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Abstract

Sleep apnea, a serious sleep disorder affecting a large population, causes disruptions in 

breathing during sleep. For diagnosis, sleep experts manually score the apnea events in 

overnight polysomnography, which is expensive, tedious, and prone to human error. 

To counter this problem, in this thesis, an automatic apnea detection scheme is 

proposed using single lead electroencephalography (EEG) signal, which can 

discriminate apnea patients and healthy subjects as well as the difficult task of 

classifying apnea and non-apnea events of an apnea patient. The main theme of the 

proposed method is to model the within-frame characteristic pattern of a statistical 

measure of EEG data and use the fitted model parameters as features in apnea 

detection. For this purpose, within a frame each sub-frame of EEG data is first 

decomposed and statistical measures, like entropy and log-variance are computed on 

each decomposed signal. For the purpose of decomposition, frequency domain band-

pass filtering, variational mode decomposition and wavelet packet decomposition are 

considered because of their respective advantages. For a statistical measure, the 

resulting within-frame variation pattern for each decomposed signal is analyzed and 

we propose to utilize characteristic probability density function (PDF) to fit the pattern 

and use the model parameters as features in classifier. Various well known PDFs are 

investigated and among them the Rician PDF offers very satisfactory feature qualities. 

For the purpose of classification, the K nearest neighbor classifier is adopted. 

Extensive experimentation is carried out considering three publicly available large 

EEG datasets and performance of the proposed method, in comparison to that of the 

existing methods, is found much superior in terms of sensitivity, specificity and 

accuracy. 
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Chapter 1

Introduction

Sleep apnea, a prevalent sleep disorder disrupting sleep quality of the patients,

affects about 6-17% of general population where among the elderly, this may be as

high as 49% [1]- [2]. Sleep apnea occurs due to obstacle of airflow through the nasal

cavity and it causes repetitive cessation of breathing during sleep occur lasting

for few seconds to minutes. According to American Academy of Sleep Medicine

(AASM) criteria, apnea is scored where reduction in airflow is ≥90% and it stays

like so for more than 10 seconds. Patients usually suffer from daytime sleepiness,

headaches and various cardio-respiratory disorders due to sleep apnea [3]-[4]. Sleep

apnea may increase the risk of heart attack, stroke, diabetes, heart failure, irregular

heartbeat, obesity, and motor vehicle collisions.

The study of overnight polysomnography (PSG) is a standard method for

sleep apnea diagnosis. In this method, a patient spends the whole night in an

observation room and several accessible bio-signals, such as Electroencephalogra-

phy (EEG), electromyography (EMG), electrocardiogram (ECG), electroculogram

(EOG), oro-nasal airflow, ribcage movements, abdomen movements (uncalibrated

strain gauges), oxygen saturation (finger pulse oximeter) and snoring (tracheal mi-

crophone) are collected. With the help of collected bio-signals, expert scores the
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apnea events manually. Visual identification of sleep apnea events with the help

of a sleep expert is expensive, time consuming, laborious and erroneous. In some

cases, a very small duration of apnea (10-20 sec) may occur after a long interval (1

or 2 hours) and the observer may miss it. Hence, it is of great necessity to develop

an algorithm for automatic apnea detection.

1.1 Sleep Apnea

Sleep apnea is a sleep disorder characterized by pauses in breathing or periods

of shallow breathing during sleep. Each pause can last for a few seconds to a

few minutes and such pauses happen many times a night. In the most common

form, sleep apnea causes loud snoring. There may be a choking or snorting sound

as breathing resumes. As the disorder disrupts normal sleep, those affected may

experience sleepiness or feel tired during the day. In children it may cause problems

in school, or hyperactivity. It affects males about twice as often as females. While

people at any age can be affected, it occurs most commonly among those 55 to

60 years old. Figure 1.1 shows breathing during normal condition and apnea. It

is observed that during apnea the airway gets almost blocked thus a disruption in

breathing is caused.

There are three forms of sleep apnea: obstructive sleep apnea (OSA), central

sleep apnea (CSA), and a combination of the two called mixed. The OSA is the

most common form. Risk factors for the OSA include being overweight, allergies, a

small airway, and enlarged tonsils. In OSA, breathing is interrupted by a blockage

of airflow, while in CSA breathing stops due to a lack of effort to breathe. People

with sleep apnea may not be aware of having this disease. In many cases, it

is first observed by a family member. Sleep apnea is often diagnosed with an

overnight sleep study. For a diagnosis of sleep apnea, more than five occurrences
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Figure 1.1: Breathing during Normal Breathing and Apnea

an hour must occur. Central sleep apnea affects less than 1% of people. People

with sleep apnea have problems with excessive daytime sleepiness (EDS), impaired

alertness, and vision problems. OSA may increase risk for driving accidents and

work-related accidents. If OSA is not treated, people are at increased risk of other

health problems, such as diabetes. Death could occur from untreated OSA due to

lack of oxygen to the body. Without treatment, sleep apnea may increase the risk

of heart attack, stroke, diabetes, heart failure, irregular heartbeat, obesity, and

motor vehicle collisions.

Treatment may include lifestyle changes, mouthpieces, breathing devices, and

surgery. Lifestyle changes may include avoiding alcohol, losing weight, stopping

smoking, and sleeping on one’s side. Breathing devices include the use of a Con-

tinuous positive airway pressure (CPAP) machine.

3



1.2 EEG Signal Analysis

An EEG is a process used to evaluate the electrical activity in the brain. Brain cells

communicate with each other through electrical impulses. An EEG can be used to

help detecting this activity. During EEG recordings, small sensors are attached to

the scalp to pick up the electrical signals produced when brain cells send messages

to each other. These signals are recorded by a machine and can be utilized to

establish communication between man and machine. Since this recording process

is non-invasive i.e. the electrode only picks up electric signal from the brain and

does not affect the brain. Therefore, this process is totally painless and harmless.

Despite limited spatial resolution, EEG continues to be a valuable tool for research

and diagnosis, especially when millisecond-range temporal resolution is required.

1.2.1 Source of EEG Signal

EEG is a graphic representation of the difference in voltage between two different

cerebral locations plotted over time. The scalp EEG signal generated by cerebral

neurons is modified by electrical conductive properties of the tissues between the

electrical source and the recording electrode on the scalp, conductive properties

of the electrode itself, as well as the orientation of the cortical generator to the

recording electrode. Because of the process of current flow through the tissues

between the electrical generator and the recording electrode which is known as

volume conduction, EEG provides a two-dimensional projection of our brain. It

detects the summed ionic currents of thousands of pyramidal neurons beneath each

of the 16 and 25 individual macro electrodes, and reports them as voltage differ-

ences across low resistance extracellular space. Specifically, the potentials recorded

by the macro-electrodes on the skin of the skull are primarily generated by extra-

cellular current flow of synaptic potentials in pyramidal cells. Action potentials of
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the neurons are usually asynchronous and too fast-moving to generate detectable

potentials on the skin’s surface. As a result, brain cells other than pyramidal

neurons such as interneurons and glacial cells make relatively little contribution

to skin potentials because, unlike pyramidal neurons, these cells are neither ori-

ented in parallel to one another nor do their dendrites run perpendicular to the

cortical surface. In contrast, pyramidal neurons run parallel to one another with

large dendritic branches that run perpendicular to the cortical surface. Since volt-

age fields fall of with the square of distance, activity from deep sources is more

difficult to detect than currents near the skull. The EEG waves obtained from

the scalp electrodes show oscillations at different frequencies. Such oscillations at

a variety of frequencies are associated with different states of brain functioning

involving different parts of our brain. As a result, such oscillations depict syn-

chronized activity over different networks of neurons which are known as neuronal

networks. From such neuronal networks some of these oscillations are understood,

while many others are not. Figure 1.2 shows sample EEG signals for Apnea and

Healthy subjects. It is to be seen that through visual inspection it is very difficult

to differentiate between the two classes.

1.2.2 10-20 Standard EEG System

The international 10-20 system of electrode placement is the most widely used

method to describe the location of scalp electrodes during an EEG recording or

experiment. The 10-20 system is based on the relationship between the location

of an electrode and the underlying area of cerebral cortex. Each site has a letter

(to identify the lobe) and a number or another letter to identify the hemisphere

location. The positions of the electrodes of the 10-20 system are shown in Fig.

1.3. This method was developed to ensure standardized reproducibility so that

a subjects studies could be compared over time and subjects could be compared
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Figure 1.2: Sample EEG signals for Apnea and Healthy subjects

to each other. The letters F, T, C, P and O stand for frontal, temporal, central,

parietal, and occipital lobes, respectively. Even numbers (2, 4, 6, and 8) refer to the

right hemisphere and odd numbers (1, 3, 5 and 7) refer to the left hemisphere. ”Z”

refers to an electrode placed on the mid line. The smaller the number, the closer

the position to the mid line. ”Fp” stands for Front polar. Two anatomical land

marks are used for the essential positioning of the EEG electrodes: first, the nasion

which is the point between the forehead and the nose; second, the inion which is

the lowest point of the skull from the back of the head and is normally indicated

by a prominent bump. The ”10” and ”20” (10-20 system) refer to the 10% and

20% inter electrode distance. When recording a more detailed EEG with more

electrodes, extra electrodes are added utilizing the spaces in-between the existing

10-20 system. This new electrode-naming-system is more complicated giving rise
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to the Modified Combinatorial Nomenclature (MCN). This MCN system uses 1, 3,

5, 7, 9 for the left hemisphere which represents 10%, 20%, 30%, 40%, 50% of the

inion-to-nasion distance respectively. 2, 4, 6, 8, 10 are used to represent the right

hemisphere. The introduction of extra letters allows the naming of extra electrode

sites. These new letters do not necessarily refer to an area on the underlying

cerebral cortex.

Figure 1.3: Different EEG Electrodes

1.2.3 Band Limited EEG Signals

It is important to know that humans display five different types of EEG signal.

Each brain wave has a purpose and helps serve us in optimal mental functioning.

Each serves a purpose to help us cope with various situations – whether it is to help

us process and learn new information or help us calm down after a long stressful

day. The five brain waves in order of lowest frequency to highest are as follows:

delta, theta, alpha, beta and gamma.
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Delta wave Delta waves are associated with deep levels of relaxation and restora-

tive sleep. They are the slowest recorded brain waves in humans and higher levels

are more commonly found in young children. During the aging process, lower Delta

waves are produced. Research tells us that Delta waves are attributed to many

of our unconscious bodily functions such as regulating the cardiovascular and the

digestive systems. Healthy levels of Delta waves can contribute to a more restful

sleep, allowing us to wake up refreshed, however irregular delta wave activity has

been linked to learning difficulties or issues maintaining awareness.

Frequency range: 0 Hz to 4 Hz, High levels: Brain injuries, learning problems,

inability to think, severe ADHD, Low levels: Inability to rejuvenate body, inabil-

ity to revitalize the brain, poor sleep, Optimal range: Healthy immune system,

restorative REM sleep.

Theta wave Theta waves known as the ‘suggestible waves’, because of their

prevalence when one is in a trance or hypnotic state. In this state, a brain’s Theta

waves are optimal and the patient is more susceptible to hypnosis and associated

therapy. The reasoning for this is that Theta waves are commonly found when

you daydream or are asleep, thus exhibiting a more relaxed, open mind state.

Theta waves are also linked to us experiencing and feeling deep and raw emotions,

therefore too much theta activity may make people prone to bouts of depression.

Theta does however has its benefits of helping improve our creativity, wholeness

and intuition, making us feel more natural. It is also involved in restorative sleep

and as long as theta isn’t produced in excess during our waking hours, it is a very

helpful brainwave range.

Frequency range: 4 Hz to 8 Hz, High levels: ADHD or hyperactivity, depressive

states, impulsive activity or inattentiveness, Low levels: Anxiety symptoms, poor

emotional awareness, higher stress levels, Optimal range: Maximum creativity,
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deep emotional connection with oneself and others, greater intuition, relaxation.

Alpha wave Alpha waves are the ‘frequency bridge’ between our conscious

thinking (Beta) and subconscious (Theta) mind. They are known to help calm

you down and promote feelings of deeper relaxation and content. Beta waves play

an active role in network coordination and communication and do not occur until

three years of age in humans. In a state of stress, a phenomenon called ‘Alpha

blocking’ can occur which involves excessive Beta activity and little Alpha activ-

ity. In this scenario, the Beta waves restrict the production of alpha because we

because our body is reacting positively to the increased Beta activity, usually in a

state of heightened cognitive arousal.

Frequency range: 8 Hz to 12 Hz, High levels: Too much daydreaming, over-

relaxed state or an inability to focus, Low levels: OCD, anxiety symptoms, higher

stress levels, Optimal range: Ideal relaxation.

Beta Waves Beta waves are the high frequency waves most commonly found

in awake humans. They are channeled during conscious states such as cognitive

reasoning, calculation, reading, speaking or thinking. Higher levels of Beta waves

are found to channel a stimulating, arousing effect, which explains how the brain

will limit the amount of Alpha waves if heightened Beta activity occurs. However,

if you experience too much Beta activity, this may lead to stress and anxiety. This

leads you feeling overwhelmed and stressed during strenuous periods of work or

school. Beta waves increased by drinking common stimulants such as caffeine or

L-Theanine, or by consuming Nootropics or cognitive enhancers such as Lucid.

