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Abstract

The number of known protein sequences has grown exponentially in recent years, owing to rapid

development of sequencing technologies. However, biologists are unable to catch up in finding

different attributes of newly discovered protein sequences, as performing lab experiments is

tedious and expensive. Computational methods to predict different attributes of proteins are

thus being frequently sought. One of the principal tasks of this thesis is to pursue sequence based

computational methods for several protein attribute prediction problems. These include Golgi

Apparatus (GA) resident protein type prediction, DNA-binding protein (DNA-BP) prediction

and protective antigen prediction. Through solving these problems using a sequence based

methodology, our research empirically asserts the natural belief that a protein’s functional and

structural information are intrinsically encoded within its primary sequence.

Given a GA protein, an important research question is whether it is a cis-Golgi protein or

a trans-Golgi protein. This is because correct classification of GA proteins can lead to drug

development against various congenital, neurodegenerative and inherited diseases. We propose

a sequence based prediction model for sub-Golgi protein types. A DNA-BP binds to a DNA to

regulate and affect various cellular processes. As such, DNA-BPs can potentially be used for drug

development in treating genetic diseases and cancers. We develop a DNA-BP predictor, that

extracts meaningful information directly from the protein sequences, without any dependence

on functional domain or structural information. Recursive Feature Elimination (RFE) is then

applied to optimize the number of features used in the prediction process. Another important

protein attribute prediction problem that we tackle is whether a given pathogenic protein has the

ability of invoking adaptive immune response to subsequent exposure to the specific pathogen or

related organisms. Such proteins are called protective antigens and are of immense importance

in vaccine preparation and drug design. We propose a protective antigen predictor that, again,

solely exploits sequence based features to provide a pathogen independent prediction model.
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Our predictor can be used to quickly sift through any pathogen proteome and predict a list of

potential protective antigens.

Through the exercise of building these three predictors, we formulate a general framework for

feature extraction and selection that can be applied to any protein attribute prediction problem.

One of the distinct characteristics of this framework is to exploit only the proteins’ primary

sequence based features, leaving out any structural, evolutionary or functional features, thereby

making the whole framework lightweight. The framework involves counting small substrings,

with or without gaps, in a protein sequence, to represent the protein in a discrete model, followed

by a novel approach of feature selection.

Another focus of this thesis is phylogeny, which is the study of the evolutionary relationships

among different species, genes or proteins (taxa). When gene copies are sampled from various

species, the gene tree relating these copies might disagree with the species phylogeny. This

discord can arise from horizontal gene transfer, incomplete lineage sorting (ILS), and gene du-

plication and extinction. Summary methods of species tree estimation work by first estimating

the individual gene trees from respective gene sequence alignments, and then summarizing these

gene trees to reconstruct the species phylogeny. To speed up the step of gene tree estimation,

we propose a set of distance measures between two biological sequences utilizing the concepts of

minimal and relative absent words. The computation of these distance measures is done in an

alignment-free manner. We demonstrate the use of these techniques experimentally and show

how the pairwise distance matrix thus produced can be used to reconstruct the gene phylogeny.

When the gene tree discordance is modeled by ILS, coalescent-based methods need to be ap-

plied to accurately estimate the species tree. One such method is Quartet FM (QFM), which is

highly accurate but does not scale to large numbers of taxa. We propose boosting the scalability

and performance of QFM through the application of disk covering methods (DCMs). Extensive

experimentation on large simulated datasets demonstrates superiority of our method over AS-

TRAL, a widely used and highly accurate coalescent-based species tree estimation method that

is statistically consistent under the multi-species coalescent model.

Overall, this thesis offers a generic framework for tackling protein attribute prediction prob-

lems using information solely from the protein sequence and attempts to scale existing phylogeny

estimation methods to larger datasets.
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Chapter 1

Introduction

A protein is a macromolecule consisting of one or more long chains of amino acid residues.

Due to the rapid development of sequencing technologies, the number of sequence-known

proteins has grown exponentially in recent years. However, as the biochemical experiments

to learn the attributes of proteins are expensive and time consuming, a large gap exists

between the number of sequence-known proteins and that of attribute-known proteins. To

catch up, researchers have started to rely on computational methods to predict different

attributes of proteins. These attributes include, but are not limited to, protein structural

class, folding rate, cleavage site, antigenicity, subcellular location and so on [61]. This has

given rise to the prominent new field of research of protein attribute prediction. One of the

principal tasks of this thesis is to pursue sequence based computational methods for several

protein attribute prediction tasks. These include sub-Golgi protein type prediction, DNA-

binding protein (DNA-BP) prediction and protective antigen prediction. Sequence based

phylogeny reconstruction is another focus of this thesis. An alignment-free method for

gene tree estimation and a coalescent-based method for species tree estimation is proposed

in this regard.
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1.1 Research Focus 1: Protein Attribute Prediction

In this thesis, we have focused on three protein attribute prediction problems. Solving

these prediction problems has the potential of new drugs or vaccine discovery that can

alleviate, or perhaps even eradiate, several genetic and pathogen borne diseases. These

include sub-Golgi protein type prediction, DNA-BP prediction and protective antigen

prediction. The Golgi Apparatus (GA) is a key organelle within the eukaryotic cell that

modifies and sorts proteins for transport throughout the cell. It comprises two types

of proteins, namely, cis-Golgi proteins and trans-Golgi proteins. Any dysfunction of

GA proteins can result in congenital glycosylation disorders, diabetes, cancer and cystic

fibrosis. The exact classification of GA proteins may contribute to drug development

against these diseases. A DNA-binding protein (DNA-BP), on the other hand, binds

to a DNA to regulate and effect various cellular processes. As such, these proteins can

potentially be used for drug development in treating genetic diseases and cancers. The

prediction task here is to detect whether a protein of interest would bind to a DNA or

not. Finally, a protective antigen is a pathogenic protein that has the ability of invoking

adaptive immune response to subsequent exposure to the specific pathogen or related

organisms. Such proteins are of immense importance in vaccine preparation and drug

design. The related prediction problem therefore is to answer whether a protein from a

pathogen can invoke protective immune response.

When a new protein sequence is discovered, one approach to predicting its attributes

would be to align its amino acid sequence, also known as the primary sequence, against

a database of protein sequences with known attributes. Sequence homology is expected

to infer functional homology. Thus, sequence searching programs such as BLAST [14],

FASTA [220], PSORT [204] etc. can be applied to identify similar sequences and infer

attributes of a new sequence accordingly. However, such an approach fails when the

target protein lacks any sequence similarity with the database of attribute-known proteins.

Therefore, other approaches such as empirical statistical methods and machine learning

(ML) look promising and more useful in this endeavor. In this thesis, we applied machine

learning based approaches.
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Any effort to establish a new protein attribute predictor generally takes a 5-step

route [61]. In the rest of this section, we describe these 5 steps along with a brief re-

view on the relevant literature as we proceed with the discussion. Firstly, a stringent

benchmark dataset should be prepared to train and test the predictor. To avoid homol-

ogy bias, the dataset should contain proteins with pairwise sequence similarity of no more

than a certain threshold (e.g., 25%) [61]. Secondly, a set of relevant features should be

extracted from the protein’s primary sequence and/or structure. The features should be

informative enough for predicting the relevant attribute. Many different features have

been used in literature to represent proteins. Some of these are based on the structures of

the proteins, while some features are extracted directly from their the primary sequences.

The sub-Golgi protein type predictor proposed in [269] uses structural features in addi-

tion to sequence based features. Several structural features have been utilized in literature

of DNA-BP prediction as well. These include electrostatic patches and surface clefts [256],

dipole moment [261], statistical potential energy [106], predicted secondary structure

(PredSS) [154, 191], predicted relative solvent accessibility (PredRSA) [191], secondary

structure composition and occurrence, torsional angles bigram and auto-covariance, struc-

tural probabilities bigram and auto-covariance, accessible surface area composition etc. [65].

Several predicted structural features have also been used in protective antigen prediction,

including predicted α and β residues, exposed residues fraction, number of domains, num-

ber of transmembrane helices (TMHs) etc. [193]. Plenty of software packages and web

services exist that can extract structural features of a protein, provided that the struc-

tural composition of the protein is known. These include PSIPRED [194], SPINE-X [94],

SPIDER2 [289], SSpro [49], DOMpro [50], ACCPro [49], TMHMM [151] etc.

However, structure-based predictors are applicable only when the structural informa-

tion of a candidate protein is known. The predictors that solely rely on structural infor-

mation of proteins are thus limited in their use. Sequence based methods, on the other

hand, extract various discriminating features from the amino acid sequence. Examples of

such features are amino acid composition (AAC), Dipeptides (Dip), n-Gapped-Dipeptides

(nGDip), n-grams, Pseudo amino acid composition (PseAAC) [59], amino acid physico-
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chemical properties and other indices from the AAIndex database [146], absolute charge

per residue, molecular weight, GRAVY Index [156], Aliphatic index [134] etc. The sub-

Golgi protein type predictors proposed in [10,79,80,140,141,288] use only sequence based

features. Examples of prominent sequence based predictors of DNA-BPs can be found

in [65,82,93,135,154,155,168,174,176,191,203,206,219,245,251,275,277,285,286,295,297].

VaxiJen [7], the most widely used protective antigen predictor, also uses sequence based

features alone.

One class of sequence based features that has recently become very popular is the

Position Specific Scoring Matrix (PSSM) based features. The PSSM can be computed

from PSI-BLAST [15] by searching the non-redundant protein database using at least

three iterations. PSSM based feature extraction has been used in several predictors of

the protein attributes that we focus on [10, 65, 155, 174, 275, 277, 288]. One drawback of

these predictors, however, is that the construction of PSSM is time consuming. Also,

if the target protein does not have enough known homologous sequences, the generated

PSSM cannot describe the protein adequately. Any prediction model depending on PSSM

information will produce wrong predictions in such a case [164]. Our proposed predictors

avoid structural and PSSM based features. We have only utilized features extracted

directly from the amino acid sequence of the protein.

Coming back to the discussion of the 5-step route of establishing a predictor, the third

step is to develop a suitable prediction algorithm. Among the ML algorithms, widely

used in the field of protein attribute prediction are Artificial Neural Network (ANN) [111],

Support Vector Machine (SVM) [32], Random forests [34] etc. In the protein attribute

prediction problems of our interest, ANN has been applied in [11, 256], random forests

algorithm has been applied in [154, 168, 191, 277, 288]. Majority of the reviewed predic-

tors used SVM [65, 79, 82, 140, 141, 155, 174, 176, 177, 269, 275]. All the protein attribute

predictors proposed in this thesis have used random forests algorithm for ranking the

features. SVM has been applied for sub-Golgi protein type as well as DNA-BP predic-

tion. For protective antigen prediction, random forests algorithm was applied to train the

predictor.
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To conclude the brief discussion on the 5-step route, the fourth step in the pipeline is

predictor evaluation, while the final step involves making the predictor publicly and widely

available. We have evaluated our predictors thoroughly using several well-established

testing methods. We have also made our predictors available through web interfaces for

wide adoption.

Notably, there are several other techniques especially from the statistical domain that

have been used in establishing such predictors in the literature. These tools are excluded

from the discussion as our focus is on ML based algorithms and also because the latter

have been shown to have outperformed the former in general.

1.2 Research Focus 2: Phylogeny Reconstruction

Another focus of our research is phylogeny, which is the study of the evolutionary relation-

ships among different species, genes or proteins (taxa). The ultimate goal of this research

field is to infer the Tree of Life, the phylogeny of all living organisms on earth. Research in

phylogeny reconstruction has practical impact in other fields of biology, such as epidemi-

ology, conservation biology, pharmaceutical research, protein structure prediction and so

on [276].

The evolutionary history among a set of species, via the process of speciation, is

represented by a species tree. On the contrary, a gene tree represents the evolution of

a particular “gene” within a group of species. When species are split by speciation, the

gene copies within species are also split into separate lineages of descent. However, when

gene copies are sampled from various species, the gene tree relating these copies might

disagree with the species phylogeny. This discord can arise from horizontal gene transfer,

incomplete lineage sorting (ILS), and gene duplication and extinction [192]. This needs

to be taken into consideration when attempt is made to recover the species tree from

multiple gene sequences.
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Species tree estimation from multiple genes is often performed using concatenation.

In this approach, alignments are first estimated for each gene. Then these alignments

for all the genes are concatenated into a supermatrix, which is then used to estimate

the species tree. This process can accurately estimate the species tree only if gene trees

have identical topologies. Unfortunately, this approach can confidently reach incorrect

conclusions if gene trees differ from the species tree (and hence from each other) [74,124,

158, 159, 181]. An alternate to this approach is to first estimate the individual gene trees

from respective gene sequence alignments, and then to summarize these gene trees with

a goal to reconstruct the species phylogeny. Such methods, known as summary methods,

are now becoming more popular [124,180,181,199,200,209,236,292].

In sequence based methods of gene tree estimation, a set of homologous sequences

from different species are provided as the input. After obtaining an alignment of these

sequences, different methods are applied to extract the phylogenetic information. One

such class of methods, known as the distance-based methods , computes a distance matrix

from the alignment that gives the pairwise distances among the sequences under consid-

eration. This matrix is then used to estimate the gene tree using standard clustering

methods or specially tailored methods [78, 91, 109, 128, 243, 248]. Another approach uses

heuristics for either Maximum-Likelihood (ML) [96] or Maximum-Parsimony (MP) [101]

both of which are NP hard optimization problems. The most popular tools of gene tree

estimation are based on heuristics for Maximum-Likelihood [113, 226, 227, 254, 255]. Yet

another approach, namely Bayesian Markov Chain Monte Carlo (MCMC), produces not

just a single gene tree but a probability distribution of the trees or aspects of the evolu-

tionary history [33, 124, 158]. All these methods rely on sequence alignment, which is a

time consuming task. Additionally, if any error is introduced in the alignment process,

the downstream processes get impacted, resulting in poor estimation of the gene tree. To

mitigate this problem, we propose novel distance measures of biological sequences that

are light-weight and alignment free.

When the gene tree discordance is modeled by ILS or deep coalescence, coalescent-

based methods need to be applied to estimate the species tree. These methods provide
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statistical guarantees of returning the true tree with a high probability, as the number

of genes in the study increases. One such method is Quartet FM (QFM) [236], which is

highly accurate but does not scale to large numbers of taxa. We propose boosting the

scalability and performance of QFM through the application of disk-covering methods

(DCMs) [132,133,205,239].

1.3 Our Contribution

In Part I of this thesis, which focuses on protein attribute prediction problems, we have

made the following contributions:

• We have created a sub-Golgi protein type predictor that can distinguish between

cis-Golgi and trans-Golgi proteins. In our proposed classifier, we have extracted

features solely from the protein sequence. We have then employed random forests

algorithm for feature ranking and Support Vector Machine (SVM) to learn the clas-

sification model. As the benchmark dataset is significantly imbalanced, we have ap-

plied Synthetic Minority Over-sampling Technique (SMOTE) [43] to the dataset to

make it balanced. Our method, identification of sub-Golgi Protein Types (isGPT),

achieves accuracy values of 95.4%, 95.9% and 95.3% for 10-fold cross-validation test,

jackknife test and independent test respectively. According to different performance

metrics, isGPT outperforms all the state-of-the-art techniques.

• We have developed a predictor that can determine whether a protein can bind to

a DNA or not. Our predictor extracts meaningful information directly from the

protein sequences, without any dependence on functional domain or structural in-

formation. After feature extraction, we have employed random forests algorithm to

rank the features. Afterwards, we have used Recursive Feature Elimination (RFE)

method to extract an optimal set of features and trained a prediction model using

SVM with linear kernel. Our proposed method, named as DNA-binding Protein Pre-

diction model using Chou’s general PseAAC (DPP-PseAAC), demonstrates supe-
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rior performance compared to the state-of-the-art predictors on standard benchmark

dataset. DPP-PseAAC achieves accuracy values of 93.21%, 95.91% and 77.42% for

10-fold cross-validation test, jackknife test and independent test respectively.

• We have implemented a protective antigen predictor that has a pathogen indepen-

dent model which extracts class-discriminant information from the protein sequence

alone. Thus, unlike state-of-the-art predictors, it can be used to quickly sift through

any pathogen proteome and predict a list of potential protective antigens. Named

Antigenic, our protective antigen predictor achieves accuracy, sensitivity and speci-

ficity values of 78.04%, 78.99% and 77.08% in 10-fold cross-validation testing respec-

tively on the benchmark dataset. In jackknife cross-validation, the corresponding

scores are 80.03%, 80.90% and 79.16% respectively.

• We have developed a bundle of web interfaces for the above three protein at-

tribute predictors. isGPT is available at http://isgpt.research.buet.ac.bd/,

DPP-PseAAC at http://dpp-pseaac.research.buet.ac.bd/ and Antigenic at

http://antigenic.research.buet.ac.bd/. These user friendly, publicly accessi-

ble interfaces are expected to encourage researchers to apply these prediction models

in relevant research projects and thus be of interest to researchers and practitioners

alike in the relevant fields.

• Finally, through the design and development of these three predictors, we have

established a general framework for feature extraction and selection that can be

applied to any protein attribute prediction problem. It involves counting small sub-

strings, with or without gaps, in the protein sequence, to represent the protein in

a discrete model, followed by a novel approach of feature selection. The framework

is a learning from our efforts in solving the 3 protein attribute prediction problems

as discussed above. A distinct and note-worthy property of this framework is es-

sentially the focus on only the primary sequence. This is directly in contrast to the

ongoing recent efforts that popularly utilize features from structural and functional

domains as well as to the exploitation of time consuming and database dependent
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evolutionary information like PSSM. While it seems appealing to use the structural

and functional information of protein as features, our results promise the potential

of only focusing on the primary sequence, which is light-weight, less time consuming,

and can implicitly infer the structural information.

In Part II of this thesis, which focuses on the problem of phylogeny reconstruction, we

have made the following contributions:

• We have proposed a set of distance measures between two biological sequences uti-

lizing the concepts of minimal and relative absent words. The computation of

these distance measures is done in an alignment-free manner. We demonstrate

the use of these techniques on a set of 11 neucleotide sequences. We also pro-

vide recommendations to use the best distance measure based on our analysis.

We have also implemented a related web-based tool with limited capacity here:

http://77.68.43.135/AWorDS/.

• We have designed a gene tree estimation method based on the above distance mea-

sures. For a collection of gene sequences, we demonstrate how the pairwise distance

matrix produced by any of these distance measures can be used to reconstruct the

gene phylogeny. All the widely used gene tree estimation methods rely on sequence

alignment, which is a time consuming task. Also, any error in the alignment signif-

icantly affects the downstream processes, resulting in poor estimation of the gene

tree. As such, we make an effort towards a fast and alignment free solution to gene

tree reconstruction.

• Finally, we have presented a species tree estimation method applying DCM to boost

a celebrated method called QFM. Quartet FM (QFM) is a highly accurate species

tree estimation method for a very small number of taxa. We apply disk-covering

methods (DCMs) to boost the scalability and performance of QFM. Experiments

with a simulated dataset of 37 taxa shows that DCM boosted QFM outperforms AS-

TRAL [199,200,292], a highly accurate and popular species tree estimation method

that is statistically consistent under the multi-species coalescent model.
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1.4 Organization of the Thesis

The rest of the chapters are organized as follows.

In Chapter 2 we introduce preliminary concepts and terminologies that are used in

describing the contribution of this research in subsequent chapters. We introduce the

problem of protein attribute prediction and discuss the different steps in the process. We

explain different methodology and metrics to objectively assess the performance of any

protein attribute predictor. Since phylogeny is another focus of this thesis, we therefore

discuss basic concepts of gene tree, species tree and reasons of discordance between the

two.

We then enter the Part I of this thesis, comprising Chapters 3, 4 and 5, focusing

on several protein attribute prediction problems. In Chapter 3, we introduce a sequence

based computational model for classification of GA proteins. Given a GA protein sequence

as input, the classifier can determine whether it is a cis-Golgi protein or a trans-Golgi

protein.

In Chapter 4, we build a predictor for DNA-binding proteins (DNA-BPs). Our pre-

diction model for DNA-BPs extracts meaningful information directly from the protein

sequences, without any dependence on functional domain or structural information.

In Chapter 5, we propose a new protective antigen predictor. A reliable protective

antigen predictor plays a vital role in vaccine discovery in the Reverse Vaccinology [224,

233] pipeline. Like in previous chapters, here too, we have worked to build a predictor

that extracts meaningful information from the protein sequence alone.

We then move to the Part II of this thesis, where we shift our focus onto phylogeny

reconstruction. This latter part of the thesis consists of Chapters 6 and 7. In Chapter 6

we explore the idea of using minimal and relative absent words to compute the distance

between two biological sequences. A minimal absent word (MAW) is a word that is

absent in a sequence but all its proper factors occur in that sequence. On the other hand,

a relative absent word (RAW) is a word that occurs in a target sequence but is absent in
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a reference sequence. A RAW is minimal if none of its proper factors are RAW for the

same pair of target and reference sequences. For a pair of biological sequences, we propose

several distance measures using MAW and RAW sets. We provide recommendations to

use the best distance measure based on our analysis. For a collection of gene sequences, we

demonstrate how the pairwise distance matrix thus produced can be used to reconstruct

the gene phylogeny in an alignment-free manner.

In Chapter 7, we focus on species tree estimation, particularly when the gene tree

discordance is modeled by incomplete lineage sorting (ILS) or deep coalescence. When

the genes evolve down different tree topologies due to ILS, coalescent-based methods need

to be applied to estimate the species tree. One such method is Quartet FM (QFM), which

is highly accurate but does not scale to large numbers of taxa. We apply disk-covering

methods (DCMs) to boost the scalability and performance of QFM.

Finally, we offer concluding remarks and direction for further research in Chapter 8.

1.5 Conclusion

In this introductory chapter we have introduced some background and motivation of

the tasks we take up in this thesis. We have also clearly outlined the contribution of this

research work. In the next chapter, Preliminaries, we will introduce technical background

of various methods and concepts that are needed to comprehend and appreciate the

research conducted in this thesis.
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Chapter 2

Preliminaries

In this chapter, we introduce some preliminary concepts and terminologies that will be

used in describing the contribution of this research in subsequent chapters. We begin this

chapter by a discussion on proteins, what they are made of, what their structures and

functions are. While the sequence known proteins abound, scientists are finding it difficult

to predict their functions and attributes solely through biochemical experiments. Hence

the notion of protein attribute prediction has emerged. We discuss the different steps

in this process. Since this thesis solves several protein attribute prediction problems by

machine learning, we therefore give a brief idea of what machine learning is. The different

learning algorithms we have used are also discussed briefly. We then explain different

methodology and metrics to objectively assess the performance of any protein attribute

predictor.

We subsequently introduce phylogeny, which is another focus of this thesis. We discuss

different aspects of a phylogenetic tree, followed by the concepts of gene tree and species

tree, gene tree discordance, and species tree reconstruction from the genomic data. Any

method for phylogeny reconstruction must be objectively assessed. Therefore we also

discuss the measures of accuracy to evaluate species tree reconstruction methods.
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2.1 Protein Attribute Prediction

A protein is a macromolecule consisting of one or more long chains of amino acid residues.

The individual amino acid residues are bonded together by peptide bonds and adjacent

amino acid residues. A protein is encoded by a gene. The sequence of amino acid residues

in a protein is thus governed by the nucleotide sequence of the corresponding gene. Pro-

tein is an important building block of enzymes, hormones, other body chemicals, bones,

muscles, cartilages, skin, blood, hair, nails etc. It is an important component in every

cell of the body. As such, it serves a wide variety of functions - tissue building and re-

pair, catalyzing metabolic reactions, DNA replication and recombination, responding to

stimuli, transporting molecules from one location to another and so on.

Proteins comprise long chains of amino acid residues. Amino acids on the other hand

consist of organic compounds containing amine (-NH2) and carboxyl (-COOH) functional

groups, along with a side chain (R group) specific to each amino acid. The key elements

of an amino acid are carbon (C), hydrogen (H), oxygen (O), and nitrogen (N). While

naturally occurring amino acids are around 500 in number, only 20 of these amino acids

are encoded directly by triplet codons in the genetic code and are known as “standard”

amino acids. Each of these amino acids is given a one letter code. This way a protein can

be represented as a long sequence of letters, drawn from a 20 letter alphabet. The standard

amino acids, together with their single letter encoding, are listed in Table 2.1. Apart from

these, there are 2 other amino acids which are also found in proteins synthesized in some

organisms. One of these is Selenocysteine which is found in many organisms, but is not

coded directly by DNA. The other one, Pyrrolysine, is found only in some archea and one

bacterium. These 2 amino acids are referred to as “non-standard” amino acids.

The sequence of amino acids in a protein forms its primary structure. This primary

structure of a protein determines its native conformation. The position of specific amino

acid residues in the polypeptide chain dictates which portions of the protein fold closely

together, to form its three dimensional structure. However, formation of a secondary

structure is the first step in the folding process. There are 2 types of secondary structures:
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Table 2.1: List of 20 standard amino acids along with their one letter codes.

