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Abstract

Traffic jam in Dhaka city, the capital city of Bangladesh and one of the most densely populated

cities in the world, is one of the major problems for the commuters. The city dwellers have

been experiencing intolerable traffic jam every day. Though the authority is trying to reduce

the traffic congestion by building new roads and enforcing new rules for vehicles on the roads,

unfortunately, they do not result in any visible improvement of the condition. The main reason

is the inability to assess and predict the traffic condition of the road in real-time. Due to

huge infrastructural cost, the city does not have the facility to collect traffic data by deploying

sensors. In this thesis, we overcome this limitation by exploiting mobile phone call details

record (CDR) data collected by mobile phone operators for billing purpose. We propose a

methodology to estimate travel time between any two major locations of Dhaka city from the

aggregated information of a high volume of users’ mobile phone CDR data. Our experimental

results based on real CDR dataset of 2.87 millions of users of the largest mobile operator,

Grameenphone Ltd., show that we can effectively predict travel time between any two major

junctions and any two minor locations of the city with an average accuracy of 87% and 76%

respectively.

x



Chapter 1

Introduction

Nowadays traffic management in major cities has become a major concern with the increasing

number of citizens living in cities and urban areas. Especially, cities of developing countries

are struggling against the traffic congestion, which is the number one concern of the dwellers in

many cities around the world. For example, traffic jam in Dhaka city, the capital of Bangladesh

and one of the most densely populated cities in the world, is one of the major problems for the

commuters in the city. The city dwellers have been experiencing intolerable traffic jam every

day. It is affecting individuals in every aspect of their lives that include wastage of time and

money.

To combat the traffic jam, the first and foremost thing is to assess the traffic in real-time

and to predict the travel time in different routes. City planners can use this information to

make a strategic plan on how to control traffic, and at the same time, it gives people choice

to decide when to start their journey. The more individuals know about traffic, the easier it

will be for them to avoid those traffic jams. Unfortunately, due to lack of infrastructure such

as deployment of road and vehicle sensors, developing cities fail to collect real-time traffic data

and thus are unable to fight against the traffic jam. In this thesis, we address this problem and

propose a technique to estimate travel time by exploiting the mobile phone call detail records

(CDR) data of millions of users in a densely populated area of Dhaka city.

The major challenge of estimating travel time based on the real-time traffic is the unavail-

1
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ability of real traffic data. People’s commutes offer a vast amount of data. However, collecting

these data is challenging. Traditional approaches collect data through roadside and household

surveys (e.g., [15], [22], [14] ). These approaches are costly and cannot capture real-time traffic

due to the low frequency of update. Moreover, these techniques are prone to sampling biases

and reporting errors. Modern cities deploy road mount detector or camera [36][40] to assess the

traffic. However, these techniques also suffer from above limitations and low penetration rate.

The most recent approaches use wireless data from floating car known as floating car data

(FCD) such as GPS traces from public transports or taxies (e.g., [12][34][39]). The FCD

approaches are also limited by their limited coverage and low penetration rate, particularly

in developing countries. Google also collects travel time data from their users’ smartphones;

however, users are not willing to reveal their locations due to privacy concerns. Thus major

limitations of this approach are the unavailability of the data and a low penetration rate of

smart-phones in developing countries[25].

To overcome the above limitations, we resort to mobile users’ CDR data to estimate traffic

and travel time, which is suitable for developing countries where mobile penetration rate is high

and the cities are densely populated.

Due to the huge growth of mobile phone users and the availability of location traces of

mobile users from their call records, recent research focuses on utilizing CDR data to mine

interesting patterns of city dwellers. In recent years, CDR data has been used for mobility

pattern extraction, human travel pattern visualization, route choice modelling, traffic model

calibration, and traffic flow estimation (e.g., [38][13]).

Few recent approaches [8][13][31][17] measured traffic status using CDR data. However,

these works are unable to predict travel time of roads, which is the most important parameter

for analyzing traffic condition. The most relevant works [19],[18] with our study used enriched

CDR data to estimate travel time in real time. Their work heavily relied on the signalling

data generated from “idle” devices, or in other words devices that are not involved in call

or data connection with the base station. These CDR data from “idle” devices may not be

available in every country, especially in developing countries because of additional expenditure
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to track a huge volume of idle phones. Moreover, they only considered CDR data which are

generated from nearby important roads or highway. Another recent work [21] used CDR data

to predict travel time between cities. This work does not consider a city’s internal road network

characteristics and people’s mobility behaviour, and thus is not suitable for predicting travel

time among different suburbs of the cities.

1.1 State-of-the-art

Traditionally, surveillance technologies such as camera, magnetic induction loop, Bluetooth

scanner, etc., have been widely used to monitor the city traffic. Based on their data collection

strategies, these techniques can be divided into two major categories: point based approach

that counts a number of vehicles in the detection area, and distance based approach that takes

the average speed and time between two designated monitoring points. Few recent studies

focused on GPS based monitoring of vehicles, which are known as floating car data (FCD)

techniques.

High deployment cost and low penetration rates are the two major bottlenecks of most of

the above techniques (e.g., [5], [12], [34], [39], [20], [37]). Development of data-driven ITS can

be found as a detailed survey in [40].

Google also tries to collect the travel time from Android users’ mobile phones. However,

since in developing countries smartphone penetration is low [25], and most users are not willing

to disclose their locations, their approach is not applicable in our scenario [2]. In addition,

algorithms used for estimating travel time from raw data is typically unavailable. Several

recent approaches use cellular network data to find various traffic patterns in the city. In

[28], the potentiality of mobile phone usage as traffic probes are analyzed and as per authors,

compared with other alternatives, mobile phones consist of some appealing characteristics such

as sample size, coverage, and cost.

Approaches use cellular network data to find various traffic patterns can be divided into

two categories: CDR based approach, e.g., [38], and passive monitoring approach, e.g., [27].
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CDR data has been used primarily for traffic flow statistics, origin-destination matrices de-

termination, and understanding human mobility (e.g., [7],[10],[17],[30],[32],[33],[38]). [21] tries

to identify travel time between two cities using CDR data. This approach fails to identify

road traffic in a smaller region, i.e., between key locations inside the city. [9] estimated traffic

intensity by counting the number of calls from mobile users of a specific region. [3] exploited

double-handovers to estimate real-time road traffic from cellular network signalling. The re-

sult in study [5] shows a correlation between the traffic data obtained from mobile phone and

magnetic loop detectors. But algorithm used in this study is undocumented and proprietary

of a commercial company. Another algorithm is proposed in [23], where traffic status and

speed estimated using low resolution positioning data gathered from cellular networks. But

this approach is validated only by means of simulations.

Passive monitoring approaches rely on exchanged messages between mobile terminals and

require additional monitoring infrastructure [27]. Additional monitoring infrastructure provides

better accuracy [19],[9],[35], however, these infrastructure are absent in developing countries.

