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ABSTRACT 

Head-on crash on rural undivided highways has become most inevitable event now-a-days. 

Thousands of people are either losing their life or accepting life-long disability in these crashes 

due to lack in traffic safety; whereas traffic safety aims at the reduction of fatalities causing 

from crashes among road users. However, this aim of traffic safety cannot be achieved without 

proper understanding of the crash mechanism. Traffic safety analysis requires historical records 

of crash data and these crash data lack in availability and quality. Furthermore, to prevent 

crashes by using historical records is a reactive approach requiring large amount of crash data. 

Hence, these problems related to crash data motivate the development of surrogate measures 

of safety. Surrogate safety measures are based on crash probability rather than on the 

observation of actual crashes. Thus, this thesis endeavors to develop a model that estimates 

head-on crash probability from vision based classified vehicle trajectory. 

The crash probability estimation model formulation considered: (1) drivers’ overtaking 

decision (OD); and (2) time-to-collision (TTC) on two-lane undivided highway. Drivers’ 

overtaking decision was modeled using nonlinear random parameter multivariate binary 

logistic regression. It considered variables related to both traffic (i.e. vehicle speed and spacing) 

and drivers’ characteristics (i.e. aggressiveness). In contrast, TTC was determined using a new 

formulation that considered the dynamic acceleration of the vehicles in addition to their speed 

and spacing. Incorporation of two new parameters, i.e. overtaking importance factor (OIF) and 

crash frequency parameter (CFP) enabled the estimation of crash probability combining OD 

and TTC. However, calibration of these models (OD and TTC) requires high frequency and 

well-structured vehicle trajectory data. In this regard, background subtraction technique along 

with Kalman filter was used to obtain vehicle trajectories from real-time video. Background 

subtraction technique was applied using a newly developed background estimation model. A 

number of theories were proposed to define different components of a video image. 

Specifically, first-order model for illumination variation and Fourier series for incorporating 

traffic arrival patterns were considered to define background and foreground, respectively. 

These definitions were utilized to formulate the traffic detection problem and subsequently 

three adaptive dynamic background models were developed to solve it. The third model, which 

incorporates both luminance and pollution controlling parameters addresses the traffic 

detection problems and limitations faced by the first and second models. This final model 

consists of two parameters: (1) luminance controlling parameter and (2) pollution controlling 

parameter. Furthermore, this study reveals newly discovered ‘ghost’ formation due to taking 

geometric mean of background and the subject frame, which has been termed as transparency 
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effect. Foreground segmentation was done to get a binary image. Foreground segmentation 

uses a new heuristic dynamic threshold-difference (  ) function for determining per pixel 

threshold. The shadow of the vehicle was removed considering its physical characteristics by 

newly presented PNS (Positive Negative Segmentation) technique. Impulse flow waves and 

aggregated pictorial speed were computed after shadow removal. Impulse flow waves were 

eventually rectified and cumulated into actual flow. On the other hand, pictorial speed was 

converted into actual speed using calibration equation considering perspective error. After the 

foreground segmentation, connected component analysis is applied to find the geometric 

properties (i.e. centroid, area) of the detected object. Kalman filter was applied to get the 

tracking data from the detected object. This tracking data is aggregated into trajectory by means 

of data processing algorithm. Three different types of data were collected for this thesis work. 

The first one consists of six videos for calibration and validation of the background model. 

These videos contains a mixture of mild to hard challenges such as gradual to sudden 

illumination variation, stop and go traffic situation. In the second one, three different locations 

in Dhaka city were chosen to validate the traffic measurement mechanism. In the third one, a 

video (9000 sec) was captured from a two-lane undivided rural highway containing high speed 

uninterrupted vehicles. To avoid detailed object detection, the mounting height of the cameras 

was kept at 20ft and their angle was less than 45 degrees in each of the cases.  

Variable inputs required for calibrating the OD model were generated by constructing 

adjacency matrices among the detected vehicles from the third video. Analysis over these 

inputs shows that, lower front vehicle speed invokes the overtaking maneuver. Moreover, the 

bus and car drivers are found to be more aggressive drivers while overtaking. Exploiting these 

inputs, Metropolis-Hastings algorithm was applied to obtain calibrated parameters of the OD 

model for different classes of vehicle. Calibration result shows that subject vehicle speed and 

the subject-opposing spacing are the most significant variables influencing the overtaking 

decision on two-lane undivided highway. In another way, lead vehicle speed and subject 

vehicle aggressiveness also influences the overtaking decision largely. Opposing vehicle speed 

found to be least influencing in making overtaking decision.  Besides, the maximum head-on 

crash probability for different types of vehicles while completing overtaking maneuver were 

determined and it was found that bus has the largest one. Finally, the nomographs established 

in this thesis ensures easy determination of the crash probability.   
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Glossary 

Term Definition 
  

Adjacency Matrices It is a square matrix used to represent a finite graph. 
  
Background An image frame which remains stationary for a 

considerable period of time. 
  
Background Model A model which estimates the background image. 
  
Binary Image The image having its pixel value either 0 or 1. 
  
Buffer A space in the memory, which is allocated dedicatedly. 
  
Camera Jitter Vibration of camera. 
  
Camouflage The foreground having pixels values and pattern near to 

the background. 
  
Crashes An incident in which a vehicle collides with another 

vehicle, pedestrian, animal, road debris, or other 
stationary, obstruction (such as a tree, pole or building) 
resulting in injury, death, and property damage. 

  
Field of Vision The area covered by the camera aperture.  
  
Following Vehicle The vehicle behind the subject vehicle having a defined 

headway. 
  
Foreground An image frame which changes with time. 
  
Front Vehicle The vehicle in front of the subject vehicle. 
  
Ghost A transparent vehicle in the image. 
  
Head-On Crash Head-on crash occurs, when a vehicle crosses the 

centerline of an undivided road either intentionally or 
unintentionally and collides with an opposing vehicle 
making an impact angle of zero. 

  
Illumination Variation Change in intensity of the video images due to diurnal 

variation.  
  
Image Intensity The value of pixel in a image. 
  
Lead Vehicle The front vehicle having a defined headway with the 

subject vehicle. 
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Monochromatic Image An image having its color distribution from black (0) to 
white (255). 

MPEG4  It is a method of describing compression of audio and 
visual digital data. 

  
Multimodal A probability distribution having more than single peak. 
  
Opposing Vehicle The vehicle coming from the opposite lane. 
  
Overtaking Catching up with and pass while travelling in the same 

direction. 
  
Pictorial Speed Speed of an object in an image. 
  
Pixel Smallest unit of an image. 
  
Push Button A rectangular sized object used in software development 

to invoke in built handles. 
  
Residue Of The Lost A term used to indicate the pixel values of foreground in 

the background after leaving the vehicle.  
  
Resolution The total area of the image. 
  
Run-Time A term used to indicate ‘during the run of a software’. 
  
Shadow A shadow is a lower intensity area in the background 

where light from a light source is blocked by 
an opaque object. 

  
Thresholds A cut-off value. 
  
Time-To-Collision The unsafe time difference between the subject and the 

front vehicles that could lead to traffic crashes, given that 
the vehicles keep their current speed without any 
appropriate evasive maneuvers. 

  
Unimodal A probability distribution having single peak. 
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Chapter 1  

Introduction 

1.1. Background of the study 

Traffic safety aims at the reduction of fatalities causing from crashes among road users 

(pedestrians, cyclists, motorists). These aims of traffic safety cannot be achieved without 

proper understanding of the crash mechanism. Traffic safety analysis requires historical records 

of crash data. However, the crash data are associated with well-recognized problems due to 

lack in availability and quality. Furthermore, to prevent crashes by using historical records is a 

reactive approach requiring large amount of crash data.  Hence, these problems related to crash 

data motivate the development of surrogate measures of safety. Surrogate safety measures are 

based on crash likelihood rather than on the observation of actual crashes. As such, crash 

probability can be used as a surrogate or complementary measure of road safety. 

 

Every year, more than 3000 crashes occur in a small country like Bangladesh (56,977 square 

mile), which leads to 2700 casualties (1). Of these crashes, head-on crash account for about 

15% of all reported crashes, while they are responsible for nearly 65% of fatal crashes (1). 

Head-on crash occurs, when a vehicle crosses the centerline of an undivided road either 

intentionally or unintentionally and collides with an opposing vehicle making an impact angle 

of zero (2). According to the studies (3, 4), it is the most severe type of crashes, which is of 

great concern to road safety authorities. For example, Wegman (5) reported that head-on 

crashes are responsible for nearly 25% of fatal crashes occurring on rural roads in Organisation 

for Economic Co-operation and Development (OECD) member countries. According to U.S. 

statistics on traffic accident fatalities for the year 2014, head-on crashes comprised only 0.1% 

of total crashes. However, they accounted for 5.1% of fatal crashes (6).  As such, efforts are 

required to reduce the frequency and severity of this crash type. These involve the identification 

of factors associated with the crash occurrence. The factors can be identified by developing 

crash prediction models, which determine the relation between crash outcomes and a set of 

contributing factors.  Moreover, the number of crashes can be minimized exploiting the 

outcomes of these models. Eventually, these outcomes may help transportation engineers and 

road safety authorities to ensure traffic safety. 
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The probability of head-on crash is dependent on time-to-collision (TTC), one of the most 

important safety indicator factors. In general, time-to-collision (TTC) between the subject 

vehicle and its front vehicle is used in estimating the crash probability as well as a time-based 

surrogate safety measure to identify the probability of head-on crash. In case of head-on crash, 

opposing vehicle represents front vehicle. In details, TTC is defined as the unsafe time 

difference between the subject and the front vehicles that could lead to traffic crashes, given 

that the vehicles keep their current speed without any appropriate evasive maneuvers. The 

subject vehicle having smaller TTC, i.e. the value is close to ‘0’, is expected to collide with the 

front vehicle. It means that the crash potential approach becomes closer to ‘1’. In contrast, a 

vehicle that has a larger TTC has a smaller crash potential. From this perspective, it can be 

stated that the estimation of TTC is directly dependent on the occurrence of the overtaking 

maneuver.  

 
Overtaking in two-lane highway is a complex task having a significant effect on capacity, level 

of service and safety (7). It is also a mentally complicated task (8) that substantially affects the 

highway performance. For a long time, it is considered critical in traffic engineering. This 

involves chain of actions related to accelerating, braking and steering of the vehicle. At the 

same time, the driver may have a priori knowledge or concurrently have to observe, analyze 

and judge in order to take the actions. The lack of the ability to overtake may lead to formation 

of large queues, decrease in traffic capacity, and environmental impacts (9). Overtaking 

involves abrupt and short-term decision making that may cause an increased in the risk of crash. 

Conversely, the understanding of driver’s overtaking behavior and their decision-making on 

two-lane highways can significantly contribute to safety analysis, level of service evaluations 

and develop traffic simulation models. However, only limited research studies have been 

conducted to develop overtaking models using field data that capture real world overtaking 

decision-making. 

 

To determine the overtaking status, high resolution traffic data is required. The traffic data can 

be obtained using ITS- based data collection system. For example, vehicle trajectory extraction 

using image processing can be used to obtain more detailed traffic data from the field (10, 11). 

Using video sensors, several automated systems have been developed for traffic monitoring. 

For instance, Saunier and Sayed (11) propose a framework for estimating crash probability for 

two vehicles at an intersection by a vision-based vehicle tracking system. In another study, Oh 
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and Kim (12) develop a methodology for estimating rear-end crash potential using individual 

vehicle trajectory data extracted by vision-based software. 

1.2. Statement of the problems and opportunities 

1.2.1. Absence of high-resolution data collection technique 

Within the vast literature on crash prediction model, surprisingly few studies have worked with 

head-on crash using field data. Such limited research is primarily attributed to the difficulty off 

high-resolution data collection. Here loop detectors are unsuitable due to measurement errors (29). 

Moreover, traffic cameras for vehicle detection are often absent along the corridor. But given that 

accurate high-resolution traffic data is the pre-requisite for developing a crash prediction model, 

this research attempts to establish data collection (i.e. traffic flow and vehicle trajectory) technique 

based on image processing which will be able to collect data with reasonable accuracy. Also the 

developed technique is expected to be robust and easy to use.   

1.2.2. Absence of perfect background model for vehicle detection 

Background subtraction has become a popular technique in vehicle detection. However, it suffers 

from various visual challenges. These visual challenges includes illumination variation (gradual 

and sudden), shadow, camera jitter, dynamic background (i.e. river, rain or snow) camouflage etc. 

Unfortunately, very few researches have solved them individually and at the same time. Moreover, 

no such vision based system has been developed to monitor real-time traffic flow in non-lane-based 

traffic stream. 

1.2.3. Inadequate Statistical Model Infrastructure 

The existing overtaking models lacks in adequate variables representing drivers’ characteristics 

(i.e. aggressiveness). Thus, the true nature of overtaking could not be captured accurately by 

overlooking such an important variable. Moreover, the models lacks in flexibility due to having 

less number of parameters. It rises due to their old traditional regression structure with linear 

expression. As a result, the models do not have enough flexibility to fit into the data. Thus, this 

research attempts to develop a new mathematical model to achieve more goodness of fit into the 

data. 

1.2.4. Existing Perilous Time-to-Collision Formulation  

Literature study also reveals that no formulation considers the acceleration of the subject vehicle 

while calculating time-to-collision. This research endeavors to find the exact contribution of 

acceleration in time-to-collision by utilizing equations of motion. This deep investigation will add 
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new dimension to the definition of safety in two lane – two way rural highway. Overlooking this 

important parameter causes in erroneous time-to-collision with increases pseudo-factor of safety.  

1.3. Research objectives and scope of work 

This study is concerned with the development of a model that estimates head-on crash 

probability from classified vision based vehicle trajectory. The specific objectives are: 

a) Developing dynamic illumination adaptive background model and foreground 

segmentation formulation to detect heterogeneous vehicles from real-time video.  

b) Deriving Overtaking Decision (OD) model incorporating different traffic flow variables 

obtained from vision based trajectory. 

c) Establishing analytical formulation of time-to-collision (TTC) considering the dynamic 

acceleration of heterogeneous vehicles. 

d) Conjugation of OD model and TTC formulation within a new crash probability model to 

estimate the probability of crash of overtaking vehicles. 

1.4. Organization of the thesis 

Chapter 1 gives an introduction of the relevant research background, statement of problems as 

well as the objectives and scope of this research. 

Chapter 2 comprehensive reviews previous works on overtaking model, time-to-collision and 

vehicle trajectory. The overtaking models are reviewed with respect to their categories in terms 

of level of detail and data collection methodology. 

Chapter 3 shows the complete formulation a background model. A number of theories are 

proposed to define different components of an image. These definitions have been utilized to 

formulate the traffic detection problem and subsequently three adaptive dynamic background 

models have been developed to solve it. 

Chapter 4 presents a wireless real-time traffic measuring system using surveillance camera for 

both lane-based and non-lane-based traffic streams. The system includes a new background 

estimation model for foreground segmentation using traditional background subtraction 

technique (BGS). 

Chapter 5 presents the methodology of estimating crash probability. It includes the video 

capturing method, vehicle detection method, tracking method, vehicle classification method. 
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This chapter also describes the skeleton of the overtaking model and the formulation of time-

to-collision. Ultimately, these two aspects are conjugated within the crash probability model. 

Chapter 6 presents the step by step procedure of Bayesian analysis using Markov chain Monte 

Carlo (MCMC) methods in WinBUGS. 

Chapter 7 includes a detailed description of data collection and data analysis methodology. 

Pictorial data for calibrating background model vehicular data for overtaking modeling is 

presented here. The novelty of the temporal overlapping matrix is explained in this chapter. 

The method of extracting all the required variables for calibrating the model is also revealed 

in this chapter. 

Chapter 8 presents the calibration and validation of the background modeling and the 

overtaking model. Field testing of the models are also included in this chapter. 

Chapter 9 includes a detailed analysis over the analyzed data. Initially the correlation among 

the data have been revealed. Afterwards, the data has been fitted into different models and the 

performance of the models have been compared. Ultimately, the model have been fitted into 

the newly proposed model in chapter 3. 

Chapter 10 concludes the thesis with recommendations and future research direction. 

 

  

https://en.wikipedia.org/wiki/Bayesian_analysis
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Chapter 2  

Literature Review 

2.1. Introduction 

This chapter reveals the literature review of five groups of study, which are: (1) overtaking 

model; (2) time to collision formulation; (3) background model; (4) vehicle detection; and (5) 

vehicle trajectory estimation. From methodological point of view, these groups of study are 

from different framework, which can be analytical, statistical, empirical framework or complex 

mixture of these frameworks. However, this thesis work agglomerates this complex mixture 

into common single framework to estimate the crash probability. Thus, elaborate literature 

study on the components of this complex mixture is necessary for this novel thesis work. 

Accordingly, the studies related to the different framework group are discussed in the 

subsequent sections. 

2.2. Overtaking Models 

Overtaking maneuvers are complex tasks that require the driver to process multiple sources of 

information and make decisions in short time periods. In case of two-lane highways, analytical 

approaches to model overtaking behavior are found to be dominating in literatures (7, 13). The 

approaches focus on modeling the sight distance for overtaking model in two-lane highways. 

Manual data collection from video recordings has been popular as well as manual data 

collection from observations and moving observer methods (14). Additionally, researches on 

overtaking in two-lane highways include modeling of the speeds of both the vehicle overtaking 

and the lead vehicle (15) or the speed difference between the vehicle overtaking and the lead 

vehicle (16), as well as the gap acceptance of impatient drivers (17). However, recent studies 

consider the use of alternative approaches to analyze two-lane roads, such as driving 

simulators, connected vehicle environment and microscopic simulation.  

2.2.1. Driving Simulators  

Exploiting driving simulators, single passing maneuvers or binary choice processes are 

modeled in several studies (18, 20). Nonetheless, these models use simulation data rather than 

field data, where all the scenarios are predesigned. Vlahogianni and Golias (21) use Bayesian 

Networks (BN) to model the uncertainty hindering in the overtaking behavior of young drivers 

in two-lane highways. They also reveal the microscopic traffic characteristics influencing the 



 

7 
 

driver’s decision making process. A BN defines a unique joint probability distribution over X 

given by:  

   1 2
1

, ........, |
n

B n B i Xi
i

P X X X P X


                                                                                       (2.1) 

They have estimated the probability of overtaking both for male and female. Some of the results 

are shown in figure 2.1. 

 

 

 
(a) Probability of overtaking vs. Spacing 

from lead vehicle(m) 

 
(b) Probability of overtaking vs. Spacing 

from opposing vehicle 

 
(c) Probability of overtaking vs. Speed of the 

subject vehicle 
 

(d) Probability of overtaking vs. Speed of the 
lead vehicle 
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(e) Probability of overtaking vs. Speed of the opposing vehicle 

Figure 2.1 Overtaking taking probability of male and female in different context. 

 
Figure 2.2 A glimpse of driving simulator. 

