order 

Taylor series approximation for estimating mean and variance of performance function 

and the methods for calculating first two moments of interval data are given in the 

following two sections. 

 
4.3 Mean and Variance of Performance Function 
 
For a functional relationship, the mean and variance of the function can be estimated 

approximately as a function of mean and variance of random variables. The mean and 

variance of a performance function can be estimated by using a first-order Taylor series 

approximation (Haldar, A., & Mahadevan, 2000). If there is a response variableY which 

is represented by a non-linear performance function fofa set of random variables 

nxxxx .,.........,, 321 , then the response variable can be represented as, 

Figure 2: Proposed decoupled approach for two person non zero sum game 
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Performance Function:  nxxxxfY .,.........,, 321                                 (16) 

First-order approximate mean of Y :    
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Using Eqs. (17) and (18), based on approximation method, the moments of the 

performance function can be estimated. Covariance, ),( ji xxCov , is zero when  ix and jx

are independent. These procedures are followed to estimate the mean and the standard 

deviation of the performance function in the robustness-based optimization.  
 

4.4Moments of Interval Data 
 
This section presents algorithms that estimate lower and upper bounds of the mean and 

variance for single and multiple interval data. Zaman et al. (2011a) proposed the methods 

to compute the bounds of moments for both single and multiple interval data. The 

methods for calculating bounds of the first two moments for interval data are summarized 

in Table 3 below: 
 

Table 3: Methods for calculating moment bounds for interval data 
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In the following chapter, the proposed approaches for robust optimization are illustrated 

with numerical examples. 
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CHAPTER5 
 

NUMERICAL EXAMPLES 
 
5.1 Numerical Examples 
 
In this thesis, the proposed methodologies are illustrated withthree (03) numerical 

examples. All interval inputs (entries of payoff matrix) are overlapping or non-

overlapping in nature and with different number of intervals. Each example of zero sum 

and non-zero sum games is solved by decoupled approaches for robust optimization. An 

investment decision analysis problem is also solved by the proposed decoupled approach 

for non-zero sum game. We compare our result with the result of some existing methods 

to check the validity of our developed algorithms. 
 
5.2 Example1:Two Person Zero Sum Game 
 
In this thesis, the proposed methodology for solving zero-sum game is illustrated with a 

two person zero sum game. All inputs (entries of payoff matrix) are single interval data as 

given in Table 4.This problem is solved by the proposed decoupled approach for robust 

optimization. 
 

Table 4: Payoff matrix of the two person zero sum game 
 

Two-Person  Zero Sum Game (3×3) 
11a  [39,43] 

12a  [21,24] 

13a  [21,23] 

21a  [49,52] 

22a  [35,38] 

23a  [14,17] 

31a  [5,9] 

32a  [77,80] 

33a  [35,36] 
 
The moment bounding approach for single interval data given in Table 3 is used to 

estimate upper and lower bounds of the means and variances for interval data. We note 

here that we have assumed independence among the uncertain input variables and thereby 
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ignored the covariance terms in Eq. (18) to estimate the variance of the functions.For 

illustration, we consider the constraint functions are normally distributed and 96.1k  for 

the example problem. Eqs. (7)-(9) are used to calculate the robust game value of the two-

person zero sum game.We use the Matlab solver fmincon, which implements a sequential 

quadratic programming (SQP) algorithm for the optimization of performance function for 

different values of weights, w . The optimization problem in Eqs (7)-(9) are solved 

iteratively until convergence by the Matlab solver 'fmincon' for different value of w
ranging from 0 to 1. In this case of decoupled formulation, the optimization problems 

converged in 3 iterations. The results obtained by the decoupled approach is shown in 

Table 5.  
 

Table 5:Game values of the zero sum gameat optimal solutions 
 

Two-Person  Zero Sum Game (3×3) 
 
