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Abstract

The removal of mixed-noise is an ill-posed problem due to high level of non-linearity in the

distribution of noise. Most commonly encountered mixed-noise is the combination of additive

white Gaussian noise (AWGN) and impulse noise (IN) that have contrasting characteristics. A

number of methods from the cascade of IN and AWGN reduction to the state-of-the-art sparse

representation have been reported to reduce this common form of mixed-noise. In this the-

sis, a new learning-based algorithm using the convolutional neural network (CNN) models are

proposed to reduce the mixed Gaussian-impulse noise from images. The models are evaluated

for both the image to image learning as well as image to residual learning techniques. The

proposed CNN models adopts computationally efficient transfer learning approach to obtain

an end-to-end map from noisy image to noise-free image. The model has a small structure

yet it is capable of providing performance superior to that of the well established methods.

Experimental results on different settings of mixed-noise show that the proposed CNN image

to image learning based denoising method performs significantly better than the sparse repre-

sentation and patch-based methods do both in terms of accuracy and robustness. Moreover,

due to the lightweight structure, the denoising operation of the proposed CNN-based method

is computationally faster than that of the previously reported methods. The proposed im-

age to residual learning based densely connected denoising CNN (DCDCNN) outperforms the

previous state-of-the-art CNN based denoising method. Qualitative evaluation shows that the

proposed DCDCNN produces visually superior images than the traditional as well as other

CNN based methods. Despite being a deeper neural network architecture, the proposed DCD-

CNN can denoise in a very short time by employing GPU.

v



Contents

Abstract v

List of Figures viii

List of Tables xiv

List of Abbreviations xvii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Scope of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Specific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 CNN: A Brief Review 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Layers of CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Convolution Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Batch Normalization Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Rectified Linear Unit Layer . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Max-Pool Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



2.2.5 Dense Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Loss Functions for Classification . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Loss Functions for Regression . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Denoising Using Image to Image Learning 21

3.1 Introdcution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Image to Image Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Training Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Denoising Using Image to Residual Learning 28

4.1 Introdcution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Image to Residual Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Training Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Experiments and Results 35

5.1 Introdcution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Experiments on Image to Image Denoising . . . . . . . . . . . . . . . . . . . . . 39

5.4.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.2 Learned Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4.3 Methods Used for Comparison . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Experiments on Image to Residual Denoising . . . . . . . . . . . . . . . . . . . . 56

5.5.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.2 Learned Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.3 Methods used for Comparison . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vii



6 Conclusions 72

6.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendix 75

viii



List of Figures

1.1 Effect of mixed AWGN-SPIN noise on a typical image and its histogram. (a)

Noise-free image, (b) noisy image, (c) histogram of noise-free image, and (d)

histogram of noisy image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 A dense block with three filter units. The inputs and outputs are colored in

order to show the data flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Stick diagram of the proposed feed-forward CNN architecture showing the pre-

processing steps and 4-stage convolution filtering. Operations from the left to

right is considered to be the forward path. Each of the processing steps or layers

of the network is represented by its corresponding geometric shape. The rank

order filtering operation is shown by a stripe in a rectangle, the upsampling op-

eration through bicubic interpolation by a diverging trapezoid, the convolution

layer by a rectangle, the ReLU layer by a solid line, and the max-pooling layer

by a converging trapezoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Denoising performance by varying number of stages in the CNN architecture.

(a) Increase of PSNR from previous stage. (b) Increase of SSIM from previous

stage. (c) Standard deviation of PSNRs. (d) Standard deviation of SSIMs. . . . 24

3.3 Block diagram of the proposed method showing rank order filter, upsampling

employing bicubic interpolation and the CNN employing image to image learning

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



4.1 Proposed filter unit Hld(·) for denoising where the 1× 1 convolution performs a

expansion of channels and the 3× 3 convolution layers performs compression of

channels in the network. The convolution layers are referred to as CONV and

the batch normalization layers are referred to as BN. . . . . . . . . . . . . . . . 29

4.2 Proposed DCDCNN by employing the convolution, ReLU, batch normalization

layers and dense block in a residual learning strategy. The convolution layers

are referred to as CONV and batch normalization layers are referred to as BN.

The learned residual image is subtracted from the input noisy image to obtain

the denoised image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Comparison of denoising performance for 11 commonly referred test images in

terms of PSNR of a traditional method Cai’s [1]+BM3D [2], DnCNN [3] vali-

dated using images contaminated by AWGN-IN, DnCNN validated using images

contaminated by AWGN, and proposed DCDCNN validated using images con-

taminated by AWGN and optimized by employing squared Frobenius norm,

SSIM loss function and both squared Frobenius norm and SSIM loss function,

respectively, for removal of mixed AWGN+SPIN with noise parameters σ = 25

and p = 0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Learning curves of the proposed CNN-based model trained for removal of mixed

AWGN+SPIN with noise parameters σ = 10 and p = 0.30. The pink dotted

learning curve is obtained when both the ROF and BI layers as well as the

subsequent MPK1 layer are removed from the model. The solid red curve with

circle markers results in when the network uses the ROF layer without the BI

layer. The blue solid curve is obtained when the network uses both the ROF

and BI layers but without any prior information for initialization of weights and

biases. The black dashed curve is obtained when both the ROF and BI layers

are employed and at the same time transfer learning is adopted using the known

weights and biases that are trained for σ = 10 and p = 0.15. . . . . . . . . . . . 36

x



5.2 Grid of the filters in the filter set W1 learned from the training dataset for SPIN

parameters σ = 10 and p = 0.30. The kernel size of each of the filters is 7 × 7.

The filters are sorted according to the variance of coefficients. . . . . . . . . . . 39

5.3 The input and outputs of different convolution layers for AWGN+SPIN param-

eters σ = 10 and p = 0.30. (a) Input noisy image. Typical ten outputs of each

column are obtained from the convolution layers of (b) first stage, (c) second

stage, and (d) third stage. (e) Output of the final convolution layer. . . . . . . . 40

5.4 Visual comparison of the denoising performance of the methods for the test im-

age Boat. (a) The ground truth of noise-free image. (b) The image is corrupted

by mixed AWGN+SPIN with parameters σ = 10 and p = 0.30 (PSNR: 10.65 dB,

SSIM: 0.0731). (c) The image is obtained by using Cai’s method (PSNR: 27.70

dB, SSIM: 0.6929). The estimated noise-free images are obtained by using the

methods (d) Cai’s+BM3D [2] (PSNR: 31.21 dB, SSIM: 0.8529), (e) WESNR [4]

(PSNR: 29.56 dB, SSIM: 0.8062), and (f) proposed CNN (PSNR: 31.92 dB,

SSIM: 0.8596). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Visual comparison of the denoising performance of the methods on a high quality

image having a close-up view. (a) The ground truth of noise-free image. (b) The

image is corrupted by mixed AWGN+SPIN with parameters σ = 25 and p = 0.15

(PSNR: 12.40 dB, SSIM: 0.1419). (c) The image is obtained by using Cai’s

method (PSNR: 20.40 dB, SSIM: 0.3587). The estimated noise-free images are

obtained by using the methods (d) Cai’s+BM3D [2] (PSNR: 28.71 dB, SSIM:

0.8838), (e) WESNR [4] (PSNR: 25.77 dB, SSIM: 0.8458), and (f) proposed

CNN (PSNR: 28.81 dB, SSIM: 0.8906). . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Visual comparison of denoising performance of the proposed method for the

color version of the high quality image. (a) The ground truth of noise-free

image. (b) The image is corrupted by mixed AWGN+SPIN with parameters

σ = 10 and p = 0.30 (PSNR: 5.47 dB, SSIM: 0.2466). (c) The estimated noise-

free image is obtained by using the proposed CNN (PSNR: 24.79 dB, SSIM:

0.9296). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



5.7 Visual comparison of the denoising performance of the methods for mixed AWGN+SPIN+RVIN

denoising for an image having long shot view. (a) The ground truth of noise-free

image. (b) The image is corrupted by mixed AWGN+SPIN+RVIN with param-

eters σ = 10, p = 0.20 and r = 0.05 (PSNR: 12.75 dB, SSIM: 0.2316). The esti-

mated noise-free images are obtained by using the methods (c) AMF+ACWMF+BM3D [2]

(PSNR: 22.64 dB, SSIM: 0.6893), (d) WESNR [4] (PSNR: 22.44 dB, SSIM:

0.6592), and (e) proposed CNN (PSNR: 22.83 dB, SSIM: 0.7088). . . . . . . . . 52

5.8 Comparison of execution time of the four experimental methods required to

denoise an image of size 128× 128 contaminated by mixed AWGN+SPIN with

parameters σ = 10 and p = 0.30. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.9 Learning curves of the proposed DCDCNN trained for removal of mixed AWGN+SPIN

with noise parameters σ = 25 and p = 0.15. The pink dotted learning curve

is obtained employing the DnCNN architecture. The solid red curve with cir-

cle markers results in DCDCNN architecture is trained employing SSIM loss

funciton. The blue dashed curve is obtained when the DCDCNN architecture

is trained using Frobenius norm. The black solid curve is obtained when the

DCDCNN is trained employing both the Frobenius norm and SSIM loss function. 55

5.10 Grid of the filters in the filter set of the first convolutions layers of the proposed

DCDCNN learned from the training dataset for AWGN+SPIN parameters σ =

25 and p = 0.15. The kernel size of each of the filters is 3 × 3. The filters are

sorted according to the variance of coefficients. . . . . . . . . . . . . . . . . . . . 57

5.11 The input and outputs of different convolution layers for mixed AWGN+SPIN

removal using DCDCNN with noise parameters σ = 25 and p = 0.15. (a) Input

noisy images. All 64 outputs of the (b) first and (c) second convolution layers.

(d) Typical 64 outputs of the second dense block. (e) The 64 outputs of the

final transition layer. (f) Output of the final convolution layer which estimates

the residual image. (g) The estimated denoised image (PSNR: 28.76 dB, SSIM:

0.8505). (h) The ground truth image. (i) The ground truth residual image. . . . 58

xii



5.12 (a) Gaussian fit of the distributions of the PSNRs for DnCNN [3] (µ = 27.28 dB

and σ = 1.82) and DCDCNN (µ = 27.56 dB and σ = 2.10). (b) Gaussian fit of

the distributions of the SSIMs for DnCNN [3] (µ = 0.8353 and σ = 0.0496) and

DCDCNN (µ = 0.8449 and σ = 0.0518). . . . . . . . . . . . . . . . . . . . . . . 62

5.13 Visual comparison of the denoising performance under heavy noise of the meth-

ods for a high quality image having a close-up view. (a) The ground truth of

noise-free image. (b) The image is corrupted by mixed AWGN+SPIN with pa-

rameters σ = 40 and p = 0.15 (PSNR: 11.72 dB, SSIM: 0.1226). The estimated

noise-free images are obtained by using the methods (c) Cai’s [1]+BM3D [2]

(PSNR: 26.81 dB, SSIM: 0.8269), (d) IIL [5] (PSNR: 24.50 dB, SSIM: 0.7705),

(e) DnCNN [3] (PSNR: 26.73 dB, SSIM: 0.8282), and (f) proposed DCDCNN

(PSNR: 27.45 dB, SSIM: 0.8612). . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.14 Visual comparison of the denoising performance for the color version of the

high quality image. (a) The ground truth of noise-free image. (b) The image

is corrupted by mixed AWGN+SPIN with parameters σ = 10 and p = 0.30

(PSNR: 9.86 dB, SSIM: 0.2245). The estimated noise-free images are obtained

by using the methods (d) IIL [5] (PSNR: 30.06 dB, SSIM: 0.9686), (e) DnCNN [3]

(PSNR: 30.71 dB, SSIM: 0.9725), and (f) proposed DCDCNN (PSNR: 31.5015

dB, SSIM: 0.9757). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.15 Visual comparison of the denoising performance of the methods for commonly

referred Parrot image. (a) The ground truth of noise-free image. (b) The image

is corrupted by mixed AWGN+SPIN with parameters σ = 25 and p = 0.15

(PSNR: 12.30 dB, SSIM: 0.1201). The estimated noise-free images are obtained

by using the methods (c) Cai’s [1]+BM3D [2] (PSNR: 27.80 dB, SSIM: 0.8326),

(d) IIL [5] (PSNR: 27.75 dB, SSIM: 0.8268), (e) DnCNN [3] (PSNR: 28.56 dB,

SSIM: 0.8411), and (f) proposed DCDCNN (PSNR: 28.77 dB, SSIM: 0.8503). . . 69

xiii



5.16 Visual comparison of the denoising performance of the methods for a near in-

frared (NIR) image. (a) The original noisy image. The image is denoised as-

suming noise parameters σ = 20 and p = 0.15 by (b) Cai’s [1]+BM3D [2],

(c) WESNR [4], (d) IIL [5], (e) DnCNN [3], and (f) proposed DCDCNN. . . . . 70

5.17 Comparison of execution time of the four experimental methods required to

denoise an image of size 128× 128 contaminated by mixed AWGN+SPIN with

parameters σ = 25 and p = 0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xiv



List of Tables

5.1 Denoising performance in terms of mean and standard deviation of PSNR (in

dB) and SSIM for reducing mixed AWGN+SPIN from Test Set 1. . . . . . . . . 43

5.2 Denoising performance in terms of mean and standard deviation of PSNR (in

dB) and SSIM for reducing mixed AWGN+SPIN from Test Set 2. . . . . . . . . 44

5.3 Denoising performance in terms of mean and standard deviation of PSNR (in

dB) and SSIM for reducing mixed AWGN+SPIN from Test Set 3. . . . . . . . . 45

5.4 Denoising performance in terms of mean and standard deviation of PSNR (in

dB) and SSIM for reducing mixed AWGN+SPIN+RVIN from Test Sets 1, 2,

and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Denoising performance in terms of mean and standard deviation of PSNR (in

dB) and SSIM for reducing mixed AWGN+SPIN and AWGN+SPIN+RVIN

from commonly-referred five test images. . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Denoising performance in terms of mean and standard deviation of PSNR (in

dB) and SSIM for reducing AWGN from Test Set 1. . . . . . . . . . . . . . . . . 48

5.7 Denoising performance in terms of mean PSNR (in dB) and SSIM for reducing

mixed AWGN+SPIN from Test Set 1. . . . . . . . . . . . . . . . . . . . . . . . . 61

5.8 Denoising performance in terms of mean PSNR (in dB) and SSIM for reducing

mixed AWGN+SPIN from Test Set 2. . . . . . . . . . . . . . . . . . . . . . . . . 63

5.9 Denoising performance in terms of mean PSNR (in dB) and SSIM for reducing

mixed AWGN+SPIN from Test Set 3. . . . . . . . . . . . . . . . . . . . . . . . . 64

xv



5.10 Denoising performance in terms of mean of PSNR (in dB) and SSIM for reducing

mixed AWGN+SPIN with σ = 25 and p = 0.15 from commonly-referred test

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.11 Denoising performance in terms of mean of PSNR (in dB) and SSIM for reducing

AWGN from commonly referred test images. . . . . . . . . . . . . . . . . . . . . 66

xvi



List of Abbreviations

ACWMF Adaptive Center Weighted Median Filter
Adam Adaptive Momentum
AMF Adaptive Median Filter
AWGN Additive White Gaussian Noise
BI Bicubic Interpolation
BM3D Block Matching and 3D Filtering
BN Batch Normalization
CNN Convolutional Neural Network
DCT Discrete Cosine Transform
DET Object Detection
DnCNN Denoising Convolutional Neural Network
DCDCNN Densely Connected Denoising Convolutional Neural Network
IIL Image to Image Learning
ILSVRC ImageNet Large Scale Visual Recognition Challenge
IN Impulse Noise
IRL Image to Residual Learning
MF Median Filter
MLP Multi Layer Perceptron
MP Max Pool
NLM Non Local Means
NN Neural Network
PSNR Peak Signal to Noise Ratio
ReLU Rectified Linear Unit
RMSProp Root Mean Square Propagation
ROF Rank order Filter
RVIN Random Valued Impulse Noise
SGD Stochastic Gradient Descent
SPIN Salt and Pepper Impulse Noise
SSIM Structural Similarity
WESNR Weighted Encoding with Sparse Nonlocal Regularization

xvii



Chapter 1

Introduction

1.1 Introduction

Image denoising is a fundamental problem in image processing and computer vision. Images are

corrupted during image acquisition or transmission due to inherent characteristics of imaging

devices and transmission paths as well as due to defective equipment [6]. The goal of image

denoising is to estimate the original noise-free image from its noisy observation. Image denoising

as well as closely related operations like image inpainting [7] and watermark removal [8] are

also recognized as preprocessing tasks such as image segmentation and pattern recognition

in computer vision. Two commonly encountered noise types in the literature are the additive

white Gaussian noise (AWGN) and impulse noise (IN). The AWGN, which primarily originates

from the sensor temperature and illumination levels of the environment, affects the entire set

of pixels of an image [9]. On the other hand, the IN caused by faulty sensors or transmission

errors, replaces certain image pixels with random values. The reasons for the generation of

these noises are common and they often occur simultaneously resulting in mixed form of AWGN

and IN. For example, AWGN and IN occur simultaneously in digital photography due to sensor

temperature and faulty sensor triggering [10]. The noise in imaging of computed tomography

is often modeled as mixed AWGN-IN (see, for example, [11]). The complex mixing of photon

and electronic noise, laser light reflection and dust on the glass slides are common in cDNA

microarray imaging. In such a case, the noise in microarray images can be efficiently modeled as

1



CHAPTER 1. INTRODUCTION 2

mixed AWGN-IN [12]. The noise in near-infrared (NIR) and hyperspectral images is modeled

as mixed noise consisting of AWGN, shot noise and IN [13]. The denoising of images itself is

regarded as an ill-posed inverse problem; and noticeably the estimation of a noise-free image

becomes more challenging in the case of mixed-noise due to the fact that the distributions of

the Gaussian and impulse noise differ significantly. Reduction of these noises have been studied

extensively in the past decades separately as well as in the mixed form. In this section, the

denoising methods for the AWGN, IN and mixed Gaussian-impulse noise are briefly reviewed.

