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Abstract 

 

 

A steady two-dimensional natural convection flow of viscous incompressible fluid 
considering viscous dissipation along a uniformly heated vertical wavy surface in presence of 
internal heat generation and Joule heating has been investigated. Using the appropriate 
transformations the basic equations are changed to non-dimensional boundary layer 
equations, which are solved numerically by employing the implicit finite difference method 
together with Keller-box scheme. The program code of this method has been developed in 
FORTRAN. 

Here I have focused my attention on the changes of surface shear stress in terms of local skin 
friction, rate of heat transfer in terms of local Nusselt Number, velocity profile, temperature 
distribution, isotherms as well as the streamlines for a selection of parameter sets consisting 
of heat generation parameter Q(0.30 to 1.0) the Joule heating parameter J(0.001 to 0.040), 
the magnetic parameter M(0.0 to 3.0), viscous dissipation parameter Ec(0.50 to 5.0), Prandtl 
number Pr(0.73 to 7.00) and the amplitude of waviness of the surface α(0.0 to 0.3). The 
results have been shown graphically by utilizing the visualizing software TECHPLOT. The 
results obtained from the numerical study have been discussed emphasizing the physical 
prospects. 
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Nomenclature 

Cp : Specific heat at constant pressure 

Cfx : Local skin friction coefficient 

Nux : Local Nusselt number 

Gr : Grashof number 

f : Dimensionless stream function 

g : Acceleration due to gravity 

h : Heat flux coefficient 

qw : Heat flux at the surface 

L : Wave length associated with wavy surface 

k : Thermal conductivity 

J : Joule heating parameter 

Q : Heat generation parameter 

Q0 : Heat generation constant 

Pr : Prandtl number 

p  : Pressure of the fluid 

p : Dimensionless pressure function 

T : Fluid temperature in the boundary layer 

T∞ : Temperature of the ambient fluid 

Tw : Temperature at the surface 

(U, V) : Velocity component along x and y 

(u, v) : Dimensionless velocity component 

(X, Y) : Axis in the direction along and normal to the tangent of the surface 

(x, y) : Non-dimensional coordinate system 

Δψ : Distance between two streamlines 

Δθ : Distance between two isotherms 

n : Wave number indicator 
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Greek Symbols 

α : Amplitude of the wavy surface 

β : Volumetric coefficient of thermal expansion 

ν : Kinematic viscosity 

ψ : Stream function 

η : Dimensionless similarity variable 

τω : Shearing stress 

μ : Dynamic viscosity 

ρ : Density of the fluid 

θ : Dimensionless temperature function 

σ0 : Electrical conductivity of the fluid 

β0 : Applied magnetic field 

σx : Non-dimensional surface profile function 

σ   : Surface profile function 

 

Subscripts 

W : Wall conditions 

∞ : Ambient Condition 

 

Superscripts 

/ : Differentiation with respect to η 

_ : Dimensional quantity 
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Chapter One 

Introduction 

 

Natural Convection is a type of heat transfer which occurs only due to density differences in 

the fluid due to temperature gradients. In natural convection, fluid surrounding a heat source 

receives heat, becomes less dense and rises up. The surrounding fluid then moves to replace 

it. This cooler fluid is then heated and the process continues, forming convection current. 

Since there is no external force to accelerate the heat transfer, the design of the heat sink 

should be thermally efficient to dissipate maximum amount of heat. The driving force for 

natural convection is buoyancy, a result of differences in fluid density. Because of this, the 

presence of a proper acceleration such as arises from resistance to gravity, or an equivalent 

force (arising from acceleration, centrifugal force or Coriolis effect), is essential for natural 

convection. For example, natural convection essentially does not operate in free-fall (inertial) 

environments, such as that of the orbiting International Space Station, where other heat 

transfer mechanisms are required to prevent electronic components from overheating. The 

natural convection procedures are governed essentially by three features namely the body 

force, the temperature difference in the flow field and the fluid density variations with 

temperature. The manipulation of natural convection heat transfer can be deserted in the case 

of large Reynolds number and very small Grashof number. Alternately, the natural 

convection should be the governing aspect for large Grashof number and small Reynolds 

number. The analysis of natural convection has become considerable interest to engineers 

and scientists since it is important in many industrial and natural problems. There are many 

physical processes in which buoyancy forces resulting from thermal diffusion play an 

important role in the convection transfer of heat. Few examples of the heat transfer by natural 

convection can be found in geophysics and energy related engineering problems such as 

natural circulation in geothermal reservoirs, refrigerator coils, hot radiator used for heating a 

room, transmission line, porous insulations, solar power collectors, spreading of pollutants 

etc. Natural convection flow is often encountered in cooling of nuclear reactors or in the 

study of the structure of stars and planets. In nature, convection cells formed from air raising 

https://en.wikipedia.org/wiki/Proper_acceleration
https://en.wikipedia.org/wiki/Equivalence_principle
https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Centrifugal_force
https://en.wikipedia.org/wiki/Coriolis_effect
https://en.wikipedia.org/wiki/Inertial
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above sunlight-warmed land or water are a major feature of all weather systems. Convection 

is also seen in the rising plume of hot air from fire, oceanic currents, and sea-wind formation 

(where upward convection is also modified by Coriolis forces). In engineering applications, 

convection is commonly visualized in the formation of microstructures during the cooling of 

molten metals, and fluid flows around shrouded heat-dissipation fins, and solar ponds. A very 

common industrial application of natural convection is free air cooling without the aid of 

fans: this can happen on small scales (computer chips) to large scale process equipment 

It is also necessary to study the heat transfer from an irregular surface because irregular 

surfaces often occur in many applications. It is often encountered in heat transfer devices to 

enhance heat transfer. Laminar natural convection flow from irregular surfaces can be used 

for transferring heat in several heat transfer devices, for examples, flat- plate solar collectors, 

flat-plat condensers in refrigerators, heat exchanger, functional clothing design, geothermal 

reservoirs and other industrial applications. They are widely used in space heating, 

refrigeration, air conditioning, power plants, chemical plants, petrochemical plants, 

petroleum refineries and natural gas processing. One common example of a heat exchanger is 

the radiator used in vehicles, in which the heat generated from engine transferred to air 

flowing through the radiator. Heat exchanger also widely used in industry both for cooling 

and heating large scale industrial process.  

It is a model problem for the investigation of heat transfer from roughened surfaces in order 

to understand heat transfer enhancement. The sinusoidal wavy surface can be viewed as an 

approximation too much practical geometries in heat transfer. A good example is a cooling 

fin. Since cooling fins have a larger area than a flat surface, they are better heat transfer 

devices. Another example is a machine-roughened surface for heat transfer enhancement. 

The interface between concurrent or countercurrent two-phase flow is another example 

remotely related to this problem. Such an interface is always wavy and momentum transfer 

across it is by no means similar to that across a smooth, flat surface, and neither is the heat 

transfer. Also a wavy interface can have an important effect on the condensation process 

  
Joule heating occurs when an electrical current is passed through a material and the 

material’s resistivity to the current cause heat generation. Joule heating effects are common 

in electronic devices where the heat generated by a current may be an important influence. 

https://en.wikipedia.org/wiki/Fire
https://en.wikipedia.org/wiki/Coriolis_force
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For example, the ability to predict how electrical current will affect temperature distribution 

is useful when analyzing spot welding, circuit breakers, MEMS or electronic devices. Joule 

heating effects can be simulated by linking the results of electrostatic analysis to a steady-

state or transient heat transfer analysis. 

In electronic and in physics more broadly, Joule heating or ohmic heating refers to the 

increase in temperature of a conductor as a result of resistance to and electrical current 

flowing through it. At an atomic level, Joule heating is the result of moving electrons 

colliding with atoms in a conductor, whereupon momentum is transferred to the atom 

increasing its kinetic energy. When similar collisions cause a permanent structural change, 

rather than an elastic response, the result is known as eletro migration. Joule heating effect 

finds its application in electric heating devices such as electric heater, electric iron, bread 

toaster, even electric kettle and hair dryer etc  

The presence of magnetic field in the effects of Joule heating is a very common phenomenon. 