Amino acid Code Amino acid Code

Alanine A Arginine R

Asparagine N Aspartic acid D

Cysteine C Glutamic Acid E

Glutamine Q Glycine G

Histidine H Isoleucine I

Leucine L Lysine K

Methionine M Phenylalanine F

Proline P Serine S

Threonine T Tryptophan W

Tyrosine Y Valine V

α-helices and β-sheets. These structures contain a hydrophilic portion and a hydrophobic

portion. After formation of the secondary structures, folding occurs so that the hydrophilic

sides are facing the aqueous environment surrounding the protein and the hydrophobic

sides are facing the hydrophobic core of the protein. This gives way to tertiary structure

formation.

Protein tertiary structure can be divided into four main classes based on the secondary

structural content of the domain. These four category of structural classes are depicted in

Figure 2.1. The all-α class has a domain core built exclusively from α-helices. The all-β

class has a core composed of anti-parallel β-sheets, usually two sheets packed against each

other. α/β domains are made from a combination of β-α-β motifs that predominantly

form a parallel β-sheet surrounded by amphipathic α-helices. α+β domains are a mixture

of all-α and all-β motifs.

With the basic understanding of proteins, we can now discuss the concepts of protein

attribute prediction. There are significant number of attributes associated with a protein

that researchers are interested in. For example, what is its folding rate? Which structural

class does it belong to? Which subcellular location site does it reside? Can it simultane-

ously exist in or move between two and more subcellular locations? Is it an enzyme? Is
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(a) all-α (1aep) (b) all-β (1gbg) (c) α/β (1enp) (d) α+ β (2aak)

Figure 2.1: Four categories of protein structural class. The images were generated using

NGL Viewer [237, 238]. The PDB codes used to generate the 3d structural views are

noted in parenthesis beside each class name. The molecules are color coded by protein

secondary structure. Alpha helices are colored magenta, beta sheets are colored yellow,

turns are colored pale blue and all other residues are colored white.

it a DNA-binding protein? Is it an antigen? Is it a membrane protein or non-membrane

protein? Which part of the protein serves as its signal sequence? Where are its cleav-

age sites? This list can go on. Answering all these interesting questions would require

biochemical experiments which are tedious and expensive. Therefore, the research com-

munity has resorted to computational methods for predicting various attributes related

to proteins, as highlighted in the above questions. This is known as protein attribute

prediction.

2.1.1 Protein Attribute Prediction Pipeline

In the 2011 review paper, Chou [61] outlined a 5 step procedure for establishing a useful

tool for any protein attribute prediction problem. These steps can be summarized as

follows:

1. Benchmark dataset preparation. As the first step in the prediction pipeline, a

stringent benchmark dataset should be prepared or collected to train and test the

predictor. To avoid homology bias, the datasets should contain proteins with pair-

16



wise sequence similarity no more than a certain cutoff or threshold. Different cutoff

values have been observed in literature, such as 25% [177], 30% [193], 40% [288].

Chou [61] recommended ensuring a 25% cutoff to create a stringent benchmark

dataset.

2. Protein sample representation. The protein samples should be represented

through a feature vector that is expressive enough so that the downstream processes

can extract and utilize intrinsic information relevant to the attribute to be predicted.

Chou’s General PseAAC [59, 61], which has been widely adopted in this regard, is

briefly described later in this chapter.

3. Application of a prediction algorithm. A powerful algorithm should be de-

veloped or an existing algorithm should be customized for the prediction process.

Examples of prediction algorithms include sequence similarity based methods such

as BLAST [14], FASTA [220], PSORT [204], empirical statistical methods and ma-

chine learning (ML) based algorithms. We have applied machine learning based ap-

proaches in our work and therefore briefly describe this concept later in this chapter.

Among the ML algorithms, widely used in the field of protein attribute prediction

are Artificial Neural Networks (ANN) [111], Support Vector Machine (SVM) [32],

Random forests [34] etc. We briefly describe SVM and random forests algorithms

later in this chapter, as we have extensively used these tools in our research. We

also describe the concept of feature selection, which is generally applied to compress

the protein sample representation before applying any prediction algorithm.

4. Predictor evaluation. The developed predictor should be objectively assessed.

Several well-established testing methods exist that can assess the quality of the

predictor while it is being trained as well as after the training has been completed.

We briefly review these techniques later in the chapter.

5. Make the predictor publicly available. Generally, this is best done in form of

a web interface that is user friendly and publicly accessible.

17



2.1.2 Machine Learning

Machine learning (ML) is the process of gaining knowledge from data, which can then be

utilized in making decisions or predictions on unforeseen data. This process is extremely

useful in situations where an analytic solution is lacking, but data abounds that can be

utilized to construct an empirical solution. This concept of learning from data is one

of the most widely adopted tools today by both researchers and practitioners in various

fields of science and technology.

The available data that is exploited in the learning process is referred to as the training

data. Based on the information in the training samples or data points, the process of

learning can be supervised or unsupervised. In supervised learning, the training data

contains explicit examples of what the correct output should be for given inputs. As the

training examples are marked with the correct output, the data in this case is said to be

labeled. It is then possible to empirically formulate a mapping from the input space to

the output space, which can then be used to predict output for unforeseen input data.

On the contrary, in unsupervised learning, the input examples are not labeled with

the correct outputs. Such data is called unlabeled data. Despite this lack of crucial

information, it is still possible to extract patterns and clustering in the data. When a

new data point (query point) comes in, the task is then to determine to which cluster the

query point closely resembles and make decisions or predictions accordingly.

In this thesis, we have applied supervised learning in solving several protein attribute

prediction problems. Therefore, let us now define the problem of supervised learning more

formally. Let there be an input x and an unknown target function f : X → Y . Here X
is the input space and Y is the output space. There is a data set D of labeled examples

(x1, y1), (x2, y2), . . . , (xN , yN), where yn = f(xn), 1 ≤ n ≤ N . Then the problem of

supervised learning is to learn from the data set D a formula g : X → Y that approximates

f . The choice of g is made from a set of candidate formulas under consideration, which

we call the hypothesis set H.
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2.1.3 Classification and Regression

When the labels of input in a machine learning problem are discrete, it is called a classifi-

cation problem. If there are only 2 possible labels, then it is called a binary classification

problem. If there are more than 2 classes, then the problem is called a multi-class classi-

fication problem.

When the input labels take continuous values, then the learning problem is called a

regression problem. Interestingly, regression analysis can also be used to solve what is

an inherently binary classification problem. In this case, the regression process generates

a score for each training sample. Then an optimal threshold is chosen to cluster the

scores into 2 separate classes. The learnt model, including the threshold, can then be

applied to a query data point to predict its class. In this thesis, we have used both binary

classification and regression analysis.

2.1.4 Support Vector Machine

The Support Vector Machine (SVM) [32] algorithm formulates the supervised learning

problem as an optimization problem. Given the labeled training samples, it tries to

find an optimal separating hyperplane such that the distance from the hyperplane to the

nearest data points is maximized. The larger this distance (i.e. “margin”), the lower the

generalization error of the classifier. The classifier that it outputs is often referred to as

the maximum margin classifier . The data points that are nearest to the hyperplane are

called the support vectors .

SVM can be applied directly in the input space or in a transformed higher dimensional

space. If the original problem has samples that are not linearly separable, then the original

finite-dimensional space can be mapped into a much higher-dimensional, possibly infinite

dimensional, space. This transformed space can yield the problem to be linearly separable

and SVM then produces an optimal separating hyperplane in this space. To keep the

computational load reasonable, the mappings are designed to ensure that dot products
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may be computed easily in terms of the variables in the original space, by defining them

in terms of a kernel function. Several kernel functions have been proposed and have

successfully been used in predicting different protein attributes. These include linear

kernel, radial basis function (RBF) kernel and polynomial kernel.

2.1.5 Random Forests

Random forests [34] is an ensemble learning method. An ensemble method uses several

learning algorithms to obtain better predictive performance. Random forests algorithm

constructs many decision trees at training time. A decision tree is a flowchart-like struc-

ture in which each internal node represents a comparison on an attribute. Each branch

of the tree represents the outcome of the test. The leaf nodes represent class labels. The

paths from root to leaf therefore represent all the classification rules.

Random forests algorithm constructs a multitude of decision trees and outputs the

class that is the mode of the classes (classification) or mean prediction (regression) of

the individual trees. As the individual trees can overfit to the training data, averaging

the result over the many decision trees regularizes the result and allows for a generalized

classifier.

The importance of different attributes or features of the data points can be computed

by permuting out-of-bag (OOB) data of random forests algorithm. This importance

score indicates the global importance over all OOB cross-validated predictions and is very

robust as it is averaged over all predictions for a given feature variable. Known as mean

decrease in accuracy , this score can be used to rank the features and subsequently filter

out irrelevant features. The larger this value is for a feature, the more important that

feature is in the context of the prediction task.
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2.1.6 Feature Selection

It is computationally expensive to work with a large feature vector, both during the

learning phase and the prediction phase. Besides, all features may not always be effective

in the learning model [117,242]. As such, after protein sample representation (also known

as feature extraction), the next obvious step is to select a set of relevant features that will

contribute to the learning model in improving accuracy.

Feature selection techniques can generally be divided into three categories: filter meth-

ods, wrapper methods and embedded methods. Filter methods rank the features based

on some criteria. Then a subset of top ranked features are passed to train the classifier.

These methods are thus independent of the choice of the classifier. Wrapper methods,

on the other hand, search the feature space to find an optimal subset of features. The

quality of the feature subset is measured by training and testing a specific classification

model. Therefore such methods are tied to specific classification algorithms. Embedded

methods are similar to wrapper methods. However, in this approach, the search for the

optimal feature subset is inherently built into the classification algorithm.

2.1.7 Chou’s General PseAAC

With the explosive growth of biological sequences in the post-genomic era, one of the

most important, albeit difficult, problems in computational biology is how to express a

biological sequence with a discrete model, yet capture considerable amount of sequence-

order information. In a discrete model, each protein is represented by a fixed length

feature vector that is independent of the protein sequence length. This model is preferred

because all the existing machine-learning algorithms can only handle feature vectors but

not sequence samples [63]. However, a vector defined in a discrete model may com-

pletely lose all the sequence-pattern information. To overcome this, the concept of Pseudo

amino acid composition, or PseAAC in short, was proposed by Chou [59] in 2001. Since

then, PseAAC has been widely used in nearly all the areas of computational proteomics

(see, for example, [28, 147, 150, 195, 196, 250, 290] as well as a long list of references cited
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in [64]). Because of its wide adoption, several open access softwares such as propy [38] and

PseAAC-General [86] were established. Encouraged by the successes of using PseAAC to

deal with protein/peptide sequences, the concept of PseKNC (Pseudo K-tuple Nucleotide

Composition) [47] was developed for generating various feature vectors for DNA/RNA se-

quences that have proven very useful as well [45,48,165,179]. Particularly, recently a very

powerful web-server called Pse-in-One [171] and its updated version Pse-in-One 2.0 [175]

have been established that can be used to generate any desired feature vectors for pro-

tein/peptide and DNA/RNA sequences according to the need of users’ studies. In this

thesis, we have used Chou’s general PseAAC to represent protein samples and developed

various protein attribute prediction models.

Let a protein sequence P of length L be written as:

P = R1R2R3R4R5 . . . RL (2.1)

where R1 represents the first amino acid residue, R2 the second residue and so on.

The PseAAC of the protein can be represented as follows:

P =
[

ψ1 ψ2 . . . ψu . . . ψΩ

]T
(2.2)

Here, the classical amino acid composition (AAC) is represented by subscripts 1 ≤ u ≤
20 and the subsequent features express sequence order information through one or more

different schemes. The sequence order related features that we have utilized can largely

be divided into two categories: position independent and position specific. Among the po-

sition independent features are Dipeptides (Dip), Tripeptides and n-Gapped-Dipeptides

(nGDip). These features do not depend on any specific position in the amino acid se-

quence. These features have widely been used in the literature of protein attribute pre-

diction. The position specific features, on the other hand, are introduced in this thesis.

Below, we describe these feature schemes that constitute the generalized pseAAC in our

work. In describing the feature types, we have followed the nomenclature from [241].
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Amino Acid Composition (AAC)

Amino Acid Composition (AAC) of a protein sequence means the normalized frequencies

of the 20 native amino acids. The frequencies are normalized by dividing those by the

protein sequence length.

Dipeptides (Dip)

The normalized frequency of adjacent amino acids within the protein sequence can be used

as features. This is called Dipeptides (Dip) or Dipeptide Composition (DPC) feature type.

This feature type provides into the feature vector some sequence-order information and

has been successfully used in several protein related studies [10, 30, 82, 114, 145, 166, 275].

Dip (DPC) contributes 400 features to PseAAC.

Tripeptides

We have similarly applied the notion of Tripeptides to extract another 8000 features. All

these feature types are derived from the generalized form of n-grams feature type where

frequencies of n-length peptides are used as feature vectors. Dong et al. [82] referred to

it as kmer. In our study, we have extracted n-grams (kmer) features, for n = 1, 2 and 3.

n-Gapped-Dipeptides (nGDip)

In the n-Gapped-Dipeptides (nGDip) feature type, we count the frequency of amino acid

dipeptides such that the amino acids are separated by n positions. The frequency is

normalized, dividing it by the total number of nGDip. (i.e., L − n − 1 for a sequence

of length L). For each specific gap, 400 features can be generated. The motivation for

this feature type stems from the belief that the gap between any two amino acids may

carry significant information about the protein [41]. Also known as Gapped Di-peptide

Composition (GDPC), this feature extraction technique has recently become popular for

protein classifications [184], protein structural class prediction [185], sub-Golgi protein

identification [79,80,288], DNA binding protein prediction [177] etc.
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Position Specific n-grams (PSN)

The Position Specific n-grams (PSN) represent whether specific n-grams occur in specific

positions in the protein sequence. The value of each such feature in any sequence will

therefore be either 0 or 1 (on or off ). We have introduced this feature extraction technique

in this thesis. We have considered PSN feature for n = 1, 2 and 3. These can be referred

to as position specific amino acids, dipeptides and tripeptides respectively.

As an example, consider the sequence “AAPTAA”. In the first position, we have the

amino acid “A”, the dipeptide “AA” and the tripeptide “AAP”. Therefore, the position

specific n-grams features (1, “A”), (1, “AA”) and (1, “AAP”) will be set (i.e. will have

values of 1). Similarly, the other PSN features that will be “on” are (2, “A”), (2, “AP”),

(2, “APT”), (3, “P”), (3, “PT”), (3, “PTA”), (4, “T”), (4, “TA”), (4, “TAA”), (5, “A”),

(5, “AA”), (6, “A”).

2.1.8 Testing a Predictor

Several testing methods exist that can assess the quality of the learning model while it is

being trained as well as after the training has been completed. These include jackknife

cross-validation, 10-fold cross-validation test, independent test etc. We briefly describe

these techniques below.

Jackknife Cross-validation

In jackknife cross-validation, one sample from the training set is set aside. The remaining

part is used to train the predictor. Then the set-aside sample is used to test the model.

This is repeated N times, where N is the size of the training set. In each iteration, the

testing sample is always different from previous testing samples, so that all samples are

considered once as the testing sample. Though this technique executes slowly compared

to other testing techniques, it produces unique results. This technique has been used in

this thesis. Since one sample is left out in each iteration, this technique is also widely

known as Leave-one-out cross-validation technique.
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Independent Testing

In independent testing, the testing dataset is completely different from training dataset.

After the model is completely trained using the training set, independent testing is per-

formed using the testing dataset. The distribution of the testing dataset should be similar

to that of the training dataset. Otherwise, output of this testing strategy may be mis-

leading [149].

10-fold Cross-validation

In 10-fold cross-validation technique, training dataset is divided into 10 equal parts.

Among these 10 parts, one part is used for testing and other 9 parts are used to train

the model. This is repeated 10 times so that each part gets to be used for testing exactly

once.

2.1.9 Predictor Performance Metrics

As predictor performance metrics, we have used in this thesis accuracy, sensitivity, speci-

ficity and Matthew’s Correlation Coefficient (MCC). These are well-established perfor-

mance metrics in the literature [13, 225]. These metrics are calculated using a confusion

matrix which can be generated based on true classes and predicted classes [148]. We have

also analyzed the Area Under Receiver Operating Characteristic Curve (ROC-Curve) [95]

and Area Under Precision-Recall Curve (PR-Curve) [73].

The samples in the dataset can be categorized into two classes: the positive class and

the negative class. When the true class of a test sample is positive (negative) and the

predicted class is also positive (negative), it is called a True Positive (True Negative).

When true class of a testing sample is positive (negative) but predicted class is negative

(positive) it is called False Negative (False Positive). Let P , N , TP , TN , FP , FN

respectively denote the number of positives, negatives, true positives, true negatives, false

positives and false negatives. Then we can define the relevant performance metrics by the
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following set of equations:



































Accuracy = TP+TN
P+N

Sensitivity = TP
TP+FN

Specificity = TN
FP+TN

MCC = TP×TN−FP×FN√
(TP+FN)(TP+FP )(TN+FP )(TN+FN)

(2.3)

However, in the form of Equation 2.3, these metrics lack intuitiveness and is not easy-

to-understand for most biologists. In particular, the interpretation of MCC is not at

all intuitive in this form, although it is very important in measuring the stability of a

prediction method. Therefore, we adopt the formulation based on Chou’s symbols [60]

that was recently proposed in [46, 287] as follows: Let N+ (N−) be the total number

of positive (negative) samples in the dataset. Let N+
− (N−

+ ) be the number of positive

(negative) samples that were incorrectly predicted. The relationship between the symbols

used in Equation 2.3 and Chou’s symbols just introduced can be given by the following

equation:































TP = N+ −N+
−

TN = N− −N−
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FP = N−
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FN = N+
−

(2.4)

And the performance metrics can then be redefined as:
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(2.5)

From the definitions in Equation 2.5, the interpretation of each of the performance

metrics is much more intuitive and easier-to-understand. For example, when all the
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instances of the positive (negative) class are correctly predicted, we haveN+
− = 0 (N−

+ = 0)

and thus sensitivity (specificity) of the classifier is 1. On the contrary, if all the positive

(negative) instances are incorrectly predicted, then N+
− = N+ (N−

+ = N−). Therefore,

sensitivity (specificity) becomes 0. For a perfect classifier, we have N+
− = N−

+ = 0 and

both accuracy and MCC become 1 in this case. On the other hand when all the samples

are misclassified (i.e. N+
− = N+ and N−

+ = N−), then accuracy and MCC becomes 0 and

-1 respectively. For a random predictor, we can expect N+ = N+

2
and N−

+ = N−

2
, which

results in an accuracy of 0.5 and an MCC of 0.

The advantages of Chou’s intuitive metrics have been analyzed and concurred by a

series of studies published very recently (see, e.g., [44, 45,51,55,97,138,139,172,173,178,

187, 228–230]). It is important, however, to call out that the set of metrics, as described

above, is valid only for the single-label systems (in which each protein only belongs to one

functional class). For the multi-label systems (in which a protein might belong to several

functional classes), whose existence has become more frequent in systems biology [51–54],

systems medicine [55, 56] and biomedicine [230], a completely different set of metrics as

defined in [62] is needed.

As mentioned earlier, in addition to the performance metrics described above, we have

also analyzed the area under ROC and PR curves. The ROC-Curve is created by plotting

the true positive rate (TPR) against the false positive rate (FPR) at various threshold

settings. TPR is sensitivity, while (1 − specificity) gives FPR. When ROC-Curve gets

close to the left upper corner in the graph, it indicates better performance [95]. In this

case, we get higher values for Area Under ROC-Curve (auROC). The PR-curve, on the

other hand, is created by plotting the precision against the recall at various threshold

settings. Precision represents true positive accuracy. Recall, on the other hand, reports

the true positive rate and therefore is identical to sensitivity. These metrics can formally

be defined by the following set of equations:







Precision = TP
TP+FP

Recall = TP
TP+FN

(2.6)
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Orangutan  Gorilla  Chimpanzee  Human

Figure 2.2: A phylogenetic tree relating four species: human, chimpanzee, gorilla and

orangutan.

The closer the PR-curve is to the top right corner of the graph, the better is the

performance of the predictor [73]. In this case, we get higher value for Area Under PR-

Curve (auPR).

2.2 Phylogeny Reconstruction

We now discuss preliminary concepts about phylogeny reconstruction, which is the focus

of Part II of this thesis. Phylogeny refers to the evolutionary relationships among a set of

entities. Such entities may include species, genes, languages, etc. In our work, the first 2

entities are the most relevant. The entities amongst which an evolutionary relationship is

being sought are referred to as taxa. Each such taxon is placed as a leaf in a phylogenetic

tree and the tree topology represents the evolutionary history. The non-leaf (i.e. internal)

nodes of the tree represent hypothetical ancestral taxa from which the present day taxa

evolved. These ancestral taxa are believed to have existed in the past, but has become

extinct. Notably, a tree T is a connected acyclic graph with a set of vertices V and a

set of edges E. The vertex and edge sets are sometimes also shown as V (T ) and E(T )

respectively. An edge e = (u, v) ∈ E represents an evolutionary relationship between the

two taxa represented by the vertices u and v. The set of internal nodes is represented by

Vint(T ), while the set of leaf nodes (i.e. the present day taxa set) by L(T ).

Figure 2.2 shows a sample phylogenetic tree among four species: human, chimpanzee,

gorilla and orangutan. This evolutionary tree depicts that human and chimpanzee share a
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A              C        D              E 

B                                         F 

e

(a) Unrooted tree.

 A            B            E           F

     C     D

(b) Rooted tree.

Figure 2.3: Rooted and unrooted trees.

Cow                             Human 

 Fly                          Chimpanzee

Human Chimpanzee

Cow

Figure 2.4: Phylogenetic tree on a set of mammalian species, with fly as the outgroup.

common ancestor. As such, we consider humans to be more closely related to chimpanzees

than they are to gorillas and orangutans.

2.2.1 Rooted and Unrooted Trees

In a rooted phylogenetic tree, one vertex r ∈ V is designated as the root of the tree. The

root is generally denoted by root(T ). In an unrooted tree, on the other hand, there is

no such designated vertex. Figure 2.3 shows samples of rooted and unrooted trees on a

set of 6 taxa {A,B,C,D,E, F}. The rooted tree in the figure is obtained by rooting the

unrooted tree on the edge e.

True evolutionary histories are better represented by a rooted tree. However, identi-

fying the root of an estimated phylogenetic tree is generally a difficult task. It requires

precise knowledge of the set of taxa under consideration. Another approach to tree root-

ing takes the assumption of a “molecular clock” which implies that DNA and protein

sequences evolve at a rate that is relatively constant over time and among different or-

ganisms. However, such assumption seldom holds in real datasets. Therefore, a common

approach that is applied to tree rooting uses an outgroup, which is a taxon known to have
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B                                 F 

A                                E

u

C    D

(a) A tree with polytomy.

B                                 F 

A            C    D            E

u

 v

(b) A fully-resolved tree.

Figure 2.5: Binary and non-binary phylogenetic trees of 6 taxa {A,B,C,D,E, F}. In the

left figure, u is a polytomy. In the right figure, the polytomy has bee resolved to create a

binary tree.

branched off before all other taxa under consideration. The outgroup is added to the

set of taxa under study and an unrooted tree is estimated on this augmented set. This

unrooted tree is then rooted by “picking up” the unrooted tree at the outgroup. This

is shown in Figure 2.4. In the left part of the figure, an unrooted tree is estimated on

a set of mammalian taxa (cow, chimpanzee and human) with addition of the outgroup

fly. This unrooted tree is then picked up at the fly node to obtain the rooted tree that is

depicted at the right part of the figure.

2.2.2 Binary and Non-binary Trees

A Phylogenetic tree can be binary or non-binary. A tree is called binary or fully-resolved

if all internal nodes have degree at most three. In a non-binary tree, on the other hand,

there is at least one node with degree greater than three. Such a node is known as a

polytomy. In Figure 2.5a, the vertex u has degree 4. Therefore, u is a polytomy and

the tree is a non-binary tree. The polytomy is resolved in Figure 2.5b, by introducing an

additional vertex v, resulting in a fully-resolved tree.

2.2.3 Clade and Bipartition

In a rooted phylogenetic tree, each internal vertex defines a group of taxa that are more

closely related to each other than they are to any other taxon in the tree. Such a group

is called a clade. Formally, a clade in a phylogenetic tree T is a rooted subtree of T.
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In case of unrooted trees, the similar concept of grouping is captured by bipartitions of

the taxon set. For each edge e of a phylogenetic tree T , there is a bipartition πe. Deleting

the edge e from T creates two subtrees T1 and T2, resulting in a bipartition of leaves

L(T1)|L(T2). Observe that, an edge incident on a leaf creates a bipartition in which the

corresponding leaf is in one party and the remaining nodes are in the other party. Such a

paritioning is called a trivial bipartition since it does not convey any information about

the topology of the tree. Bipartitions corresponding to the internal edges, on the other

hand, are called non-trivial bipartitions.

2.2.4 Branch Length

The length of an edge (or branch) in the phylogenetic tree is called the branch length.