𝑤 

Player 1 Player 2 
Game Value Probability Probability 

Mean SD 1x  2x  3x  1y  2y  3y  
0.0 25.4563 0.5391 0.3333 0.3333 0.3333 0.2769 0.0000 0.7231 
0.2 26.0352 0.5515 0.5215 0.0983 0.3802 0.2817 0.0000 0.7183 
0.4 26.0352 0.5515 0.5215 0.0983 0.3802 0.2817 0.0000 0.7183 
0.6 26.0352 0.5515 0.5215 0.0983 0.3802 0.2817 0.0000 0.7183 
0.8 26.0352 0.5515 0.5215 0.0983 0.3802 0.2817 0.0000 0.7183 
1.0 26.0352 0.5515 0.5215 0.0983 0.3802 0.2817 0.0000 0.7183 
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Figure3: The game value(player 1) of the zero sum game 
The trade-off between the mean and the standard deviation of the game value of player 1 

obtained by using the upper bounds for the variances of the random variables is presented 

in the Figure3. It is seen that, the standard deviation increases with the increase of the 

mean. We get only two different points by using weighted sum method of multi-

objectives optimization and it may occur with this method. Because, in this method, 

uniformly distributed set of weights does not guarantee a uniformly distributed set of 

Pareto-optimal solutions and two different set of weight vectors not necessarily lead to 

two different Pareto-optimal solutions. 
 
Comparison among Different Approaches (Zero Sum Game) 
 
Li (2011) formulated a pair of linear programming models to obtain the upper and lower 

bounds of the game value of a two person zero sum game with interval payoff matrix by 

using the upper and the lower bounds of the payoff values. The algorithms ignored the 

variance of interval data. A zero sum game (3×4) was solved by Li (2011)using the linear 

programming models and the resulted interval game value of player 1 was [0.068, 0.14]. 

We also solved the problem by the proposed decoupled approach without considering 

variances and the resulted game value for player 1 is [0.068, 0.096]. The intention of 

player 1 is to maximize the value of a game. Our robustness-based optimization model 

provides a conservative solution. Our conservative bound of game value is narrower than 

that obtained by his method. The lower bound (0.068) of the game value is same as that 

of their models and the upper bound (0.096) is less than upper bound of their resulted 

value. This is expected because the proposed model provides a conservative solution. 
 
5.3Example 2: Two Person Non Zero Sum Game 

A numerical example of two-person nonzero-sum game is solved by the proposed 

decoupled approach. We considered non-overlapping andoverlapping interval payoffs 

with a different number of intervals. Interval payoff matrix of the game (2×3) is given in 

Table 6. 
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Table 6: Payoff matrix of the two person non zero sum game 
 

Two-Person Non Zero Sum Game (2×3) 
11a   [4,8.5;5,7.5;6.5,10;5,10;7,8;4.5,9;6,9] 

12a   [5.35,7.3;5.8,6.35;5,7.1;4.5,7.4;5,8;6,6] 

13a   [3.45,5.25;3.5,5.8;4.2,6.8;3,6;2.8,6] 

21a  [4.5,6.5;6,7;5,8;6,9;7,8;6.5,7;4.5,9] 

22a  [8,11.8;9,10.5;9.25,10.60;7.5,10;7.9,12.5;8,13] 

23a  [4.45,7.3;5.2,6.95;6.55,7.5;4.25,8.3;5.1,9] 

11b  [5.6,8.8;7,10.5;6.25,10.10;5.5,10;5,10.5;5,9] 

12b  [4.5,6.8;4,7.25;5,7.3;5,8.3;5.5,7.4;4,6.8;6.25,8.8] 

13b  [4.45,7.3;5.32,6.95;6.6,7.25;6.25,8.3;5.1,7] 

21b  [5.35,9.44;4.7,10;6.8,7.8;5.8,6.9;5,8.35;4.5,9.1] 

22b  [8,9.8;7.59,11.6;6.9,10.1;9,9.7;7.95,10.5;8,8.8] 

23b  [4.5,9.4;4.8,7.25;5,8.9;5,6.3;5.5,7.4;4,8.8;6.25,9.45] 
 
For multiple interval data, the approaches given in Table 3 are used to determine means 

and variances of the payoffs. The covariance terms are ignored to estimate the variance of 

the performance functions. For illustration, we assumed that the constraint functions be 

normally distributed with 96.1k for the example problem. After calculating bounds on 

the parameters, Eqs. (10) and (11) are used to calculate the game value of the two-person 

non zero sum game.The optimization problems in Eqs (10)-(11) are solved iteratively 

until convergence by the Matlab solver 'fmincon' for different values of w . Then, the 

game values of both players are determined using Eqs. (12)-(15). For each case of two-

person non-zero-sum games, the optimization problems converged in 2 iterations. The 

results obtained by the decoupled approach ofnon zero sum games are shown in Table 7.  