A very common term Magnetohydrodynamic (MHD) is used to express magnetic field in the 

presence of electricity. Magnetohydrodynamic involves magnetic fields (magneto) and fluids 

(hydro) that conduct electricity and interact (dynamics). Magnetohydrodynamic (MHD) is 

the branch of continuum mechanics, which deals with the flow of electrically conducting 

fluids in electric and magnetic fields. MHD technology is based on a fundamental law of 

electromagnetism. Motion of the conducting fluid across the magnetic field induced electric 

currents which change the magnetic field and the action of the magnetic field on these 

currents give rise to mechanical forces, which modify the fluid. The interaction of the 

magnetic field and the moving electric charge carried by the flowing fluid induces a force, 

which tends to oppose the fluid motion and near the leading edge, the velocity is very small, 

so that the magnetic force that is proportional to the magnitude of the longitudinal velocity 

and acts in the opposite direction is also very small. Consequently, the influence of the 

magnetic field on the boundary layer is exerted only through induced forces within the 

boundary layer itself without additional effects arising from the free steam pressure gradient. 

Thus there is a two way interaction between the flow field and the magnetic field, the 

magnetic field exerts force on the fluid by producing induced currents and induced currents 

change the original magnetic field. 
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Many natural phenomena and engineering problems are susceptible to MHD analysis. It is 

useful in astrophysics. Geophysical encounter MHD phenomena in the interactions of the 

conducting fluids and magnetic fields those are present in and around heavenly bodies. 

Engineers employ MHD principles in the design of heat exchanger, pumps and flow meters, 

in space vehicles propulsion, control and re-entry, in creating novel power generating 

systems and developing confinement schemes for controlled fusion. The most important 

application of MHD are in the generation of electrical power with the electrically conducting 

fluid through a transverse magnetic field, electromagnetic pump, the MHD generator using 

ionized gas as an armature, electromagnetic pumping of liquid metal coolants in nuclear 

reactors. Other potential applications for MHD include electromagnets with fluid conductors, 

various energy conversion or storage devices and magnetically controlled lubrication by 

conducting fluids etc.  

     

The viscous dissipation effect plays an important role in natural convection in various 

devices which are subjected to large deceleration or which operate at high rotational speeds 

and also in strong gravitational field processes on large scales(on large planets),in geological 

process and in nuclear engineering in connection with the cooling of reactors. The 

irreversible process by means of which the work done by a fluid on adjacent layers due to the 

action of shear forces transformed into heat is defined as viscous dissipation. It is also 

important in the flow of fluids having high viscosities. Temperature of the fluid increases 

because of it.   

The study of temperature and heat transfer is of great importance to the engineers because of 

its almost universal occurrence in many branches of science and engineering. Heat 

generation is a volumetric phenomenon. That is, it occurs throughout the body of a medium. 

Therefore, the rate of heat generation in a medium is usually specified per unit volume. Heat 

generation is the ability to emit greater-than-normal heat from the body. The amount of heat 

generated or absorbed per unit volume is defined as )( −TTQ , where Q  being a constant, 

which may take either positive or negative. The source term represents the heat generation 

when 0Q  and the heat absorption when  0Q  . 
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1.1 Literature Review 

The laminar natural convection of a Newtonian fluid and heat transfer problem has been 

presented by many investigators because of its considerable practical applications. The effect 

of viscous dissipation in natural convection flow was investigated by Gebhart (1962). Further, 

he studied viscous dissipation effects in external natural convection flows with Mollendorf 

(1969). Keller (1978) carried out investigation on numerical methods in boundary layer 

theory. Yao (1983) analyzed natural convection along a vertical wavy surface. One year later I 

have found the investigation results for Physical and computational aspects of convective heat 

transfer by Cebeci and Bradshaw (1984). Moulic and Yao (1989) added uniform heat flux 

parameter on natural convection along a vertical wavy surface. Bhaynani and Bergles (1991) 

introduced sinusoidal wavy surface in natural convection heat transfer. Vejravelu and 

Hadjinicolaou (1993) investigated heat transfer in a viscous fluid over a stretching sheet with 

viscous dissipation and internal heat generation. Natural convection along a wavy vertical 

plate to non-newtonian fluids was studied by Kim (1997). In the same year Hossain and Rees 

analyzed on Magnetohydrodynamic free convection along a vertical wavy surface. They also 

investigated combined heat and mass transfer in natural convection flow from a vertical wavy 

surface in the year of 1999. Wang and Chen (2001) investigated the effects of transient force 

and free convection along a vertical wavy surface in micropolar fluid. Chamkha (2002) 

analyzed the effects of magnetic field and heat generation/absorption on natural convection 

from an isothermal surface in a stratified environment. Hossain et al. (2002) studied natural 

convection of fluid with variable viscosity from a heated vertical wavy surface. Furthermore 

Jang et al. (2003) studied natural convection heat and mass transfer along a vertical wavy 

surface. Natural convection flow along a vertical wavy surface with uniform surface 

temperature in presence of heat generation/absorption is investigated by Molla and Hossain 

(2004). They also investigated radiation effect on mixed convection laminar flow along a 

vertical wavy surface in the year of 2007. Chamkha et al. (2006) studied effects of heat 

generation or absorption on thermophoretic free convection boundary layer from a vertical flat 

plate embedded in a porous medium. (2007): Viscous dissipation effects on MHD natural 

convection flow over a sphere in the presence of heat generation are investigated by Alam et 

al. (2007). Mamun et al. (2008) studied MHD–conjugate heat transfer analysis for a vertical 
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flat plate in presence of viscous dissipation and heat generation. Azim et al. (2010) analyzed 

viscous Joule heating MHD conjugate heat transfer for a vertical flat plate in the presence of 

heat generation. In the same year Anjali and Kayalvizhi (2010) studied viscous dissipation 

and radiation effects on the thermal boundary layer flow with heat and mass transfer over a 

non-isothermal stretching sheet with internal heat generation embedded in a porous medium.  

Jha and Ajibade (2011) showed the effect of viscous dissipation on natural convection flow 

between vertical parallel plates with time-periodic boundary conditions. Palani and Kim 

(2011) studied on Joule heating and viscous dissipation effects on MHD flow past a semi-

infinite inclined plate with variable surface temperature. Effect of temperature-dependent 

variable viscosity on magnetohydrodynamic natural convection flow along a vertical wavy 

surface are investigated by Parveen and Alim (2011). They also analyzed MHD free 

convection flow along a vertical wavy surface with temperature dependent thermal 

conductivity in presence of heat generation (2012). Parveen and Alim (2013) also studied 

Joule heating and MHD free convection flow along a vertical wavy surface with viscosity and 

thermal conductivity dependent on temperature. Numerical solution of temperature dependent 

thermal conductivity on MHD free convection flow with joule heating along a vertical wavy 

surface is also investigated by Parveen and Alim (2014).  
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1.2 Main Objectives of the Present Works 

The aim of this research is to investigate the effects of viscous dissipation and Joule heating 

on natural convection flow in presence of heat generation along a vertical wavy surface. The 

stream is assumed to flow in the upward vertical direction. Here the surface temperature Tw is 

higher than the ambient temperature T. Solutions will be obtained and analyzed for the 

velocity and temperature profiles, the streamlines and isotherms patterns, the surface shear 

stress in terms of the local skin friction coefficient and the rate of heat transfer in terms of 

local Nusselt number over the whole boundary layer for a selection of parameters set 

consisting of viscous dissipation parameter, magnetic field parameter, Joule heating 

parameter, heat generation parameter, the amplitude of the waviness of the surface and 

Prandtl number. 