Branch length is a non-negative real number that may represent various quantities mea-

sured on a branch. For example, a branch length can represent the amount of evolutionary

change or the amount of time between two nodes.

2.2.5 Gene Tree-Species Tree Discordance

Equipped with the basic concepts of phylogeny, we can now discuss the gene tree-species

tree discordance and the reasons behind it. A species tree represents the evolutionary

history among a set of species via the process of speciation. On the contrary, a gene tree

represents the evolution of a particular “gene” within a group of species. When species

are split by speciation, the gene copies within species are also split into separate lineages

of descent. Within each such lineage, the gene trees continue branching and descending

through time. Thus, the gene trees are contained within the branches of the species

trees [192].

However, when gene copies are sampled from various species, the gene tree relating

these copies might disagree with the species phylogeny. Figure 2.6 shows an example of

discordance between a species tree and a gene tree. Here, species B and C are “sister”
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A B C D

Figure 2.6: Gene tree-species tree discordance or incongruence. A species tree (given in

block diagram) and a gene tree (given in line diagram) on the same set {A,B,C,D} of

taxa with different topologies.

species. However, in the gene lineage, C is closer to D than B. This discord can arise from

horizontal transfer, incomplete lineage sorting, and gene duplication and extinction [192].

Additionally, an apparent gene tree-species tree discordance might simply be due to error

introduced during the reconstruction of one or more gene trees [192].

As Maddison [192] philosophizes, “Perhaps it is misleading to view some gene trees as

agreeing and other gene trees as disagreeing with the species tree; rather, all of the gene

trees are part of the species tree, which can be visualized like a fuzzy statistical distribution,

a cloud of gene histories. Alternatively, phylogeny might be (and has been) viewed not as

a history of what happened, genetically, but as a history of what could have happened, i.e.,

a history of changes in the probabilities of interbreeding.”

Maddison [192] further writes, “When we take a sample from a population and try to

understand a statistical distribution by calculating means and variances, we do not single

out all of the samples whose values differ from the mean as disagreeing with the mean.

They are simply part of the variance, part of the distribution. A simple phylogenetic

tree diagram with sticklike branches represents only the mean or mode of a distribution.

Phylogeny has a variance as well, represented by the diversity of trees of different genes.”
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Horizontal Gene Transfer

Horizontal Gene Transfer (HGT) is the process that causes the genes to be transferred

across species. If the native gene copy in the receiving species lineage goes extinct or

is not sampled, then the gene tree will disagree with the species tree [192]. Also known

as lateral gene transfer, this process might be accomplished by hybridization or a vector

such as a virus or mite [71]. Successful transfer requires the transferred genes to become

functioning members of the receiving genome [71]. HGT is expected to be less likely the

more phylogenetically distant the original and receiving species are [192].

Incomplete Lineage Sorting

Incomplete lineage sorting (ILS) refers to the failure of two gene lineages to coalesce at

their speciation point. Also known as deep coalescence, this process is best understood un-

der the coalescent model [75,76,207,264,265]. The coalescent model explains evolutionary

process by going backwards in time and connecting gene lineages to a common ancestor

through a process of “coalescence” of lineage pairs. In this model, each species is treated

as a population of individuals, having a pair of alleles for each gene. The present day

variants of a gene (known as alleles) are then traced back in time across successive gener-

ations by following the ancestral alleles in the previous generation from which this given

alleles evolved. Eventually a point is reached where two alleles coalesce (i.e., they find

a common ancestor). The multi-species coalescent (MSC) model is the extension of this

general coalescent framework where multiple randomly mating populations corresponding

to multiple species are present.

Under the coalescent model, ILS can be a source of gene tree discordance, as the

common ancestry of gene copies at a single locus can extend deeper than speciation

events. The larger the effective population size and the shorter the branch length of the

evolutionary tree, the greater the chance of ILS or deep coalescence to occur [192,217].

Figure 2.7 shows an example of discordance due to ILS. The gene copies within species

B and C first meet at their corresponding speciation point as we go back in time. The
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A B C D

Figure 2.7: Example of gene tree-species tree discordance due to incomplete lineage sort-

ing. Going back in time, the gene copies within species B and C first meet at their

corresponding speciation point, but fail to coalesce. Both the lineages (dashed and solid

black lines) exist on deeper ancestral branch. The gene from C first coalesces with the

gene from species D, and subsequently with the gene from B.

speciation point is the most recent common ancestor of species B and C. However, the

gene copies fail to coalesce here. Both of these copies go further back in time, resulting in

two gene lineages on deeper ancestral branch. The extra lineage is shown by the dashed

black lines in Figure 2.7. Then the gene from C first coalesces with the gene from species

D, and subsequently with the gene from B.

Gene Duplication and Extinction

Gene duplication is a process that generates multiple gene lineages that coexists in a

species lineage [215]. A gene duplication event creates a second locus, and both loci

thereafter evolve independent of each other. This results in discordance between gene tree

and the containing species tree [112]. Also, some of the gene lineages could go extinct if

it decayed into a “pseudo-gene”, or if it evolved a new function and diverged [192]. This

phenomenon is knows as gene extinction (also known as gene loss) which too may result

in gene tree incongruence.
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2.2.6 Gene Tree Parsimony

Gene tree parsimony (GTP) is an optimization problem that estimates species trees from

a set of gene trees. In this approach, various possible species trees are assessed and for

each tree we determine what evolutionary events the species tree requires to explain the

observed gene trees. The tree that results in the minimum number of evolutionary events

is the most parsimonious tree [192].

As discussed earlier, there are three different classes of evolutionary processes by which

discordance between gene trees and species trees arise: horizontal gene transfer, incom-

plete lineage sorting, and gene duplication and loss. For each of these processes, the

parsimony criterion would be different. In case of horizontal transfer, the species tree

that minimizes the number of transfer events is sought. In case of deep coalescence or

ILS, we find the tree that minimizes the number of extra gene lineages that had to coexist

along species lineages. For gene duplication, the parsimony criterion is to choose the tree

minimizing duplication and/or extinction events [192].

It is plausible to construct a mixed method that allows for each of these discordance to

occur. However, it is certainly difficult [192]. Therefore, typically only gene duplication

and loss are considered in GTP [24].

2.2.7 Statistical Consistency

A species tree reconstruction method is said to be statistically consistent under a partic-

ular model of evolution if the probability of returning the true species tree converges to

one as the amount of data increases. Here the increase in date refers to increase in both

the number of sites (i.e. gene length) and the number of loci (i.e. the number of genes).

Let the set of genes in a study be G = {g1, g2, . . . , gk}. Let si be the number of sites

in gi (1 ≤ i ≤ k). Then A species tree estimation method is statistically consistent if the

estimated species tree converges to the true species tree as k → ∞, si
1≤i≤k

→ ∞.
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2.2.8 Species Tree Estimation Methods

A species tree estimation method takes a collection of gene trees as input and attempts

to estimate the species phylogeny. The various methods found in literature for estimating

species trees can largely be divided into two categories. These are concatenation and

summary methods.

In the concatenation approach (also known as combined analysis), alignments are

estimated for each gene and then concatenated into a supermatrix. The supermatrix of

alignments is then used to estimate the species tree. Concatenation does not consider gene

tree discordance. As such, when the genes differ in evolutionary history, this approach

can return incorrect trees with high confidence [74, 124,153,158,159,181].

Summary methods, on the other hand, construct species trees by summarizing a col-

lection of gene trees. These methods take the reason of discordance into account. Gene

tree parsimony methods such as estimating species trees by minimizing deep coalescence

(MDC) and minimizing duplication and loss (MGDL) are examples of summary methods.

Such methods are becoming more popular these days [124,180,181,199,200,209,236,292].

Summary methods such as STEM [152] ,STAR [182], *BEAST [124], BUCKy-pop [158],

GLASS [202], MP-EST [181] and ASTRAL [199, 200, 292] consider ILS as the reason for

discordance and are statistically consistent. On the other hand, methods such as greedy

consensus, minimize deep coalescence (MDC) [192], matrix representation with parsimony

(MRP) [22], matrix representation with likelihood(MRL) [209] etc. are not statistically

consistent, but perform well in practice.

2.2.9 Evaluation of Species Tree Estimation Methods

Here we describe the various standard ways of measuring species tree estimation error

on simulated datasets. Since the ground truth (i.e. the model or true species tree) is

known in a simulated dataset, we compare the species trees estimated by the methods of

consideration with this true tree. We now describe the metrics that are widely used to

quantify the species tree reconstruction error.
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False negative (FN) rate

The False negative (FN) rate is the proportion of the edges present in the true tree but

not present in the estimated tree. This is also known as the missing branch rate.

False positive (FP) rate

The FP rate is the proportion of the edges present in the estimated tree but not in the true

tree. For a binary tree, the FP rate is identical to the FN rate. However, for non-binary

trees, these quantities are not necessarily identical. The FP rate is not a good measure of

accuracy in the latter case. For example, let us assume that a species tree reconstruction

method produced a star (a tree with one internal node) for an arbitrary true tree. In this

case, the FP rate is zero even though the estimated tree fails to reconstruct the internal

edges.

Robinson-Foulds (RF) rate

The Robinson-Foulds (RF) rate is the ratio of the total number of false positive and false

negative edges to the total number of internal edges in the two trees. When true and

estimated trees are binary, the RF is identical to the FP and FN rates. While RF rate is

the most commonly used error metric, this metric is not appropriate when the trees are

not binary for the same reason described above.

Quartet support

The quartet support score [199] measures the similarity between a candidate tree T and

the input gene trees, and is computed as follows. Each input gene tree is decomposed into

its induced set of quartet trees (i.e., unrooted trees formed by picking four leaves). The

quartet support score of a given candidate species tree T is the total, over all the input

gene trees, of the number of induced quartet trees that T agrees with. As shown in [199],

the tree that optimizes the quartet support score is a statistically consistent estimator of

the true species tree under the multi-species coalescent model.
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2.3 Conclusion

In this chapter we have provided an in depth technical background of various methods

and concepts that are needed to comprehend the research conducted in this thesis. Next

chapter begins Part I of this thesis that deals with a set of protein attribute prediction

problems. In particular, in the next chapter, titled sub-Golgi Protein Type Prediction, we

focus on building a new sequence based computational model for classification of sub-Golgi

proteins.
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Part I

Protein Attribute Prediction





Chapter 3

sub-Golgi Protein Type Prediction

The Golgi apparatus (GA) is a key organelle for protein synthesis within the eukaryotic

cell. The main task of GA is to modify and sort proteins for transport throughout the cell.

Proteins permeate through the GA on the ER (Endoplasmic Reticulum) facing side (cis

side) and depart on the other side (trans side). Based on this phenomenon, we get two

types of GA proteins, namely, cis-Golgi protein and trans-Golgi protein. Any dysfunction

of GA proteins can result in congenital glycosylation disorders and some other forms of

difficulties that may lead to neurodegenerative and inherited diseases like diabetes, cancer

and cystic fibrosis. So, the exact classification of GA proteins may contribute to drug

development which will further help in medication.

In this chapter, we focus on building a new computational model that not only intro-

duces easy ways to extract features from protein sequences but also optimizes classification

of trans-Golgi and cis-Golgi proteins. After feature extraction, we have employed random

forests model to rank the features based on the importance score obtained from it. After

Much of the material in this chapter is taken without alteration from the following paper.

• Rahman, M. S., Rahman, M. K., Kaykobad, M., & Rahman, M. S. (2018). isGPT: An optimized

model to identify sub-Golgi protein types using SVM and Random Forest based feature selection.

Artificial Intelligence in Medicine 84 (2018) 90–100.
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selecting the top ranked features, we have applied Support Vector Machine (SVM) to

classify the sub-Golgi proteins. We have trained regression model as well as classification

model and found the former to be superior. The model shows improved performance

over all previous methods. As the benchmark dataset is significantly imbalanced, we have

applied Synthetic Minority Over-sampling Technique (SMOTE) to the dataset to make it

balanced and have conducted experiments on both versions. Our method, namely, identi-

fication of sub-Golgi Protein Types (isGPT), achieves accuracy values of 95.4%, 95.9% and

95.3% for 10-fold cross-validation test, jackknife test and independent test respectively.

According to different performance metrics, isGPT performs better than state-of-the-art

techniques. The source code of isGPT, along with relevant dataset and detailed experi-

mental results, can be found at https://github.com/srautonu/isGPT. A publicly acces-

sible web interface has also been established at: http://isgpt.research.buet.ac.bd/.

3.1 Introduction

An eukaryotic cell is defined by a membrane-bound nucleus. All eukaryotic cells have a

nucleus, a plasma membrane, ribosomes and cytoplasm [188]. Most of the eukaryotic cells

have other small membrane-bound structures in cytoplasm called organelles and Golgi

apparatus (GA) is one of them. It is a key organelle in protein synthesis along with some

other elements of the cell [66]. It consists of disk like membranes called cisternae which are

stacked together [157]. GA has three elements, namely, cis-Golgi, medial and trans-Golgi.

cis-Golgi is responsible for receiving proteins, while trans-Golgi releases the synthesized

proteins. The function of medial is to synthesize the received proteins from cis-Golgi

(see Figure 3.1, image source: [284]). Endoplasmic Reticulum (ER) builds proteins and

sends out to the cell through GA [284]. A side of GA facing ER (cis-side) captures those

proteins (also called cargo proteins) for synthesis and send those out via the other side

of GA facing the plasma membrane (trans-side). In the medial region, the cargo proteins

get modified by the Golgi enzymes through addition or removal of sugars. Modifications

may also occur through the addition of sulphate groups or phosphate groups [284].
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Figure 3.1: The Golgi apparatus and its synthesis process. (image source: [284])

Any functional deviation of GA may result in adaptable disorders during the synthesis

process in medial which may further contribute to inheritable and neurodegenerative

diseases such as diabetes [129], cancer [268], Parkinson’s disease [257] and Alzheimer’s

disease [17]. It is necessary to identify any rambling and damage in a timely manner

to better understand the problem of GA dysfunction. The current methods of treating

patients having these diseases include neuroprotective therapies and anti-inflammation

which are not able to provide a permanent solution [90]. Exact identification of sub-Golgi

proteins can provide new insight for scientists to recognize the dysfunctions subscribed

by Golgi proteins [267]. Thus, sub-Golgi (cis-Golgi vs. trans-Golgi) protein classification

is very important for more effective drug-development.

Significant amount of research have been conducted during the last decade to build

prediction tools for protein sub-cellular localization using machine learning methods [31,

92, 130, 169, 273, 291]. However, few tools have been developed for sub-Golgi protein

classification. Nevertheless, researchers nowadays are focusing on this topic and trying

to build efficient classification models. van Dijk et al. [269] did the pioneering work

to predict sub-Golgi localization of type II membrane proteins. They used amino acid

grouping in conjunction with string-based triads as well as 3D-structure based triads for

protein representation. Here, Support Vector Machine (SVM) [32] with linear kernel was

used as the classifier.
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Ding et al. [80] used increment of Shannon entropy (IH) on amino acid compositions

(AAC) and g-gap dipeptide compositions for protein representations. They then applied

Modified Mahalanobis Discriminant (MD) algorithm to predict the Golgi-resident pro-

teins. They achieved an accuracy of 74.7% using jackknife cross-validation test. Ding

et al. [79] further continued their previous work and proposed a g-gap dipeptide based

feature extraction technique. They used analysis of variance (ANOVA) test to select rel-

evant features and applied SVM as the learner. This time, they obtained an accuracy of

85.4% using jackknife cross-validation.

Jiao et al. [140] presented a model which computes Positional Specific Physico-Chemical

Properties (PSPCP) of a protein sequence. The PSPCP essentially integrates the Posi-

tion Specific Scoring Matrix (PSSM) with the different physicochemical property values.

ANOVA was applied for feature selection, while SVM with RBF kernel was used as the

learner, to achieve an accuracy of 86.9%. In a subsequent study [141], they applied mini-

mum Redundancy Maximum Relevance (mRMR) feature selection technique, instead of

ANOVA, on the same feature space. This improved the accuracy to 91%.

Both Ding et al. [79,80] and Jiao et al. [140,141] used a small benchmark dataset, where

there are only 150 GA proteins. In addition, the dataset is highly imbalanced - the number

of trans-Golgi proteins is significantly lower than the number of cis-Golgi proteins. Yang

et al. [288] have recently created an updated benchmark dataset where there are 304 sub-

Golgi proteins for training and 64 sub-Golgi proteins for testing the classification model.

They applied Synthetic Minority Over-sampling Technique (SMOTE) [43] to balance the

dataset. They conducted experiments on both the imbalanced and balanced datasets and

demonstrated improved accuracy with the balanced version. For feature selection, they

used random forests [34] based recursive feature elimination method. They then applied

random forests algorithm as the learning method as well. Their model shows accuracy

values of 88.5%, 93.8% and 90.1% for jackknife cross-validation, independent testing and

10-fold cross-validation, respectively.
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Very recently, Ahmad et al. [10] have also conducted similar kind of experiments

though their feature construction, feature selection and learning algorithms are different.

They have applied Fisher feature selection method to select relevant features and k-

nearest neighbor (KNN) algorithm as the learner. The model proposed by Ahmad et al.

reports accuracy values of 94.9%, 94.8% and 94.9% on the balanced benchmark dataset for

jackknife cross-validation, independent testing and 10-fold cross-validation, respectively.

Exploring previous studies, we note that there is still room for improvement because

even a small improvement in accuracy is highly demanding in bioinformatics tools. Im-

proved accuracy can also contribute to better drug-development which is maintained by

sensible computer-aided design [88,216].

There are three important tasks in the pathway of protein function predictions [241].

These include processing of datasets, construction of features from protein sequences and

application of a suitable classification algorithm. In this chapter, we first construct a large

set of features based on three feature construction techniques and then apply random

forests algorithm on the constructed feature set. We select relevant features based on

the importance score provided by the random forests model. Then, we apply SVM on

the selected features for both classification and regression analyses. Our tool, named

identification of sub-Golgi Protein Types or isGPT in short, is evaluated based on several

well-established performance metrics and demonstrates superiority over existing methods.

Our overall contributions are summarized as follows:

• We present an easy and flexible method that produces several position specific as

well as position independent features from protein sequences. Then feature selection

is performed based on the importance score provided by the random forests model.

• We model the problem of sub-Golgi protein localization both as a classification

problem and a regression problem. Using SVM, we train classification models as

well as regression models on the benchmark (imbalanced) dataset as well as on the

dataset, balanced with a celebrated balancing technique called SMOTE. We make

a comparative analysis of the different models.
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• Finally, through extensive experiments, we compare isGPT with the methods of [288]

and [10] which are currently two state-of-the-art techniques. Our method shows su-

perior results according to different performance metrics.

3.2 Material and Methods

In what follows, we describe our methodology in accordance with Chou’s 5-step proce-

dure [61], which was briefly described in Section 2.1.1.

3.2.1 Benchmark Dataset

We have collected the training and testing benchmark datasets from Yang et al. [288],

which have also been used by Ahmad et al. [10] recently to measure the performance

of their method. The training dataset1 contains 304 sub-Golgi protein sequences among

which there are 87 sequences of cis-Golgi type and 217 sequences of trans-Golgi type.

None of the proteins has more than 40% pairwise sequence identity with any other proteins

in the dataset.

The testing dataset is used for independent testing and it contains 13 cis-Golgi protein

sequences and 51 trans-Golgi protein sequences. This is the same set that was used

in [10, 288] for independent testing and was first introduced by Ding et al. [79]. It is

important to note here that the training and testing datasets are mutually exclusive.

We can easily observe that both training and testing datasets are highly imbalanced

because these datasets contain 71.4% and 80% trans-Golgi protein sequences, respectively,

among all sub-Golgi protein sequences.

1Yang et al. constructed this dataset from Universal Protein Knowledge base (UniprotKB) [6]
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Figure 3.2: Amino Acid Composition (AAC), on average, for the different sub-Golgi

protein classes in the training dataset.

3.2.2 Protein Sample Representation

A protein sample can be represented by its primary sequence, as shown in Equation 2.1.

To represent each protein sample as a fixed length feature vector that is independent of

the protein sequence length, we have utilized Chou’s general formulation of PseAAC [61]

(described in Section 2.1.7). The generalized PseAAC of a protein, as defined in Equa-

tion 2.2, is as follows:

P =
[

ψ1 ψ2 . . . ψu . . . ψΩ

]T

The classical AAC is represented by subscripts 1 ≤ u ≤ 20 and the subsequent features

express sequence order information through one or more different schemes. We have

calculated the average AAC in the training dataset for cis-Golgi and trans-Golgi proteins

(see Figure 3.2). We see that there is only slight difference in each amino acid ratio

between cis-Golgi and trans-Golgi proteins. This indicates that AAC alone is unlikely to

be able to categorize an unknown sub-Golgi protein sequence.
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The sequence order related features that we have extracted can largely be divided

into two categories: position independent and position specific. Among the position inde-

pendent features, we have used Dipeptides (Dip), Tripeptides and n-Gapped-Dipeptides

(nGDip). These features have widely been used in the literature. The position specific

features, on the other hand, are something that are introduced in this thesis. All these

feature extraction techniques have already been described in Section 2.1.7.

AAC, Dip and Tripeptides derive from the generalized form of n-grams feature type

where frequencies of n-length peptides are used as feature vectors. Dip has also been

successfully used in [10] for sub-Golgi protein type prediction. In our study, we extract

a total of 8420 n-grams features, for n = 1, 2 and 3. Note that, for some features, all

the samples of sub-Golgi protein sequences may produce 0 frequency. Such features will

naturally have no effect on the learning model. We have carefully removed these from the

feature vector. Subsequently the n-grams feature count got reduced to 8348.

We have also applied the n-Gapped-Dipeptides (nGDip) feature extraction technique

in this work. This technique has already been applied in the problem of sub-Golgi protein

identification: both Ding et al. [79, 80] and Yang et al. [288] have utilized this feature

scheme in their works. Yang et al. called it g-Gap Dipeptide Composition and used g = 3

only. In our work, rather than considering one specific gap, we have used nGDip (GDPC)

feature type for gaps of upto 15 positions. Thus we get a total of 15 × 400 = 6000

n-Gapped-Dipeptides features.

Another type of feature scheme that we have used in this work is the Position Specific

n-grams (PSN). As described in Section 2.1.7, PSN generates features which identify

whether specific n-grams occur in specific positions in the protein sequence. The value

of each such feature in any sequence will therefore be either 0 or 1 (on or off ). If the

maximum sequence length is L, the feature space size would be L×20n. For small sample

sizes, however, many of the features will not have discriminating scores. Such features

that are on in all samples (or vice verse) can be excluded from the final feature vector.

Thus the actual size may be considerably smaller than the theoretical maximum.
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Like in the case of position independent features, we wanted to consider n-grams for

n = 1, 2 and 3 in case of PSN as well. However, the feature space became too large for the

computing power and the memory at the disposal of the machines we have used. As such,

rather than considering each position of the sequence, we were motivated by the concept

of Split Amino Acid Composition (SAAC), which was also used by Ahmad et al. [10]. In

SAAC, a protein sequence is split into three parts: 25 residues at the N-terminus, the

center part and the 25 residues at the C-terminus. Each portion is handled separately

for feature extraction. In our case, we construct the PSN only from the N-terminus part.

However, even with this part, the feature space is still too large. Therefore, we considered

only the first 10 positions of the N-terminus part.

For a specific position, 20, 400 and 8000 PSN features can be generated for n= 1, 2,

and 3 respectively. Since there are only 304 training samples, no more than 304 features

can be generated for each of n= 2 and 3, such that at least one sample has the respective

feature on. Thus the number of features with discriminating scores cannot be larger than

(10 × 20 + 9 × 304 + 8 × 304) = 5368. Depending on the actual samples, this number

may be less than this higher bound – some features will be on in many samples, whereas

some will be off in all samples. The actual number of PSN features for our training set

was 4492.

So, counting all types of features, we have extracted a total of 8348 + 6000 + 4492 =

18840 features. Our combined feature space thus can be modeled as a version of Chou’s

PseAAC as described below. For 1 ≤ u ≤ 20, we have the amino acid composition in

the feature vector. From 21 ≤ u ≤ 8348, the dipeptide and tripeptide compositions are

represented. From 8349 ≤ u ≤ 14348, the features in this vector comes from the nGDip

feature space. Finally, the PSN features construct the remaining portion of the PseAAC,

from 14349 ≤ u ≤ 18840 = Ω.

49



3.2.3 Prediction Algorithm

It has been observed in the literature that there is similarity in Amino Acid Composition

(AAC) [58] among cis-Golgi proteins and trans-Golgi proteins [288]. Thus, traditional

computational methods using Basic Local Alignment Search Tool (BLAST) [15] is in-

efficient to distinguish between cis-Golgi and trans-Golgi proteins. Machine learning

methods can be a wise alternative option, which we have pursued in this chapter.