1.2 Objective of This Thesis

To address the limitations of existing studies, in this thesis, we propose a methodology to esti-

mate travel times between key locations of Dhaka city from mobile users’ CDR data generated

by “active” devices. Our method also includes estimation of travel time between any two pairs

of locations of Dhaka city by using travel time between any two key locations. We have used

CDR data of 2.87 millions of users in Dhaka city collected by the largest mobile phone operator

Grameenphone for a one month period between June 19, 2012, and July 18, 2012.

The main challenge of understanding the mobility from CDR data is that CDR data does

not capture the continuous movement of a user, rather it only captures the location from where

one makes a call or use the data connection. Hence, we devise a technique that considers only

those consecutive CDR data that can be associated with the mobility of the user and the travel

time in the real road network. Moreover, we apply a clustering technique to identify major road
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junctions in the city and map the call transition between two cell-phone towers to two pairs of

junctions in the city. To measure the travel time at different time zones, we also identify peak

and off-peak hours from the CDR dataset. Our experimental results based on CDR dataset

show that we can effectively predict travel time between any two major junctions of the city.

We validate our results with real-time travel data collected through smartphones and find that

our method can predict travel time with an average accuracy of 87%.

1.3 Summary of Results

In this thesis, we have the following contributions:

1. We are the first to propose an effective way to assess the travel time from mobile users’

CDR data in a megacity of a developing country.

2. We exploit the road network travel time and mobile users mobility to estimate travel time

between any pair of locations of Dhaka city.

3. We test our results with real-time traffic that shows a high prediction accuracy of our

method.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the data set used in this

paper. Chapter 3 focuses on literature review. Chapter 4 depicts the proposed methodology

for estimating travel time from a static set of CDR data. And Chapter 5 presents another

methodology for predicting travel time from the stream of CDR data. Chapter 6 shows the

experimental results of our approach. Chapter 7 compares the accuracy of our approach with

respect to real-time travel data collected through smart-phones. Finally, Chapter 8 concludes

the thesis with the summary of the finding of this research and highlights the directions of

future researches.



Chapter 2

Data

In this chapter, we provide some basic description of data set used. Definitions that are not

included in this chapter will be introduced accordingly. We start, in Section 2.1, by giving

some descriptions of our area of study. In Section 2.2 we describe attributes of CDR data. We

devote Section 2.3 to describe real travel data which is used in result validation.

2.1 Study Area

The study area in this research is the central part of Dhaka city, where major roads of the city

have been taken into consideration. The major road networks of Dhaka city consist of 67 nodes

(road junctions) and 215 links (roads between nodes) which cover an area of about 300km2 and

a population of about 10.7 millions [2]. Due to heavy traffic, the average speed of the motorized

vehicle is approximately 17km/hr. 38.3% trips in this area are found as non-motorized trips,

and every day 2.74 trips are made by per person on average where 19.8% of them are making

their trips by walking [2].

Approximately more than 90% area of Dhaka city has mobile phone penetration (66.36%

is the national average) and the highest market shareholder mobile operator is Grameenphone

Ltd. with 42.7million mobile phone subscribers nationwide.[1].

6
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2.2 CDR data

The CDR dataset, provided by Grameenphone Ltd, consists of call records made by users over

a one month period between June 19, 2012, and July 18, 2012. The dataset contains a total of

971.33 million anonymized call records. Figure 2.1 shows the frequency of calls for a different

number of users over a one month period (top), and a number of calls vs. number of users in

a randomly selected day (bottom).

Each entry in the CDR data contains the latitude and longitude of the Base Transceiver

Station (BTS), caller’s unique identification (anonymized), date, time and duration of their

calls. Figure 2.2 presents a snapshot of the data (top). Figure 2.2 also shows the captured

location in the CDR of a person (bottom) as she moves within the city.

2.3 Real travel data

Real world travel data among key locations of Dhaka city are also collected and used to validate

the results of this research. GPS enabled smartphones are used to collect this data over a week

within different time segments.
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Figure 2.1: Frequency of calls per user
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Figure 2.2: Example CDR data and locations of highlighted user



Chapter 3

Literature Review

This chapter discusses the related works which address travel time prediction. The travel time

between two locations is a key constraint and descriptor of human mobility. For this reason,

up-to-date information on travel time information is important for planning and governance

of transportation as well as for travelers. Employing a relatively large amount of probes, the

earlier bottlenecks can be reduced by directing traffic to other routes to mitigate congestion

and provide more efficient routes to travelers. Monitoring road conditions and assessing access

time to emergency services are instances where such information is useful. Therefore the impor-

tance of exact travel time is evident, but still, the limitations of such monitoring still exist in

developing countries due to the insufficiency of necessary resources. By using information and

communication technology (ICT) such monitoring and building an Intelligent Transportation

System (ITS) are easily possible for addressing and mitigating transportation and congestion

problems. An ITS relies on location-based information and obtains information about travel

time, traffic condition and road incidents by monitoring and processing information of those

locations of vehicles. Location-based information is generally used for monitoring real-time

traffic and/or predicting road traffic status. Real-time road traffic is an open problem in cities

that target the avoidance of road accidents, fuel, and energy consumption and unexpected de-

lays. Predicting road traffic is an important functionality that can facilitate route planning and

other traffic decision making processes. A detailed survey of latest developments of data-driven

10
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ITS can be found in [40].

There are several approaches for estimating and monitoring travel time. Although some of

these approaches provide highly accurate real-time estimates based on travel speeds and times,

they typically require the installation of physical equipment (e.g. magnetic loop detectors)

which makes them resource-intensive, or labor-intensive (surveys). There are two types of

measurements: Point-based and Distance-based using traditional equipment, such as cameras,

magnetic induction loops, microwave sensors, Bluetooth scanners, etc.

The most recent approach emerged in the past years driven by the spread of wireless tech-

nologies uses wireless data from floating car known as floating car data (FCD) such as GPS

traces from public transports or taxies. FCD systems rely on mobile devices or onboard units

(OBUs) equipped with positioning devices that actively report the vehicle location and speed

to a specific server. Sufficient density of these probes produces traffic speed and intensity

information after aggregating data from each probe.

Mobile phones are another potential source of information about human mobility due to

high penetration rate. Due to the huge growth of mobile phone users and the availability

of location traces of mobile users from their call records, recent research focuses on utilizing

these records to find interesting patterns of city dwellers. In recent years, cellular data has been

used for mobility pattern extraction, human travel pattern visualization, route choice modeling,

traffic model calibration, and traffic flow estimation (e.g., [38][13]).

Therefore in Section 3.1 we discussed traditional approaches that have been used for solving

transportation problems. Then Section 3.2 describes approaches that use floating car data to

estimate travel information. And finally Section 3.3 describes approaches leveraging cellular

data to analyze traffic.