Finally, the scope in the area and the contributions of the work are given.

1.2 Related Works

AWGN is widely studied noise model in the area of image denoising. Samples of a zero-

mean Gaussian distribution are assumed to be added to pixels resulting in image corrupted

with AWGN. A very common form of assumption for such a type of noise is the independent

and identically distributed (i.i.d.) nature of the additive components. A good number of

approaches have been investigated to restore images contaminated with AWGN. The noise

can be reduced by using a simple approach of Gaussian filtering, in which case, however,

the edge is not preserved giving rise to edge displacement, edge vanishing and even phantom

edges [14]. Adaptive Gaussian filtering, bilateral filtering (BF), and non-local means (NLM) [15]

consider this issue and show incremental accuracy in edge preservation. Since the inception of

NLM, this approach has been rigorously investigated in a number of methods (see for example,

[2, 16]). Multiresolution analysis has also been used to reduce AWGN from images because of

its success in 1D signal denoising [17, 18]. For example, Rahman et al. [19] used the modified

Gaussian-Hermite distribution to statistically model the discrete wavelet coefficients of images

to reduce AWGN through Bayesian framework. Image denoising methods by using wavelets

with improved directional selectivity such as the directionlet [20] and contourlet [21] were also

tried. Dabov et al. [2] introduced block matching and 3D-filtering (BM3D) algorithm in which

the similar image patches are grouped into a 3D matrix. Then, such groups are processed in a

3D transformed domain using one of the available sparse representations such as the DCT, bi-
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orthogonal and Haar wavelet coefficients. Liu et al. [16] prescribed a method using an adaptive

soft-thresholding to find similar patches in images along with the l2-norm-based estimation for

noise-free sparse coefficients. It was recommended that the block matching of BM3D should

be carried out along edge direction to improve the denoising performance [22]. Xu et al. [23]

developed a fast method based on the nonlocally centralized sparse representation algorithm.

The neural network (NN) has also been employed to remove AWGN from images (see for

example, [24, 25, 26]). The reduction of AWGN using the convolutional neural network (CNN)

was recommended in [24]. Burger et al. [25] have provided a comparative study between the

approaches of multilayer perceptron (MLP) and BM3D. Wang and Morel [27] used the mean-

shift of the noisy patches and then attempted an MLP trained on a fixed strength noise level

to remove Gaussian noise of variable strengths. Recently, a residual learning strategy has been

adopted in CNN to reduce AWGN from images corrupted with unknown noise level [3].

Impulse noise is considered to be the replacement of certain portion of total pixels of an

image by a set of fixed-level intensities with a given probability. Widely encountered impulse

noise are salt and pepper impulse noise (SPIN) and random valued impulse noise (RVIN). In

the case of SPIN, the corrupted image pixels get set at extreme values of the dynamic range

of the image pixels, whereas a corrupted pixel in RVIN may be any of the random values

within the range. In order to restore the images corrupted by IN, a number of nonlinear

techniques have been tried. A simple rank order filter (ROF), e.g., the median filter (MF) [9]

can be applied to detect and eliminate IN, but the local structures of images are destroyed by

employing such a simple filtering technique for heavy noise corruption. In order to mitigate such

problems, various improvements in MF such as the weighted MF [28], and center weighted MF

(CWMF) [29] have been proposed. In general, these filters operate only on the corrupted pixels

of an image, thus requiring a method to detect the noisy and noise-free pixels. The denoising

methods using such an approach include the switching MF [30], adaptive MF (AMF) [31],

and adaptive CWMF (ACWMF) [32]. The MLP scheme has also been used to restore images

corrupted by IN (see, for example, [25]).

Tackling the mixture of AWGN and IN is relatively difficult because of the unique nature

of each of the two types of noise. In general, the additive filters are successful in reducing
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the Gaussian noise, while the order statistics filters for the impulse noise [33]. In order to

reduce the mixed Gaussian-impulse noise from images, conventional methods use rank order

statistics of pixels to detect and remove IN first, and then use a separate denoising technique

by assuming that the residual noise is Gaussian. The order statistics filters when applied to

images corrupted with mixed AWGN-IN produce grainy and visually unpleasant results, and

successive Gaussian filters cannot compensate such noise effectively [34]. The alpha-trim mean

filters provide both the additive and rank order properties. However, under heavy noise, these

methods provide inadequate performance as the local structures of images become smeared.

In order to preserve the details in an image, the BF has been extended as a trilateral filter

to reduce the mixed-noise by incorporating the rank-ordered statistics of the absolute differ-

ences of intensities of neighboring pixels [34]. Cai et al. [35, 1] proposed a two-phase method

to estimate the noise-free images. In this method, IN is detected and removed first by using

AMF, and then the resultant image is denoised by optimizing an l1-norm-based regularization

function. Cai’s method can be treated as a rank order filtering technique, provided the reg-

ularization parameter is very small. This method has been studied for mixed-noise removal

by exploring different kinds of norms and regularization techniques in the second phase. The

norms that have been investigated in the optimization technique include the total variation

norm of wavelet coefficients of images [36]. Liu et al. [37] used the dictionary learning model

with sparse representation to estimate the noise-free image. Agostinelli et al. [26] employed

the ensemble of stacked sparse autoencoders and adaptive averaging technique for image de-

noising. Zhang et al. [38] proposed an iterative split-Bregman-based denoising algorithm that

requires joint statistical modeling of similar patches in an image. In a unified framework of

joint detection of noisy pixels and reduction of noise components, Xiang et al. [4] proposed an

iterative dictionary learning-based method called the weighted encoding with sparse nonlocal

regularization (WESNR). The method provides a good performance in preserving the local

structures for relatively smooth images, but falls short when images have higher details. Dic-

tionary learning method has recently been used for hyperspectral image super resolution under

mixed Poisson-Gaussian noise [39].
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1.3 Scope of Analysis

To the best of our knowledge, the removal of mixed-noise from images has not yet been

attempted by using CNN, which has shown immense success not only in image classifica-

tion [40] but also in different regression-type problems such as image enhancement [41], super-

resolution [42], blind deconvolution [43], and inpainting [44]. The increasing interest of CNN is

also largely due to the availability of application-oriented large databases and efficient parallel

computing in graphics processing units (GPUs) [40]. Convolutional neural network has been

attempted to remove AWGN from images (see [24], and [3]). Two stream NNs have also been

employed for reducing AWGN and IN independently by training the patches of certain test im-

ages [26]. The success of CNN in many image processing techniques as well as a few instances

of application of NNs in simple problems of image denoising has thus motivated us to develop

a single-stream CNN architecture in order to tackle the highly challenging problem of removal

of mixed-noise by generating the reconstruction filters with the consideration of large-scale

image variabilities. A question may arise as to why CNN should be chosen as compared to the

acclaimed denoising methods such as those that adopt sparse representation and patch based

denoising. To answer this question, first we would like to refer to the methods adopting the

sparse representation. Recently, it has been shown that CNN possesses higher representation

capability as compared to traditional sparse representation, thus provides better performance

in image super-resolution [42]. Traditionally, the sparse dictionaries are constructed by vector-

izing the image matrices or patches, and thus 2D structural information, i.e., dependency of

pixels of local neighboring regions may be lost in dictionary learning. On the contrary, CNN is

capable of maintaining the 2D structural information both in the training and testing phases,

since the convolution operation considers the local neighboring image pixels by using 2D masks.

Second, the patch-based methods such as NLM and BM3D use self-similarity regularization

and thus require a computationally heavy iterative optimization algorithm. In addition, the

performance of these methods can be sub-optimal, if the images have a low number of self-

similar patches. On the contrary, CNN optimizes its weights of the convolution masks through

gradient-based training scheme, which inherently considers self-similarity in the entire set of
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patches available in relatively large number of training images. In the training phase of a CNN-

based network, the weights of the masks are learned through the gradients of local neighboring

pixels in such a way that the noise is reduced. Since a huge number of samples as well as large

variabilities in images are used during training, the CNN-based denoising is expected to be

optimal. Moreover, the performance of CNN has been shown to have significantly improved

due to the inclusion of newer activation functions like the rectified linear unit (ReLU) [40] and

newer learning algorithms such as the root mean square propagation (RMSProp) [45]. Such a

success has not been observed in other types of neural networks. For example, the long short

term memory network [46], which is primarily used to model time series data, has not benefited

much due to ReLU activation function, as CNN has. In addition, regression type tasks includ-

ing denoising require images to be processed in patches prior to inputting them to the network.

In such a case, the implementation of CNN using modern GPUs to train an end-to-end model

is more efficient than that of MLP. Further, once a CNN is trained, the weights learned by

the network can be transferred to a closely related network that has a similar setting for faster

learning [47]. In addition there is scope of developing new denoising algorithm employing the

image to residual learning [48] technique. Thus, the removal of mixed-noise using CNN is a

viable idea and the development of efficient method of noise reduction using a suitable network

architecture is worth investigating.

1.4 Specific Contributions

The main objective of this thesis is to present CNN architectures for reduction of mixed-noise

encountered in practice. Overall, the contributions of this paper are as follows:

• A four-stage CNN architecture employing image to image learning is proposed for reduc-

tion of mixed Gaussian-impulse noise in images. The network learns end-to-end mapping

from noisy images to noise-free estimates with trivial pre-processing.

• A very deep densely connected denoising convolutional neural network (DCDCNN) is

proposed employing image to residual learning technique for the purpose of reducing
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Figure 1.1: Effect of mixed AWGN-SPIN noise on a typical image and its histogram. (a)
Noise-free image, (b) noisy image, (c) histogram of noise-free image, and (d) histogram of
noisy image.

mixed Gaussian-impulse noise in images. The network learns end-to-end mapping from

noisy images to residual noise without any pre-processing.

• Faster training of network is obtained by adopting the mechanism of transfer learning.

• The performance of the proposed CNN-based method is evaluated using sufficiently large

datasets as well as commonly-referred test images. The overall denoising performance in

terms of accuracy and robustness is shown to be better than that of the state-of-the-art

methods considering different settings of mixed-noise.
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1.5 Problem Formulation

Let X be a noise-free image of size Mv×Mh with each element being represented as x(mv,mh)

at pixel location (mv,mh), where mv ∈ {1, 2, · · · ,Mv} and mh ∈ {1, 2, · · · ,Mh}. Let Xn be

the noisy observation of the image X with a relation given by

Xn = f(X) (1.1)

where f(·) is the degradation function. Also, let a noisy pixel be denoted as xn(mv,mh). We

consider two types of corruption: 1) mixed AWGN and SPIN and 2) mixed AWGN, SPIN and

RVIN. If the image is corrupted only by AWGN, then a noisy pixel is given by

xn(mv,mh) = x(mv,mh) + ν(mv,mh) (1.2)

where ν(mv,mh) is a sample of i.i.d. zero-mean Gaussian distribution with standard deviation

σ. Within the given dynamic range, let the maximum and minimum values of an image pixel

be dmax and dmin, respectively. Then, an image is corrupted with SPIN when xn(mv,mh) is

either dmax or dmin with equal probability p/2 (p ≤ 1). Thus, for mixed AWGN+SPIN noise

a pixel is corrupted by AWGN with a probability (1 − p). Using these definitions, the noisy

observation for each pixel of mixed AWGN+SPIN can be described as [4]

xn(mv,mh) =



dmin with probability p/2

dmax with probability p/2

x(mv,mh) + ν(mv,mh) with probability 1− p

. (1.3)

In a similar fashion, let an image be corrupted with RVIN when xn(mv,mh) attains a random

value d(mv,mh) with probability r (r ≤ 1). The value d(mv,mh) is uniformly distributed

within the dynamic range [dmin, dmax]. Using the definition of RVIN, the noisy observation for
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each pixel of mixed AWGN+SPIN+RVIN can be described as [4]

xn(mv,mh) =



dmin with probability p/2

dmax with probability p/2 .

d(mv,mh) with probability r(1− p)

x(mv,mh) + ν(mv,mh) with probability (1− p)(1− r)

(1.4)

Figure 1.1 shows a typical image and its noisy version corrupted with AWGN and SPIN,

and the corresponding histograms of the images. The noisy image is obtained by using the

AWGN parameter σ = 10 and SPIN parameter p = 0.3. It is observed from this figure that the

degradation function changes the original histogram significantly. In particular, the variation

of histogram in the dynamic region has been smoothed significantly primarily due to AWGN.

At the same time, two strong peaks have appeared at the two ends of the histogram due to

the presence of SPIN. In other words, the effects of mixed-noise on the histogram of image are

contrasting in nature. The goal of denoising is to find an estimate X̂ for the noise-free image

X from its noisy observation Xn.

1.6 Outline

The rest of the thesis is organized as follows. Chapter 2 provides a brief review of the CNN ar-

chitecture and the training schemes employed in the literature. Chapter 3 provides a description

of the proposed image to image learning (IIL) based denoising scheme. The proposed image

to residual learning (IRL) based denoising scheme is discussed in Chapter 4. The datasets,

the representations learned by the proposed networks and the experimental results along with

comparison to other state-of-the-art methods have been discussed in Chapter 5. This chapter

also shows the effectiveness of the proposed methods by varying the noise parameters and ob-

serving visual outputs. Finally, the conclusions are provided in Chapter 6 where the findings

of the study are summarized.



Chapter 2

CNN: A Brief Review

2.1 Introduction

In machine learning convolutional neural network (CNN) [49] is a class of deep learning algo-

rithm [50]. It is a type of feed-forward artificial neural network where the filtering is performed

employing convolution kernels. Such a network can be employed for both classification and

regression. In this chapter, a brief review of the CNN architecture and its training methods

are described.

2.2 Layers of CNN

The typical layers of a CNN are the convolution layer performing the filtering operation, the

ReLU layer performing the activation, and the max-pool layer reducing the spatial dimensions.

Recently, with the introduction of batch normalization and dense connection, the performance

of the networks have further increased. The layers are described in brief as follows:

2.2.1 Convolution Layer

This layer performs the 2D convolution operation on the input data Xi−1 using a set of layer-

dependent filters. Let Wi be a filter set with dimension Ci×Ci−1×Ni×Ni, where Ci and Ci−1

10
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are the number of channels of the output and input of this layer, respectively, and Ni is the

square-size support parameter of the filters. The parameter Ci represents the number of filters

in the set Wi. Each of the filters has a corresponding bias term, resulting in a bias vector bi

with Ci number of elements. Hence, the output of this layer is obtained from the output of the

previous layer, the bias term, and the corresponding filter set as

Xi = Wi ∗Xi−1 + bi (2.1)

where ∗ represents the linear convolution operation. This operation results in the dimension

of output Xi to be Ci × Mvi × Mhi from input Xi−1 with shape Ci−1 × Mv(i−1) × Mh(i−1).

There is a parameter called ‘stride’, which can be used in the convolution layer to increase or

decrease the spatial dimensions of the output. The spatial dimensions remain the same from

the input to the output, when the parameter is set to unity. A value of the stride parameter

greater than unity decreases the dimensions of the output, whereas a value less than unity

increases the dimensions. In the case of dimensionality reduction in the output, however, a

general tendency is to set the stride parameter to unity and to use the pooling layer to perform

the downsampling operation.