 

The major objectives of this study are: 

• To derive the governing equations regarding the proposed study. 

• To reduce the governing equations into a system of ordinary differential equations 

using suitable transformations. 

• To solve the system of ordinary differential equations numerically with the help 

of implicit finite difference method together with the Keller-Box scheme. 

• To investigate the effects of dimensionless parameters namely viscous dissipation 

parameter Ec, heat generation parameter Q, magnetic parameter M, Joule heating 

parameter J, Prandtl number Pr and amplitude-to-length ratio  of the wavy 

surface.  

• To present the numerical results graphically for different values of the parameters 

entering into the present study. 

• To compare the present results with other published works.  
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1.3 Outline of Methodology 

 
There are generally three types of numerical techniques depending on the types of problem to 

be solved. They are (i) Finite Element (ii) Finite Difference and (iii) Finite Volume Method.  

The Finite Difference Method is very efficient for programming and rapid convergence. The 

transformed boundary layer equations are solved numerically with the help of implicit finite 

difference method together with the Keller-box scheme (1978), which has been in details by 

Cebeci and Bradshaw (1884). The momentum and energy equations are first converted into a 

system of first order differential equations. Then these equations are expressed in finite 

difference forms by approximating the functions and their derivatives in terms of the center 

differences. Denoting the mesh points in the x and -plane by xi andj where i = 1, 2,...,M 

and j = 1, 2,…,N, central difference approximations are made, such that those equations 

involving x explicitly are centered at (xi-1/2 ,j-1/2) and the remainder at (xi,j-1/2), where j-1/2 = 

1/2(j +j-1) etc. The above central difference approximations reduces the system of first 

order differential equations to a set of non-linear difference equations for the unknown at xi 

in terms of their values at xi-1. The resulting set of non-linear difference equations are solved 

by using the Newton’s quasi-linearization method. The Jacobian matrix has a block-

tridiagonal structure and the difference equations are solved using a block-matrix version of 

the Thomas algorithm. The whole procedure namely reduction to first order followed by 

central difference approximations, Newton’s Quasi-linearization method and the block 

Thomas algorithm, is well known as Keller-box method. 

 

Effects of various parameters on the velocity and temperature profiles, the surface shear 

stress in terms of the skin friction coefficient, the rate of heat transfer in terms of local 

Nusselt number, the streamlines as well as the isotherms are shown graphically for different 

values of parameters entering into the problem using the post processing software TECPLOT 

and also in tabular form. 

 



 

 

Chapter Two 

Mathematical modeling of the flow problem 

Why did magnetic parameter include in this work? 

As the Joule heating effects are being investigated with heat generation and 

viscous dissipation along a vertical wavy surface it is necessary to form 

equations including magnetic parameter because Joule heating effects and 

Magnetic effects on fluid flow are interrelated. Here magnetic effect tries to 

oppose velocity of fluid increased by Joule heating in vertical direction. 

 

2.1 Governing equations of the flow 
 

Magnetohydrodynamic equations are the ordinary electromagnetic and hydrodynamic 

equations modified to take account of the interaction between the motion of the fluid and 

electromagnetic field. Formulation of electromagnetic theory in mathematical form is known 

as Maxwell’s equations. Maxwell’s basic equations show the relation of basic field quantities 

and their production. But it is assumed that all velocities are small in comparison with the 

speed of light. Before writing down the MHD equations it is essential to know about the 

ordinary electromagnetic equations and hydromagnetic equations, which are as follows (see 

Cramer and Pai (1974)). 

Charge Continuity:  eD =


.  (2.1) 

Current Continuity:  
t

J e




−=


.  (2.2)  

Magnetic field continuity: 0. = B


 (2.3) 

Ampere’s Law:   β0 = 
t
DJ



+




 (2.4) 

Faraday’s Law:    E


 = -
t
B





 (2.5) 

Constitutive equations for D and B: ED


/=  and B


 = 0e  (2.6) 
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Total current density flow: ( ) qBqEJ e


 ++= 0  (2.7) 

The above equations (2.1) to (2.7) are Maxwell’s equations where D


 is the electron 

displacement, e is the charge density, E


 is the electric field, B


 is the magnetic field, β0 is 

the magnetic field strength, J


 is the current density, tD 


 is the displacement current 

density, /  is the electric permeability of the medium, e is the magnetic permeability of the 

medium, q  is the vector field and σ0 is the electric conductivity. 

The electromagnetic equations as shown above are not usually applied in their present form 

and require interpretation and several assumptions to provide the set to be used in MHD. In 

MHD a fluid is considered that is grossly neutral. The charge density e in Maxwell’s 

equations must then be interpreted, as an excess charge density, which is generally not large. 

If it is disregard the excess charge density then it must disregard the displacement current. In 

most problems the displacement current, the excess charge density and the current due to 

convection of the excess charge are small. Taking into this effect the electromagnetic 

equations can be reduced to the following form: 

0. =D


 (2.8) 

= J


. 0 (2.9) 

0. = B


 (2.10) 

 β0 = J


 (2.11) 

  E


 = -
t
B





 (2.12) 

ED


/=  and  B


 = 0e   (2.13) 

( )BqEJ


+= 0  (2.14) 

Below we shall now suitably represent the equations of fluid dynamics to take account of the 

electromagnetic phenomena.  
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The continuity equation  

The MHD continuity equation for viscous incompressible electrically conducting fluid 

remains same as that of usual continuity equation    0= q   (2.15) 

The Navier-Stokes equation 

The motion of the conducting fluid across the magnetic field generates electric currents, 

which change the magnetic field and the action of the magnetic field on these current give 

rises to mechanical forces, which modify the flow of the fluid. Thus, the fundamental 

equation of the magneto-fluid combines the equations of the motion from fluid mechanics 

with Maxwell’s equations from electrodynamics. 

Then the Navier-stokes equation for a viscous incompressible fluid may be written in the 

following form: 

( ) BJFqPqq


+++−= 2   (2.16) 

Where  is the fluid density,  is the viscosity and P is the pressure. The first term on the 

right hand side of equation (2.16) is the pressure gradient, second term is the viscosity, third 

term is the body force per unit volume and last term is the electromagnetic force due to 

motion of the fluid. 

The energy equation 

The energy equation for a viscous incompressible fluid is obtained by adding the 

electromagnetic energy term into the classical gas dynamic energy equation. This equation 

can be written as  

( ) ( )
→

++= quTkTqCP
22 

   (2.17) 

Where, k is the thermal conductivity, CP is the specific heat with constant pressure. In the 

physical problem of temperature variation, u(x,y,z,t) is the temperature and   is the thermal 

diffusivity. For the mathematical treatment it is sufficient to consider the case   = 1. The left 

side of equation (2.17) represents the net energy transfer due to mass transfer, the first term 

on the right hand side represents conductive heat transfer and second term is heat generation 

term and third term is for viscous dissipation term.  
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Where =q (U, V),  U and V are the velocity components along the X and Y axes 

respectively, F


 is the body force per unit volume which is defined as -ρg, the terms J


 and 

B


 are respectively the current density and magnetic induction vector and the term BJ


  is 

the force on the fluid per unit volume produced by the interaction of the current and magnetic 

field in the absence of excess charges, T is the temperature of the fluid in the boundary layer, 

g is the acceleration due to gravity, k is the thermal conductivity and CP is the specific heat at 

constant pressure and μ is the viscosity of the fluid.  

Here 0eB=


, μe being the magnetic permeability of the fluid, β0 is the uniformly 

distributed transverse magnetic field of strength and   is the vector differential operator and 

is defined for two dimensional case as  

 
y

l
x

l yx



+




= ˆˆ    

where xl̂  and yl̂  are the unit vector along x and y axes respectively. When the external 

electric field is zero and the induced electric field is negligible, the current density is related 

to the velocity by Ohm’s law as follows 

( )BqJ


= 0  (2.18) 

where ( )Bq


  is electrical fluid vector and 0  denotes the electric conductivity of the fluid. 