3.1 Traditional Approaches

Traditional approaches offer two types of measurement, one is Point-based the other is Distance-

based. Point-based approaches collect data through road side and household surveys (e.g.,
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[15], [22], [14] ). These approaches are not cost effective and cannot capture real-time traffic

due to the low frequency of update. A large number of sensors must be installed in order

to gain a realistic and complete view of traffic conditions using these approaches. Moreover,

these techniques are prone to sampling biases and reporting errors. Distance-based approaches

measure average speed and travel time for vehicles passing multiple detection zones. Like

modern cities deploy fixed sensors, which can be either hard-wired or wireless like road mount

detector or camera mounted on traffic lamps or road-sides or magnetic loop detectors [36][40][4],

which provide information on the speed at which vehicles are traveling, as well as the capacity

of a given road. They can also gather information on the type of vehicle, the distance between

vehicles, pollution conditions, road surface conditions, and many others. Fixed sensors that

are inductive, piezoelectric, or magnetic can be placed under the road, and those that use

radar, ultrasound, or infrared with pyroelectric effect can be placed beside it. Each sensor is

equipped with a control unit, battery system, solar panel, and transmission system. Distance-

based approaches require vehicles to be identified and tracked. Hence, they may be prone to

privacy constraints (e.g., license plate recognition) or to the limited representativeness of the

probes (e.g., only vehicles equipped with DSRC, dedicated short-range communications, toll

transponders). These techniques also suffer from the same limitations and low penetration rate

[6].

There is another approach which exploits land usage pattern to derive a theoretical model

to estimate the number of trips and their directionality. These approaches can be unreliable

and can have financial and temporal costs.

3.2 Floating Car Data

With the spread of wireless technology, an approach has emerged which uses wireless data

from continuously moving vehicle known as floating car data (FCD) such as GPS traces from

public transports or taxies (e.g., [12][34][39]). FCD systems usually rely on mobile devices

or onboard units (OBUs) equipped with positioning devices that provide vehicles location and
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speed information to a pre-specified server. After data aggregation from each probe traffic speed

and intensity are estimated depending upon the density of probe vehicles if it is high enough.

Successful commercial examples of this systems are Google Maps (e.g., through their Android

OS) or Here Maps (i.e., Nokia/Microsoft OS now owned by Audi, BMW, and Mercedes). A

somehow improved approach of this systems use ordinary car drivers for contributing data in

both an opportunistic crowdsourcing manner (e.g., a user allows its device to report its location

to the service) but also a participatory crowdsourcing manner (e.g., a user reports on a map

where a road was blocked). Successful examples of these systems include Google Maps, Apple

Maps, Waze, Nokia’s HERE maps, and Mapquest. The FCD approaches are also limited by

their coverage and low penetration rate, particularly in developing countries. When FCD is

collected from privately-owned cars, as in [12], the penetration rate becomes a limiting factor.

The minimum amount of probe vehicles that allow for an accurate traffic status estimation has

been extensively studied in literature [5], [16], [37] and depending on the reporting interval it

can vary from 1 % to 5 % in highway scenarios and from 5 % to 10 % in urban scenarios. If

FCD collected from taxis which is usually permitted to use dedicated lane in some cases are

subjected to different speed limits than cars or buses. Google also collects travel time data

from their users’ smartphones; however, users may not be willing to reveal their locations due

to privacy concerns. Thus major limitations of this approach are the unavailability of data and

a low penetration rate of smart-phones in developing countries [25].

3.3 Cellular Data

In recent years, cellular networks have been used to monitor traffic status of a city and showed a

valid alternative to replace FCD. Penetration of mobile devices is higher in developing countries

than the penetration of smartphones. Thus a large amount of data is generated by mobile phone

users on daily basis. There are two main approaches to estimate travel time from cellular data:

call detail record (CDR) based and passive monitoring. Whenever a mobile user initiates or

terminates a voice call or SMS/MMS or data connection, a CDR is generated and stored for
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billing purposes. The format of CDR may differ from operator to operator, but the data

always contain a users location and time information. On the other hand, passive monitoring

is the observation of signaling message when idle users mobile terminal change network. The

approaches that use passive monitoring are described at Subsection 3.3.1 and the approaches

that use CDR data further are described in Subsection 3.3.2.

3.3.1 Passive Monitoring

A monitoring infrastructure is required to use passive monitoring approaches to tap the links of

the cellular network and parse the signaling protocols [27]. The cost of monitoring installation,

as well as the achievable accuracy and coverage, depends heavily on which network interface is

monitored.

There are other works [19],[18] that are used for passive monitoring to estimate travel time

in real time. Their work heavily relied on the signaling data generated from “idle” devices

or devices those are not involved in a call or data connection with the base station. These

CDR data from “idle” devices may not be available in every country especially in developing

countries because of additional expenditure to track a huge volume of idle phones. Moreover,

they only considered CDR data which are produced from nearby important roads or highway.

For these reasons, passive monitoring may not always be a good option to estimate travel time.

3.3.2 Active CDR Data

Due to easy access to CDR data first used on study to understand human mobility [5] [13]

[31]. The CDR data has also been used for traffic flow statistics, origin-destination matrices

determination (e.g., [7],[10],[17],[30],[32],[33],[38]). The use of CDRs has been a matter of

criticism recently due to characterizing human mobility [26]. There are few works which target

real-time road traffic estimation where these works target nonreal-time applications. In [29]

traffic estimation is found based on double-handovers. In [24], authors developed a system for

detection of road traffic in real-time using mobile devices. The system was using low and high-
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frequency motion detection and activity classification with precision and recall over 83% for

traffic detection. A huge investment should be made in order to provide data using hardware

infrastructure like cameras.

In [29], the feasibility of using mobile phones as traffic probes is analyzed. The authors

mention that, compared with available alternatives, mobile phones offer some appealing char-

acteristics such as sample size, coverage, and cost. In [5], a CDR dataset with cell handover

information is used for measuring traffic speed and travel time across a highway segment of 14

km for several weeks. The results indicate a good correspondence between the cellular data and

validation data from magnetic loop detectors. However, the study is limited to active users and

is based on an undocumented proprietary algorithm from a commercial company. In [23] an

algorithm is proposed, which uses low resolution positioning data (from cellular networks) to

estimate traffic status and speed. This approach is validated only by means of simulations. In

[9], the authors describe a real-time urban monitoring platform that uses mobile cellular data

for the evaluation of statistical indexes based on monitoring the movement of mobile equip-

ment. This platform can also be used to estimate the traffic intensity in specific regions of the

monitored area by counting the number of calls that were made by mobile users over some time

interval.

Another work [21] used CDR data to predict travel time between cities. This work does not

consider a city’s internal road network characteristics and people’s mobility behavior, and thus

is not suitable for predicting travel time among different suburbs of the cities.

In the present work, we introduced a new approach that includes, a semi-automatic algo-

rithm to predict the travel time from mobile users’ CDR data in a megacity of a developing

country and an algorithm which enables real-time traffic monitoring from the stream of CDR

generates from mobile users of a megacity of a developing country.