2.2.2 Batch Normalization Layer

Batch normalization (BN) layer performs normalization on the input data Xi−1 using the

average µB and standard deviation σ2
B of the input data. The output of the layer is obtained

by [51]

xm,i = γs
xm,i−1 − µB√

σ2
B + ε

+ βs (2.2)

where learnable parameters γs and βs are called scale and shift parameter, respectively. Dur-

ing training, running average and running standard deviation are employed for µB and σ2
B,
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respectively and are given by [51]

µB =
1

MB

MB∑
m=1

xm,i−1 (2.3)

σ2
B =

1

MB

MB∑
m=1

(xm,i−1 − µB)2 (2.4)

(2.5)

where MB is the umber of elements in the input. During testing the population mean and

population standard deviation are employed. Without batch normalization a netwrok requires

lower learning rate and carefully tuned initialization. Moreover, using such normalization the

outputs never saturates and always stays within small values and thus the network converges

quickly.

2.2.3 Rectified Linear Unit Layer

It is referred to as the activation layer, wherein only the elements of input with non-negative

values are transmitted to the output and the rest are set to zero. In other words, the input-

output relation of this layer is given by

Xi = max(0,Xi−1) (2.6)

where 0 is a zero-matrix with same size as that of Xi by considering the fact that the dimensions

of the input and output of this layer remain the same. It is well known that the rectification

aids the convergence of the neural network much faster as compared to the traditional sigmoid

function does. In addition, the ReLU unit assists the neural network to attain a better sparse

representation (see [52]). It is customary that the convolution layer or batch normalization

layer be followed by the ReLU activation.
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2.2.4 Max-Pool Layer

In this layer, a non-linear downsampling operation is carried out between the input and the

output. A mask of size Ki × Ki is selected along the spatial dimensions of the input in a

non-overlapping manner, and then the maximum value of the data in the mask is passed on

to the output layer. The pooling layers are reported to increase the robustness of CNN-based

algorithms in the presence of noise and clutter, and to be particularly well suited for attaining

sparsity in the data [53]. In practice, the max-pool layer is preceded by a ReLU layer. To

describe this layer, the notation MPKi
is used in the model description.

2.2.5 Dense Block

This block a combination of several layers where the outputs of each of the past convolution

layers in the block are concatenated [54, 55]. The output of the lthd convolution layer in a dense

block is given by

Xld = Hld([X0,X1,X3, ...,Xld−1]) (2.7)

where lthd ∈ 1, 2, ..., LD and LD is the total number of filter units in the dense block, X0 is the

input to the dense block, [X0,X1,X3, ...,Xld−1] is the concatenation of the past outputs, also

called, dense connection, and the function Hld()̇ is the functional representation of the filter

unit of the dense block. In the original implementation Hld()̇ employed batch normalization

layer followed by ReLU activation and convolution layer [55]. Sometimes, each of the Hld()̇

functions are preceded by a bottleneck layer, which is a function similar to Hld()̇ but employs

1 × 1 convolution layer with lower number of filters. Bottleneck layers are used to improve

computational efficiency by reducing number of channels in the output [56]. Figure 2.1 shows

a diagram of a dense block with three filter units, i.e., LD = 3. It is seen from the figure that,

the output of the dense block contains the input as well as the intermediate outputs of the

filter units. It is to be noted that, if each of the Hld(·) units have a receptive size of NR, then

a dense block with three filter units provides an output with contains the data processed with
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Figure 2.1: A dense block with three filter units. The inputs and outputs are colored in order
to show the data flow.

receptive size of 0, NR, 2× (NR − 1) + 1 and 3× (NR − 1) + 1. Thus, it is expected that the

future layers are able to better understand the dataflow and can process the data with optimal

receptive size.

2.3 Training

In order to map from input to output the trainable weights and parameters have to computed

using a training process. The most common method to train a CNN is to minimize a loss

function employing the backpropagation algorithm. The loss function indicates how far the
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state of the network is from the desired outcome. The backpropagation algorithm provides a

direction to which the trainables parameters have to be changed in order to minimize the value

of the loss provided by the loss function. The information obtained using backpropagation

algorithm is employed in an optimization algorithm to update the state of the network. In

this section, the cost functions for classification and regression analysis, and the minimization

algorithms are briefly described. It is to be noted that, the loss discussed here are for single

training sample, which is extended for a mini-batch such that, the mini-batch loss is the average

of loss of each of the samples.

2.3.1 Loss Functions for Classification

For a (xi, yi) pair of input and label, in classification task, the NN estimates the label of the

input from a pre-determined set of output labels (1, 2, ..., LN), whre LN the total number of

labels in the set. The output of an NN provides scores s1, s2, ..., sLN
against each of the labels.

Usually the label that holds the highest score is considered to be the estimated label by the

network. The loss function in a classification analysis, provides a measure as to how this

scores are evaluated. In this section, the multiclass Support Vector Machine (SVM) and the

cross-entropy loss functions for classification analysis are discussed.

SVM Loss Function

The SVM loss function defines the loss as a sum of distance between the correct class and

incorrect classes, subject to a threshold and is given by [57]

Di =
∑
j 6=yi

max(0, sj − syi + ∆) (2.8)

where sj is the score of the jth class, syi is the score of the correct class provided by the neural

network and ∆ is a hyperparameter that provides the expected distance between the two scores.

It is seen from (2.8) that the loss function is a sum which is computed only on the incorrect

classes. It is expected that the sum sj − syi + ∆ ≤ 0 which only happens when the score of the
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correct class is greater than the score of the incorrect classes by at least ∆. This formulation

is also known as hinge loss or Weston Watkins formulation.

Cross-entropy Loss Function

The cross-entropy loss function considers the scores as the unnormalized log probabilities and

defined as,

Di = −log

(
esyi∑
j e

sj

)
(2.9)

where the function f(x) = exi∑
j e

xj is called the softmax function. Thus, this formulation is

also known as softmax classifier. The softmax function can be interpreted as the normalized

probability assigned to the correct class. Thus the negative sign in (2.9) indicates that when

loss function is minimized, the probability of the correct class is maximized. The final target

is to obtain probability of 1 for the correct label, and 0 for the other labels, thus in turn to

obtain a Kroneker delta function.

2.3.2 Loss Functions for Regression

For a pair of input and desired output (xi, yi), in regression task, the output of the NN ŷi

estimates the desired output yi as closely as possible. Thus, unlike classification, where the

output scores of the network ranks the labels and the label has to be chosen from those scores,

in regression, the output of network is the expected output of the network. Thus, common

distance metrics such as L1, L2 can be employed as loss functions, and a specialized loss

function image processing using structural similarity (SSIM) [58] image quality index can be

employed to define a distance from the input to the output. In this section, these functions are

described briefly.
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L1 Loss Function

L1 loss function, also known as the least absolute deviation, is given by

Di = |yi − ŷi| . (2.10)

It is seen from (2.10) that the value of the loss is always positive and provides a measure of

distance from the desired output and estimated output. The objective is to minimize the value

of the loss to 0.

L2 Loss Function

L2 loss function, also known as the leas square deviation, is given by

Di = ||yi − ŷi||2 = (yi − ŷi)2. (2.11)

Similar to L1, the L2 loss provide measure of distance between the desired and estimated

output. However, L2 loss penalizes large distance with larger loss compared to L1 loss. Thus,

it is often opined that, for image processing L1 loss provides a smoother output compared to

L2 loss. It is noted that, L2 loss has a inverse relation to image quality metric peak signal to

noise ratio (PSNR).

In the case where the output of a neural network is a matrix or a tensor Ŷi instead of scalar

as in (2.11), the loss is referred to as squared Frobenius loss function and for a desired output

Yi is given by

Di =
∣∣∣∣∣∣Yi − Ŷi

∣∣∣∣∣∣2
F

=
∑
j

∑
k

|yi,j,k − ŷi,j,k|2 (2.12)

where || · ||F is the Frobenius norm. The minimum value of this loss function is zero.
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SSIM Loss Function

The SSIM loss function is defined strictly for matrix and tensors. SSIM is a method for

estimating the perceived quality of an image. For a desired output Yi and estimated output

Ŷi, the SSIM metric is given by

fSSIM(Yi, Ŷi) =
(2µYi

µŶi
+ c1)(2σ

2
YiŶi

+ c2)

(µ2
Yi

+ µ2
Ŷi

+ c1)(σ2
Yi

+ σ2
Ŷi

+ c2)
(2.13)

where µYi
is the mean of Yi, µŶi

is the mean of Ŷi, σ
2
Yi

is the variance of Yi, σ
2
Ŷi

is the

variance of Ŷi, σYiŶi
is the covariance of Yi and Ŷi, and c1 and c2 are constants to stabilize

the division operation. Usually, c1 is set to (k1L)2 and c2 is set to (k2L)2, where L is the

dynamic range of the image pixels and k1 and k2 are constants and set to 0.01 and 0.03 in the

original implementation [58].

As the SSIM index provides similarity between the desired and estimated output, the loss

function is defined in terms of dissimilarity. The value of SSIM is between −1 and +1. Thus

the SSIM loss function in terms of dissimilarity is given by

Di = LSSIM(Yi, Ŷi) = 1− fSSIM(Yi, Ŷi) (2.14)

where LSSIM(·) represents the SSIM loss function. When, the desired output Yi and estimated

output Ŷi are identical, (2.14) attains the minimum value of 0.

2.3.3 Optimization Algorithms

A trainable parameter w is updated using the gradient of the loss function D with respect to w.

A common approach is to iteratively update the value of the trainable parameter w(η) using

the information of the gradient dD(η)
dw(η)

, where η is the iteration number. The most common

algorithms are stochastic gradient descent (SGD), momentum, root mean square propagation

(RMSProp) and adaptive momentum (Adam) algorithm. The optimization algorithms are

described briefly in this section.
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Stochastic Gradient Descent (SGD)

In its simplest from the SGD algorithm is given by

w(η + 1) = w(η)− λdD(η)

dw(η)
(2.15)

where λ (λ > 0 is a hyperparameter called learning rate.

Momentum

It is an extension to SGD algorithm, there the the equation tracks the momentum ∆w in each

iteration. The update is then conducted based on the gradient as well as ∆w and is given by

∆w(η + 1) = α∆w(η)− λdD(η)

dw(η)
(2.16)

w(η + 1) = w(η) + ∆w(η + 1) (2.17)

where λ is learning rate and α (0 < α < 1) is another hyperparameter called momentum. In

most cases this approach provides a better convergence. The momentum part of (2.17) ensures

that the algorithm updates the parameters in a direction which is between the direction of the

previous step and the direction from the gradient step. As a result, for an erratic mini-batch

the parameter stays within the expected value instead of off shooting due to erroneous gradient.

Root Mean Square Propagation (RMSProp)

In this algorithm, the update of trainable parameter w is performed in terms of the weighted

average of the square of the gradient, which is also referred to as the mean squared given by [45]

MS(w(η)) = γMS(w(η − 1)) + (1− γ)

(
∂D(η)

∂w(η)

)2

(2.18)

w(η + 1) = w(η)− λ√
MS(w(η)) + ε

∂D(η)

∂w(η)
(2.19)
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where λ and γ (0 < γ < 1) are hyper-parameters known as the learning and decay rates,

respectively, and ε is a numerical stability factor. RMSProp is an attempt to modulate the

learning rate for each of the parameters independently employing the mean square value.

Adaptive Momentum (Adam)

In this algorithm, the update of the trainable parameter w is performed in terms of both the

first (m) and second momentum (v) of the gradient dD(η)
dw(η)

. In fact, the second moment is

same as the mean square of RMSProp algorithm. Thus, Adam, an extension of the RMSProp

algorithm, is given by [59]

m(η + 1) = β1m+ (1− β1)
dD(η)

dw(η)
(2.20)

v(η + 1) = β2v + (1− β2)
(
∂D(η)

∂w(η)

)2

(2.21)

w(η + 1) = w(η)− λ m(η + 1)√
v(η + 1) + ε

(2.22)

where β1 (0 < β1 < 1) and β2 (0 < β2 < 1) are hyperparameters called forgetting factor of first

and second momentum of the gradient, respectively and other parameters have usual meaning.

Adam algorithm in effect is a combination of both momentum update algorithm and RMSProp

algorithm. The direction the parameter updates is conducted is defined by first momentum,

which is, as previously, a direction between the direction of previous update and the direction

of the gradient step. At the same time, the learning rate is modulated due to the second

momentum or the mean squared value.



Chapter 3

Denoising Using Image to Image

Learning

3.1 Introdcution

Image to image learning (IIL) is a common technique for image enhancement and denois-

ing [24, 25, 26, 42]. It been employed for AWGN redecution [25, 26], natural image deformities

removal [24] and image super-resolution [42]. Most of the methods employ NN in a direct

image to image translation manner, where as [42] employs pre-processing in order to improve

the super resolution improvement. For reduction of mixed Gaussian-impulse noise from images

using CNN image to image learning we thus employ application specific pre-processing which

facilitates the denoising of mixed AWGN-IN [5]. This chapter provides a detail description and

rationale of the pre-processing, CNN model and the training scheme employed for denoising

mixed AWGN-IN from images using image to image translation.

3.2 Image to Image Learning Model

In general, a CNN-based method produces an end-to-end model with trivial pre- and post-

processings, which are usually referred to as the non-trainable operations. In many cases, an

application-oriented pre-processing can boost the performance of the neural network signifi-

21
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Pre-processing Stage 1 Stage 2 Stage 3 Stage 4

Figure 3.1: Stick diagram of the proposed feed-forward CNN architecture showing the prepro-
cessing steps and 4-stage convolution filtering. Operations from the left to right is considered
to be the forward path. Each of the processing steps or layers of the network is represented by
its corresponding geometric shape. The rank order filtering operation is shown by a stripe in
a rectangle, the upsampling operation through bicubic interpolation by a diverging trapezoid,
the convolution layer by a rectangle, the ReLU layer by a solid line, and the max-pooling layer
by a converging trapezoid.

cantly (see for example, the usage of bicubic interpolation applied for super-resolution in [42]).

In the literature, almost all the methods use an ROF such as MF as a preprocessor to denoise

images corrupted by mixed Gaussian-impulse noise. We have also adopted such a practice, and

hence, the first step of the proposed model to denoise the corrupted image X0 is given by

X1 = ROF (X0) (3.1)

where ROF denotes a suitable rank order filter or combination of such filters. The ROF can

be formed by using existing filters such as MF, AMF, CWMF, ACWMF or Cai’s method [35]

that are successful for reducing IN. The choice of such a filter largely depends on the type of

IN corrupting the image. In [4], it is suggested that ROF be AMF when the noise is SPIN,

and MF when the noise is SPIN+RVIN. In the proposed model, the Cai’s method [35] has

been chosen as ROF when the impulse noise is SPIN, and AMF followed by ACWMF has been

chosen when the noise is SPIN+RVIN. In the stick diagram, we recommend the use of a stripe
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in a rectangle to represent ROF.

To feed the convolution layer with a slightly smoother version of the noisy image, an upsam-

pling operation is performed on the rank order filtered image using the bicubic interpolation

(BI). In other words, the input-output relation of the second layer of the proposed model is

given by

X2 = BI(X1) (3.2)

where BI denotes the interpolation function. It can be shown that the frequency response of

the interpolation functions exhibit a nature of a low-pass filter [60]. Thus, some high frequency

components that arise from the rank order filtering on the Gaussian noise are mitigated using

such functions. In the stick diagram, we prefer to use a diverging trapezoid to represent this

interpolation function.

In order to denoise the rank order filtered and interpolated image, a 4-stage convolution

filtering scheme is employed in the proposed model. A natural question that may arise is as

to why 4 stages of convolutional layer are chosen in the model. In this context, an ablation

study using 1000 images is performed by varying the number of convolutional layers from 2

to 6 in the proposed architecture. It is observed that the relative improvements of denoising

performance in terms of mean of the peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM) [58] decrease with the number of stages. Figure 3.2 shows the relative improvements

of PSNR and SSIM in percentage as well as the standard deviation of these metrics as the

number of stages increases. The dotted line in the figure shows the increasing or decreasing

trend of the metrics. It is seen from this figure that the increase in PSNR with the addition

of a new convolution layer is not so significant when the number of layers is more than 4. In

particular, the increase in PSNR, i.e., ∆PSNR, due to the inclusion of a new convolutional

layer over 4 is less than 0.5%. Similar observation is made for the increase in SSIM, i.e.,

∆SSIM, due to the addition of a new convolution layer. Further, it is observed that increasing

the number of convolutional layers not only increases the computational load significantly, but

also decreases the robustness in terms of increasing the standard deviation of both the metrics.
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Figure 3.2: Denoising performance by varying number of stages in the CNN architecture. (a)
Increase of PSNR from previous stage. (b) Increase of SSIM from previous stage. (c) Standard
deviation of PSNRs. (d) Standard deviation of SSIMs.