Under the conduction that the magnetic Reynolds number is small, the induced magnetic 

field is negligible compared with applied field. This condition is well satisfied in terrestrial 

applications, especially so in (low velocity) free convection flows. So it can be written as 

0
ˆ ylB =


 (2.19) 

Bringing together equations (2.18) and (2.19) the force per unit volume BJ


  acting along 
the x-axis takes the following form 

UBJ 2
00−=


 (2.20) 

The steady two dimensional laminar free convection boundary layer flow of a viscous 

incompressible and electrically conducting fluid along a vertical wavy surface in presence of 

viscous dissipation and heat generation with uniform transverse magnetic field of strength βO   

is considered. It is assumed that the wavy surface is electrically insulated and is maintained at 

a uniform temperature Tw. Far above the wavy plate, the fluid is stationary and is kept at a 
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temperature T, where Tw > T.   

The boundary layer analysis outlined below allows )(X  being arbitrary, but our detailed 

numerical work assumed that the surface exhibits sinusoidal deformations. The wavy surface 

may be described by 

        







==
L
XnXYw


 sin)(
 
  (2.21) 

where L is the characteristic wave length associated with the wavy surface. 

The geometry of the wavy surface and the two-dimensional cartesian coordinate system are 

shown in figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The coordinate system and the physical model. 

 

Under the usual Boussinesq approximation, we consider the flow governed by the following 

boundary equations: 

Continuity Equation 

   (2.22) 

 

Momentum Equations 

Y 

V 

g 

L
 

0

Tw 

 

U 

 

X 

T 

 

0U V
X Y
 

+ =
 
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X- momentum:  (2.23) 

 

Y- momentum:   (2.24) 

 

Energy equation: 

 (2.25) 

  

 

 

Where ( X, Y ) are the dimensional coordinates along and normal to the tangent of the surface 

and (U, V ) are the velocity components parallel to ( X, Y ), ∇²(= ∂²/∂x² +∂²/∂y² ) is the 

Laplacian operator, g is the accelerate on due to gravity, P is the dimensional pressure of the 

fluid, ρ is the density , Cp  is the specific heat at constant at constant pressure and  (= μ/ρ) is 

the kinematic viscosity and μ is the dynamic viscosity, k is the thermal conductivity of the 

fluid in the boundary region depending on the fluid temperature, 0  is the electrical 

conductivity of the fluid and β is the volumetric coefficient of thermal expansion. 

 

 The boundary conditions for the present problem are 

 

    U = V = 0, T = Tw      at Y = 0  (2.26) 

    U = 0, T = T∞ , P = P∞    as   Y→ ∞   (2.27) 

 

Where Tw is the surface temperature, T∞   is the ambient temperature of the fluid and P∞    is 

the pressure of the fluid outside the boundary layer.  

 

 

 

 

UTTgU
X
P

Y
UV

X
UU








2
002 )(1

−−++



−=




+






21V V PU V V
X Y Y




  
+ = − + 

  

2
2

00
2

02 )( U
CY

U
Cp

TT
Cp
QT

Cp
k

Y
TV

X
TU

p




+












+−+=




+




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2.2 Transformation of the governing equations 

 

Using Prandtl’s transposition theorem to transform the irregular wavy surface into a flat 

surface as extended by Yao (1988) and boundary-layer approximation, the following 

dimensionless variables are introduced for non-dimensionalizing the governing equations,  

1
4, ,X Yx y Gr

L L
−

= =
 

PGrLp 1
2

2
−=

  

)(, 4
1

2
1

UVGrLvUGrLu x


−== −−

       (2.28)
 

,
w

T T
T T

 



−
=

−      

3
2

( ), w
x

g T Td d Gr L
dX dx

 



−

= = =  

 

Where  is the non-dimensional temperature function and (u, v) are the dimensionless 

velocity components parallel to (x, y). Here (x, y) are not orthogonal, but a regular 

rectangular computational grid can be easily fitted in the transformed coordinates. It is also 

worthwhile to point out that (u, v) are the velocity components parallel to (x, y) which are not 

parallel to the wavy surface. 

The conservation equations for the flow characterized with steady, laminar and two-

dimensional boundary layer; under the usual Boussinesq approximation, dimensionless form 

of the continuity, momentum and energy equations can be written as: 

      
0=




+





y
v

x
u

 
  (2.29) 

    (2.30) 

       

     (2.31) 

  

   (2.32) 

     

 

( )  +−



++




+




−=




+



 Mu
y
u

y
pGr

x
p

y
uv

x
uu xx 2

2
24

1
1

( ) 2
2

2
24

1
1 u

y
u

y
pGr

y
uv

x
uu xxxxx  −




++




−=












+





( ) 2
2

2

2
2   1

Pr
1 Ju

y
uEcQ

yy
v

x
u x +










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++




+=




+


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


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Where 
k

C p=Pr is the Prandtl number,
2

1

2
0

CpGr

LQ
Q


= is the heat generation/absorption 

parameter, 
)(2

2

−
=

TTCL
GrEc
wp

  is the viscous dissipation parameter, 
)(

2
12

00

−
=

TTC
Gr

J
wp


 is the 

Joule heating parameter and 
2

1

22
00

Gr

L
M




=  is the magnetic parameter.  

 
It can easily be seen that the convection induced by the wavy surface is described by 

equations (2.29)–(2.32). We further notice that, equation (2.31) indicates that the pressure 

gradient along the y-direction is )( 4
1−GrO , which implies that lowest order pressure gradient 

along x -direction can be determined from the inviscid flow solution. For the present problem 

this pressure gradient ( 0= xp ) is zero. Equation (2.31) further shows that ypGr  /4
1

 is 

)1(O  and is determined by the left-hand side of this equation. Thus, the elimination of yp  /  

from equations (2.30) and (2.31) leads to 

( )
2

2 2
2 2 2 2

11
1 1 1

x xx
x

x x x

u u u Mu v u u
x y y

 
 

  

  
+ = + − − +

   + + +  
 (2.33) 

The corresponding boundary conditions for the present problem are:  





→===
====

yaspu
yatvu

0,0
01,0




  (2.34) 

Now we introduce the following transformations to reduce the governing equations to a 
convenient form: 

),(,),,( 4
1

4
3

 xyxxfx ===
−    (2.35) 

 

where f(η) is the dimensionless stream function, η is the pseudo similarity variable and ψ is 

the stream function that satisfies the equation (2.29).  

 

Introducing the transformations given in equation (2.35) and into equations (2.32) and (2.33) 

the following system of non linear equations are obtained, 

  (2.36) ( )
1
2

2 2
2 2 2

3 1 11
4 2 1 1 1

x xx
x

x x x

x Mx f ff ff f f x f f
x x

 
 

  

    
     + + − + + − = −   + + +    
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  (2.37)
 

 

The boundary conditions (2.34) now take the following form: 





==

===
0),(,0),(

1),(,0),(),(
xxf

oxoxfoxf




 
(2.38) 

In the above equations prime denote the differentiation with respect to . 
 