In this work, we consider the complexity of road network of a highly dense city like Dhaka

and estimate travel time without using passive data which does not exist in developing countries.
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3.4 Summary

This chapter discussed the existing approaches used to measure traffic status with their potential

and limitation. Major approaches are fixed sensor or hardware based measurement, floating

car data and cellular data. How cellular data provide an opportunity to overcome existing

limitations to assess road traffic is also covered in this chapter.



Chapter 4

Travel Time Estimation from static

CDR

Figure 4.1 shows the block diagram of our methodology for travel time estimation from static

CDR data (from secondary storage). Our method takes raw CDR data as input. Our key

insight of the proposed methodology is that the travel time of a source to a destination can

be approximated from a user’s two consecutive calls when the call is made from two distant

locations and the time difference between these two calls is proportional to the travel time.

Thus, the main challenge is to identify those CDR pairs that can contribute to the travel time.

In the first phase of our approach, we apply a set of pruning rules to eliminate CDR pairs that

cannot be a part of contributing the travel time. Then, from the selected set of CDR pairs,

we approximate travel time for each CDR pair, which we call transient travel (t-travel) time.

In the next phase, we partition all t-travels into three-time segments: off-peak, morning-peak,

and evening peak hours. At this stage, we also identify key city locations (key road junctions)

by analyzing CDR data. By combining t-travels (and their corresponding origin-destination

pairs) with the underlying road network among key locations, we estimate the actual travel

time between any pair of key city locations. Using travel time between any pair of key city

locations we also estimate travel time between any location pair.

17
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CDR Data Pruning Condition

Transient Travel Data

Hourly transient travel 
Data segmentation

Paramers of cluster 
And Convetion rules

Transient travel data to 
actual travel matrix construction

Figure 4.1: Block diagram of travel time estimation from static CDR

The process is summarized in subsequent sections. In Section 4.1, we discuss transient time

generation between BTS (towers). In Section 4.2, we describe the methods to determine peak

and off-peak hours and to partition t-travels into these peak/off-peak categories. After that,

in Section 4.3 we estimate the actual travel time from transient travel time for the identified

peak/off-peak categories. Finally, we generate the matrix of travel time for all pairs of key

locations in the city and use it further to estimate travel time between any pair of locations of

Dhaka city.

4.1 Tower-to-tower transient travel generation

First, we group CDR records of each user and sort these in ascending order of the call time.

At this stage, we use the BTS location, from where the user made the call and the time of the

call to determine transient travel (t-travel) time. If a user makes two consecutive calls from

two different BTSs and the time difference of these two calls is proportional to the traveled

distance between these two BTSs, then we extract this time difference as t-travel.
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Since CDR data contain sparse and irregular records of a user’s movement [11], we need to

filter out those records that cannot contribute to t-travel. For example, a user’s first location

may be observed at location P1 at time 12:30 and the next location may be recorded at location

P2 at time 20:45 and in this case. Since no record is available for a long duration, these

two consecutive records cannot be used for estimating t-travel. Other than irregular records,

sometimes the operator switches the call to an adjacent BTS in order to balance the workload.

In such cases, we also may get some misleading t-travel.

To overcome the above limitations and to reduce the number of false trips from CDR data,

we have used two pruning conditions. The first condition is that the duration of a t-travel

cannot be more than 130 minutes, as the travel time between any two key locations of our

observed area in Dhaka city is generally less than two hours. In our second condition, we

eliminate a t-travel if the travel duration between two BTSs is less than 5 minutes. This

condition helps us to eliminate records involving tower switching for load balancing purpose.

Thus, we consider t-travel records whose travel times lie between 5 minutes and 130 minutes.

Note that, this parameter is city dependent, and thus to analyze CDR data of other cities, the

parameter needs to be adjusted.

t-travels obtained from CDR data largely vary in different part of the day. This is due to

peak and off-peak traffic hours of the city. Thus, in the next section, we identify peak and

off-peak hours from these t-travels.

4.2 Peak/off-peak hours segmentation

In this section, we automatically identify peak and off-peak hours of the city based on our

identified t-travel, and then partition all t-travels of a day into different time segments based

on the identified peak and off-peak information.

First, we partition t-travel data on an hourly basis. Thus, we have a total of 24 partitions

for 24 hours of the day. Each t-travel contains one origin-destination (OD) pair. For each hour

time slot, there may be hundreds of t-travels for each OD pair. Let us assume that there are
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total tci number of t-travels for ith hour of time slot. For the time slot i, let us assume mini

be the total number of t-travels that represent minimum travel time among all t-travels for

any OD pair. That is, to compute mini, we first determine the minimum t-travel for each OD

pair, and then we check whether this minimum t-travel occurs in the time slot i and count the

number of minimum t-travels in the time slot i.

Finally, we compute a ratio of occurrence of minimum travel time counts mini to total travel

time count tci for each hour time slot i. This ratio gives a measure of peak and off-peak hours.

If the value of the ratio is high then the time slot hour is denoted as off-peak. On the other

hand, if the value of the ratio is small, then the corresponding time slot hour is considered as

a peak-hour. The intuition behind choosing this metric is as follows. If for a particular time

slot, the number of travels with minimum t-travel is large, then it is highly likely that the

corresponding time slot is an off-peak hour.

So, the key insight of measuring off-peak hours is that the higher the value of the ratio of

minimum occurrence to total occurrence of an hour, the higher the probability that the hour

is an off-peak hour. The opposite is true for peak hours.

Table 4.1 shows the computed ratio for each hour time slot. First nine rows (ID 01-09)

show the off-peak hours, the middle five rows (ID 10-14) represent medium-peak, and the last

ten rows (ID 15-24) show peak-hours of Dhaka city. Our analysis shows that in Dhaka city the

most probable peak hours are 09AM-01PM and 05PM-09PM, and the most probable off-peak

hours are between11PM and 07 AM. From the analysis, we further divide peak hours into two

categories, namely morning peak hours (09AM-01PM) and evening peak hours (05PM-09PM).

All t-travel data is divided into these three categories for the next step of processing.

t-travel data obtained from CDR do not always reflect real traffic scenarios due to the

incompleteness of the recordings of user movements. Thus, we need to filter out data using

some heuristics based pruning.

In our first level of pruning, we check whether the speed for a t-travel is realistic or not.