Thus, it is concluded that a CNN architecture with 4 convolution layers is adequate to provide

a satisfactory level of denoising performance both in terms of accuracy and robustness. In each

of the four stages, the convolution layers may be followed by a ReLU or max-pool layer. Since

the spatial dimensions of a noisy image are increased due to interpolation in the preprocessing

step, at least one downsampling operation using the max-pool layer is required in the overall

model. In this context, only the first stage convolution filtering uses all three kinds of layers. In

particular, the output of the convolution layer is fed to a ReLU activation layer. This output

is then max-pooled and spatial dimension is reduced. Thus, the output of the first stage CNN
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Figure 3.3: Block diagram of the proposed method showing rank order filter, upsampling
employing bicubic interpolation and the CNN employing image to image learning method.

filtering can be written as

X3 = MPK1(max(0,W1 ∗X2 + b1)). (3.3)

It is evident that the spatial dimensions of the output of the first stage convolution filtering

are the same as that of the noisy input image. The second stage of the proposed model uses

only the convolution and ReLU layers providing the output given by

X4 = max(0,W2 ∗X3 + b2). (3.4)

The third stage of the network is a repetition of the second, and thus, the output is given by

X5 = max(0,W3 ∗X4 + b3). (3.5)

In the final stage, only the convolution layer is used in the model. This stage provides the

estimate of the noise-free image having the same dimensions as that of input as

X̂ = W4 ∗X5 + b4. (3.6)

Figure 3.1 shows the stick diagram of the proposed feed-forward CNN-based image denoising

method with distinct marking of the preprocessing steps and 4-stage convolutional filtering.

The geometric shapes of the preprocessing steps have been specified in the beginning of this

section, whereas that of the CNN layers follow the convention. It is seen from this figure that the

architecture of the proposed CNN model is relatively small, and thus, it is implementable even
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in a light weight computational system. Figure 3.3 shows the block diagram of the proposed

method. The ROF, BI pre-processing operations are shown separately. The CNN is employed

in image to image learning scheme where the loss function is set to minimize the loss of the

estimated image which is described in the training scheme.

3.3 Training Scheme

In order to obtain the end-to-end mapping function to denoise the images, the parameters of

the proposed CNN model are required to be evaluated. The filters W1, W2, W3 and W4

and bias terms b1, b2, b3 and b4 in the four convolution layers of the proposed model are the

parameters that have to be determined through learning. In order to train the network with the

back-propagation algorithm, a differentiable and tractable loss function is required. The choices

of loss function for such a regression task include the l1 norm, l2 norm, and Frobenius norm.

The Frobenius norm is defined for matrices, and thus suits well when working with images.

Moreover, the square of the norm is preferable due to numerical stability of the differentiation.

Thus, we choose the squared Frobenius norm as the loss function in order to learn the network,

and therefore, to estimate the parameters of the mapping function.

In general, in order to learn the CNN model, different types of data augmentation techniques

are adopted during the training session [40]. This is mainly due to the fact that an optimal set

of parameters of the network are achieved by increasing the number of image variabilities seen

by the network. The augmented set of noisy images are fed to CNN and the corresponding

noise-free images are estimated. Then, the loss function is defined in terms of an original image

X and the corresponding estimate X̂ as

D =
∣∣∣∣∣∣X− X̂

∣∣∣∣∣∣2
F

(3.7)

where || · ||F is the Frobenius norm. Elements of the convolution filters, denoted by w, are

updated using the gradient of the loss function D with respect to w. The update is performed

in terms of the weighted average of the square of the gradient, which is also referred to as the
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mean squared given by [45]

MS(w(η)) = γMS(w(η − 1)) + (1− γ)

(
∂D(η)

∂w(η)

)2

(3.8)

w(η + 1) = w(η)− λ√
MS(w(η)) + ε

∂D(η)

∂w(η)
(3.9)

where λ (λ > 0) and γ (0 < γ < 1) are hyper-parameters known as the learning and decay

rates, respectively, η is the iteration number, and ε is a numerical stability factor. In a similar

fashion, the elements of the bias terms are also updated in the training phase. It is noted that

once a CNN is trained for a certain set of noise parameters, the filters and bias terms learned

by the network can be used to initialize the same with new set of noise parameters, and thus

achieving faster learning of the networks [47].



Chapter 4

Denoising Using Image to Residual

Learning

4.1 Introdcution

Image enhancement using image to residual learning is a relatively recent innovation [61] and

have been explored in few applications such as image super-resolution [61] and AWGN re-

moval [3]. Kim et al. [61] employed the idea of residual learning [48] for image to image

translation. In this method, the output of a NN is constructed employing a residual connec-

tion which forces the network to learn the difference between the input image and expected

output image, i.e. residual image. Zhang et al. [3] employed a similar idea by introducing

directly learning the residual image instead of a residual connection and used batch normaliza-

tion in intermediate layers for AWGN denoising. However, there is still scope of improvement

in the data flow of the network, network architecture and training methods. In this chapter, we

propose a CNN based image to residual learning method and improve the architectural design

in terms of data flow and training method for reducing mixed AWGN-IN from design.

28
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Figure 4.1: Proposed filter unit Hld(·) for denoising where the 1 × 1 convolution performs a
expansion of channels and the 3×3 convolution layers performs compression of channels in the
network. The convolution layers are referred to as CONV and the batch normalization layers
are referred to as BN.

4.2 Image to Residual Learning Model

In general, the target of a deep learning based method is to map the input and output using as

little pre-processing as possible. In this context, Denoising CNN (DnCNN) [3] provided a state-

of-the-art performance in AWGN and AWGN-like noise removal. However, removing mixed

AWGN-IN is relatively difficult task and there is scope of improvement in terms of architecture

design and training method. Thus, we have taken DnCNN as a reference and incrementally

added improvements in the framework pertinent to remove mixed AWGN-IN from images.

First, a DnCNN architecture is trained for removing mixed AWGN-IN with σ = 25 and p =

0.15. The network is validated on a set of 6 images contaminated with same noise parameters

as the training noise parameters and is optimized by employing squared Frobenius Norm as

loss function and Adam optimizer and by learning the residual image. The model is validated

after every 100 iterations and the model that has performed best on the validation set is chosen

for testing purpose. The test images in this experiments contained 10 images. However, it is

found that, the over all denoising performance is not optimal compared to simple traditional

methods (refer to Figure 4.3). It is suspected that, either the DnCNN is not able to remove

the ill posed mixed AWGN-IN or some techniques have to be employed in order to improve

the denoising performance of this framework.

In the second attempt, instead of the validation set employing the same noise parameters
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as the training noise parameters, a validation set of the same 6 images with noise parameters

σ = 25 and p = 0.00 is employed, i.e., the validation set is contaminated with only AWGN

noise. Thus instead of tracking the performance on mixed AWGN-IN removal, during validation

the performance of the training is tracked only for AWGN removal. Upon testing the best

validated network on the same test set that is used in the previous attempt, it is found that

the denoising performance of mixed AWGN-IN improves significantly. Thus in the rest of the

paper, the models are validated on a set of images contaminated with corresponding AWGN

parameter of the training noise parameter.

The DnCNN employ a fixed receptive size, referred to as patch size in the corresponding

paper, of 35 × 35 in the architecture. A natural question arise, whether this receptive size is

optimal or whether a variable receptive size can be employed so that the CNN can automatically

select the optimal receptive size for denoising purpose. In this context, dense blocks discussed

in Section 2.2.5 can be employed to obtain a variable receptive size for image processing.

However, dense connections in a dense block increase in size upon successive layers. Thus, it

is often recommended that, bottleneck layers are to be employed before the dense connection

in order to reduce the number of inputs in subsequent dense connections [55]. In the original

implementation, a large number of filters were employed for 3×3 convolution in the filter units

and low number of filters were employed for 1×1 convolution in the bottleneck layers [55] in an

expander and compressor settings. In a denoising task, the spatial dimension is relatively high

and thus using higher number of filters in 3 × 3 convolution would require a larger memory.

Thus, in the proposed filter unit Hld(·) of the dense block for denoising, we employ larger

number of filters CE for 1 × 1 convolution layer referred to as expander and lower number of

filters CC for the 3× 3 convolution layers referred to as compressor, i.e., CE > CC . Since, the

two convolutional filter sets are 1 × 1 and 3 × 3 respectively, each filter unit has an effective

receptive size of 3 × 3. Each of the convolution layers in the filter units are preceded by a

batch normalization and a ReLU layer. Figure 4.1 shows the proposed filter unit showing the

expander and the compressor convolution filters. One more benefit that of this arrangement

(CE > CC) is that the number of parameters and memory requirement in subsequent filter

layers increase less explosively compared to the traditional arrangement (CE < CC) employed
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Figure 4.2: Proposed DCDCNN by employing the convolution, ReLU, batch normalization
layers and dense block in a residual learning strategy. The convolution layers are referred to
as CONV and batch normalization layers are referred to as BN. The learned residual image is
subtracted from the input noisy image to obtain the denoised image.

for classification task.

In order to denoise mixed AWGN-IN employed the proposed dense block, a maximum

filter size of 3 × 3 is adopted as this provides a small incremental receptive size which are

computationally efficient to train and are known to provide smooth outputs [62]. Similar to

DnCNN, in the proposed architecture the spatial size of the input is never altered during

any part of the architecture. Since data size, i.e., number of channels, inside a dense block

increase in subsequent layers, instead of using one long dense block, two short dense blocks

each with LD filter units have been employed in the proposed CNN. Only the final output

layer are not followed by any activation or batch normalization layer. Figure 4.2 shows the

model architecture using a block diagram, which we refer to as Densely Connected Denoising

Convolutional Neural Network or DCDCNN for short. DCDCNN employs the residual learning

strategy which estimates the residual image R from the input corrupted image X0 given by

R̂ = fDCDCNN(X0) (4.1)

where fDCDCNN(·) represents the mapping function given by the proposed DCDCNN model,

and R̂ is the estimated residual image. The estimate of the noise free image X̂ is then given
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by

X̂ = X0 − R̂ (4.2)

It is found that, instead of using residual connection to impose residual learning as in [61],

directly learning the residual image using (4.1) and then estimating the noise free image using

(4.2) provided a better denoising performance.

4.3 Training Scheme

In order to learn the end-to-end mapping function of input noisy image to the estimated

residual image by the proposed DCDCNN, the optimal values of the learnable parameters,

i.e., the weights and biases of the convolutional filters and scales and shift parameters of the

batch normalization filters, have to be evaluated. In order to train the network with the back-

propagation algorithm, a differentiable and tractable loss function is required. The choices

of loss function for such a regression task include the l1 norm, l2 norm, Frobenius norm and

the SSIM loss function. The Frobenius norm is defined for matrices, and thus suits well when

working with images. Moreover, the square of the norm is preferable due to numerical stability

of the differentiation. Thus, we choose the squared Frobenius norm as the loss function in

order to learn the network, and therefore, to estimate the parameters of the mapping function.

However, it is shown that for improving perceptual quality of the images the perceptual loss

functions such as SSIM would be helpful. In order to obtain image to image translation

perceptual loss functions has been employed in the literature [63]. It is expected that such a

loss function would improve the estimate of the residual image in image to residual learning

as well. Thus we choose the SSIM loss function as a perceptual loss function in the proposed

method. We define the overall loss function as a linear sum of the squared Frobenius norm and

the SSIM loss function.

In general, in order to learn the CNN model, different types of data augmentation techniques

are adopted during the training session [40]. This is mainly due to the fact that an optimal set
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Figure 4.3: Comparison of denoising performance for 11 commonly referred test images in
terms of PSNR of a traditional method Cai’s [1]+BM3D [2], DnCNN [3] validated using im-
ages contaminated by AWGN-IN, DnCNN validated using images contaminated by AWGN,
and proposed DCDCNN validated using images contaminated by AWGN and optimized by
employing squared Frobenius norm, SSIM loss function and both squared Frobenius norm and
SSIM loss function, respectively, for removal of mixed AWGN+SPIN with noise parameters
σ = 25 and p = 0.15.

of parameters of the network are achieved by increasing the number of image variabilities seen

by the network. The augmented set of noisy images are fed to CNN and the corresponding

noise-free images are estimated. Then, the loss function is defined in terms of an original

residual image R and the corresponding estimate R̂ as

D =
∣∣∣∣∣∣R− R̂

∣∣∣∣∣∣2
F

+ LSSIM(R, R̂) (4.3)

where || · ||F is the Frobenius norm and LSSIM(·) is the SSIM loss fucntion. Elements of the

convolution filters, denoted by w, are updated using the gradient of the loss function D with

respect to w. The update is performed in terms of both the first moment m and second

momentum v of the gradient dD(η)
dw(η)

, referred to as the Adam optimization algorithm given
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by [59]

m(η + 1) = β1m+ (1− β1)
dD(η)

dw(η)
(4.4)

v(η + 1) = β2v + (1− β2)
(
∂D(η)

∂w(η)

)2

(4.5)

w(η + 1) = w(η)− λ m(η + 1)√
v(η + 1) + ε

(4.6)

where β1 (0 < β1 < 1) and β2 (0 < β2 < 1) are hyper-parameters called forgetting factor of first

and second momentum of the gradient, respectively, λ (λ > 0) is a hyper-parameter known as

the learning rate, η is the iteration number, and ε is a numerical stability factor. In a similar

fashion, the elements of the bias terms are also updated in the training phase.

Figure 4.3 shows the denoising performance in terms of PSNR of a traditional method

(Cai’s [1]+BM3D [2]), DnCNN and proposed DCDCNN in different settings for removal of

mixed AWGN+SPIN with noise parameters σ = 25 and p = 0.15 on a set of 11 common test

images images. As discussed previously DnCNN is employed in two settings, i.e., the validation

set is contaminated with AWGN-IN, and the validation set is contaminated with only AWGN.

In all of the DCDCNN experiments, the validation set is contaminated with AWGN alone

and differs in terms of loss functions. The DCDCNN networks employ squared Frobenius

norm, SSIM loss function and linear sum of both squared Frobenius norm and SSIM loss

function. It is seen that, validating on mixed AWGN-IN has resulted in a poor performance for

DnCNN which resulted in a denoising performance lower than the traditional method, whereas

validating on images contaminated by AWGN only has resulted in a better mixed AWGN-IN

denoising performance. It is also seen that, the DCDCNN performs best when sum of both

squared Frobenius norm and SSIM loss function has been employed as the loss function.



Chapter 5

Experiments and Results

5.1 Introdcution

Experiments are carried out to evaluate the performance of the proposed CNN-based methods

by comparing it with that of the existing ones in reducing the mixed Gaussian-impulse noise

from images. In this section, first we describe the datasets used in the experiments. Next, the

data augmentation processes, which are required to achieve generalized results, are described.

After that the results for image to image CNN-based method are described. The setup of the

proposed CNN model and the initialization of the parameters are presented in the subsection.

The representations of filters learned in the training phase are given in the following subsection.

Then, the denoising methods that are compared with the proposed CNN-based method are

described briefly. Next, the comparative results on the datasets in terms of the performance

metrics, visual quality, and computational load are presented. Finally, the results for image to

residual learning based DCDCNN are discussed. The setup of the proposed DCDCNN and the

initialization of the parameters are presented. The filter characteristics and the representations

learned by the trained filters are discussed in the following subsection. The setup of the

proposed DCDCNN model and the initialization of the parameters are presented. Then, the

comparing methods are described. And finally, the comparative results on the dataset in terms

of the quantitative metrics, visual quality, and computational load are presented.

35
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Figure 5.1: Learning curves of the proposed CNN-based model trained for removal of mixed
AWGN+SPIN with noise parameters σ = 10 and p = 0.30. The pink dotted learning curve is
obtained when both the ROF and BI layers as well as the subsequent MPK1 layer are removed
from the model. The solid red curve with circle markers results in when the network uses
the ROF layer without the BI layer. The blue solid curve is obtained when the network uses
both the ROF and BI layers but without any prior information for initialization of weights and
biases. The black dashed curve is obtained when both the ROF and BI layers are employed
and at the same time transfer learning is adopted using the known weights and biases that are
trained for σ = 10 and p = 0.15.

5.2 Datasets

The construction of training and testing sets is very important for learning-based methods.

A natural question arises as how to define these sets. In this context, first we would like to

emphasize that the reporting of average denoising performance on a large set of test images is

preferable over that of ordinary performance on a small number of recurrently appearing images

in the literature. In other words, the testing sets should be relatively large so that one can have

more realistic evaluations of the performance. Second, the deep learning produces generalized

results when the training dataset is comprehensive. Thus, we ensure that the training dataset

is sufficiently large. Finally, for a learning-based method, the performance should be more

authentic, if the training and testing datasets are mutually exclusive and at the same time

they are collected from different sources. In order to meet these requirements, we ensure
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that both the training and testing datasets in the experiments are sufficiently large and they

are constructed from two different databases. In particular, we consider the Places2 [64] and

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2015 object detection (DET)

[65] databases, which are well known in the area of computer vision and image processing. The

first database is chosen for training and validation, and the second one for the testing purpose.