A diagram of our model construction workflow has been shown in Figure 3.3. We

process all sub-Golgi protein sequences through isGPT feature construction step. In this

step, several position independent and position specific features are extracted from the

training dataset. All the features are obtained directly from the sequences. Among the

position independent features are n-grams and n-gapped dipeptide based features, which

have widely been used in literature. All these features are combined together to make

a hybrid feature space. As we already know that the benchmark dataset is significantly

imbalanced, we conduct Synthetic Minority Oversampling Technique (SMOTE) [43] fol-

lowing previous methods to make a balanced dataset. In the feature selection step, fea-

tures are ranked based on random forests based importance score and only a subset of the

top ranked features are selected based on 10-fold cross validation performance. Finally,

Support Vector Machine (SVM) is applied on the selected features to compute the final

predictor.

As mentioned in Section 3.1, we have modeled the problem of sub-Golgi protein lo-

calization as a classification as well as a regression problem. The problem is inherently

a binary classification problem where cis-Golgi represents the minority class and trans-

Golgi represents the majority class. To model it as a regression problem, we give each

cis-Golgi protein a score of 1 while each trans-Golgi protein gets a score of 0. SVM

is then applied in regression mode, which is also known as Support Vector Regression

(SVR). Finally a class discriminating threshold is identified to optimize the classification

performance. The threshold can be tuned to increase the sensitivity or specificity to the

desired level. This is where the benefit lies in modeling it as a regression problem.
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Figure 3.3: isGPT model construction. In the first step, position specific and position

independent features are extracted from the sub-Golgi protein sequences. Among the

position independent features are n-grams and n-gapped dipeptide based features. The

whole dataset, along with extracted features, then goes through Synthetic Minority Over-

sampling Technique (SMOTE) to make a balanced dataset. To optimize the model,

features are selected based on random forests based importance score followed by a wrap-

per method. Finally, SVM classification or regression method is applied on the selected

features to compute the final predictor.

Feature Selection Technique

As mentioned in Section 3.2.2, we extracted a total of 18840 features to represent the

protein sequences. It will be computationally expensive to work with such a large feature

vector, both during the learning phase as well as in the prediction phase. Besides, not

all features may always be effective in the learning model [117,242]. As such, we need to
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select a set of relevant features that will contribute to the learning model in improving

accuracy. The feature selection step has been applied in previous studies of sub-Golgi

protein type identification as well. For example, Yang et al. [288] used random Forests-

Recursive Feature Elimination (RF-RFE) which is a wrapper method. Ahmad et al. [10],

on the other hand, applied a filtering approach, using the Fisher selection technique. In

this chapter, we have employed a composition of filter and wrapper approaches.

In the filtering phase, we apply random forests algorithm on the entire feature set

to generate a model. Through this model creation, the random forests algorithm is able

to set an importance score (mean decrease in accuracy) to each of the input features.

This importance score indicates the global importance over all out-of-bag cross validated

predictions and is very robust as it is averaged over all predictions for a given feature

variable. The importance score is used to rank the features and subsequently filter out

irrelevant features.

In Figure 3.4, we see that when we take all the features into account, the summation of

importance score for n-Gapped-Dipeptides (nGDip) based features is quite high. However,

for the n-grams based features as well as position specific n-grams (PSN) this sum is in

fact negative. Overall, only the top 2985 features have positive importance score. From

feature 2986 up to feature 15980, the importance score of each feature is 0. Beyond that,

the scores actually become negative. Therefore, we further examine the top 3000 features.

When we select this feature subset, the total importance scores for all three feature types

are positive. Among these 3000 features, there are 2105 nGDip features, 52 PSNs and

843 n-grams.

Subsequently we apply the wrapper phase. Instead of directly selecting the 3000 fea-

tures, we further experimented with the top 3500, 3000, 2500, 2000 and 1500 features

by training SVM regression models on the benchmark dataset as well as on the dataset

balanced with SMOTE. In Figure 3.5, we have reported the Receiver Operating Charac-

teristics (ROC) curves from these experiments, as obtained using 10-fold cross validation.

Since the dataset is imbalanced, ROC-Curve alone is not able to identify the significance of
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Figure 3.4: Categorized feature importance based on mean decrease in accuracy, as ob-

tained from random forests model. The aggregate mean decrease in accuracy is better for

top 3000 features (right) compared to all features (left). PSN: Position Specific n-grams,

n-grams: Combination of AAC, dipeptide and tripeptide composition features, nGDip:

n-Gapped Dipeptides.

selected features. In fact it has been argued in the literature that for imbalanced datasets,

Precision Recall Curve (PR-Curve) is of more significance than ROC-Curve [73]. Thus,

we also report PR-Curve in Figure 3.5.

The closer the ROC curve is to the top-left corner of the graph, the better is the

performance of the model. On the other hand, the PR curve should be as close to the

top-right corner as possible. Therefore, from the curves of Figure 3.5, it is clear that the

performance with 3500 or 3000 features is much inferior to the other feature subsets. The

curves further demonstrate the importance of balancing the dataset. Perhaps a better

articulation of these points are in Table 3.1, where the area under the ROC and PR curves

for the different settings are recorded.

Subsequently, we have further examined the feature space comprising the top-ranked

1500 to 2800 features. First, we ran SVM with 10-fold cross validation using the top 2800

features. The C parameter of the regularization term in the Lagrange formulation of SVM

was varied from the set {0.3, 1, 3, 10, 30, 100}. Thus 6 different models were constructed

and we evaluated their performances. Then, from the feature set, we eliminated the
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Figure 3.5: ROC-Curves (left) and PR-Curves (right): The curves are generated by

regression analysis with 10-fold cross validation, using top 3500, 3000, 2500, 2000 and

1500 features, respectively. The benchmark (imbalanced) dataset was used to generate

the top curves. For the bottom curves, the dataset was balanced using SMOTE.

Table 3.1: Area under ROC and PR curves for different number of top-ranked features

selected.
Number of

Features

Without SMOTE With SMOTE

auROC auPR auROC auPR

3500 0.55 0.33 0.73 0.68

3000 0.59 0.37 0.74 0.68

2500 0.75 0.53 0.95 0.95

2000 0.78 0.60 0.95 0.95

1500 0.75 0.57 0.95 0.95

54



least ranked 50 features, recomputed 6 more models in the same way and measured their

performances. We repeated this process until the feature subset size was reduced to 1500.

Thus a total of 162 models were evaluated. We finally selected the combination of C

and feature subset that yielded the best performance. This wrapping step was applied

independently both in classification and regression analysis with the native (imbalanced)

dataset as well as with the dataset balanced with SMOTE.

3.2.4 Predictor Evaluation

To objectively measure the performance of isGPT, we have applied jackknife cross-validation,

10-fold cross-validation and independent testing. These methods have already been briefly

described in Section 2.1.8. As performance metrics, we have used accuracy, sensitivity,

specificity and Matthew’s Correlation Coefficient (MCC). We have also analyzed the area

under ROC curve (auROC) and PR curve (auPR). The performance metrics and curves

have been described in Section 2.1.9.

For parameter tuning, van Dijk et al. [269] used a nested cross validation setup to avoid

optimistic bias in the cross validation performance. However, recent works in sub-Golgi

protein localization have not performed cross validation nesting. Since we compare our

results with the recent methods, we have accordingly avoided nested cross validation. The

concern of optimistic bias in cross validation is mitigated by measuring our performance on

the independent dataset as well. The performance results, reported later in this chapter,

indicate that our cross validation performance generalizes well in the independent testing.

We have conducted experiments using R language (version 3.2.1) on three different

machines with the following configurations:

• A Desktop computer with Intel Core i3 CPU @ 1.90GHz x 4, Ubuntu 15.10 64-bit

OS and 4 GB RAM.

• A Desktop computer with Intel Core i7 CPU @ 3.30GHz x 4, Windows 7, 64-bit OS

and 8 GB RAM.
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• A server machine with Intel Xeon CPU E5-4617 0 @ 2.90GHz x 6, Ubuntu 13.04

64-bit OS, 15 MB L3 cache and 64 GB RAM.

To construct the isGPT model, we have used random forests and SVM machine learn-

ing algorithms. These are available respectively from R packeges randomForest and e1071.

In the random forests algorithm, we have used the default parameters setting. In particu-

lar, the number of trees (ntree) was restricted to 500, while the number of variables tried

at each split (mtry) was set to square root of the total number of features.

As discussed earlier, random forests model has been used for feature selection, while

SVM is used to learn the model. Since our training set is relatively small, we have used

linear kernel function in SVM to avoid overfitting. The cost parameter was varied as

described in Section 3.2.3. Data were scaled internally to zero mean and unit variance as

per the default behavior of the SVM implementation in e1071 package.

All codes have been written in R language where we have used some available R

packages. We have also used ROCR and pracma R packages for performance evaluation

of our model. For balancing the dataset, we used an implementation of SMOTE from

Weka 3 Data Mining Software [104,120].

3.2.5 Predictor Availability

isGPT is freely available as an R script at https://github.com/srautonu/isGPT. Addi-

tionally, we have established a publicly accessible web server at http://isgpt.research.

buet.ac.bd/ to facilitate wide adoption.

3.3 Results

In this section, we describe several experiments and analyze their results. We have com-

pared results from both the regression analysis and the binary classification. We have

also compared the results of our proposed technique with state-of-the-art methods.
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Figure 3.6: Accuracy and Matthew’s Correlation Coefficient (MCC) of different feature

extraction techniques. The results are obtained from 10-fold cross validation of SVM re-

gression model trained on the benchmark dataset balanced using SMOTE. PSN: Position

Specific n-grams, n-grams: Combination of AAC, dipeptide and tripeptide composition.

nGDip: n-Gapped-Dipeptides. COM: Combination of all the feature extraction tech-

niques. The left figure is generated using the features of specific feature space that are

within top 2500 positions in the combined space. In the right figure, for each feature

space, corresponding top 2500 features are used.

3.3.1 Impact of Feature Extraction Techniques

To analyze the efficacy of the different feature extraction techniques, we take a closer look

at the top 2500 features. In this subset, there are 1772 nGDip features, 34 PSN features

and 694 n-grams features. With the SMOTE-balanced dataset, we trained three different

SVM regression models using each of these three subsets of features. In another model, we

trained with all the 2500 features. In Figure 3.6, the accuracy and MCC values from these

four models are compared in the left side graph. The nGDip feature extraction technique

is a clear winner over the other two, while the combination of all performs slightly better

than that.

Note, however, that in the above comparison, the size of the feature vectors was widely

different. Therefore, we conducted another experiment where we trained 3 different SVM

regression models using top 2500 features of the 3 individual feature extraction techniques.
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Table 3.2: Comparison of classification and regression models of isGPT. In the Type

column, ‘C’ and ‘R’ are used to represent classification and regression respectively. The

‘w/ S’ prefix is added if the model was computed on the dataset balanced with SMOTE.

Acc: Accuracy, Sn: Sensitivity, Sp: Specificity, MCC: Matthew’s Correlation Coefficient.

Type
10-fold Cross-Validation Jackknife Cross-Validation Independent Test

Acc Sn Sp MCC Acc Sn Sp MCC Acc Sn Sp MCC

C w/ S 94.7 95.9 93.6 0.89 94.9 95.9 94.0 0.90 93.8 69.2 100 0.80

C 80.3 46.0 94.0 0.48 80.6 48.3 93.6 0.49 95.3 76.9 100 0.85

R w/ S 95.4 95.4 95.4 0.91 95.9 95.9 95.9 0.92 95.3 84.6 98.0 0.85

R 80.9 48.2 94.0 0.50 81.9 56.3 92.2 0.53 92.2 76.9 96.1 0.75

We compare the performance of these models to the combined model in the right side

graph of Figure 3.6. The superiority of combined feature space over the individual feature

spaces hold in this setting as well. PSN, n-grams and nGDip feature extraction techniques

individually achieve accuracy values of 93%, 93% and 94%, respectively. When the com-

bined feature space is used instead, the accuracy increases to 95%. Similarly the MCC

increases from respective individual values of 0.86, 0.88, 0.86 to 0.91 for the combined

feature space.

3.3.2 Impact of Data Imbalance in isGPT Learning Model

As mentioned earlier, the benchmark dataset is highly imbalanced. Both Yang et al. [288]

and Ahmad et al. [10] reported that the dataset, balanced using Synthetic Minority Over

Sampling Technique (SMOTE), performs better than the imbalanced dataset to clas-

sify the sub-Golgi proteins. To be consistent with their approach, we too have applied

SMOTE to balance the data by increasing the number of Cis-Golgi data points to 217.

To examine the impact of balancing, we have conducted experiments both before and

after balancing and then compared the results. In both cases, we have run regression

as well as classification models. As discussed earlier, we examined 162 different models

in each experiment by varying the regularization parameter C and the feature vector
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Table 3.3: Optimal parameters for classification and regression models of isGPT, based

on 10-fold and jackknife cross-validation results. In the Model Type column, ‘C’ and ‘R’

are used to represent classification and regression respectively. The ‘w/ S’ prefix is added

if the model was computed on the dataset balanced with SMOTE

Model Type Number of Features C Threshold

C w/ S 2800 10 N/A

C 2050 1 N/A

R w/ S 2800 1 0.58

R 2250 10 0.44

size and measured performance using 10-fold cross validation. The models yielding the

best accuracy were further validated using Jackknife cross validation. Subsequently, the

best models, as determined by the jackknife accuracy, were applied to the separate test

dataset for independent testing. In Table 3.2, we have summarized the results from our

experiments. We have highlighted the best results in bold faced fonts. The impact of

data balancing is clearly evident. Also, we see that the regression model performs better

than the classification model. So, we have subsequently compared the results from the

regression model on the SMOTE-balanced dataset with previous studies.

In Table 3.3, we have recorded the optimal parameters for each model. These include

the number of features and the C constant of the regularization term in SVM. For regres-

sion models, the class discriminating threshold is also recorded. These values are obtained

based on the 10-fold and jackknife cross validation results.

3.3.3 Comparison between isGPT and Existing Techniques

In Table 3.4, we have compared the performance of isGPT regression model with previous

methods. The results reported for isGPT as well as for Yang et al. [288] and Ahmad et

al. [10] are for the same benchmark dataset, after balancing was performed using SMOTE.

The work of Ding et al. [79, 80] uses an earlier dataset of smaller size. We have reported

results for jackknife cross-validation, independent test and 10-fold cross-validation, with
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Table 3.4: Comparison of isGPT regression model with previous methods. Acc: Accuracy,

Sn: Sensitivity, Sp: Specificity, MCC: Matthew’s Correlation Coefficient.

Tools
Jackknife Cross-Validation Independent Testing 10-fold Cross-Validation

Acc Sn Sp MCC Acc Sn Sp MCC Acc Sn Sp MCC

[80] 74.7 69.6 79.6 0.52 - - - - - - - -

[79] 85.4 73.8 90.5 0.65 85.9 69.2 90.2 0.58 - - - -

[288] 88.5 88.9 88.0 0.76 93.8 92.3 94.1 0.82 90.1 90.8 89.4 0.80

[10] 94.9 97.2 92.6 0.90 94.8 94.0 93.9 0.86 94.9 97.2 92.6 0.90

isGPT 95.9 95.9 95.9 0.92 95.3 84.6 98.0 0.85 95.4 95.4 95.4 0.91

the best results highlighted in bold faced fonts. 10-fold cross-validation results are absent

in [79]; both independent testing results and 10-fold cross-validation results are absent

in [80]. As such, we have marked the corresponding cells in the table by ‘-’ symbol.

We see that isGPT achieves an accuracy of 95.9%, 95.3% and 95.4% for jackknife cross-

validation, independent testing and 10-fold cross-validation, respectively. In comparison,

the previous best method (Ahmad et al. [10]) respectively achieved an accuracy of 94.9%,

94.8% and 94.9%. So, in all cases, isGPT shows improved performance. In terms of

MCC, isGPT demonstrates superiority in jacknife and 10-fold cross-validation - compare

isGPT’s respective scores of 0.92 and 0.91 to the previous best: 0.90 and 0.90. In case

of independent testing, the MCC score of isGPT is slightly behind than that of [10].

However, we believe that the latter value might have been erroneously reported. This is

elaborated in the ‘Discussion’ section. Overall, it is evident that isGPT performs better

than all existing methods.

3.4 Discussion

In this section, we briefly discuss results we have obtained, previous results as well as key

differences between our work and state-of-the-art methods. Table 3.5 compares isGPT

with earlier works in terms of the different steps taken in building the prediction model.

The novelty in isGPT lies in the addition of tripeptide composition and PSN features;

and in the use of combination of random forests and SVM for feature selection.
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Table 3.5: Comparison of of different steps in model building in isGPT vs. prior art.

Tools Benchmark Feature Extraction Feature Classifier

Dataset Technique(s) Selection

van Dijk

et al. [269]
[269]

Amino acid grouping

String-based triads

3D-structure based triads

No
SVM

(Linear)

Ding

et al. [80]
[80]

Amino acid composition

Gapped dipeptide composition

Increment of Shannon entropy

No
Modified

MD

Ding

et al. [79]
[79] Gapped dipeptide composition

ANOVA

(83 features)

SVM

(RBF)

Jiao

et al. [140]
[79]

Position Specific Physico-Chemical

Properties (PSPCP)
ANOVA

SVM

(RBF)

Jiao

et al. [141]
[79]

Position Specific Physico-Chemical

Properties (PSPCP)
mRMR

SVM

(RBF)

Yang

et al. [288]

[288]

SMOTE

Common Spatial Patterns (CSP)

PSSM-Dipeptide Composition

Bi-gram PSSM

Evolutionary Difference-PSSM

Gapped dipeptide composition

RF-RFE

(55 features)

Random

forests

Ahmad

et al. [10]

[288]

SMOTE

Dipeptide composition

Split-PseAAC

Bi-gram PSSM

Fisher

(83 features)
KNN

isGPT
[288]

SMOTE

Amino acid composition

Dipeptide composition

Tripeptide composition

Gapped dipeptide composition

Position specific n-grams

Random forests

filter

SVM wrapper

(2800 features)

SVM

(Linear)

SVR

(Linear)

3.4.1 Consistency Check of Earlier Results

During our comparative analysis with earlier works, we attempted to check the consistency

of earlier results. As we know, the independent dataset has 13 cis-Golgi and 51 trans-
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Golgi proteins. Since cis-Golgi class has lesser data, conventionally it should be the

positive class in a binary classification model. Therefore, using the symbols introduced in

Section 2.1.9, P = 13 and N = 51. From the accuracy, sensitivity and specificity values,

we can now compute the TP, TN in the earlier works, using Equation 2.3.

From the data reported by Yang et al. [288], since sensitivity = TP/P , we find that

TP = 11.99 ≈ 12. Therefore, FP = 1. Similarly, from the specificity data, we can

find, TN = 47.99 ≈ 48. From accuracy data, we can find that TP + TN = 60, which

is consistent with the already obtained values of TP and TN . Now, we can further

compute that FN = P − TP = 1 and FP = N − TN = 3. Plugging these values into

MCC equation gives us 0.82. So, Yang et al.’s data is consistent.

Now, let us complete the same exercise for the results reported by Ahmad et al. [10].

From the sensitivity data, we can find that TP = 12.22 ≈ 12. If we accept it to be 12

then the sensitivity should have been 92.3, not 94. Similarly, from the specificity data, we

can find that TN = 47.8948 ≈ 48. If we take it as 48 then specificity should have been

94.1, not 93.9. So, in both cases we find some inconsistency. Perhaps, Ahmad et al. took

trans-Golgi to be the positive class. In that case, we should have P = 51 and N = 13.

We can then calculate TP = 47.94 ≈ 48 and TN = 12.21 ≈ 12. Like before, the rounding

off error seems too high. In both scenarios, plugging the values into the MCC equation

yields, 0.82. But, the value reported in the paper is 0.86. Thus, some inconsistency has

been introduced in the reported data of Ahmad et al. In fact, they made another minor

reporting error: in their paper the data from [80] and [79] have been swapped.

3.4.2 Choice of Class Discriminating Threshold in isGPT

Now onto a discussion about the class discriminating threshold in the isGPT regression

mode. In the regression model, trained with the imbalanced dataset, the accuracy and

MCC values in independent testing is the best when the threshold is between 0.41 to

0.47. The optimal threshold (0.44), as chosen by the cross validation methods, does fall

in this range. This is not the case in the regression model trained with the SMOTE-
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Figure 3.7: Response of different performance metrics against variation of class discrimi-

nating threshold. The measurements are done on independent testing using a regression

model trained on the imbalanced dataset (Left) as well as the SMOTE-balanced dataset

(Right).

balanced dataset. In this case, the 0.58 threshold did not yield the best performance in

the independent testing. Instead, we had to set the threshold to 0.40.

To better analyze the impact of the threshold, the response of different performance

metrics in the independent testing while changing the threshold has been plotted in Fig-

ure 3.7. The Left side graph therein does confirm that the thresholds in the range 0.41

to 0.47 produce the maximum MCC as well as accuracy for the independent testing in

case of the regression model trained using imbalanced benchmark dataset. The right side

graph is plotted using a model trained with the SMOTE-balanced dataset. In this case,

we observe a good range of threshold between 0.33 to 0.53, where both MCC and accu-

racy values are very high, with a peak MCC observed for the threshold of 0.39. While

the peak value (0.85) is very satisfactory, in the remaining parts of this plateau, MCC

remains competitive, between 0.80 to 0.81. Therefore, in our final predictor, we have set

a default threshold of 0.50. The 10-fold cross validation with this threshold yields an ac-

curacy of 94.7% and MCC of 0.90 which are competitive with state-of-the-art predictors.

Biologists using isGPT can tweak the threshold to further meet their experimental goal

(i.e. increased sensitivity or specificity).
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3.4.3 Large Feature Space Independent of PSSM

Finally, we discuss a key point that distinguishes our work from the state-of-the-art meth-

ods. We explored a large feature space, comprising 18840 features and then selected 2800

features for training the model. The size of the selected feature set is way higher than ear-

lier studies. Ahmad et al. [10] used 83 dimensional feature vector, while Yang et al. [288]

selected 55 features. However, it is important to note that both of the above mentioned

methods use features derived from the Position Specific Scoring Matrix (PSSM). The

PSSM can be computed from PSI-BLAST [15] by searching the non-redundant protein

database using at least three iterations. As such, this is a time consuming step. Our

approach, on the other hand, can extract all the necessary features from a target protein

in a single pass along the sequence and then use the classifier to predict its class. On

the server machine with Intel Xeon CPU E5-4617 0 @ 2.90GHz x 6, 64 GB RAM, PSSM

generation for the smallest sequence (116 residues) in the test set (Accession Id: O95183)

took around 10 minutes 30 seconds. For the largest sequence (Accession Id: Q55EI3, 4241

residues), almost 28 minutes were needed. In contrast, isGPT completed the prediction

for the entire test set in less than two and a half minutes.

Besides, the PSSM based representation of protein is heavily dependent on the database

being searched for homology information. If the target protein does not have enough ho-

mologous sequences in the database, then the generated PSSM cannot describe the pro-

tein well. Therefore, any prediction model dependent on PSSM information will produce

wrong predictions in such a case [164]. The work by Ahmad et al. and Yang et al. are

susceptible to this issue. isGPT, on the other hand, is completely resilient to it as it does

not have any dependence on PSSM.

3.5 Conclusion

In this chapter, we present isGPT, an optimized model to identify sub-Golgi protein

types. As the training dataset is significantly imbalanced, we use SMOTE to balance
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the dataset. We apply a combination of sequence based feature extraction techniques

followed by a random forests based novel feature selection technique. Finally, Support

Vector Machine (SVM) is employed to train a prediction model that can distinguish

between trans-Golgi and cis-Golgi proteins. Our approach outperforms state-of-the-art

techniques according to different performance metrics. Our predictor is available as an

R script that can readily be applied to target protein sequences, without dependency on

any other services or pre-processing (e.g. computation of PSSM). Since user-friendly and

publicly accessible web-servers represent the future direction for developing practically

more useful models [115, 162, 167, 186, 266, 293], we have thus made isGPT available as a

web based predictor. We hope the appeal of isGPT, in its simple model and ease of access,

will attract biologists in applying this new predictor in their relevant research projects.

In the next chapter, DNA-binding protein prediction, we build a classification model

to predict whether a given protein sequence would bind to a DNA or not. Like isGPT, our

work for DNA-binding protein prediction too puts emphasis on sequence based features

for protein sample representation.
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Chapter 4

DNA-binding Protein Prediction

A DNA-binding protein (DNA-BP) is a protein that can bind and interact with a DNA.

DNA-BPs regulate and effect various cellular processes like transcription, DNA replica-

tion, recombination, repair and modification. As such, these proteins can potentially be

used for drug development in treating genetic diseases and cancers. This is why identifica-

tion DNA-BPs is a very important task. As the experimental methods of this important

task are expensive as well as time consuming, fast and accurate computational methods

are sought for predicting whether a protein can bind with a DNA or not. In this chap-

ter, we focus on building a new computational model to identify DNA-binding proteins

in an efficient and accurate way. Our model extracts meaningful information directly

from the protein sequences, without any dependence on functional domain or structural

information. After feature extraction, we have employed random forests model to rank

the features. Afterwards, we have used Recursive Feature Elimination (RFE) method

to extract an optimal set of features and trained a prediction model using Support Vec-

tor Machine (SVM) with linear kernel. Our proposed method, named as DNA-binding

Much of the material in this chapter is taken without alteration from the following paper.