Frequency range: 12 Hz to 40 Hz, High levels: Anxiety, inability to feel relaxed,

high adrenaline levels, stress, Low levels: Depression, poor cognitive ability, lack

of attention, Optimal range: Consistent focus, strong memory recall, high problem

solving ability.
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Gamma wave Gamma waves are a more recent discovery in the field of neuro-

science, thus the understanding of how they function is constantly evolving. To

date, it’s known that Gamma waves are involved in processing more complex tasks

in addition to healthy cognitive function. Gamma waves are found to be important

for learning, memory and processing and they are used as a binding tool for our

senses to process new information. In people with mental disabilities, much lower

levels of Gamma activity is recorded. More recently, people have found a strong

link between meditation and Gamma waves, a link attributed to the heightened

state of being or ‘completeness’, experienced when in a meditative state.

Frequency range: 40 Hz to 100 Hz, High levels: Anxiety, stress, Low 

levels: Depression, ADHD, learning issues, Optimal range: Information 

processing, cog-nition, learning, binding of senses.

1.3 Literature Review

EEG signal is getting special attention by the researchers in analyzing sleep re-

lated problems as it has direct relevance with neural activity. There are many

automatic sleep apnea detection methods available in literature, however, most

of them utilize multiple biomedical signals including EEG. For example, in [5],

oxygen saturation, heart rate variability and the respiratory signals, in [6], EOG,

EMG, heart rate variability, oronasal temperature, nasal pressure, in [7] oximetric

signal, in [8] pupil size, in [9] EMG signal and in [10] EOG, EMG, ECG signals

are utilized. However, use of multiple (or multi-channel) bio-signals has several

disadvantages, such as cost of additional sensors, discomfort for the patient, ex-

cessive data acquisition and processing requirement and computational expense in

terms of time and implementation. Hence apnea detection with a single channel

bio-signal is of great necessity. The advancement in wearable EEG data acquisi-
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tion system has opened up a new direction for various EEG based disease analysis

and thus apnea detection from EEG signal is now getting special attention by the

researchers [11]-[22].

In [11], detrended fluctuation analysis (DFA) is used to compute EEG scaling

exponents which are utilized as features for classifying apnea and healthy subjects.

Here, 30 min EEG scaling exponents that quantify powerlaw correlations were

computed using DFA and compared between six sleep apnea subjects (SAS) and

six healthy subjects. The mean scaling exponents were calculated every 30s and

360 control values and 360 apnea values were obtained during sleep.

In [12]- [13], wavelet analysis is employed on EEG data to identify sleep apnea

events. In [12], EEG signals are separated into delta, theta, alpha, and beta

spectral components by using multi-resolution discrete wavelet transforms (DWT).

These spectral components are applied to the inputs of the artificial neural network

where the wavelet coefficients are treated as the the training input of artificial

neural network. The neural network is configured to obtain differentiable outputs

to signify the sleep apnea patient. In [13], EEG signals are decomposed by four

level wavelet transform to obtain the CD4 wavelet coefficients which are used as

input for the GreyART (Grey relational analysis and Adaptive resonant theory)

network. The GreyART network was then used for simulation training and testing

purpose.

In [14], particle swarm optimization based hermite decomposition algorithm

is proposed. The information from randomly varying complex EEG signals is

extracted in terms of PSO optimised Hermite functions (HFs), with constraint

of minimum error function. The Hermite coefficients computed from HFs-based

statistical features are applied as input to PSO parameterised least square support

vector machine classifier. The proposed decomposition for EEG signals provides

negligible mean value of error function and obtains satisfactory apnea identification
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result.

Instead of using the full band EEG signal, an effective way is to divide the

EEG signal into well-known EEG sub-bands and analyze the band limited signals.

But for band limited signal extraction bandpass filters with fixed bandwidth are

used whereas neural activity varies from time to time, person to person. Hence,

the possible benefits in analysis with the use of adaptive bandwidth based decom-

position for band limited signal extraction is yet to be explored. Recently in [15],

sub-frame based features are modeled for band limited signals, where the signals

are obtained by simple bandpass filtering. However, in the method the effect of

including higher frequency bands (¿40Hz) in apnea detection is not considered.

In [16], for apnea classification, energy and variance are computed from each sub-

band. In [17], random characteristics of EEG signal is exploited by multi-band

entropy values to use as features while in [18], cumulative delta-power ratio of

overlapping frames is used. Variation of within frame EEG beta band energy is

studied and various statistical features are extracted from the energy variation

pattern in [19].

In [20], intrinsic mode functions (IMF) of empirical mode decomposed EEG sig-

nal are separated into amplitude modulated (AM) and frequency modulated (FM)

components using Teager energy operator which are used for feature extraction.

The extracted features from separated components are applied as input to least

square support vector machine (LS-SVM) classifier. Bispectral characteristics of

EEG signal are investigated in [21]. Bispectral analysis is an advanced signal pro-

cessing technique particularly used for exhibiting Quadratic phase coupling (QPC)

that may arise between signal components with different frequencies. The amount

of QPC in each sub-band of EEG (namely; delta, theta, alpha, beta and gamma)

was calculated over bispectral density of EEG. Then, these QPCs were fed to the

input of the designed ANN
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In [22], variation of Hilbert spectrum frequency is studied. It extracts fre-

quency elements from Hilbert spectrum by Hilbert– Huang transformation. The

system then detects duration of obstructive sleep apnea from the variation of

Hilbert spectrum frequency. The main contribution of the system is to preserve

time information in the electroencephalogram by Hilbert–Huang transformation

mechanism as well as find frequency variation information. The system also al-

lows free adjustment of time scale to establish a flexible detection system with fast

response so it is capable of real time detection of obstructive sleep apnea.

However, most of the methods reported above, classify between apnea and

healthy subjects and the challenging task of differentiating apnea and non-apnea

frames of an apnea patient is not much investigated.

1.4 Classifier and Classification Schemes

classification is the problem of identifying to which of a set of categories (sub-

populations) a new observation belongs, on the basis of a training set of data con-

taining observations (or instances) whose category membership is known. Classifier

is an algorithm that implements classification, especially in a concrete implemen-

tation, is known as a classifier. The term ”classifier” sometimes also refers to the

mathematical function, implemented by a classification algorithm, that maps in-

put data to a category. There are various types of classifier. In the following brief

introductions of few classifiers are provided.

K-NN Classifier K-nearest neighbors algorithm (K-NN) is a non-parametric

method used for classification and regression. In both cases, the input consists

of the K closest training examples in the feature space. The output depends on

whether K-NN is used for classification or regression:
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i) In K-NN classification, the output is a class membership. An object is

classified by a majority vote of its neighbors, with the object being assigned to

the class most common among its K nearest neighbors (K is a positive integer,

typically small). If K = 1, then the object is simply assigned to the class of that

single nearest neighbor.

ii) In K-NN regression, the output is the property value for the object. This

value is the average of the values of its k nearest neighbors.

K-NN is a type of instance-based learning, or lazy learning, where the function

is only approximated locally and all computation is deferred until classification.

The K-NN algorithm is among the simplest of all machine learning algorithms.

Both for classification and regression, a useful technique can be used to assign

weight to the contributions of the neighbors, so that the nearer neighbors con-

tribute more to the average than the more distant ones. For example, a common

weighting scheme consists in giving each neighbor a weight of 1/d, where d is the

distance to the neighbor.

The neighbors are taken from a set of objects for which the class (for K-NN

classification) or the object property value (for K-NN regression) is known. This

can be thought of as the training set for the algorithm, though no explicit training

step is required.

SVM Classifier Support vector machines (SVMs) are supervised learning mod-

els with associated learning algorithms that analyze data used for classification and

regression analysis. Given a set of training examples, each marked as belonging to

one or the other of two categories, an SVM training algorithm builds a model that

assigns new examples to one category or the other, making it a non-probabilistic

binary linear classifier. An SVM model is a representation of the examples as

points in space, mapped so that the examples of the separate categories are di-
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vided by a clear gap that is as wide as possible. New examples are then mapped

into that same space and predicted to belong to a category based on which side of

the gap they fall.

In addition to performing linear classification, SVMs can efficiently perform a

non-linear classification using what is called the kernel trick, implicitly mapping

their inputs into high-dimensional feature spaces. There are several kernels of

which polynomial, RBF kernels are mostly used.

LDA Classifier LDA is also closely related to principal component analysis

(PCA) and factor analysis in that they both look for linear combinations of vari-

ables which best explain the data. LDA explicitly attempts to model the difference

between the classes of data. LDA works when the measurements made on inde-

pendent variables for each observation are continuous quantities. When dealing

with categorical independent variables, the equivalent technique is discriminant

correspondence analysis.

Discriminant analysis is used when groups are known a priori (unlike in cluster

analysis). Each case must have a score on one or more quantitative predictor

measures, and a score on a group measure. In simple terms, discriminant function

analysis is classification - the act of distributing things into groups, classes or

categories of the same type.

Artificial Neural Network Artificial neural networks (ANN) are computing

systems vaguely inspired by the biological neural networks that constitute animal

brains. Such systems ”learn” to perform tasks by considering examples, generally

without being programmed with any task-specific rules. An ANN is based on a

collection of connected units or nodes called artificial neurons which loosely model

the neurons in a biological brain. Each connection, like the synapses in a biological

brain, can transmit a signal from one artificial neuron to another. An artificial
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neuron that receives a signal can process it and then signal additional artificial

neurons connected to it.

In common ANN implementations, the signal at a connection between artificial

neurons is a real number, and the output of each artificial neuron is computed

by some non-linear function of the sum of its inputs. The connections between

artificial neurons are called ‘edges’. Artificial neurons and edges typically have a

weight that adjusts as learning proceeds. The weight increases or decreases the

strength of the signal at a connection. Artificial neurons may have a threshold such

that the signal is only sent if the aggregate signal crosses that threshold. Typically,

artificial neurons are aggregated into layers. Different layers may perform different

kinds of transformations on their inputs. Signals travel from the first layer (the

input layer), to the last layer (the output layer), possibly after traversing the layers

multiple times.

The original goal of the ANN approach was to solve problems in the same way

that a human brain would. However, over time, attention moved to performing

specific tasks, leading to deviations from biology. Artificial neural networks have

been used on a variety of tasks, including computer vision, speech recognition,

machine translation, social network filtering, playing board and video games and

medical diagnosis.

Cross-validation Schemes Cross-validation is one of various similar model val-

idation techniques for assessing how the results of a statistical analysis will gen-

eralize to an independent data set. It is mainly used in settings where the goal

is prediction, and one wants to estimate how accurately a predictive model will

perform in practice. In a prediction problem, a model is usually given a dataset of

known data on which training is run (training dataset), and a dataset of unknown

data (or first seen data) against which the model is tested (called the validation
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dataset or testing set). The goal of cross-validation is to test the model’s ability

to predict new data that was not used in estimating it, in order to flag prob-

lems like overfitting and to give an insight on how the model will generalize to an

independent dataset (i.e., an unknown dataset, for instance from a real problem).

In K Fold cross validation, the data is divided into k subsets. Now the classifi-

cation is repeated k times, such that each time, one of the k subsets is used as the

test set/ validation set and the other k-1 subsets are put together to form a training

set. The error estimation is averaged over all k trials to get total effectiveness of

our model. As can be seen, every data point gets to be in a validation set exactly

once, and gets to be in a training set k-1 times. This significantly reduces bias as

we are using most of the data for fitting, and also significantly reduces variance as

most of the data is also being used in validation set. Interchanging the training

and test sets also adds to the effectiveness of this method.

1.5 Objectives and Scope

The objectives of the thesis are:

i) To develop sub-frame based temporal feature variation pattern by extracting

statistical features from EEG data in time-frequency, variational mode decompo-

sition (VMD) and wavelet packet decomposition (WPD) domain.

ii) To model the feature variation pattern with conventional probability distri-

bution functions (PDFs) and use characteristic parameters of the fitted PDF as

feature.

iii) To investigate the quality of the proposed feature vector in terms of class sep-

arability by the standard goodness of feature measures.

iv) To validate the performance of the proposed method by conducting experi-

ments on three publicly available EEG sleep datasets.
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The scope of this thesis will be a computationally efficient method of automatic

sleep apnea detection from single channel EEG signal, which will make diagnosis

of patients easy and human error free.

1.6 Organization of the Thesis

In the first Chapter, a definition of sleep apnea disease, its current statistics all

around the world, its symptoms- adverse affects and the current diagnosis system

are presented. For the purpose of automating the detection process the feasibility

and motivation behind using single channel EEG signal is discussed and data

acquisition technique of EEG signal is presented. Moreover, the Chapter provides

the motivation and objectives of the thesis by presenting the past and current

research scenarios of sleep apnea detection. The rest of the thesis is organized as

follows.

In Chapter 2, a model based apnea detection scheme is proposed where sub-

frame based feature variation patterns have been modeled in multi-band EEG

signal, where the bands correspond to traditional EEG bands used in literature.

The multi-band EEG signals are divided into a number of sub-frames and statisti-

cal features those are believed to be have the potential to apnea and non-apnea are

calculated from each sub-frame. Next, within frame feature variation patterns for

each band corresponding to the features used are generated. These feature varia-

tion patterns are statistically analyzed and are fitted with probabilistic model and

the statistical and fitted model parameters are used as features to classify apnea

and non-apnea. K-NN classifier is used for classification and extensive experimen-

tations have been carried out in three different publicly available databases.