We filter out t-travels whose speed does not match with motor vehicle’s speed. By considering

the traffic jam situation in Dhaka city, motor vehicles normally can travel at a speed range
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ID HOUR RATIO FREQUENCY

01 04:00 - 04:59 AM 7842 / 50488 15.53%

02 03:00 - 03:59 AM 4782 / 34774 13.75%

03 02:00 - 02:59 AM 5319 / 48641 10.94%

04 05:00 - 05:59 AM 21520 / 215363 9.99%

05 01:00 - 01:59 AM 8479 / 94215 9.00%

06 06:00 - 06:59 AM 32645 / 425359 7.67%

07 12:00 - 12:59 AM 16183 / 212670 7.61%

08 11:00 - 11:59 PM 22853 / 345533 6.61%

09 07:00 - 07:59 AM 27912 / 505545 5.52%

10 10:00 - 10:59 PM 31255 / 674994 4.63%

11 08:00 - 08:59 AM 25546 / 643787 3.97%

12 03:00 - 03:59 PM 39291 / 999870 3.93%

13 02:00 - 02:59 PM 38887 / 1025169 3.79%

14 04:00 - 04:59 PM 34547 / 942852 3.66%

15 09:00 - 09:59 AM 27713 / 850075 3.26%

16 01:00 - 01:59 PM 32610 / 1006672 3.24%

17 10:00 - 10:59 AM 31409 / 1017175 3.09%

18 09:00 - 09:59 PM 29233 / 950041 3.08%

19 05:00 - 05:59 PM 27564 / 963108 2.86%

20 12:00 - 12:59 PM 30424 / 1072673 2.84%

21 11:00 - 11:59 AM 29447 / 1056864 2.79%

22 06:00 - 06:59 PM 22222 / 991133 2.24%

23 08:00 - 08:59 PM 23445 / 1109712 2.11%

24 07:00 - 07:59 PM 21843 / 1162863 1.88%

Table 4.1: Peak/Off-Peak hour Estimation
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between 3km/h and 40km/h. Thus, city-specific fine-tuned maximum speed bound leads us to

a more accurate filtering.

In our second level of pruning, we filter out a t-travel if the shortest road network distance

between the OD pair of the t-travel deviates by a threshold distance from the Euclidean dis-

tance of that OD pair. This is because, if the road network path differs significantly from the

Euclidean path, then there is a tendency to introduce additional errors in the travel time esti-

mation due to the complex and possibility of many alternative routes. We have observed that

if the deviation between the Euclidean and the shortest road network distances of an OD pair

is within 25 percent of the Euclidean distance, then the t-travel data reflects realistic travel

time in most of the cases.

At the final stage of pruning, if for an OD pair and for a particular time segment (off-

peak/morning-peak/evening-peak), we do not have a sufficient number of t-travels, we omit

those t-travels and the corresponding time-segment of the OD pair. In our case, we have

observed that if we have at least five t-travel data for a particular time segment of the OD

pair, then we can accurately estimate the travel time for that OD pair.

After three levels of pruning, for each time segment and for each OD pair, we take the average

of all t-travels to estimate the travel time between the origin and the destination locations of

the OD pair for that particular time segment. Note that we consider only weekdays travel data

as the difference in travel time between weekdays and weekends is significant, and weekends

have much less traffic. In Dhaka city, Sunday to Thursday are considered as weekdays.

4.3 Determining actual travel time from transient travel

time

Our ultimate objective is to estimate travel time between any pair of major city locations and

then estimate travel time between any pair of the city location. Thus, we first identify these

key city locations from our CDR data. Then we map our estimated t-travel for OD pairs with

these key locations, to get our actual travel time between any pair of key locations of the city.
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Figure 4.2: Intra-Cluster (Red Mark) and Inter-Cluster (Blue Mark) t-travel example

In order to estimate travel time, it is necessary to identify major traffic points of the city

first. In the previous section, we discussed that every t-travel data consists of an origin and a

destination location. These two locations are actually the location of mobile phone tower.

To identify all major traffic points (or in other words, key locations), we take BTS (tower)

locations from all t-travel data as an input. Next, we consider towers as points in a 2D space

and apply k-means algorithm. We determine the value of k through an empirical evaluation

with the CDR data.

Let us explain our approach using two examples shown in Figure 4.2. In the first example,

there are two clusters/zones, Z1 and Z2, and in the second example there are four clusters/zones

Z1, Z2, Z3 and Z4. There are ten t-travels in both examples where intra zone travels (intra

t-travel ) are marked in blue and inter zone travels (inter t-travel ) are marked in red. A

higher number of inter t-travels yields more accurate estimation of travel time between key

locations pairs. We see in the figure that the second example has more inter t-travels than

the first example. Actually, with the increase of the number of clusters, the total amount of

inter t-travels also increases (and the total number of intra t-travel decreases). However, with

the increase in the number of clusters, the number of inter t-travels between clusters/zones

pairs decreases. We see in Figure 4.2 that in the first example there are four inter t-travels

(t4, t5, t9, t10) between Z1 and Z2 whereas in the second example there are only three inter

t-travels between Z2 and Z4. However, without sufficient amount of inter t-travels between

each key locations pairs, accurate estimation of travel time between those two locations is also



24 CHAPTER 4. TRAVEL TIME ESTIMATION FROM STATIC CDR

5 10 15 2040%

45%

50%

55%

60%

65%

Number Of Cluster(I
nt

ra
Tr

av
el

+
In

va
lid

In
te

rT
ra

ve
l)/

To
ta

lT
ra

ve
l

Ratio

Figure 4.3: Empirical Evaluation of Number of Clusters

not possible. Therefore a tradeoff is required between the number of clusters and the amount of

valid inter t-travels. Hence to model this tradeoff as a ratio, which can be expressed as follows.

Ratio = count(intraTravel) + count(invalidInterTravel)
count(totalTravel)

The above ratio essentially captures the ratio between the amount of valid inter t-travel

and the total amount of t-travel. For a better prediction accuracy in the final result, less

amount of intra t-travel and invalid inter t-travel are desired. The smaller the ratio, the better

the cluster. Let us now assume that at least three inter t-travels are required between each

key locations pairs to compute travel time. Then, for the first example, this ratio is (6+0)/10

or 60% and for the second example, the ratio is (2+5)/10 or 70%. In this example, the first

partition is more desirable than the second one.

To determine the optimal value of k we compute the ratio while varying the value of k from

3 to 22, and found that k = 17 yields the best ratio. Figure 4.3 shows the simulation results.

The centroids found from k-means algorithm are further adjusted to nearby road junction

to obtain the key locations of Dhaka city. Key locations of Dhaka city are shown in Figure 4.4
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Figure 4.4: Major Locations within Dhaka City
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Figure 4.5: t-travel to actual travel transformation

and their latitude and longitude are shown in Table 4.2.

Note that, this is the only step where some sort of manual input is required. However,

these key locations can be identified once and reused for any subsequent data analysis. After

identifying all major traffic locations, OD pairs of every t-travel data are mapped to one of

those 17 clusters/zones.

To estimate the travel time between two key locations from t-travels, we take the following

steps. Let us explain these steps using an example shown in Figure 4.5. Figure shows a t-travel

data for an OD-pair, where P1 and P2 are two end-points of this OD pair. P1 is associated to

Zone 1, Z1 and P2 is associated to Zone 2, Z2. Here C1 and C2 are two key locations representing

Zone 1 and Zone 2, respectively.