• Rahman, M. S., Shatabda, S., Saha, S., Kaykobad, M., & Rahman, M. S. (2018). DPP-PseAAC:

A DNA-binding protein prediction model using Chou’s general PseAAC. Journal of theoretical

biology, 452, 22–34.
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Protein Prediction model using Chou’s general PseAAC (DPP-PseAAC), demonstrates

superior performance compared to the state-of-the-art predictors on standard benchmark

dataset. DPP-PseAAC achieves accuracy values of 93.21%, 95.91% and 77.42% for 10-fold

cross-validation test, jackknife test and independent test respectively. The source code of

DPP-PseAAC, along with relevant dataset and detailed experimental results, can be found

at https://github.com/srautonu/DNABinding. A publicly accessible web interface has

also been established at: http://dpp-pseaac.research.buet.ac.bd.

4.1 Introduction

A DNA-binding protein (DNA-BP) is a protein that can bind and interact with a DNA.

Such a protein is composed of DNA binding domains that include transcription factors,

nucleases and histones. The transcription factors modulate the process of transcription,

while the nucleases can cleave DNA molecules. Histones, on the other hand, are involved

in chromosome packaging in the cell nuclei. Figure 4.1 shows examples of protein DNA

binding interactions: in the left figure, a transcription factor is bound to a DNA, while

in the right figure, the restriction enzyme EcoRV is interacting with its target DNA.

The DNA-BPs thus perform two main functions: firstly, they organize and compact the

DNA and secondly, they regulate and affect various cellular processes like transcription,

DNA replication, recombination, repair and modification. Therefore, the DNA-BPs can

potentially be used for drug development in treating genetic diseases and cancers [116,161].

This is why developing efficient and highly accurate methods to identify DNA-BPs is a

very important research problem in the field of molecular biology.

Traditionally, the DNA-BPs have been identified through different experimental meth-

ods. These include filter binding assays [126], genetic analysis [105], X-ray crystallogra-

phy [57], chromatin immunoprecipitation on microarrays [35] etc. However, these ex-

perimental methods are costly and time consuming. On the contrary, the number of

sequence-known proteins has grown exponentially in recent years due to the rapid devel-
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Figure 4.1: DNA-binding proteins bound to respective target DNAs. (Left) The lambda

repressor helix-turn-helix transcription factor bound to its DNA target. Created from

PDB 1LMB. Image source: [1]. (Right) The restriction enzyme EcoRV in a complex

with its substrate DNA. Created from PDB 1RVA. Image source: [4].

opment of fast sequencing technologies. To catch up, researchers have started to rely on

computational methods to identify DNA-binding proteins. These methods can largely be

categorized into two groups: structure based methods and sequence based methods.

Structure-based methods depend on the structural information of the protein se-

quences. These include high-resolution 3D structure, accessible surface area, torsion

angles, structure motifs etc. Stawiski et al. [256] did the pioneering work in identi-

fying DNA-BPs using structural information. They extracted 12 parameters from the

detailed atomic structure of the protein. The calculation of these parameters requires

analysis of electrostatic patches, surface clefts and conservation analysis of the sequence.

A three-layer artificial neural network (ANN) was used for the classification task. Ahmad

et al. [11], on the other hand, used a two-layer neural network with parameters calculated

solely from bulk electrostatic properties.

Szilágyi et al. [261] subsequently identified a flaw in the way Ahmad et al. constructed

their dataset. They also proposed a fast and efficient method to predict DNA-BPs from

only the amino acid sequences and low-resolution, Cα-only protein models. Available as a

web based predictor called DNABIND, their predictor uses logistic regression (LR) as the

classifier, with only 10 features, calculated from proportion of certain amino acid residues,
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spatial asymmetry of certain other residues and dipole moment of the entire molecule.

Gao et al. [106] proposed another structure based predictor, DBD-Hunter, that applies

structural alignment and evaluation of a statistical potential to identify DNA-BPs. In

DBD-Hunter, first, the target structure is matched against a template library of DNA-

protein complex structures for structural similarity. For templates with matching scores

better than a threshold, the statistical potential energy between the target protein and

the template DNA is calculated by evaluating contacts within the structurally aligned

regions. Gao et al. [107] subsequently proposed another predictor, DBD-Threader, for the

prediction of DNA-binding domains and associated DNA-binding protein residues. While

this method also uses a template library composed of DNA-protein complex structures, it

requires only the target protein’s sequence for its classification. This independence from

structural information makes the predictor very useful, while its performance remains

comparable with DBD-Hunter.

Examples of other structure-based methods can be found in [213,260,294,296]. How-

ever, structure-based predictors are applicable only when the structural information of a

candidate protein is known. While the post-genomic era witnesses a rapid growth in se-

quence known proteins, the structure of many of these proteins still remain undiscovered.

The predictors that solely rely on structural information of proteins are thus limited in

their use. Sequence based methods, on the other hand, attempt to identify the DNA-BPs

from the amino acid sequence by extracting various discriminating features. Some predic-

tors may additionally rely on some structural features for improved prediction accuracy

when the protein structure is known. Examples of prominent sequence based predictors

of DNA-BPs can be found in [65, 82, 93, 135, 154, 155, 168, 174, 176, 191, 203, 206, 219, 245,

251,275,277,285,286,295,297].

Kumar et al. [155] used evolutionary information from the Position Specific Scoring

Matrix (PSSM) for protein representation. The PSSM profile of each protein was gener-

ated from PSI-BLAST [15] by searching the non-redundant (nr) protein database using

three iterations with e-value cutoff set to 0.001. They calculated the probability of occur-

rences of each type of amino acid corresponding to each type of amino acid in the protein
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sequence. From each column of the PSSM, 20 features are thus generated. Deemed as

PSSM-400, this feature scheme generates a total of 20 × 20 = 400 features. They then

applied Support Vector Machine (SVM) [32] as the learner. Their predictor is available

as a webtool, DNAbinder. In addition to comparing their predictor with prior art, they

demonstrated the effectiveness of the PSSM based features over amino acid composition,

di-peptide composition and 4-parts amino acid compositions.

The performance of DNAbinder depends on the quality of PSSM profiles, which is

heavily dependent on the database being searched for homology information. To elimi-

nate this dependency, DNA-Prot was proposed by another group Kumar et al. [154]. This

predictor used features such as frequency of amino acid residues and groups, predicted

secondary structure (PredSS) information from PSIPRED [194], physico-chemical prop-

erties from AAIndex database [146]. They also used sliding 10 residue windows in the

protein sequence to represent short peptides and calculated the composition of hydropho-

bic, hydrophilic and neutral amino acid rich peptides. The total number of features was

116. Subsequently correlation-based feature subset selection method (CFSS) was applied

to finally select a subset of 20 features. Finally, random forests [34] was applied as the

learner.

Lin et al. [168] incorporated the Grey model [143] parameters in the general form of

Chou’s PseAAC [61] for protein sequence representation. They then trained their model,

iDNA-Prot, using random forests algorithm. Lou et al. [191] introduced a predictor called

DBPPred, where amino acid composition, PSSM scores, PredSS and predicted relative

solvent accessibility (PredRSA) were used as features. The PredRSA and PredSS features

were derived by SPINE-X program [94]. They then used random forests algorithm to rank

the features and applied wrapper based feature selection based on the best-first forward

search strategy. They used Gaussian Näıve Bayes (GNB) as the final classifier. Notably,

they also achieved good performance using SVM with the Radial Basis Function (RBF)

kernel. However, GNB was finally chosen due to its simplicity. They compared their

predictor with prior ones using an independent dataset called PDB186, comprising equal

number of DNA-binding and non DNA-binding proteins. This dataset has subsequently

been used in performance evaluation of many other predictors.
71



Liu et al. [177] used amino acid distance-pair coupling information into Chou’s gen-

eral form of PseAAC [61]. To reduce the dimension of the feature vector and to speed up

the prediction process, they also used amino acid reduced alphabet profile [222]. They

then applied SVM with RBF kernel on 602 features to produce the prediction tool called

iDNA-Prot|dis. To train and assess their predictor using cross-validation, they prepared

a stringent balanced dataset of 1075 protein samples. This benchmark dataset has sub-

sequently been referred to as PDB1075 and has been widely used in literature for cross-

validation. We have also used this dataset in our work and provide a detailed description

of the dataset later in this chapter. In addition to preparation of the benchmark dataset,

a key contribution of Liu et al.’s work was re-implementation of major earlier predictors

and measuring their cross-validation performance using this benchmark dataset. This

paved the way for subsequent predictors to be compared with prior art in an apple for

apple comparison.

In 2015, Liu et al. [174] presented another predictor called iDNAPro-PseAAC. They

used profile-based representation of the protein sequence and then used PseAAC with

the 3rd order sequence-order effect. Their predictor thus uses a total of 23 features.

Their model was trained using SVM with RBF kernel. Dong et al. [82] used Auto-Cross

Covariance (ACC) transformation with amino acid k-mer compositions and physicochem-

ical properties. They then used SVM to train the predictor, widely known as Kmer1 +

ACC. Liu et al. [176] proposed yet another predictor called PseDNA-Pro. It uses overall

amino acid composition (OAAC), pseudo amino acid composition (PseAAC) and physic-

ochemical distance transformation (PDT) based features for protein representation. The

predictor was trained using SVM with RBF kernel.

Waris et al. [275] employed feature extraction techniques such as dipeptide composition

(DPC), split amino acid composition (SAAC) and PSSM. They experimented with these

techniques independently as well as in combination. As learners, they utilized K-nearest

neighbor (KNN), probability neural network, SVM and random forests. The best results

were obtained using PSSM and SVM.
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Wei et al. proposed Local-DPP [277], where local pseudo position specific scoring

matrix (Local Pse-PSSM) features have been used. The locally conserved protein infor-

mation is captured by fragmenting the PSSMs into several equally sized sub-PSSMs. The

local features are then computed from each sub-PSSM. Finally, all the local features are

combined to form the final feature vector. Random forests algorithm is then used to learn

the model.

Very recently, Chowdhury et al. [65] developed iDNAProt-ES, that utilizes both the

evolutionary profile and structure information of proteins to identify their DNA-binding

functionality. From the PSSM profile, they extracted features like amino acid compo-

sition [58], Dubchak features [87], bigram, auto-covariance, segmented distribution etc.

To extract structural features, they used SPIDER2 [289], a freely available software that

provides information on accessible surface area, torsion angles, structure motifs in each

amino acid residue position. From this information, they extracted features like secondary

structure composition and occurrence, accessible surface area composition, torsional an-

gles bigram and auto-covariance, structural probablities bigram and auto-covariance etc.

They subsequently used recursive feature elimination to extract an optimal set of fea-

tures and used SVM with linear kernel to learn the model. Their proposed method

significantly outperforms the existing state-of-the-art predictors on standard benchmark

dataset in cross-validation testing.

While significant amount of work has been done in this field, there is still room for

improvement in different ways. Firstly, the prediction performance could be improved

further. Secondly, many of the existing predictors use feature extraction techniques that

are time consuming, some use sophisticated prediction models. In this chapter, we there-

fore propose a DNA binding protein predictor that extracts features from the protein

sequence alone, that has a fast and simple prediction model and that outperforms the

existing predictors.

We have followed Chou’s 5-step procedure [61] for establishing our predictor. As briefly

described in Section 2.1.1, the steps in this process include dataset preparation, construc-
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tion of features from protein sequences, applying a powerful classification algorithm, ob-

jectively evaluating the predictor and finally making the predictor widely available. We

have collected a benchmark dataset from literature and then applied general formulation

of Chou’s PseAAC [61] for discrete model representation of the protein. In addition to

amino acid composition (AAC), we have used three different sequence based feature con-

struction techniques to fill up the remaining portion of the general PseAAC vector. Each

of these features provides some sequence-order information into the discrete model. We

thus created a large feature vector, whereby feature selection became necessary. Random

forests algorithm was then applied to rank the features. We have then applied SVM in

combination with recursive feature elimination to identify an optimal subset of features

and to train the classifier. Our tool, DNA-binding Protein Prediction model using Chou’s

general PseAAC, or DPP-PseAAC in short, is evaluated based on several well-established

performance metrics. DPP-PseAAC convincingly demonstrated superior predictive per-

formance compared to its predecessors. It has been made available publicly as an web

interface for wide adoption.

4.2 Material and Methods

In what follows, we describe our methodology in accordance with Chou’s 5-step proce-

dure [61], which was briefly described in Section 2.1.1.

4.2.1 Benchmark Dataset

As mentioned in the Introduction of this chapter, Liu et al. [177] prepared a stringent

balanced dataset of 1075 protein samples. This dataset is known as PDB1075 and has

been widely used in literature for cross-validation. As described in their paper, the DNA-

binding proteins were extracted from Protein Data Bank (PDB), December, 2013 version,

by searching the mmCIF keyword of ‘DNA binding protein’ through the advanced search

interface. The resulting proteins were filtered further as follows. Proteins shorter than
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50 residues were excluded. Proteins containing the residue ‘X’ were removed because

they contained unknown residue. Less than 25% sequence similarity between any protein

pair was ensured by using PISCES [274]. A set of 525 DNA-binding proteins was thus

obtained. The negative set of 550 proteins was prepared by randomly selecting from other

proteins in PDB. The same strict filtering criteria, as mentioned above, was also applied

to this negative set. Thus the benchmark dataset had a total of 525+550 =1,075 protein

samples.

We have also used another smaller benchmark dataset for independent testing. Lou

et al. [191] prepared this dataset of 93 DNA-binding and 93 non DNA-binding proteins.

The dataset is widely known as the PDB186 dataset. All the sequences in this set are

guaranteed to be no smaller than 60 residues and they do not contain any ‘X’ charac-

ter. Pairwise sequence identity of no more than 25% was ensured in this dataset using

BLASTCLUST [15].

4.2.2 Protein Sample Representation

A protein sample can be represented by its primary sequence, as shown in Equation 2.1.

To represent each protein sample as a fixed length feature vector that is independent of

the protein sequence length, we have utilized Chou’s general formulation of PseAAC (de-

scribed in Section 2.1.7). The generalized PseAAC of a protein, as defined in Equation 2.2,

is as follows:

P =
[

ψ1 ψ2 . . . ψu . . . ψΩ

]T

The classical AAC is represented by subscripts 1 ≤ u ≤ 20 and the subsequent features

express sequence order information through one or more different schemes. The sequence

order related features that we have extracted can largely be divided into two categories:

position independent and position specific. Among the position independent features, we

have used Dipeptides (Dip), Tripeptides and n-Gapped-Dipeptides (nGDip). All these

feature extraction techniques have already been described in Section 2.1.7.
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AAC, Dip and Tripeptides derive from the generalized form of n-grams feature type

where frequencies of n-length peptides are used as feature vectors. Dong et al. [82] referred

to it as kmer and used it in their DNA-BP predictor. Dip has also been successfully used

in [275] for DNA-BP prediction. In our study, we extract a total of 8420 n-grams (kmer)

features, for n = 1, 2 and 3. For some features, all the samples of the training set may

produce 0 frequency. Such features will naturally have no effect on the learning model. We

have carefully removed these from the feature vector. Subsequently the n-grams feature

count reduced to 8383.

We have also applied the n-Gapped-Dipeptides (nGDip) feature extraction technique

in this work. Liu et al. have used it in building the predictor iDNA-Prot|dis [177];

however they called it distance-pairs and used a gap (distance) of 3 only. In our work,

we have considered upto 25 position gaps. Thus we get a total of 25 × 400 = 10000

n-Gapped-Dipeptides features.

We have also used the Position Specific n-grams (PSN) feature scheme. As described

in Section 2.1.7, PSN represent whether specific n-grams occur in specific positions in the

protein sequence. The value of each such feature in any sequence will therefore be either

0 or 1 (on or off ). We have considered n-grams for n = 1, 2 and 3 in case of PSN as well.

However, to avoid feature space explosion, we considered only the first 10 positions of the

N-terminus part for extracting the PSN features. This produced 11296 features.

Thus we have extracted a total of 8383 + 10000 + 11296 = 29679 features. These

features are represented in Chou’s PseAAC as follows: For 1 ≤ u ≤ 20, we have the

amino acid composition in the feature vector. From 21 ≤ u ≤ 8383, the dipeptide and

tripeptide compositions are represented. From 8384 ≤ u ≤ 18383, the features in this

vector comes from the nGDip feature space. Finally, the PSN features construct the

remaining portion of the PseAAC, from 18384 ≤ u ≤ 29679 = Ω.
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Figure 4.2: Steps in feature selection.

4.2.3 Prediction Algorithm

To reduce the computational burden of dealing with such a large feature vector, feature

selection is applied as the first step in our prediction algorithm. We applied a random

forests model based feature ranking, followed by multiple steps of SVM based Recursive

Feature Elimination (SVM-RFE).
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Figure 4.3: Categorized feature importance based on random forests model based ranking.

The aggregate ranking score is better for subsets of top-ranked features, compared to all

features. PSN: Position Specific n-grams, n-grams: Combination of AAC, dipeptide and

tripeptide composition features, nGDip: n-Gapped Dipeptides.
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Feature Ranking Using Random Forests

Filter methods rank the features based on some criteria. Then a subset of top ranked

features are selected. To achieve this, we would like to run random forests on the full set

of features and take the mean decrease in accuracy as the ranking score of each feature.

Note that random forests algorithm is not used as the classifier at this point, rather it is

exploited as a means to generating the feature ranking. Random forests based filtering

approach has also been used in DBPPred [191]. However, our feature space is very large,

getting the feature ranking using random forests algorithm itself is a difficult task. Our

attempt to get the ranking scores of such a big feature space with the best server machine

in our computing laboratories did not finish even after one month’s of execution.

To solve this problem, we therefore followed the approach as detailed in Figure 4.2.

Firstly, we computed random forests model based rankings in each individual feature

space. This was manageable, since the size of the largest feature space was around 11000.

Generation of each of the three random forests (and therefore the respective ranking

scores) took less than a day. Based on these 3 rankings, we selected the features with

positive score in each feature space. We thus obtained 3200 n-grams features, 5522 nGDip

features and 1214 PSN features which totals to 9936 features. These 9936 features were

re-ranked using another iteration of Random forests algorithm. In this ranking, 4566

features had positive mean decrease accuracy scores, 2379 features had 0 scores and

remaining features had negative scores. This is why the cumulative scores of the features

are almost identical for top 5000 and 7000 features, demonstrated in Figure 4.3. And

they are superior compared to the cumulative scores when all features are considered, as

observed in the same figure.

Feature Ranking Using SVM-RFE

After obtaining the random forests model based ranking, we apply a wrapper phase.

Wrapper methods search the feature space to find an optimal subset of features. The

quality of the feature subset is measured by training and testing a specific classification
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model. We have used SVM based Recursive Feature Elimination (RFE) approach in

our work. SVM-RFE wrapper method was first introduced by [118]. Chowdhury et

al. [65] have used it in building iDNAProt-ES. Using SVM-RFE, we re-ranked the top

7000 features as follows: SVM was first run on the entire feature set and the technique

described in [118] was applied to rank the features. In the recursive step, 25 least ranked

features were removed, SVM was run on the reduced feature space, and feature ranking

was recomputed. The recursion was repeated until all the features are eliminated. Thus

a new feature ranking is obtained. We call it the SVM-RFE (coarse) ranking.

Using this new ranking, we constructed different SVM models by varying the number

of features and found the top 600 features to be most promising. (The exact details of how

the number of features were varied is discussed in Section 4.3. A second round of SVM-

RFE was applied in this feature space, but this time with steps of 1 feature elimination

(instead of 25 features). This gives a more reliable ranking of the top 600 features, which

we have called SVM-RFE (fine) ranking. Using this final ranking, we again explored

several models of different feature count and found the model with 289 features to be the

best model.

4.2.4 Predictor Evaluation

We have utilized jackknife cross-validation, 10-fold cross-validation test and independent

test for assessing the performance of our DPP-PseAAC. These methods have already

been briefly described in Section 2.1.8. As performance metrics, we have used in this

work accuracy, sensitivity, specificity and Matthew’s Correlation Coefficient (MCC). We

have also analyzed the Area Under Receiver Operating Characteristic Curve (auROC).

The reader is referred to Section 2.1.9 for details about these metrics.

Experimental Setup and Packages

We have conducted experiments using R language (version 3.2.3 or above) on three dif-

ferent machines with the following configurations:
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• A Desktop computer with Intel Core i5 CPU @ 3.00GHz x 4, Windows 7, 64-bit OS

and 4 GB RAM.

• A Desktop computer with Intel Core i5 CPU @ 3.20GHz x 4, Ubuntu 16.04, 64-bit

OS and 8 GB RAM.

• A server machine with Intel Xeon CPU E5-4617 0 @ 2.90GHz x 6, Ubuntu 13.04

64-bit OS, 15 MB L3 cache and 64 GB RAM.

Random forests and Support Vector Machine (SVM) machine learning algorithms were

used for feature ranking and model learning. These are available respectively from the R

packeges, randomForest and e1071. In the random forests algorithm, we have used the

default parameters setting. In particular, the number of trees (ntree) was restricted to

500, while the number of variables tried at each split (mtry) was set to square root of the

total number of features.

In addition to pre-installed packages in R, we have also used ROCR and pracma pack-

ages for performance evaluation of our model. ggplot2 package was used for plotting rele-

vant graphs. All of our source code, experimental results, cross-validation and independent

datasets are available at the following link: https://github.com/srautonu/DNABinding.

4.2.5 Predictor Availability

DPP-PseAAC is freely available as an R script at https://github.com/srautonu/DNABinding.

Additionally, we have established a publicly accessible web server at http://dpp-pseaac.

research.buet.ac.bd to facilitate wide adoption.

4.3 Results

In this section, we describe several experiments and analyze their results. We measure

the impact of different aspects in the performance of our model. Such factors of influence
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include number of features, combination of the feature extraction techniques etc. We

use 10-fold cross validation testing in these experiments. We also run experiments to

compare DPP-PseAAC with state-of-the-art methods. For these experiments we have

used jackknife cross validation and independent testing.

4.3.1 Impact of Number of Features
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Figure 4.4: ROC-Curves of prediction models with varying number of features, generated

by 10-fold cross validation on the PDB1075 dataset.

We have run several experiments varying the number of features and analyzed the

impact on the classification model. The analysis was done in terms of the various perfor-

mance metrics discussed in the earlier section. In this process, we were able to identify

the right number of features for our model.

The ROC curve for a number of SVM models of different number of features is shown

Figure 4.4. The close a ROC curve is to the top-left corner of the graph, the better is the

performance of the corresponding model. Therefore, from the curves of Figure 4.4, it is

clear that the performance with 500, 1500 and 2500 features is much better compared to

the other feature subsets. This same conclusion can be made from Figure 4.5a.

In Figure 4.5 we plot the area under ROC curve, accuracy, sensitivity, specificity and

MCC of models that are created with varying number of top-ranked features. We first
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Figure 4.5: Area under ROC curve (auROC), accuracy, sensitivity, specificity and MCC

of models with varying number of features, generated by 10-fold cross validation on the

PDB1075 dataset. The [x, y]/z style annotation of each sub-figure means that, the exper-

iment started with x top-ranked features. Then a model was trained with z more features

and the performance scores were recomputed. This process continued until the feature

count became y.

explore a large feature space, albeit with coarse granularity. That means, the number

of features that are added (removed) between experiments is large. As an example,

Figure 4.5a is generated by starting with a model with 500 top-ranked features. The

coarse grain SVM-RFE feature ranking was used in this case. Then 1000 next ranked

features were added in each iteration. Based on the curves, the feature space range [100,
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1500] seems promising. Therefore, more models are generated in this space, however

the change of features in each step becomes finer: 100 features. We thus examine 15

models, whose performances are recorded in Figure 4.5b. Moving on this way, we keep

zooming in the interesting terrain of the feature space and increase our thoroughness in

investigating the narrowed-down spaces. Figure 4.5c examines 60 models, with 10 feature

increase steps. The fine grain SVM-RFE feature ranking was used in this and subsequent

experiment. From this Figure, the range [280, 320] seems most interesting. So, this space

is investigated, with single feature increase steps, yielding 41 different models. Based on

the performance comparison of these models (in Figure 4.5d), the model built with 289

features was chosen to be our final classifier. Among the features, there were 102 n-grams,

126 nGDip and 61 PSN features.

4.3.2 Impact of Feature Extraction Techniques

To analyze the contribution of the different feature extraction techniques in building the

model, we have run some experiments with the top 100 features. In this subset, there are

35 n-grams features, 54 nGDip features and 11 PSN features. We trained three different

SVM models using each of these three subsets of features. In another model, we trained

with all the 100 features. In Figure 4.6a, the accuracy, sensitivity, specificity and MCC

values from these four models are compared. The nGDip feature extraction technique is

a clear winner over the other two, while the combination of all performs slightly better

than that.