The experiments are conducted by converting the color images to grayscale images.

The training dataset is constructed from the Places2 database by randomly choosing 2×104

images. It has been reported that a CNN model can reasonably learn from a smaller sample

size (∼ 100) for a regression-type problem as compared to a larger sample size (∼ 105) for a

classification-type problem (see, for example, [42]). Hence, the size of training set as considered

in the experiment of image denoising is reasonable. In addition, to obtain generalized results,

we adopt data augmentation techniques (see details in Section 5.3), which eventually increases

the number of images several times in the training phase. In order to track the improvement

of denoising after each epoch of the training phase, 50 mutually exclusive images are selected

from the Places2 database as a validation set. Further, to facilitate the computation of the

batch gradient descent technique used in CNN, it is required that the size of the images of the

training and validation sets is the same, and preferably their sizes are small. In this context,

each image from the training and validation sets is changed to a square shape by cropping it

from the center while keeping the smaller dimension of the original image intact, and then the

images are resized to 128× 128. In the experiments on mixed AWGN-SPIN, the noisy versions

of the images are generated by contaminating the processed images following (1.3). We have

considered four values of the AWGN parameter, namely, σ = 10, 15, 20, and 25, and two values

of the SPIN parameter, namely, p = 0.15 and 0.30 that result in eight different training and

testing scenarios. For experiments involving the mixed AWGN+SPIN+RVIN, the noisy images

are generated by using (1.4), wherein the noise parameters are chosen as σ = 10, p = 0.20 and

r = 0.05, and σ = 20, p = 0.15 and r = 0.10.

In order to test the performance of the trained network, generic test datasets are constructed

by choosing 1000 images from the ILSVRC 2015 DET database. The chosen images have good

mixtures of smooth regions, edges, and textures. The test sets are obtained by considering
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three practical scenarios described below:

1. Test Set 1: Similar to the training set, 1000 images are converted to grayscale images of

size 128 × 128. The noisy test images are generated with noise parameters that are the

same as for the training phase.

2. Test Set 2: The same images as in Test Set 1 are selected in this scenario, but the at-

tributes of the noise parameters are chosen differently. This set analyzes the performance

of the proposed method when the noise parameters in the testing phase deviate from that

in the training phase. In particular, the parameters σ, p and r are varied up to ±10%

from their nominal values randomly for each of the images. The values for σ, p, and r

are drawn from uniform distributions of U(0.9σ, 1.1σ), U(0.9p, 1.1p), and U(0.9r, 1.1r),

respectively, for each image.

3. Test Set 3: This test set is generated with a view to obtaining the performance of the

network for arbitrary size images. In this scenario, 15 images are chosen from the testing

set such that the dimension without resizing has the maximum variation with respect to

the training set. In the experiments, the dimension of these images varies from 146 to

500 and 226 to 500 along the horizontal and vertical axes, respectively. The value of the

noise parameters, namely, σ p, and r, are kept the same as that in the training dataset.

In order to investigate the denoising performance of the proposed method on individual images,

the commonly-referred test images are also considered in the experiments.

5.3 Data Augmentation

Data augmentation results in the trained filters for denoising more robust to unseen images. In

the experiments, a number of augmentation techniques are employed on the training images.

The operations include the transpose, and the horizontal and vertical flips of the image matrices.

The probability of each of the operations is set to 0.5. Thus, the combination of the operations

produces up to 8 variants of each of the images. As a result, different orientations of the same
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Figure 5.2: Grid of the filters in the filter set W1 learned from the training dataset for SPIN
parameters σ = 10 and p = 0.30. The kernel size of each of the filters is 7× 7. The filters are
sorted according to the variance of coefficients.

image is available to the network for learning. Moreover, the samples of the noise sequence are

altered after every 20 epochs in the training phase. Consequently, different instances of the

noise for each of the training images are seen by the network. In effect, the size of the ultimate

training dataset turns several times larger than that of initial set, which helps the network to

attain generalization.

5.4 Experiments on Image to Image Denoising

5.4.1 Model Setup

The values of the parameters of the proposed CNN model described in Section 3.2 are chosen as

per the dimensions of the input and output as well as those recommended in practice. Since the

experimental images in the training and test datasets are grayscale in nature, the parameter

C0 in the input channel at the very beginning is set to 1. The proposed four-stage network has

four filter sets, namely, W1, W2, W3 and W4, for which the number of filters in each set and

that of the weights in each filter are assigned as per the number of output channels and the
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1 2 3

(a) (b) (c) (d) (e)

Figure 5.3: The input and outputs of different convolution layers for AWGN+SPIN parameters
σ = 10 and p = 0.30. (a) Input noisy image. Typical ten outputs of each column are obtained
from the convolution layers of (b) first stage, (c) second stage, and (d) third stage. (e) Output
of the final convolution layer.

kernel size used, respectively, in a layer. By the definition of a convolution layer, the number

of output channels and that of the bias terms for the layer are kept equal. In the experiments,

the channel parameters C1, C2 and C3, corresponding to the filter sets W1, W2 and W3, are

set to 100, 200 and 100 when σ < 20 and to 100, 500 and 100 when σ ≥ 20, respectively. The

filter set W4 is in the last stage of the network, and the corresponding channel parameter C4

specifies the output channel. This channel parameter is set to 1 as the output provides the

estimated noise-free image of the corresponding noisy input. The kernel sizes of the filters are

chosen based on the strength of Gaussian noise. It has been observed that a larger kernel size

is beneficial in denoising for a higher value of σ. In addition, the kernel size N1 of the filter

set W1 is set to a higher value so that information can be extracted from a relatively larger

neighboring region of an upscaled image in the first stage. The kernel size of the following

three filter sets, namely, W2, W3 and W4, is set to a lower value as compared to N1 in order

to process a smaller local region of the filtered input, which has the spatial dimensions the

same as that of the original image. Independent of the noise strength, the quadruplet (N1, N2,
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N3, N4) is chosen as (7, 5, 5, 3). The parameter K1 of the max-pool layer is set to 2, which

is a traditional value. This value of the parameter also results in the spatial dimensions of the

final output to be the same as the original image from the upscaled version of the output of

the first convolution and ReLU layers.

The initialization of the weights and biases of the network and that of the parameters of

learning mechanism are important for efficient training. When no prior information about the

weights W1, W2, W3 and W4 and the corresponding biases b1, b2, b3 and b4 is available,

they are initialized by taking samples from a zero-mean Gaussian distribution with standard

deviation 10−3. In order to slow down the gradient descent and to avoid shoot off as the network

converges, a decreasing value of the learning rate λ is chosen. Empirically the initial value of λ

is set to 10−4 for first 10 epochs, and then its value is decreased by 5% after each epoch. The

decay rate γ is set to a value of 0.9 as recommended in [45]. The numerical stability factor ε

is set to a small value of 10−8 in order to avoid division by zero, and the remaining term MS

is initialized to zero.

When a prior information on the weights and biases of a network is available, the network

can be trained in a closely related setting using the transfer learning method [47]. In this thesis,

the prior information on weights and biases of the proposed network is that of the network

trained on different noise settings. For example, if the weights of the network trained for σ = 10

and p = 0.15 are available, then the network for σ = 10 and p = 0.30 can be trained for this

new set of noise parameters by fine-tuning the known weights. While the network takes a large

number of epochs to achieve a considerable denoising performance without prior information,

it would take only a few epochs to train the network if the initialization considers the known

weights. It is also observed that the initial learning rate λ of the networks adopting transfer

learning can be lower than that of the networks trained without prior information. In the

experiments, the value of λ is set to 10−5 for transfer learning.

Experiments are carried out using a computer equipped with an Intel i7 4770K 3.5 GHz

processor, 16GB of memory and an NVIDIA Titan Xp GPU. The operating system of the

computational environment is Ubuntu 16.04. It takes roughly 6 hours to train each of the

networks by running 70 epochs.
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Figure 5.1 shows the learning curves of the proposed model in terms of the PSNR ob-

tained by using the validation set for 70 epochs in four different scenarios. The blue solid

curve represents the learning curve for the four stage architecture trained for removal of mixed

AWGN+SPIN with noise parameters σ = 10 and p = 0.30 without any prior information of

the weights and biases. The solid red curve with circle markers depicts the learning curve when

only the ROF layer is employed, but the upsampling through the BI layer and the subsequent

downsampling through the MPK1 layer are removed. The pink dotted curve is obtained when

both the pre-processing layers, i.e., the ROF and BI layers are removed. Other parameters

remain unchanged in all these scenarios. It can be inferred from Figure 5.1 that the both of the

pre-processing layers are essential to obtain a desired level of denoising performance along with

the traditional layers of CNN. In addition, the black dashed curve presents the learning curve

for the same task, but this time the network is trained by initializing the weights and biases

with known data that are obtained from training the network with noise parameters σ = 10

and p = 0.15. It is seen from Figure 5.1 that the denoising performance reaches a satisfactory

level very quickly in about 10 epochs in the case of transfer learning, thus reducing the training

time significantly.

5.4.2 Learned Filters

As per the assigned dimensions of the layers of the CNN model, there are 100, 200, 100 and 1

filters that are obtained for the filter sets W1, W2, W3 and W4, respectively, when σ < 20.

Figure 5.2 shows the entire set of 100 filters of W1 learned from the training dataset for SPIN

parameters σ = 10 and p = 0.30 and used in the first convolution layer. The weights of any

of these filters are combinations of positive and negative real values as shown by the grayscale

square-shaped dots (see Figure 5.2). These values of weights reveal that each of the filters are

bandpass in nature. Similar type of filters also result for W2, W3, W4, but are not shown in

view of space limitations. These filters produce certain bandpass versions of the noisy image

in the output channel of the convolution layers. Figure 5.3 shows the input noisy image, a few

output images resulting from the bandpass filters of the first, second, and third convolution

layers and the denoised output image resulting from the final or fourth convolution layer. It is
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Table 5.1: Denoising performance in terms of mean and standard deviation of PSNR (in dB)
and SSIM for reducing mixed AWGN+SPIN from Test Set 1.

Parameters Cai’s [1]
Cai’s [1]

WESNR [4] Proposed IIL [5]

+BM3D [2]

σ = 10 27.18± 0.74 30.48± 2.11 28.40± 2.68 31.28± 2.06

p = 0.15 0.7618± 0.0817 0.9190± 0.0281 0.8669± 0.0457 0.9256± 0.0251

σ = 10 26.48± 1.17 28.76± 2.23 27.33± 2.89 29.81± 2.22

p = 0.30 0.7572± 0.0701 0.8938± 0.0350 0.8500± 0.0482 0.9069± 0.0316

σ = 15 24.41± 0.41 29.05± 2.03 26.58± 2.63 29.46± 1.97

p = 0.15 0.6460± 0.1049 0.8831± 0.0409 0.8047± 0.0751 0.8823± 0.0489

σ = 15 24.24± 0.74 27.74± 2.13 25.74± 2.86 28.40± 2.07

p = 0.30 0.6464± 0.0948 0.8561± 0.0469 0.7904± 0.0762 0.8694± 0.0416

σ = 20 22.21± 0.26 27.85± 2.00 25.86± 2.59 28.00± 1.90

p = 0.15 0.5536± 0.1127 0.8486± 0.0504 0.7850± 0.0739 0.8517± 0.0457

σ = 20 22.32± 0.48 26.80± 2.05 24.99± 2.85 27.11± 1.97

p = 0.30 0.5574± 0.01049 0.8208± 0.0553 0.7682± 0.0744 0.8297± 0.0553

σ = 25 20.40± 0.18 26.90± 1.98 24.87± 2.68 26.93± 1.81

p = 0.15 0.4798± 0.1131 0.8173± 0.0580 0.7524± 0.0826 0.8151± 0.0566

σ = 25 20.68± 0.35 25.99± 2.01 23.92± 2.97 26.17± 1.87

p = 0.30 0.4854± 0.1071 0.7880± 0.0612 0.7344± 0.0827 0.7942± 0.0562

to be pointed out that in the first three convolution layers, the number of outputs are 100, 200,

and 100, respectively. But, due to space limitations, we show only 10 typical output images of

each of the two layers. It is seen from Figure 5.3 that the image features such as the textures

and edges are extracted selectively in the convolution layers. The images marked as 1, 2, and

3 in the red color are the low resolution versions of the original image, and such an image is

propagated through the network independent of the noise settings. Finally, the output of the

fourth convolution layer of the network provides the estimate of the noise-free image.
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Table 5.2: Denoising performance in terms of mean and standard deviation of PSNR (in dB)
and SSIM for reducing mixed AWGN+SPIN from Test Set 2.

Parameters Cai’s [1]
Cai’s [1]

WESNR [4] Proposed IIL [5]

+BM3D [2]

σ = 10 27.20± 0.84 30.47± 2.13 27.80± 2.82 31.29± 2.08

p = 0.15 0.7628± 0.0819 0.9189± 0.0288 0.8440± 0.0693 0.9253± 0.0260

σ = 10 26.45± 1.20 28.74± 2.26 26.83± 2.93 29.81± 2.23

p = 0.30 0.7564± 0.0721 0.8936± 0.0335 0.8283± 0.0687 0.9066± 0.0320

σ = 15 24.43± 0.59 29.06± 2.06 26.57± 2.64 29.52± 1.98

p = 0.15 0.6469± 0.1062 0.8831± 0.0413 0.8045± 0.0751 0.8866± 0.0402

σ = 15 24.24± 0.81 27.73± 2.12 25.74± 3.84 28.41± 2.06

p = 0.30 0.6464± 0.0971 0.8560± 0.0476 0.7903± 0.0761 0.8688± 0.0424

σ = 20 22.22± 0.52 27.86± 2.03 25.75± 2.64 28.14± 1.93

p = 0.15 0.5543± 0.1141 0.8488± 0.0510 0.7790± 0.0795 0.8518± 0.0474

σ = 20 22.33± 0.65 26.80± 2.06 24.89± 2.89 27.15± 1.99

p = 0.30 0.5577± 0.1062 0.8207± 0.0564 0.7632± 0.0809 0.8291± 0.0566

σ = 25 20.40± 0.51 26.88± 2.00 24.85± 2.67 26.95± 1.85

p = 0.15 0.4794± 0.1144 0.8169± 0.0589 0.7520± 0.0829 0.8131± 0.0602

σ = 25 20.68± 0.60 25.98± 2.05 23.90± 3.03 26.13± 1.90

p = 0.30 0.4855± 0.1071 0.7874± 0.0621 0.7329± 0.0835 0.7922± 0.0612

5.4.3 Methods Used for Comparison

The results of the proposed CNN-based method are compared with that of three well established

methods when employed to remove mixed-noise. A brief description of the comparing methods

are given below:

• Cai’s Method [1]: In this method, the impulse noise is detected first as outliers and

removed by using AMF. Then, the variational approach-based denoising is employed

assuming that the pixels restored in the first phase are essentially free of outliers. The

method can also be employed as an ROF for reducing mixed-noise.

• ROF+BM3D [2]: In this method, ROF is first used to remove impulse noise. Then,
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Table 5.3: Denoising performance in terms of mean and standard deviation of PSNR (in dB)
and SSIM for reducing mixed AWGN+SPIN from Test Set 3.

Parameters Cai’s [1]
Cai’s [1]

WESNR [4] Proposed IIL [5]

+BM3D [2]

σ = 10 27.21± 0.83 31.02± 2.96 27.84± 4.26 31.61± 2.75

p = 0.15 0.6794± 0.0856 0.8650± 0.0491 0.8414± 0.0536 0.9067± 0.0348

σ = 10 26.53± 1.35 29.21± 3.13 27.29± 4.79 29.98± 2.55

p = 0.30 0.6787± 0.0740 0.8788± 0.0418 0.8233± 0.0560 0.9116± 0.0329

σ = 15 24.34± 0.44 29.11± 2.32 25.73± 3.64 29.48± 2.25

p = 0.15 0.5703± 0.0655 0.8631± 0.0474 0.7744± 0.0852 0.8642± 0.0461

σ = 15 24.16± 0.76 27.73± 2.35 24.98± 3.85 28.38± 2.26

p = 0.30 0.5731± 0.1236 0.8331± 0.0557 0.7619± 0.0867 0.8489± 0.0468

σ = 20 22.20± 0.47 28.59± 2.79 25.75± 4.09 28.60± 2.42

p = 0.15 0.4482± 0.1011 0.8322± 0.0569 0.7622±±0.0852 0.8234± 0.0540

σ = 20 22.35± 0.53 27.47± 3.83 25.02± 4.27 27.66± 2.50

p = 0.30 0.4529± 0.0945 0.8017± 0.0617 0.7439± 0.0894 0.8072± 0.0539

σ = 25 20.38± 0.18 27.11± 2.12 24.37± 3.58 27.18± 2.00

p = 0.15 0.4009± 0.0658 0.7961± 0.0652 0.7265± 0.0941 0.7953± 0.0597

σ = 25 20.66± 0.33 26.16± 2.10 23.57± 3.65 27.04± 2.01

p = 0.30 0.4056± 0.0605 0.7641± 0.0673 0.7118± 0.0952 0.7845± 0.0610

the shape-adaptive self-similar patches from images are grouped and denoised using the

3D collaborative filtering. In tradition, the median filter is employed as an ROF for

performance comparison with this method (see, for example, [4]). In our experiments,

the Cai’s method is chosen as ROF for mixed AWGN+SPIN. On the other hand, for

mixed AWGN+SPIN+RVIN, the choice of ROF is AMF followed by ACWMF to remove

SPIN and RVIN sequentially.