Table 7: Game values of the non-zero sum gameat optimal solutions 
 

Two person non-zero sum game (2×3) 
 
𝑤 

Player 1 Player 2 
Game Value Probability Game Value Probability 

Mean SD 1x  2x  Mean SD 1y  2y  3y  
0.0 5.8414 0.6372 0.4500 0.5500 5.9242 0.7443 0.2395 0.4677 0.2928 
0.2 6.1444 0.6537 0.3708 0.6292 6.0938 0.7503 0.2668 0.5113 0.2219 
0.4 6.3690 0.6786 0.3204 0.6796 6.2405 0.7669 0.2662 0.5567 0.1771 
0.6 6.6032 0.7160 0.2729     0.7271 6.4105 0.7946 0.2503     0.6106     0.1391 
0.8 6.9378 0.7899 0.2102     0.7898 6.6760 0.8537 0.2136     0.6904     0.0959 
1.0 8.2900 1.2800 0.0000 1.0000 7.9100 1.3200 0.0000 1.0000 0.0000 
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Figure4: The game value (player 1) of the non zero sum game 
 

 
 

Figure5: The game value (player 2) of the non zero sum game  
 
The trade-offs between the mean and standard deviation of the game values of player 1 

and player 2 are illustrated in Figures 4 and 5, respectively. For both players, the standard 

deviations of game values increase with the increase of means of the game values. The 

decoupled approach for robustness-based optimization generates conservative solutions 

under interval-valued payoffs. It is also seen from Figures 4 and 5 that as the value of w  

increases, both the standard deviation and mean of game values increase. 
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5.4 Example 3:  Investment Decision Analysis Problem 
 
In this section, we chose a 5-bus network from Powerworld software package to illustrate 

the proposed decoupled approach for solving two person non zero sum game (Nanduri et 

al, 2009). In the network, there are 3 generators to supply power. Generators compete 

against each other and want to maximize their profits. Among three generators, Gen 3 

accepted the price set by the market, while the two other generators (Gen 1 and Gen 2) 

submitted strategic bids aimed at maximizing individual profits. Nanduri et al. (2009) 

converted this problem into a two person (Gen1 and Gen 2) non-zero sum game. They 

projected 4 years plan to make investment (capacity expansion) decision. In this thesis, 

we solve only oneyear expansion plan by the proposed robust optimization algorithm. In 

this example, there are three investment alternatives for both Gen 1 and Gen 2  that give 

rise to an investment matrix game with nine (3×3) elements, each of which is a potential 

expansion alternative. The expansion alternatives considered for Gen 1 are: do nothing 

(DN), expand the natural gas plant (EGP), and expand the coal plant (ECP). Gen 2 

considers the following investment alternatives: do nothing (DN), expand natural gas 

plant (EGP), and expand the petroleum fired plant (EPP). Payoff matrix for the game is 

given below in Table 8. 
 

Table 8: Deterministic investment decision analysis payoff matrix 
 

  Gen 1 Gen 2 
DN     EGP           EPP DN         EGP       EPP 

DN 

EGP 

ECP 

692          748              698 

709          749              692 

908          958              940 

697         758         721 

739         794         697 

609         649         608 
 
It was assumed in Ref that each projected payoff values( ija and ijb ) be available aspoint 

data. We solved the problem by the quadratic programming model (Mangasarian and 

Stone, 1964)and obtained the equilibrium expansion plan as: Gen 1 expands the coal 

plant and Gen 2 expands the natural gas plant. This is the exact same results reported in 

Ref. However, in real life, projected values are not deterministic, for example we cannot 

forecast exact potential profit. For this, we consider interval payoffs matrix instead of the 
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given deterministic one. We convert this investment decision analysis problem into two 

non zero sum investment games (matrices-1 and 2) with interval payoffs. Interval payoff 

matrices and solutions of the gameswith interval-valued payoffs are given in the 

following two subsections. 
 
5.4.1 Interval-valuedpayoffmatrix-1 
In the first problem (matrix-1), we assume that the payoffs ija and ijb given in Table 8 are 

the mean values of the interval-valued payoffs. Intervals around these mean values are 

constructed as 2ija and 2ijb . The resulted payoff matrix with interval data is given in 

Table 9.   
 