The size of the feature vectors in the above comparison was widely different. Therefore,

we conducted another experiment where we trained 3 different models using top 100

features of the 3 individual feature extraction techniques. We compare the performance

of these models to the combined model in Figure 4.6b. The superiority of combined feature

space over the individual feature spaces hold in this setting as well. PSN, n-grams and

nGDip feature extraction techniques individually achieve accuracy values of 62%, 74%

and 84%, respectively. When the combined feature space is used instead, the accuracy
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Figure 4.6: Performance of different feature extraction techniques. The results are ob-

tained from 10-fold cross validation on the PDB1075 dataset. PSN: Position Specific n-

grams, n-grams: Combination of AAC, dipeptide and tripeptide composition. nGDip: n-

Gapped-Dipeptides. COM: Combination of all the feature extraction techniques. COM1:

Combination of n-grams and nGDip. COM2: Combination of n-grams and PSN. COM3:

Combination of nGDip and PSN.

increases to 87%. Similarly the MCC increases from respective individual values of 0.32,

0.49, 0.68 to 0.74 for the combined feature space.

Another observation is worth noting from these experiments. The PSN only classifier

is extremely biased towards the negative class. The accuracy of the positive class in the

model built with top 100 PSN features is only 28%, while that of the negative class is 95%.
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n-grams feature space, on the other hand, provides a slight bias towards the positive class.

The nGDip feature space produces the most balanced classifier. Its ability to predict the

positive class is in fact slightly better than that of the model constructed on the combined

feature space. However, the specificity of the latter is much better, resulting in a superior

overall accuracy and MCC scores.

From the above discussion, it is clear that each of the feature spaces have contribution

in improving the classification performance with the combined feature space. We ran

one more experiment to check whether this is indeed the case. In this experiment, we

used combination of two feature spaces, leaving the other feature space out. We chose

the top 100 features to construct the model. We compared the performance of the three

generated models with that of the model created using the combination of all 3 feature

spaces. The results are shown in Figure 4.6c. The composition of each combination is

tabulated below:

Id. Feature spaces n-Grams nGDip PSN

COMB1 n-grams, nGDip 38% 62% -

COMB2 n-grams, PSN 67% - 33%

COMB3 nGDip, PSN - 75% 25%

COMB n-grams, nGDip, PSN 35% 54% 11%

It is clear from Figure 4.6c that among the 2 feature space combinations, the combina-

tion of n-grams and nGDip is the best. Nonetheless, adding the PSN feature space clearly

adds value - the model constructed with combination of all 3 feature spaces is superior to

models built with 2 feature space combinations in terms of each performance metric we

have used.

4.3.3 Discriminant Visualization

To study the discriminant power of different features, we calculated the discriminant

weight vector in the feature space. This vector is also needed during the RFE step and is

calculated following the steps used in [118]. The discriminative weights of top 25 features
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Figure 4.7: The discriminative weights of top 25 features.

are shown in Figure 4.7. The feature names are encoded as follows:

• A feature starting with the prefix “G ” is an nGDip feature. The integer that

follows is the particular gap being considered. The dipeptide in question is given as

the suffix. Therefore, the feature “G 7 IK” represents the normalized frequency of

dipeptide “IK”, such that the residues ‘I’ (Isoleucine) and ‘K’ (Lysine) are separated

from each other by 7 residues.

• A feature starting with the prefix “C 0 ” is an n-grams feature. The suffix represents

the particular n-gram. Therefore, the feature “C 0 QVQ” represents the normalized

frequency of the tripeptide “QVQ”.

• A feature starting with the prefix “P ” is a PSN feature. The integer that follows

is the particular position. The n-gram in question is given as the suffix. Therefore,
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the feature “P 2 SS” represents whether the dipeptide “SS” occurs in the second

position of the protein sequence.

There are 12 features with positive scores and 13 features with the negative scores.

The absolute weights of both set of features are in the same tight range of [0.07, 0.10]. The

decrease of importance is gradual as we move to lesser ranked features, and the pattern

of the decrease is almost identical for both set of features. The features with positive

(negative) scores contribute in prediction of the positive (negative) class.

4.3.4 Comparison between DPP-PseAAC and Existing Tech-

niques

As discussed earlier, we conducted several 10-fold cross validation tests using PDB1075

dataset. We varied the number of features to identify the best model. The model with

289 top-ranked feature demonstrated the best performance. While comparing with the

state-of-the-art predictors, DPP-PseAAC will actually refer to the model with these 289

top-ranked features. The 10-fold cross validation accuracy, sensitivity, specificity, MCC

and area under ROC curve scores of the model respectively were 93.21%, 87.81%, 98.36%,

0.87 and 0.98. Subsequently, we have compared the performance of DPP-PseAAC with

prominent prediction tools from literature, using jackknife cross-validation approach. The

results are recorded in Table 4.1, the best values having been highlighted in bold faced

fonts. The results for DNAbinder, DNA-Prot, iDNA-Prot, iDNA-Prot|dis were collected

from [177]. For the other predictors, the cross-validation results with the same benchmark

dataset was available in the respective research papers. However, PseDNA-Pro used a

benchmark dataset other than PDB1075.

DPP-PseAAC demonstrates superiority over all the earlier predictors in terms of each

of the performance metrics used. Since PDB1075 is a stringent dataset which guarantees

that pairwise sequence similarity is no more than 25%, any concerns of overestimation in

jackknife approach is mitigated [61].

87



Table 4.1: Comparison of DPP-PseAAC with previous methods using jackknife cross-

validation on the PDB1075 dataset.
Method Accuracy Sensitivity Specificity MCC auROC

DNAbinder (dimension 21) 73.95 68.57 79.09 0.48 0.8140

DNAbinder (dimension 400) 73.58 66.47 80.36 0.47 0.8150

DNA-Prot 72.55 82.67 59.76 0.44 0.7890

iDNA-Prot 75.40 83.81 64.73 0.50 0.7610

iDNA-Prot|dis 77.30 79.40 75.27 0.54 0.8310

PseDNA-Pro 76.55 79.61 73.63 0.53 -

iDNAPro-PseAAC 76.76 75.62 77.45 0.53 0.8392

Kmer1 + ACC 75.23 76.76 73.76 0.50 0.8280

Local-DPP 79.20 84.00 74.50 0.59 -

iDNAProt-ES 90.18 90.38 90.00 0.80 0.9412

DPP-PseAAC 95.91 94.10 97.64 0.92 0.9884

Next we compare performance of DPP-PseAAC with state-of-the-art predictors using

independent testing approach. The PDB186 dataset is used in this case. However, if

there is significant sequence similarity between proteins of the training set and that of

the testing set, then the independent test results will be over estimated. To avoid this,

proteins of PDB1075 that had more than 25% sequence identity to any protein in the

PDB186 dataset were removed using BLASTCLUST [15]. The prediction model was

then rebuilt using this reduced PDB1075 dataset. This protocol was introduced by Liu

et al. [177] and has subsequntly been followed in independent testing of other DNA-BP

predictors. The reduced PDB1075 contained 487 positive samples, 548 negative samples;

the total size of the training set became 1035.

The independent test results of DPP-PseAAC and state-of-the-art predictors are

recorded in Table 4.2. The results for DNABIND, DNAbinder, DNA-Threader, DNA-

Prot, iDNA-Prot and DBPPred were obtained from [191]. As the newer predictors had

adopted this dataset for independent testing, the test results for these predictors were

obtained from the respective research papers.
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Table 4.2: Comparison of DPP-PseAAC with previous methods using independent test.

Method Accuracy Sensitivity Specificity MCC auROC

DNABIND 67.70 66.70 68.80 0.355 0.6940

DNAbinder 60.80 57.00 64.50 0.216 0.6070

DBD-Threader 59.70 23.70 95.70 0.279 -

DNA-Prot 61.80 69.90 53.80 0.240 -

iDNA-Prot 67.20 67.70 66.70 0.344 -

DBPPred 76.90 79.60 74.20 0.538 0.7910

iDNA-Prot|dis 72.00 79.50 64.50 0.445 0.7860

iDNAPro-PseAAC 69.89 77.41 62.37 0.402 0.7754

Kmer1 + ACC 70.96 82.79 59.13 0.431 0.7520

Local-DPP 79.00 92.50 65.60 0.625 -

DPP-PseAAC 77.42 83.87 70.97 0.553 0.7986

From the results, we can see that DPP-PseAAC performs better than all prior predic-

tors, except for Local-DPP. If Local-DPP is left out of the comparison, then DPP-PseAAC

has the best accuracy, sensitivity, MCC and area under ROC curve. DBD-Threader has

the best specificity, but its sensitivity is extremely poor. DBPPred also has better speci-

ficity than our method. But ours outperforms DBPPred in terms of sensitivity. The

accuracy and MCC values are similar for both approaches, albeit DPP-PseAAC has a

slight edge. Now, let us compare DPP-PseAAC with Local-DPP method. Local-DPP has

the highest sensitivity among all the methods, a commendable score of 92.5%. Its sensi-

tivity, however, is only 65.60%. So, it is skewed considerably towards the positive class.

DPP-PseAAC has a better sensitivity and is more balanced in its predictive performance

in contrast.

To summerize, DPP-PseAAC shows best performance in each of the performance

metrics in the jackknife cross-validation testing. In case of independent testing, its per-

formance is also commendable, remaining behind of only Local-DPP.
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Table 4.3: Structure based predictors at a glance. ANN: Artificial Neural Network, LR:

Logistic Regression.

Tools Feature Extraction Feature Classifier

Technique(s) Selection

Stawiski et al. [256]
Analysis of electrostatic patches, surface clefts,

Conservation analysis of the sequence.
12 features

ANN

(3 layers)

Ahmad et al. [11] Bulk electrostatic properties.
ANN

(2 layers)

DNABIND [261]

Proportion of certain amino acid residues,

Spatial asymmetry of amino acid residues,

Dipole moment of the entire molecule.

10 features LR

DBD-Hunter [106]

Library of DNA-protein complex structures,

Structural alignment,

Evaluation of a statistical potential,

Matching score thresholding.

DBD-Threader [107]

Library of DNA-protein complex structures,

Target protein’s sequence,

Matching score thresholding.

4.4 Discussion

In this section, we present brief discussion on several aspects relevant to our work.

4.4.1 Differentiation between DPP-PseAAC and Existing Pre-

dictors

To give a clear picture of differentiation between DPP-PseAAC and prior art, Tables 4.3

and 4.4 show the different steps taken in building these prediction models. As can be

seen, the novelty in DPP-PseAAC lies in the addition of tripeptide composition and PSN

features into Chou’s general PseAAC. The combination of random forests algorithm for

feature ranking followed by recursive feature elimination using SVM is also a new approach

in this prediction problem.
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Another distinguishing factor is that we explored a large feature space, comprising

29679 features and then selected 289 features for training the model. Even the selected

feature set’s size is larger than the number of features used in most of the earlier works.

The most recent predictors, iDNAProt-ES [65] and Local-DPP [277] respectively used 86

and 120 features. However, it is important to note that both of the above-mentioned

methods use PSSM based features, extraction of which take time. Our approach, on the

other hand, can extract all the necessary features from a target protein in a single pass

along the sequence and then use the classifier to predict its class. Additionally, if the target

protein does not have enough homologous sequences in the database, the generated PSSM

cannot describe the protein adequately. Therefore, any prediction model dependent on

PSSM information will produce wrong predictions in such a case [164].

4.4.2 Some Errors in Results of Earlier Predictors

In the independent testing, we have not compared DPP-PseAAC with iDNAProt-ES [65],

which was the best predictor so far in terms of both jackknife and independent testing.

DPP-PseAAC outperformed it in the jackknife cross-validation test. And we found a flaw

in the independent testing of iDNAProt-ES. As discussed earlier, the protocol followed

by Liu et al. [177] was to eliminate the sequences in PDB1075 that had more than 25%

pairwise similarity with the independent test set (PDB186), and then retrain the predictor

with this reduced set. This was followed by subsequent authors as well. Unfortunately,

this important step was missed in the independent testing of iDNAProt-ES. Therefore,

the performance scores reported for that tool are over estimations. As such, we have

excluded it in our independent test comparisons. Notably, we have notified Chowdhury

et al. through private communication about the error in their independent test process

and they are currently in the process of rerunning their experiments.

Another minor error is observed in the MCC score of independent test of Local-

DPP [277]. In explaining the error, we use the symbols that were defined in Section 2.1.9.

As we know P and N values of PDB186 (93 each), the TP, TN, FP, FN values can easily
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be computed from the accuracy, sensitivity and specificity data. When we plug these

values into Equation 2.3, we get an MCC of 0.602. However, the reported value in [277]

is 0.625, which is over estimated.

4.4.3 Unavailability of BLASTCLUST in the Latest Version of

Standalone BLAST

Liu et al. [177] created the reduced PDB1075 dataset using BLUSTCLUST [15]. Subse-

quent authors have followed the same steps. However, the reduced PDB1075 is not made

publicly available by any of the authors. So, we needed to follow the same steps to gener-

ate this reduced training set. However, we were not able to find the BLUSTCLUST tool

in the latest version of standalone BLAST software downloadable from NCBI [2]. Also,

some discussion forums suggested that it was deprecated [3]. While we found an older

version (version 2.2.14) from NCBI that contained BLUSTCLUST, we could not make it

work. For example, we tried to check how many clusters are there in the PDB186 data set

with a 25% cut off, but all proteins showed up in single cluster, which seemed wrong. As

such, we reached out to to Wei et al. [277] and they kindly shared their reduced PDB1075

dataset with us.

4.4.4 Jackknife Cross-validation vs. Independent Testing

We have shown that DPP-PseAAC has the best performance in terms of jackknife testing.

However, it came second in independent testing. Also, there was quite a fall in the

performance scores. Since PDB1075 has less than 25% pairwise sequence similarity, the

jackknife cross-validation results should be trusted. We think, the lesser performance in

the independent test can easily be explained by the protocol that was used. As discussed

earlier, the PDB1075 was reduced in size to eliminate sequence similarity of this set

with sequences in the PDB186. This eliminated 40 samples from the training set. More

importantly, 38 of these samples were positive samples. Therefore, data imbalance was
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introduced, resulting in a model that is inferior to the original model. We did not handle

the imbalance on purpose. This is because this was not mentioned in the protocol followed

in the earlier literature. Besides, handling the imbalance by under sampling or over

sampling would introduce a significant difference in the model construction process and

as such the independent test results would not be representative at all of our original

model.

In general, we have preferred jackknife cross-validation results over independent test

results, following Chou’s argument that sheds doubt on the objectivity of the independent

testing [61]:

“The way of how to select the independent proteins to test the predictor could be quite

arbitrary unless the number of independent proteins is sufficiently large. This kind of

arbitrariness might result in completely different conclusions. For instance, a predictor

achieving a higher success rate than the other predictor for a given independent testing

dataset might fail to keep so when tested by another independent testing dataset. Accord-

ingly, the independent dataset test is not a fairly objective test method although it was

often used to demonstrate the practical application of a predictor.”

4.5 Conclusion

In this chapter, we present DPP-PseAAC, a machine learning based predictor for DNA-

binding proteins. We apply several sequence based feature extraction techniques on a

benchmark dataset called PDB1075. Random forests and SVM-RFE methods are then

applied on the proteins, as represented by the extracted features, to obtain a reliable

ranking of the features. Finally, SVM with linear kernel is employed to train a prediction

model. Our approach outperforms state-of-the-art techniques according to different per-

formance metrics in jackknife cross-validation. The independent test results are also found

to be satisfactory. Our predictor is available as an R script that can readily be applied

to target protein sequences, without dependency on any other services or pre-processing

93



(e.g. computation of PSSM or structural information etc.). DPP-PseAAC is also available

as a publicly accessible web based predictor. We hope the simple to use web interface,

combined with the good performance, will lead to wide adoption of DPP-PseAAC.

In the next chapter, Protective Antigen Prediction, we focus on building a new com-

putational model to identify protective antigens in an efficient and accurate way. Our

model extracts meaningful information directly from the protein sequences, without any

dependence on functional domain or structural information.
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Table 4.4: Sequence based predictors at a glance. SVM: Support Vector Machine, RF:

Random Forests, GNB: Gaussian Näıve Bayes.

Tools Feature Extraction Feature Classifier

Technique(s) Selection

DNAbinder [155] PSSM-400 400 features SVM

DNA-Prot [154]

Frequency of amino acid/amino acid groups,

hydrophobic, hydrophlic, neutral residues,

PredSS from PSIPRED,

Amino acid physico-chemical properties,

Split sliding 10 residue windows.

CFSS

(20 features)
RF

iDNA-Prot [168]
AAC, coefficients of the second order

Grey differential equation with one variable.
23 features RF

DBPPred [191]

AAC, PredSS, PredRSA

Auto-correlation coefficients of PSSM.

Percentile values of PSSM scores.

RF filter

GNB Wrapper

(56 features)

GNB

iDNA-Prot|dis [177]
Amino acid distance-pair coupling

Amino acid reduced alphabet profile
602 features

SVM

(RBF)

iDNAPro-PseAAC [174]
Profile-based protein representation.

PseAAC (λ = 3).
23 features

SVM

(RBF)

Kmer1 + ACC [82]
ACC, kmer composition,

Physico-chemical properties.
SVM

PseDNA-Pro [176] OAAC, PseAAC, PDT 573 features
SVM

(RBF)

Waris et al. [275] DPC, SAAC, PSSM. SVM

Local-DPP [277] Local Pse-PSSM 120 features RF

iDNAProt-ES [65]

AAC, bigram, auto-covariance from PSSM,

Dubchak features,

Sructural features from SPIDER2.

SVM-RFE

(86 features)

SVM

(Linear)

DPP-PseAAC

AAC, dipeptide and tripeptide comp.,

Gapped dipeptide composition,

Position specific features.

RF filter

SVM-RFE

(289 features)

SVM

(Linear)
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Chapter 5

Protective Antigen Prediction

An antigen is a protein capable of triggering an effective immune system response. Protec-

tive antigens are the ones that can invoke specific and enhanced adaptive immune response

to subsequent exposure to the specific pathogen or related organisms. Such proteins are

therefore of immense importance in vaccine preparation and drug design. However, the

laboratory experiments to isolate and identify antigens from a microbial pathogen are

expensive, time consuming and often unsuccessful. This is why Reverse Vaccinology has

become the modern trend of vaccine search, where computational methods are first ap-

plied to predict protective antigens or their determinants, known as epitopes. In this

chapter, we focus on building a new computational model that can identify protective

antigens by extracting meaningful information solely from the protein sequences. Our

prediction model does not need any functional domain or structure specific features, nor

does it depend on any predicted features from other predictors. We have used random

forests algorithm as well as SVM-RFE to select an optimal set of features. Random forests

was also used to train the classifier. Named as Antigenic, our proposed model demon-

Much of the material in this chapter is taken without alteration from the following manuscript.

• Rahman, M. S., Rahman, M. K., Saha, S., Kaykobad, M., & Rahman, M. S. Antigenic: An

improved prediction model of protective antigens. (Under review) Artificial Intelligence in Medicine
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strates superior performance compared to the state-of-the-art predictors on a benchmark

dataset. Antigenic achieves accuracy, sensitivity and specificity values of 78.04%, 78.99%

and 77.08% in 10-fold cross-validation testing respectively. In jackknife cross-validation,

the corresponding scores are 80.03%, 80.90% and 79.16% respectively. The source code

of Antigenic, along with relevant dataset and detailed experimental results, can be found

at https://github.com/srautonu/Antigenic. A publicly accessible web interface has

also been established at: http://antigenic.research.buet.ac.bd/.

5.1 Introduction

An antigen is a protein that is capable of triggering a measurable immune system re-

sponse [102]. Antigens can be subdivided into overlapping subclasses such as serodiag-

nostic, crossreactive and protective antigens [193]. Serodiagnostic antigens are associated

with a differential humoral antibody response between naive and exposed individuals.

Such antigens are important for diagnostics purposes. Cross-reactive antigens are asso-

ciated with a strong humoral antibody response in both naive and exposed individuals.

Protective antigens, on the other hand, are the ones that can stimulate protective im-

munity against pathogens. That is, these antigens can invoke specific and enhanced

adaptive immune response to subsequent exposure to the specific pathogen or related or-

ganisms. Protective antigens are of immense importance in vaccine preparation and drug

design [110,189,232].

Vaccines are molecular or supramolecular agents that can stimulate protective immu-

nity against microbial pathogens. They can prevent, or at least improve, the effects of

infection [218]. Vaccination has been the most effective method of preventing infectious

diseases such as influenza, smallpox, varicella, diphtheria, tetanus, polio, hepatitis, ro-

tavirus and more [19, 42, 100, 163, 235, 279]. However, the battle against many infectious

diseases is far from complete. It is still difficult to develop safe and effective vaccines

against tuberculosis, HIV, malaria and so on [278].
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Vaccines are prepared from killed or attenuated microorganisms, or subunits purified

from them [9,218]. While vaccines based on attenuated pathogens can be highly effective,

this technique is seldom used in modern vaccinology due to safety concerns and techni-

cal reasons [12]. Subunit vaccines, on the other hand, use only the protective antigens,

instead of the entire microorganism. This reduces the chance of any adverse reaction to

the vaccine [233]. The hepatitis B vaccine, containing the surface antigen HbsAg, is an

example of one of the most successful subunit vaccines [262,263]. The advent of recombi-

nant DNA technology (rDNA) has conceived the idea of multiepitopic vaccines [136]. In

this technique, several protective epitopes (parts of an antigen that is recognized by the

immune system) are included in a single molecule, immunodominant but non-protective

epitopes are discarded. Epitopes exerting adjuvant effects can also be included to en-

hance the protective response. This opens up the possibility of designing highly efficient,

multi-target vaccines [253].

The modern trend in vaccine preparation has therefore been towards creating subunit

vaccines or epitope vaccines containing only full or partial protective antigens. As a

result, identification of protective antigens or their determinants is a key step in any

vaccine development project [83]. The microbiological approach for antigen identification

comprises several steps. At first, the target pathogen is cultivated under laboratory

conditions. It is then purified and dissected into the constituent proteins. The proteins are

then assayed in cascades of in vitro and in vivo assays. Finally, the proteins which display

requisite protective immunity are identified [282]. While this process requires many hours

of expensive and laborious tasks, it does not always yield fruitful results. For example,

it is not always possible to cultivate a particular pathogen outside of the host organism.

Also, as many proteins are only expressed transiently during the course of an infection,

the antigens expressed in vivo may not always express during in vitro cultivation [102].

These limitations of the laboratory experiments, coupled with wide availability of whole

genome sequences of pathogens, have led researchers explore techniques that are based

on computational genomics and thus a new paradigm known as Reverse Vaccinology has

emerged.
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Reverse Vaccinology (RV) [224, 233] is a computational pipeline for identification of

protective antigens or epitopes against microorganisms from their genome sequences. In

this approach, all proteins of a pathogen proteome are first screened computationally for

their vaccine potential. Computationally predicted protective antigens are then tested in

vivo and in vitro for their immunogenicity. This approach dramatically cuts down the

cost and increases the speed of progress in vaccine discovery. RV was first applied to

the development of a vaccine against serogroup B Neisseria meningitidis (MenB), which

causes sepsis and meningitis in children and young adults [224]. This has eventually led

to the approval of the first MenB vaccine, BEXSERO R©, for use in Europe [270], and

United States [103]. This is a milestone for rational vaccine design using RV. This princi-

ple for vaccine development has successfully been applied against many other pathogens,

including Helicobacter pylori [40], Streptococcus pneumoniae [280], Porphyromonas gin-

givalis [240], Chlamydia pneumoniae [201], Bacillus anthracis [18] and Mycobacterium

tuberculosis [20].

Over the years, researchers have developed many computational techniques for protec-

tive antigen prediction. Some of these techniques are focused on specific pathogen models,

while some are more generic. Some techniques use concepts of sequence alignment, while

other ones leverage statistical tools or machine learning methods. In this chapter, we

propose a protective antigen predictor that is based on the latter approach. Based on fea-

tures extracted from the primary sequence of the protein, our method provides a fast and

simple prediction model that outperforms the existing predictors. Prior to presenting the

details of our predictor, we briefly review the literature of protective antigen prediction

here.

For a sequence-alignment based approach to be useful, sequences of many extant anti-

gens must be available in a database. Sequence searching programs such as BLAST [14],

FASTA [220], PSORT [204] etc., can then be applied to identify similar sequences in

the target genome. However, such an approach will fail to discover truly novel protec-

tive antigens which lack any sequence similarity with the repository of known protective

antigens.
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Another criterion, that has frequently been used to screen for potential antigens, is the

likelihood of a protein containing a signal sequence. SignalP [210] has widely been used in

this regard. It originally employed neural networks to predict the presence and location

of signal peptide cleavage site [211]. Subsequently a hidden Markov model (HMM) was

implemented which is able to discriminate uncleaved signal anchors from cleaved signal

peptides [212]. Several updates to this predictor have been made in recent years [29,

221]. One of the limitations of SignalP, however, is overprediction, as it cannot reliably

discriminate between several very similar yet distinct signal sequences [102].