2.2.2. Connected Vehicle Environment 

Motro et al. (22) assess the effectiveness of a dedicated short-range (DSRC) communication 

system, called the overtaking assistant, devised for detecting unsafe overtaking maneuvers on 

two-lane rural highways. Nevertheless, sensor error and estimation inaccuracies are found to 

increase the rate of false warnings. Figure 2.3 shows the phases of DSRC system. 
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Figure 2.3 Phases of an overtaking maneuver in DSRC system. 

2.2.3. Microscopic Simulation 

Tapani (23) develops a Rural Traffic Simulator (RuTSim) with simulation models specific to 

rural road environments. The model has been used by Hegeman et al. (24) to evaluate an 

overtaking assistant showing significant increase of safety in overtaking maneuvers. Several 

other research studies also develop their own customized micro-simulators to explore different 

approaches to model overtaking behavior (25, 26). All of the above simulators use ADAS 

(Advanced Driver Assistance Systems) which attempts to proactively anticipate and prevent 

crashes. However, it does not consider potential uncertainties (or errors) in the information 

obtained for predicting crashes. In fact, most studies mentioned above do not even discuss 

whether the information is obtained through sensors, V2V communications, or other means. 

Llorca et al. (19) develop a micro-simulation model for two-lane rural highways, which 

analyzes the effect of human factor, road geometry, and vehicle characteristics on passing 

maneuvers. Nonetheless, the effect of the variables cannot be explained by this model.  
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2.3. Time-to-Collision 

Time-to-collision (TTC) is considered as one of the most widely used safety indicators. It can 

be applied to different types of conflicts such as rear-end, head-on and right-angle crashes 

(36).The concept of TTC was introduced by Hayward (37) and it is defined as the time required 

for two vehicles to collide if they continue at their present speed and on the same path. 

According to Svensson (38), TTC is an indicator for a traffic conflict and is, thus, inversely 

related to accident risk (smaller TTC values indicate higher accident risks and vice-versa). This 

TTC information is an important cue for the driver in detecting potentially dangerous 

situations. The study by Farah et al. (39), TTC is chosen as a measure of risk, which indicates 

the remaining gap to the oncoming vehicle at the end of the passing maneuver. This measure 

is available for accepted passing gaps. However, it is not available for rejected passing gaps. 

In (40), the authors present an improved definition for calculating TTC in situations in which 

two vehicles interact in the same lane for a period of time (conflict lines), including lane-

changing, merging, and rear-end conflicts. However, existing literatures do not give any 

modification of TTC for overtaking maneuvers. 

2.4. Background Modeling 

Previously, conventional basic models such as mean (42), median (43) and histogram (44) were 

used for background modeling. These models suffered biasness of central tendency of an 

aggregated data.  Afterwards, such background models were forced into several parametric 

distributions, such as Gaussian (45-46), to overcome the limitation of the basic models. 

Unfortunately, these unimodal models could not handle dynamic backgrounds. Accordingly, 

Gaussian Mixture Model (GMM) (47) was introduced to model background. However, 

background having fast variations cannot be accurately modeled with a few Gaussians. 

Advanced statistical models removed the flaws of the old statistical models by making 

themselves robust. Student-t Mixture Model (STMM) (48) and Dirichlet Mixture Model 

(DMM) (49), which use distribution other than Gaussian are proven to be robust in dynamic 

background than GMM. It is because of their more heavily-tailed nature. However, real-time 

implementation of both STMM and DMM are difficult due to massive computational 

complexity.  

Non-parametric model (50) was also introduced to estimate per pixel background probabilities 

from many recent samples over time, using Kernel density estimation (KDE). For 

approximation of the background color distribution, Ding et al. (51) used a mixture of KDE 
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and GMM. Barnich et al. (52) proposed Visual Background Extractor (ViBe), a sample-based 

algorithm which uses random selection policy that ensures a smooth exponentially decaying 

lifespan. However, it faced problem with challenging scenarios such as darker background, 

shadows, and frequent background changes. Hofmann et al. (53) proposed Pixel-Based 

Adaptive Segmenter (PBAS) which models the background by a history of recently observed 

pixel values.  

Nevertheless, more sophisticated statistical models were explored to seek improvement such 

as support vector machine (SVM) (54), support vector regression (SVR) (55) and support 

vector data description (SVDD) (56). In these models, the background estimation is not based 

on the probability function of the background like parametric and non-parametric techniques. 

Thus, the memory requirements are less. However, a major problem with these data-driven 

statistical models is the limited number of examples while training rare or anomalous 

behaviors. To overcome this limitation, subspace learning using Principal Component Analysis 

(SL-PCA) (57) was applied on a number of images to construct a background model. However, 

Bouwmans (58) found two limitations in SL-PCA: (1) foreground objects must be smaller in 

size and they should not be in static state for a long period in the training sequence; and (2) 

batch mode PCA is computationally intensive for the background maintenance. To overcome 

the limitations of traditional subspace learning model, several discriminative and mixed 

subspace learning models were proposed. Attention was caught only by reconstructive 

subspace learning models such as PCA (Principal Component Analysis) and NMF (Non-

negative Matrix Factorization). Farcas et al. (59) introduced discriminative and supervised 

approach which was based on an incremental discriminative subspace learning algorithm 

named as Incremental Maximum Margin Criterion (IMMC). For attaining more robustness, 

Marghes et al. (60) used a combination of a reconstructive method (PCA) with a Linear 

Discriminant Analysis (LDA) (61).  

Besides SL, filter based approaches were adopted to dominate over statistical methods. 

Wallflower, a pixel-level algorithm, was proposed by Toyama et al. (62) which makes 

probabilistic predictions about the background pixel values using a single step Wiener 

prediction filter. It works well for periodically changing pixels; however, disadvantage occurs 

when a moving object corrupts the history values. Karnna et al. (63) proposed Kalman filter 

based background estimation which is an optimal estimator of the state of processes. Although 

it gives the optimal solution to the estimation problem when all the processes are Gaussian, it 

offers a sub-optimal behavior in non-Gaussian arising challenging situations.  
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Cluster based algorithms were adopted to reduce computational complexity. Cluster models 

assume that clusters are temporal representation of each pixel in the frame. Butler et al. (64) 

proposed an algorithm that assigns a group of clusters to each pixel in the frame using K-means 

algorithm. To amplify the robustness, Xiuman et al. (65) used genetic K-means algorithm 

which alleviates the disadvantages of the traditional K-means algorithm. Particularly, 

traditional K-means algorithm has random and locality aspects causing lack of global 

optimization. Alternatively, Kim et al. (66) proposed to estimate the background using a 

codebook–a type of cluster model. Depending on color distortion metric and brightness, 

samples at each pixel are clustered into a set of codewords.  

Neural network (NN) was also applied to represent a background which is suitably trained on 

a number of clean frames. It learns how to classify each pixel as background or foreground. 

For background modeling and foreground detection, Culibrk et al. (67) used NN architecture 

to form an unsupervised Bayesian classifier. In another study, Luque et al. [68] used a method 

based on multi-valued discrete NN to detect foreground. Moreover, Palomo et al. (69) proposed 

a growing hierarchical NN which has a structure divided into layers and each layer is composed 

of different single Self Organizing Neural Networks (SONN) with adaptive structures that are 

determined during the unsupervised learning process. Furthermore, fuzzy concepts were 

introduced in the different stages of background subtraction. Kim et al. (70) proposed a fuzzy 

c-means clustering model. It allows reducing color variations generated by background 

motions and highlights foreground objects which produces better dynamic backgrounds. 

Some authors proposed to isolate the background and the foreground in a different domain. 

Wren et al. (45) estimated the background model for capturing spectral signatures of multi-

modal backgrounds by using Fast Fourier Transform (FFT) and inconsistent signatures were 

used to detect changes. Using Walsh Transform (WT), Tezuka et al. (71) modeled the 

background incorporating the GMM which is applied on multiple block sizes. Gao et al. (72) 

adopted Marrwavelet kernel and used binary discrete wavelet transforms to achieve foreground 

detection. Guan (73) used Dyadic Wavelet (DW) to detect foreground objects where the 

difference between the background and the current images is decomposed into multi-scale 

wavelet components.  

2.5. Vehicle Detection 

Background subtraction is the most widely used technique for vehicle detection, where an 

estimated background is subtracted from the current frame to give a differential image. In this 
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process, a constant or dynamic threshold value is applied on the resulting differential image to 

give the foreground, which contains the objects of interest. Advancements have been made in 

adapting background image to illumination variation and addressing the effect of shadows (80, 

81). Frame differencing is another method which is closely related to background subtraction. 

However, it becomes challenging to use frame differencing method when it cannot cope with 

noise, sudden illumination variation or periodic movement of background as trees. In this 

regard, special care has been taken to suppress the influence of noise in the algorithm as 

presented in (82). The W4 model (83) uses three values to represent each pixel in the 

background image: the minimum and maximum intensity values, and the maximum intensity 

difference between consecutive images of the training sequence. A small improvement to the 

W4 model along with the incorporation of a technique for shadow detection and removal is 

presented by Jacques et al. (84). 

For background modeling, a popular technique is the background averaging method. In this 

method, all video frames are summed up for averaging. The learning rate specifies the weight 

between a new frame and the background. The use of averaging, usually for computational 

reasons, is reported in (85). In (86), detection accuracy of 90% has been achieved through this 

method. However, in this method, contamination of background occurs due to moving objects 

resulting into tails behind them. These tails generated by moving vehicle has been reduced in 

(87) by averaging the instantaneous estimated background instead of the current frame, 

although this leads to erroneous background estimation for poor threshold value.  In (88), mode 

of frames has been taken to estimate the background image. However, robustness towards light 

variation and long term operation have not been demonstrated. Median filtering is another 

common approach of background modeling (89, 90). In this method, the estimated background 

is considered to be the median at each pixel location of all the frames in the collection. It is 

assumed the pixel stays in the background for more than half of the frames in the collection. In 

(89), median filtering has been extended for different colors by replacing median with medoid. 

A simple recursive filter to estimate the median has been proposed in (91). In (92), the median 

filtering technique has been applied for background estimation in the context of urban traffic 

monitoring. The running estimated median is incremented by one if the input pixel is larger 

than the estimate, and decreased by one if smaller. 

A Single Gaussian background model has been used in (93) and (94) to improve robustness 

compared to the averaging method. This method produces mean and variance images for 

modeling background. A new pixel is classified, depending on the position in the Gaussian 

distribution, which is the statistical equivalent to a dynamic threshold. To cope up with 
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multimodal background, a probabilistic method is proposed in (95) for background subtraction, 

which models the values of a particular pixel as a mixture of Gaussians, assuming Gaussians 

correspond to background colors. The pixel value that excludes from these Gaussians is 

considered as foreground. This system has robustness over illumination changes, repetitive 

motions of scene elements, tracking through cluttered regions and slow- moving objects (95). 

To analyze the features of the detected objects in the foreground, different types of algorithms 

are available. Among them, connected component labeling collects and merges foreground 

pixels into objects by judging their eight-connectivity relationship with the adjacent 

neighboring pixels. It searches for and labels possible candidates by dividing foreground pixels 

into groups. In (95), Gaussian mixture model has been used to extract the foreground pixels 

which are ultimately segmented into regions by a two-pass connected components labeling. 

Since this procedure is effective in determining the whole moving object, moving regions can 

be characterized not only by their position, but also size, moments, and other shape 

information. These characteristics are useful for later processing and classification, and can aid 

in the tracking process. In (96), a two stepped refining method is introduced to enhance the 

performance of labeling algorithm. Edge detection, another type of methodology (97, 98), 

which is not capable of detecting low intensity objects; opens a prospect of error under low 

illumination conditions. 

Shadow related approaches such as, Zvi et al. (99) combines two different methods to detect 

and remove shadows from RGB images of traffic videos. They used the method introduced in 

(100) to remove the shadows by zeroing the shadows’ borders in an edge representation of the 

image, and then re-integrating the edge using the method introduced in (101). In (102), an 

entropy minimization technique is introduced for removing shadow. However, the results 

obtained are not satisfactory. A region-based approach to detect and remove the shadows from 

an image is proposed in (103). Germain et al. (104) tried to remove shadows by illuminating 

the shadow region until it has the same illumination as the surroundings and then reinstating 

the texture. Color and near infrared images are used for shadow detection and removal. Using 

shadow invariant, shadow variant and near-black features, a method is proposed in (105) to 

remove shadows from monochromatic image. However, this method enjoyed little success in 

removing the shadows. Removal of dark cars (cars having similar illumination as shadows) is 

an important consideration while addressing the shadow problem.  

Some commercially used tools for vehicle detection include: AUTOSCOPE, CCATS, TAS, 

IMPACTS and TraffiCam (106, 107, 108, 33 and 109). The systems typically allow a user to 

specify several detection regions in the video image. These systems look for image intensity 
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changes in the detection regions to indicate vehicle presence/passage. AUTOSCOPE (111) 

detects vehicles correctly and extracts traffic parameters (such as traffic count, vehicle speed, 

vehicle length, distance between successive vehicles and road occupancy rate) if the traffic 

flow is not overloaded severely. However, detection errors generate due to shadow effects. 

Congested traffic conditions leads to erroneous background estimation as AUTOSCOPE only 

updates the background when vehicles are not present. Furthermore, stopping vehicle causes 

occultation into the background (111). The commercial tool Citilog is used for traffic data 

collection (speed, volume, occupancy, level of service) for planning and real-time road user 

information by using existing CCTV cameras. Another commercial tool – TrafiOne is an all-

round detection sensor for traffic monitoring and dynamic traffic signal control which uses 

thermal imaging and Wi-Fi tracking technology to provide traffic engineers with high-

resolution data on vehicles, bicycles and pedestrians at intersections and in urban 

environments. However, evaluations of commercial VIPS (Video Image Processing Systems) 

found the systems had problems with congestion, high flow, occlusion, camera vibration due 

to wind, lighting transitions between night/day and day/ night, and long shadows linking 

vehicles together (106, 108,109 and 110). The need for traffic surveillance under all conditions 

has led to research in more advanced video-based vehicle detection. For instance, Chao et al. 

(112) have developed an algorithm to differentiate vehicles from shadows. 

2.6. Vehicle Trajectory 

Vehicle trajectory can be obtained by vehicle tracking from video sequences, which involves 

accurate foreground detection. For foreground detection, different types of segmentation 

techniques such as Gaussian Mixture Model (GMM), Visual Background Extractor (ViBe), 

Pixel-Based Adaptive Segmenter (PBAS) are used in recent studies (27, 28). In (29), the 

authors develop a new dynamic background estimation model for foreground segmentation 

which addresses both of the following environmental challenges, i.e. illumination variation 

(sudden and gradual) and shadow along with tail backs from vehicles. To analyze the features 

of the detected objects in the foreground, algorithms such as connected component labeling 

and edge detection method are applied in different research studies (30, 31). After the 

successive vehicle detection, the following tracking algorithms are commonly used: region-

based, snake-based, feature-based, model-based or multi-thread (32). Another group of 

algorithms deals with object tracking using kalman filter (33). In (34), the authors use Kalman 

filter to establish object motion model, using the current object’s geometric (e.g. centroid) 
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information to predict its position. As such, it can reduce the search scope and time of moving 

object to achieve fast tracking. The proposed method is able to ensure an efficient and robust 

tracking with merge and split of multi-object. The coordinate from tracking can be interpreted 

as object’s trajectory. There have been varied approaches to handle the trajectory of moving 

objects analysis based on video and some solutions have already been proposed.  For example, 

in (35), trajectory analysis is conducted in order to detect the following traffic events: illegal 

changing lane, stopping, retro-gradation, sudden speeding up or slowing down.  

2.7. Summary 

Attempts have been made to review the recent studies regarding the overtaking models, time-to-

collision, background modeling, vehicle detection and vehicle trajectory estimation. It is evident 

that most of the studies use simulated data for modeling the overtaking phenomena rather than real-

time field data. Conversely, the traditional formulation of TTC considers the spacing and the speed 

differential between the vehicles only. It does not consider dynamic accretion of vehicles, which 

leads to over estimation of TTC. It is also evident that vehicle detection is the most convenient 

procedure for traffic measurement. However, it suffers from various visual challenges and very few 

researches have solved them individually and at the same time. Moreover, no such system has been 

developed to monitor real-time traffic flow in non-lane-based traffic stream. From the literature 

survey, it has been revealed that none of background models give any explicit solution to 

illumination variation while traffic detection.  Moreover, now-a-days various State-of-Art tracking 

methods are available. A tracking method based on Kalman filter was proposed method, which is 

able to ensure an efficient and robust tracking with merge and split of multi-object.   
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Chapter 3  

Background Modeling 

3.1. Introduction  

Vision based systems have become very popular in Intelligent Transport System (ITS) to 

measure the real-time macroscopic and microscopic parameters of the traffic stream through 

object identification and tracking. Conventional technology for traffic measurements including 

inductive loops, sonar and microwave detectors suffer from drawbacks for being expensive to 

install, causing traffic disruption during installation or maintenance, not being portable and 

unable to detect slow or stationary vehicles. On the contrary, vision based systems are easy to 

install, maintain, can be integrated as a portion of signal control, and has the potential to utilize 

the extant traffic surveillance infrastructure. Moreover, these vision based systems can be easily 

upgraded and offer flexibility to reform the system and functionality by simply altering the 

system algorithms. Currently, automated traffic state measurement employing vision system is 

a key technology in the management of the transportation facilities. Vision-based systems uses 

several detection techniques. Among them, background subtraction is the most widely used 

technique for detecting traffic, where an estimated background is subtracted from the current 

frame to give a differential image. In this process, the accuracy of traffic detection largely 

depends on the fidelity of background estimation. Thus, the estimation model should be robust 

to various challenges, particularly illumination variation. It causes increase or decrease in the 

intensity of pixels, resulting in false positive or overestimation. Although numerous models 

were proposed to capture the background dynamics, none of those specifically concentrated on 

the issue of illumination variation in traffic detection. This chapter endeavors to develop a 

background model which can address illumination variation. 

3.2. Related Definitions 

3.2.1. Understanding Frame, nI  

Let, v  be the collection of frames nI where {1,......, }n N , N being the total number of frames. 

Frame nI  is a space containing pixels P of the n
th frame where  P f  .  is the space variable 

which can be defined as    { , , | , , }i j c i j c       ,where  1,2,........,W  ,  1,......., H   

and  1,2...,   . W and H  are the total number of pixels along width and height of the surface 
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nI , respectively.  is the number of color channels within the space of nI . Further definition 

of these parameters are given as follows, 

 and u

N
W

P
H

 

 


 
  

 
 

 

Where, { | , 0}x x x     and { | ,0 255}.u x x x       
Using these definitions, nI can be defined as   | ,nI P           which contains all the 

pixels P  within the space. For simplicity,   is assumed to be 1, which converts the frame nI

into a planar surface from a space. It indicates monochromatic frame containing pixels having 

color distribution from black to white; whereas, black denotes the weakest and white denotes 

the strongest color intensity. From this assumption, nI  can be redefined as

  |nI P        . The cardinality of nI turns into  representing the area of the surface. 