• WESNR [4]: The method encodes the noisy image patches over a set of principle com-

ponent analysis-based dictionaries learned offline and weights the coding residuals to

suppress the noise. The weighted encoding is performed by integrating the image spar-
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Table 5.4: Denoising performance in terms of mean and standard deviation of PSNR (in dB)
and SSIM for reducing mixed AWGN+SPIN+RVIN from Test Sets 1, 2, and 3.

Parameters Test Sets
AMF+ACWMF

WESNR [4] Proposed IIL [5]

+BM3D [2]

Test Set 1
26.52± 2.68 26.70± 2.73 26.96± 2.67

σ = 10
0.8407± 0.0542 0.8281± 0.0574 0.8565± 0.0468

p = 0.20 Test Set 2
26.73± 2.73 26.49± 2.79 27.18± 2.75

r = 0.05
0.8493± 0.0498 0.8156± 0.0720 0.8605± 0.0469

Test Set 3
26.60± 3.09 26.45± 3.18 26.93± 3.07

0.8254± 0.0631 0.8086± 0.0630 0.8365± 0.0568

Test Set 1
24.87± 2.28 24.84± 2.39 25.13± 2.27

σ = 20
0.7523± 0.0694 0.7448± 0.0821 0.7677± 0.0690

p = 0.15 Test Set 2
25.15± 2.32 24.98± 2.46 25.33± 2.31

r = 0.10
0.7627± 0.0680 0.7495± 0.0850 0.7727± 0.0695

Test Set 3
24.82± 2.50 24.79± 2.70 25.06± 2.48

0.7235± 0.0802 0.7229± 0.0928 0.7377± 0.0822

sity and nonlocal self-similarity priors in a variational framework.

The Cai’s, WESNR, and BM3D methods are implemented using the codes distributed by

the authors of the respective papers. Default settings prescribed are chosen for the WESNR

and BM3D methods. In the Cai’s method, the parameter of out-of-focus kernel is set to zero,

since we consider only the noisy version of images. It is the regularization parameter β that

determines whether Cai’s method would act as an independent method for removal of mixed-

noise or as an ROF. In the experiments, β of this method is chosen in such a way that the

overall denoising performance is the best. The codes of the proposed CNN-based denoising

method and the test images for which the results are reported are shared in the web-link given

in [66].
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Table 5.5: Denoising performance in terms of mean and standard deviation of PSNR (in
dB) and SSIM for reducing mixed AWGN+SPIN and AWGN+SPIN+RVIN from commonly-
referred five test images.

AWGN+SPIN (σ = 20 and p = 0.30) AWGN+SPIN+RVIN (σ = 20, p = 0.15 and r = 0.10)

Test Images Cai’s [1]
WESNR [4] Proposed IIL [5]

AMF+ACWMF
WESNR [4] Proposed IIL [5]

+BM3D [2] +BM3D [2]

Peppers
29.57± 1.58 28.52± 1.73 29.99± 1.38 27.98± 1.69 28.25± 1.81 28.37± 1.67

0.8601± 0.0295 0.8462± 0.0232 0.8634± 0.0317 0.8290± 0.0266 0.8404± 0.0203 0.8425± 0.0266

Goldhill
28.64± 0.81 27.37± 0.93 28.81± 0.69 27.50± 0.79 27.30± 0.94 27.61± 0.74

0.7810± 0.0117 0.7088± 0.0119 0.7879± 0.0181 0.7360± 0.0104 0.7110± 0.0127 0.7377± 0.0124

Boat
28.92± 1.12 26.45± 1.16 28.36± 0.90 26.35± 1.06 26.24± 0.79 26.57± 1.01

0.7894± 0.0121 0.7197± 0.0241 0.8024± 0.0131 0.7355± 0.0143 0.7360± 0.0103 0.7432± 0.0126

Man
28.08± 1.10 26.97± 1.10 28.43± 0.94 26.89± 1.05 26.92± 1.06 27.14± 0.97

0.7958± 0.0027 0.7451± 0.0053 0.8075± 0.0085 0.7534± 0.0038 0.7450± 0.0042 0.7610± 0.0037

Baboon
25.16± 0.69 23.71± 1.08 25.61± 0.63 23.71± 1.11 23.65± 1.05 23.87± 1.08

0.6862± 0.0158 0.5569± 0.0217 0.7223± 0.0141 0.5970± 0.0129 0.5690± 0.0209 0.6027± 0.0104

Average
27.88± 1.06 26.61± 1.2 28.24± 0.91 26.48± 1.16 26.47± 1.13 26.71± 1.07

0.7825± 0.0144 0.7154± 0.0172 0.7968± 0.0171 0.7302± 0.0134 0.7203± 0.0136 0.7374± 0.0131

5.4.4 Results

In the experiments, the denoising performance of the methods are compared in three ways.

First, the PSNR and the SSIM indices [58] are used to assess the denoising performance quanti-

tatively. Next, the qualitative evaluation is performed by observing the outputs of the methods,

i.e., the denoised images. Finally, the methods are compared in terms of the computational

load to denoise an image.

Quantitative Evaluation

Tables 5.1, 5.2 and 5.3 show the average denoising performance for different settings of pa-

rameters of mixed AWGN+SPIN in Test Sets 1, 2 and 3, respectively, in terms of the metrics

PSNR and SSIM for the methods being compared. It is seen from Table 5.1 that the average

values of PSNR and SSIM considering the 1000 images in Test Set 1 are the highest among the

comparing methods in most of the cases (14 out of 16 instances). For example, the improve-
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Table 5.6: Denoising performance in terms of mean and standard deviation of PSNR (in dB)
and SSIM for reducing AWGN from Test Set 1.

Parameter BM3D [2] WESNR [4] Proposed IIL [5]

σ = 10
33.93± 1.81 30.63± 2.57 33.50± 1.86

0.9388± 0.0240 0.9050± 0.0267 0.9438± 0.0222

σ = 15
30.53± 1.88 28.00± 2.80 31.14± 1.90

0.9034± 0.0361 0.8520± 0.0567 0.9110± 0.0336

σ = 20
28.93± 1.92 26.80± 2.90 29.51± 1.93

0.8703± 0.0462 0.8236± 0.0551 0.8804± 0.0443

σ = 25
27.74± 1.94 25.04± 3.30 28.31± 1.93

0.8395± 0.0543 0.7836± 0.0689 0.8509± 0.0533

ment of the CNN-based method over the closest one, Cai’s+BM3D, is approximately 2.6% in

terms of average values of PSNR and it is 0.72% in terms of that of SSIM for σ = 10 and

p = 0.15. As the strength of noise is increased, the proposed method consistently performs

better than the methods compared in terms of mean of PSNR. It is also observed from the table

that the standard deviation of the metric PSNR obtained by the proposed method is always

the lowest and that of the metric SSIM is the lowest for 7 out of 8 instances in comparison to

the other methods, thus providing the most robust denoising performance. For example, when

the noise parameters are σ = 10 and p = 0.15, the gains in robustness over the closest com-

peting method Cai’s+BM3D are 2.4% for PSNR and 10.7% for SSIM. Similarly, the proposed

CNN-based method provides the overall best denoising performance in terms of the average of

PSNR and SSIM for removal of AWGN+SPIN from 1000 images of Test Set 2 and 15 images of

Test Set 3, as observed from Tables 5.2 and 5.3, respectively. In particular, the improvements

of the proposed method over Cai’s+BM3D in terms of the performance metrics are observed

for 30 and 31 instances out of 32 for the Test Sets 2 and 3, respectively. In summary, it can be

inferred from Tables 5.1-5.3 that, in general, the closest competitor of the proposed CNN-based
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Visual comparison of the denoising performance of the methods for the test im-
age Boat. (a) The ground truth of noise-free image. (b) The image is corrupted by mixed
AWGN+SPIN with parameters σ = 10 and p = 0.30 (PSNR: 10.65 dB, SSIM: 0.0731). (c) The
image is obtained by using Cai’s method (PSNR: 27.70 dB, SSIM: 0.6929). The estimated
noise-free images are obtained by using the methods (d) Cai’s+BM3D [2] (PSNR: 31.21 dB,
SSIM: 0.8529), (e) WESNR [4] (PSNR: 29.56 dB, SSIM: 0.8062), and (f) proposed CNN (PSNR:
31.92 dB, SSIM: 0.8596).

method for removal of mixed AWGN+SPIN from the Test Sets is the method Cai’s+BM3D.

Table 5.4 presents the comparative performance in terms of the metrics PSNR and SSIM

for the challenging case of reducing the mixed AWGN+SPIN+RVIN from Test Sets 1, 2 and 3.

It can be observed from the table that the overall performance in terms of the mean and

standard deviation of the metrics is superior for the proposed CNN-based method. In the

case when the strength of noise is relatively low, i.e., σ = 10, p = 0.20 and r = 0.05, the

improvement in average of PSNR is 0.97% and that of SSIM is 1.88% over the competitive

method WESNR and AMF+ACWMF+BM3D in Test Set 1. The improvement in robustness
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Figure 5.5: Visual comparison of the denoising performance of the methods on a high quality
image having a close-up view. (a) The ground truth of noise-free image. (b) The image is cor-
rupted by mixed AWGN+SPIN with parameters σ = 25 and p = 0.15 (PSNR: 12.40 dB, SSIM:
0.1419). (c) The image is obtained by using Cai’s method (PSNR: 20.40 dB, SSIM: 0.3587). The
estimated noise-free images are obtained by using the methods (d) Cai’s+BM3D [2] (PSNR:
28.71 dB, SSIM: 0.8838), (e) WESNR [4] (PSNR: 25.77 dB, SSIM: 0.8458), and (f) proposed
CNN (PSNR: 28.81 dB, SSIM: 0.8906).

in this case is 0.35% in PSNR and 13.7% in SSIM. For a higher level noise with σ = 20, p = 0.15

and r = 0.15, the methods AMF+ACWMF+BM3D and WESNR show a performance that is

competitive with the proposed method in terms of the metrics of average of PSNR and SSIM,

respectively. For example, the improvement in average of PSNR is 1% and that in SSIM is 2%

over AMF+ACWMF+BM3D in Test Set 1. In this scenario, the improvements in robustness

are also significant with 1.3% in PSNR and 0.57% in SSIM. Similar improvements (14 out of 16

instances) in denoising performance for reducing the AWGN+SPIN+RVIN are also observed

for Test Sets 2 and 3.
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(a) (b) (c)

Figure 5.6: Visual comparison of denoising performance of the proposed method for the color
version of the high quality image. (a) The ground truth of noise-free image. (b) The image
is corrupted by mixed AWGN+SPIN with parameters σ = 10 and p = 0.30 (PSNR: 5.47 dB,
SSIM: 0.2466). (c) The estimated noise-free image is obtained by using the proposed CNN
(PSNR: 24.79 dB, SSIM: 0.9296).

In order to evaluate the denoising performance of the proposed CNN-based method on

commonly-referred test images, we choose five classic grayscale images based on the details in

the scene. The images are Peppers, Goldhill, Boat, Man and Baboon, which have increasing

details in the same order. In accordance with the spirit of Test Set 3, the images are considered

in three different sizes, namely, 128× 128, 256× 256 and 512× 512. First, the images are cor-

rupted with mixed AWGN+SPIN using the noise parameters σ = 20 and p = 0.30. Then, they

are denoised using the methods Cai’s+BM3D, WESNR and proposed CNN. This procedure

is repeated 5 times and the average results for each of the images are presented in Table 5.5.

It is observed from the table that the improvements in terms of PSNR and SSIM resulting

from the proposed method over Cai’s+BM3D for the relatively smooth image Peppers are

1.4% and 0.38%, respectively. The increasing improvement of denoising performance for mixed

AWGN+SPIN is observed for the proposed method with the increasing details of images. For

example, the improvements in the performance metrics PSNR and SSIM are found to be 1.7%

and 5.2%, respectively, for the image Baboon that has significant details. It is also evident

from the table that standard deviation of the performance metrics is consistently low for the

proposed method, thus making it robust denoising method. A similar experiment is conducted

for reducing the mixed AWGN+SPIN+RVIN with parameters σ = 20, p = 0.15 and r = 0.10,
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(a) (b)

(c) (d) (e)

Figure 5.7: Visual comparison of the denoising performance of the methods for mixed
AWGN+SPIN+RVIN denoising for an image having long shot view. (a) The ground truth
of noise-free image. (b) The image is corrupted by mixed AWGN+SPIN+RVIN with pa-
rameters σ = 10, p = 0.20 and r = 0.05 (PSNR: 12.75 dB, SSIM: 0.2316). The estimated
noise-free images are obtained by using the methods (c) AMF+ACWMF+BM3D [2] (PSNR:
22.64 dB, SSIM: 0.6893), (d) WESNR [4] (PSNR: 22.44 dB, SSIM: 0.6592), and (e) proposed
CNN (PSNR: 22.83 dB, SSIM: 0.7088).

and compared against the methods AMF+ACWMF+BM3D and WESNR. It is also observed

that the denoising performance of the proposed method increases with increasing details of the

scene for reducing the mixed AWGN+SPIN+RVIN from images.

To verify the effectiveness of the proposed CNN model in reducing AWGN from images,

experiments are conducted by excluding the rank order filtering part of the proposed method

and that of the WESNR [4]. The performance of the proposed CNN model is also compared

with the BM3D method [2], which is well-known for removal of AWGN from images. Table 5.6

presents the denoising performance in terms of PSNR and SSIM for reducing AWGN from

Test Set 1. It can be observed from this table that the proposed CNN-based method performs

consistently better than the WESNR method. In terms of the mean of the metrics, the proposed

method is unbeatable with respect to the BM3D method, but it shows competitive performance
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Figure 5.8: Comparison of execution time of the four experimental methods required to denoise
an image of size 128× 128 contaminated by mixed AWGN+SPIN with parameters σ = 10 and
p = 0.30.

in terms of robustness at the low level of noise. Similar results are found for the other test

data, but are not included in the thesis to avoid presenting repetitive results.

Qualitative Evaluation

Examples of commonly-referred test images as well as that of images with close-up and long-

shot views are considered for the evaluation of the qualitative performance. Figure 5.4 shows

the ground truth of noise-free version of the Boat image, its noisy version corrupted by mixed

AWGN+SPIN with parameters σ = 10 and p = 0.30, and the denoised images obtained by

using the Cai’s, Cai’s+BM3D, WESNR and proposed CNN-based methods. In this image there

are regions with textures such as the ‘sands’, regions with sharp edges such as the ‘masts’ of the

boats, smooth region such as the ‘sky’, and text region such as the ‘name’ of the boat. It can

be observed from the denoised images that the proposed CNN reconstructs most of the details

such as that of the mast and roof of the engine-room (see zoomed-in region of the image).

Figure 5.5 shows ground truth of noise-free version of a high quality image having a close-

up view taken from the Test Set 3, its noisy version corrupted by mixed AWGN+SPIN with

parameters σ = 25 and p = 0.15, and the denoised images obtained by using the comparing

methods. This image shows a picture of a ‘butterfly’ in a rectangular ‘frame’ along with the

‘text’ of copyright in the bottom. It is seen from Figure 5.5 that the image restored by using
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the competitive Cai’s+BM3D method shows a good quality edge preservation, when similar

edges are present throughout the image such as the frame. For edges and textures that are not

repeated, such as the text of copyright or the details of the wings of butterfly, the proposed

CNN method clearly provides superior denoising performance. In order to test the performance

of the proposed denoising method on the color version of the image, the trained CNN model

is used to reduce noise from the red, green and blue channels of the image. Figure 5.6 shows

the visual output of the color image, its noisy version corrupted by mixed AWGN+SPIN with

parameters σ = 10 and p = 0.30, and the denoised image obtained by the proposed CNN model.