Vivona et al. [272] developed a system for antigen discovery, called NERVE, that

works in several stages as follows. Firstly, the target protein’s subcellular localization is

predicted. Then whether the protein is an adhesin is determined. This is followed by the

identification of transmembrane domains. The protein is then compared against human

and pathogen proteomes. Finally it is assigned a suggestive score. However, the system

requires software download and database setup and does not include precomputed data

of vaccine target prediction, which makes its use inconvenient and time consuming [123].

Doytchinova et al. [84] proposed the first alignment-free approach for antigen predic-

tion. They trained the predictor for three different models: bacteria, virus and tumor.

Each model was trained with a balanced dataset of 100 known protective antigens and

100 non-antigens. The principal amino acid properties were represented by z descriptors,

originally derived by Hellberg et al. [125]. A transformation using auto cross covariance

(ACC) [281] was then applied to produce a uniform vector of 45 terms for each protein

sequence. Then a two-class discriminant analysis was performed using the partial least

squares technique (DA-PLS). The cross-validation accuracy of their predictor was 82%

for the bacterial model, 87% for the viral model and 85% for the tumor model. The mod-

els were implemented in a server called VaxiJen [7], which has since been widely used.

However, the dataset used to create VaxiJen was rather small. Additionally, several of

the sequences in the non-antigen set were subsequently predicted as antigens by other

methods [137]; some were also experimentally discovered as such [160,190].

101



In a subsequent work, Doytchinova et al. [85] added parasite and fungal models to

the VaxiJen predictor. For this purpose, 117 parasitic and 33 fungal antigens were iden-

tified from the literature. For each antigen, a non-antigen protein was randomly selected

from the same species. The same features and learning algorithms were used as before.

The parasite model achieved an accuracy of 78% while the fungal model obtained 97%

accuracy.

Ansari et al. [16] developed AntigenDB, a database compiling more than 500 antigens,

from 44 important pathogenic species. This database maintains information regarding

the sequence, structure, origin, etc. of antigens. B and T-cell epitopes, MHC binding,

function, gene-expression and post translational modifications are also available for some

antigens. He et al. [123] introduced Vaxign, another web-based vaccine design system

that can predict protein subcellular location, transmembrane helices, adhesin probability,

conservation to human and/or mouse proteins etc. The precomputed Vaxign database

contains prediction of vaccine targets for more than 70 genomes.

Magnan et al. [193] developed another predictor for protective antigens, called ANTI-

GENpro. Unlike VaxiJen’s approach of pathogen specific prediction models, they created

a generic classifier of antigens from any pathogen. To train their classifier, they first

collected known protective antigens from literature. They then augmented this set using

human immunoglobulin reactivity data obtained from protein microarray analyses. ANTI-

GENpro achieved 76% accuracy in 10-fold cross-validation experiments. Unfortunately,

ANTIGENpro server [5] restricts queries to only one protein sequence per submission.

This makes its use on a genome-wide scale quite impractical [89].

El-Manzalawy et al. [89] proposed another predictor called BacGen which can classify

antigens for bacteria model only. They used amino acid moment descriptors (AAMD) [246]

as features. After applying Haar wavelet transform (HWT) [119], they used random

forests [34] as the classifier. Finally they combined the prediction of random forests

algorithm with SignalP [210] prediction. Their approach produced results that are com-

petitive with ANTIGENpro. However, while BacGen was implemented as a web server

(http://ailab.cs.iastate.edu/bacgen/), it does not seem to be in service anymore.
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Jaiswal et al. [137] also developed a web-based predictor, for protein vaccine can-

didates (PVCs) for bacterial pathogens. Called Jenner-Predict, the predictor targets

host-pathogen interactions by considering known functional domains from various pro-

tein classes. Altindis et al. [12] examined the structural and functional features recurring

in known bacterial protective antigens to define “protective signatures” which can be used

for protective antigen discovery. They applied their approach to Staphylococcus aureus

and Group B Streptococcus and were able to identify two new protective antigens, in

addition to re-discovering the already known protective antigens. Ong et al. [214] in a

recent publication verified the critical role of adhesins, subcellular localization, peptide

signaling, in predicting secreted extracellular or surface-exposed protective antigens. They

also found a significant negative correlation of transmembrane α-helix to antigen protec-

tiveness in Gram-positive and Gram-negative pathogens. Their findings can be used to

extract relevant features from the protein secondary structure to discriminate between

protective antigens and non-antigens.

While significant amount of work has been done in protective antigen prediction, the

performance of the current predictive tools has left a lot of room for improvement. Also,

some of the state-of-the-art predictors use feature extraction techniques that are time

consuming, some use sophisticated prediction models which are susceptible to the over-

fitting problem. In this chapter, we therefore propose a protective antigen predictor that

extracts features from the protein sequence alone, that has a fast and simple prediction

model and that outperforms the existing predictors. We have followed Chou’s 5-step

procedure [61] for establishing our predictor. The steps include dataset preparation, ex-

tracting relevant features from protein sequences, learning the classification model using

a powerful algorithm, objectively evaluating the predictor and finally making the predic-

tor available through a web server for wide adpotion. We have collected a benchmark

dataset from literature and then applied a fixed length vector representation of the pro-

tein. In addition to amino acid composition (AAC), we have used three different sequence

based feature construction techniques to create the feature vector. Each of these features

provides some sequence-order information. As we created a large feature vector, feature
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selection became necessary. Random forests [34] algorithm was then applied to rank the

features. We have then applied Support Vector Machine (SVM) [32] in combination with

Recursive Feature Elimination (RFE) to identify an optimal subset of features. Finally

random forests algorithm was used again, but this time to train the classifier. Named as

Antigenic, our predictor has been evaluated based on several well-established performance

metrics. Antigenic convincingly demonstrated superior predictive performance compared

to its predecessors. Therefore, it has been made available publicly as an web interface for

wide adoption.

5.2 Material and Methods

In what follows, we describe our methodology in accordance with Chou’s 5-step proce-

dure [61], which was briefly described in Section 2.1.1.

5.2.1 Benchmark Dataset

Table 5.1: Size and composition of the six protein sets used as the training set.

Protein set Size Antigenic Non-antigenic

PAntigens 213 213 0

Brucella 206 70 136

Burkholderia 17 5 12

Candida 13 3 10

Malaria 333 114 219

Tuberculosis 542 171 371

Total 1324 576 748

In order to create a robust predictor, there needs to be a reliable training dataset of

relatively large size. For our study we have collected the benchmark dataset from [193].

This dataset, prepared by Magnan et al., was not available publicly. However, they kindly

provided us with the dataset upon request through private communication. Below, we

provide a brief description of the dataset and how it was prepared.
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Magnan et al. [193] argued that mere literature review did not generate a satisfac-

tory collection of protective antigens. Therefore, they prepared the benchmark dataset

based on protein microarray data analysis for training and testing their predictor. They

leveraged a high-throughput technology [72] to study the humoral immune response to

pathogen infection using protein microarrays. In this approach, proteins of a pathogen

genome are expressed by a proprietary in vitro expression system. These expressed pro-

teins can then be probed with sera from naive, exposed and vaccinated individuals. The

resulting reactivity data gives a reliable estimate of the humoral immune response. The

protein microarray data can thus be used to prepare a dataset of antigens and non-antigens

to train a predictor. Although the microarray data does not directly provide information

about whether or not a particular antigen is protective, Magnan et al. [193] hypothesized

that the actual protective antigens are significantly overrepresented among the set of anti-

gens for which the protected individuals elicit a significant antibody response, and the

unprotected individuals do not. They have validated this hypothesis in their work.

The benchmark dataset contains a training set as well as a testing set. The train-

ing set consisted of 6 subsets. Of these, 5 subsets were curated from protein microarray

data analysis for pathogens Candida albicans, Plasmodium falciparum, Brucella meliten-

sis, Burkholderia pseudomallei and Mycobacterium tuberculosis. Each of these subsets

contained some antigens as well as non-antigens. The other (6th) subset, on the other

hand, contained only protective antigens collected from literature and public databases.

This subset is referred to as PAntigens.

Any redundancy or considerable pairwise sequence similarity in the training dataset

may hamper the quality of the model being trained. The cross-validation results may

also get overestimated. To mitigate this concern, BLASTCLUST [15] was run with a 30%

similarity threshold after combining the data from the five pathogens in the training set

and redundant sequences were removed. The PAntigens set was similarly processed. It is

possible, however, that some antigens in the PAntigen set may have redundancy with the

proteins in the pathogens set. As such, proteins in the merged pathogen set with more

than 30% sequence similarity with any protein in PAntigens were also removed. The

composition of the training set, after all processing, is shown in Table 5.1.
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It is noteworthy here that earlier works used much smaller datasets and did not have

validated non-antigens. Instead, proteins selected at random and having very little se-

quence similarity with known protective antigens were tagged as non-antigens. In the

benchmark dataset of [193], however, the non-antigens are curated by selecting proteins

with low seroreactivity according to the protein mircoarray experiments.

The testing set was constructed from protein microarray data analysis for the pathogen

Bartonella henselae. This dataset consists of 1463 proteins of which 73 were antigenic.

The remaining 1390 were non-antigens.

For details of the microarray data analysis and protocols followed to prepare the

benchmark dataset, the reader is referred to [193].

5.2.2 Protein Sample Representation

Like in previous chapters, we have resorted to Chou’s general formulation of PseAAC

(described in Section 2.1.7) to represent the protein samples as fixed length feature vectors.

The generalized PseAAC of a protein, as defined in Equation 2.2, is as follows:

P =
[

ψ1 ψ2 . . . ψu . . . ψΩ

]T

The classical AAC is represented by subscripts 1 ≤ u ≤ 20 and the subsequent fea-

tures express sequence order information through one or more different schemes. The fea-

ture schemes that we have used are Dipeptides (Dip), Tripeptides, n-Gapped-Dipeptides

(nGDip) and Position Specific n-grams (PSN). All these feature extraction techniques

have already been described in Section 2.1.7.

AAC, Dip and Tripeptides derive from the generalized form of n-grams feature type,

for n = 1, 2 and 3. The total number of n-grams features we have extracted are 8409. For

the nGDip feature type, we have considered upto 25 position gaps, thus producing a total

of 25× 400 = 10000 nGDip features. To avoid feature space explosion, we have extracted

PSN features only for the first 10 positions of the primary sequence. This resulted in 14058
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PSN features. We have thus extracted a total of 8409 + 10000 + 14058 = 32467 features.

These features can be represented in Chou’s PseAAC as follows: For 1 ≤ u ≤ 20, we have

the amino acid composition in the feature vector. From 21 ≤ u ≤ 8409, the dipeptide

and tripeptide compositions are represented. From 8410 ≤ u ≤ 18409, the features in

this vector comes from the nGDip feature space. Finally, the PSN features construct the

remaining portion of the PseAAC, from 18410 ≤ u ≤ 32467 = Ω.

5.2.3 Prediction Algorithm

Figure 5.1: Steps in feature selection.

The first step in our prediction algorithm is feature selection. In this step we apply

several techniques to reduce the size of the feature vector. As our protein samples are

represented by a total of 32467 features, it would be computationally infeasible to train

a classifier with the amount of computing power and memory we have at our disposal.

The motivation behind the feature selection step obviously is to reduce the cardinality

of the feature vector to a manageable size. Besides, a set of relevant features must be

selected that is able to express the intrinsic difference between antigens and non-antigens.

We have selected a suitable subset of the extracted features by applying a random forests

algorithm based feature filtering, followed by multiple steps of SVM-RFE [118].
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(b) Top 7500 features.

0.00

0.05

0.10

0.15

PSN n−grams nGDip

Feature Types

C
um

ul
at

iv
e 

Im
po

rt
an

ce

(c) All features.

Figure 5.2: Categorized feature importance based on random forests model based ranking.

The aggregate ranking score is better for subsets of top-ranked features, compared to all

features. PSN: Position Specific n-grams, n-grams: Combination of AAC, dipeptide and

tripeptide composition features, nGDip: n-Gapped Dipeptides.

Feature Filtering Using Random Forests

For each feature, the mean decrease in accuracy computed from the random forests model

can be used as a ranking score. The larger this value is for a feature, the more important

that feature is in the context of the prediction task. However, as our feature space is

quite large, getting the feature ranking using random forests itself is a difficult task. Our

attempt to get the ranking scores of such a big feature space with the best server machine

in our computing laboratories did not finish even after one month of execution.

To solve this problem, we followed the same steps that were used in the previous

chapter and captured in Figure 4.2. For ease of reference, we have depicted the same

pipeline in Figure 5.1 as well. Minor modifications were made in this process to account

for the imbalance in the training dataset. Firstly, a random forests model is trained in

each individual feature space. Using these models, features in each respective spaces are

ranked locally. Generation of each of the three random forests models (and therefore the

respective ranking scores) took less than a day. Based on these 3 rankings, we selected

the features with positive score in each feature space. We thus obtained 3625 n-grams

features, 5811 nGDip features and 1363 PSN features which totals to 10799 features.

These 10799 features were re-ranked using another iteration of random forests algorithm.
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In this ranking, 5196 features had positive mean decrease accuracy scores, 2283 features

had 0 scores and remaining features had negative scores. This is why the cumulative

scores of the features are almost identical for top 5500 and 7500 features, demonstrated

in Figure 5.2. And they are superior compared to the cumulative scores when all features

are considered, as observed in the same figure.

Feature Ranking Using SVM-RFE

After getting the feature ranking as above, the top-ranked 10000 features were re-ranked

using SVM based Recursive Feature Elimination (SVM-RFE) [118] as follows. SVM was

first run on the top-ranked 10000 features and the technique described in [118] was used

to get a new ranking of these features. In the recursive step, 25 least ranked features

were removed, SVM was run on the reduced feature space, and feature ranking was

recomputed. The recursion was repeated applied until all the features are eliminated.

Thus a new feature ranking is obtained. We call it the SVM-RFE (coarse) ranking.

Using this new ranking, different prediction models were constructed using the random

forests algorithm. As we have an imbalanced dataset, we balanced it by undersampling

the larger (negative) class randomly. After this step of random under sampling, we gen-

erated several prediction models by varying the number of features and compared their

performances. We found the top 600 features to be most promising. (The exact details

of how the number of features were varied is discussed in the Results section). To obtain

a more reliable ranking of the top 600 features, a second round of SVM-RFE was applied

in this feature space, but this time with steps of 1 feature elimination (instead of 25

features). We have referred to this new ranking as SVM-RFE (fine) ranking. Using this

final ranking, we again explored several models of different feature count and found the

model with 490 features to be the best model.
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5.2.4 Predictor Evaluation

To evaluate the predictive performance of Antigenic, we have utilized jackknife cross-

validation, 10-fold cross-validation test and independent test. These methods have already

been briefly described in Section 2.1.8. In addition, another cross-validation technique,

known as leave one protein set out was also used in this work. In this technique, one

protein subset is left out and the predictor is trained with the remaining samples. Then

the predictor performance is assessed using the subset that was left out. Thus each of the

6 subsets were used as testing set in 6 different iterations.

As performance metrics, we have used in this work accuracy, sensitivity, specificity

and Matthew’s Correlation Coefficient (MCC). We have also analyzed the Area Under

Receiver Operating Characteristic Curve (auROC) and Precision Recall Curve (auPR).

The reader is referred to Section 2.1.9 for details about these metrics.

Experimental Setup and Packages

We have conducted all our experiments using R language (version 3.2.3 or above). We

used three different machines with the following configurations:

• A Desktop computer with Intel Core i5 CPU @ 3.00GHz x 4, Windows 7, 64-bit OS

and 4 GB RAM.

• A Desktop computer with Intel Core i5 CPU @ 3.20GHz x 4, Ubuntu 16.04, 64-bit

OS and 8 GB RAM.

• A server machine with Intel Xeon CPU E5-4617 0 @ 2.90GHz x 6, Ubuntu 13.04

64-bit OS, 15 MB L3 cache and 64 GB RAM.

As discussed earlier, random forests and Support Vector Machine (SVM) algorithms

were used for ranking the features and learning the model. These are available from the

R packeges randomForest and e1071 respectively. In both algorithms, default parameters

setting was used. In particular, in random forests algorithm, the number of trees (ntree)
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was restricted to 500, while the number of variables tried at each split (mtry) was set to

the square root of the total number of features.

In addition to pre-installed packages in R, we have also used ROCR and pracma

packages for performance analysis of our model. For plotting different graphs, we have

leveraged ggplot2 package. All of our source code, experimental results, cross-validation

and independent datasets are available at: https://github.com/srautonu/Antigenic.

5.2.5 Predictor Availability

Antigenic is freely available as an R script at https://github.com/srautonu/Antigenic.

Additionally, we have established a publicly accessible web server at http://antigenic.

research.buet.ac.bd/ to facilitate wide adoption. We hope our predictor will be bene-

ficial to researchers working in the field of reverse vaccinology.

5.3 Results

In this section, we describe several experiments and analyze their results. We have con-

ducted 10-fold cross-validation testing to assess the influence of number of features, com-

bination of the feature extraction techniques etc. in the performance of our prediction

model. We have also run experiments to compare Antigenic with VaxiJen and ANTI-

GENpro, the two most widely used alignment-free predictors of protective antigens.

As the benchmark dataset is imbalanced, using it directly to learn the classifier may

create a bias towards the majority class. Therefore we have balanced the dataset by ran-

dom undersampling of the majority class, following [193]. Dittman et al. [81] has recently

shown, however, when random forests algorithm is used to train the learning model, the

increase in performance due to balancing the training set using random undersampling is

not statistically significant. Hence, in many of our experiments we have used two differ-

ent models - Antigenic*, a model that was trained directly on the entire training set, and

Antigenic, a model that was trained with a balanced (reduced by random undersampling)

set.
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(a) ROC-curve for Antigenic*.
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(b) PR-curve for Antigenic*.
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(c) ROC-curve for Antigenic.
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(d) PR-curve for Antigenic.

Figure 5.3: ROC and PR curves of prediction models with varying number of features,

generated by 10-fold cross validation on the training dataset.

5.3.1 Impact of Number of Features

To find the ideal number of features, we ran several experiments varying the number of

features and analyzed the impact on the classification model. The analysis was based on

the various performance metrics discussed in the earlier section. In Figure 5.3, ROC and

PR curves have been plotted for Antigenic and Antigenic*. In each case, 4 different curves

are generated for models trained with best 100, 300, 500 and 700 features respectively. The

closer a ROC curve is to the top-left corner of the graph, the better is the performance of

the corresponding model. Therefore, it is clear that as the number of features is increased

112



beyond 100, the performance continues to improve at a good rate. The curves for 300,

500 and 700 features, on the other hand, lie very close to each other.

When the dataset is not balanced, ROC curve alone is not able to identify the relevance

of selected features. Precision Recall (PR) curve is of more significance in this case [73].

We have plotted the PR curves for Antigenic* and Antigenic in Figures 5.3b and 5.3d

respectively. The closer a PR curve is to the top-right corner of the graph, the better is

the performance of the corresponding model. From this analysis too, we observe that the

performance increases with the increased number of features up to a certain point. As

the number of features increases, the return on the performance gradually diminishes.

In Figure 5.4 we plot the auROC, auPR, accuracy, sensitivity, specificity and MCC of

models that are created with varying number of top-ranked features. We have considered

the unbalanced training set (Figures 5.4a, 5.4b and 5.4c) as well as training set balanced

using random undersampling (Figures 5.4d, 5.4e and 5.4f). As both sets of experiments

yielded similar pattern of results, we only describe the experiments with the balanced

training set. At first a large feature space was explored. During this phase, the number of

features that are added (removed) between experiments was also large. For example, Fig-

ure 5.4d is generated by starting with a model with 500 top-ranked features, accordingly

to the SVM-RFE (coarse) ranking. We subsequently added 1000 next-ranked features in

each iteration. Based on the curves, the feature space range [100, 1500] seemed promising.

Therefore, more models were generated in this space, however the change of features in

each step was made finer: 100 features. We thus examine 15 models, whose performances

are recorded in Figure 5.4e. Moving along, we kept zooming in the interesting terrain

of the feature space and increased our thoroughness in investigating the narrowed-down

spaces. Figure 5.4f examines 60 models, with 10 feature increase steps. Based on the per-

formance comparison of these models, the model built with 490 features was chosen to be

our final classifier (Antigenic). Among the features, there were 181 n-grams, 170 nGDip

and 139 PSN features. On the other hand, the final model trained with the unbalanced

dataset, Antigenic*, consisted of 500 features.
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Figure 5.4: Area under ROC-curve (auROC), Area under PR-curve (auPR), Accuracy

(Acc), Sensitivity (Sn), and Specificity (Sp) of models with varying number of features.

The models were generated by 10-fold cross validation. For the top curves, the entire

(unbalanced) training set was used (Antigenic* models). For the bottom curves, train-

ing set was balanced with random undersampling (Antigenic models). The [x, y]/z style

annotation of each sub-figure means that, the experiment started with x top-ranked fea-

tures. Then a model was trained with z more features and the performance scores were

recomputed. This process continued until the feature count became y.

Another important observation comes out of these experiments. That is, balancing the

training dataset helps make the classifier behave in a more balanced fashion. The model

trained this way does not show any bias towards a particular class. Antigenic* models,

on the other hand, are clearly biased towards the negative class. The specificity is much

higher compared to the sensitivity in these models. The overall accuracy is naturally

dictated by the specificity and is somewhat misleading. Therefore, it is reasonable to claim

that balancing the training dataset has a clear positive impact on the overall performance
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of our predictor. While [81] claims that the data balancing results in an improvement

that is not statistically significant, the authors there analyzed performance solely based

on auROC. However, when dealing with data imbalance, analyzing the PR curve is more

important [73]. From Figures 5.4b and 5.4e, the minimum, average and maximum increase

in auPR, due to balancing the dataset, were respectively 4%, 6% and 8%.

Notably, in the above experiments, we have reported scores that are averaged over

5 different runs. As 10-fold cross-validation results may vary based on how the data is

partitioned, 5 runs with different data partitioning were conducted and the average score

was taken to have more confidence on the result.

5.3.2 Impact of Feature Extraction Techniques

0.00

0.25

0.50

0.75

1.00

PSN n−grams nGDip COMB

Feature Extraction Technique

P
er

fo
rm

an
ce

 s
co

re

Accuracy Sensitivity Specificity MCC

(a)

0.00

0.25

0.50

0.75

1.00

COMB1 COMB2 COMB3 COMB

Feature Extraction Technique

P
er

fo
rm

an
ce

 s
co

re

Accuracy Sensitivity Specificity MCC

(b)

Figure 5.5: Performance of different feature extraction techniques. The results are ob-

tained from 10-fold cross validation after balancing the training dataset with random

undersampling. PSN: Position Specific n-grams, n-grams: Combination of AAC, dipep-

tide and tripeptide composition. nGDip: n-Gapped-Dipeptides. COM: Combination

of all the feature extraction techniques. COM1: Combination of n-grams and nGDip.

COM2: Combination of n-grams and PSN. COM3: Combination of nGDip and PSN.

To analyze the contribution of the different feature extraction techniques in building

the model, we ran some experiments with the top 500 features. We trained a model
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with these features after balancing the training set with random undersampling. Using

the same balanced data, we trained 3 more models using top 500 features of the 3 indi-

vidual feature extraction techniques separately. In Figure 5.5a, the accuracy, sensitivity,

specificity and MCC values from these four models are compared. The nGDip feature

extraction technique is a clear winner over the other two, while the combination of all

performs slightly better than that.

In yet another experiment, we used combination of two feature spaces, leaving the

other feature space out. Like before, we chose the top 500 features to construct the

model. We compared the performance of the three generated models with that of the

model created using the combination of all 3 feature spaces. The results are shown in

Figure 5.5b. The composition of each combination is tabulated below:

Id. Feature spaces n-grams nGDip PSN

COMB1 n-grams, nGDip 258 242 -

COMB2 n-grams, PSN 283 - 217

COMB3 nGDip, PSN - 269 231

COMB n-grams, nGDip, PSN 186 181 133

The combination of n-grams and nGDip is the best performer among all the 2 feature

space combinations. Adding the PSN feature space still adds value - the model constructed

with combination of all 3 feature spaces is superior to models built with 2 feature space

combinations in terms of each performance metric we have used.

5.3.3 Feature Importance Visualization

The importance of different features can be computed by permuting Out-of-bag (OOB)

data of random forests algorithm. First, the prediction error on the OOB portion of

the data is recorded for each tree. Afterwards, each predictor variable is permuted and

the error is recalculated. The difference between the two errors is then averaged over all

trees and then normalized by the standard deviation of the differences. This is called

Mean Decrease in Accuracy. The larger this value is for a feature, the more important
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Figure 5.6: The importance score of top 25 features.

that feature is in the context of the prediction task. We have used the mean in decrease

accuracy to rank the features and have demonstrated the importance score of top 25

features in Figure 5.6. The feature names are encoded following the convention that was

used in Section 4.3.3.