 

 3.2.2. Defining Background ( B ) and Foreground ( F ) 

In a particular frame, there are two types of pixels: one is the background pixel ( B ), which 

does not include the object of interest and the other is the foreground pixel, which includes the 

object of interest. In case of traffic detection, vehicle/pedestrian is object of interest and the 

rests are considered background. The object of interest is also known as foreground ( F ). 

Furthermore, the form of occurrence of background and foreground pixel on the surface nI  is 

totally different. The physical characteristics of the background and foreground can be 

expressed using the following inequality, 

Theorem 1. 
2 2

B F

n nI I
n n
   

 
 

 


   
,  ,B F    , B F      

Proof.  Let, 
1nI and 

2nI are two frames at time 1n and 2n which do not contain any object of 

interest, where 1 ,n n 2n n . Thus, they are two ideal backgrounds. If the pattern of background 

pixels remains temporally similar, same change will be experienced by all the background 

pixels.  Let the difference between these backgrounds to be  , where  . 

Hence, considering B be the set denoting position of background pixels and ,B   

 
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Therefore, 2 1

2 1

2

0
2 1

lim 0
B

n n n nn

n n

dI dI
d dI

n n n
 

 



 

 



   
   

   
 
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Again, let, 
1nI and 

2nI are two frames at time 1n and 2n  which contain the object of interest, where 

1 ,n n 2 .n n Thus, they are two ideal foregrounds. As the foreground is temporally dynamic, 

the pixels which are left by foreground faces change and other remains same. Thus, any change 

in foreground will result in different amount of changes in the foreground pixels. 

Hence, considering F be the set denoting position of foreground pixels and F  , 

2 1

2 1

2

0
2 1

lim 0.
F

n n n nn

n n

dI dI
d dI

n n n
 

 



 

 



   
   

   
 

  
 

Remark. The inequality in Theorem 1 implies that the rate of change in foreground is different 

than that of background. Thus, this inequality warrants distinguishing background pixels set 

from the foreground.  

 
Theorem 2. No two pixels of different object can co-exist at same  in nI . 

Proof. Let, any two objects A and B occupy two points 1 and 2  respectively in nI . Thus, 

1 A  and 2 .B  However,  1 1 1,    and  2 2 2,   where and  are two orthogonal index 

vectors which does not contain any repetitive value. Thus, 1 2    and 1 2    . 

Therefore, 1  and 2  must be disjoint sets and 1 2  must be equal to  . Hence A  and B

cannot occupy same    in nI . 

Remark. From Theorem 2, it is clear that no two type pixels can co-exist at same place in a 

same frame. Therefore, background and foreground pixels are apart spatially on the surface nI

. 

From this particular Theorem 2, the foreground and background pixels can be defined precisely 
as in Equation (3.1), 

      

      

| , |

| , |
n F F F F

n B B B B

F F n F P P I

B B n B P P I

     

     

       

                                                                                   
(3.1) 

Where,
 

 ,
,B FB F I

  


 , 

 ,
,B FB F I

 



 

 ,
,

B F
n n nB F I

  


 
 ,

,
B F

n nB F
  

  
From the above conditions, it is clear that nB  and nF  do not share any common position. Thus, 

they are disjoint sets. 
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Theorem 3. n n nI B F   

Proof. From Theorem 2, it is evident that two pixels of different objects cannot occupy same 

position in .nI Thus, foreground pixels are different than background pixels. Hence, 

   B F    and the space variable can be written as a union of background and foreground 

pixel positions. Therefore,  ,B F   , where
n B Fn n

I    .In this case, If nI  contains WH

pixels, then the background and foreground pixels are expressed as, n nB I   and n nF I 

respectively, where, 
,

,
,

W H

B
i j 

 
 

 [0,1],  [0,1]   
,

,
,

W H

F
i j 

 
 

 0,  1    

Thus,  n n n nB F I I     . 
Remark. Using this theorem, any frame nI can be written as addition of background and 

foreground as in Equation (3.2). 

n n nI B F                                                                                                                                      (3.2) 

3.2.3 Understanding the background, nB  

As background is complex, it needs further definitions to express its auxiliary components, i.e. 

illumination variation, residue of the lost, shadow, and camera jitter. In this study, the first two 

are focused for illustration. A static background is that on which auxiliary components do not 

have any effect; whereas, the actual background changes with time, although their physical 

characteristics are same.  In the subsequent sections, the time variables n  and t  will be used 

interchangeably, where : .n t   In this equation,   depends on the streaming characteristics of 

the frame receiver and sender. Hereby, the static background can be defined as follows, 

Definition 1. Static background *B   is such a frame I which follows  

  *

*

[1, ] [1, ]

| 0

, |

! : 0

: , 0

0

n n
n

B n n

B n

n n

x y

dIB I
dn

dB dBdI dI F
dx dx dy dy

n N B B I I

n n N B B

dB dB
dx dy 



 

 
   

  
   

     
    


     


    


 




 

 

Thus, there exists a temporal difference between static background and actual background, 

which can be expressed as,  *
1B B t t  ; where *1 :

nBBt n
t t t t t


     . Since the definition of the 
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static background is available by now, the actual background can be expressed in terms of a 

static background. However, several assumptions are needed to be made before defining the 

actual background. 

Assumption 1. At any time t , the difference between the actual background nB  and the static 

background *B  is only the illumination variation. 

Remarks. If illumination variation is expressed as tK ; using Assumption 1, actual background 

at any time t  can be expressed in Equation (3.3) combining the static background defined 

earlier, 
*

t tB B K                                                                                                                                                (3.3) 
The definition of the illumination variation can be given as a g th order polynomial varying 

with respect to time as follows, 

  |tK P       ,    
, 0

:
L

gt
g

g g

dK
t m t

dt  

    

  * ,t tK B B P   m  
For simplification, another assumption is needed to be made. 

Assumption 2. The gradient of illumination variation curve is assumed to be a straight line. 

Thus, putting 1L  and integrating the gradient constraint of tK Equation (3.4) can be obtained. 

0tK mt K                                                                                                                                  (3.4) 
Where, 0K  is the initial illumination variation at the reference point; the gradient of illumination 

variation : tdKm
dt

  and 
* .tB B

t t t    

If the frames in consideration exist within the same time as the static background, no variation 

of illumination will occur. Thus, if the static background resides in reference point, there exists 

no illumination variation. Moving forward through time will cause changes in illumination 

with respect to the static one. Therefore, *
0: 0, , 0tt t B B K    .Considering this, Equation 

(3.3) can be rewritten, where illumination variation is expressed in a linear form. 

 *

*

* *

0
: lim

t
Bt B

t t
B t t tB t t t tt t

dK dKd dt t t B B t I B t F
dt dt dt dt  

 

             
                    

           
  

(3.5) 
Let,

* tBB
t t t   , the relationship between *B  and tB  can be reformed from Equation (3.5), 

* *t
t

t

dKB B t B mt
dt 

 
    

 
  

(3.6) 
Thus, we obtain a definition of actual background with respect to the static background and the 

linear illumination variation, which are showed in Figure 3.1. 
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Figure 3.1 Expressing actual background tB  using static background *B and linear 

illumination variation t

t

dK
dt

 
 
 

. 

3.2.4 Understanding the foreground, nF  

After defining the actual background, it appears that the foreground needs to be defined 

properly. Equation (3.1) only gives the symbolic definition of foreground. However, a vehicle 

should be considered as foreground during its detection. Note that, vehicles follow a particular 

pattern of occurrence as object on the frame. The properties of occurrence are stated below, 

(1) A vehicle occurs at any point on the surface nI  instantaneously and causes an impulse. 

(2) The occurrence interval depends upon the traffic state and control scheme.   

These properties indicate two important phenomena: (1) the period of vehicle occurrence; and 

(2) the response of the vehicle on surface nI . The first one depends on the vehicle occurrence 

pattern and the second one depends on the form of the response. For example, the occurrence 

pattern can be of different distribution, such as, vehicle follows Poisson distribution in 

comparatively free flow situation. On the other hand, the vehicles follow binomial distribution 

in congestion situation.  

For simplicity, it is assumed that the vehicle may occur periodically with different distributions 

at different traffic state and it will form a square response wave as shown in Figure 3.2 with a 

period of  , which can be defined as, 

 

' " ' 0
2 2

' ' 0, ,0
2 2

' ' " 0
2 2

t t t

t t tt

t tt l F l

t t tt

  
      
  

 
     
  

 
    

  

, t tl F  

The premise of square response wavelets can be represented as a Fourier series. 
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1

' ' 2 ' 2sin sin
' " 2 ' " 2 ' "

t t
t

n

l t l t t t tF n
t t n t t t t








    
        

      
 l P  , ' "t t                                                  (3.7) 

And, the value of   for free flow can be obtained by solving the following equations 

Free flow: 

 
 

 

2 1

1

1
1 1 0

2 1 2

n

n

q
q

q
n







 
 

 
 


  

Congestion:  
0

1 4 0, .
2

n
v

v v

N
N N q dt

q



       

Where, q Average flow rate. 
Combining Equation (3.4), (3.2) and (3.6), the tI  can be redefined with respect to a static 

background *B , illumination variation tK  and vehicle tF . Ultimately, the equation becomes, 

*

1

' ' 2 ' 2sin sin
' " 2 ' " 2 ' "

t t t
t

nt

dK l t l t t t tI B t n
dt t t n t t t t










      
            

        
                                                   (3.8) 

Where, t is the time difference between the tI and *B . 

 

Figure 3.2 Representation of traffic tF  

3.3. Problem Formulation 

Up to this point, both background and foreground have been defined properly. Thus, in this 

section, the traffic detection procedure has been introduced. This detection procedure has been 

explained by incorporating different backgrounds as defined in section 3.2.1. In each step of 

detection, limitations will arise and consequently the limitations will be overcome. 

The most widely used technique for traffic detection is background subtraction [35]. In this 

regard, a background is subtracted from a frame to obtain a distance matrix. The distance matrix 

Time, t 

l 

Ft 

t' 

 

t'+t" 2t'+t" 2t'+2t" 0 
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is compared with a set of threshold value to convert it into binary image tb , where,  0,1tb  . The 

definition of distance matrix is given below. 

Definition 2.The distance matrix can be obtained from the difference between the Frame tI  and 

any other frame  , where, v  

t tI                                                                                                                                           (3.9) 
Equation (3.2) can be combined with Equation (3.9) to form a relationship in between distance 

matrix and foreground. 

:t t tF       
Where,  

T N

i
i T

B




 ,   :t t tP     

If, tB , the distance matrix becomes the foreground itself. Thus,  

t tF                                                                                                                                          (3.10) 
As the distance matrix is defined by now, traffic can be extracted from the distance matrix. 

Using Equation (3.5), (3.7) and (3.9), placing *B  , the following relations can be obtained, 

1

' ' 2 ' 2= sin sin    
' " 2 ' " 2 ' "

t t t
t

nt

dK l t l t t t tt n
dt t t n t t t t

 








       
            

         
                                                (3.11) 

Where, t  is the time difference between t and *B . 

While dealing with detection, it is not important that the difference is positive or negative unless 

any operation is done over the positive and negative images. Therefore, an absolute value of t  

is used to extract the object.  

1

' ' 2 ' 2= sin sin
' " 2 ' " 2 ' "

t t t
t

nt

dK l t l t t t tt n
dt t t n t t t t

 








      
          

        
   

1

' ' 2 ' 2= sin sin ,     [ ]
' " 2 ' " 2 ' " t

t t t
K l

nt

dK l t l t t t tt n
dt t t n t t t t

   








      
            

        
                           (3.12) 

Now, during extracting the binary image tb , this t  is compared with a set of threshold value 

.t The mathematical structure shows that t has two components: one is the vehicle tl   and the 

other is the illumination variation mt . For each time and for each pixel, both of these 

components will be compared with t to decide whether the pixel is vehicle or not. Naturally, 

there is no need to adopt a threshold if the equality (3.10) is held true. Otherwise, the need of 

threshold values becomes predominant.  In other words, the threshold values must be a function 

of tK to suppress it, such that  ,t t tK l  . The segmentation of vehicle can be done by, 

1,
0,{ t t

t otherwise
b

 
    , : 1t t tmt l                                                                                          (3.13) 

From this equation, two such conditions can occur for a particular pixel:  
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1.    : 1t tmt b      , which means that the threshold value is not enough to suppress 

the effect of illumination variation in tb ; and  

2.    : 0t t tF b      , which means that the threshold value suppresses the vehicle.  

Figure 3.3(a) shows the aforementioned situations. If the value of the illumination variation 

increases with time, the threshold value also increases. At a certain time ct , the threshold value 

is equal to vehicle pixel intensity, which suppresses vehicle as per Equation (3.12). After ct , the 

condition 2 will occur. At this stage, as the threshold value becomes greater than the vehicle 

pixel intensity, hence the vehicle gets excluded from the binary image after being computed by 

Equation (3.13). However, even if the condition 1 prevails, the detection process generates an 

error t
t

t

dKt
dt



 
 

 

in segmentation of tF . 

 

(a) Static background 

 

(b) Estimated background using Model 1 
(M1) 

 

(c) Estimated background using Model 2 
(M2) 

 

(d) Estimated background using Model 3 
(M3). 

Figure 3.3 Traffic detection using different background models. 
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3.4. Solution Models 

As described in Section 3.3, the main limitation of using the static background in traffic 

detection is the suppressing of vehicle pixel due to higher threshold value while 

accommodating larger illumination variation. In this section, three models will be presented 

which progressively overcome this limitation. 

 

3.4.1. Model 1(M1) 

Equation (3.5) can be rearranged after integration within time interval  1 2 t t  as follows. 

2 2
* *

1 1

( )  
t t

t t t
t t

t B B I dt B t F dt
 

                                  (3.14) 

The further derivation considers 't t , where 2 1t t t   .The presence of a vehicle in the field of 

vision (FOV) is defined by a time interval of 't that is much smaller than t

. This feature draws 

on a premise that the duration of any particular object in the FOV is miniscule. Thus, the 

residence time of the vehicle within the frame is much smaller with respect to whole video 

sequence. In another aspect, the vehicular properties (area) remain constant temporally; 

whereas, the centroid of the area varies within the FOV. If the centroid is the representative of 

all the pixels occupied by a vehicle, the intensity over the centroid can be expressed as tl l , 

where l does not vary with time.  
' " '2

0 ' 01

 
t t t t

t t t t
t t

F dt M F dt M F dt M F dt       

'
' '

0
10

' ' 2 ' 2sin sin ' ( )
' " 2 ' " 2 ' "

t
t t

t to
n

lt l t t t tF dt F dt n dt lt n
t t n t t t t

 






     
           

       
    

If n  is greater than 200, the term  n converges towards 1 and the value of '

0

t

tF dt  becomes 'lt

.This portrays a new opportunity for Equation (3.14) to be rearranged as follows, 
2

* *

2 1 1

1 '( )
t

t
t

MltB B I dt B
t t t



   
  . However, the residence time of the object within the frame is 

much smaller with respect to whole video sequence ( 't t ) and ' 0Mt
t

 . Therefore, the 

aforementioned equation becomes 
2

2 1 1

1 .
t

e t avg
t

B I dt I
t t

 
   The background can now be estimated 

as follows, 
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2

2 1 1

1 t

e t avg
t

B I dt I
t t

 
                                                                                                            (3.15)

  
This background is estimated over certain number of frames and it is not representative of the 

actual background. Thus, it is termed as estimated background eB . From this derivation, it can 

be stated that the estimated background is the average of the frames within the interval- 1 2[ , ]t t . 

When tI  is a discrete function, tI can be replaced with .nI  Now, Equation (3.15) can be written 

as follows, 

 
1 N

e avg n
i n

B n I I
n 

                                                                                                                (3.16) 

Using Equation (3.15), an estimated background at any time t can be obtained. However, it will 

not capture the illumination variation completely. Moreover, this operation produces a small 

trace of vehicle F  within it, which causes pollution. It can be realized from the equation below, 

    *

1

1
2

T

e
t

TB T I T B m F
T 

                                                                                              

  

(3.17)
 

If it is assumed that the frames are free of vehicles and constituted illumination variation only, 

then the estimated illumination variation at any time t is / 2mt ; whereas, the actual value is mt

(from Equation 3.6). It implies that the error is reduced by 50% with respect to static 

background. Yet, 50% needs to be recovered. This model also assumes that vehicle does not 

occur frequently. Thus, 0.F  If this assumption becomes invalid and most of the frames 

contain vehicles, it causes accumulation of the vehicle within the frame at the rate of /tF t .  The 

term F is called the residue of the lost that causes background pollution significantly. If distance 

matrix is computed using this polluted background, the intensity of vehicle gets reduced. This 

residue is static in nature, since it accumulates over several points on the background surface 

and stays on those points for a longer time. The rate of accumulation is termed as accumulation 

limb and the rate of decay of this accumulated residue is termed as diminishing limb. The 

presence of this residue affects both background and foreground. Thus, the distance matrix 

becomes, 

2t t
tF m F                                                                                                                        (3.18) 

Equation (3.18) represents that the intensity of tF  gets reduced by the accumulated F . The worst 

case scenario occurs when vehicle stays for the whole sampling period .T Then, the value of F  

becomes tF . Consequently, the vehicle within the distance matrix gets eliminated and no vehicle 

will be detected. To overcome this error, a condition needs to be applied on both collection and 

averaging of frames. Particularly, the selected frames must consist of a small number of 
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vehicles. However, the ingression of vehicle into the frame cannot be controlled. Alternatively, 

ingression of pixels can be controlled using a logical way. Incorporating the aforementioned 

error into the solution, the estimated background eB  deviates from the actual background tB  by 

a critical value .c  From recollection of previous derivation, the amount of error caused by the 

estimated background is as follows. 

 
2

*

0 0

    
2

t t

t c c

tI dt B t dt t B t m t                                                                                       (3.19) 

 

  
(a) Before incorporating pollution controlling 

parameter 

(b) After incorporating pollution controlling 
parameter 

Figure 3.4 Representation of residue of the lost F  due to accumulation of vehicle. 