 
The local skin friction coefficient Cfx and the rate of heat transfer in terms of the local Nusselt 
number Nux takes the following form: 
 
 (2.39)  
  
  (2.40) 
 

 

2.3 Implicit Finite Difference Method (IFDM) 
 

To apply the aforementioned method, equations (2.36) and (2.37) their boundary condition 

(2.38) are first converted into the following system of first order equations. For this purpose 

we introduce new dependent variables ,),(),,(  vu ),( p  and ),( g  so that the 

transformed momentum and energy equations can be written as: 

uf =  (2.41) 

vu =  (2.42) 

pg =  (2.43) 

)(54
2

321






−




=−+−+

fvuuuPgPuPvfPvP  (2.44) 

)(
Pr
1 2

87
2

621






−




=++++

fpguuPgPvPpfPpP  (2.45) 

where x = ,  θ = g  and 

( )
1 3

2 2 22 21 31
Pr 4

  
     + + + + + = − 

  
x

ff x Q Ecxf Jx f x f
x x


    

),(1)/( 24
1

oxxGrNu xx  +−=−

),(12/)/( 24
1

oxfxGrC xfx += 
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( ) ,
1

,
1

1,
12

1,
4
3,1 2

2
1

524232
2

1
xxx

xxx
x

MxPPxPPP





+
=

+
=

+
+==+=  

2/3
8P,2/1

7P,6 JxQxEcxP ===   

 

 

and the boundary conditions (2.38) are 

( )
0),(,0),(

10,,0)0,(,0)0,(
==

===




gu
guf

                                                                                        
(2.46) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Net rectangle of difference approximations for the Box scheme. 

 

Now consider the net rectangle on the (,) plane shown in the figure (2.2) and denote the 

net points by 

Jjh
Nnk

jjj

n
nn

,,2,1,0
,,2,1,,0

,10

10


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=+==
=+==

−

−



  (2.47) 

Here n and j are just sequence of numbers on the (,) plane, kn and hj are the variable mesh 

widths. Approximate the quantities f, u, v and p at the points (n,j) of the net by 

    hj 

kn 

ηj-1/2 

ηj 

ηj-1 

ξn-1 
ξn-1/2 ξn 

P1 P4 

P3 P2 
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n
j

n
j

n
j

n
j pvuf ,,,  which call net function. It is also employed that the notation n

jP  for the 

quantities midway between net points shown in figure (2.2) and for any net function as 

)(
2
1 121 −− += nnn   (2.48) 

)(
2
1

121 −− += jjj   (2.49) 

)(
2
1 121 −− += n

j
n
j

n
j ggg  (2.50) 

)(
2
1

121
n
j

n
j

n
j ggg −− +=  (2.51) 

The finite difference approximations according to box method to the three first order 

ordinary differential equations (2.41) – (2.43) are written for the midpoint (n,j-1/2 ) of the 

segment P1P2 shown in the figure (2.2) and the finite difference approximations to the two 

first order differential equations (2.44) and (2.45) are written for the midpoint (n-1/2,j-1/2 ) of 

the rectangle P1P2P3P4. This procedure yields 

2
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21
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Now the equation (2.55) can be written as  
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The boundary condition becomes 
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Chapter Three 

Effects of Viscous Dissipation on Free Convection Flow along 

a Vertical Wavy Surface in presence of Heat Generation 

 

3.1 Introduction 

This chapter describes the effects of viscous dissipation and Joule heating on free convection 

flow along a vertical wavy surface in presence of heat generation. The governing boundary 

layer equations with associated boundary conditions are converted to non-dimensional 

boundary layer equations using the appropriate transformation and the resulting nonlinear 

system of partial differential equations are reduced to local non similarity equations which 

are solved numerically by employing the implicit finite difference method, known as Keller-

Box scheme. 

 

The effects of the pertinent parameters, such as the heat generation parameter (Q) where the 

amount of heat generation constant Q ˃ 0, the magnetic parameter (M), the Joule heating 

parameter (J) the viscous dissipation parameter (Ec), the Prandtl number (Pr) and the 

amplitude of the wavy surface (α) on the surface shear stress in terms of the skin friction 

coefficient Cfx, the rate of heat transfer in terms of Nusselt number Nux, the velocity profiles, 

the temperature profiles, the streamlines as well as the isotherms are shown graphically.                             

 

3.2 Results and discussion 

Here I have shown the combined effects of viscous dissipation, Joule heating and heat 

generation on natural convection flow of viscous incompressible fluid along a vertical wavy 

surface. The velocity profiles, the temperature profiles, the skin friction coefficient Cfx, the 

rate of heat transfer in terms of Nusselt number Nux, the streamlines as well as the isotherms 

are shown graphically in figures (3.1) to (3.24) for different values of the heat generation 

parameter Q (=0.3 to 1.0), the Joule heating parameter J (=0.001 to 0.040), the Magnetic 

parameter M (=0.0 to 3.0), the viscous dissipation parameter Ec (=0.50 to 5.0), the Prandtl 

number Pr (=0.73, 1.73, 4.24, 7.0) which correspond to the air at 2100°K, water at 100℃, 
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60℃ and 20℃ respectively and the amplitude of the wavy surface ranging from 𝛼 = 0.0 (flat 

plate) to 0.3 . 

 

Velocity and Temperature Profile 

Figure 3.1(a) and (b) represent the velocity and temperature profiles for heat generation 

parameter Q = (0.30, 0.50, 0.70, 1.0) while Prandtl number Pr = 0.73, the amplitude of the 

wavy surface α = 0.2, the magnetic parameter M = 0.5, the Joule heting parameter J = 0.01 

and the viscous dissipation parameter Ec = 0.02. The increasing value of Q generates more 

heat within the boundary layer which increase temperature. Increasing heat increses velocity 

which is clearly shown in figure 3.1(a). It is seen that the velocity increases approximately 

33.08 % for same value of η = 1.36929  when Q increases from 0.30  to 1.00. ( Lowest at x= 

1.36929,  y= 0.61415; Highest at  x= 1.36929, y= 0.77074 ) 

Figure 3.2(a) and (b) deal with the effect of different values of Joule heating  parameter J = 

(0.001, 0.009, 0.020, 0.040)  on the velocity profile f '(x,η) and the temperature profile 𝜃(x,η)  

with Prandtl number Pr = 0.73, the amplitude of the wavy surface  = 0.2, the heat 

generation parameter Q = 0.30, the viscous dissipation parameter Ec = 0.02. Although the 

effects of Joule heating can not be seen well in the graph for velocity and temerature, the 

variation can be found in value comparism. In figure 3.2(a), the velocity profiles increase 

0.11% for same value of  η =1.3024 when J increases from 0.001 to 0.040. Joule heating 

produce heat in the flow therefore flow temperature increases. At the surface the temperature 

profile is maximum and decreses away from the surface and finally takes asympomatic 

values. 

Figure 3.3(a) and (b) deal with the effect of different values of Magnetic  parameter M = 

(0.00, 1.00, 2.00, 3.00)  on the velocity profile f '(x,η) and the temperature profile 𝜃(x,η)  

with Prandtl number Pr = 0.73, the amplitude of the wavy surface  = 0.2, the heat 

generation parameter Q = 0.3, the viscous dissipation parameter Ec = 0.02. In figure 3.3(a), 

the velocity profile decrease 43.81% for difeerent values of  η upto the position η = 4.0 as M 

increases from 0.0 to 3.0, after that position the velocity profile increase with the increase of 

magnetic parameter M. For natural convetion flow, the velocity profiles shows different 

values along η direction i.e., the velocity is zero at the boundary wall then the velocity reach 
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to the peak value as η increases and finally the velocity approaches to the asymptotic value 

(zero). The velocity profiles having higher peak values for lower values of magnetic 

parameter tends to decrease comparatively faster along η direction than velocity profiles 

having lower peak values for higher values of magnetic parameter. So all the velocity 

profiles meet together  at the position of η = 4.0 and cross the side. Heat produces due to the 

interaction between Joule heating and adjacent magnetic field, consequently temperature 

within the thermal boundary layer increases for increasing values of Joule heating paramrter 

J. In figure 3.3 (b), it is seen that the temperature profiles is maximum near the surface and 

decreases away from the surface and finally tends to zero. 