In Chapter 3, Variational mode decomposition analysis is carried out for apnea
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detection. Here, sub-framed EEG data are variational mode decomposed and sta-

tistical features are extracted from each mode. As like Chapter 2, feature variation

patterns are generated for each mode and the patterns are further subjected to sta-

tistical and modeling analysis. K-NN classifier is used where statistical and fitted

model parameters are used as inputs. Detail experimental results are presented

for the same databases.

In Chapter 4, wavelet packet reconstruction has been utilized in sub-framed

EEG signal and features are extracted from the reconstructed signals at different

nodes. Next, As like Chapter 2, feature variation patterns are generated for each

node and statistical and modeling analyses are carried out of these patterns to

form the final feature vector. Classification is carried out using K-NN classifier.

Detail experimental results are presented considering the same dataset.

Chapter 5 summarizes the outcome of this thesis with some concluding remarks

and possible future works.
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Chapter 2

Model Based Apnea Detection

Using Multi-band EEG Signal

In this Chapter, a sub-frame based model fitting approach is proposed where both

the classification scenarios, classification between apnea and healthy subjects as

well as the task of discriminating apnea and non-apnea events in the data of an

apnea patient, are taken into consideration. First, a multi-band sub-frame based

scheme is introduced to extract the feature variation pattern within a frame. Next,

the feature variation patterns are processed using statistical analysis and modeled

with characteristic probability density function. Resulting model parameters and

some statistical measures are used in K nearest neighbor (K-NN) classifier to clas-

sify apnea and non-apnea frames. Detail experimentations and performance anal-

yses are carried out in three different publicly available databases. The uniqueness

of the proposed method lies in modeling the within-frame feature variation pattern

and utilizing the fitted model parameters as potential features in the classification

scheme, which offers very low feature dimension. Unlike using multiple bio-signals,

this paper focuses on automatic detection of sleep apnea using single lead EEG

signal which makes the system cost effective and can lead to an auto-diagnostic
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device favorable for in-home care. Outcome of this research has been reported

in [15].

2.1 Proposed Method

The major steps involved in the proposed method are illustrated in Fig. 2.1. A

given frame of raw EEG data is first pre-processed, divided into frequency bands,

and then proposed sub-frame based feature extraction scheme is employed in each

band-limited signal. Finally statistical analysis and modeling are applied to extract

the feature vector to be used in the classifier. In what follows, detailed description

of each step is presented.

Figure 2.1: Block diagram representing the major steps involved in the proposed
method
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2.1.1 Band-limited Signal Extraction

DC offset of a frame of EEG data is removed followed by frame amplitude normal-

ization. During sleep activity level of recorded EEG data changes as the mental

state and the sleep stage continuously change with respect to time. As a result,

there is a large change in energy content in different EEG frames. Energy normal-

ization is carried out in each frame to counter this phenomena.

EEG signal exhibits significantly different characteristics in different frequency

bands. During apnea, carbon dioxide builds up in the bloodstream as breathing

is paused, which is identified by the chemoreceptors and brain signals the person

sleeping to wake up and breathe in air [23]. Such changes in neural activity level

from non-apnea to apnea can cause notable variation in various frequency bands of

the EEG data, namely: delta(0.25-4 Hz), theta(4-8 Hz), alpha(8-12 Hz), sigma(12-

16 Hz) and beta(16-40 Hz). In the proposed method, five band-pass filters are

used to extract the band limited EEG signals which are expected to preserve local

information better with respect to full band signal. Figure 2.2 shows an example

of different signals EEG sub-bands.

2.1.2 Multi-band Feature Extraction

For a band limited EEG data, among various statistical features, entropy and log-

variance are used in the proposed method. Entropy of a discrete random variable

Y with possible values {y0, y1, y2, ..., yM} is defined as

H(Y ) = −
M∑
i=0

p(yi)× log2(p(yi)) (2.1)

where p(yi) = ni/N , with ni be the number of occurrence corresponding to yi

value among the N number of values, i.e.
∑

i ni = N . During apnea, normal

breathing is hampered and patient may make gasping, grunting or snorting sounds
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Figure 2.2: Signals of different EEG sub-bands

and restless body movements. Since EEG signal contains information regarding

different mental and motor-imagery states of the brain, it is expected that for

a person at sleep, during apnea events there will be certainly a rapid change

in information content in EEG recordings. As entropy is a statistical measure of

information content, it is proposed as a potential feature for apnea event detection.

For an N length EEG data s[n] with mean value µ, log-variance (LV) is expressed

as
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Figure 2.3: Sub-framing Operation: a) First Sub-frame b) Second Sub-frame c)
Last Sub-frame

LV = loge

[
1

N

N∑
n=1

(s[n]− µ)2

]
. (2.2)

Similarly, it is expected that variance of EEG signal would be different in both the

classes. As variance of EEG is very small, logarithm of variance is used.

2.1.3 Temporal Feature Variation Pattern Extraction

In frame by frame analysis, generally the whole duration of a test frame is con-

sidered for feature extraction. As an alternate, dividing a frame into overlapping

short duration sub-frames offers an advantage of capturing precisely local signal

characteristics. In an N length signal with sub-frame length M , shifting by p sam-

ples with p<<M<N , there will be a total N−M
p

+ 1 number of sub-frames. Figure

2.3 shows the procedure of sub-frame operation.
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If a particular feature is extracted from each sub-frame, a temporal profile

of that feature within a frame can be obtained and the properties of that sub-

frame based feature sequence can be utilized. A major advantage of using sub-

frame based feature extraction is the reduction of the effect of random fluctuation

in a given test frame. For example, an unexpected value in a test frame can

significantly affect the overall feature value. However, in sub-frame based analysis

that unexpected value will affect only a mere portion of the total sub-frames.

Thus overall analysis carried out using sub-frame based feature values can provide

better characteristics of a test frame in comparison to the case where features are

calculated using whole test frame. Another key factor is that not the entire N

Figure 2.4: Variation profile of entropy feature obtained from different band limited
EEG signals of test frames (One apnea and one non-apnea frames are considered)
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samples of a particular frame correspond to an apneic zone as frame duration is

taken higher than the typical apnea duration. Apnea may occur only for a limited

period in the whole duration of frame. Sub-framing increases the probability of

correctly identifying the particular apneic event since sub-frame based extracted

features exhibit sharp changes in its characteristics within an apnea frame, in

particular at the transition between apnea and non-apnea events. Considering

reasonably large frame size, where apnea duration is less than a frame duration,

it is obvious that a transition will exist either from apnea to non-apnea or from

non-apnea to apnea or both. Feature extracted from the entire frame at a time,

may not be able to characterize such changes.

In order to demonstrate the variation of a feature within a frame in sub-frame

based analysis, in Fig. 2.4, entropy feature patterns extracted from each band

limited signal are presented. Here two frames, one apnea and one non-apnea

are considered. It is clearly observed from the figure that in different band limited

signals, characteristics of the extracted feature patterns differ significantly between

apnea to non-apnea cases.

2.1.4 Model Fitting of the Extracted Feature Variation

Pattern

Characteristic profile of a particular feature obtained from sub-frame based analy-

sis can directly be used as feature for classifying a test frame. However, direct use

of the feature sequence involves large feature dimension. As an alternate, efficient

processing schemes can be applied on the feature variation pattern to extract

distinct information for the purpose of classifying apnea and non-apnea events.

One possible way is to extract various statistical features of feature variation pat-

tern. Among different statistical features, mean and variance are considered in

the proposed method. In addition to that, with the purpose of quantifying the
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variation pattern of sub-frame based extracted features, characteristics its ampli-

tude variation can be investigated. In this work, it is proposed to fit the sub-frame

based extracted feature sequences with characteristic probability density functions

(PDFs). The idea is to fit sub-frame based feature variation with a PDF and then

use the fitted model parameters as feature. In this case, most of the well known

PDFs can be taken into consideration, such as Gaussian, Exponential, Rayleigh

etc. Description of different popular PDFs is given in Table 2.1 [24]. This ap-

proach will provide an opportunity to capture the variations of statistics of data

distributions in apnea and non-apnea. As the number of characteristic parameters

is small (most of the cases one or two), feature dimension would be drastically

reduced in comparison to using the whole sub-frame based feature sequence. Out

of several PDFs, in this work, we propose to use Rician PDF to fit the feature

variation pattern. Detailed analysis using different PDFs is followed in Section 2.2

in this Chapter. The histograms of feature sequences and corresponding Rician

fitting of several apnea and non-apnea frames in different EEG bands are shown

in Fig. 2.5. Here, examples of both entropy and log-variance are presented for

all the band limited signals. It is observed from the figure that the histograms

of feature variation pattern corresponding to apnea and non-apnea cases differ

widely from each other and the fitted Rician PDFs are different and have wide

separation. Thus PDF model fitting is expected to offer better feature quality as

well as reduced computational burden.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 2.5: Histogram of Sub-frame based feature variation patterns of each sub-
band and corresponding Rician fitting
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Table 2.1: Definition of Characteristic PDFs

Distribution PDF Parameters

Normal
f(x|µ, σ2) =

1

σ
√

(2π)
exp−−(x−µ)2

2σ2

µ, σ

Exponential
f(x;λ) ={

λ exp−λx, x ≥ 0;

0 , x < 0

λ

Rayleigh
f(x;σ) =

x
σ2 exp−−x2

2σ2 , x ≥ 0
σ

Rician
f(x|υ, σ) =

x
σ2 e
−x

2+υ2

2σ2 Io(
xυ
σ2 )

υ, σ

Gamma f(x;α, β) = βαxα−1 exp−βx

Γ(α) ;

x > 0 and α > 0 β > 0
α, β

Nakagami
2mm

Γ(m)Ωmx
2m−1 exp(−m

Ω x
2),

∀x ≥ 0;m ≥ 0.5; Ω > 0
m, Ω

Weibull
f(x;λ, k) ={

k
λ(xλ)k−1 exp(− x

λ
)k , x ≥ 0;

0 , x < 0

λ, k

For model parameter estimation Log-Likelihood method is adopted. The pa-

rameters which provide the maximum value of Log-Likelihood are taken as the

estimated parameters. The statistical features and the model parameters calcu-

lated from each band limited signal of a frame are cascaded as stated in (2.3),(2.4)

and (2.5) to form the final feature vector Fproposed. Here, Fstat,δ and Fmod,δ are

the statistical features and model parameters, respectively extracted from both

the sub-frame based entropy and log-variance feature variation patterns in delta

band. Fstatistical and Fmodel indicate the features obtained from statistical analysis
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and model fitting, respectively.

Fstatistical = [Fstat,δ Fstat,θ Fstat,α Fstat,σ Fstat,β] (2.3)

Fmodel = [Fmod,δ Fmod,θ Fmod,α Fmod,σ Fmod,β] (2.4)

Fproposed = [Fstatistical Fmodel] (2.5)

2.1.5 Classifier

In the proposed method, K-nearest neighborhood (K-NN) classifier is used where

distance function computed between the features belonging to the EEG pattern

in the test set and K neighboring EEG patterns from both apnea and non-apnea

group in the training set is considered. The test set EEG pattern is classified based

on the K closer class labels of EEG patterns. For the purpose of performance

evaluation, M-fold cross validation technique is employed.

2.2 Results and Discussions

The proposed method involves two stage feature extraction- features mentioned in

Section 2.1.3 are computed from each sub-frame and the extracted feature variation

pattern is used for statistical analysis and model fitting to obtain the final feature

vector. In view of analyzing the performance of various models, different types

of distributions are considered separately in forming the feature vector proposed

in (2.4) and in particular Rician model is used in (2.5) to form the proposed

feature vector. This Section presents description of the databases used and the

detailed analysis on the choice of proper PDF, quality of the extracted features
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and classification performance.

2.2.1 Database

In order to investigate the proposed method in discriminating apnea patients and

healthy subjects as well as apnea and non- apnea frames of an apnea patient,

the proposed method is evaluated on three large databases, publicly available

in the PhysioNet [25] (Database-A), [26] (Database-B) and [27] (Database-C).

Polysomnograms of healthy subjects are available in [27] while [25] and [26] contain

full overnight polysomnograms from subjects with previously diagnosed with sleep

apnea. Experienced sleep specialist scored the polysomnograms as apnea or non-

apnea which is available as ground truth. Apnea and Hypopnea Index (AHI)

defines the severity of apnea and it is measured by the number of occurrence per

hour. For the purpose of detailed experimentation, subjects with broad variation

in AHI are taken into consideration. In the databases there are different types of

apnea and hypopnea, such as obstructive sleep apnea, central sleep apnea, mixed

sleep apnea, obstructive sleep hypopnea, central sleep hypoapnea, and mixed sleep

hypopnea. The proposed method is targeted to detect apnea frames irrespective

of their types. All different categories of apnea and hypopnea events are termed as

apnea in this work. Hence, all types of apnea and hypopnea frames and equivalent

number of non-apnea frames for subjects with AHI greater than 5 are selected

for experimentation. Depending on the available ground truth, for the databases

available in [25] and [26], frame lengths are taken 15s and 30s, respectively. In

terms of selecting sub-frame length (M) and corresponding sample shift (p), two

factors are to be considered.