 

The solution of the problem can be derived from the following steps. Firstly, any frame can be 

expressed as, 
*

t t tI AB DF EK G     
Where, A, D, E, G are coefficients. Integrating the both sides, the following equation can be 

obtained. 
2

*

0 0 2

t t

t t

tI dt AB t D F dt Em Gt                                                                                                  (3.20) 

Equating the coefficients of Equation (3.17) and Equation (3.18), the value of these coefficients 

can be obtained. 
1;  0;  1;   cA D E G       

So, the condition for pollution suppression becomes, 

   , , , , cI x y t B x y t                                                                                                                   (3.21) 
From this condition, it is apparent that the ‘residue of lost’ will be terminated if and only if the 

current frame differs from the elected background by critical different ( c ) or less. More 

specifically, if  , ,I x y t  differs less then c  (case 1) from  , , ,B x y t  , ,I x y t is preferred for 

background estimation. However, if the difference is greater than c  (case 2), a new parameter 

(rate of intrusion ir ) needs to be introduced to control the intrusion of vehicle into the estimated 

Residue of Lost, F  



 

29 
 

background.  The value of ir  varies from 0 to 1. However, it is recommended to keep this value 

as low as possible, such as, from 0 to 0.1. Otherwise, the accumulation of vehicles in the 

estimated background increases with the increment of this parameter value. Moreover, this 

parameter value should not be kept to zero, which may retard the estimation model to 

incorporate illumination variation. Thus, it acts as a valve to the accumulation problem. The 

precondition equation becomes as follows. 

 
 

   
'

, , ,  , , , , 1

(1- ) , , -1 , , , 
' , , { e

n

e

I x y n if I x y n B x y n c

r B x y n r I x y n otherwisei i

I I x y n
 

 
 

 
 
 

  



   

These two parameters ( ,c ir ) are called pollution controlling parameters. By applying this 

precondition on each frame, the background estimation can be done using Equation (3.22). 

  '1 i N

e n
n i

B n I
N





                      (3.22) 

Remark. The accumulation rate becomes ;t n
i i

F Fr r
T N

 where, the value of ir   is very small. 

Moreover, the total error due to accumulation becomes ir F from F . 

Limitation. The main limitation of this model is that it can accommodate only half of the 

illumination variation which can be seen from Figure 3.3(b). This is mainly due to the 

averaging effect by the model. 

 

3.4.2. Model 2 (M2) 

To overcome the limitation of M1, a new parameter–resampling interval ( ),rN is introduced. 

This parameter facilitates dividing the entire time span 2 1,T T t t   into small intervals. From 

Figure 3.3(b), it is evident that with the time span increment, the amount of error also increases. 

If the operation is confined within a smaller interval, as in Figure 3.3(c), the error reduces to a 

minimum value. rN represents the predefined number of frames after which the estimation 

process restarts without recalling the previous frames. If this process is included in the 

estimation equation, Equation (3.22) looks like as follows, 
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                                                                                              (3.23) 

If rN frames lie within rT , the error occurs due to the averaging process as in Equation (23) is

/ 2.rmT Since ,rT t this error is less than that of Equation (3.22). 

Limitation. It can be seen that after each interval the averaging process starts and the 

background estimated in the previous interval gets erased. However, if the sample size is small, 
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the estimated background is not a representative one. Moreover, if ( )rn qN is small, the value 

of 0avgF  and the risk of accumulation of vehicles within the background becomes very acute. 

Like-wise, this problem arises when limited number of frames is available at beginning of the 

model execution.   

 

3.4.3. Model 3 (M3) 

To eliminate the limitations of M1 and M2, a new parameter (sample lag factor )lN is 

introduced to memorize the estimated backgrounds and to prevent accumulation of vehicles 

within the background. In particular, lN is a weightage factor over the previously estimated 

backgrounds as showed in Figure 3.3(d). It should be noted that there is no estimated 

background available at the very beginning of the averaging process by Equation (3.24). Thus, 

in that case, the static background is used instead of the estimated background. The static 

background *B  is estimated from median of several frames. It should be noted that resampling 

interval ( rN ) and sample lag ( lN ) are considered as luminance controlling parameter. 
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As the final background model (M3) has been developed, traffic detection task would be 

achieved by a per pixel binary threshold model. In this regard, the distance matrix n of frame n  

is determined using Equation (3.25) incorporating the estimated background  eB n (Equation 

3.23) and the input image .nI  Afterwards, the distance matrix is fed into Equation (3.26), which 

considers that a higher threshold value should be provided to a lower difference value within 

the distance matrix and vice-versa. This is essentially a simplified linear equation between 

difference and threshold values. It gives the per pixel threshold using the maximum and 

minimum thresholds ( max and min ) .  

   n en I B n                                                                                                                     (3.25)
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The pixels having greater difference value than the corresponding threshold are classified as 

foreground as in Equation (3.27). This results in a binary image ( b ). 

 
  1, , ,  , ,

0, 
, , { if x y n x y n

otherwise
b x y n

    
   
   
   



                  (3.27) 

3.5. Summary 

Background subtraction is a very common approach in vision based traffic detection. However, 

an accurate background is needed to classify the foreground correctly. Unfortunately, it is 

difficult to get such background as it is not static and it is occupied with objects most of the 

time. Thus, the necessity of accurate background modeling emerges for accurate traffic 

detection. In this chapter, an efficient background model has been derived. In this context, three 

theorems were proposed to define different components of an image, which ultimately 

differentiates background and foreground. These definitions and theorems fueled the 

formulation of the problem, where the concept of static background is utilized. As a solution 

to this problem, successively three dynamic background models were developed; however, the 

first model cannot capture illumination variation to the full extent and the second model causes 

severe accumulation problem due to lack in available frames for dynamic background 

estimation. Hence, the third model was developed to overcome the limitations of the previous 

ones which became possible because of incorporating two types of parameters: (1) luminance 

controlling parameters; and (2) pollution controlling parameters. Luminance controlling 

parameters capture the illumination variation; whereas the pollution controlling parameters 

retard the model pollution due to accumulation of traffic into the background. Besides, a new 

per pixel binary threshold model related to the final model was developed for the foreground 

segmentation. It uses a linear relationship between threshold and distance matrix to find per 

pixel threshold. Although this threshold model contains two parameters, one of them is 

significant while making binary decision.  
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Chapter 4  

Pixel Based Heterogeneous Traffic Measurement 

 4.1. Introduction 

With the rapid growth of vehicles in the road network, measuring of traffic flow is becoming 

more and more urgent. Noticeably, estimation of travel time, vehicle trajectory, and controlling 

traffic signal requires flow data. This data is also used to estimate fundamental parameters: jam 

density, capacity, and free flow speed. While these parameters are used in building traffic flow 

simulation models, the calibrated road network provides a platform to analyze the important 

changes in traffic flow due to various control and management strategies. The prerequisite for 

accurate traffic measurement is the detection of vehicles precisely, which can be done by means 

of magnetic loop, microwave or ultrasound detectors, and video sensors. However, video based 

sensor, a state of art approach, is the most consummate over other detectors for real-time 

vehicle detection considering its ease of installation, maintenance and wide area monitoring 

coverage. Video sensors revolve on image processing algorithms that require image 

acquisition, preprocessing, segmentation, representation, recognition and interpretation. 

Images are retrieved from a source through image acquisition, background noise is removed 

applying preprocessing, and partitioning is obtained via segmentation. After that, vehicle is 

detected and it is interpreted as traffic measurement. Nonetheless, the accuracy of vehicle 

detection decreases under uncontrolled environment. This environment is incorporated with 

various challenges such as shadow, sudden and gradual illumination variation, camouflage, 

static vehicle (congestion) and noise associated with video dataset. These result in inaccurate 

vehicle detection. For instance, illumination variation results in increase or decrease of pixel 

intensity generating false positive detection and presence of shadow at vehicle edges leads to 

overestimation. Moreover, performing accurately both for stationary and moving vehicle 

conditions is another challenge for detection algorithms. Thus, in real-time context, the vehicle 

detection algorithm should be efficient in detecting vehicle under such uncontrolled 

environment. Thus, this chapter endeavors to develop an efficient traffic measurement tool, 

which can address the aforementioned detection challenges. 
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Figure 4.1 Connectivity among different components of vision based wireless surveillance  

system. 

4.2. Methodology for Traffic Measurement 

An efficient system is that which is divided into modules and each module has separate 

operation to perform; whereas modules can be added, removed or replaced as per requirement. 

The system developed in this research contains seven modules: (1) Live Video Capture; (2) 

User Input; (3) Background Estimation; (4) Vehicle Detection; (5) Shadow Removal; (6) Flow 

Measurement; and (7) Speed Measurement. Figure 1 shows the connectivity of PARTS with 

the other components of the system. PARTS is capable of taking both on-line and off-line video 

images as input source. In case of on-line source, surveillance camera uses 3G cellular network 

to connect to the internet through a firewall protected wireless router. Afterwards, the on-line 

source is accessed by user through the internet from a server computer using PARTS. However, 

at first, user needs to feed some information to PARTS, such as strip location or number of 

segments. While analyzing, background is estimated from the frame input and updated 

dynamically to adapt to environmental challenges like illumination variation, camera jitter, and 

tail back. Using this estimated background, differential image is formed by background 

subtraction. This differential image is then converted into binary/foreground image using 

different threshold values for each pixel. The threshold values are selected based on a linear 

threshold-difference (  ) relationship. Afterwards, connected component labeling is used 

to detect vehicle from the binary image which connects the foreground pixel considering the 

neighborhood pixels. Shadow removal technique – PNS is applied on each detected vehicle 

before using the flow and speed measurement mechanisms. Figure 4.2 shows the whole 
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mechanism of PARTS using a simple flow chart and the algorithms involved are explained in 

details in the following sections. 

4.2.1. Live Video Capture Module   

A live video capture module was developed to digitize real-time video signals into readable 

images from remote video sources, such as IP camera. These images were then sent to the 

server. The combination of ‘HIKVISION Network’ camera and ‘WLINK’ Industrial 4G router 

(supports 3G also) enabled the full streaming of the video in real-time for this work. The camera 

can record 25 frames of 3MP (Megapixel) resolution each per second. Whereas 4G router can 

connect to the server using two 3G (third generation of mobile telecommunications technology) 

enabled mobile SIM (Subscriber Identity Module) alternatively, if one is out of order. The 3G 

enabled SIMs made the whole system wireless and mobile. The system stored the captured 

video automatically in a buffer located in the server in MPEG4 (.mp4) format. The later module 

uses this buffer to estimate background by reading the video frame by frame.  

4.2.2. User Input Module 

User input module requires five information to be provided by user: (1) strip location for  flow 

measurement; (2) strip location for speed measurement; (3) field distances; (4) data interval; 

(5) number of segments for speed measurement. The locations of the strip needs to be given in 

Cartesian coordinate system considering the upper left corner of the frame as (0,0). The location 

information requires position and dimension of the region of interest. These values can be 

provided manually by the user or the user can press the push button ‘From Frame’ to do it 

graphically (Figure 4.3(a)). Pressing the button provides a window for user to select the region 

by drawing a blue rectangle on a frame selected from the input stream. Additionally, double 

clicking on the enclosed area takes coordinates of the selected location automatically. The field 

distances (converted into pixel distances) for camera calibration have to be provided in a table 

for different position which is illustrated in Figure 4.3(b). Figure 4.3(c) shows the window 

which facilitates the data collection interval. The flow and speed are measured for this selected 

interval. 
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(a) Region selection window for flow measurement 

 

(b) Region selection window for speed measurement 

 

(c) Interval selection window 

Figure 4.3 User Input Module. 

4.2.3. Background Estimation Module 

For background estimation, an underlying assumption in PARTS is that there is no massive 

camera movement which may cause any loss either to the estimated background or to the 
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detected object. PARTS addresses sudden and gradual illumination variation, and 

accumulation of static objects in the background using mathematical formulation. The brief 

description of the formulation is as follows.  

The real-time RGB images RGBI obtained from the source are converted into gray-scale 

(monochromatic) images I  using weighted mean of the color channels. Then, using equation 

(1) the median ( B ) of iN number of frames is determined to initialize background; assuming 

that the background is presented in more than / 2iN frames. iN is determined considering the 

approximate average aggregate vehicle speed v and the number of frames the video captures 

per second (FPS). After initialization, each of the forthcoming frames is fed into equation (2) 

for estimating background  eB n . However, filtration is done by equation (3) on the incoming 

frame incorporating previously estimated background  1eB n ; whereas B  is used if no 

estimated background is available. The filtration process compares each pixel of the incoming 

frame with the previously estimated background. If the difference is less than a critical 

difference ( c ), it skips the filtration process. And if the difference is higher, it modifies the 

incoming pixels using an intrusion rate ir . In the proposed methodology, c  and ir  are utilized 

as pollution controlling parameters that control (or retard) accumulation of stopped vehicle 

pixels into the estimated background eB .  

Furthermore, PARTS uses resampling interval ( rN ) to cope up with gradual and sudden 

illumination variation. Smaller value of rN is used for accommodating both gradual and sudden 

illumination variation. It helps the estimation model to break the illumination variation into 

finite difference problem which needs smaller step size (or rN ). Conversely, smaller value of 

rN  causes errors in the estimated background. It is due to the presence of vehicles within the 

resampling interval. However, the process forgets previously estimated background 

immediately when a new interval starts. In this regard, sample lag factor ( lN ) is used to give a 

weightage to the previously estimated background. This parameter keeps a link among the 

estimated backgrounds at each interval until the process ends. Here, rN  and lN are utilized as 

luminance controlling parameters for addressing sudden and gradual illumination variations in 

the estimated background. Additionally, before storing the frames, it performs geometric mean 

between filtered image and the estimated background to reduce the effect of camera jitter.  

 *
1 2 3( , , ,......, )i Ni

B B N Med I I I I                                                                                                          (4.1) 
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Where, 

,
r
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    

4.2.4. Vehicle Detection Module 

In this module, the differential image  n of frame n  is determined using equation (4.4) 

incorporating the estimated background  eB n and the corrected input image  cI n . 

     c en I n B n                                                                                                                           (4.4) 

Where, 

     1c eI n B nI n    

Afterwards, the differential image is fed into equation (4.5) which considers that a higher 

threshold value should be provided to a lower difference value within the differential image 

and vice-versa. This is essentially a simplified linear equation between   and  , which 

ultimately gives the per pixel threshold using maximum and minimum thresholds ( max and min

). This linear relationship adopts the shape of the drawdown curve of the windshield and does 

not allow the windshield to get eliminated during the threshold process.  
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w Number of pixels along the width ( B ) of the image 

h Number of pixels along the height ( L ) of the image 
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Then the pixels having greater difference value than the corresponding threshold are classified 

as foreground using equation (4.6). This results in a binary image ( b ). 

 

  1, , ,  , ,

0, 
, , { if x y n x y n
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b x y n
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

                                                                                                     (4.6) 

Afterwards, disk shaped morphological operations (dilation and erosion) are used to improve 

the quality of the binary image. Connected component labeling algorithm is used to connect 

pixels marked as foreground in the binary image. This algorithm traverses the binary image, 

and merges the foreground pixels into objects based on the connectivity and relative values of 

their neighbors. 

4.2.5. Shadow Removal Module 

The presence of shadow causes false positive detection when it is alone on the road; whereas, 

it causes occlusion when any vehicle steps into it. Interestingly, shadow too is an object related 

to illumination. It has the same texture but lower intensity than the object/background on which 

it casts. In PARTS, Positive-Negative Segmentation (PNS) of differential image is adopted for 

removing shadow. The differential image has two components, one is positive and the other is 

negative. Equations (4.7) and (4.8) can be used for extracting the positive ( 

) and negative (



) images respectively. Hereafter, positive ( b


) and negative binary ( b


) images are obtained 

using equation (4.9). Areas of the positive and negative binary images are obtained using 

equation (10). 
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Using these areas, the most probable equivalent width ( Bw ) and length ( Lw ) of the shadow are 

determined using equations (4.11) and (4.12) respectively. 
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Then, an evaluation is performed on the object detected by the “Vehicle Detection Module”. 

In this evaluation process, a total of four areas are identified by searching from each corner of 

the object inwards up to Bw   and Lw . Within each of these areas, shadow is removed if

s

b
b










; where s  is the tolerance parameter for shadow removal. Finally, a binary image 

without any shadow is obtained. 

4.2.6. Flow Measurement Module 

Flow measurement module uses the binary image generated as above to compute traffic flow. 

In this regard, at first, impulse flow waves are generated using equation (4.13). 

 
   1i iC t C t

q t
t

   



                                                                                                                   (4.13) 

Here, iC is obtained from the geometric property (i.e. centroid) resulted from the connected 

component labeling of the binary image at any time t . It represents the number of vehicles 

existing within the strip defined by the user. t  is the time difference between two consecutive 

frames. The impulse flow waves generated by equation (4.13) are shown in Figure 4.4, which 

is similar to alternating wave having non-homogenous wavelets. The time difference between 

two positive peaks represents the time headway between two consecutive incoming vehicles 

inside the strip. Thus, the relation between impulse flow waves and time headway is utilized to 

generate the actual flow wave. However, the wave generated from equation (4.13) does not 

provide flow measurement directly. It reforms in several folds. Positive part of the wave is 

named inflow impulse wave while the negative part is called the outflow impulse wave. While 

reforming, the impulse flow waves are rounded and rectified into inflow half waves using half-

wave rectifier. The rectifier keeps only the positive portion of the wave; whereas rounding 

disregards any fractional value of the wave. Since inflow and outflow half waves are identical, 

only the inflow wave is considered in this research. Hereafter, cumulative sum of the half wave 

amplitudes is taken .The cumulative sum aggregates the discrete wave information into a single 

arrival wave which gives the volume at any time. After obtaining the volume, flow at any 

interval can be computed by performing finite 1st order differentiation of the arrival wave with 

respect to the user defined time interval. Figure 4.4 shows the detailed procedure of the 

mechanism. 
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Figure 4.4 Rectifying and cumulating inflow waves for flow measurement. 

4.2.7. Speed Measurement Module 

In the speed measurement module, the frame is divided into different segments, each of which 

is too small to occupy vehicles having different speed. Hence, every segment represents the 

speed of the vehicle considering one segment occupies one vehicle only. The whole approach 

of speed measurement is illustrated in Figure 4.5. In this approach, speed of the vehicle is 

determined by measuring the change in center of area of vehicles within the segments using 

equation (4.14).  The area of a vehicle and its centre are computed by equations (4.15) and 

(4.16) respectively. Afterwards, speeds of the segments are averaged to get aggregated speed 

of the vehicles within the frame at each instant; it gives the aggregated pictorial speed. 

Ultimately, aggregated pictorial speed is fed into a calibration equation. The calibration 

equation relates the actual distance with the pictorial distance considering perception error. The 

aggregate time mean speed is determined using equation (4.17). 
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Where, N  is the number of observations, sN  is the number of segments in the frame and t  

represents the time interval between frame l  and 1l  . Finally, actual speed is measured using 

a calibration equation as in equation (4.18), 

  ' , ,t tV v x X                                                                                                                           (4.18) 

Where,  ,x X corrects the distorted distances due to decrease in length X  when a vehicle 

moves away at a distance x from the camera (also known as error due to perspective view) and 

 converts the pictorial distance into field distance. 

 

Figure 4.5 Measuring speed from displacement of object centroid at every segment.  