Table 9: Investment decision analysis interval-valuedpayoff matrix-1 
 

Generator Payoff Matrix (3×3) 
Gen 1 Gen 2 

11a  [690,694] 11b  [695,699] 

12a  [746,750] 12b  [756,760] 

13a  [696,700] 13b  [719,723] 

21a  [707,711] 21b  [737,741] 

22a  [747,751] 22b  [792,796] 

23a  [690,694] 23b  [695,699] 

31a  [906,910] 31b  [607,611] 

32a  [956,960] 32b  [647,651] 

33a  [938,942] 33b  [606,610] 
 
For single interval data, the methods given in Table 3 are used to determine the bounds 

on mean and variance of each payoff. We note here that we have assumed independence 

among the uncertain input variables and therefore covariance is assumed zero to estimate 

the variance of the performance functions.We assumed that the constraint functions be 

normally distributed with 96.1k corresponds to the probability 0.9750for the example 

problem. Here, fmincon uses an SQP algorithm. We use -constraint method to solve the 

investment decision problem.The solutions of the investment decision problem by the 

decoupled approachare given inTable 10. 
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Table 10: Solutions of the interval-valuedpayoff matrix-1 
 

G
en

1 

Mean  799.18 890.07 937.89 945.60 950.81 956 
SD 0.67 0.94 1.20 1.46 1.73 2 

Pr
ob

ab
ili

ty
 DN 

EGP 

ECP 

0.3077    

0.3030    

0.3893 

0.1200    

0.0833    

0.7967 

0 

0 

1 

0 

 0 

1 

0 

0 

1 

0 

0 

1 

G
en

 2
 

Mean 689.4 644.71 625.53 634.88 641.20 647 
SD 0.67 0.94 1.20 1.46 1.73 2 

Pr
ob

ab
ili

ty
 DN 

EGP 

EPP 

0.3308    

0.3484    

0.3207 

0.3154    

0.3825    

0.3021 

0.2677    

0.4697    

0.2626 

0.1566    

0.7005    

0.1430 

0.0814    

0.8566    

0.0620 

0 

1 

0 

 

 
 

Figure6: Investment decision analysis interval-valuedmatrix-1 solutions 
 
The trade-offs between the means and standard deviations of the game values are shown 

in Figure6. The cumulative game value is the summation of the game values (profit) of 

both players. The standard deviations of Gen-1's game valueand the cumulative game 

value increase when the means increase. In the case of Gen-2, the standard deviation 

decreases with the increase of the mean. 
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5.4.2 Intervaldata payoffmatrix-2 
 
In the second problem (matrix-2), we assume that the payoffs ija and ijb given in Table 8 

are the mean values of the interval-valued payoffs. Intervals around these mean values 

are constructed as 3ija and 3ijb . The interval-valued payoff matrix is given in the 

following table. 
 

Table 11: Investment decision analysis interval-valued payoff matrix-2 
 

Generator Payoff Matrix (3×3) 
11a  [689,695] 11b  [694,700] 

12a  [745,751] 12b  [755,761] 

13a  [695,701] 13b  [718,724] 

21a  [706,712] 21b  [736,742] 

22a  [746,752] 22b  [791,797] 

23a  [689,695] 23b  [694,700] 

31a  [905,911] 31b  [606,612] 

32a  [955,961] 32b  [646,652] 

33a  [937,943] 33b  [605,611] 
 
The solutions of the problem obtained by the proposed decoupled approach for two 

person non zero sum game are given in Table 12. 
 

Table 12: Solutions of the interval-valuedpayoff matrix-2 
 

G
en

1 

Mean 794.70 886.45 936.42 944.44 948.32 955 
SD 1 1.40 1.79 2.19 2.58 3 

Pr
ob

ab
ili

ty
 DN 

EGP 

ECP 

0.3146    

0.3111    

0.3742 

0.1255    

0.0899    

0.7847 

0 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

G
en

 2
 

Mean 689.90 645.11 623.94 633.68 639.97 646 
SD 1 1.40 1.79 2.19 2.58 3 

Pr
ob

ab
ili

ty
 

 

DN 

EGP 

EPP 

0.3315    

0.3445    

0.3239 

0.3156    

0.3831    

0.3014 

0.2740    

0.4552    

0.2708 

0.1588    

0.6958    

0.1454 

0.0831    

0.8529    

0.0639 

0 

1 

0 
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Figure7: Investment decision analysis interval-valuedmatrix-2solutions 
 
The solutions of the two person non zero sum investment decision game are shown in 

Figure 7.It illustrates the change of standard deviations with the change in mean values. 
 