A small sub-frame length with a moderate sample shift will provide an increased

number of feature variation data but it may result into incorrect estimation of the

features due to not having enough data. Again, a very small sample shift can
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be chosen which will provide a large number of feature variation data but it will

increase computational complexity. Considering both the issues, in the proposed

method, a relatively large sub-frame length of 1280 and 6250 samples are selected

for databases- [25] and [26] and 90% overlap between two successive sub-frames are

chosen to obtain better estimation of the features as well as considerable amount

of data points for model fitting with moderate computational complexity. The

information of the subjects used in this study and the number of EEG frames

taken are given in Table 2.2.

2.2.2 Goodness of Model Fit

In this sub-section, a comparative analysis on fitting characteristics of different

distributions is presented considering conventionally used statistical tools, such as

Log Likelihood (LogL), Bayesian Information Criterion (BIC) and Akaike Infor-

mation Criterion (AIC). The distribution with the largest Log Likelihood value

represents statistically the best fit. BIC and AIC are defined as

BIC = −2 ∗ ln(likelihood) + [ln(N)](k) (2.6)

AIC = −2 ∗ ln(likelihood) + 2(k), (2.7)

where N and k are the number of observations and degree of freedom of model,

respectively. The best model in the group compared is the one that minimizes

these scores.

In order to demonstrate the comparative fitting performance of various PDFs

in multi-band sub-frame based feature variation patterns of each frame, above sta-

tistical parameters are calculated. The mean values of these statistical parameters
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for all the apnea and the non-apnea frames corresponding to a subject are shown

in Table 2.3. It is observed from the table the best PDF fitting performance is

achieved by the Rician distribution and thus Rician distribution is used in the

Proposed Method.

Table 2.3: Comparison of fitting of different distributions evaluated in Database-A

Apnea Non-apnea

Distribution LogL BIC AIC LogL BIC AIC

Gamma 36.60 -66.21 -69.20 35.56 -64.12 -67.12

Weibull 35.89 -64.78 -67.78 34.51 -62.02 -65.02

Exponential -60.95 125.39 123.89 -61.33 126.17 124.67

Rayleigh -38.16 79.81 78.31 -38.54 80.58 79.09

Rician 36.64 -66.29 -69.28 35.59 -64.18 -67.18

The comparison of goodness of fit is also shown by probability plot in Fig.

2.6. Here, it is seen that Exponential, Rayleigh, Weibull do not show good fitting

performances and it is also seen that Rician and Gamma are almost overlapped as

they show similar performances. This also supports the values presented in Table

2.3.

2.2.3 Feature Quality Test

The quality of the proposed feature is investigated in terms of class separability by

the standard goodness of feature measures, namely Bhattacharyya Distance (BD)

and Geometrical Separability Index (GSI).

BD is a measure of similarity between two discrete or continuous probability

distributions. It is closely related to the Bhattacharyya coefficient (BC) which is a

measure of the amount of overlap between two statistical samples or populations.

The BC can be used to determine the relative closeness of the two samples being

considered. It is used to measure the separability of classes in classification. For
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Figure 2.6: Probability Plot for fitting with different PDFs

two independent Gaussian data clusters, BD is computed as [28]

BD = 1
8
(µ2 − µ1)T [1

2
(δ)1 + δ)2]−1(µ2 − µ1) + 1

2
ln(

det(
δ1+δ2

2
)√

det(δ1))∗
√
det(δ2))

) (2.8)

Here, δi and µi represent covariance matrix and mean vector of i-th cluster, re-

spectively. Bhattacharyya coefficient (BC) is computed as

BC = exp−BD (2.9)

Greater the value of Bhattacharyya distance, smaller the value of Bhattacharyya

coefficient. Smaller value of Bhattacharyya coefficient represents smaller amount of

overlap between two statistical samples or populations, thus ensures better feature

quality.

GSI, called Thornton's separability index as well, gives the measure of the

separability in the nearest neighbor sense of two classes. It is defined as the

fraction of a set of data points whose labels for classification are similar to those
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of their nearest neighbors. It is defined as [29]

GSI =

∑N
i=1(f(xi)) + f(x′i) + 1) mod 2

N
(2.10)

where x′ is the nearest neighbor of x and N denotes the number of points. Higher

value of GSI and lower value of BC represent better the feature quality.

In Table 2.4 and 3.1, BC and GSI values are shown, respectively for subjects

mentioned in Table 2.2 for database [25]. It can be observed from the table that

out of several PDFs, the best feature quality, the lowest BC and the highest GSI.

is achieved by the Rician distribution and thus Rician distribution is selected to

fit the sub-frame based feature sequence in the proposed method. Moreover, it is

to be observed that the proposed feature combination of statistical analysis and

Rician model parameters, as it is mentioned in (2.5) offers the best feature quality

result.

For the data used in Table 2.2, box plots corresponding to Rician parameters

(υ, σ) are shown in Fig. 2.7 where as distribution of statistical parameters are

shown in Fig. 2.8. In both the cases, entropy variation of Beta band is considered.

Here significant separation between the two classes (apnea and non-apnea) are

observed.

2.2.4 Classification Result

For the purpose of classification, two different cases, (i) classification of apnea and

non-apnea frames in the data of apnea patients and (ii) classification of apnea

patients and healthy subjects, are considered. The K-NN classifier is used for

classification. In classifier, various distance function and different valus of K are

tested. It is found that the cosine distance function and K=9 give the best result.
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Table 2.4: Feature Quality in terms of BC evaluated in Database-A

S/No. Rayleigh Exponential Rician Proposed

1 0.59 0.24 0.22 2.516E-06

2 0.43 0.44 0.37 2.05E-05

3 0.25 0.25 0.19 1.10E-05

4 0.33 0.43 0.31 5.78E-05

5 0.37 0.39 0.35 1.45E-05

6 0.57 0.48 0.33 3.22E-05

7 0.22 0.14 0.29 2.76E-06

8 0.09 0.06 0.04 1.71E-09

9 0.51 0.36 0.45 0.00036465

10 0.47 0.14 0.13 1.27E-06

11 0.11 0.12 0.33 6.04E-08

12 0.01 0.01 0.09 3.78E-10

13 2.57E-09 4.84E-10 2.43E-20 2.43E-24

14 0.07 0.07 0.21 3.12E-08

15 0.27 0.21 0.22 1.05E-05

16 0.25 0.20 0.11 1.88E-06

17 0.07 0.04 0.01 8.34E-22

18 0.59 0.48 0.48 0.00015511

19 0.20 0.27 0.29 7.32E-06

20 0.16 0.11 0.05 9.53E-09

21 0.38 0.15 0.10 4.05E-06

22 0.57 0.45 0.43 8.10E-05

23 0.59 0.50 0.38 6.96E-06

Mean 0.31 0.24 0.23 3.36E-05

Standard performance measures, namely sensitivity, specificity and accuracy, those

are described in (2.11)-(2.13), and Table 2.6, are used.

Accuracy(Acc) =
TP + TN

TP + FP + TN + FN
∗ 100 (2.11)
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Table 2.5: Feature Quality in terms of GSI evaluated in Database-A

S/No. Rayleigh Exponential Rician Proposed

1 0.68 0.67 0.76 0.86

2 0.84 0.84 0.81 0.89

3 0.80 0.77 0.77 0.88

4 0.70 0.70 0.72 0.86

5 0.73 0.75 0.61 0.81

6 0.58 0.61 0.70 0.88

7 0.90 0.90 0.81 0.92

8 0.83 0.84 0.74 0.95

9 0.85 0.83 0.73 0.91

10 0.87 0.86 0.77 0.90

11 0.94 0.94 0.82 0.96

12 0.96 0.96 0.77 0.95

13 0.94 0.94 0.89 0.95

14 0.88 0.88 0.79 0.94

15 0.90 0.88 0.83 0.94

16 0.74 0.73 0.83 0.89

17 0.92 0.92 0.79 0.89

18 0.74 0.72 0.71 0.86

19 0.94 0.93 0.78 0.95

20 0.88 0.88 0.84 0.89

21 0.90 0.87 0.89 0.98

22 0.77 0.78 0.74 0.93

23 0.68 0.67 0.77 0.86

Mean 0.82 0.82 0.78 0.91
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(a) Rician Model Param-
eter υ

(b) Rician Model Param-
eter σ

Figure 2.7: Box plot of model parameters

(a) Statistical Parameter
µ

(b) Statistical Parameter
σ

Figure 2.8: Box plot of statistical parameters

Sensitivity(Se) =
TP

TP + FN
∗ 100 (2.12)

Specificity(Sp) =
TN

TN + FP
∗ 100 (2.13)
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Table 2.6: Definition of Accuracy Measures

Apnea Non-Apnea

Apnea True Positive (TP) False Negative (FN)

Non-apnea False Positive (FP) True Negative (TN)

Classification of Apnea and Non-apnea Frames in the data of Apnea

Patients

In this case, test and train, both data, are collected from the same subject.

Effect of Use of Different PDFs All three performance criteria obtained for

each subject mentioned in Table 2.2 by using different PDFs are reported in Tables

4.1 and 4.2 for two databases using leave-one-out cross validation scheme. In these

tables, ‘Stat’ represents a method that utilizes statistical features (Fstatistical) as

described in Section 2.1.4. It is found that for both datasets, the specificity values

obtained by using the proposed feature vector (Rician and statistical parameters)

are comparable to those obtained by other methods. However, the sensitivity and

accuracy values are found far superior to all other cases, which is the greatest

Figure 2.9: Performance criteria with different PDFs
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Table 2.9: Classification result of different cross-validation schemes evaluated in
Database-A

Sensitivity (%) Specificity (%) Accuracy (%)

Cross-

validation
Exp. Ray. Stat. Rician Prop. Exp. Ray. Stat. Rician Prop. Exp. Ray. Stat. Rician Prop.

leave-one-out 81.22 81.39 80.81 92.70 93.77 82.68 82.75 83.25 79.57 83.60 81.95 82.07 82.03 86.14 88.68

10-fold 83.82 85.55 82.85 91.39 95.10 79.57 81.79 83.20 76.05 84.11 81.80 83.19 83.02 83.00 89.60

5-fold 83.19 82.96 83.71 91.66 92.27 81.06 82.01 82.63 76.89 80.93 82.16 82.08 82.75 83.90 87.56

2-fold 82.88 81.97 83.43 90.27 91.13 80.55 79.87 79.47 71.12 78.07 81.65 80.40 81.21 80.13 85.37

advantage of the proposed scheme. For better understanding, the average of all

three performance criteria for various PDFs is shown in Fig. 2.9. It is clearly

observed from the figure that among different PDFs, Rician PDF offers the best

sensitivity and accuracy, competitive specificity than that is obtained by other

PDFs. At the same time, the proposed method gives the best result in terms of

all three performance criteria. For the purpose of evaluating the consistency of

the classification due to variation of amount of training data, results obtained by

the proposed method by using the leave-one-out, 2-fold, 5-fold and 10-fold cross

validation schemes are reported in Table 2.9. In all cases, similar to previous

analyses, the best performance is obtained by the proposed scheme.

Comparison of Proposed Method with Other Approaches One major

contribution of the proposed method is the use of two stage feature extraction:

sub-frame based feature extraction and fitting the extracted feature variation using

Rician PDF to use the model parameters as the feature. The proposed sub-frame

based feature variation modeling is compared with the conventional frame based

feature extraction method [16], [11], where features are calculated using the entire

frame length. In the conventional approach, features (entropy and log-variance)

are extracted from the entire band limited signals and directly used for classifi-

cation. Instead of modeling the feature variation, another interesting comparison

would be to consider the modeling of the data variation of the band limited sig-
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Table 2.10: Comparison of the Proposed Method with Other Approaches

Measure Database-A Database-B

Data Conventional Prop. Data Conventional Prop.

Sensitivity 73.21 81.03 93.77 71.06 81.96 94.20

Specificity 69.87 81.92 83.60 73.04 79.11 80.40

Accuracy 71.54 81.48 88.68 72.05 80.54 87.30

GSI 0.67 0.81 0.91 0.66 0.77 0.87

nals. The proposed method is compared with data modeling where the modeling

and statistical analysis are carried out on the pre-processed band limited frame

data. The comparison of the proposed method with the conventional approach

and data modeling is presented in Table 2.10. It is evident from the table that

proposed method offers significant improvement than the other two approaches in

each performance criteria. Performance comparison is also carried out in terms of

feature quality measure GSI. It is observed from the table that in terms of GSI,

the proposed method offers superior feature quality compared to others. This is

expected as the proposed sub-frame based feature extraction approach captures

local feature information, which offers better local feature variation pattern than

the other approaches.

The proposed method is also compared with some existing methods and results

are reported in Table 2.11. In the implementation of the methods, for maintaining

a fair comparison, frame length, sub-frame length, frequency limits for sub-bands,

band pass filter, classifier parameters are kept same as the proposed method. It

is observed from the table that the proposed method outperforms other methods

significantly with respect to each performance criterion.

As an alternate, instead of analyzing proposed method individually for each

subject, one may consider all frames from all the subjects mentioned in Table 2.2
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and cross-validation schemes can be applied to evaluate the performance. The

result obtained in this case is reported in Table 4.3. For each of 2-fold, 5-fold

and 10-fold cross validation schemes ten independent trials are taken and average

result is reported. It is clearly observable from the table that the proposed method

offers very high sensitivity, good specificity and high accuracy in this case for all

three evaluation schemes.