4.3. Basic Features of PARTS 

PARTS (Pixel Based Heterogeneous Traffic Measurement), a user friendly tool has been 

developed that holds all the modules as described above. It contains eight interactive panels 

(Figure 4.6): (1) File info; (2) Data; (3) Flow; (4) Speed; (5) Data info; (6) Shadow Removal; 
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(7) Preview; and (8) Plotting. The ‘File info’ panel provides information of the data source (i.e. 

folder location, total number of frames, frames per second). The ‘Data’ panel is the most 

important panel where the extracted real-time traffic data (flow and speed) are shown. PARTS 

estimates density from measured flow and speed. Furthermore, the ‘Flow’ and ‘Speed’ panels 

enable the user to select input parameters related to User Input Module. Most importantly, user 

defined interval can be set in the ‘Data info’ panel. In the ‘Shadow Removal’ panel, shadow 

removal parameters can be provided. The ‘Preview’ panel shows the frame that is being 

analyzed during run-time of the tool. Finally, the ‘Plotting’ panel shows the traffic volume 

verses time diagram. 

Furthermore, several menus have been added to increase the tool’s usability. ‘File’ menu 

facilitates both off-line and on-line video loading. It also enables users to load the background 

file from a different source, if needed. The extracted data can be saved in three different 

formats: 1) .mat; 2) .xlsx; 3) .txt (formatted). ‘View’ menu facilitates users to see the estimated 

background, differential image and binary image for a particular video frame. ‘Play’ menu 

gives the facility to play video of dynamic background as well as that of differential and binary 

formats. ‘Tool’ menu includes the facility of combining images into videos. ‘Plot’ menu gives 

plotting facility of the extracted traffic data (i.e.  Flow verses Time, Speed verses Flow and 

Speed verses Density). ‘Settings’ menu is kept for the changes in settings of the tool. 

Specifically, user can choose the type of speed measurement (instantaneous or time mean 

speed). 

 

Figure 4.6 Interface of PARTS showing panels and menus. 
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4.4. Summary 

This chapter presents a new methodology for traffic measurement using video sensors. PARTS 

(Pixel Based Heterogeneous Traffic Measurement), a user-friendly tool that incorporates the 

proposed methodology, has been developed to facilitate real-time traffic measurement. 

Particularly, the incorporation of luminance and pollution control parameters result in accurate 

background estimation. Whereas, the new heuristic dynamic threshold-difference function for 

determining per pixel threshold results in accurate foreground segmentation. Moreover, 

shadow is removed considering its physical characteristics by the PNS (Positive Negative 

Segmentation) technique.  This chapter also includes the description of the software interface 

developed for extracting data using the methodology illustrated in this chapter.  
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Chapter 5  

Crash Probability Estimation 

5.1. Introduction 

This chapter presents the methodology of estimating crash probability. It includes the video 

capturing method, vehicle detection method, tracking method, vehicle classification method. 

This chapter also describes the skeleton of the overtaking model and the formulation of time-

to-collision. Ultimately, these two aspects are conjugated within the crash probability model. 

The methodology of this research is divided into five components: (1) Live Video Capture; (2) 

Detection; (3) Trajectory Estimation; (4) Vehicle Classification; and (5) Model Formulation. 

Figure 5.1 shows the flow chart illustrating the connectivity among the different components.  

 

 
Figure 5.1 Flow chart showing the methodology of crash probability estimation 

 

5.2. Live Video Capture 

Real-time video signals were digitized into readable images from remote video sources, such 

as IP camera, and were sent to a server. The full streaming of the video was done with the 
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combination of ‘HIKVISION Network’ camera and ‘WLINK’ Industrial 4G router. 25 frames 

of 3MP (Megapixel) resolution can be recorded per second with this camera. Whereas, the 

router can operate over two 3G (third generation of mobile telecommunications technology) 

enabled mobile SIM (Subscriber Identity Module) alternatively, if one is out of order. It stored 

the captured video automatically in a buffer located in the server in MPEG4 (.mp4) format.  

5.3. Detection  

In this study, the vehicles were detected from the real-time captured video. It was done in two 

phases: (1) foreground segmentation; and (2) foreground detection. Foreground (vehicle in 

particular) segmentation was done incorporating background subtraction technique. It 

considered subtraction of a dynamic background from each frame within the video. Thus, a 

dynamic background was needed to be estimated for this process. This dynamically estimated 

background was then subtracted from corresponding corrected frame resulting in differential 

image. A set of threshold values were generated based on this differential image. Each pixel in 

the differential image was compared with the corresponding threshold value to obtain binary 

image. Any value, that was found to be greater than the threshold value, was considered to be 

1, otherwise 0. Consequently, connected component analysis revealed the connectivity among 

the objects (vehicles) and labeled them as an individual vehicle. It identified the centroid of the 

vehicles within the binary image. Simultaneously, the shadow attached with each vehicle was 

also removed considering its physical characteristics. Later, this vehicle centroid was tracked 

to estimate the vehicle trajectory. For further information about the detection mechanism, 

readers are requested to see chapter 4.  

 

5.4. Trajectory Estimation 

In this component, the geometrical properties of the detected vehicles obtained from the 

previous subsection were tracked using Kalman filter (34). Kalman filter defined the 

geometrical properties of the objects as its states, motion model, and measurement equations 

matrix. Each moving object was defined by its centroid and tracking window. The horizontal 

and vertical centroid coordinates and the area of the thi object in the thk  frame are ,i i
k kx y and i

kS  

respectively. A cost function  ,V i j  was defined using the definition of centroid distance 

function  ,CD i j and area difference function  ,AD i j  between the thj object in the thk and 1thk   

frame. These definitions are as expressed in equation (5.1). 
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                                                                         (5.1) 

Where, 4i i i
k kS l h (represents the area of tracking window)   

 1    
 

0.8    and 0.2  were considered, as the change in centroid difference function was greater 

than the area difference function during the lower vertical camera angle. The two objects were 

more likely to have correspondence for smaller cost function’s value. This procedure was 

repeatedly done to finish the model updating until the moving objects were disappeared. Using 

the spatio-temporal signature obtained from tracked vehicle centroids, trajectory of each 

vehicle was obtained. However, the co-ordinates obtained from this process suffered from the 

perspective view due to camera angle. It was overcome using a calibration equation (5.2), 

which correlated the pictorial distances with field distance. 

 
  ' , ,t tr r x X                                                                                                                                                         (5.2)  

Where,  ,x X corrects the distorted distances due to decrease in length X , when a vehicle 

moves away at a distance x from the camera and  converts the pictorial distance into field 

distance. 

 

5.5. Vehicle Classification  

Vehicle classification was done on the basis of geometrical properties of the detected objects 

revealed in component “Detection”. The pictorial area for different vehicles was obtained by 

multiplying the mid length with mid width of the vehicle in the frame. Afterwards, the area of 

the vehicles was compared with these predefined areas.  
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5.6. Model Formulation and calibration procedure 

This component illustrates three types of formulations: (1) Overtaking Decision (OD) Model; 

(2) Time-To-Collision (TTC); and (3) Crash Probability (CP) Estimation Model.  

 

5.6.1. Overtaking Decision Model (OD) 

Overtaking is considered as a choice decision taken by the driver to complete a passing 

maneuver. However, this decision making process is complex and dependent upon different 

variables. OD can be expressed as, 

| n
n

OD f X 


 
   

 
                                                                                                               (5.3)

  

Where,  is the corresponding parameter of the explanatory variable X . However, among 

these variables, some remain unobserved due to insufficient information. The unobserved 

variables are expressed as uX and the observed variables are expressed as oX . Incorporating 

these two types of variables, equation (5.3) can be rewritten as equation (5.4), 

 | , |o io u ju
i j

OD f X X 
 

 
 
 
 

                                                                                                   (5.4) 

When the explanatory variables are correlated with each other, the rate of change of the 

function 
m

df
dX

 
 
 

 is also a function of itself and other explanatory variables. This rate of change 

can be expressed as equation (5.5). 

 

/| ,m k k
m k i j

df g X k i
dX


 

 
   
 
 

                                                                                                       (5.5) 

However, if equation (5.5) is considered for all the variables, a system of differential equations 

is formed with m number of eigenvalue, which is expressed in equation (5.6).  

 

/ /|m m k k
k i j

X g X 
 

 
 
 
 

                                                                                                            (5.6) 

Conversely, this kind of system leads to m particular solutions. In order to get the exact 

solution, indefinite integral of equations (5.6) is found, which is presented in equation (5.7). 

 

/

1
| , | |

N i j

o io u ju m k k
mi j k i j

f X X G X  
 

   

  
   

   
   

                                                                     (5.7) 
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Where, 

 

/|m m k k m m
k i j

G g X dX 
 

 
  
 
 

  

 

Where, m  = integral correlation constant. 

  

Substantially, no correlation exists among mutually exclusive sample events. The variables 

capture the characteristics at the instant of overtaking,  ,k m  . Either, k m , the gradient 

of the variables are dependent on its own value (multivariate polynomial equation) or k   , 

the gradient is constant (multivariate linear equation). For capturing greater details of the 

explanatory variables, in this research, k  is considered to be m . To understand the 

significance of the explanatory variables, the best way to represent f  is multivariate 

polynomial form. Equation (5.7) can be written as, 
n m

juio
io io ju ju

i j
OD X X

 
 

                                                                                                        (5.8) 

 

Where,  , .     

The unobserved variables cannot be modeled due to lack of information, thus those variables 

in equation (5.8) are replaced with a constant parameter 0  stated in equation (5.9). 

0

n
io

io io
i

OD X
 



                                                                                                                    (5.9) 

To make equation (5.9) statistically estimable, a disturbance term is added with it. Then the 

equation (5.9) takes the form of equation (5.10). 

0

n
io

io io
i

OD X
  



                                                                                                                                (5.10)

  

Where,  = disturbance term.  

 

Considerably, explanatory variables are continuous. In contrast, the output variable has only 

two binary outcomes (0 and 1). Thus, the effect of increasing or decreasing of a certain variable 

on the OD model cannot be explained properly. Because, after crossing a certain threshold 

value, the model output will change suddenly zero to one or one to zero. This abrupt change 

may reduce the scope of explanatory variables inspection. Turning OD model into continuous 
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probability density function can solve this. It is considered that the disturbance term   follows 

normal distribution and the maximus of the randomly drawn values from that distribution has 

extreme value type I distribution. According to this, the probability function becomes a logistic 

regression function represented in equation (5.11), 

 
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1 exp
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io io
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io io
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 
 

 
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 



                                                                                         (5.11) 

 

The likelihood function for this model is given by equation (5.12), 
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                           (5.12) 

 

A normal prior is frequently used for the parameters of the logistic regression model. Here, 

independent normal prior distribution (equation (5.13)) with zero mean and large variance is 

considered to express the prior ignorance.  
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                                                                                                       (5.13)              

This setup results in the posterior density function as shown by equation (5.14). 

                     0 1 1 0 1 1 0 2 2 0,1 , , ,...... , | | ,1 , , | ,1 , , ...... | ,1 , ,n n n nf y f y f y f y                         (5.14)          
 

5.6.2. Time-To-Collision (TTC) 

In this fragment, analytical formulation of TTC for two-lane undivided highway is presented. 

Vehicles travelling on the road keep interacting with the neighboring vehicles on the current 

and opposing lane, which actually generate car-following and overtaking events. The subject 

vehicle  n follows the leading vehicle  1n  with the front spacing
| 1n nS


. Thereupon, the 

vehicle n  leaves the current lane and initiates overtaking. After reaching the opposing lane, to 

avoid crashes with the opposing vehicle and complete overtaking maneuver, the vehicle n  

should not decrease speed and should not stop overtaking. To avoid crashes, the subject vehicle 

has to complete the overtaking maneuver and take the gap in front of the vehicle 1n .  

Otherwise, a head-on crash will occur, if the subject vehicle and the opposing vehicle remain 
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at the same lane. Likewise, one of the most important factors affecting the crash between the 

subject and leading vehicle is time-to collision (TTC). TTC is calculated for the current time 

step t  based on the equation (5.15). Equation (5.15) is derived from the laws of dynamics. 

Spacing between subject vehicle ( n ) and the opposing vehicle ( k ), speed and acceleration 

of the subject ( t
nV , t

na ) and the opposing vehicle ( t
kV , t

ka ) are considered to calculate TTC. The 

crash potential is higher when the TTC is close to ‘0’. A larger TTC results in a lower likelihood 

of crash. 

 
Figure 5.2 Definition of subject vehicle and surrounding vehicles  

 

     
 

2

|

2t t k t t
n k n n k n kt

n k t k
n k

V V D a a V V
TTC

a a
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


                                                                                          (5.15) 

 

5.6.3. Crash Probability Estimation  

Based on the above OD and TTC formulation, the potential that a head-on crash would occur 

at time step t can be estimated by equation (5.16). 

            
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| 1 2 | |

| |
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t t t
n k n k

C OD X Max OD X OD X C TTC if OD X

C TTC otherwise

 
      

                       (5.16) 

Where, 

 |Prt t
n kC : Probability of crash for vehicle n with opposing vehicle k . 

 Pr | :t
nOD X  Probability of the vehicle n to overtake under an observed traffic condition ioX

at time step t . 

 1Pr | :t
n ioOD X
  Probability of the vehicle 1n to overtake under an observed traffic condition 

ioX  at time step t . 
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 | |Pr |t t t
n k n kC TTC : Probability that the subject vehicle collides with the opposing vehicle. 

I   Overtaking Importance Factor, OIF (depends on type of overtaking: 

normal/flying/piggyback). 

 

The probability of the subject vehicle to collide is considered as a function of k
nTTC  and is 

determined from,  
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Where, w is crash frequency parameter (CFP). 

Thus, the ultimate crash probability estimation equation becomes, 
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The parameter w  depends on the frequency of crash occurrence. High frequency of crash 

occurrence indicates low w  and vice versa. This parameter facilitates a marginal crash value 

at the highest TTC ensuring higher safety margin. 

 

5.7. Summary 

In this chapter, the methodology of estimating crash probability from vehicle trajectory has 

been presented. A model is developed that estimates head-on crash probability for classified 

vehicle trajectory. Nonlinear random parameter multivariate binary logistic regression is used 

to model drivers’ overtaking decision. On the other hand, a new formulation of TTC is 

proposed that considered the dynamic acceleration of the subject vehicle. Finally, the 

conjugation of OD model and TTC formulation gave the classified crash probability. 
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Chapter 6  

WINBUGS: Marcov Chain Monte Carlo 

6.1. Introduction 

This chapter presents the step by step procedure of Bayesian analysis using Markov chain 

Monte Carlo (MCMC) methods in WinBUGS. Special characteristics, along with the massive 

development of computing facilities, have made Markov chain Monte Carlo (MCMC) 

techniques popular since the early 1990’s. MCMC methods are not new, as they were 

introduced into physics in 1953 in a simplified version by Metropolis and his associates. 

Nevertheless, it took about 35 years until MCMC methods were rediscovered by Bayesian 

scientists and became one of the main computational tools in modem statistical inference. 

Markov chain Monte Carlo techniques enabled quantitative researchers to use highly 

complicated models and estimate the corresponding posterior distributions with accuracy. In 

this way, MCMC methods have greatly contributed to the development and propagation of 

Bayesian theory. MCMC techniques are based on the construction of a Markov chain that 

eventually “converges” to the target posterior distribution (called stationary or equilibrium). 

This is the main way to distinguish MCMC algorithms from “direct” simulation methods, 

which provide samples directly from the target posterior distribution. Moreover, the MCMC 

output is a dependent sample since it is generated from a Markov chain, in contrast to the output 

of “direct” methods, which is an independent sample. Finally, MCMC methods incorporate the 

notion of an iterative procedure (for this reason they are frequently called iterative methods) 

since in every step they produce values depending on the previous one. 

6.2 MCMC Algorithm  

A Markov chain is a stochastic process  (1) (2) ( ), ,......., T    such that 

   ( 1) ( ) (1) ( 1) ( )| ,........, |t t t tf f       

that is the distribution of  at sequence 1t  given all the preceding  values depends only on 

the value ( )t of the preveious sequence t . Moreover,  ( 1) ( )|t tf    is independent of time t . 

Finally, when the Markov chain is irreducible, aperiodic, positive-recurrent, as t  the 

distribution of ( )t  converges to its equilibrium distribution, which is independent of the 

initial values of the chain (0) . 

https://en.wikipedia.org/wiki/Bayesian_analysis
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
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In order to generate a sample from  |f y , we must construct a Markov chain with two 

desired properties: (1)  ( 1) ( )|t tf    should be “easy to generate from”, and (2) the equilibrium 

distribution of interest  |f y . 

Assuming that we have considered a Markov chain with these requirements, we then : 

1. Select an initial value (0) . 

2. Generate T values until the equilibrium distribution is reached. 

3. Monitor the converge of the algorithm using convergence diagnostics (statistical 

tests). If diagonostics fail, we then generate more observations. 

4. Cut off the first B observations. 

5. Consider  ( 1) ( 2) ( ), ,.......,B B T    as the sample for the posterior analysis. 

6. Plot the posterior distribution. 

7. Finally obtain summaries for posterior distribution ( mean, median, standard 

deviation, quntiles, correlations). 

6.3. Markov Chain Mote Carlo Simulation using WinBUGS 

In this study, the random parameter optimization is performed using WinBUGS, a well-known 

statistical modeling software. WinBUGS is a statistical software for Bayesian analysis using 

Markov chain Monte Carlo (MCMC) methods. WinBUGS is a programming language based 

software that is used to generate a random sample from the posterior distribution of the 

parameters of a Bayesian model. The user only has to specify the data, the structure of the 

model under consideration, and some initial values for the model parameters.  

After writing the full model code, the data and the initial values in an odc file we need to 

compile and run the model. This procedure is described using the following steps: 

1. Open model specification tool.  

2. Check the model’s syntax.  

3. Load data.  

4. Compile model.  

5. Set initial values.  

6. Run the MCMC algorithm. 

The description of these steps are elaborated as follows: 

https://en.wikipedia.org/wiki/Statistical_software
https://en.wikipedia.org/wiki/Bayesian_analysis
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
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1. Open the Model Specification Tool.  Follow the path: Model> Specification to open 

the (model) specification tool. 

 

Figure 6.1 Specification Tool. 

 

In this way, the model specification tool appears on the screen. This tool includes all the basic 

operations needed to initialize the MCMC algorithm (checking the model’s code syntax, 

loading the data, compiling the model, and setting the initial values) and specify the number of 

chains that we wish to generate. 

2.  Check the syntax of the model: Highlight the command model and press the check 

model box of the model specification tool. 

 

Figure 6.2 Checking the syntax. 
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WinBUGS checks the model’s syntax starting from the first character of the highlighted 

command. If no command is highlighted, then the check begins at the top of the opened file or 

window. We recommend always highlighting the desired model command to avoid problems, 

especially if multiple model codes are included in the same odc file or window. If a problem 

in the syntax exists, then an indication is given in the lower left of the WinBUGS window while 

the cursor is placed at the location where the error was detected. 