InFigures 6 and 7, the higher standard deviation (risk) provides the higher mean value 

(profit) for Gen 1. In the decoupled approach of non zero sum game, the objective 

functions are not the mean and standard deviation of the game value of a player. For this 

reason, the standard deviation (SD) may not increase with the increase in the mean for 

both players, but the cumulative standard deviation will increase if the cumulative mean 

increases because the objective function consists of the summation of two players’ game 

values.The cumulative game values (profit) with SDs are shown in Figures6 and 7. It is 

seenthe cumulative SD is increasing with the increase of the cumulative profit. However, 

Gen 2 shows opposite trend. But the first example of non zero game given in Table 6 

shows that game values (mean) of both playersincrease when the standard deviations 

increase. 
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Comparison among Different Approaches (Non Zero Sum Game) 
 
Sohraiee et al. (2010) solved a non-zero sum game (2×3) with interval payoff matrix by a 

procedure which is based on Linear Complementary Problem (LCP). They determined 

the game values for player 1 and 2 as [1.125, 3.5] and [2.333, 3.333], respectively. The 

problem is also solved by the proposed decoupled approach of non zero sum game. By 

decoupled approach, player 1’s game value is obtained as [1.3411, 1.4426] with a 

standard deviation of [0.3612, 0.3982] and player 2’s game value is obtained as 

[2.3084,2.3117] with a standard deviation of [0.2473,0.2604].The bounds of game values 

obtained by the proposed method are narrower than their bounds and the game values are 

close to the lower bounds of their game value which is expected because the proposed 

approach generates a conservative solution. We observe a little disagreement between 

results obtained by the decoupled approach and the LCP based approach. The LCP based 

approach was an approximation as the probability structure of equilibrium pair of 

strategies had been modified by the probability structure of equilibrium pair of primary 

strategies. Therefore, our outcome may not be the same as the approximate result but 

there is a little disagreement.In the investment decision analysis problem, interval valued 

payoff matrix-1, the conservative game values of Gen-1 and Gen-2 are 956 and 647, 

respectively at maximum standard deviation, 2. Those game values are 2 units less than 

the deterministic game values at maximum standard deviation, 2. Similarly, in interval 

valued payoff matrix-2, the conservative game values of both generators are 3 units less 

than the deterministic game values at maximum standard deviation, 3. This shows that 

the solutions of the proposed approach are the conservative solution and reflects the 

variation of payoffs under interval data. 
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CHAPTER 6 
 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 
 
The major contribution of this thesis is to developdecoupled approaches for robust 

optimization of two person games under interval uncertainty arising from multiple 

sources. The decoupled approach is computationally efficient and quantifies uncertainty 

through iterative analysis. Two types of interval data, single and multiple, are considered 

in this research. In this thesis,the uncertainty is represented using moment bounding 

approach.In this thesis, we have used the weighted sum approach and  -

constraint method for the aggregation of multiple objectives and to examine the trade-offs 

among multiple objectives. Other multi-objective optimization techniques can also be 

explored within the proposed formulations. The proposed robust optimization algorithm 

is illustrated for numerical examples with different numbers of intervals and types of 

overlaps. This study proposed two algorithms, one for zero-sum games and the other for 

nonzero-sum games, which can be used to solve real life problems such as investment 

decision and marketing strategy selection under data uncertainty in order to make 

decisions in competitive environments.An investment decision analysis problem is solved 

by the proposed decoupled approach of two person non zero sum games. 
 
The major advantage of the proposed decoupled approaches is that it can handle 

uncertainty without any assumption about the probability distributions of payoffs.In the 

presence of interval uncertainty, the results of the proposed decoupled approaches are 

valuable to decision makers as it aggregates information from multiple sources, for 

instance, from experts' opinion. The proposed methodology is quite general and it may be 

expected that it could be successfully applied to any two person non-cooperative games 

with single or/and multiple interval-valued payoffs.    
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6.2 Future Work 
 
Competitive situations are ubiquitous. In order to maximize (or minimize) profit (or loss), 

a decision maker considers the decision of opponents to make a decision. The methods 

developed in this research are applicable for robust optimization of two-person non-

cooperative games under interval uncertainty. However, in real life situations, the number 

of players can be more than two. Therefore, this research can be expanded for multiple 

players non-cooperative games. The proposed methodologies are helpful to make a 

decision, such as launch a new technology, where historical data is not available. 
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