The proposed method detects all types of apnea and hypopnea as apnea. The

sensitivity of the Proposed Method to different types of apnea and hypopnea are

shown in Table 2.13. Here, it is evident that proposed method gives very satisfac-

tory classification performances regardless of the type of apnea. The sensitivity

of the proposed method is also investigated in terms of the severity of apnea, i.e.

the AHI value of the subjects. It is known that AHI below 5 indicates healthy,

from 5 to 15 is mild, above 15 to 30 is moderate and higher than 30 is severe [30].

The detailed result is given in Table 2.14. It is observed from the table that the

method offers very high sensitivity irrespective of the high, low or medium AHI

values.

The proposed method is also compared using different classification techniques

as shown in Table 2.15. It is observed from the table that K-NN classifier gives

Table 2.11: Comparison of the Proposed Method with the Existing Methods

Database-A Database-B

Method Se.(%) Sp.(%) Acc.(%) Se.(%) Sp.(%) Acc.(%)

[16] 77.69 79.96 78.83 72.143 66.46 69.302

[11] 65.74 59.15 62.45 60.30 56.50 58.40

[17] 81.47 83.28 82.38 80.084 80.647 80.366

[18] 72.40 70.31 71.36 71.62 69.88 70.75

[19] 78.4 76.3 77.35 76.62 74.88 75.75

Proposed 93.77 83.60 88.68 94.20 80.40 87.30
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Table 2.12: Classification result with all subjects combined

Cross-Validation Sensitivity (%) Specificity (%) Accuracy (%)

Leave-one-out 98.28 83.76 91.02

10-fold 95.86 82.90 89.37

5-fold 95.80 82.90 89.35

2-fold 94.96 80.70 87.83

Table 2.13: Sensitivity of the Proposed Method corresponding to Different Types
of Apnea evaluated in Database-A

Types Total Frames Detected as Apnea Sensitivity

Obstructive Apnea 323 321 99.38

Central Apnea 83 83 100

Mixed Apnea 51 51 100

Total Apnea 457 455 99.56

Obstructive Hypopnea 234 228 97.43

Central Hypopnea 277 270 97.47

Mixed Hypopnea 79 76 96.20

Total Hypopnea 590 574 97.29

the best performance, hence it is selected in the proposed method.

Average computational time is measured to extract features from one test signal

where the whole process of computation is performed using Intel(R) Core(TM) i5-

4200M processor with 2.50 GHz clock speed and 4 GB ram. It is found that for a

test signal the proposed method takes about 72 ms which is very small and because

of such small computation time, the proposed method can be applied for real time

apnea detection.

Classifying Apnea Patients and Healthy Subjects

Most of the methods available in literature deal with classification of EEG data

collected from apnea patients and healthy persons. In this case, for the purpose
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Table 2.14: Sensitivity of the Proposed Method Corresponding to Various AHI

Database-[25] Database-[26]

AHI Sensitivity AHI Sensitivity

23 90.43 17 95.80

51 92.10 22.3 87.69

13 96.20 34 87.78

31 93.24 22.2 78.57

12 92.96 43 98.43

12 93.33 59.8 97.39

34 99.38 30.7 92.90

8 95.80 53.1 98.58

25 99.48 22.1 98

16 96.36 100.8 100

36 96.30 46.8 94.51

12 91.30 55.3 91.43

2 88.89 59.2 98

16 90.03 41.2 100

15 95.48 65.5 94

13 91.80

7 89.47

39 91.30

24 92.42

91 97.50

14 95

55 94.30

46 90.23

of testing, EEG signals corresponding to non-apnea events are generally collected

from healthy subjects. On the contrary, it is always very challenging when frames

of both classes come from a same subject, i.e., the task of discriminating apnea

and non-apnea frames of an apnea patient which is already discussed in previous
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Table 2.15: Performance Comparison Using Different Classifiers

Classifier Sensitivity(%) Specificity (%) Accuracy (%)

SVM(Linear) 67 70 68.40

SVM (Polynomial) 87.32 91.28 89.30

SVM(RBF) 63.61 91.79 77.70

ANN 97.90 83.57 90.74

LDA 80.04 100 90.02

K-NN 98.28 83.76 91.02

Table 2.16: Classification result of Apnea and Healthy Data

Cross-Validation Sensitivity (%) Specificity (%) Accuracy (%)

Leave-one-out 98.83 97.21 98.02

10-fold 98.68 96.51 97.61

5-fold 98.64 96.30 97.47

2-fold 98.33 96.24 97.28

subsection. In this sub-section, results on classifying apnea patients and healthy

subjects are reported in Table 2.16. Healthy EEG data, used in this simulation are

available in [27] and apnea frames of subjects of [25] mentioned in Table 2.2 are

considered. In Table 2.16, leave-one-out, 2-fold, 5-fold, and 10-fold cross-validation

results are reported. For each of the 2-fold, 5-fold and 10-fold cross validation

schemes ten independent trials are considered and average result is reported. The

result shows that the proposed method offers very satisfactory performances with

respect to all the standard measures of performance criteria in classifying apnea

and healthy EEG data.

2.3 Conclusion

In conventional frame-by-frame EEG data analysis only the global characteristics

of a frame can be obtained as in that case, features are extracted considering the
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entire frame at a time. On the contrary, in this work, two-stage feature extraction

method is proposed. First, the feature is computed from small duration overlap-

ping sub-frames within a frame, which can precisely capture sharp changes with

respect to time and provide temporal variation of the extracted feature within that

frame. Next, statistical analysis and modeling are carried out on the resulting fea-

ture variation pattern, which gives an opportunity to utilize both local and global

characteristics of a frame. Apart from ensuring such time resolution in feature

extraction, use of multi-band signals also ensures frequency resolution. Among

various PDF models, it is found that the Rician PDF is offering the best feature

quality in terms of Bhattacharyya distance and GSI. Irrespective of the type of

apnea, the proposed method can not only classify apnea patient and healthy sub-

ject but also classify apnea and non-apnea frames of an apnea patient, which has

a great demand in the overnight polysomnography (PSG) to reduce human error,

labor and cost. The proposed method is evaluated on three different and large

EEG databases and it offers superior classification performance in comparison to

some existing methods in terms of sensitivity, specificity and accuracy. It makes

the proposed method to be widely applicable in a greater domain of diagnosis.
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Chapter 3

Model Based Apnea Detection

Using Variational Mode

Decomposed EEG Signal

In this Chapter, instead of using multiple bio-signals, an automatic sleep apnea

detection scheme is proposed using single lead EEG signal, which is computa-

tionally efficient and cost effective. Here, both classification scenarios- classifying

apnea and non-apnea frames in the data of an apnea patient and classification

of apnea and healthy subjects, are taken into consideration. The given raw EEG

frame is pre-processed and divided into overlapping sub-frames. Variational mode

decomposition (VMD) analysis is introduced in each sub-frame and features are

extracted from each mode. VMD gives an opportunity to obtain compact BLIMFs

with adaptive center frequencies in direct relevance to the varying neural activ-

ity of brain. Instead of directly using the extracted feature vector, within frame

feature value variation pattern is modeled with a suitable characteristic probabil-

ity distribution function (PDF) and the fitted model parameters are then used

in K nearest neighbor (K-NN) classifier to classify apnea and non-apnea frames.

50



Extensive experimentation is carried out on the same dataset used in previous

Chapter.

3.1 Proposed Method

Features are extracted from the mode functions obtained from each sub-frame by

applying VMD and finally temporal variation of each feature is modeled with a

suitable PDF. Different major steps involved in the proposed method is presented

in Fig. 3.1. Detailed description of the steps is presented in this Section.

Figure 3.1: Flow chart of the Proposed method

3.1.1 Analysis with Sub-framing

DC offset removal and frame amplitude normalization is performed in each frame

for pre-processing. Neural activity level of the recorded EEG signal changes with

respect to time during sleep. Hence, in different EEG frames, there exists a large

variation in energy content. To counter this phenomena, in each frame, energy
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normalization is also applied. Usually, in frame by frame analysis, the analysis of

a test frame is carried on the full duration. In this work, as an alternate, sub-

frame based analysis is proposed where the test frame is divided into a shorter

frame duration (to be called sub-frame) and reasonable amount of time overlap is

kept between successive sub-frames to obtain several sub-frames.

Sub-framing operation is carried out as like [15]. For example, from frame of

N length, with sub-frame duration of M samples and shifting it by p samples,

the second sub-frame can be found from (p + 1)th sample to (p + M)th sample.

This procedure can be continued till reaching the end of the frame. Considering

p<<M<N , total N−M
p

+ 1 sub-frames can be obtained.

3.1.2 Short Description of Variational Mode Decomposi-

tion (VMD)

The VMD algorithm decomposes any input signal adaptively into k discrete num-

ber of band-limited intrinsic mode functions (uk). Here each mode is mostly com-

pact around the respective center frequency ωk. The algorithm searches for a

given number of uk and the corresponding center frequencies ωk utilizing alternate

direction method of multipliers (ADMM). Input signal can be reproduced either

exactly or in least square sense by using these modes. Detailed description of VMD

algorithm can be found in [31]. The major steps involved in the VMD algorithm

can be briefly summarized as-

i) for each mode uk, the associated analytic signal is computed using Hilbert

transform in order to obtain a unilateral frequency spectrum

ii) Mode’s frequency spectrum is shifted by mixing with an exponential tuned

to the respective calculated center frequency

iii) Bandwidth is estimated through Gaussian smoothness of the demodulated

signal
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To search for uk and ωk, it is required to solve a constrained variational problem,

which is described by the following equation:

(
min

uk, ωk

)
=

{∑
k

∥∥∥∥∂t [(δ(t) +
j

πt
) ∗ uk(t)

]
e−jωkt

∥∥∥∥
2

}
, (3.1)

∑
k

uk = f (3.2)

where t is the time script, δ(·) is the Dirac distribution and * denotes convolution

operator, f is the signal to be decomposed and k is the number of modes.

The number of modes has to be predefined in the application of VMD and

its value (underbinning or overbinning) has considerable impact on the quality

of decomposed signals. In different applications, EEG signal is divided into five

frequency band-limited signals, namely- delta (0.25-4 Hz), theta (4-8 Hz), alpha (8-

12 Hz), sigma (12-16 Hz) and beta (16-40 Hz), where the frequency bands are well

established in literature and exhibit differences in frequency (Hz), amplitude and

activity level. Delta, theta and alpha bands correspond to deep sleep, mild sleep

and relax state, respectively while sigma and beta bands refer to alert states [32]-

[33]. During apnea, as the breathing is paused, level of carbon dioxide rises in the

bloodstream. Increased carbon dioxide level in the bloodstream is recognized by

the chemoreceptors. As a result, person sleeping is signaled by brain to breathe

in air and wake up [23]. Hence, there can be significant variation in different EEG

frequency bands due to the above mentioned changes in neural activity from non-

apnea to apnea. However, in a particular band, it is expected that the dominant

frequencies caused by neural activity shift slightly from time to time and person

to person.

Hence, simple bandpass filtering of EEG data with fixed center frequency will

not be able to capture the shifts. VMD analysis results in band limited IMFs where
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the center frequencies are dynamically calculated. This allows center frequency to

shift and accurately represent the neural activity. Moreover, in order to correspond

with the variation of neural activity in different frequency bands, the number of

VMD modes should be chosen in such a way that both lower and higher frequency

bands are covered. In order to present variation in spectral representation for

various number of modes, in Fig. 3.2, a frame of EEG data is considered and power

spectral densities are plotted for different number of VMD modes. It is observed

that K=3 and 4 do not have modes covering frequency above 30 Hz. Moreover,

K=4 has mode at around 10 Hz, representing original alpha state, which is missing

for K=3. For K=5 the earlier four modes stay on their positions and an extra

mode appears covering higher frequency band (>40 Hz). Higher frequency band is

further divided into increased number of modes as the value of K is taken greater

than five. As EEG data mostly have significant information lying in lower bands

(frequency<40 Hz), it is redundant to have too many modes in higher frequency.

Division of higher frequency band into more bands corresponding to new modes

does not provide necessary information for apnea detection. Moreover, increase of

number of modes increases computational complexity. Hence, in this work k=5

is proposed to utilize the entire frequency band and to have modes representing

conventional EEG Sub-bands. Moreover, it also ensures of not having redundant

modes increasing the computational complexity. Detailed performance comparison

with various number of modes is given in Section 3.2.
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The frequency characteristics can be further presented by demonstrating the

variation of center frequencies of each IMF of the sub-frames within a frame for

both apnea and non-apnea. The frequency signature is presented in Fig. 3.3. Here

for each sub-frame center frequencies are calculated and plotted for each IMF. As it

is mentioned above that different VMD IMFs represent different frequency bands,

which is clearly visible from the figure.