It is seen from this figure that the proposed denoising method can successfully reduce mixed-

noise from the color version of the image with a performance very similar to that obtained by

applying it to the grayscale version.

Figure 5.7 shows a typical image having a long shot view with its noise-free and noisy

versions corrupted by mixed AWGN+SPIN+RVIN having parameters σ = 10, p = 0.20 and r =

0.05, and the corresponding denoised images obtained by using the AMF+ACWMF+BM3D,

WESNR, and proposed CNN methods. Most of the parts of this image have heavy details such

as those in ‘trees’, ‘pedestrians’, and ‘horse’ with rider. It can be observed from this figure

that the image recovered by using AMF+ACWMF+BM3D has jagged edges (see, for example,

leg of ‘horse’) and that by WESNR is considerably blurred (see, for example, reins of ‘horse’).

It is seen from the figure that the image recovered by using the proposed CNN-based method

resembles original image the most as compared to that recovered by using the method WESNR

or AMF+ACWMF+BM3D (see zoomed-in region of the image).

Evaluation of Computation Time

Experiments are carried out using a computer equipped with an Intel i7 4770K 3.5 GHz pro-

cessor, 16GB of memory and an NVIDIA Titan Xp GPU. The operating system of the com-

putational environment is Ubuntu 16.04. The three methods being compared, namely, Cai’s,

WESNR, and ROF+BM3D, are executed in the MATLAB 2016b Linux edition, whereas the

proposed CNN is trained in the Tensorflow platform. Figure 5.8 shows a comparative bar-chart

representing the mean execution time in seconds required by the four methods for denoising
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Figure 5.9: Learning curves of the proposed DCDCNN trained for removal of mixed
AWGN+SPIN with noise parameters σ = 25 and p = 0.15. The pink dotted learning curve is
obtained employing the DnCNN architecture. The solid red curve with circle markers results
in DCDCNN architecture is trained employing SSIM loss funciton. The blue dashed curve is
obtained when the DCDCNN architecture is trained using Frobenius norm. The black solid
curve is obtained when the DCDCNN is trained employing both the Frobenius norm and SSIM
loss function.

an image of size 128× 128 contaminated by mixed AWGN+SPIN with parameters σ = 10 and

p = 0.30. It can be seen from this figure that the proposed CNN-based method performs the

denoising task in less than a fraction of a second. The proposed method is 2.6 times faster

than the closest competitor Cai’s+BM3D and 36 times faster than the WESNR method. It

is to be noted that the AMF+ACWMF requires only few milliseconds over Cai’s method and

thus is not included in the comparison. Such a small computation time with superior denoising

performance puts the proposed CNN-based method to be in a favorable position in comparison

to the existing methods.
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5.5 Experiments on Image to Residual Denoising

5.5.1 Model Setup

The values of the parameters of the proposed DCDCNN model described in Section 4.2 are

chosen as per the dimensions of the input and output as well as those recommended in practice.

Except the convolution layers in the dense blocks and the final convolution layer, the number

of filters in first two convolution layers and the transition layer are set to 64 and the kernel size

is set to 3 as discussed in 4.2. The number of filter units in each of the dense blocks is set to 6.

The number of filters CE in each of the 1× 1 convolution layers in the dense blocks is set to 96

and the number of filters CC in each of the 3× 3 convolution layers in the dense blocks is set

to 24. The number of filters in the output 3× 3 convolution layer is set to number of channels

of the input noisy image. For gray level image this value is set to 1. As a result, there are a

total of 17 3× 3 convolution layers and the rest are 1× 1 convolution layers in the DCDCNN

architecture. This arrangement provides a receptive size of 35× 35. However, since the dense

connections provide a shortcut from input to output in dense blocks, the DCDCNN can learn

to employ effective receptive size which may be less than 35× 35.

The initialization of the weights and biases of the network and that of the parameters of the

trainining scheme are important for efficient learning. In order to initialize the trainable weights

of the convolution filter, He initialization [67] method has been employed where the weights

are initialized from a Gaussian distribution and the standard deviation of the distribution is

given by

σ =
√
nl/2 (5.1)

where nl is the total number of parameters in a filter set. The bias terms in the convolution

layers are initialized to zero. He initialization method is known to avoid vanishing gradient

problem during training [67]. In the batch normalization layers the scaling and shifting param-

eters are set to constant values instead of being trainable and set to 1 and 0 respectively. This

is because the scaling and shifting can be learned by the ReLU and convolution layers that
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Figure 5.10: Grid of the filters in the filter set of the first convolutions layers of the proposed
DCDCNN learned from the training dataset for AWGN+SPIN parameters σ = 25 and p = 0.15.
The kernel size of each of the filters is 3 × 3. The filters are sorted according to the variance
of coefficients.

follow the batch normalization layer. The decay rate of the moving average for estimating the

population mean and population standard deviation is set to 0.999 as recommended in [51].

The forgetting factor β1 and β2 of the first and second momentum are set to 0.9 and 0.999, as

recommended in [59]. The learning rate is empirically set to 0.001 and its value is decreased

by 4% after every two epochs. The number of samples in each of the batches during training

is set to 15. As stated in Section 4.2, the networks are validated for AWGN denoising for the

corresponding σ regardless of the value of p employed in the training dataset.

Experiments are carried out using a computer equipped with an Intel i7 4770K 3.5 GHz

processor, 16GB of memory and an NVIDIA Titan Xp GPU. The operating system of the

computational environment is Ubuntu 16.04. It takes roughly a day to train each of the

DCDCNN by running 200 epochs. On the other hand, DnCNN takes roughly 16 hours to train

on the same training database by running 200 epochs.

Figure 5.9 shows the learning curves of the proposed model in terms of PSNR for mixed

AWGN+SPIN removal with noise parameters σ = 25 and p = 0.15 obtained by using a
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Figure 5.11: The input and outputs of different convolution layers for mixed AWGN+SPIN
removal using DCDCNN with noise parameters σ = 25 and p = 0.15. (a) Input noisy images.
All 64 outputs of the (b) first and (c) second convolution layers. (d) Typical 64 outputs of
the second dense block. (e) The 64 outputs of the final transition layer. (f) Output of the
final convolution layer which estimates the residual image. (g) The estimated denoised image
(PSNR: 28.76 dB, SSIM: 0.8505). (h) The ground truth image. (i) The ground truth residual
image.
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validation set of six images contaminated with AWGN noise with parameter σ = 25. The

pink dotted learning curve is obtained employing the DnCNN architecture. The solid red

curve with circle markers results in DCDCNN architecture is trained employing SSIM loss

funciton. The blue dashed curve is obtained when the DCDCNN architecture is trained using

Frobenius norm. The black solid curve is obtained when the DCDCNN is trained employing

both the Frobenius norm and SSIM loss function. It can be inferred from Figure 5.9 that the

proposed DCDCNN has a faster convergence compared to DnCNN architecture. In terms of

loss function, the SSIM loss function, despite designed for ensuring structural similarity, shows

a limiting performance during optimization. On the other hand, the DCDCNN employing the

Frobenius norm shows the fastest convergence and attains highest validation PSNR of 31.02 dB

is obtained at about 118th epoch. When both the Frobenius norm and SSIM loss function are

employed, the convergence is still found to be faster than that of DnCNN, however, it becomes

slightly slower than the case in which only Frobenius norm is employed in DCDCNN. The

highest value of PSNR is found to be 31.24 dB and is obtained at around 146th epoch which

shows that employing both the Frobenius norm and SSIM loss function has improved denoising

performance. This effect has been observed consistently for other denoising parameters as well.

5.5.2 Learned Filters

As per the parameter settings, there are 64 filters in each of the first two convolution layers.

Figure 5.10 shows the entire set of 64 filters learned from the training dataset for mixed

AWGN+SPIN parameters σ = 25 and p = 0.15. The filters are normalized and have been

shown on the grayscale. It is evident that, the first few filters are basically shifting filters

which shifts the input images by 1 pixel subject to weighting values of the filter. The other

filters are various bandpass filters. The properties of the filters in the other filter sets are

similar in nature and hence not shown in the figure.

In order to explore the behavior of these filters the outputs of the filters have been analyzed.

Figure 5.11 shows the input noisy image, the outputs of the first two convolution layers, typical

64 outputs of the second dense block, the outputs of the final transition layer, estimated residual

image obtained from the final convolution layer, the denoised image, the ground truth image
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and the ground truth residual image. It is to be pointed out that, the number of outputs in

the second convolution layer is 160, however only typical 64 outputs have been shown in order

to avoid clutter. For the same reason, we have not shown the outputs of the other layers. It

is evident from the figure that, from input to output of the network, the network progressively

removes the image in order to estimate the residual image. The output of the first two layers

shows input noisy image at different intensity. However, the output of the latter layers shows

only the edges and skeleton of the image from which the residual is estimated. It is also, seen

that the denoised image can be efficiently estimated with high visual quality from the estimated

residual image.

5.5.3 Methods used for Comparison

The results of the proposed CNN-based method are compared with that of three well established

methods when employed to remove mixed-noise. A brief description of the comparing methods

are given below:

• ROF+BM3D [2]: In this method, ROF is first used to remove impulse noise. Then,

the shape-adaptive self-similar patches from images are grouped and denoised using the

3D collaborative filtering. In tradition, the median filter is employed as an ROF for

performance comparison with this method (see, for example, [4]). In our experiments,

the Cai’s method is chosen as ROF for mixed AWGN+SPIN. On the other hand, for

mixed AWGN+SPIN+RVIN, the choice of ROF is AMF followed by ACWMF to remove

SPIN and RVIN sequentially.

• WESNR [4]: The method encodes the noisy image patches over a set of principle com-

ponent analysis-based dictionaries learned offline and weights the coding residuals to

suppress the noise. The weighted encoding is performed by integrating the image spar-

sity and nonlocal self-similarity priors in a variational framework.

• Image to Image CNN [5]: In this method, a freed forward CNN is employed which uses

image to image learning (IIL) technique where the denoised image is estimated from a
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Table 5.7: Denoising performance in terms of mean PSNR (in dB) and SSIM for reducing
mixed AWGN+SPIN from Test Set 1.

Parameters
Cai’s [1]

WESNR [4] IIL [5] DnCNN [3] DCDCNN

+BM3D [2]

σ = 10 30.47 28.39 31.30 31.63 32.16

p = 0.15 0.9190 0.8669 0.9255 0.9213 0.9316

σ = 10 28.75 27.32 29.82 30.23 30.70

p = 0.30 0.8938 0.8500 0.9066 0.9024 0.9126

σ = 25 26.88 24.86 26.98 27.43 27.73

p = 0.15 0.8172 0.7525 0.8130 0.8274 0.8395

σ = 25 25.98 23.90 26.12 26.63 26.97

p = 0.30 0.7874 0.7336 0.7925 0.8039 0.8175

σ = 40 24.80 21.10 23.31 25.24 25.44

p = 0.15 0.7371 0.6311 0.7268 0.7489 0.7583

σ = 40 24.14 19.46 22.51 24.61 24.92

p = 0.30 0.7045 0.5748 0.6971 0.7229 0.7394

pre-processed image. The method pre-processes the image to remove IN by employing

ROF and then applies bicubic interpolation to obtain a smooth image. The pre-processed

image is then fed to the feed forward CNN which performs further filtering as well as one

downsampling operation to obtain the denoised image.

• DnCNN [3]: The method employs a smiplest feed forward CNN which uses image to

residual learning technique where the residual image is estimated from the input noisy

image. The network employs a simple architecture where 17 3 × 3 convolution filters in

a row followed by batch normalization and ReLU layers except the output convolution

filter.

The Cai’s, WESNR and BM3D methods are implemented using the distribution codes

provided by the authors of the respective paper. In the Cai’s method, out-of-focus kernel

in the loss function is set to zero, since we consider only the noisy version of the images.

Default values have been employed for other parameters. For WESNR and BM3D methods,



CHAPTER 5. EXPERIMENTS AND RESULTS 62

20 22 24 26 28 30 32 34 36

PSNR

0

0.02

0.04

0.06

0.08

0.1

0.12

D
is

tr
ib

u
ti
o

n

DnCNN

DCDCNN

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SSIM

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

D
is

tr
ib

u
ti
o

n

DnCNN

DCDCNN

(a) (b)

Figure 5.12: (a) Gaussian fit of the distributions of the PSNRs for DnCNN [3] (µ = 27.28 dB
and σ = 1.82) and DCDCNN (µ = 27.56 dB and σ = 2.10). (b) Gaussian fit of the distributions
of the SSIMs for DnCNN [3] (µ = 0.8353 and σ = 0.0496) and DCDCNN (µ = 0.8449 and
σ = 0.0518).

the default parameters have been employed. The mixed AWGN-IN removal employing the

IIL method and DnCNN architecture are trained employing the same training parameters

described in Section 5.5.1.

5.5.4 Results

In the experiments, the denoising performance of the methods are compared in three ways.

First, the PSNR and the SSIM indices [58] are used to assess the denoising performance quanti-

tatively. Next, the qualitative evaluation is performed by observing the outputs of the methods,

i.e., the denoised images. Finally, the methods are compared in terms of the computational

load to denoise an image.

Quantitative Evaluation

Tables 5.7, 5.8 and 5.9 show the average denoising performance for different settings of pa-

rameters of mixed AWGN+SPIN in Test Sets 1, 2 and 3, respectively, in terms of the metrics

PSNR and SSIM for the methods being compared. It is seen from Table 5.7 that the average

values of PSNR and SSIM considering the 1000 images in Test Set 1 are the highest among the
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Table 5.8: Denoising performance in terms of mean PSNR (in dB) and SSIM for reducing
mixed AWGN+SPIN from Test Set 2.

Parameters
Cai’s [1]

WESNR [4] IIL [5] DnCNN [3] DCDCNN

+BM3D [2]

σ = 10 30.45 27.13 31.28 31.61 32.13

p = 0.15 0.9167 0.8179 0.8441 0.9203 0.9307

σ = 10 28.74 26.30 29.80 30.22 30.69

p = 0.30 0.8914 0.8040 0.9069 0.9018 0.9118

σ = 25 26.93 24.89 26.98 27.39 27.68

p = 0.15 0.8191 0.7524 0.8138 0.8242 0.8395

σ = 25 25.97 23.87 26.10 26.56 26.90

p = 0.30 0.7871 0.7316 0.7918 0.7994 0.8138

σ = 40 24.75 21.10 23.67 25.18 25.37

p = 0.15 0.7344 0.6294 0.7221 0.7441 0.7526

σ = 40 24.12 19.43 22.43 24.55 24.86

p = 0.30 0.7033 0.5732 0.6963 0.7168 0.7341

comparing methods in all cases. For example, the improvement of proposed DCDCNN method

over the traditional Cai’s+BM3D method for σ = 10 and p = 0.15 is 5.55%. On the other

hand, the improvement of DCDCNN over DnCNN architecture is 1.68%. However, it is seen

from the Table 5.7 that the proposed DCDCNN architecture attains highest mean among all

of the comparing methods. A natural question arises as whether this high mean is obtained at

the expense of robustness. In order to answer the question, the distribution of the proposed

method and closest competitor DnCNN are oberved and fitted to a Gaussian distribution.

Figure 5.12 shows the Gaussian fits of the distributions of PSNRs and SSIMs for DnCNN by

using red curve and proposed DCDCNN architecture by using blue curve for denoising mixed

AWGN+SPIN for σ = 25 and p = 0.15. The mean of the distributions are marked using red

dotted line and blue dash-dotted line for DnCNN and DCDCNN, respectively. It is seen from

the figures that, even though the distribution is spreaded for proposed DCDCNN, the mean

has a higher value and the vlues of PSNR and SSIM are higher for almost all of the test cases.
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Table 5.9: Denoising performance in terms of mean PSNR (in dB) and SSIM for reducing
mixed AWGN+SPIN from Test Set 3.

Parameters
Cai’s [1]

WESNR [4] IIL [5] DnCNN [3] DCDCNN

+BM3D [2]

σ = 10 31.01 27.86 31.62 31.87 32.48

p = 0.15 0.9063 0.8417 0.9068 0.8994 0.9169

σ = 10 29.23 26.88 30.01 30.41 30.96

p = 0.30 0.8785 0.8232 0.9114 0.8761 0.8858

σ = 25 27.69 25.00 27.68 28.27 28.60

p = 0.15 0.8017 0.7339 0.8011 0.8078 0.8227

σ = 25 26.72 24.13 27.14 27.43 27.81

p = 0.30 0.7705 0.7141 0.7851 0.7886 0.7972

σ = 40 25.75 22.06 23.91 26.24 26.41

p = 0.15 0.7281 0.6305 0.7110 0.7376 0.7392

σ = 40 24.99 20.67 22.15 25.60 25.97

p = 0.30 0.6888 0.5804 0.6754 0.7070 0.7274

This observation is made for other noise parameters as well. Similarly, the proposed DCDCNN

provides the overall best denoising performance in terms of the average of PSNR and SSIM

for removal of AWGN+SPIN from 1000 images of Test Set 2 and 15 images of Test Set 3, as

observed from Tables 5.8 and 5.9, respectively. In summary, it can be inferred from Tables 5.7-

5.9 that, in general, the closest competitor of the proposed CNN-based method for removal

of mixed AWGN+SPIN from the Test Sets is the method DnCNN for CNN architecture and

Cai’s+BM3D for traditional method.