Let dist(C1, C2) be the distance between C1 and C2, and dist(P1, C2) be the end distance

between P1 and C1. Let distnetwork(P1, P2) and time(P1, P2) be the road network distance and

travel time from P1 to P2, respectively. Then the travel time between C1 to C2, denoted as

time(C1, C2), can be computed as follows:

time(C1, C2) = dist(C1, C2) × time(P1,P2)
distnetwork(P1,P2) (4.1)

To compute the network distance from P1 to P2, we use Algorithm 1. Essentially, Algorithm

1 finds the shortest road network distance through key points C1 and C2. In Algorithm 1, d

is the network distance between P1 and P2, distnetwork(P1, P2). I1 and I2 are two intersection
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Index Name Latitude Longitude

01 JatraBari 23.710174 90.434322

02 Kotoali 23.709804 90.411932

03 Uttara 23.860675 90.400266

04 Kuril 23.819763 90.420328

05 Mirpur-10 23.807099 90.368584

06 Mirpur-1 23.798385 90.353371

07 Gabtoli 23.783352 90.343925

08 Mohammadpur 23.762357 90.358840

09 Elephant Road 23.738767 90.383529

10 Kawran Bazar 23.749862 90.393174

11 Azimpur 23.727450 90.389548

12 Shyamoli 23.774750 90.365875

13 Motijheel 23.726638 90.421696

14 Malibagh 23.750079 90.413001

15 Ramna 23.733680 90.403714

16 Mohakhali 23.778174 90.398093

17 Badda 23.780661 90.425633

Table 4.2: Major Traffic Locations in Dhaka
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points, where perpendicular lines from P1 and P2 to line C1C2 meet, respectively.

Algorithm 1 Actual network distance estimation of a t-travel data
1: function actualNetworkDist(t-travel)

2: d← dist(P1, C1) + dist(C1, C2) + dist(C2, P2)

3: if dist(P1, C2) < dist(C1, C2) then

4: d← d + dist(P1, I1)− dist(I1, C1)− dist(P1, C1)

5: end if

6: if dist(P2, C1) < dist(C1, C2) then

7: d← d + dist(P2, I2)− dist(I2, C2)− dist(P2, C2)

8: end if

9: return d

10: end function

The key intuition to estimate distnetwork(P1, P2) is that, for each point P1 (or P2), we take

the shortest possible path to connect it to C1C2 line. After computing this network distance,

we scale t-travel duration to actual travel duration as per formula is given above. This process

is then applied to all t-travel data to get the actual travel time.

4.4 Travel time estimation matrix construction

For each pair of the zone, there could be multiple numbers of actual travel data that generated

from the previous step. We take the average of these actual travel times for a particular time

segment (off-peak/morning-peak/evening-peak) to estimate the actual travel time between two

key locations, represented as the centroid of two zones. By applying, the above technique for

every pair of zones, we generate the travel time matrix. We also generate intra zone travel

speed of different time segment for each zone by using those t-travel which lies within the

same zone boundary. We take average here too in case of multiple t-travel exists within the

same zone. Intra zone travel speed is required for travel time estimation between any locations
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pair. To explain the estimation of travel time between any two locations of Dhaka city let us

use Figure 4.5 again. Suppose we want to estimate travel time between P1 to P2, denoted as

time(P1, P2). The time(P1, P2) could estimate as below:

time(P1, P2) = shortestDist(P1, C1C2)× travelSpeed(Z1)

+ time(C1, C2)× partialDist(P1, P2)
dist(C1, C2) + shortestDist(P2, C1C2)× travelSpeed(Z2) (4.2)

Let us assume that shortestDist(P1, C1C2) is the shortest distance between location P1 to line

C1C2, travelSpeed(Z1) is intra zone travel of Z1 that we obtain previously and partialDist(P1, P2)

is the part of distance from C1C2 path that overlap with the path between P1 and P2 that is

obtained using Algorithm 1. Meaning of all other terms in this equation are same as before.

Thus, we can obtain partialDist(P1, P2) using Algorithm 2.

Algorithm 2 Partial distance estimation of a t-travel that lies between the path of two cen-

troids
1: function partialDist(t-travel)

2: d← dist(C1, C2)

3: if dist(P1, C2) < dist(C1, C2) then

4: d← d− dist(C1, I1)

5: end if

6: if dist(P2, C1) < dist(C1, C2) then

7: d← d− dist(C2, I2)

8: end if

9: return d

10: end function

We use a different formula to estimate travel time between two minor locations than the

formula for major locations, as traffic congestion has a lesser effect on intra zone travel time

than that of inter-zone travel time. To reflect this attribute into the equation of travel time

estimation between two minor locations we consider the intra zone travel speed. Therefore both
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intra zone travel speed table and travel time matrix of key locations are required to estimate

travel time between any two locations in Dhaka city.

4.5 Summary

In this chapter, we depict a methodology to measure key locations of Dhaka city and identify

peak off-peak hour categorization from the dataset. Finally, we construct travel time matrix

between key locations.



Chapter 5

Travel Time Estimation from CDR

Stream

In our previous chapter, we have discussed travel time prediction from static CDR data. In

this chapter, we are going to discuss real-time travel time estimation from the stream of CDR

data. Our method takes a stream of CDR data as input. Our key insight of the proposed

methodology is that the travel time of a source to a destination can be approximated from

a user’s two consecutive calls when the call is made from two distant locations and the time

difference between them is proportional to the travel time. Thus, the main challenge is to

identify those CDR pairs that can contribute to the travel time in real time. Figure 5.1 shows

the block diagram of our methodology for travel time estimation from Stream of CDR data. For

each CDR at first, we generate a transient travel (t-travel) time using the concept of the sliding

window with a predefined maximum window range. With a dynamic mapping of CDR from

the stream, whenever a transient travel can formulate, it goes for further steps. Actual travel

time is then calculated using t-travel from the previous step. Finally, hourly travel time matrix

is modified by actual travel time following some pre-defined rules. The process is summarized

in a subsequent section. In Section 5.1, we discuss the formulation process of t-travel. After

that in Section 5.2 how to formulate actual travel time from t-travel and update hourly travel

31
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Figure 5.1: Block diagram of travel time estimation from Stream of CDR
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Figure 5.2: CDR Stream to Dynamic Mapping

time matrix is discussed.

5.1 Transient Travel Generation

In CDR stream, each record contains a timestamp as its generation DateTime. At first step,

each CDR from the stream is mapped into a temporary hashmap order by their timestamp.

Figure 5.2 shows the general idea of how a stream dynamically mapped into memory. In

Figure 5.2 the head of the arrow represents the starting point of the stream and each record

in the stream contains a timestamp (time) as the number and a key (k) as a letter (UserId in

our case) which is used to find the record in future. Each record is inserted into the dynamic

map in ascending order of time. This map continuously holds last one second’s data in order to

maintain memory constraint. This one-second range is like a window of from stream of CDR.

This window continuously slides by one second and mapped CDRs found within that window

into memory. An example of time sliding window is shown at Figure 5.3 where the window is

set for last ten-second records.