In Figure 3.4(a) and (b), It is observed that both the velocity and temperature profile increase 

slightly for increasing values of viscous dissipation parameter Ec = ( 0.50, 2.00, 3.50, 5.00 ) 

when  the heat generation parameter Q = 0.30, the Prandtl number Pr = 0.73, the amplitude 

of the wavy surface  = 0.2, the magnetic parameter M = 0.02 and the Joule heating 

parameter J= 0.01. It is expected because increasing value of N increases thermal energy 

inside the boundary layer due to fluid friction which is obviously increase convection and 

ultimately increase velocity. In the viscous dissipation process heat is automatically 

generated which increases temperature of the fluid flow. It is noted that velocity increases 

5.12 % for the same value of η as Ec increases from 0.50 to 5.00. (Lowest at x=1.36929, y= 

0.61415; Highest at x= 1.36929, y= 0.64727) 

Figure 3.5 (a) demonstrates the velocity profiles for variation of Prandtl number Pr = (0.73, 

1.74, 3.00, 7.00) while heat generation parameter Q = 0.30, the amplitude of the wavy surface 

 = 0.20, the magnetic parameter M = 0.01, Joule heating parameter J = 0.04 and the viscous 

dissipation parameter Ec = 0.02 and the corresponding temperature profile is shown in figure 

3.5 (b). It is well known that Prandtl number is the ratio of viscous force and thermal force. 

So, increasing values of Pr increase viscosity and decrease thermal action of the fluid. If 

viscosity increase, then fluid does not move freely. Because of this fact, it can be observed 

from figure 3.5 (a) that the velocity of the fluid decreases with the increasing value of Prandtl 

number Pr. The figure shows that the velocity decreases 49.10%  for different values of η due 

to the increased values of Pr. Since the thermal force decreases, so the temperature decreases 

significantly with increasing values of Pr. 
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The variation of the velocity profile and the temperature profile for different values of 

amplitude of the wavy surface  = (0.0, 0.1, 0.2, 0.3) in case of the Prandtl number Pr = 

0.73, the heat generation parameter Q = 0.3, the magnetic parameter M = 0.01, Joule heating 

parameter J=0.04 and the viscous dissipation parameter Ec = 0.02 are shown in figure 3.6 (a) 

and (b). Figure 3.6 (a) shows the small increment on the velocity f ' (x,η) for increasing 

values of . It is seen that the velocity increases 3.82 % for different values of η when   

increases from 0.0  to 0.3. Figure 3.6(b) depicts the temperature profile 𝜃(x,η), which 

increases slowly with the increase of the amplitude of wavy surface. 

 

Skin Friction Coefficient and Rate of Heat Transfer 

The influence of the parameter Q, on the skin friction coefficient Cfx  and local rate of heat 

transfer Nux are illustrated in Figures 3.7(a) and (b) respectively while  = 0.2, Ec = 0.02, M 

= 0.5, J=0.02 and Pr = 0.73. From those it is observed that an increase in the heat generation 

parameter Q = (0.30, 0.50, 0.70, 1.0) leads to increase the local skin friction coefficient Cfx 

and decrease the local rate of heat transfer Nux at different position of x. These happen, since 

the heat generation mechanism creates a layer of hot fluid near the surface and finally the 

resultant temperature of the fluid exceed the surface temperature and temperature gradient 

decreases. For this reason the rate of heat transfer decreases. Increasing temperature increases 

the viscosity of the fluid. Hence the corresponding shearing stress in terms of local skin 

friction coefficient increases. It is seen that the local skin friction coefficient Cfx increases 

57.21 % for different values of x when Q increases from 0.30 to 1.00. 

The variation of local skin friction Cfx and the rate of heat transfer in terms of the  local 

Nusselt number Nux for the Joule heating parameter J = (0.001, 0.009, 0.020, 0.040) against x 

from the wavy surface  while α = 0.2, Q = 0.3, M = 0.01, Ec = 0.02 and Pr = 0.73 are 

illustrated in figure 3.8(a) and (b) respectively. The higher value of J accelerates the fluid 

flow and increases the temperature, So from the figure it is noted that for the Joule heating 

parameter J, the skin friction coefficient increases along the upstream direction of the surface 

and to decrease of the heat transfer rates. It is seen that the local skin friction coefficient Cfx 

increases 8.56 % for same values of x = 9.50 when J increases from 0.001 to 0.040. 



Chapter Three | Effects of Viscous dissipation on…. 
 

 
27 

In figures 3.9(a) and (b), the skin friction coefficient Cfx  and local rate of heat transfer Nux are 

illustrated for different values of M while J = 0.01,  = 0.2, Ec = 0.02, Q = 0.3 and Pr = 

0.73. Here it is observed that an increase in the magnetic parameter M = (0.00, 1.00, 2.00, 

3.00) leads to decrease the local skin friction coefficient and local rate of heat transfer at 

different position of x. The magnetic field acts against the flow and reduces the skin friction 

and the rate of heat transfer. It is seen that the local skin friction coefficient Cfx decreases 

50.06 % for different values of x when M increases from 0.0 to 3.0 

The variation of local skin friction Cfx and the rate of heat transfer in terms of the  local 

Nusselt number Nux for the viscous dissipation parameter Ec = (0.50, 2.00, 3.50, 5.00) 

against x from the wavy surface  while α = 0.2, Q = 0.3, M = 0.02, J =0.01 and Pr = 0.73 are 

illustrated in figure 3.10(a) and (b) respectively. Increasing value of Ec accelerates the fluid 

flow and increases the temperature. Accordingly, from the figure it is noted that for the 

viscous dissipation parameter Ec, the skin friction coefficient increases along the upstream 

direction of the surface and to decrease of the heat transfer rates. It is seen that the local skin 

friction coefficient Cfx increases 83.83 % for same values of x = 9.50 when N increases from 

0.50 to 5.00. 

Figures 3.11 (a) and (b) show the local skin friction Cfx and the rate of heat transfer in terms of 

the local Nusselt number Nux for different values of Prandtl number Pr = (0.73, 1.74, 3.00, 

7.00) when amplitude of wavy surface  = 0.20, the heat generation parameter Q = 0.30, the 

magnetic parameter M = 0.01, J=0.04 and the viscous dissipation parameter Ec = 0.02. It is 

observed from figure 3.11(a) that the increasing values of Prandtl number Pr leads to decrease 

monotonically the skin friction coefficient and opposite result is observed on the rate of heat 

transfer in figure 3.11(b). Increasing the values of Prandtl number Pr speed up the decay of 

the temperature field away from the heated surface with a consequent increase in the rate of 

heat transfer and a reduction in the thermal boundary layer thickness. 

In figures 3.12 (a) and 3.12 (b), the surface shear stress in terms of the local skin friction Cfx 

and the rate of heat transfer in terms of the local Nusselt number Nux  are depicted graphically 

for the different values of amplitude of wavy surface   = (0.0, 0.1, 0.2, 0.3)  when the value 

of Prandtl number Pr = 0.73, the heat generation parameter Q = 0.3, the magnetic parameter 

M = 0.01, the Joule heating parameter J =0.04 and the viscous dissipation parameter Ec = 



Chapter Three | Effects of Viscous dissipation on…. 
 

 
28 

0.02. Since the velocity force decreases at local points due to increasing the surface waviness, 

so the figures depicts that increase in the value of amplitude of wavy surface   tends to 

decrease the value of skin friction coefficient  Cfx and the  rate of heat transfer in terms of the  

local Nusselt number Nux. It is seen that the local skin friction coefficient Cfx increases 0.66 % 

for different values of x when   increases from 0.0 to 0.3. 