In order to evaluate the denoising performance of the proposed DCDCNN on commonly-

referred test images, we choose 11 common grayscale images that are widely used in the litu-

rature [3]. The images are, Cameraman, House, Pepper, Starfish, Butterfly, F21, Parrot, Lena,

Boat, Man, and Couple. The images are corrupted with mixed AWGN+SPIN using noise pa-

rameters σ = 25 and p = 0.15. Then, they are denoised employing the Cai’s+BM3D, WESNR,

IIL, DnCNN and the proposed DCDCNN. The procedure is repeated five times and the average
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Table 5.10: Denoising performance in terms of mean of PSNR (in dB) and SSIM for reducing
mixed AWGN+SPIN with σ = 25 and p = 0.15 from commonly-referred test images.

Test Images
Cai’s [1]

WESNR [4] IIL [5] DnCNN [3] DCDCNN

+BM3D [2]

Cameraman
28.24 25.49 28.33 28.93 29.35

0.8341 0.7967 0.8250 0.8453 0.8604

House
32.24 31.23 31.72 31.91 32.67

0.8466 0.8368 0.8413 0.8327 0.8557

Pepper
29.10 27.88 29.30 29.65 30.04

0.8535 0.8361 0.8505 0.8560 0.8696

Starfish
27.78 26.49 27.71 28.33 28.76

0.8334 0.7909 0.8263 0.8422 0.8542

Butterfly
28.49 26.76 28.67 29.27 29.65

0.8896 0.8614 0.8905 0.8948 0.9084

F21
27.40 25.62 27.61 28.01 28.29

0.8357 0.8062 0.8392 0.8377 0.8571

Parrot
27.80 23.61 27.75 28.56 28.77

0.8326 0.7976 0.8268 0.8411 0.8503

Lena
31.41 30.54 31.03 31.45 31.90

0.8464 0.8313 0.8402 0.8446 0.8593

Boat
29.24 28.00 29.07 29.35 29.66

0.7847 0.7334 0.7728 0.7820 0.7941

Man
29.06 28.07 28.95 29.36 29.55

0.7868 0.7438 0.7790 0.7936 0.8040

Couple
29.06 27.59 28.93 29.07 29.45

0.8012 0.7375 0.7925 0.7934 0.8101

Average
29.07 27.39 29.01 29.44 29.83

0.8313 0.7974 0.8258 0.8330 0.8476

results are presented in Table 5.10. It is observed from the table that the mean PSNR and

SSIM is highest for the proposed method. For the Cameraman image the proposed DCDCNN

shows 1.4% improvement in terms of PSNR and 1.8% improvement in terms of SSIM over

DnCNN. For a highly detailed image, for example Butterfly, the improvement over DnCNN in

terms of PSNR and SSIM is 1.3% and 1.5%, respectively. On an average, the improvement in

this test set is 1.3% and 1.6% in terms of PSNR and SSIM, respectively.



CHAPTER 5. EXPERIMENTS AND RESULTS 66

Table 5.11: Denoising performance in terms of mean of PSNR (in dB) and SSIM for reducing
AWGN from commonly referred test images.

Parameter BM3D [2] WESNR [4] IIL [5] DnCNN [3] DCDCNN

σ = 10
34.39 32.88 34.57 34.79 34.80

0.9235 0.8973 0.9239 0.9276 0.9278

σ = 25
29.94 28.04 30.08 30.41 30.43

0.8500 0.8181 0.8489 0.8616 0.8621

σ = 40
27.61 18.10 27.41 28.16 28.19

0.7928 0.4970 0.7722 0.8096 0.8105

In order to verify the efficacy of the proposed DCDCNN model in reducing AWGN from

images, experiments are conducted on commonly referred 11 test images and compared against

well known AWGN denoising method BM3D [2], mixed noise denoising method WESNR [4],

and CNN based approach from IIL [5] and DnCNN [3]. The the rank order filtering part of the

WESNR, and IIL methods are excluded since they are employed only for impulse reduction.

Table 5.11 shows the experimental results. It is seen form the table that the proposed DCDCNN

method performs consistently better than the comparing methods. despite removal of AWGN

only is a relatively easier problem, the proposed architecture performs better than the closest

competitor DnCNN. Similar results are found for the other test sets and are not included in

the results to avoid repeating similar results.

Qualitative Evaluation

In order to qualitatively evaluate the denoising performance of the proposed DCDCNN, images

with various types of details at various noise level have been considered. Figure 5.13 shows

ground truth of a highly detailed image of a ‘butterfly’ with a close view, its noisy version

corrupted by mixed AWGN+SPIN with parameters σ = 40 and p = 0.15, and the denoised

images obtained by Cai’s+BM3D, IIL, DnCNN and proposed DCDCNN. The image contains a

butterfly within a frame with straight and sharp edges and cursive copyright text at the bottom.

It is seen from Figure 5.13 that Cai’s+BM3D provides a good quality edge preservation in the
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: Visual comparison of the denoising performance under heavy noise of the methods
for a high quality image having a close-up view. (a) The ground truth of noise-free image.
(b) The image is corrupted by mixed AWGN+SPIN with parameters σ = 40 and p = 0.15
(PSNR: 11.72 dB, SSIM: 0.1226). The estimated noise-free images are obtained by using the
methods (c) Cai’s [1]+BM3D [2] (PSNR: 26.81 dB, SSIM: 0.8269), (d) IIL [5] (PSNR: 24.50 dB,
SSIM: 0.7705), (e) DnCNN [3] (PSNR: 26.73 dB, SSIM: 0.8282), and (f) proposed DCDCNN
(PSNR: 27.45 dB, SSIM: 0.8612).

frames as these edges are repetitive structure in the image. The IIL method shows a good edge

preservation in the ‘frames’ portion of the image, however, the image is choppy. The DnCNN

method shows a good texture preservation. Overall, the proposed DCDCNN provides a better

texture as well as edge preservation and provides a smooth textures in blurred regions. The

proposed denoising method has been employed to denoise the color version of the image as well.

In this scheme the proposed DCDCNN is employed to reduce noise from the red, green and

blue channels of the image. In a similar fashion the IIL method and DnCNN architecture has

also been employed to denoise the color image. Figure 5.14 shows the visual output of the color



CHAPTER 5. EXPERIMENTS AND RESULTS 68

(a) (b)

(c) (d) (e)

Figure 5.14: Visual comparison of the denoising performance for the color version of the high
quality image. (a) The ground truth of noise-free image. (b) The image is corrupted by mixed
AWGN+SPIN with parameters σ = 10 and p = 0.30 (PSNR: 9.86 dB, SSIM: 0.2245). The
estimated noise-free images are obtained by using the methods (d) IIL [5] (PSNR: 30.06 dB,
SSIM: 0.9686), (e) DnCNN [3] (PSNR: 30.71 dB, SSIM: 0.9725), and (f) proposed DCDCNN
(PSNR: 31.5015 dB, SSIM: 0.9757).

image, its noisy version corrupted by mixed AWGN+SPIN with parameters σ = 10 and p = 30,

and the denoised image obtained by IIL, DnCNN and DCDCNN. It is seen from the images

that, the methods can reduce noise from the color version of images with a performance similar

to that obtained by applying it to grayscale version and the proposed DCDCNN provides the

best visual output among the three compared methods.

Figure 5.15 show a commonly referred Parrot image, its noisy version corrupted by mixed

AWGN+SPIN with noise parameter σ = 25 and p = 0.15, and the denoised images obtained

by Cai’s+BM3D, IIL, DnCNN and proposed DCDCNN. The image has details in the round

edges and small feathers. It is seen from the figure that the Cai’s+BM3D method provides a
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Figure 5.15: Visual comparison of the denoising performance of the methods for commonly
referred Parrot image. (a) The ground truth of noise-free image. (b) The image is corrupted
by mixed AWGN+SPIN with parameters σ = 25 and p = 0.15 (PSNR: 12.30 dB, SSIM: 0.1201).
The estimated noise-free images are obtained by using the methods (c) Cai’s [1]+BM3D [2]
(PSNR: 27.80 dB, SSIM: 0.8326), (d) IIL [5] (PSNR: 27.75 dB, SSIM: 0.8268), (e) DnCNN [3]
(PSNR: 28.56 dB, SSIM: 0.8411), and (f) proposed DCDCNN (PSNR: 28.77 dB, SSIM: 0.8503).

smooth image. All the CNN based methods provide a better recovery of round edges (see the

zoomed in region of the image). However, the proposed DCDCNN provides a superior denoised

image without any artifacts near the ‘peck’ or above the ‘head’ of the parrot.

In order to evaluate the denoising performance of the proposed DCDCNN on a real image,

we a chose near-infrared (NIR) image, which can be modeled as mixed AWGN+SPIN [13],

of hand from the Technocampus database [68]. The image is used for biometric recognition

from the vein pattern. However, due to the appearance of the mixed AWGN-IN noise in the

NIR image, the vein pattern cannot be extracted without denoising. Traditionally, median

filtering followed by AWGN denoising is applied to remove the noise. In this paper, denoising
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Figure 5.16: Visual comparison of the denoising performance of the methods for a near infrared
(NIR) image. (a) The original noisy image. The image is denoised assuming noise parameters
σ = 20 and p = 0.15 by (b) Cai’s [1]+BM3D [2], (c) WESNR [4], (d) IIL [5], (e) DnCNN [3],
and (f) proposed DCDCNN.
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Figure 5.17: Comparison of execution time of the four experimental methods required to denoise
an image of size 128× 128 contaminated by mixed AWGN+SPIN with parameters σ = 25 and
p = 0.15.

of NIR images have been performed by the comparing methods. Figure 5.16 shows denoising

performance of the methods Cai’s+BM3D, WESNR, IIL, DnCNN and proposed DCDCNN on

an NIR image. It can be seen from the figure that, only the proposed DCDCNN provides noise
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free output with clear vein pattern. The closest method Cai’s+Bm3D provides a clear vein

pattern however there are smudges and rough patches. The other methods either still contain

grains or cause excessive blurring.

Evaluation of Computation Time

Experiments are carried out using a computer equipped with an Intel i7 4770K 3.5 GHz pro-

cessor, 16GB of memory and an NVIDIA Titan Xp GPU. The operating system of the com-

putational environment is Ubuntu 16.04. The Cai’s method, BM3D and WESNR methods are

executed in the MATLAB 2016b Linux edition, whereas the IIL, DnCNN and the proposed

DCDCNN are trained in the Tensorflow platform and are executed in GPU. Figure 5.17 shows

the mean execution time in seconds required by the four methods, namely, Cai’s+BM3D, IIL,

DnCNN and proposed DCDCNN, for denoising an image of size 128 × 128 contaminated by

mixed AWGN+SPIN with parameters σ = 25 and p = 0.15. The WESNR method requires

more than two seconds to denoise each of the images and thus is skipped in the figure. It

can be seen from the figure that the CNN based methods perform the denoising task in few

milliseconds. The proposed DCDCNN is 2 times slower than the closest architecture DnCNN,

as DCDCNN is much deeper and complex network architecture than the DnCNN. However,

DCDCNN is 170 times faster than the traditional Cai’s+BM3D method. Such a small compu-

tation time with superior denoising performance puts the proposed CNN-based method to be

in a favorable position in comparison to the existing methods.
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Conclusions

In this thesis, CNN-based deep learning approach has been proposed for reduction of mixed

Gaussian-impulse noise from images. Restoration of images contaminated by the AWGN and

IN is still a challenge even for the handcrafted algorithms due to their contrasting natures.

In this context, two learning-based approaches, i.e., image to image learning (IIL) and image

to residual learning (IRL), have been adopted such that the necessary restoration process of

mixed Gaussian-impulse noise can be developed through extensive training with large number

of image variabilities. Among the different approaches of machine learning algorithms, CNN

is particularly suitable for image processing and has shown vast representation capabilities.

The architecture of CNN is such that the 2D structure of local neighboring regions of images

remains unaltered as opposed to the vectorization of image or patch matrices employed in the

sparse coding-based methods. Further, the possibility of utilization of an effective number of

self-similar patches gathered from huge size training set through a gradient descent learning in

the CNN-based algorithm is much higher as compared to that in the case of traditional non-

local means or patch-based methods, which collect a sub-optimal set of patches from the test

images. In the proposed IIL method, the image corrupted by mixed Gaussian-impulse noise

has been preprocessed by rank order filtering and upscaled by means of BI. The filtered and in-

terpolated image is fed to a 4-stage CNN architecture, wherein each stage consists of a suitable

set of layers including the convolution, ReLU and max-pooling layers. The dimensions of the

four sets of convolution filters and the corresponding bias terms are chosen as per the size of the
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input and the output of the interconnected layers and that of the local neighboring mask used

in each of the layers. The weights of the filters and biases in the four stages of CNN have been

learned from a sufficiently large dataset with the adoption of suitable data augmentation tech-

niques. Experimentation on the validation set of images has revealed that the use of BI layer,

which acts as a low-level smoother in the preprocessing stage, significantly improves the overall

performance of the CNN-based IIL denoising scheme. A faster training is achieved by adopting

the mechanism of ‘transfer learning’, wherein the known weights and biases of a network for a

particular setting of noise parameters are used to initialize the same for training the network in

a new setting of noise parameters. The proposed method has been extensively tested against

well established methods, namely, Cai’s method, ROF+BM3D, and WESNR using three dif-

ferent test datasets and commonly-used individual test images considering different practical

scenarios. In particular, not only different imaging environments of the training and testing sets

have been considered in the experiments, but also denoising experiments on different settings

of mixed-noise scenarios including AWGN+SPIN and AWGN+SPIN+RVIN have been carried

out. The strengths of the Gaussian and impulse noise and their mixing proportion have been

varied widely to evaluate the effectiveness of the proposed CNN-based model for reducing the

mixed-noise. In addition, the effect due to deviations of noise parameters and that of the sizes

of images during training and testing phases have been examined. It has been shown that the

average values of the commonly-used performance metrics, namely, the PSNR and SSIM for

reducing mixed AWGN+SPIN or AWGN+SPIN+RVIN are the highest in almost all cases for

the proposed IIL CNN-based method among all the methods compared. The overall robust-

ness of the denoising performance of the proposed method has been found to be significantly

superior in terms of these metrics. The visualization of denoised images has also revealed

that the proposed method retains the image structure and details maximally as compared to

the other methods both in reducing mixed AWGN+SPIN and AWGN+SPIN+RVIN. In the

IRL CNN-based enoising scheme, a very deep densely connected convolutional neural network

(DCDCNN) has been proposed. Due to its nature of producing intermediate outputs with

variable receptive size, the network can optimally denoise the images. Experiments are carried

out in a similar fashion to IIL CNN based denoising scheme and it is seen that the DCDCNN
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can denoise images with superior performance compared to traditional patch based and sparse

representation based methods as well as other CNN based methods in terms of PSNR and

SSIM for a variety of noise parameters. Inspection of visual quality by observing the denoising

performance on some heavily detailed images show that the proposed DCDCNN produce high

quality denoised images even under heavy noise. The experiments carried out on color image

shows that the proposed DCDCNN can provide superior denoising performance compared to

the other CNN based methods. In addition, it has been observed that the proposed methods

require a very insignificant computational time for denoising an image. In conclusion, the light

weight structure of the proposed CNN model can play a significant role in many applications,

where the low-complexity and robust denoising performance are primary concerns.

6.1 Future Works

There are a number of future direction which can be explored to further enrich the study. First

of all, there a number of optimization techniques and a number of loss functions can be explored

in order to improve the denoising performance further. Additionally, different architectures and

layering arrangements can be studied in order to find the optimum architecture for denoising.

Additionally, adversarial examples can compromise the performance of a neural network [69,

70]. Thus a potential study is to make the performance of these neural networks more robust

to adversarial examples. A initial approach can be to train the network along with adversar-

ial examples. A challenging task will be to employ an adversarial image detector and take

corrective measures to detect fraud and improve the image quality.

Moreover, these neural networks and approach can be employed in other closely related

applications, such as, image inpainting and watermark removal. Image super-resolution is

another application which can be improved by exploring different architectures along with

improvement by employing loss functions and optimization techniques.



Appendix

The images of Test Set 1 are shown using collage.
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The images of Test Set 3 are shown below.
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