 

Figure 6.3 Debugging the model. 

Otherwise, the message model is syntactically correct appears in the same position. 
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Figure 6.4 Model Correctness. 

3.  Load the data. Highlight the word list in the data list format and press the load data box 

of the model specification tool. 

 

Figure 6.5 Data input. 

When the data are defined in a rectangular format then we highlight the first row of the data 

where the names are declared. 

 

Figure 6.6 Tabular Data Input. 
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If a set of data is loaded successfully, then the message data loaded will appear at the bottom 

left of the WinBUGS window (status bar). Otherwise, an error message will appear in the same 

position. 

 

Figure 6.7 Sample Data structure. 

4.  Compile Model. After all data are loaded, press the compile box in the model 
specification tool. 

 

Figure 6.8  Data Loading. 

If the compilation is successful then the message model compiled will appear in the status bar 

otherwise an error message will appear in the same position. 
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Figure 6.9 Model Compilation. 

5. Set initial values. Initial values are set by following a procedure similar to the one used 

for data. We highlight the word list and then press the load inits box at the model 

specification tool. 

 

Figure 6.10 Loading Initial values. 
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If all initial values are set successfully, the message model is initialized will appear in the status 

bar; otherwise an error message will be generated in the same position. 

 
Figure 6.11 Model Initialization. 

6.  Run the MCMC algorithm: Generate random variables (burning period). Follow the 

path 

Model> Update to open the update tool. 

 

Figure 6.12 Updating the model. 

7. Set the parameters we wish to monitor: Follow the path Inference> Samples to open the 

sample monitor tool.  

 

Figure 6.13 Setting number of iterations. 
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Write the name of the parameter that we wish to monitor in the node box and then press the set 

button. 

 
Figure 6.14 Setting parameter observer. 

Using the procedure described above, we specify the parameters whose posterior distributions 

we wish to estimate via the MCMC generated values. The simulated values of these parameters 

will be now stored in order to produce a detailed posterior analysis. In WinBUGS terminology, 

this procedure is “setting the monitored parameters”. 

8.  Update the MCMC algorithm: generate and store random variables. After setting the 

parameter we wish to monitor, we update the MCMC sampler by repeating the procedure 

described in step 6. After setting the parameters of interest and generating additional random 

values, we can monitor the posterior distribution by extracting posterior summary statistics and 

plots. Analysis of the MCMC output is made via the Inference menu and mainly by the sample 

monitor tool.  

6.4. Summary 

In this chapter, the step-by-step procedure of using WinBUGS  for using the Markov chain 

Monte Carlo (MCMC) method. Defining and compiling a model, importing the data, 

initializing the model, simulating the model, extracting the parameter statistics are included in 

this chapter. Illustration of each step is also provided for ensuring further insight of the 

software.  

https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
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Chapter 7  

Data Collection and Analysis 

7.1. Introduction 

This chapter includes a detailed description of data collection and data analysis methodology. 

Different models discussed in the previous chapter requires different type of data for calibration 

and validation. This chapter gives the complete description of the data collection methodology 

and the way of analysis. Particularly, the data required for calibrating the overtaking model is 

very sophisticated and requires complex formulation and computer algorithm. This chapter 

gives an extended illustration of the OD model data analysis procedure. Furthermore, the 

novelty of the temporal overlapping matrix and adjacency matrix are explained in this chapter. 

The method of extracting all the required variables for calibrating the model is also revealed in 

this chapter.  

7.2. Data Collection 

7.2.1. Data Collection for Background Modelling  

As part of this thesis, six video dataset are collected from [113]: (1) ‘Office’; (2) ‘Pedestrians’; 

(3) ‘PETS2006’; (4) ‘Highway’; (5) ‘Boat’; and (6) ‘Blizzard’. These videos contain a mixture 

of mild to hard challenges such as gradual to sudden illumination variation, stop and go traffic 

situation, which are similar to the problems that can be addressed through M3 as per chapter 3. 

Among these videos, the first three have been used for model calibration; whereas, the rest 

have been used for validation purpose. 

 

 

(a) ‘Office’ 

 

(b) ‘Pedestrians’ 

 

(c) ‘PETS2006’ 

 

(d) ‘Highway’ 

 

(e) ‘Boat’ 

 

(f) ‘Blizzard’ 

Figure 7.1 Traffic dataset. 
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7.2.2. Data Collection for Real-Time Traffic Measurement 

Three different locations in Dhaka city are chosen to validate the flow measurement 

methodology incorporated within PARTS. These locations comprise of different roadway and 

traffic characteristics. Specifically, the first location is an urban signalized intersection 

containing heterogeneous motorized and non-motorized vehicles. Moreover, due to traffic 

signal, vehicles need to stop periodically causing background pollution. This problem is 

handled efficiently by incorporating pollution controlling parameters as illustrated in the 

Background Estimation Module. The next location is a 4-lane urban arterial link. It contains 

high speed uninterrupted motorized vehicles, where passenger cars are dominant. The video 

captured for this location contains sudden and gradual illumination variation. This allows 

analyzing the accuracy of incorporating luminance controlling parameters in background 

modeling.  The third location is a rural highway containing high speed uninterrupted vehicles. 

However, in contrast to the other two locations, it comprises of mostly large bus and trucks. 

This imposes another challenge, i.e., occlusion problem due to the presence of large vehicles 

in the field of vision (FOV). Among these locations, traffic movements in the urban intersection 

and arterial link shows poor lane discipline.  

 
(a) Urban Intersection 

 
(b) Urban Arterial 

 
(c) Rural Highway 

Figure 7.2 Traffic measurement dataset. 

Two hours videos have been captured in each of the locations. The mounting height of the 

cameras is at least 20ft and their angle is less than 45 degrees to reduce detecting the object 

details. For the same period, ground truth data (speed and flow) has also been collected from 

the video through manual post-processing. For ground truth and PARTS-based speed 

measurement, a strip of 88ft is chosen within the FOV. For camera calibration, distances of 

field lane markings are collected and provided into the User Input Module. 

7.2.3. Data Collection for Crash Probability Estimation 

In this study, a 2.5 hour video was captured from a two-lane undivided rural highway 

containing high speed uninterrupted vehicles. To avoid detailed object detection, the mounting 
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height of the cameras was kept at 20ft and their angle was less than 45 degrees. The video 

contained gradual to sudden illumination variation, vehicular shadows and small camera jitter 

due to wind.  

 
Figure 7.3 Dataset for crash probability estimation. 

7.4. Data Analysis 

The video was analyzed following the methodology described in subsection 5.3 to detect the 

vehicles. Accordingly, the vehicle trajectories of the detected vehicles were extracted following 

the methodology described in subsection 5.4. Furthermore, vehicle classification was also done 

as per subsection 5.5. It was found that the video contained trajectory information of 2854 

vehicles. Among these trajectories, 771 bus, 428 microbus, 485 car and 1170 freight vehicles 

were detected. This study location had a high crash record of 8922 crashes over the last fifteen 

years. Among these, bus, car, microbus, freight vehicles (truck, semi-trailer and oil tanker) 

accounted for 4054, 652, 747 and 3469 crashes, respectively. It represents that bus and freight 

vehicles are at the top in number of recorded crashes. 

 

The overtaking decisions were obtained automatically for each trajectory considering that a 

driver began to think whether to overtake or not after noticing the lead vehicle. Afterwards, the 

driver entered the opposing traffic lane, when he/she took decision to overtake. Consequently, 

there should be adequate gap between vehicles of the opposing traffic during overtaking. For 

the specific experiment, each opposing traffic gap represented overtaking chance, which ended 

by the time the opposing vehicle passed by the subject vehicle, while a new chance for 

overtaking began. Each time, the decision for accepting gap and overtaking depended on driver. 

Considering this, successful overtaking attempts were codified with 1 and otherwise 0. Total 
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720 observations were found to be compliant with this consideration and total 82 successful 

overtaking maneuvers were recorded. 

In OD model, eight variables were considered. The variables are: (1) Subject Vehicle Speed (

nV ); (2) Lead vehicle speed ( 1nV  ); (3) Opposing vehicle speed ( kV ); (4) Subject-lead vehicle 

spacing ( | 1n nS  ); (5) Subject-opposing vehicle spacing ( |n kS ); (6) Flow of the stream ( nq ); (7) 

Density of the stream ( n ); and (8) Aggressiveness of the Driver ( n ). 

 

Tactlessly, extracted trajectories from the ‘Data collection’ (subsection 7.2.3) possessed only 

time-space signature of individual vehicle. To calibrate the model following ‘Model calibration 

procedure’, a set of data corresponding to the observed variables were estimated. In this 

purpose, firstly, the trajectories of different vehicles were sorted out into two different types of 

trajectories: (1) Trajectories in current lane; and (2) Trajectories in opposing lane. It was sorted 

considering equation (7.1). 
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Where, 

iT  Trajectory of the i th vehicle 

con
ET   Trajectory of the E th vehicle on the current lane 

op
FT Trajectory of the F th vehicle on the opposing lane 

H  Height of the field of vision 

i N  , {1,2,3,......}N  , i E F   

 

Later, each of the vehicles on the current lane was considered as subject vehicle and its 

corresponding front vehicles were determined. Thus, the temporal overlap matrix ( overlap
ijT ) among 

the trajectories on current lane ( con
ET ) was obtained from equation (7.2). 
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From this, the Subject-Front adjacency matrix ( SFA ) was obtained using equation (7.3). 

Afterwards, Subject-Leader adjacency matrix ( SLA ) was determined using equation (7.4). 

.(1 )overlap
SFA T I                                                                                                                      (7.3) 

 

Where, I  Identity matrix. 

 

12 1

21 2

1 1

0
0

.

0

N

N
SL SF

N NN

t t
t t

A A

t t


 
 
 
 
 
 

                                                                                                   (7.4) 

 

Where, 

 1,  

   =0,otherwise
ij j i ht if t t   

 

it =Entry time of vehicle i  within the scenario 

jt =Entry time of vehicle j  within the scenario 

h  Threshold headway, 3 sec (9)  

 

Similarly, the Subject-Opposing adjacency matrix ( SOA  ) was determined. With the above two 

matrices, the space mean speed matrix for both considered lane ( conV ) and opposing lane (
opV ) 

were determined. Additionally, Subject – Leader spacing matrix ( SLS ) and Subject-Opposing 

spacing matrix ( SOS ) were determined from the spatial signature of the trajectories. All the 

necessary traffic characteristics were obtained from these matrices. Particularly, vectors 

containing the variables nV , 1nV

, kV , 

| 1n nS


 and 
|n kS were obtained from these matrices using 

equations (7.5). 
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                                                                                                                              (7.5) 

Moreover, the flow nq and density n were also determined from the trajectory data for time at 

the entry of each subject vehicle. Additionally, the aggressiveness (41) of the vehicle was 

determined from the following equation (7.6). The equation was calibrated using extracted 
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traffic flow data ( nq , n ). Negative value of aggressiveness indicated aggressive driver and 

vice-versa. 

 | 12

1
n n n n n

n

S V L
V

                                                                                                         (7.6) 

 

Where,   Perception-reaction time, (2.482 sec)  

     nL Average length of vehicle, (12.576m)  

 

Table 7.1 Traffic and driver characteristics while overtaking 

 Car Freight Bus Microbus 

Variables   sd    sd    sd    sd  

nV
(m/s) 27.7 21.632 20.55 19.76 22.14 4.17 25.30 9.02 

1nV  (m/s) 12.12 13.286 13.26 10.38 13.98 2.05 9.03 3.50 

kV
(m/s) 8.14 3.6313 8.29 6.22 7.02 4.80 12.79 0.97 

| 1n nS  (m) 62.33 18.997 58.35 23.67 37.16 16.15 52.94 24.25 

|n kS
(m) 92.09 15.849 85.97 24.46 61.71 13.11 83.88 21.27 

nq
(veh/h) 180 20.56 198 21.21 294.5 37.26 103 43.5 

n (veh/mile) 27.76 6.465 33.61 15.52 62.40 56.87 38.35 19.33 

n  
-0.071 0.005 -0.016 0.004 -0.099 0.003 -0.067 0.001 

 

Table 7.1 shows the traffic and driver characteristics while overtaking extracted from the 

vehicle trajectories. The mean (  ) and standard deviation ( sd ) value of the considered 

variables are represented in this table.  It revealed that car adopted highest speed while 

overtaking; whereas heavy vehicles adopted the lowest one. Moreover, in each case, leader and 

opposing vehicle had less speed than the subject vehicle. The spacing between leader and 

follower also differed with vehicle type. Interestingly, the highest spacing was required for car 

and the lowest was for bus. While overtaking, the gap required between the subject and 

opposing vehicle was in between 60 to 95m. Table 7.1 also illustrates that the overtaking occurs 
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in low traffic density. Ultimately, it can be seen that car and bus drivers were aggressive 

compared to the other two types of vehicles for the study location. 

7.5. Summary 

In this chapter, different types of data for different model is presented. Some data are pictorial 

and some data are traffic measurements obtained from the field as ground truth. The pictorial 

data are mostly used for background model calibration and overtaking model calibration. On 

the other hand, the traffic measurement data is collected to validate the traffic measurement 

module. This measurement data has also been used to see the counting performance of the 

detection module. Particularly, the videos from the field are converted into pictorial data and 

afterwards the object is detected from it. The trajectory of the detected vehicles have been 

extracted accordingly. Using this trajectory, the required data for overtaking modeling is 

obtained.   
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Chapter 8  

Calibration and Validation 

8.1 Introduction 

This chapter presents the calibration and validation of the background model and the overtaking 

model. For calibrating background model the pictorial data from subsection 7.2.1 are used. The 

validation is done using the same data set. First three videos out of six are used for calibration 

and the rest are used validation of the background model.  Both graphical optimization and 

constrained optimization is adopted for calibrating the background model. Field testing of this 

models is also included in this chapter. For validating the performance of the measurement 

tools the data described in subsection 7.2.2 are used. Three videos from three different places 

are used to check the performance of the traffic measurement tool (PARTS) in measuring both 

flow and speed. Ultimately, the final data set as discussed in 7.2.3 are used in calibrating the 

OD mode. This chapter also discusses the calibration procedure of the OD model and 

estimating the optimum parameter values. 

8.2. Calibration and Validation of Background Model 

Model M3 consists of 4 parameters. Among them, two are luminance controlling parameters (

lN , rN ) and the other two are pollution controlling parameters ( c , ir  ). However, while traffic 

segmentation, binary decision needs to be made using Equation (5.27) on the basis of threshold 

which mainly depends on maximum threshold– max . min is considered zero, since the higher 

difference does not need any suppression. Hence, only max  is considered as threshold parameter. 

Therefore, the segmentation needs a total of 5 parameters. Among these, four are for 

background modeling and one for binary decision making. These 5 parameters need to be 

calibrated first to make the model implementable in segmentation. In this context, we have 

collected several video dataset and determined the feasible region graphically for optimization. 

Using these feasible regions, a constrained optimization is conducted. Finally, with the 

calibrated parameters, both qualitative and quantitative analyses are conducted for model 

validation.  

8.1.1. Performance Indicators 

Generally, an algorithm labels a pixel as either positive or negative in a binary decision 

problem, where ‘positive’ and ‘negative’ respectively represent foreground pixel and 
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background pixel. For a given frame in a video sequence, a comparison can be drawn between 

the resultant image and the ground truth image. A pixel is denoted as white when it is a part of 

an object in the foreground, and black when it actually belongs to the background. To quantify 

the classification performance with respect to ground-truth, four basic measures are used, such 

as, (1) true positives (TP): correctly classified foreground pixels; (2) true negatives (TN): 

correctly classified background pixels; (3) false positives (FP): incorrectly classified 

foreground pixels; and (4) false negatives (FN): incorrectly classified background pixels. In 

addition, Precision-Recall curves are good performance indicator providing an optimistic 

appraisal of the classifier’s performance when there is a significant skewness in the class 

distribution [34]. Precision-Recall curves are assembled from the following formulas: 

 Precision PR  = TP
TP FP

and  Recall RE = TP
TP FN

 

Other measures for fitness quantification, in the context of background subtraction techniques, 

were proposed in the literature [36-38], such as, Percentage of Correct Classification (PCC). 

 = TP TNPCC
TP FN FP TN



  
 

8.1.2. Parameter Calibration 

For calibration of the parameters, optimum range is needed to be identified first. In this regard, 

the most feasible regions of the parameters are obtained using graphical optimization. 

Afterwards, using these feasible regions, a constrained optimization is conducted as follows. 

 
8.1.2.1. Graphical optimization 

This section illustrates the methodology of the graphical optimization. It is done by plotting 

the indicator values against the parameter values. It is a 3-dimensional plot from which the 

feasible region of the corresponding parameters can be obtained. The main criterion for this 

optimization is the number of parameters in single plot cannot be greater than 2. Thus, the five 

parameters need to be breakdown into smaller groups. This breakdown is done according to 

the properties of parameters. Among the parameters, luminance controlling parameters ( lN  and

rN ) are for adopting illumination variation. Thus, these parameters are interdependent and 

needs to be grouped into one and optimized in same plot. In contrast, the pollution controlling 

parameters ( c and ir ) are for controlling accumulation of static object into the background 

model. Hence, these parameters are interdependent and needs to be grouped into one and 

optimized into same plot other than above. It should be noted that, illumination variation and 

accumulation of static object are mutually independent phenomena. However, the threshold 
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parameter copes up with the resulted background using both luminance and pollution 

controlling parameters. Thus, the threshold parameter ( max ) is dependent on those parameters. 

Considering this, the feasible regions of interdependent parameters are obtained initially. Using 

the feasible region of the interdependent parameters, the feasible region of dependent parameter 

is obtained afterward. 

Using the first three videos (Figure 7.1(a-c)) along with their corresponding ground truth, 

performance indicators (Precision and Recall) are obtained for different combination of 

luminance controlling parameters ( lN  and rN ). For convenience, normalized values of lN and 

rN are used in Figure 8.1(a) which shows the feasible region of luminance controlling 

parameters. The indicator values are plotted against lN  and rN  to find the feasible region. The 

precision and recall values are being maximized within the feasible region at the same time. 

The feasible region entails that lower value of both rN  and lN are required for accurate traffic 

segmentation. Particularly, the lower value of rN  and lN  are needed to capture the background 

dynamics such as gradual and sudden illumination variation.  

On the other hand, the performance indicators are also obtained for different combination of 

pollution controlling parameters ( c and ir  ). For convenience, normalized values of c and ir

are used in Figure 8.1(b) which shows the feasible region of pollution controlling parameters. 

Likewise, the indicator values are plotted against c  and ir  to find the feasible region. And 

similarly, the precision and recall values are being maximized within the feasible region at the 

same time. The feasible region entails that lower value of both c  and ir  are required for 

reducing pollution during background estimation. Particularly, the lower value of c  and ir  are 

needed to retard the accumulation of traffic pixels into the estimated background. 