Figure 3.3: Frequency Signature of the Proposed method

3.1.3 Proposed Features for each mode

During apnea, patients experience disturbance in normal breathing and this can

lead to grunting, gasping, body movements. Hence, it is expected that there will

be changes in information content in EEG signal during apnea events as EEG

corresponds directly with various neural activity level. Moreover, variation in
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EEG data increases during apnea than non-apnea instances. Such changes in

information content and the data variation are expected to be better reflected

in different VMD modes of sub-frame EEG data than whole duration frame. In

order to capture the changes, in the proposed method, entropy and log-variance

are chosen as features to be extracted from each VMD mode of sub-frame EEG

data. Detailed calculation of the features are mentioned in Section 2.1.2 of the

Chapter.

3.1.4 Feature Variation Pattern Generation

In the proposed sub-frame based VMD analysis scheme, features are extracted

from each mode of overlapping sub-frames. If the amount of frame shifting (p)

in sub-framing is kept small, features extracted for each mode in sub-frame based

VMD analysis can provide a precise variation profile of that feature characteristic.

Such use of sub-frame and VMD provides an opportunity to obtain a temporal

variation profile of a particular feature for a specific mode within a frame. If there

are W number of sub-frames, the within frame feature variation pattern for kth

mode can be generated as

V ariation Pattern = [F1k, F2k, F3k, ..........FWk], (3.3)

where FWk denotes the feature calculated from the kth mode of theW th sub-frame.

In order to represent the within frame feature variation in different VMD

modes, in Fig. 3.4, entropy values calculated from different modes are presented

for both apnea and non-apnea. Entropy values are calculated in proposed sub-

frame based VMD analysis from each modes and the variation patterns of entropy

values are shown. It is evident that in different modes, characteristics of feature

variation is different from apnea to non-apnea.
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3.1.5 Processing of the Extracted Feature Sequence

Within frame feature variation pattern can be directly given as input to classi-

fier. But sub-framing calculates more number of features for a single frame than

compared to conventional feature extraction method. Hence, if sub-frame based

extracted features are directly utilized for classification, it will increase the feature

dimension considerably, which will in a way affect the computational time and cost.

As an alternate, characteristics of feature variation profile can be investigated for

classifying apnea and non-apnea frames. One idea can be to carry out statistical

analysis on feature variation pattern. Among various statistical features, in the

proposed method, mean and variance are used.

Furthermore, amplitude variation of the feature variation pattern of each VMD

mode can be investigated. In this paper, we propose to fit the sub-frame based

feature variation pattern with probability density function (PDF). The motivation

is to use the parameters of the fitted PDF as feature. In the choice of different

PDFs, well known PDFs can be considered. Such approach can investigate the

data distributions of feature variation profile. As model parameters are mostly

one or two, problem regarding large feature dimension is eliminated and the com-

putational burden is reduced. Among different PDFs, in this work, we propose to

fit the feature variation pattern with Rician PDF.

Detailed analyses with different PDFs are covered in Section 3.2. Histograms of

feature variation patterns and the corresponding Rician fittings of various apnea

and non-apnea frames for different VMD modes are presented in Fig. 4.4. It

is evident from the figure that the fitted Rician PDFs for apnea and non-apnea

frames differ widely and there are minimum overlap between the two. Hence the

fitted parameters are expected to quantify the variation pattern better and to have

better feature quality.
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Figure 3.4: Entropy feature variation obtained from different IMFs of VMD of
both apnea and non-apnea. Here, test frame is divided into multiple sub-frames
and each sub-frame is variational mode decomposed. Entropy is calculated from
each resulting IMF and the variation profile of with-in frame entropy feature is
plotted.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: Histograms of the calculated feature variation patterns and the cor-
responding Rician fittings of various VMD modes for both apnea and non-apnea
frames.
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The statistical features (Fstatistical) and the model parameters (Fmodel) calcu-

lated from each mode of overlapping sub-frames of a frame are cascaded as equa-

tion (3.4),(3.5) and (3.6) to obtain the final feature vector (F ). Here, Fmod,1 and

Fstat,1 are the model parameters and statistical features, respectively, calculated

from the feature variation patterns of mode 1.

Fstatistical = [Fstat,1 Fstat,2 .....Fstat,n] (3.4)

Fmodel = [Fmod,1 Fmod,2 .............Fmod,n] (3.5)

F = [Fstatistical Fmodel] (3.6)

3.2 Results and Discussions

In the proposed method, a frame of EEG data is preprocessed and divided into

overlapping sub-frames. VMD analysis is performed on each sub-frame signal.

Features mentioned in Section 3.1.3, are calculated for each mode. The feature

variation patterns obtained for each mode are subjected to model fitting and sta-

tistical analysis and the final feature vector is formed according to (3.4),(3.5) and

(3.6). In the following Sections the database description, feature quality analysis

and the classification results of sleep apnea detection are presented.

3.2.1 Database

For the purpose of experimentation, subjects mentioned in Table 2.2 in Chapter

2 are used in this work. For [25] and [26], frame durations taken are 15s and 30s,

respectively, depending on the respective ground truths. There are two consid-
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erations to make in selection of sub-frame duration and the size of overlap. A

big sub-frame length with large overlap will not provide enough data for feature

variation pattern and thus the corresponding model fitting will be biased. On

the other hand, a very small sub-frame length with large overlap is an option but

very short sub-frame length might provide incorrect estimate of features, such as

entropy and log-variance. Moreover, large overlap between consecutive sub-frames

will result into a large number of feature variation data that will increase the

computational complexity. Hence, keeping both the issues in consideration, in this

work a moderate sub-frame length of 2s and 4s are used for databases- [25] and [26],

respectively and 80% overlap between two successive sub-frames are maintained

to ensure enough data points for model fitting with moderate computational com-

plexity.

3.2.2 Feature Quality Test

Quality of the proposed feature vector is analyzed by the goodness of feature

measures such as, Geometrical Separability Index (GSI). GSI, called Thornton's

separability index as well, gives the measure of the separability in the nearest

neighbor sense of two classes. It is defined as the fraction of a set of data points

whose labels for classification are similar to those of their nearest neighbors. It is

defined as [29]

s =

∑N
i=1(f(xi)) + f(x′i) + 1) mod 2

N
, (3.7)

where N is the number of data points and x′ is the nearest neighbor of x.

From (3.7) it is understandable that separability index, s approximates to one

when two classes are separable and zero for inseparable classes, hence higher the

GSI value, better the feature quality. In Table 3.1, GSI values are given for the
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purpose of comparison among method of different distribution fitting to multi-

band feature variation pattern and the proposed method. From Table 3.1 it is

evident that out of different PDFs, Rician PDF fitting gives better performance,

while the proposed method of combining Rician PDF parameter and statistical

features, offers the best GSI index.

The distribution of Rician parameters (υ, σ) are presented in Fig. 3.6 via

boxplot using the data of Table 2.2. Here entropy feature variation in mode 5 is

considered. It is obvious from the figure that there is are significant separation in

distribution of the parameters between apnea and non-apnea.

(a) Rician Model Param-
eter (υ)

(b) Rician Model Param-
eter (σ)

Figure 3.6: Distribution of model parameters

3.2.3 Classification Result

As like Chapter 2, for classification purpose, in this work, two distinct cases are

considered, (i) apnea and non-apnea classification in the data of apnea patients and

(ii) apnea patients and healthy subjects classification. In K-NN classifier, cosine

distance function and K equal to 9 are chosen. Standard performance measures

described in (2.11)-(2.13) are used to evaluate the performance of the proposed

method. These were computed using TP, FP, FN, and TN values [34] as shown in
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Table 3.1: Feature Quality by GSI evaluated in Database-A

S/No. Gamma Ray. Exp. Stat. Rician Proposed

1 0.71 0.84 0.84 0.84 0.81 0.92

2 0.73 0.93 0.92 0.96 0.84 0.99

3 0.63 0.76 0.75 0.79 0.66 0.85

4 0.49 0.64 0.65 0.64 0.58 0.75

5 0.73 0.72 0.70 0.70 0.75 0.75

6 0.63 0.86 0.83 0.79 0.69 0.87

7 0.78 0.80 0.80 0.92 0.93 0.94

8 0.84 0.78 0.76 0.88 0.86 0.95

9 0.79 0.87 0.86 0.89 0.84 0.95

10 0.66 0.76 0.73 0.69 0.72 0.83

11 0.80 0.91 0.89 0.92 0.84 0.93

12 0.78 0.94 0.94 0.97 0.94 0.99

13 0.76 0.83 0.83 0.89 0.72 0.94

14 0.82 0.95 0.93 0.93 0.95 0.97

15 0.64 0.85 0.84 0.84 0.86 0.92

16 0.66 0.84 0.81 0.90 0.77 0.95

17 0.77 0.84 0.82 0.84 0.87 0.92

18 0.63 0.68 0.69 0.67 0.74 0.88

19 0.72 0.83 0.82 0.89 0.89 0.95

20 0.76 0.93 0.93 0.90 0.86 0.91

21 0.72 0.83 0.81 0.92 0.85 0.98

22 0.67 0.71 0.68 0.73 0.87 0.89

23 0.69 0.78 0.76 0.81 0.81 0.92

Mean 0.71 0.82 0.81 0.84 0.81 0.91
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Table 2.6.

Classification of Apnea and Non-apnea Frames in the data of Apnea

Patients

Here, only apnea patients are considered, where test and train data are from the

same patient. Healthy subjects are not considered here.

Performance Analysis of Different PDFs For every subject mentioned in

Table 2.2 the proposed method is evaluated for different PDFs. Performance

analyses using leave-one-out cross validation technique for each PDF are reported

in Tables 3.2 and 3.3 for databases [25] and [26], respectively .

In the tables, ‘Stat’ represents the method utilizing statistical features (Fstatistical)

as mentioned in (3.4). From the results reported in Tables 3.2 and 3.3, it is found

that for both the datasets, specificity values acquired by the proposed feature set

(Rician parameters and statistical analyses) are similar to those achieved by other

PDFs. But, the sensitivity and the accuracy values are found to be far better

compared to all other cases. Greater sensitivity means high apnea detection per-

formance, hence it serves as a big advantage of the proposed method. The mean

of the performance criteria for different PDFs is presented in Fig. 3.7. As found

earlier, among different PDFs, Rician PDF offers the best sensitivity and accu-

racy and competitive specificity whereas, the proposed method achieves the best

performance in each criteria.

Comparison of Proposed Method with Other Approaches Comparison of

the proposed sub-frame based analysis is carried out with the conventional feature

extraction method. In the conventional approach, instead of using sun-framing,

the features are computed using the entire frame duration and directly used as
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Figure 3.7: Variation profile of with-in frame feature is modeled with different
PDFs and model parameters are used as input to classifiers. Mean of all the
performance criteria are plotted for various PDFs

Figure 3.8: Relative Improvement with the proposed method comparing to the con-
ventional approach. In the conventional approach,unlike sub-frame based analysis,
entire frame is used for feature extraction and those are given as inputs directly
to the classifier

input to classifier. The relative improvement achieved for both the datasets by

the proposed approach with respect to the conventional approach is reported in

Fig. 3.8. It is readily observable from the figure that there is relatively a large

improvement in sensitivity and accuracy for both the databases.

Instead of modeling the within frame feature variation pattern, another alter-

native could be to model the data variation of the given frame. Pre-processed

frame data are being subjected to the modeling and statistical analysis and the
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Figure 3.9: Comparison of Proposed Method with Data Modeling. In data mod-
eling, unlike using the feature variation profile, modeling is applied on the pre-
processed EEG data.

performance comparison of is made with the proposed method. The results are

shown in Fig. 3.9. It is clearly shown from the figure that proposed method offers

significant improvement than modeling the original pre-processed data.

It is generally regarded that most information in scalp EEG lies in low frequen-

cies (less than 40Hz). However, recent study shows that neural activity extends

far beyond the conventional frequency ranges. At high frequencies of EEG signal,

rhythmic band activities are identified and it is shown that their properties depend

on state of vigilance [35]. In this work, analysis is carried on with various numbers

of IMFs. Figure 3.10 shows the accuracy of the proposed method using various

number of modes. It is shown that utilization of higher frequency IMFs improve

the overall result significantly. The number of modes above five have higher accu-

racies compared to the analyses with number of modes below five. It is also seen

that analysis with five modes provides the best accuracy, which is recommended

in this work. As it discussed in Section 3.1.2, number of modes below five provides

low accuracy as they fail to encapsulate the higher frequency band and for the

number of modes above five the accuracies are similar indicating redundant high

frequency modes.
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Table 3.4: Effect of model fitting on classification performance (results with and
without using the proposed model fitting)

Method Se.(%) Sp.(%) Acc.(%) GSI

without modeling 65.33 65.02 65.17 0.69

Proposed Method 94 86.92 90.46 0.91

To show the effect of modeling, the proposed method is compared with the

use of the extracted feature variation pattern as direct input to the classifier. It

is revealed from Table 3.4 that the proposed method offers significantly better

classification performance and GSI value. It shows the effectiveness of modeling

and statistical analysis in quantifying the feature variation pattern and providing

discriminative set of features.