In next phase for each sliding window, a continuous query applies to this dynamic map and

all further insertion, update or deletion operation from the query applies to another map. A

user id is the key of the other map. This map keeps last CDR of those users that are found

within a maximum time boundary. The time limit set into max range(in second) which is same
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Figure 5.3: An example of 10 second sliding window

as maximum travel duration, discussed at Section 4.1. By using this two map, now we are able

to generate transient travel or t-travel. The process of generation t-travel from a dynamic

map using continuous query is depicted in Figure 5.4. In Figure 5.4 it is noticeable that only

update operations are producing t-travel for next stage. The reason behind this is that to

form a t-travel we need a pair of CDR which is found only in case of the update operation.

When sliding widow advance by one-second delete operation takes place for oldest CDRs at

second hashmap. This is how the memory size does not exceed a certain limit and this limit

depends upon a number of unique user and number of CDR generated within the maximum

travel duration we are allowing. And this limit is the minimum limit to formulate t-travel from

the stream of CDR.

5.2 Updating Hourly Travel Time Matrix

To generate actual travel time we need to apply further filtering to t-travel produced from the

previous step. t-travel within the minimum and maximum travel speed limit (described at

Section 4.1) will be taken into consideration for further processing. Also only t-travel with the
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Figure 5.4: Formulation of t-travel using continuous query from dynamic map

valid source-destination pair will be taken into consideration to travel time estimation.

To estimate the travel time between two key locations from t-travels, we take the steps

which are same as our previous method. Let us explain these steps using an example shown in

Figure 4.5. Figure shows a t-travel data for an OD-pair, where P1 and P2 are two end-points

of this OD pair. P1 is associated to Zone 1, Z1 and P2 is associated to Zone 2, Z2. Here C1 and

C2 are two key locations representing Zone 1 and Zone 2, respectively.

Let dist(C1, C2) be the distance between C1 and C2, and dist(P1, C2) be the end distance

between P1 and C1. Let distnetwork(P1, P2) and time(P1, P2) be the road network distance and

travel time from P1 to P2, respectively. Then the travel time between C1 to C2, denoted as

time(C1, C2), can be computed as follows:

time(C1, C2) = dist(C1, C2) × time(P1,P2)
distnetwork(P1,P2) (5.1)

To compute the network distance from P1 to P2, we use Algorithm 1. Essentially, Algorithm

1 finds the shortest road network distance through key points C1 and C2. In Algorithm 1, d

is the network distance between P1 and P2, distnetwork(P1, P2). I1 and I2 are two intersection

points, where perpendicular lines from P1 and P2 to line C1C2 meet, respectively.
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The key intuition to estimate distnetwork(P1, P2) is that, for each point P1 (or P2), we take

the shortest possible path to connect it to C1C2 line. After computing this network distance,

we scale t-travel duration to actual travel duration as per formula is given above.

Each actual travel time from previous section update 17 × 17 travel time matrix. There

is twenty-four travel time matrix for each hour of a day and each cell of a matrix contain

latest travel time for that source-destination with its last updated date-time. To update the

corresponding matrix from actual travel time we use Algorithm 3. In Algorithm 3, curTT ime

Algorithm 3 Travel time matrix updating from each actual travel time
1: function updateTravelTimeMatrix(rV alSigFact)

2: thld← curTT ime× (1 + rV alSigFact×DateDiff(newTTime, curTT ime))

3: if thld < curTT ime then

4: curTT ime← newTTime

5: end if

6: end function

indicate current travel time value between two key locations stored in travel time matrix and

newTTime represent the travel time obtained from the stream using our calculation. We use

the term rV alSigFact (factor of recent value’s significance ) while calculating thld (threshold

value ) in Algorithm 3. That how quickly the impact of recent changes in travel time between

any source-destination on travel time matrix depends on the value of this rV alSigFact. The

greater the value of rV alSigFact the quicker the matrix change with recent value and vice-

versa. In our case we take 0.005 as the value of rV alSigFact. Route-specific rV alSigFact

could also apply which might in some cases, e.g. routes under long repair/under construction

process. We could also use a mapping table for this factor so that some regular basis changes

(e.g. seasonal impact) on routes could adjust automatically. This hourly segmented travel time

matrix could feed to any dashboard for monitoring purposes or something similar.
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5.3 Summary

In this chapter, we have measured hourly travel time matrix using sliding window and dynamic

table concept from the stream of CDR. We also introduced a rule to update travel time matrix

from a new travel time, extracted from the stream of CDR. We provided some future guideline

for an automatic way to replace manual factoring in our calculations.
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Results

In this section, we present the results of our travel time estimation from CDR data and then

analyze the estimated travel time.

6.1 Travel time estimation

The mobile phone network comprises of 1350 towers within the study area. Our data set

consists of one month of CDR data. We have filtered out weekend data from this data set.

From these data, we have extracted 16399597 transient travel (t-travel) data for 80733

Step Name Data Amount

Total User 6926973

Total Data 971328700

After Positional Displacement Prune 28228258

After Exclusion of Weekend’s data 16399597

Distance Ratio within 25% 80733

Table 6.1: Amount of data contributed in each step

38
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distinct origin-destination (OD) pairs. Table 6.1 shows the amount data contributed to each

step of our methodology.

As per our findings in Table 4.1, we have partitioned all t-travel data into two groups: off-

peak, and peak hours. After applying a different level of pruning, we have selected 3443910 and

6559830 t-travels for off-peak and peak hours, respectively. This result indicates that among

all t-travel data, approximately 21% represents off-peak and 40% represents peak t-travels.

This is a reasonable finding a number of travels made during off-peak hours are much less than

that of peak hours.

To process stream of CDR data all travel data partitioned into 24 parts, each for every hour

of a day. We order same data set in ascending order by recorded date-time and use it as a

source of a stream of CDR.

6.2 Analysis of travel time matrix

Table 6.2 shows the estimated travel time and Google Map API’s predicted travel time (of

March 2014) for 14 pairs of key locations (we omit the other three pairs due to the space limit

for the Table placement). Similarly, morning peak-hours and evening peak-hours estimated

travel times are shown in Table 6.3. Intra zone travel time for each time segment is shown at

Table 6.7. Diagonal entries in Table 6.2 and Table 6.3 represent travel time within a zone, which

are marked as not measured (NM). In both tables, some cell is marked as DI, which denote

data insufficiency to estimate the travel time. For example, travel time from Kuril (index-04)

to Gabtoli (index-07) at Table 6.3 is marked as DI. This happens because all 289 (17x17) routes

may not have a direct connection through major junctions in Dhaka city.