 

(a) Luminance controlling parameters 

 

(b) Pollution controlling parameters 

Figure 8.1 Parameters optimization. 
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Figure 8.2 Optimum threshold for optimum luminance and pollution controlling parameters.  

 
The region of optimum precision and recall for threshold parameter can be obtained by using 

various combinations of the boundary values from these two figures. Using the boundary 

values of Figure 8.1(a) and Figure 8.1(b), 24 parameter sets have been established having 

values of {0,0.5}c  , {0,0.2}ir  , {0.1,0.2,0.3}lN  {0.1,0.2}rN   covering all possible 

combinations.  

Ultimately, using these values, graphical optimization to find the feasible region for the 

threshold is conducted. This optimization has been done by precision recall analysis. In total 

48 curves (24 precision-threshold and 24 recall-threshold curves) have been plotted in Figure 

8.2 to obtain the feasible region where lies the optimum threshold value. The upper and lower 

boundary of the parameter set has been marked with darker thick curves. The figure shows that 

the lower boundaries cause minimum precision and recall value; whereas the upper boundary 

causes maximum precision and recall value. On the other hand, if the model parameters are 

changed as per the boundary values which are maximum, precision and recall both values 

maximizes.  The shaded region in Figure 8.2 entails the optimum range of threshold parameter 

wich is in between 24 and 56. Moreover, it has two triangular regions within it. Although, the 

first one is smaller and one of its corner defines the lowest value for the threshold, the second 
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one is biggest and one of its corner defines the maximum threshold can be used for vehicle 

segmentation. If very small threshold value is used, it makes the detection anomalous by 

considering noises as foreground by increasing the false positive rate. On the other hand, very 

higher value of threshold makes the detection anomalous by suppressing the necessary objects. 

Thus it increases false negative rate. Finally, the range of optimum threshold is obtained. 

 

8.1.2.2. Constrained optimization 

The feasible regions obtained from the previous section entails the upper and lower boundary 

of the constrained optimization. This constrained optimization is done to find the precise value 

of the parameters. To find the optimum parameters, Equation (8.1) is used, 

   
1 11min

N

i n
PR RE

N
 



                                                                                                              (8.1) 

 
 
Such that, 
0 0.5c       
0 0.2ir       
0.1 0.3lN      
0.1 0.2rN   
24 56 

 Optimizing Equation (8.1), the calibrated values has been obtained. The value: 425lN  ,

255,rN  120c  0.1ir  and max 25.56  . Apart from the optimized values, it is necessary to 

evaluate the sensitivity of the parameters deviating from calibrated values. The sensitivity is 

dependent of the rate of change of the performance measure with changing parameter values. 

To observe the sensitivity, Figure 8.3 is generated using parameters. Both precision and recall 

is considered as performance indicator. It can be seen from the figure that the most sensitive 

parameter of the model is the threshold parameter max . It concludes that while calibrating the 

threshold parameter have to be chosen very carefully. 
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Figure 8.3 The effect of normalized parameter on performance indicator considering 

[0, 255]c  , [0,1]ir  , [0,1700]rN  , [0,1700]lN   and max [0,3000]  . 

8.1.3. Validation 

Using calibrated parameter values, the binary images of the validation dataset have been 

obtained and presented in Table 8.1. The detected objects have been marked white pixels. The 

table shows the qualitative analysis result for a single frame and quantitative analysis result 

shows the average performance indicator of all the frames for a certain video.  

Table 8.1 Foreground segmentation using optimized parameters. 

 Qualitative analysis Quantitative analysis 

 Actual Image Ground Truth Model Output Precision Recall PCC 

Highway 

   

0.9269 0.9575 0.9891 

Boats 
 

 

  
0.8335 0.9928 0.9567 

Blizzard 

   

0.9651 0.9275 0.9820 
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The qualitative analysis consists of the actual, ground truth and model output binary image. 

The model output is generated by using M3 and the calibrated parameters. It shows that, model 

M3 outperforms in vehicle detection in all the situation. However, in ‘Boat’ sequence there are 

some false positive pixels. It is due to the river dynamics which is not properly captured by the 

model. On the other hand, ‘Blizzard’ shows some false negative pixels. Camouflage is the main 

reason behind this error.  The quantitative analysis shows that it has achieved 90% precision, 

96% recall and 98% PCC value. It also shows that the precision value decreases due to increase 

in false positive pixels for ‘Boats’ video and recall value decreases due to false negative pixels 

in ‘Blizzard’ video. 

8.2. Field Testing of Model M3 

Three different locations in Dhaka city are chosen to assess the performance of model M3. The 

data collection time at each location was chosen to cover the peak and off-peak period 

characteristics of the traffic stream. These locations comprise of different roadway and traffic 

characteristics. Specifically, the first location is an urban signalized intersection containing 

heterogeneous motorized and non-motorized vehicles. Moreover, due to traffic signal, vehicles 

need to stop periodically causing background pollution. This problem is handled efficiently by 

incorporating pollution controlling parameters as illustrated in the M3. The next location is a 

4-lane urban arterial link. It contains high speed uninterrupted motorized vehicles only, where 

passenger cars are dominant. The video captured for this location contains sudden and gradual 

illumination variation. This allows analyzing the accuracy of incorporating luminance 

controlling parameters in background modeling. The third location is a two-lane rural highway 

containing high speed uninterrupted vehicles. However, in contrast to the other two locations, 

it comprises of mostly large bus and trucks. This imposes another challenge, i.e., occlusion 

problem due to the presence of large vehicles in the field of vision (FOV). Among these 

locations, traffic movements in the urban intersection and arterial link shows poor lane 

discipline. The mounting height of the cameras is at least 20ft and their angle is less than 45 

degrees to reduce detecting the object details. For the same period, ground truth count data has 

also been collected from the video through manual post-processing.  

Using these collected videos, model M3 has been utilized to produce binary image 

incorporating the calibrated parameter values optimized in subsection 8.1.2.2. Furthermore, 

disk shaped morphological operations (dilation and erosion) are used to improve the quality of 

the binary image. Afterwards, blob analysis has been applied on the improved binary image to 
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obtain the estimated count. Using this estimated count, three measure of performance such as 

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Average 

Accuracy of Object Count (AAOC) is determined applying the following formulae.  
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Where, 
G
iN  Ground truth count for ith sample 

3M
iN  Estimated count obtained using M3 for ith sample 

N Number of total sample 
3 0G M

i iN N   

Small values of MAE and MAPE and big values of AAOC are considered as better result.  

Figure 8.4 shows that for all dataset, result obtained using M3 is in harmony with the ground 

truth. The MAE values are 2.48, 2.01, 9.77 vehicle/minute and MAPE values are 13%, 18% 

and 25% for urban arterial, rural highway and urban intersection dataset respectively. Both 

MAE and MAPE value are minimum for urban arterial dataset and maximum for urban 

intersection dataset. 

 

Figure 8.4 Field testing of M3 in different locations. 

The main reason behind it is the presence of large and small vehicles in the urban intersection 

dataset. Specifically, small vehicles like motorcycles and bicycles are eroded by the 

morphological operations, which ultimately reduces the estimated count. Whereas, the other 

two locations contain fewer number of small vehicles. The analysis also shows that the model 

achieves 93% AAOC in morning peak period, which represent its robustness in traffic 

detection. 
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8.3. Field Testing of PARTS 

Global parameters set is obtained by precision-recall analysis over different videos available 

in the Change Detection Challenge dataset (74). Specifically,
iN =100, 

c =0.1, 
ir =0.01, 

lN

=0.05, 
rN =0.2, 

min =1, 
max =25, 

s =0.5 yield maximum precision-recall values and are used 

as required parameters for different modules of PARTS. The above dataset contains all the 

challenges that the vehicle detection methodology of this paper addresses and provides ground 

truth binary images necessary for precision-recall analysis. Note that, the above data set has 

also been used to estimate optimal parameters required for vehicle detection methodology as 

proposed in (114, 115, 116, 117 and 118).   

In addition to the above parameters, two segments for speed measurement is considered in the 

User Input module (see Figure 4.3(b)). Figure 8.5 shows the performance of PARTS for 

measuring flow and speed at different locations considered in this study. In that figure, ±10 

vehicles and ±3 km/h error lines are established for vehicle count and speed validation 

respectively.  

Figures 8.5 (a), (c) and (e) show qualitative evaluation of PARTS-based flow measurement and 

ground truth. These figures illustrate that most of the points are within the area enclosed by the 

error lines. However, some data points fall outside the above area representing differences 

larger than 10 vehicles. Among them, Figure 8.5(a) shows more points outside the area 

compared to the other two. In contrast, Figures 8.5 (b), (d) and (f) show the qualitative 

evaluation of the PARTS-based speed measurement and ground truth. These figures illustrate 

that nearly all the points are within the area enclosed by the error lines. This represents the 

closeness of the PARTS-based speed measurement to the ground truth differing by less than 3 

km/h.   

Furthermore, quantitative analysis, i.e., two tailed t- test is performed to confirm whether there 

is any significant difference between the ground truth and PARTS-based measurements. In this 

context, the null hypothesis assumes that the mean of ground truth and PARTS-based 

measurement is same as presented in Table 8.2 (a) and (b). Both the tables show that the t-

values for PARTS-based speed and flow measurements in all the locations are less than t-

critical value at 95% confidence level. It results in accepting the null hypothesis. This in turn 

indicates that the differences in the mean of ground truth and PARTS-based measurements are 

not significant.  
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Figure 8.5 Performance evaluation of PARTS-based flow and speed measurement at different 
locations; (a)-(b) Urban intersection; (c)-(d) Urban arterial link; and (e)-(f) Rural highway. 

Table 8.2(a) and (b) show that Pearson Correlations for the three study locations are 0.89, 0.96, 

and 0.83 in measuring flow; whereas 0.97, 0.97, 0.98 in measuring speed respectively. Hence, 

graphical and statistical analyses show that PARTS produces better results for the rural 

highway and urban arterial link compared to the urban intersection. The main reason behind it 
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is the presence of large and small vehicles in the intersection. Specifically, small vehicles like 

motorcycles and bicycles are eroded by the morphological operations, which ultimately 

produce small inflow waves in Flow Measurement Module. Small inflow waves are rounded 

towards zero for obtaining integer number of vehicles. Whereas, the other two locations contain 

fewer number of small vehicles. Interestingly, the analyses show that PARTS provide similar 

accuracy in speed measurement regardless of the locations. Speed measurement only considers 

aggregated differential centroid movement; hence, error due to erosion of small vehicles is 

minimized. 

Table 8.2 Statistical evaluation of PARTS-based measurement with respect to ground truth. 

(a) Flow (vehicle/min) 

 Urban Intersection Urban Arterial Link Rural Highway 

  PARTS Ground 

truth 

PARTS Ground 

truth 

PARTS Ground 

truth 

Mean 53.059 53.019 19.235 18.977 10.103 10.517 
Variance 387.256 523.539 30.136 31.022 22.396 25.903 
Observations 120 120 120 120 120 120 
Pearson 

Correlation 

0.827 0.955 0.888 

Hypothesized 

Mean Difference 

0 0 0 

df 119 119 119 
t 0.021 1.479 -1.649 
P(T<=t) one-tail 0.491 0.071 0.051 
t Critical one-tail 1.657 1.657 1.657 
P(T<=t) two-tail 0.982 0.142 0.102 
t Critical two-tail 1.980 1.980 1.980  

 

(b) Speed(Km/h) 

 Urban Intersection Urban Arterial Link Rural Highway 

  PARTS Ground 

truth 

PARTS Ground 

truth 

PARTS Ground 

truth 

Mean 10.590 10.332 22.351 22.441 24.740 24.841 
Variance 27.873 30.212 62.870 68.041 17.233 18.844 
Observations 120 120 120 120 120 120 
Pearson 

Correlation 
0.980 0.971 0.970 

Hypothesized 

Mean Difference 
0 0 0 

df 119 119 119 
t 1.720 -0.510 -1.246 
P(T<=t) one-tail 0.045 0.305 0.107 
t Critical one-tail 1.657 1.657 1.657 
P(T<=t) two-tail 0.091 0.610 0.214 
t Critical two-tail 1.980 1.980 1.980 
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8.4. Model Calibration Procedure 

The parameter values in equation (5.18) should be known prior to the crash estimation. Thus, 

calibration of the parameters is required. The value of I depends on the type of overtaking and 

can be determined from equation (8.2), 
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              (8.2) 

 

 

The value of w can be obtained from the following equation, 
N
Nsw e



                                                                                                                                          (8.3) 

Where, 

 N Number of crashes occurred within a certain period on the considered road. 

sN Number of crashes occurred within the same period on the highest accident-prone road.  

However, the calibration of the OD model parameters  ,   needs different procedure. The 

model parameters (  | ,    ) are calibrated using Metropolis-Hastings algorithm. The 

algorithm is summarized by the following steps: 

1. Set initials values  0  

2. For 1,.........,t T , repeat the following steps 

a. Set  1t
 


  

b. For 1,.........,j d  

i. Generate new candidate parameter values from a proposal distribution. 

ii. Calculate 
   
   

\ \

\ \

' '

'

| , | ,
min 1,

| , | ,

j j j j j

j j j j j

f y q

f y q

    


    

 
 
 
 

 

Where, \ j is the vector  excluding its j th component j  

iii. Update '
j j  with probability   

c. Set  t   

When the iterations are completed, the calibrated parameters are obtained. 
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8.5. Summary 

In this chapter, calibration and validation of all the models using different data set are 

presented. Calibration of the background model is done using both graphical and constrained 

optimization of the parameters. However, the boundary values are calculated from the 

graphical calibration. Then the background model is tested for object detection and taking 

traffic measurements. The field testing of PARTS is also included in this chapter. Ultimately, 

this chapter presents the model calibration procedure using Metropolis-Hastings algorithm. 
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Chapter 9  

Results and Discussion 

9.1. Introduction 

This chapter includes a detailed analysis over the compiled data. Initially the correlation among 

the variables are revealed. Afterwards, the data has been fitted into newly proposed model and 

the performance of the models have been compared. Ultimately, this chapter ends with 

providing nomographs for estimating the crash probability of an overtaking vehicle. 

9.2. Correlation among the parameters 

The correlation matrix of the concerned parameters is presented in Table 9.1. Table 9.1 shows 

the interrelation among the variables. The absolute correlation value which are greater than 0.1 

are marked with bold font. This analysis shows that leader vehicle speed invokes the subject 

vehicle to accelerate. Leader-subject vehicle spacing also affects the opposing-subject vehicle 

spacing. Ultimately, the table shows that overtaking decision is correlated with almost all the 

vehicles except the opposing vehicle spacing. 

 
Table 9.1 Correlation among the considered variable 

  
nV

(m/s) 

1nV 

(m/s) 

kV
(m/s) | 1n nS  (m) 

|n kS
(m) 

nq
(veh/h) 

n
(veh/mile) n  OD  

nV
(m/s) 

1.000         

1nV  (m/s) 
0.179 1.000        

kV
(m/s) 

-0.055 -0.010 1.000       

| 1n nS  (m) 
0.019 0.069 0.006 1.000      

|n kS
(m) 

0.001 0.051 -0.097 0.901 1.000     

nq
(veh/h) 

-0.046 -0.112 0.087 -0.064 -0.046 1.000    

n
(veh/mile) 

0.086 -0.097 -0.061 -0.607 -0.525 0.045 1.000   

n  
-0.123 -0.073 0.037 0.488 0.438 -0.039 -0.307 1.000  

OD  
0.207 -0.143 -0.055 0.262 0.260 -0.185 -0.202 -0.012 1.000 
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Table 9.2 shows the calibrated values of the parameters for all vehicles using Metropolis-

Hastings algorithm. The results of the model showed very interesting and significant 

conclusions. It was found that the increase in subject vehicle speed also increased the 

probability of overtaking due to increasing speed difference with the leading vehicle. 

Conversely, if the speed of the leading vehicle speed increased, the probability of overtaking 

decreased. Because, increase in speed of the leading vehicle caused more difficulty to complete 

the overtaking maneuver. Thus, the overtaking probability increased with the speed difference 

between the subject vehicle speed and lead vehicle speed. It also comprised with the findings 

in (18).  On the contrary, the probability of overtaking decreased for increasing speed of the 

opposing vehicle. Higher speed of the opposing vehicle caused the subject-opposing gap to 

decrease more quickly making overtaking difficult. Moreover, the higher the spacing between 

the leading and subject vehicle, the lower the overtaking tendency could be found. Studies (18, 

21) also shown same tendency, when following gap decreased. It revealed that the subject 

vehicle usually overtook, when it came closer to leading vehicle. Oppositely, if the spacing 

between subject and opposing vehicle increased the overtaking probability increased, as larger 

passing gaps increased the chances of overtaking.  With the increment of traffic density, the 

probability of overtake decreased. This is because of larger passing gaps that were available in 

lower traffic volumes and consequently, the overtaking chances were larger. Finally, increase 

in aggressiveness also increased the probability of overtaking. 

 

The two-tailed t-stat of the coefficients revealed that all the variables were significant at 95% 

confidence interval except the constant term, as those were greater than the t-critical (1.96) 

value. Since the constant term was insignificant, it indicated that the considered variables were 

well enough to describe the overtaking phenomena. Thus, the effects of the unobserved 

variables were very small.    

 

In Table 3, the variables are also ranked on the basis of their magnitude of the exponent. The 

higher the exponent, the higher the effect of the variable. If the exponent of a variable was close 

to zero, the change in variable would affect the overtaking probability slightly. On the other 

hand, if the value was away from zero, the effect of the variable increased. It could be seen that 

the subject vehicle speed and subject-opposing spacing had the higher exponent value. It 

demonstrated that they have greater effect than the other variables considered in this study. In 

contrast, the opposing vehicle speed had very low impact on the model. It was due to the fact 
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that the driver could not accurately estimate the opposing vehicle speed using his/her vision 

only. 

 

Table 9.2 Values of the calibrated parameters ( ,  ). 
           

Variables   sd  t-stat    sd  t-stat Rank 

Const. -0.820 5.599 -1.562  1    

nV  0.122 1.101 1.958  0.95 0.072 230.31 2 

1nV   -0.313 2.474 -2.214  0.8812 0.079 194.72 3 

kV  -0.011 0.0963 1.998  0.189 0.163 20.17 8 

| 1n nS   -0.527 1.404 -6.570  0.7145 0.126 98.80 5 

|n kS  0.046 0.1631 5.036  0.9667 0.290 58.21 1 

nq  
-0.144 0.0699 

-
36.184  0.313 0.166 32.97 

6 

n  
-8.572 6.142 

-
24.415  0.256 0.207 21.56 

7 

n  39.271 17.06 40.268  0.7259 0.069 183.40 4 

log L  -43.031        
2  0.662        

 
Figure 9.1 shows the overtaking probability for different variables and different vehicle types. 