Comparison of the proposed method is made with the existing methods for the

subjects mentioned in Table 2.2 and the result is reported in Table 3.5. From the

Table it is evident that the proposed method provides the better result compared

to the existing methods. It can be seen that the performance of [15] is close to the

proposed method. However, in [15] EEG signal is divided into sub-bands using

Figure 3.10: Classification Accuracy with different number of VMD modes taken
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Table 3.5: Performance Comparison with the Methods Available in Literature

Database-A Database-B

Method Se.(%) Sp.(%) Acc.(%) Se.(%) Sp.(%) Acc.(%)

[11] 65.74 59.15 62.45 60.30 56.50 58.40

[16] 77.69 79.96 78.83 72.143 66.46 69.302

[17] 81.47 83.28 82.38 80.084 80.647 80.366

[18] 72.40 70.31 71.36 71.62 69.88 70.75

[19] 78.4 76.3 77.35 76.62 74.88 75.75

[15] 93.7 83.61 88.65 94.2 80.41 87.31

Proposed 94 86.92 90.46 95.43 81.56 88.49

Table 3.6: Classification performance with all subjects combined

Cross-Validation Sensitivity (%) Specificity (%) Accuracy (%)

leave-one-out 96.90 87.93 92.42

10-fold 97.18 87.72 92.36

5-fold 96.22 87.08 91.59

2-fold 96.39 85.95 91.17

fixed bandwidth bandpass which may fail to capture the variation in dominant fre-

quencies from person to person, time to time due to changes neural activity which

is discussed in Section 3.1.2. Moreover, unlike proposed method, high frequency

(¿40Hz) EEG data are not taken for analysis.

In order to evaluate the performance of the proposed method, instead of subject

specific analysis, one idea could be to apply cross-validation schemes on all frames

from all subjects mentioned in Table 2.2 for [25] together. The result achieved for

this approach is shown in Table 3.6. It is evident from the Table that the proposed

method shows very satisfactory performance in classifying apnea and non-apnea

frames.

EEG signals reflect the underlying cortical activation, and therefore different

electrodes exhibit the distinct functional roles during sleep. According to the rec-
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ommendations of Rechtschaffen and Kales [36], it requires one EEG lead with

electrodes placed either at C4-A1 or C3-A2 according to the 10-20 system of elec-

troencephalography electrodes placement on the skull.In agreement with this view

the 2007 AASM Manual [37] recommended the use of three standard EEG elec-

trodes for the scoring of sleep; including central, frontal and occipital electrodes.

However, [38] showed that no differences are observed in arousal scoring statistics

when only central electrode is used compared to using three electrodes (frontal,

central, and occipital). In the proposed method, the databases used for apnea pa-

tients utilized different electrodes for data acquisition. The performance of apnea

detection of the proposed method with respect to electrode position is presented

in Table 3.7. It is interesting to note that the result very well supports the recom-

mendation of Rechtschaffen and Kales. Here the electrodes with central position

(C3-A2, C4-A1) have significantly better apnea detection performance compared

to other positions.

Table 3.7: Effect of Position of Electrode in Apnea Detection

Electrode

Position

No. of

Subjects
Sensitivity (%) Specificity (%) Accuracy (%)

C4-A1 4 95.42 85.61 90.51

C3-A2 23 94 86.92 90.46

O2-A1 2 84.29 79.76 82.02

C3-O1 9 97.78 81.74 89.76

Classifying Apnea Patients and Healthy Subjects

Here, non-apnea frames are taken from healthy subjects and the task of classifying

apnea and healthy subjects is considered. Different cross-validation schemes are

applied for performance evaluation and the details of the result are reported in

Table 3.8. For each cross-validation scheme, average result of ten independent
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trials is reported. From the Table it is evident that the proposed method achieves

superior performances in classifying apnea and healthy subjects in terms of all

performance criteria.

Table 3.8: Performance of the proposed method in classifying apnea and healthy
subjects

Cross-Validation Sensitivity (%) Specificity (%) Accuracy (%)

leave-one-out 98.83 97.55 98.19

10-fold 98.80 98.15 98.45

5-fold 98.82 97.73 98.27

2-fold 98.55 97.52 98.03

3.3 Conclusion

In this work, instead of considering the entire frame of given EEG data at a time,

a unique sub-frame based VMD analysis is followed. VMD divides a signal into K

band-limited intrinsic mode functions (BLIMFs) which are compact around a cen-

ter frequency calculated solving a constrained variational problem. Such BLIMFs

with adaptive center frequency can represent neural activity better compared to

band limited EEG signal collected by bandpass filtering with definite center fre-

quency and bandwidth. Moreover, it is shown that for EEG data, the number

of VMD modes can be taken as five ensuring better result and limited compu-

tational complexity. Features expected to be discriminative for apnea detection

are computed from each BLIMF of small duration sub-frame EEG data and tem-

poral variation of features are generated for each mode. Unlike analysis over the

entire frame, such small duration sub-frame based analysis and feature extrac-

tion can preserve local characteristics better. It is shown that if the extracted

temporal feature variations are directly used for classification, it yields a poor re-

sult. Hence, modeling and statistical analysis are carried out on extracted feature
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variation pattern, which provides an opportunity to characterize the amplitude

variation of it. Among different PDF models, it is discovered that in terms of GSI

Rician PDF offers the best feature quality. Unlike the established methods, the

proposed is employed to classify apnea and non-apnea frames of an apnea patients

as well as discriminate apnea and healthy subjects, which has a great demand in

the field of diagnosis. The proposed method is evaluated on three different and

large public databases of apnea patients with wide variation in AHI and healthy

subjects and three different criteria of classification have been adopted to mea-

sure the effectiveness of the proposed method. In each of the cases, the proposed

method offers significantly better classification performance in comparison to some

existing methods in terms of sensitivity, specificity and accuracy. As a result, the

proposed scheme can be employed in clinical applications to reduce the burden of

the clinicians in apnea detection.
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Chapter 4

Model Based Apnea Detection

Using Wavelet Packet

Decomposed EEG Signal

In this Chapter, an automatic sleep detection scheme using single lead EEG sig-

nal is proposed where analysis is carried on the wavelet domain. The given raw

EEG frame is pre-processed and divided into overlapping sub-frames. Multi-level

Wavelet Packet Decomposition is carried out on each sub-frame to extract EEG

signals corresponding to different frequency bands. Instead of utilizing the wavelet

packet coefficients directly for feature extraction, wavelet packet reconstruction at

each node is carried out and features are calculated from the reconstructed signal.

Wavelet preserves the best time-frequency resolution and hence, features calcu-

lated from them give the best estimate of the neural activities. Instead of directly

using the extracted feature vector, within frame feature value variation pattern

is modeled with a suitable characteristic probability distribution function (PDF)

and the fitted model parameters are then used in K-NN classifier to classify apnea

and non-apnea frames. Here, both classification scenarios- classifying apnea and
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non-apnea frames in the data of an apnea patient and classification of apnea and

healthy subjects, are taken into consideration. The experimentation is carried out

in the same dataset used in Chapter 2.

4.1 Proposed Method

Each EEG frame is divided into multiple overlapping sub-frames and each sub-

frame is divided into band limited signal using wavelet packet decomposition based

reconstruction. Features are extracted from each band limited reconstructed sig-

nal and within frame feature variation pattern is constructed. Next, the within

frame temporal feature variation pattern is modeled with characteristic probability

density function (PDF) and the fitted parameters are used as final feature vector.

Detailed description of the steps involved in the proposed method is presented in

this section.

Figure 4.1: Flow chart of the Proposed method

Each given raw EEG frame is first pre-processed using dc offset removal, frame
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amplitude normalization and energy normalization. Instead of carrying out anal-

ysis on the entire duration of the frame at a time, in this work, a sub-frame based

analysis is adopted where the main frame is divided into a number smaller dura-

tion frames (these are called sub-frames) and a considerable amount of overlap is

maintained between successive sub-frames. Sub-framing operation is carried out

as like [15] where from an N length frame, with sub-frame duration M samples

and shifting by p samples, a total N−M
p

+ 1 number of sub-frames are obtained.

Such sub-frame based analysis concentrates on smaller durations and hence it is

expected to capture local information better. Moreover, as typically apnea dura-

tion is around 10s or so, only a portion of the main frame duration correspond to

apnea. Hence, instead of working with the entire frame duration, it is beneficial

to analyze shorter durations.% and develop an

4.1.1 Wavelet Packet Decomposition

Due to random nature of EEG data and interferences introduced during record-

ing, it is very difficult to obtain distinctive characteristics from directly analyzing

the time domain EEG data. In view of obtaining better distinguishing behav-

ior of EEG signal , one common approach is to divide the EEG data in various

frequency bands and then carry out analysis in each band separately. In differ-

ent applications, EEG signal is divided into five frequency band-limited signals,

namely- delta (0.25-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (12-16 Hz) and

beta (16-40 Hz), where the frequency bands are well established in literature and

exhibit differences in frequency (Hz), amplitude and activity level. Delta, theta

and alpha bands correspond to deep sleep, mild sleep and relax state, respectively

while sigma and beta bands refer to alert states [32]- [33]. During apnea, as the

breathing is paused, level of carbon dioxide rises in the bloodstream, which is rec-

ognized by the chemoreceptors. As a result, person sleeping is signaled by brain
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Figure 4.2: Tree decomposition of EEG signal

to breathe in air and wake up [23]. It is expected to have significant variation

in different EEG frequency bands due to the above mentioned changes in neural

activity from non-apnea to apnea. Hence, instead of carrying out analysis on the

original frame, band limited analysis is followed in the proposed method.

In this work, to decompose each sub-frame of EEG data wavelet analysis is

utilized. Wavelet decomposition (WD), the most common time-frequency multi-

resolution technique, is found very effective in EEG [39]. However, WD based

scheme performs decomposition only in the lower frequency bands. As an alterna-

tive, wavelet packet decomposition (WPD) can be utilized where decomposition

is performed both in lower and higher frequency regions. Moreover, it offers low

computational cost and ease of implementation [40], [41].

A wavelet packet is represented as a function [40], [41]

W φ
ψ,k(t) = 2−ψ/2W φ(2−ψt− k), φ = 1, 2, ....., ψm (4.1)
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where parameters φ, ψ, k and m correspond to modulation, dilation, translation

and level of decomposition in wavelet packet tree respectively. The following rela-

tionships is utilized to obtain the wavelet W φ :

W 2φ =
1√
2

∞∑
−∞

h(k)W φ(
t

2
− k) (4.2)

W 2φ+1 =
1√
2

∞∑
−∞

g(k)W φ(
t

2
− k) (4.3)

Here W φ is called as a mother wavelet and the discrete filters h(k) and g(k)

are quadrature mirror filters associated with the scaling function and the mother

wavelet function. The filtering operations in the WPD result in a change in the

signal resolution and the sub-sampling operation causes change in the scale. Thus,

WPD helps in analyzing the signal at different frequency bands with different

resolutions.

The wavelet packet coefficients cφψ,k corresponding to the signal y(t) can be

obtained as,

cφψ,k =

∫ ∞
−∞

y(t)W φ
ψ,k(t)dt (4.4)

provided the wavelet coefficients satisfy the orthogonality condition. Now, the

EEG data can be decomposed to various levels. As the number of levels is in-

creased, it is possible to extract band limited signals with smaller bandwidths,

however, computational cost will increase in turn. As neural activity changes from

non-apnea to apnea, it is preferable to consider both conventional low frequency

bands as well as the high frequency band for analysis. In order to extract these

frequency bands, the four level decomposition shown in 4.2 is used in the work.

Here, node (1,1) represents the high frequency EEG band where (4,0), (4,1), (4,2),

(4,3), (3,2) and (3,3) constitute the conventional low frequency bands. As EEG

79



Figure 4.3: Wavelet packet reconstructed signals at different nodes

data mostly have significant information lying in lower bands, further decompo-

sition of node (1,1) is not carried out which would have increased computational

time and cost.

One major problem in WPD is the reduction of the length of wavelet coefficients

in each decomposition level similar to conventional wavelet analysis. As a result,
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if features are extracted from multi-level wavelet coefficients, there is a chance of

getting deteriorated feature quality due to the reduced length of the coefficients

in comparison to main data length. For example, for the four level decomposition

shown in Fig. 4.2, the length of the WPD coefficients at the fourth level will

1/16th of the main data length. To counter this problem, an approach can be

to to reconstruct signal at a particular node using the WPD coefficients of that

node, which is named as WPNR. This reconstructed signal will represent the band

limited version of the original signal and will have same length as the original signal.

To demonstrate this, corresponding to the decomposition presented at Fig. 4.2,

reconstructed signals at different nodes are shown in Fig. 4.3. It is to be seen that

all the reconstructed signals have same length and they vary in terms of frequency

content and amplitude. If WPNR signal at each node is considered for feature

extraction, better statistical characteristics is expected as there is no reduction of

length.

A large number of wavelet functions are available in the literature namely

Daubechies, Symlets, Coiflet, Biorsplines, ReverseBior, and Discrete Meyer. Out

of these, sym9 wavelet of the Symlets family is utilized in the Proposed Method.

4.1.2 Modeling Analysis of Wavelet Packet Reconstructed

Signal

Each sub-frame based WPNR signal is statistically analyzed where statistical fea-

tures are calculated from each of the WPNR signals. Since EEG signal contains

information regarding different mental and motor-imagery states of the brain, it

is expected that for a person at sleep, during apnea events, there will be certainly

a rapid change in information content in EEG recordings. Moreover, variation

in EEG data increases during apnea than non-apnea instances. Such changes in

information content. In order to capture the changes, in the proposed method, en-
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(a) (b)

(c) (d)

Figure 4.4: Test frame is divided into multiple sub-frames and each sub-frame is
wavelet packet decomposed. Wavelet coefficients at each node are reconstructed
using wavelet packet reconstruction (WPNR). Entropy and log-variance are cal-
culated from each WPNR signal. Histograms of the calculated feature variation
patterns of entropy and the corresponding Rician fittings of various WPNR signals
are shown for both apnea and non-apnea frames.

tropy and logarithm of variance (LV) are chosen as features to be extracted from

each sub-frame based WPNR signal.