 

Streamlines and Isotherms: 

Figure 3.13 and 3.14 illustrate the effect of variation of the Q equal to 0.30, 0.50, 0.70 and 

1.0 on the streamlines and isotherms respectively while  = 0.2, Ec = 0.02, M = 0.5, J = 0.01 

and Pr = 0.73. Figure 3.13 depicts that the maximum values of ψ increases while the values 

of Q increases that is the values of max are 14.67, 17.55, 20.37 and 24.14 for Q = 0.30, 0.50, 

0.70 and 1.0 respectively. It is noted from figure 3.14 that as the value of Q increases the 

thermal boundary layer becomes thicker gradually. So the isotherms increase while the 

values of Q increase. 

In a fixed value of  = 0.2, Ec = 0.02, M = 0.01 and Pr = 0.73, the effect of variation of the J 

equal to 0.001, 0.009, 0.020 and 0.040 on the streamlines and isotherms are illustrated by 

Figure 3.15 and 3.16 respectively. Figure 3.15 depicts that the maximum values of ψ 

increases while the values of J increases that is max are 13.46, 13.66, 13.85 and 14.00 for J = 

0.001, 0.009, 0.020 and 0.040 respectively. From figure 3.16 it is observed that as the value 

of J increases the thermal boundary layer becomes thicker gradually. So the increasing values 

of J causes the isotherms increasing. 

The effect of variation of the surface roughness on the streamlines and isotherms for the 

values of M equal to 0.0, 1.0, 2.0,and 3.0 are depicted by figure 3.17 and figure 3.18 while Pr 

= 0.73,  = 0.2, Q = 0.3 and Ec = 0.02. Figure 3.17 depicts that the maximum values of 

streamline decreases steadily while the values of M increases. The maximum values of 

streamlines are 13.50, 12.11, 11.55 and 10.98 for M = (0.0, 1.0, 2.0, and 3.0). It is observed 

in figure 3.18 that as the values of M increases the thermal boundary layer thickness becomes 

lower gradually that means the layer becomes thinner gradually with the increasing values of 

M. 
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Figure 3.19 and figure 3.20 show the effect of viscous dissipation parameter Ec = (0.50, 2.00, 

3.50, 5.00) on the formulation of streamlines and isotherms respectively while Pr = 0.73, Q 

= 0.3, M = 0.02, J = 0.01 and  = 0.2. It is found that for Ec = 0.50 the value of max is 

14.65, for Ec = 2.00 the value of max is 17.02, for Ec = 3.50 max is 20.01 and for Ec = 5.00 

max is 23.93. From figure 3.19, it is seen that the effect of viscous dissipation parameter Ec, 

the flow rate in the boundary layer increases. From figure 3.20, it is also observed that due to 

the effect of Ec, the thermal state of the fluid increases. Finally, the thermal boundary layer 

becomes thicker. 

The effect of variation of the surface roughness on the streamlines and isotherms for the 

values of Prandtl number Pr = (0.73, 1.74, 3.00, 7.00) are depicted by the figure 3.21 and 

3.22 respectively while heat generation parameter Q = 0.30, amplitude of the wavy surface  

= 0.20, magnetic parameter M = 0.01 and viscous dissipation parameter Ec = 0.02. It is 

observed from figure 3.21 that the maximum value of streamlines for Pr = 0.73 is max = 

13.90, for Pr = 1.74 is max = 9.93, for Pr = 3.00 ismax = 8.30 and for Pr = 7.00 is max = 

6.76. So it can be concluded that for increasing values of Pr with the effect of magnetic 

parameter and heat generation parameter both the momentum and the thermal boundary layer 

become thinner. 

Figure 3.23 and 3.24 illustrate the velocity boundary layer thickness and thermal boundary 

layer thickness for the amplitude of the length ratio of the wavy surface  = (0.0, 0.1, 0.2, 

0.3) while heat generation parameter Q = 0.3, magnetic parameter M = 0.01, viscous 

dissipation parameter Ec = 0.04 and Prandtl number Pr = 0.73. From the figure 3.23 it is 

observed that the maximum values of streamline are max = (13.00, 13.35, 13.65, 14.28) for 

the values of  = (0.0, 0.1, 0.2, 0.3) respectively. Here it can be concluded that for increasing 

values of amplitude to the length ratio of the wavy surface , the roughness of the wavy 

surface increases so the velocity boundary layer thickness decreases gradually. Similar result 

is observed for thermal boundary layer thickness. So isotherms increase for increasing values 

of amplitude to the length ratio of the wavy surface . 
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Figure 3.1: Velocity and temperature profiles for different values 
of heat generation parameter Q while Pr = 0.73,  = 0.2, J=0.01, 
Ec = 0.02, M = 0.5 
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Figure 3.2: Velocity and temperature profiles for different values 
of J while Pr = 0.73,  = 0.2, Ec = 0.02, M = 0.01 Q = 0.3 
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Figure 3.3: Velocity and temperature profiles for different values 
of M while Pr = 0.73,  = 0.2, Ec = 0.02, J = 0.01 Q = 0.3 
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Figure 3.4: Velocity and temperature profiles for different values of 
Viscous dissipation parameter Ec while Pr = 0.73,  = 0.2, J = 0.01, M 
= 0.02, Q =0.30 
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Figure 3.5: Velocity and temperature profiles for different values 
of Pr while J = 0.04,  = 0.2, Ec = 0.02, Q = 0.3, M = 0.01 
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Figure 3.6: Velocity and temperature profiles for different values 
of  while Pr = 0.73, Q = 0.3, J = 0.04, Ec = 0.02, M =0.01 
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Figure 3.7: Skin friction coefficient (Cfx) and rate of heat transfer 
(Nux) for different values of heat generation parameter Q while Pr 
= 0.73,  = 0.2, J = 0.01, Ec = 0.02, M = 0.50 
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Figure 3.8: Skin friction coefficient (Cfx) and rate of heat transfer 
(Nux) for different values of J while Pr = 0.73,  = 0.2, Ec = 0.02, 
M = 0.01 Q = 0.3 
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Figure 3.9: Skin friction coefficient (Cfx) and rate of heat transfer 
(Nux) for different values of Magnetic parameter M while Pr = 0.73, 
 = 0.2, J = 0.01, Ec = 0.02, Q =0.30 
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Figure 3.10: Skin friction coefficient (Cfx) and rate of heat transfer 
(Nux) for different values of Ec while Pr = 0.73,  = 0.2, J = 0.01, Q 
= 0.3, M = 0.02 
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Figure 3.11: Skin friction coefficient (Cfx) and rate of heat transfer 
(Nux) for different values of heat generation parameter Pr while Q = 
0.30,  = 0.20, J = 0.04, Ec = 0.02, M = 0.01 
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Figure 3.12: Skin friction coefficient (Cfx) and rate of heat transfer 
(Nux) for different values of  while Pr = 0.73, Q = 0.3, J = 0.04, Ec = 
0.02, M =0.01 
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Figure 3.13: Streamlines for (a) Q = 0.30, (b) Q = 0.50, (c) Q = 0.70 and (d) 
Q = 1.0 while Pr = 0.73,  = 0.3, J = 0.01, Ec = 0.02, M = 0.5 
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Figure 3.14: Isotherms for (a) Q = 0.30, (b) Q = 0.50, (c) Q = 0.70 and (d) Q = 
1.0 while Pr = 0.73,  = 0.3, J = 0.01, Ec = 0.02, M = 0.5 
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Figure 3.15: Streamlines for (a) J = 0.001, (b) J = 0.009, (c) J = 0.020 and (d) 
J = 0.040 while Pr = 0.73,  = 0.2, M = 0.01, Ec = 0.02 
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Figure 3.16: Isotherms for (a) J = 0.001, (b) J = 0.009, (c) J = 0.020 and (d) J 
= 0.040 while Pr = 0.73,  = 0.2, M = 0.01, Ec = 0.02 
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Figure 3.17: Streamlines for (a) M = 0.0, (b) M = 1.0, (c) M = 2.0 and (d) M 
= 3.0 while Pr = 0.73,  = 0.2, Ec = 0.02, Q = 0.3 
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Figure 3.18: Isotherms for (a) M = 0.0, (b) M = 1.0, (c) M = 2.0 and (d) M = 
3.0 while Pr = 0.73,  = 0.2, Ec = 0.02, Q = 0.3 
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Figure 3.19: Streamlines for (a) Ec = 0.50, (b) Ec = 2.00, (c) Ec = 3.50 and 
(d) Ec = 5.00 while Pr = 0.73,  = 0.2, J = 0.01, M = 0.02 
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Figure 3.20: Isotherms for (a) Ec = 0.50, (b) Ec = 2.00, (c) Ec = 3.50 and (d) 
Ec = 5.00 while Pr = 0.73,  = 0.2, J = 0.01, Q = 0.3, M = 0.02 
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Figure 3.21: Streamlines for (a) Pr = 0.73, (b) Pr = 1.74, (c) Pr = 3.00 and (d) Pr 
= 7.00 while Q = 0.30,  = 0.2, J = 0.04, Ec = 0.02, M = 0.01 
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Figure 3.22: Isotherms for (a) Pr = 0.73, (b) Pr = 1.74, (c) Pr = 3.00 and (d) Pr 
= 7.00 while Q = 0.30,  = 0.2, J = 0.04, Ec = 0.02, M = 0.01 
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Figure 3.23: Streamlines for (a)  = 0.0, (b)  = 0.1, (c)  = 0.2 and (d) = 0.3 
while Pr = 0.73, Q = 0.3, J = 0.04, Ec= 0.02, M = 0.01 
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Figure 3.24: Isotherms for (a)  = 0.0, (b)  = 0.1, (c)  = 0.2 and (d) = 0.3 
while Pr = 0.73, Q = 0.3, J = 0.04, Ec = 0.02, M = 0.01 
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Table 3.1 : Skin friction coefficient and rate of heat transfer for the different  
values of Joule Heating parameter (J) 