It illustrated the change in overtaking probability with the increase in different explanatory 

variables. The probability for each vehicle types was plotted. It revealed that the curves were 

following the sign of the coefficients presented in Table 9.2. The interesting finding was that 

among different types of vehicle, bus possessed greater potential of overtaking. Furthermore, 

bus and freight vehicles were top in terms of aggressiveness. This information explained behind 

the highest accidents records for bus and freight vehicles in the study location.  

 

Furthermore, trajectories of different vehicles types were chosen to analyze their individual 

crash probability. The value of   was considered to be unity, which balanced the importance 
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on the overtaking probability of the front vehicles. Value greater than unity emphasized on the 

probability of the front vehicles and value less than unity underestimated it.  Using these 

trajectories and incorporating equation (5.18), the crash probability for different vehicle types 

were estimated.  The values of maximum crash probability for different vehicles were 0.57, 

0.43, 0.35 and 0.25 for bus, freight, car and microbus, respectively, which matched with the 

accident records presented in ‘Data collection’ section. 

 

For greater understanding, the change in crash probability with time is illustrated in Figure 

9.1(i). It showed that during pre-overtaking period, the crash probability was low, as the TTC 

was not activated yet. The left regime was showing the crash probability if and only if the 

vehicle overtook. However, in the mid regime, when the vehicle overtook, the TTC activated 

and it was clear that the crash probability increased with the shortening of TTC. Ultimately, 

the vehicle came back to its destined lane, when the overtaking maneuver was finished and the 

probability decreased. It should be noted that the vehicle came back to the previous lane 

keeping a safe distance between the overtaking vehicles. Nearer than this safe distance, further 

overtaking was difficult. Additionally, the gap between the subject and opposing vehicle 

decreased. According to Table 9.2, the probability of overtaking also decreased as the gap 

decreased. Thus, there was very low chance to overtake.  

 

 

(a) Subject Vehicle 
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(b) Leading vehicle 

 

 

(c) Opposing Vehicle 
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(d) Subject-Leading spacing 

 

 

(e) Subject-Opposing spacing 
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(f) Flow 

 

 

(g) Density 
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(h) Aggressiveness 

 

(i) Temporal change in crash probability while overtaking 

Figure 9.1 Change in probability with explanatory variables. 

9.3. Chart for Practical Use 

To increase the applicability of the developed models, nomographs were established. 

Nomograph for both OD model and the CP model are provided in Figure 9.2. Figure 9.2(a) 
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represents the nomograph for OD model, which was developed using equation (5.11). In this 

nomogrpah, the values of the variables were labeled in the right and corresponding output was 

on the left of a particular scale. Total eight scales were provided for eight variables. The output 

iO  corresponding to all the variables ioX  were obtained from Figure 9.2 (a). The signs (+ve or 

–ve) were obtained from the direction indicated on the scale. Inward direction represented 

positive and outward represented negative. For example, if the subject vehicle speed was 15 

m/s, the corresponding output would be +1.6. In contrast, if the leading vehicle speed was 

10m/s, the corresponding output would be -2.38. In this way, all the iO  corresponding to ioX  

was determined.  Considering the signs, 
1

n

i
i

O


 was determined, and the  was transferred 

to the chart on the right of Figure 9.2 (a). Finally, the probability   Pr 1| ioOD X

corresponding to the summed value was obtained. Additionally, Figure 9.2(b) represented the 

nomograph for CP model. Crash probability   | |Pr |t t t
n k n kC TTC  while overtaking against 

different TTC was obtained from equation (5.17), which was plotted for different w  value in 

this nomograph.  These values obtained from Figure 9.2(a) and 9.2(b) was inserted into 

equation (5.16) to find the crash probability  |Prt t
n kC  due to overtaking. 

 

 

(a) Overtaking Probability 
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(b) Crash probability 

Figure 9.2 Nomographs. 

 

 

9.4. Summary 

In this chapter, the correlation among the variables in overtaking model is discussed. It has 

been seen that subject vehicle speed, lead vehicle speed, lead and opposite vehicle spacing, 

aggressiveness of the subject vehicle are highly correlated with the overtaking incident. These 

variable are also found to have significant impact on the overtaking model. Ultimately, for 

practical use two nomographs has been included in the end of the chapter. These nomographs 

will make finding the crash probability of an individual vehicle easily.  
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Chapter 10  

Conclusion and Recommendations 

10.1. Concluding Remarks 

This study investigated the crash probability of different types of vehicle from vehicle 

trajectory. The crash probability of individual vehicle considered the overtaking probability of 

subject vehicle as well as the overtaking probability of leading vehicle. However, the 

overtaking probability of leading vehicle was modified using an importance factor which 

considered the type of overtaking (normal/flying/piggyback). This overtaking probability 

model included eight variables. Particularly, a nonlinear random parameter multivariate binary 

logistic regression model was developed depending on the characteristics of those variables. 

This model considered normal distribution of the model parameters. Moreover, a new TTC 

formulation was provided considering the dynamic acceleration of the subject vehicle. 

Therefore, incorporating both overtaking decision model and TTC formulation, a new crash 

probability estimation model was proposed. The novelty of the model lied in the consideration 

of crash frequency. Video from two-lane undivided highway was collected using a mounted 

camera. Vehicles were detected using background subtraction technique and vehicle 

trajectories were obtained from Kalman filter. The trajectories were compiled into model 

compatible samples. Using these samples, firstly, the overtaking decision model was calibrated 

using Metropolis-Hastings algorithm.   Analysis shown that the proposed model achieved 0.66 

McFaddens’ 2 value. It represented good fit of the model within the data. Furthermore, the 

constant term of the model was found to be insignificant, which indicated that the effects of 

the unobserved variables were insignificant. Thus, the considered variables were adequate to 

express the overtaking decision. Moreover, the exponents of the corresponding variable helped 

to investigate the impact of the variables. The variables were ranked according to their 

exponent. It was found that, subject vehicle speed and subject-opposing vehicle spacing had 

more impact on the model compared to other variables. Finally, crash probability for different 

types of vehicles was estimated using the CP model. It showed that bus and freight vehicle had 

higher crash risk compared to other vehicles for the study location. Moreover, nomographs 

were developed to ease of crash probability estimation for practitioners. Main conclusions from 

this research are summarized chapter-wise below. 
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Chapter 2 gives an overview of the recent studies regarding the overtaking models, time-to-

collision, background modeling, vehicle detection and vehicle trajectory. It is evident that most 

of the studies use simulated data for modeling the overtaking phenomena. Besides, the 

overtaking behavior modeling related studies focus either on explaining the influencing 

variables or simulating the decision. Thus, they haven’t found the risk involved within 

overtaking maneuver. Moreover, the overtaking models for different vehicle types are still 

unexplored. Conversely, the traditional formulation of TTC considers only the spacing and the 

speed differential between the vehicles. It does not consider dynamic accretion of vehicles, 

which leads to over estimation of TTC. Consequently, the use of traditional TTC decreases the 

safety. Moreover, it is also evident that vehicle detection is the most convenient procedure for 

traffic measurement. On the other hand, background subtraction has become a popular 

technique in vehicle detection. However, it suffers from various visual challenges and very few 

researches have solved them individually and at the same time. Moreover, no such system has 

been developed to monitor real-time traffic flow in non-lane-based traffic stream. From the 

literature survey, it has been revealed that none of the above background model gives any 

explicit solution to illumination variation while traffic detection. Moreover, now-a-days 

various State-of-Art vision based tracking methods have become easily accessible. An object 

tracking method based on Kalman filter was proposed, which is able to ensure an efficient and 

robust tracking with merge and split of multi-object. The coordinate from tracking can be 

interpreted as object’s trajectory. There have been varied approaches to handle the trajectory 

of moving objects analysis based on video and some solutions have already been proposed. 

 

Chapter 3 mainly focuses on developing an efficient background model to use in background 

subtraction technique while vehicle detection. Background subtraction is a very common 

approach in vision based traffic detection. However, an accurate background is needed to 

classify the foreground correctly. Unfortunately, it is difficult to get such background as it is 

not static and it is occupied with objects most of the time. Thus, the necessity of accurate 

background modeling emerges for accurate traffic detection. In this chapter, an efficient 

background model has been derived. In this context, three theorems were proposed to define 

different components of an image, which ultimately differentiates background and foreground. 

The theorems brought out three important properties of pixels in images. The first theorem 

entails that, background and foreground have different nature of occurrence. The second one 

denies co-existence of two types of pixels in a same time-space. Finally, the image was 

expressed as matrix summation of background and foreground using the third theorem. 
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Moreover, incorporating these theorems and considering first-order model for illumination 

variation along with the Fourier transformation for traffic arrival patterns, the background and 

foreground were defined. These definitions fueled the formulation of the problem, where the 

concept of static background is utilized. As a solution to this problem, successively three 

dynamic background models were developed; however, the first model cannot capture 

illumination variation to the full extent and the second model causes severe accumulation 

problem due to lack in available frames for dynamic background estimation. Hence, the third 

model was developed to overcome the limitations of the previous ones which became possible 

because of incorporating 2 types of parameters: (1) Luminance controlling parameters; and (2) 

Pollution controlling parameters. Luminance controlling parameters capture the illumination 

variation; whereas the pollution controlling parameters retard the model pollution due to 

accumulation of traffic into the background. Besides, a new per pixel binary threshold model 

related to the final model was developed for the foreground segmentation. It uses a linear 

relationship between threshold and distance matrix to find per pixel threshold. Although this 

threshold model contains two parameters, one of them is significant while making binary 

decision. 

 

Chapter 4 presents a new methodology for traffic measurement using video sensors. PARTS 

(Pixel Based Heterogeneous Traffic Measurement), a user-friendly tool that incorporates the 

proposed methodology, has been developed to facilitate real-time traffic measurement.  This 

tool is capable of providing accurate and informative traffic measurements under different road 

and traffic characteristics. Particularly, the incorporation of luminance and pollution control 

parameters result in accurate background estimation. Whereas, the new heuristic dynamic 

threshold-difference function for determining per pixel threshold results in accurate foreground 

segmentation. Moreover, shadow is removed considering its physical characteristics by the 

PNS (Positive Negative Segmentation) technique. Ultimately, the concepts of impulse flow 

wave and segment based speed measurement have contributed to the accuracy in measuring 

flow and speed respectively.  This chapter also includes the description of user-friendly 

software interface developed for extracting data using the methodology illustrated in this 

chapter. 

 

Chapter 5 is the most important part of this thesis. In this chapter, the methodology of 

estimating crash probability from vehicle trajectory has been presented. A model is developed 

that estimates head-on crash probability for classified vehicle trajectory. Nonlinear random 
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parameter multivariate binary logistic regression is used to model drivers’ overtaking decision. 

On the other hand, a new formulation of TTC is proposed that considered the dynamic 

acceleration of the subject vehicle. For model calibration and real-time crash probability 

estimation, vision based trajectories were exploited. Finally, the conjugation of OD model and 

TTC formulation gave the classified crash probability. 

 

Chapter 6 provides step-by-step procedure of handling WinBUGS  for applying the Markov 

chain Monte Carlo (MCMC) method. Defining and compiling a model, importing the data, 

initializing the model, simulating the model, extracting the parameter statistics are included in 

this chapter. Illustration of each step is also provided for ensuring further insight of the 

software. 

 

Chapter 7 presents different types of data collected for this thesis work. The data have been 

sorted into three types. In the first one six video dataset are collected: (1) ‘Office’; (2) 

‘Pedestrians’; (3) ‘PETS2006’; (4) ‘Highway’; (5) ‘Boat’; and (6) ‘Blizzard’. These videos 

contain a mixture of mild to hard challenges such as gradual to sudden illumination variation, 

stop and go traffic situation, which are similar to the problems that can be addressed through 

M3. In the second one, three different locations in Dhaka city are chosen to validate the flow 

measurement methodology incorporated within PARTS. These locations comprise of different 

roadway and traffic characteristics. Specifically, the first location is an urban signalized 

intersection containing heterogeneous motorized and non-motorized vehicles. The next 

location is a 4-lane urban arterial link. It contains high speed uninterrupted motorized vehicles, 

where passenger cars are dominant. The third location is a two-lane rural highway containing 

high speed uninterrupted vehicles. However, in contrast to the other two locations, it comprises 

of mostly large bus and trucks. Two hours videos have been captured in each of the locations. 

The mounting height of the cameras is at least 20ft and their angle is less than 45 degrees to 

reduce detecting the object details. For the same period, ground truth data (speed and flow) has 

also been collected from the video through manual post-processing. For ground truth and 

PARTS-based speed measurement, a strip of 88ft is chosen within the FOV. In the third, a 2.5 

hour video is captured from a two-lane undivided rural highway containing high speed 

uninterrupted vehicles. To avoid detailed object detection, the mounting height of the cameras 

is kept at 20ft and their angle was less than 45 degrees. The video contains gradual to sudden 

illumination variation, vehicular shadows and small camera jitter due to wind. 

 

https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
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Chapter 8 illustrates the calibration and validation of all the newly proposed models discussed 

in this thesis. Calibration of the background model is done using constrained optimization of 

the parameters. However, the boundary values are calculated from the graphical calibration. 

Using these calibrated parameters, the model was validated using different video dataset. The 

validation result shows that, the model output is representative of ground truth yielding more 

than 95% PCC value and 90% precision-recall value. It was also evident from the result that 

the main limitation of this model is not being able to capture the background dynamics as 

observed in ‘Boats’ due to flowing water and camouflage as observed in ‘Blizzard’ where both 

vehicle and pavement were covered with snow. However, field test shows that the model 

achieves 93% AAOC in morning peak period, which represent its robustness in traffic 

detection. Afterwards the background model is tested for traffic measurements using PARTS. 

This tool is capable of providing accurate and informative traffic measurements under different 

road and traffic characteristics.  Specifically, the tool provides more than 95% Pearson 

correlation values for speed measurement at all the study locations. Whereas, this value is 

around 90% in case of flow measurement. Moreover, among the study locations, analyses show 

that PARTS produces better results in case of the rural highway and urban arterial link 

compared to the urban intersection. Although the correlation for flow measurement in urban 

intersection is somewhat lower, it is quite satisfactory. The main reason behind lower 

correlation is erosion of small vehicles that are present in the intersection by the morphological 

operations (i.e. dilation and erosion). On the other hand, speed measurement is not impaired by 

the presence of small vehicles as PARTS considers only aggregated differential centroid 

movement.  Ultimately, this chapter presents the model calibration procedure using Metropolis-

Hastings algorithm. Table 9.2 shows the calibrated values of the parameters for all vehicles 

using Metropolis-Hastings algorithm. The results of the model showed very interesting and 

significant conclusions which can be summarized below: 

(1) It was found that the increase in subject vehicle speed also increased the probability of 

overtaking due to increasing speed difference with the leading vehicle.  

(2) If the speed of the leading vehicle speed increased, the probability of overtaking decreased. 

Because, increase in speed of the leading vehicle caused more difficulty to complete the 

overtaking maneuver.  

(3) The overtaking probability increased with the speed difference between the subject vehicle 

speed and lead vehicle speed. It also comprised with the findings in (18).   
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(4) The probability of overtaking decreased for increasing speed of the opposing vehicle. 

Higher speed of the opposing vehicle caused the subject-opposing gap to decrease more 

quickly making overtaking difficult.  

(5) The higher the spacing between the leading and subject vehicle, the lower the overtaking 

tendency could be found. Studies (18, 21) also shown same tendency, when following gap 

decreased. It revealed that the subject vehicle usually overtook, when it came closer to 

leading vehicle.  

(6) If the spacing between subject and opposing vehicle increased the overtaking probability 

increased, as larger passing gaps increased the chances of overtaking.   

(7) With the increment of traffic density, the probability of overtake decreased. This is because 

of larger passing gaps that were available in lower traffic volumes and consequently, the 

overtaking chances were larger.  

(8) Finally, increase in aggressiveness also increased the probability of overtaking. 

The two-tailed t-stat of the coefficients revealed that all the variables were significant at 95% 

confidence interval except the constant term, as those were greater than the t-critical (1.96) 

value. Since the constant term was insignificant, it indicated that the considered variables were 

well enough to describe the overtaking phenomena.  

10.2. Limitations of the Study  

Although the model performed well and attained a well goodness of fit, there are some 

limitations of this study: 

(1) The main limitation of background estimation model introduced in this thesis is not being 

able to capture the background dynamics as observed in ‘Boat’ due to flowing water and 

camouflage as observed in ‘Blizzard’ where both vehicle and pavement were covered with 

snow. Thus, dynamic natural phenomena such as rainfall/mist will impair the accuracy of 

the background model. 

(2)  PARTS system developed in this study cannot handle longitudinal vehicle occlusions, 

severe camera vibrations, and camouflage problems at the current stage. Depending on the 

presence and severity of these problems, the traffic measurement accuracy may get 

affected. 

(3) The crash probability estimation model developed in this study considers only traffic and 

driver characteristics related variables. For more complex scenario, the number of variables 

might increase in the OD model to cope up with the added complexity. Moreover, the 
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coverage of crash probability estimation is dependent on the field of vision (FOV); whereas 

FOV is controlled by the mounting height and the angle of the camera.  

10.3. Recommendations for Future Research  

Since overtaking model and crash probability have been studied more than a decade in the 

developed world, research on this topic in Bangladesh as well as in other south-east Asian 

countries is extremely scarce and challenging. This is mainly due to the complexity of data 

collection and processing and absence of proper mathematical framework. Even though the 

current study tried to focus some effort in this sector, it can’t be viewed as a complete 

understanding of the highly complex behavior involved in overtaking decision making. Further 

research to explore other forms of overtaking decision model for better representation of the 

risk involved in this hazardous maneuver. In this section, some recommendations are provided 

for future research following the studies carried out in this dissertation. These are listed below,  

(1) The aforementioned (subsection 10.2) two background estimation challenges will be 

investigated using the same theoretical framework developed in this thesis. Furthermore, 

detecting traffic at night is also a great challenge, which can also be explored using this 

framework 

(2) There is a plan to improve the PARTS tool by incorporating more modules to remove its 

weaknesses as stated in section 10.2. Like-wise, the current research scope does not include 

the validation of the tool at night time. However, its background estimation module has the 

capability to estimate background also at night. Additionally, night time vehicle detection 

is another task that includes different challenges other than day time. Thus, the tool keeps 

a scope to verify it at night time. Moreover, now-a-days information on vehicle trajectory 

has become urgent in different fields of research like estimating the lane changes in 

weaving segments and predicting traffic conflicts. These can also be transformed into 

separate module and incorporated as a part of it. 

(3) For capturing more complex scenario, increased number of variables in the OD model will 

be considered to cope up with the added complexity. It keeps a great scope for this research 

to extend in the future. Moreover, crash probability estimation of different types of vehicle 

for different location will enable researchers and practitioners to compare the locations in 

terms of safety. It will also help them to categorize different locations as per crash 

probability and to determine the magnitude of cost effective treatment for those locations.  
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