As there are multiple sub-frames within a frame, features are calculated for
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multiple times for same node but for different sub-frames. Hence, it gives an

opportunity to obtain a within frame feature variation profile of a particular feature

for each node. If there are W number of sub-frames, the within frame feature

variation pattern for kth node can be generated as

V ariation Pattern = [F1k, F2k, F3k, ..........FWk], (4.5)

where FWk denotes the feature calculated from the kth node of the W th sub-frame.

In order to represent the within frame feature variation pattern for different

WPNR signals, in Fig. 4.5, entropy values calculated for each sub-frame based

WPNR signal are presented for both apnea and non-apnea. It is evident from the

figure that in different modes, characteristics of feature variation is different from

apnea to non-apnea.

Instead of directly using the calculated sub-frame based features for classifica-

tion, which will increase feature dimension and computational time, the extracted

feature variation patterns are further subjected to model fitting as like [15]. For

modeling, feature variation pattern of each WPNR signal is fitted with suitable

PDF and the fitted parameters are used as features. The formation of final feature

vector (F ) is shown in (4.6). Among different PDFs, in this work, Rician PDF

is used and in Fig. 4.4, for both apnea and non-apnea, Rician fittings of feature

variation patterns for different WPNR signals are shown. It is evident from the

figure that the fitted Rician PDFs for apnea and non-apnea frames differ widely

and there are minimum overlap between the two. Hence the fitted parameters are

expected to show good classification performance in differentiating two classes.

F = [Fwpd,1 Fwpd,2 .............Fwpd,n] (4.6)

83



Figure 4.5: Wavelet packet reconstructed signals at different nodes

4.2 Results and Discussions

This section presents the description of the databases used, the detailed analysis

on the feature quality of the extracted features and the classification results of

sleep apnea detection.
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4.2.1 Database

For the purpose of experimentation, subjects mentioned in Table 2.2 in Chapter

2 are used in this work. For [25] and [26], frame durations taken are 15s and 30s,

respectively, depending on the respective ground truths. There are two consid-

erations to make in selection of sub-frame duration and the size of overlap. A

big sub-frame length with large overlap will not provide enough data for feature

variation pattern and thus the corresponding model fitting will be biased. On

the other hand, a very small sub-frame length with large overlap is an option but

very short sub-frame length might provide incorrect estimate of features, such as

entropy and log-variance. Moreover, large overlap between consecutive sub-frames

will result into a large number of feature variation data that will increase the

computational complexity. Hence, keeping both the issues in consideration, in this

work a moderate sub-frame length of 2s and 4s are used for databases- [25] and [26],

respectively and 80% overlap between two successive sub-frames are maintained

to ensure enough data points for model fitting with moderate computational com-

plexity.

4.2.2 Classification Result

For the classification purpose, there are two cases to consider- (i) apnea and non-

apnea classification in the data of apnea patients and (ii) apnea patients and

healthy subjects classification. In K-NN classifier, cosine distance function and K

equal to 9 are chosen. Standard performance measures described in (2.11)-(2.13)

are used to evaluate the performance of the proposed method. The definition of

the accuracy measures such as TP,TN,FP,FN, are provided in Table 2.6.
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Classification of Apnea and Non-apnea Frames in the data of Apnea

Patients

Here two classes, apnea and non-apnea, both come from the data of apnea pa-

tients. Healthy subjects are considered in another section. The proposed method

is evaluated for different PDFs and detailed result is shown in in Tables 4.1 and

4.2for both the databases utilizing leave-one-out cross-validation scheme. Out of

several PDFs, it is evident that Rician PDF offers the best result in terms of each

of the performance criteria. The improvement in specificity with Rician in com-

parison to other PDFs is moderate whereas the sensitivity and accuracy values are

far superior. Hence, in this work, Rician PDF is proposed for fitting the feature

variation data. In Tables 4.1 and 4.2, subject specific results have been reported

where test and train contain data from the same subject. However, another al-

ternative could be to mix data from all the subjects together and apply different

cross-validation schemes on them. Table 4.3 shows the result of the analysis and

it can be seen that in all the cross-validation schemes the result is consistent.

Table 4.3: Classification performance with all subjects combined of database-A

Cross-validation schemes Sensitivity Specificity Accuracy

Leave one out 98.54 85.82 92.18

10-fold 99.15 84.56 91.97

5-fold 98.73 84.42 91.67

2-fold 98.73 82.88 90.87

In the proposed features are calculated from the reconstructed signal which is

named as WPNR. However, instead of using wavelet reconstruction, one alterna-

tive could be to extract features from the coefficients and later on model these

sub-frame based features. A comparison between these two in terms of classifica-

tion result is presented in Table 4.4 and it is shown that utilization of reconstructed
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Table 4.4: Comparison of the Proposed method with using Wavelet coefficients for
modeling

Method Se. Spe. Acc.

Coefficient Modeling 96.806 81.896 89.35

Proposed 97.11 88.64 92.87

signal improves the performance. The reason for this is that with more level of

decomposition the number of data points gets lesser, hence in the deeper levels

the number of data point is much lesser. As a consequence, the statistical fea-

tures calculated from the shorter length coefficients might not provide the correct

estimate. In reconstruction the length remains unchanged hence no such problem

occurs.

In the Proposed method four level wavelet packet decomposition is considered.

The classification result with various levels of decomposition is shown in Fig. 4.6.

It is seen that four level decomposition gives the best result in terms of every

performance criterion.

Comparison of the proposed method is made with the existing methods for the

subjects mentioned in Table 2.2 and the result is reported in Table 4.5. From the

Figure 4.6: Classification Result with Various Levels of Decomposition
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Table 4.5: Performance Comparison with the Methods Available in Literature

Database-A Database-B

Method Se.(%) Sp.(%) Acc.(%) Se.(%) Sp.(%) Acc.(%)

[11] 65.74 59.15 62.45 60.30 56.50 58.40

[16] 77.69 79.96 78.83 72.143 66.46 69.302

[17] 81.47 83.28 82.38 80.084 80.647 80.366

[18] 72.40 70.31 71.36 71.62 69.88 70.75

[19] 78.4 76.3 77.35 76.62 74.88 75.75

[15] 93.7 83.61 88.65 94.2 80.41 87.31

Proposed 97.11 88.64 92.87 97.66 85.07 91.37

Table it is evident that the proposed method provides the better result compared

to the existing methods.

Classifying Apnea Patients and Healthy Subjects

Here, non-apnea frames are taken from healthy subjects and the task of classifying

apnea and healthy subjects is considered. Different cross-validation schemes are

applied for performance evaluation and details of the result are reported in Table

4.6. For each cross-validation scheme, average result of ten independent trials is

reported. From the Table it is evident that the proposed method achieves superior

performances in classifying apnea and healthy subjects in terms of all performance

criteria.

Table 4.6: Performance of the Proposed Method in classifying apnea and healthy
subjects

Cross-validation schemes Sensitivity (%) Specificity (%) Accuracy (%)

Leave one out 99.91 99.57 99.74

10-fold 100 99.35 99.68

5-fold 99.94 99.44 99.69

2-fold 99.91 99.39 99.65
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4.3 Conclusion

In this work, instead of analyzing the given whole duration EEG data at a time, a

sub-frame based WPD analysis is carried out. WPD allows to extract band limited

EEG signals with high time-frequency resolution. Moreover, in this work, instead

of working with the wavelet coefficients, wavelet packet reconstruction is intro-

duced which, unlike wavelet coefficients, has same length as the original signal.

Wavelet analysis is carried out on sub-framed EEG data to extract the conven-

tional band limited EEG signals and features are calculated from the reconstructed

signals. Such use of sub-framing provides an opportunity of generating temporal

variation of the extracted feature within the frame. Next, model fitting is carried

out on the resulting feature variation pattern, which gives an opportunity to uti-

lize both local and global characteristics of a frame. Among various PDF models,

it is found that the Rician PDF is offering the best classification performance in

all three databases. In each of the cases, the proposed method offers significantly

better classification performance in comparison to some existing methods in terms

of sensitivity, specificity and accuracy. The proposed method can not only classify

apnea patient and healthy subject but also classify apnea and non-apnea frames

of an apnea patient, which has a great demand in the overnight polysomnography

(PSG) to reduce human error, labor and cost. It makes the proposed method to

be widely applicable in a greater domain of diagnosis.

In this work, instead of considering the entire frame of given EEG data at a

time, a unique sub-frame based VMD analysis is followed. VMD divides a sig-

nal into K band-limited intrinsic mode functions (BLIMFs) which are compact

around a center frequency calculated solving a constrained variational problem.

Such BLIMFs with adaptive center frequency can represent neural activity better

compared to band limited EEG signal collected by bandpass filtering with definite

center frequency and bandwidth. Moreover, it is shown that for EEG data, the
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number of VMD modes can be taken as five ensuring better result and limited

computational complexity. Features expected to be discriminative for apnea de-

tection are computed from each BLIMF of small duration sub-frame EEG data

and temporal variation of features are generated for each mode. Unlike analysis

over the entire frame, such small duration sub-frame based analysis and feature ex-

traction can preserve local characteristics better. It is shown that if the extracted

temporal feature variations are directly used for classification, it yields a poor re-

sult. Hence, modeling and statistical analysis are carried out on extracted feature

variation pattern, which provides an opportunity to characterize the amplitude

variation of it. Among different PDF models, it is discovered that in terms of GSI

Rician PDF offers the best feature quality. Unlike the established methods, the

proposed is employed to classify apnea and non-apnea frames of an apnea patients

as well as discriminate apnea and healthy subjects, which has a great demand in

the field of diagnosis. The proposed method is evaluated on three different and

large public databases of apnea patients with wide variation in AHI and healthy

subjects and three different criteria of classification have been adopted to mea-

sure the effectiveness of the proposed method. In each of the cases, the proposed

method offers significantly better classification performance in comparison to some

existing methods in terms of sensitivity, specificity and accuracy. As a result, the

proposed scheme can be employed in clinical applications to reduce the burden of

the clinicians in apnea detection.
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Chapter 5

Conclusion

5.1 Concluding Remarks

In this thesis, Rician model based sleep apnea detection schemes are presented

in three different domains. Instead of utilizing the entire EEG frame, sub-frame

based analysis has been carried out which gives an opportunity to better extract

the local information. Different time-frequency domains, such as multi-band EEG

signals, variational mode decomposed EEG signal, wavelet packet reconstructed

EEG signal have been used since such band limited signals in different domains

can encapsulate neural activities better and thus a difference in terms of neural

activity from non-apnea to apnea can be exploited. Statistical features, such as

entropy and log-variance have been extracted from each sub-frame and thus within

frame feature variation patterns for every band limited signals can be generated.

It is shown that Rician modeling and use of the fitted Rician parameters as feature

can provide high accuracy in apnea detection in all the domains. Detailed analyses

and various types of investigation carried out on three different publicly available

databases verify that the proposed model based sleep apnea detection schemes

are capable of detecting sleep apnea frames in the data of apnea patients and
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classifying apnea and healthy subjects with high accuracy.

5.2 Contribution of this Thesis

The major contribution of the thesis are summarized below:

• Most of the apnea detection methods available in literature utilize combina-

tion of multiple physiological signals, such as ECG, EEG, EMG, EOG, and nasal

pressure. Such use of multiple signals has several disadvantages. Instead of us-

ing multiple signals, the this work focuses on using single channel EEG signal for

apnea detection which is very rare in literature.

• Proposed method fits probabilistic model in temporal feature variation pat-

tern extracted from band limited EEG signals. For the first time within frame

feature variation pattern in various time-frequency domains are investigated and

are fitted with probabilistic models. In the proposed method effect of various

models are analyzed and a model is proposed. The performance of the proposed

model fitting is not only judged by classification results but also by the theoretical

feature quality tests.

•Other than working with strict frequency boundary based band limited signal,

analysis is also carried on decomposed EEG signal to capture the behavior of multi-

neural firing. Hence, variational mode decomposition (VMD) is used which can

offer band limited intrinsic mode functions with adaptive center frequency. This

variable center frequency allows to reflect the person to person changes in neural

activity. Such VMD analysis in apnea detection is considered for the first time.

• In order to analyze the precise time frequency behavior for sub-frame based

entropy-energy features, wavelet domain analysis is carried out which ensures bet-

ter time frequency resolution. Modeling of within frame statistical feature variation

in wavelet domain is attempted for the first time in apnea detection.
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• Most of the existing work classifies apnea and healthy subjects. In the pro-

posed work, both apnea and healthy subject classification and classification of

apnea and non-apnea frames in the data of an apnea patient are carried out.

5.3 Scopes for Future Work

In this thesis, three model based approaches have been developed for automatic

detection of apnea frames, which will assist the clinicians in diagnosis. However,

further classification of the detected apnea frames to one of its different types has

not been considered. Moreover, the methods presented here work with offline data

whereas future researches are required for real time apnea detection.
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