However, we can apply all pairs shortest paths algorithm in our resultant matrix with proper

road network information, to fill these data insufficiency (DI) gaps and find best alternative

routes with regards to travel time. For example, Kuril to Gabtoli travel time can be obtained by

combining the routes of Kuril to Mohakhali (index-16) and to Mohakhali (index-16) to Gabtoli

route. This route will take 51 (23+28) minutes to travel in peak hour.
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We show some examples of alternative routes obtained by applying all pairs shortest paths

algorithm at Table 6.6. Results from all pairs shortest paths show that on average 66% route

has a better alternative route. Here in the case of long-distance travel, our assumption was

that the user travels through the shortest path; but in real life scenario, this travel may also

pass through some alternative zone/junction. We have also found that the estimation of travel

time between two long distant key locations can be estimated more accurately than that of

the travel time between intermediate zone. We can use information on alternative routes to

uniformly distribute traffic among all roads of the city, which can be effective in reducing a

significant amount of travel time.

Figure 6.1 and 6.2 is two examples that show how to travel time changes with changes of

time and with the amount of CDR data. With a greater amount of CDR data smoother result

can be achieved while less number of CDR data will produce less reliable results. Figure 6.1

and 6.2 also indicate that travel time in some time segment is always low and travel time in

some segments of time is always hight for most of the route.

After completing the processing of a stream of CDR, we got 24 travel time matrix. Table 6.5

represents estimated travel time of 2AM and 7PM and Table 6.4 represents estimated travel

time of 9AM and 7PM.

6.3 Summary

We represent travel time matrix of the peak, off-peak hour produced from a static source of

CDR dataset as well as travel time matrix of 24 hours of a day from the stream of CDR with

a figure showing how result quality improve with the increase in the amount of data in this

chapter. Google’s travel time matrix and some example of alternative path prediction from

estimated travel time matrix are also presented in this chapter.
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Figure 6.1: Result Comparison of Mohakhali to Mirpur-1
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Table 6.2: Google travel time vs. off-peak estimated travel time from CDR
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Table 6.3: Morning peak-hour travel time vs. evening peak-hour travel time
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Table 6.4: Travel time from CDR stream comparison between 09 AM and 07 PM hour
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Table 6.5: Travel time from CDR stream comparison between 02 AM and 07 PM hour



6.3. SUMMARY 47

Hour Direct Time Alternative Time

P-Morn 1 → 3 113.88 1 → 6 → 3 82.10

P-Morn 1 → 7 83.82 1 → 6 → 7 56.47

P-Morn 2 → 4 81.17 2 → 17 → 4 61.42

P-Morn 4 → 15 63.50 4→17→14→15 49.43

P-Eve 1 → 3 112.50 1 → 6 → 3 96.45

P-Eve 1 → 5 80.63 1 → 6 → 5 68.37

P-Eve 2 → 3 102.72 2→17→4→3 89.72

P-Eve 5 → 11 60.17 5 → 10 → 11 49.98

Table 6.6: Example of Measured Shortest Path based on travel time matrix(Peak as P, Morning

as Morn and Evening as Eve)
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Table 6.7: Intra Zone Average Travel Speed in km/h(Peak as P, Morning as Morn and Evening

as Eve)
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Validation

To validate our results obtained from CDR data, we first collect real travel time data and then

compare with our results.

7.1 Collecting travel time data

The travel time data collected while traveling among 17 key locations of Dhaka city’s road

network over a week has been used in this study. To measure real travel time scenario among

these locations, GPS enabled smart-phones are used while traveling through these key locations

using different types of vehicles such as cars and buses. These key locations are presented in

figure 4.4. Travel time data are collected for both peak hours (from 9 AM to 2 PM and 6 PM

to 10 PM) and off-peak hours (2 PM to 6 PM and 10 PM to 9 AM). These key locations and

range of peak and off-peak hours are identified from our CDR data, which is described in our

methodology section. We also collected travel data between some non-major locations. These

travel data include both intra and inter-zone travel.
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Figure 7.1: Result Comparison of travel time between key locations
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Figure 7.2: Result Comparison of travel time between any two minor locations
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7.2 Estimated travel time vs. real travel time

We compare our estimated travel time with both real travel time and Google Map API’s

generated travel time. Comparison of our experimental results with real travel time data and

Google Map’s predicted travel time data is shown in Figure 7.1. In this figure, we compared our

result in four routes, Uttara (index-03) to Ramna (index-15), Uttara (index-03) to Shyamoli

(index-12),Uttara (index-03) to Jatrabari (index-01) and Ramna (index-15) to Mirpur-1 (index-

06). We also compared our experimental results with real time data in five different routes

between four minor location(arbitrarily taken from Uttara, Mirpur, Jatrabari zone and mark

as P1, P2, P3, P4) shown in Figure 7.2. Experimental results show that our method has less

deviation from actual travel time than that of Google Map API generated travel time. Figure 7.1

shows the comparison of actual travel time vs. estimated travel time vs. Google travel time

at off-peak, peak-morning and peak-evening hours for a different pair of key locations. We

observe that in all cases our estimated travel times are close to the actual travel time for both

off-peak and peak hours. However, the Google generated travel time has a huge deviation from

the actual travel time.

Result-Source Off-Peak Peak-Morn. Peak-Eve.

Actual Time 40.31 44.67 45.58

Our Approach 35.35 38.55 39.15

Google Map 19.04 19.04 19.04

Table 7.1: The average travel time within 17 key locations

Table 7.1 show the average deviation of our estimated travel time and actual travel time

in off-peak, peak-morning, and peak-evening are 12.30%, 13.71%, and 14.11%, respectively.

Our estimated travel time between minor location pairs deviate by an average 24%. Note that

these slight deviations may come from the recording of CDR data and actual travel time in two

different years.

Figure 7.5,7.3 and 7.4 is three different examples of comparison of travel time between
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Figure 7.3: Result Comparison of Ramna to Mirpur-1

Google, Actual, Static CDR and Stream CDR. Since our real travel time data is not hourly

based hence seems more dissimilar to stream CDR results but exact real travel time data may

be similar to results produced from the stream of CDR.

7.3 Summary

In this chapter, we validate the result which is produced from static CDR and stream of CDR

by comparing with each other and Google’s and real travel time. Our validation indicates the

reliable accuracy of our methodology.
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Figure 7.4: Result Comparison of Uttara to Shyamoli
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Figure 7.5: Result Comparison of Mirpur-10 to Kawran Bazar



Chapter 8

Conclusion

In this thesis, we have proposed an effective technique that can estimate travel time from mobile

phone users call detail records (CDR) accurately. Our approach considers consecutive calls of

a user from two different locations and maps this transition to the road network distance in

the city to estimate the travel time. Moreover, we also exploit aggregated call detail records of

a number of users traveling from a source to destination, to identify peak and off-peak hours,

and estimate the travel time accordingly. Our experimental results show that our method can

accurately capture the travel times between any pair of key locations and any pair of minor

location in the city with a high accuracy. Our estimated travel time only deviates by an average

of 13% from the actual travel time, whereas Google generates travel time that deviates by more

than 50% from the actual travel time in most of the cases.
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[11] Julián Candia, Marta C González, Pu Wang, Timothy Schoenharl, Greg Madey, and
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