 
 

 
 

Since the figures 3.2 (a) and 3.2 (b) of effects of Joule heating can be seen a little differences, 

here this table will help us to understand the changes of skin friction coefficient and rate of 

heat transfer with the changes of Joule heating parameter J. From the table it is noticed that 

increasing value of J increases skin friction and decrease rate of heat transfer.  

X 
Skin friction coefficient Rate of heat transfer 

J = 0.001 J = 0.020 J = 0.040 J = 0.001 J = 0.020 J = 0.040 

0 0.74227 0.74227 0.74227 .32999 .32999 .32999 

1 0.81587 0.81703 0.81824 .09923 .09627 .09314 

2 0.86150 0.86506 0.86882 -.01887 -.02874 -.03924 

3 0.89715 0.90409 0.91144 -.12056 -.14086 -.16263 

4 0.92862 0.93985 0.95179 -.21447 -.24877 -.28587 

5 0.95762 0.97401 0.99149 -.30418 -.35618 -.41295 

6 0.98496 1.00735 1.03131 -.39142 -.46496 -.54604 

7 1.01112 1.04034 1.07169 -.47720 -.57631 -.68666 

8 1.03640 1.07325 1.11290 -.56217 -.69107 -.83601 

9 1.06098 1.10626 1.15511 -.64680 -.80986 -.99508 

10 1.08501 1.13951 1.19846 -.73139 -.93323 -1.16477 
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Conclusion of this Chapter 
 
The effects of the heat generation parameter Q, the magnetic parameter M, the viscous 

dissipation parameter Ec, Joule heating parameter J, the Prandtl number Pr and the amplitude 

of the wavy surface  on natural convection flow of viscous incompressible fluid along a 

vertical wavy surface have been investigated. From the present investigation the following 

conclusions may be drawn: 

❑ The velocity within the boundary layer expands for increasing values of the heat 

generation   parameter, the viscous dissipation parameter, Joule heating parameter and the 

amplitude-to-length ratio of the wavy surface. On the other hand, the velocity decreases 

for increasing values of magnetic parameter and the Prandtl number. 

❑ The temperature within the boundary layer increases for  increasing values of the heat 

generation parameter, the magnetic parameter, the viscous dissipation parameter, Joule 

heating parameter and the amplitude-to- length ratio of the wavy surface. 

❑  Increased values of the heat generation parameter, Joule heating parameter and viscous 

dissipation parameter lead to increase in the skin friction coefficient while the reverse 

phenomena occurs for increasing values of the magnetic parameter, the Prandtl number 

and the amplitude-to- length ratio of the wavy surface.  

❑ The rate of heat transfer decreases with the increase of the heat generation parameter, the 

magnetic parameter, the viscous dissipation parameter and the amplitude-to-length ratio 

of the wavy surface but for increasing values of Prandtl number, the rate of heat transfer 

increase gradually.   

❑ The increasing velocity enhances velocity boundary layer thickness for the higher values 

of the heat generation parameter, the viscous dissipation parameter, the amplitude-to- 

length ratio of the wavy surface. But opposite result is observed for increasing values of 

the magnetic parameter and the Prandtl number.  
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❑ An increase of the values of heat generation parameter, the magnetic parameter, the 

viscous dissipation parameter and the amplitude-to- length ratio of the wavy surface lead 

the thermal boundary thicker gradually. But opposite result is observed for increasing 

values of the Prandtl number Pr. 

 

 

 

Comparison and code validations 
 

Table 3.2: Comparison of the present numerical results of skin friction coefficient, f (x,0) 
and the heat transfer, - (x,0) with Hossain et al. (2002) for the variation of Prandtl number 
Pr while Ec = 0.0, M = 0.0, J = 0.0, Q = 0.0 with  = 0.1. 

 

 

 
 

Here the magnetic parameter M, Viscous dissipation parameter Ec, Joule heating parameter 

J, Heat generation parameter Q are ignored while different values of Prandtl number Pr = ( 

1.0, 10.0, 25.0 ) are chosen. From Table 3.2 , it is clearly seen that the present results are 

excellent agreement with the solution of Hossain et Al. (2002)

Pr 

f"(x,0) θ´(x,0) 

Hossain et al. 
(2002) Present work Hossain et al. 

(2002) Present work 

1.0 0.908 0.911 0.401 0.400 

10.0 0.591 0.593 0.825 0.823 

25.0 0.485 0.489 1.066 1.064 



 

 

Conclusion 

 

The present work performs the viscous dissipation effect in presence of heat generation and 

Joule heating on natural convection flow along a vertical wavy surface. The governing 

boundary layer equations are first transformed into a non-dimensional form using the 

appropriate transformations. The resulting nonlinear system of partial differential equations 

are mapped into the domain of a vertical flat plate and then solved numerically employing 

the implicit finite difference method, known as Keller-box scheme. Major findings can be 

summarized as per the following conclusions 

 

Summary of the major outcomes 

The velocity within the boundary layer increases for increasing values of the heat 

generation parameter Q, the viscous dissipation parameter Ec and the amplitude-to-length 

ratio of the wavy surface α. Increasing velocity increases the skin friction coefficient Cfx and 

the velocity boundary layer thickness.  

The temperature within the boundary layer increases for increasing values of the heat 

generation parameter Q, the Joule heating parameter J, the viscous dissipation parameter Ec 

and the amplitude-to-length ratio of the wavy surface α. For increasing fluid temperature, the 

temperature difference between fluid and surface decreases and the correspond rate of heat 

transfer decreases. It is also observed that the thermal state of the fluid increases, so the 

thermal boundary layer becomes thicker. 
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Extension of this work 

The present work can be extended in different ways. Some of these are: 

• The thermal conductivity as a function of temperature can be considered to extend the 
present work. 

• Complex wavy surface can be considered as a combination of two sinusoidal 
functions. 

• The problem can be extended considering the radiation effect. 

• Forced convection may be studied with the same geometry. 

• Mixed convection may be studied with the same geometry. 
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