5.3.4 10-fold Cross-validation Results

Table 5.2 records the performance of Antigenic and Antigenic* in 10-fold cross validation

tests. In both cases, we used a decision threshold of 0.5. The results are averaged over 5

runs. The standard deviation (SD) in the different performance scores are shown after the

± sign. The fact that the SD in each metric is very small vouches for the reliability of the

average score. The performance of VaxiJen and ANTIGENpro, as obtained from [193] are
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Table 5.2: Comparison of Antigenic with VaxiJen and ANTIGENpro based on 10-fold

cross-validation. Although it is apparent that Antigenic* beats all the methods, includ-

ing Antigenic, in accuracy and specificity, the lack of balance between the class-wise

performance of the former is evident from the huge difference between the second and

third column. The same lack of balance is present in Vaxijen, albeit more strikingly.

Method Accuracy Sensitivity Specificity MCC auROC

Vaxijen 59.48± 0.140 89.69 ±0.000 25.85± 0.742 0.20± 0.008 0.67± 0.006

ANTIGENpro 75.51± 0.992 75.88± 1.937 75.14± 1.480 0.51± 0.020 0.81± 0.012

Antigenic* 78.55 ±0.005 66.70± 0.010 87.67 ±0.005 0.56 ±0.011 0.86 ±0.002

Antigenic 78.04± 0.008 78.99± 0.004 77.08± 0.018 0.56 ±0.017 0.86 ±0.003

also recorded in the same table. The best values are highlighted in bold faced fonts. It is

clear from this tabulated data that our models outperform the state-of-the-art predictors.

Antigenic has superior accuracy, sensitivity, specificity, MCC and auROC compared to

ANTIGENpro. It also performs better than VaxiJen in all metrics except for sensitivity.

VaxiJen has a commendable sensitivity of almost 90%. However, it has poor specificity

(26%), thus rendering itself as a predictor very much biased towards the positive class.

This also means that it has poor precision. Antigenic, on the other hand, provides a

balanced performance (79% sensitivity vs. 77% specificity). This is why Antigenic is

better than Antigenic* as well, albeit both demonstrate similar performance in terms of

MCC and auROC. But Antigenic* is biased towards the negative class (67% sensitivity

vs. 88% specificity). Though it has the best accuracy among the lot, the accuracy is

overestimated due to its bias towards the majority (negative) class, as it was trained

with unbalanced dataset. For models trained with unbalanced datasets, the auPR is a

good metric for performance comparison [73]. But, neither VaxiJen nor ANTIGENpro

reports this metric. We nonetheless compare our own models in terms of auPR - while

Antigenic* has an auPR of 0.81 ± 0.004, Antigenic’s auPR is a superior 0.85 ± 0.009.

Therefore, based on the performance scores reported in Table 5.2 and the qualitative

arguments given above, we can conclude that Antigenic is the best predictor.
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5.3.5 Leave One Protein Set Out Cross-validation Results

Table 5.3: Comparison of accuracy between Antigenic and ANTIGENpro based on leave

one protein set out cross-validation.

Test set Test set size ANTIGENpro Antigenic* Antigenic

PAntigens 213 81.60 29.77± 0.016 80.28± 0.019

Brucella 140 70.00 72.71± 0.034 73.00 ±0.014

Burkholderia 10 66.00 70.00 ±0.071 64.00± 0.055

Candida 6 66.67 43.33± 0.253 46.67± 0.075

Malaria 228 59.96 52.72± 0.008 51.93± 0.007

Tuberculosis 342 68.30 69.94± 0.019 70.00 ±0.009

Magnan et al. [193] conducted another interesting cross-validation to assess the per-

formance of ANTIGENpro. Recall that the training dataset consisted of antigens and

non-antigens from 5 different pathogens and another subset of antigens obtained from lit-

erature. In this cross-validation approach, they left one subset out, trained the predictor

with the remaining samples, then tested its performance using the subset that was left

out. Thus each of the 6 subsets were used as testing set in 6 different iterations. The

training set (i.e. the combination of remaining 5 subsets) was balanced using random

undersampling before the training step. In addition, the testing set was also balanced

using random undersampling. This was done to ensure a fair estimation of the predictor

performance. An exception however was made when PAntigens subset was used as the

testing set. Since this set does not have any non-antigens at all, undersampling cannot

be done. Therefore, this set was used unaltered during testing. We have followed the

same approach to measure the performance of our models and have a comparison with

ANTIGENpro. We refer to this as Leave one protein set out cross-validation. In case of

Antigenic, the training data was balanced using random undersampling. For the Anti-

genic* model, the training data was not balanced. In all the experiments, we kept the

decision threshold at 0.5.

The results of this cross-validation approach are recorded in Table 5.3. For our models,

the accuracy scores are averaged over 5 runs, with the standard deviation recorded after
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the ± sign. Once again, the small standard deviations gives confidence on the average

scores. For ANTIGENpro, the average scores were obtained from [193], but the corre-

sponding standard deviations were unavailable. When PAntigens is used as the testing

set, ANTIGENpro has an formidable accuracy of 81.60%. Antigenic is not far behind,

logging an average accuracy score of 80.28%. In fact, in 2 runs the accuracy scores were

82.63% and 81.69%, which are better than the reported value of ANTIGENpro. The

performance on the PAntigens test set demonstrates that our featuring scheme, combined

with the prediction algorithm, is able to predict protective antigens by learning solely

from protein microarray data.

When the Brucella subset was used, Antigenic produced the best performance among

the 3 predictors. For Burkholderia and Candida test sets, Antigenic* and ANTIGENpro

respectively demonstrated the best performance. However, since these testing sets were

very small, no conclusions should be made based on these results. For the Malaria test

set, ANTIGENpro performed significantly better than both of our models. For the Tu-

berculosis testset, Antigenic is the winner with 70% accuracy, but ANTIGENpro is not

far away (68.3% accuracy).

Another observation that we can make from these experiments is regarding the benefit

of balancing the training dataset. In case of the PAntigens test set, Antigenic* has a poor

accuracy of around 30%. As argued earlier, this model is quite biased towards the negative

class. And since the testing set did not have any negative instances at all, the accuracy

merely reflects the sensitivity of the predictor, which is poor. In this setting the negative

class is twice as large as the positive class. On the other hand, when the full training

dataset was used during 10-fold cross-validation (Table 5.2), the imbalance ratio was 1:1.3,

yielding 67% sensitivity.

5.3.6 Jackknife Cross-validation Results

Neither VaxiJen nor ANTIGENpro has reported jackknife cross-validation results. How-

ever, for completeness and to enable comparison with future predictors, we report the
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Table 5.4: Jackknife cross-validation performance of Antigenic* and Antigenic.

Method Accuracy Sensitivity Specificity Precision MCC auROC auPR

Antigenic* 79.15 67.71 87.97 81.25 0.57 0.87 0.82

Antigenic 80.03 80.90 79.16 79.52 0.60 0.88 0.87

jackknife cross-validation performance of Antigenic and Antigenic* in Table 5.4. Like

before, the best scores are highlighted in bold-face. Between the 2 models, Antigenic

prevails as superior.

As discussed in Section 2.1.8, jackknife cross-validation always produces unique result,

which is a key advantage of this technique. 10-fold cross validation results, on the other

hand, may vary depending on how folds are constructed. In the 10-fold cross validation,

Antigenic had the better sensitivity between the two. However, Antigenic* recorded su-

perior accuracy and both method logged the same MCC and auROC. In jackknife testing,

on the contrary, Antigenic demonstrated superior accuracy, sensitivity, MCC, auROC and

auPR. Since the jackknife test cannot be biased by any particular way of splitting the

data for cross-validation, the performance results obtained in this testing should there-

fore be given preference over the 10-fold cross-validation results. Also, since the training

dataset in our case guarantees that pairwise sequence similarity is no more than 30%, any

concerns of overestimation in jackknife approach is reasonably mitigated [61].

5.3.7 Independent Test Results

Table 5.5: Comparison of Antigenic with VaxiJen and ANTIGENpro based on indepen-

dent testing.

Method Accuracy Sensitivity Specificity

VaxiJen 39.71 72.60 37.99

ANTIGENpro 56.94 65.75 56.47

Antigenic* 61.18 61.64 61.15

Antigenic 46.27 76.71 44.68

In Table 5.5, independent testing performance of different predictors are recorded.
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The entire proteome of Bartonella Henselae pathogen has been used for independent

testing. As mentioned earlier, it contains 1463 proteins, of which only 73 are protective

antigens. The FASTA file containing the proteome was easily uploaded to the VaxiJen

server [7]. The prediction results were obtained in a response webpage within minutes

of the query. The publicly available ANTIGENpro web tool [5] is less friendly for bulk

queries. Single protein sequence can be pasted in a form and submitted. After some

time the prediction results are provided via an email response. We wrote a simple Java

program to automatically query the tool for each sequence of the proteome. Between

queries, one minute waiting time was added so that the server does not get flooded with a

lot of queries in a short period of time. The response emails were also processed through

code written in Java. Getting the ANTIGENpro predictions for the Bartonella proteome

this way took approximately 2 days. The results were obtained in a few minutes in case

of Antigenic* and Antigenic.

In each case, we have considered the default class discriminating threshold. For Vaxi-

Jen, it is 0.4, for all others it is 0.5. As seen from Table 5.5, Antigenic is more sensitive

than all other tools (even VaxiJen) at the default threshold. Its specificity is better than

that of VaxiJen, but worse than that of ANTIGENpro and Antigenic*. Since the pro-

teome is extremely imbalanced, the inferior specificity also impacts the overall accuracy.

Surprisingly, Antigenic* demonstrates the most balanced performance in the independent

testing.

Figure 5.7 shows the ROC curve for VaxiJen, ANTIGENpro, Antigenic* and Anti-

genic. Since Antigenic* is built using an imbalanced dataset, the PR curves of all the

tools are also drawn in the same figure for better comparative assessment. Performance

of ANTIGENpro is the best, while VaxiJen is the least performing. The area under ROC

curve for ANTIGENpro, as recorded in Table 5.6, is marginally less than that of Anti-

genic* and slightly larger than that of Antigenic. It has the best auPR score (0.143).

Antigenic* and Antigenic are not too far behind, however. VaxiJen, on the other hand,

has a modest 0.074 unit area under PR curve.
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Figure 5.7: ROC and PR curves on the independent test for different prediction tools.

In 10-fold cross-validation testing, Antigenic demonstrated superiority over the state-

of-the-art predictors. Its superior performance was also corroborated by the jackknife

cross-validation testing. While it did not produce the best results in the independent

testing, we have, as argued by Chou [61], preferred the cross-validation results over the

independent test results and concluded Antigenic to be the superior predictor.

Table 5.6: Area under ROC and PR curves for different predictors on the Bartonella

dataset.
Method auROC auPR

VaxiJen 0.603 0.074

ANTIGENpro 0.671 0.143

Antigenic* 0.674 0.136

Antigenic 0.662 0.125

The success of reverse vaccinology relies heavily on how efficiently and precisely the

predictors can find protective antigens [142,234]. This is why the predictors are assessed in

terms of yet another metric, known as Enrichment . It is the ratio of number of protective

antigens among a top ranked subset to the number of protective antigens in the entire

proteome. The expected enrichment of a random predictor is thus 1.0. For any good

predictor, enrichment would be much higher than 1.0 in any top ranked subsets. Table 5.7
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compares the enrichment of our predictors in independent testing (i.e. on the Bartonella

dataset) with that of VaxiJen, ANTIGENpro and SignalP in top ranked 2%, 5%, 10%

and 25% subsets. The data for SignalP was obtained from [193]. The data for VaxiJen

and ANTIGENpro were computed based on the prediction scores, as obtained from their

respective servers [5,7]. While the scores for VaxiJen matched what was reported in [193],

there was slight variation in the scores for ANTIGENpro. The enrichment for top ranked

5% turned out to be 4.1 instead of 4.4; and for top ranked 25% turned out to be 2.0

instead of 2.1. Both Antigenic* and Antigenic had superior enrichment in the top ranked

2% subset. In particular, Antigenic scored 6.9 which is much higher than ANTIGENpro’s

5.5. This means, if a practitioner ranks all the proteins of a new pathogen using Antigenic

and selects only one protein at random from the top 2% for wet lab testing, his chance

of identifying a protective antigen is almost 7 times higher than if he were to select one

protein at random from the entire proteome. Therefore, our predictor seems quite suitable

for wide adoption in reverse vaccinology based projects.

Table 5.7: Enrichment among top ranked proteins of Bartonella dataset, ranked by dif-

ferent predictors.

Method SignalP VaxiJen ANTIGENpro Antigenic* Antigenic

Top ranked 2% 1.7 2.1 5.5 6.2 6.9

Top ranked 5% 2.7 1.6 4.1 4.9 3.8

Top ranked 10% 2.9 1.9 3.4 3.3 3.0

Top ranked 25% 2.2 1.6 2.0 2.2 1.8

5.4 Discussion

Antigenic demonstrated superior performance compared to other predictors in 10-fold

cross-validation. It showed good performance in the leave one protein set out cross-

validation as well. Like ANTIGENpro, it too demonstrated the ability to recognize pro-

tective antigens by learning the classifier from a training dataset that is prepared solely

from the protein microarray data. In case of independent testing, it showed superior sen-
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sitivity. It also showed better enrichment in the top ranked 2% subset. It did not hold the

best auROC or auPR in the independent test. The best auPR was obtained by ANTI-

GENpro, which also demonstrated good sensitivity. However, preference should be given

on the cross-validation results over the independent test results in comparing different

predictors [61]. Since Antigenic outperforms ANTIGENpro in the 10-fold cross-validation

on the same training dataset, we consider Antigenic to be the superior predictor.

While VaxiJen has widely been adopted in various reverse vaccinology projects, it was

able to correctly classify only 59.48% of the bacterial and viral proteins in the benchmark

training dataset. The other antigens (around 25% of the antigens in the training set) could

not be tested since no prediction model is available for these pathogens. This is a clear

shortcoming of Vaxijen. Antigenic, on the other hand, provides a generic classification

model for any pathogens and is able to demonstrate superior prediction performance.

Additionally, Antigenic has a fairly simple prediction model. The features it rely on

are extracted from the protein’s primary sequence directly. On the other hand ANTI-

GENpro has a relatively complex model. It uses eight different feature sets, six of which

are frequencies of amino acid monomers and dimers using three different amino acid al-

phabets. The remaining two feature sets are computed and predicted features. The com-

puted features include sequence length, turn-forming residues fraction, absolute charge

per residue, molecular weight, GRAVY Index [156], Aliphatic index [134]. Predicted fea-

tures are obtained from external predictors like SSpro [49], DOMpro [50], ACCPro [49],

and TMHMM [151]. Using these eight feature sets, forty distinct primary classifiers are

then trained using one algorithm from Naive Bayes, C4.5, k-nearest neighbors, neural

networks and SVMs. The 40 probability estimates thus obtained are then fed as input

to a second stage SVM classifier. Perhaps it is because of the external dependency that

ANTIGENpro limits query submissions to a single protein at a time. Antigenic, on the

other hand, can handle large files with multiple protein sequences, making it convenient

to use for whole proteome analysis.
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The novelty of Antigenic lies in the addition of gapped dipeptides, tripeptide composi-

tion and PSN features into Chou’s general PseAAC. The combined application of random

forests algorithm followed by SVM-RFE for feature selection is also a new approach in

this prediction problem. Another distinguishing factor is that we explored a large feature

space, comprising 32467 features and then selected 490 features for training the model. In

contrast, VaxiJen used only 45 features, while ANTIGENpro used a total of 768 features.

5.5 Conclusion

In this chapter, we have presented Antigenic, a machine learning based predictor for

protective antigens. We applied three different feature extraction techniques on a bench-

mark dataset that was primarily prepared from protein microarray data. Represented

in a discrete model known as Chou’s general PseAAC, the proteins were then subjected

to random forests and SVM-RFE methods to obtain a reliable ranking of the features.

Finally, random forests algorithm was employed to learn a prediction model using a top-

ranked feature subset. As the training dataset was not balanced, random undersampling

was performed to balance the data. We trained models with both the unbalanced and

balanced dataset and found the latter to be superior. Our approach outperforms state-of-

the-art techniques according to different performance metrics in 10-fold cross-validation.

The independent test results are also found to be satisfactory. Our predictor is available

as an R script that can readily be applied to target protein sequences, without dependency

on any other services or pre-processing. Antigenic is also available as a publicly accessible

web based predictor. We hope the simple to use web interface, combined with the good

performance, will lead to wide adoption of Antigenic. At the same time, we hope that our

simple and lightweight framework will trigger further research using this in similar other

domains.

Next chapter takes us to Part II of this thesis which is focused on phylogeny recon-

struction. In particular, in the next chapter, titled Gene Tree Estimation Using Absent

Words, we explore the idea of using minimal and relative absent words to compute the dis-
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tance between two biological sequences. We also demonstrate how the pairwise distance

matrix thus produced can be used to reconstruct the gene phylogeny.
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Part II

Phylogeny Reconstruction





Chapter 6

Gene Tree Estimation Using Absent

Words

An absent word with respect to a sequence is a word that does not occur in the sequence as

a factor. A minimal absent word (MAW) is a word that is absent in a sequence but all its

proper factors occur in that sequence. On the other hand, a relative absent word (RAW)

is a word that occurs in a target sequence but is absent in a reference sequence. A RAW

is minimal if none of its proper factors are RAW for the same pair of target and reference

sequences. In this chapter we explore the idea of using MAW and RAW to compute the

distance between two biological sequences. The motivation of our work comes from the

potential advantage of being able to extract as little information as possible from large

genomic sequences to reach the goal of comparing sequences in an alignment-free manner.

For a collection of gene sequences, we demonstrate how the pairwise distance matrix thus

produced can be used to reconstruct the gene phylogeny. We provide recommendations

Much of the material in this chapter is taken without alteration from the following paper.

• Rahman, M. S., Alatabbi, A., Athar, T., Crochemore, M., & Rahman, M. S. (2016). Absent words

and the (dis) similarity analysis of DNA sequences: an experimental study. BMC research notes,

9(1), 186.
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to use the best distance measure based on our analysis. In particular, our analysis reveals

that the best performers are: the length weighted index of minimal RAW sets, the length

weighted index of the symmetric difference of the MAW sets, and the Jaccard distance

between the MAW sets. We also show that considering the reverse complement strands

along with the input gene sequences during computation of the absent words improves

the quality of the gene tree.

6.1 Introduction

Recently, the concept of minimal absent word (MAW) has been used to compute the

distance between two species [39]. Similar effort has also been made to investigate the

variation in number and content of minimal absent words within a species using four

human genome assemblies [108]. This concept along with the related notions of absent

words, also known as nullomers and forbidden words, have received significant attention

in the relevant literature (e.g., [21, 25–27, 68, 98, 197, 198, 283]) and have been shown to

be useful in applications like text compression [69, 70]. Perhaps the most significant use

of this concept is in the field of computational biology. Hampikian and Andersen have

studied nullomers, i.e., the shortest words that do not occur in a given genome, and

primes, i.e., the shortest words that are absent from the entire known genetic data with

a motivation to discover the constraints on natural DNA and protein sequences [121].

Acquisti et al. [8] have studied nullomers and the cause of absent words in the human

genome. Herold et al. [127] have presented a method to compute the shortest absent words

in genomic sequences. Pinho et al. [223] on the other hand focused on minimal absent

words that form a set smaller than the set of absent words. Subsequently, Garcia and

Pinho have studied four human genome assemblies from the perspective of minimal absent

words [108]. Very recently, Silva et al. [247] coined the notion of minimal relative absent

words (RAW) for differential identification of sequences that are derived from a pathogen

genome but absent from its host. They applied this concept in analyzing Ebola virus

genome from the 2014 outbreak [37] and discovered the presence of short DNA sequences
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in the Ebola virus genome that appear nowhere in the human genome. The pathogen-

specific signatures identified from such analysis can be useful for quick and precise action

against the infectious agents.

The main focus of this chapter is to study and analyze possible functions that can be

used with MAW and RAW sets to establish an alignment-free distance measure, which

can then be utilized to develop a sequence-based gene tree estimation method. The study

of gene phylogeny not only helps identify the historical relationships among a group of

organisms, but also aids in other biological research such as drug and vaccine design,

protein structure prediction and so on [170].

In sequence-based methods of gene phylogeny reconstruction, the input is a set of

homologous sequences from different species. After obtaining an alignment of these

sequences, different methods are applied to extract the phylogenetic information. In

distance-based methods, a distance matrix is computed from the alignment that gives

the pairwise distances among the sequences under consideration. This distance matrix is

then used to estimate the gene tree using standard clustering methods or specially tailored

methods. Examples of this approach include Neighbor Joining (NJ) [243], BIONJ [109],

RapidNJ [248], FastME [78], QuickTree [128], Clearcut [91]. Another approach uses

heuristics for either Maximum-Likelihood (ML) [96] or Maximum-Parsimony (MP) [101]

which are two NP hard optimization problems. The most popular tools of gene tree esti-

mation to date, RAxML [254,255] and FastTree [226,227], both use heuristics for ML, so

does PhyML [113]. Yet another approach, Bayesian Markov Chain Monte Carlo (MCMC),

produces not just a single gene tree but a probability distribution of the trees or aspects

of the evolutionary history [33, 124, 158]. All these methods rely on sequence alignment,

which is a time consuming task. Also, any error in the alignment significantly affects the

downstream processes, resulting in poor estimation of the gene tree.

While the most popular distance-based methods compute the distance matrix from se-

quence alignment, it is technically possible to use these approaches without the alignment

step, so long as the distance measure is able to reflect the number of substitutions per site,
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which underlies classical alignment-based phylogeny reconstruction [122]. In fact, several

such alignment-free gene tree estimation methods are found in literature [122,144,249,271].

Also, as mentioned in the beginning of this section, the concept of minimal absent word

(MAW) has been used to compute the distance between two species. For example, in [39],

Chairungsee and Crochemore have proposed a distance measure based on the set of min-

imal absent words and have used that distance measure to construct a gene tree among

11 species, following an experimental setup of Liu and Wang [183]. And, in [108], Garcia

and Pinho have explored the potential of the minimal absent words from the perspective

of similarities and differences among 4 human genome assemblies.

While the use of MAW and RAW sets as a distance measure seems interesting and

useful, to the best of our knowledge there exists no attempt in the literature to identify

the best approach to extract distance measures from these sets. Indeed, Chairungsee and

Crochemore [39] chose to employ Length weighted index on the symmetric difference of

two MAW sets but without any discussion on the rationale behind their choice. While

it is likely that the potential advantage of MAW set would encourage researchers and

practitioners to use this as a distance measure in the context of sequence comparison

and phylogeny reconstruction, the lack of any directions on which approach to use with

it may remain as an obstacle. This is where our current research work fits in. In this

work we conduct an experimental study on the same setting of [183] and [39] to analyze

and identify the best function to use with the MAW and RAW sets to infer the pairwise

sequence distances. In our experiments we have analyzed all the functions that are already

used in the literature. Additionally we have used some well-studied functions for the first

time as a distance measure using minimal absent words. Table 6.1 lists and comments

on the functions and concepts considered in this chapter. In the sequel, based on our

analysis and comparison among the different methods studied, we have presented some

recommendations with a goal to aid the researchers to select a suitable distance matrix

for gene tree estimation in an alignment free manner.
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Table 6.1: Functions used and compared in this chapter as distance measures.

Index Comment

Length weighted Index

(LWI)

Applied in [39] on the symmetric difference of MAW sets. Here

we use LWI on symmetric difference and intersection of MAW

sets, as well as on RAW sets.

Jaccard Distance Used in this chapter.

Total Variation Distance

(TVD)

Used in [108] to analyze similarity on 4 human genome assem-

blies.

GC Content Used in [108] to analyze similarity on 4 human genome assem-

blies. Here we use GC Content on symmetric difference and

intersection of MAW sets, as well as on RAW sets.

6.2 Methods

A string x = x1x2 . . . xn is a sequence of characters of length n from a finite alphabet Σ,

i.e., xi ∈ Σ, 1 ≤ i ≤ n. An empty string is denoted by ǫ. A string y is a factor or substring

of a string x iff there exist strings u, v such that x = uyv; if u 6= ǫ or v 6= ǫ, then, y is a

proper factor of x. We use the term word and string synonymously. Below, we describe

the concepts of MAW and different distance measures based on the MAW sets of a pair of

sequences. We subsequently focus on another recently coined absent word based concept,

known as relative absent word (RAW).

6.2.1 Minimal Absent Word (MAW)

An absent word in a string is a word that does not occur in the given string. More formally,

a string y is an absent word in a string x if it is not a factor of x. Additionally, if all its

proper factors are factors of x, then y is said to be a minimal absent word. For example,

aaa, aba, and bbb are examples of minimal absent words for the string x = abbaab. But,

aaab is an absent word but not a minimal absent word of x. Given a string x, we will use
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MAWx to denote the set of minimal absent words of x.

Given a set, S = {s1, s2, . . . , sk} of k sequences, we employ the following methodology:

Step 1: For each sequence si, 1 ≤ i ≤ k, we compute MAWsi .

Step 2: We compute distance matrix MD
S for the set S using a distance measure D based on

MAWsi , 1 ≤ i ≤ k. For all 1 ≤ i, j ≤ k, we have MD
S [i, j] = D[si, sj]. Because the

distance measure is symmetric, we only focus on the upper triangle of the matrix

MD
S .

Step 3: We build a phylogenetic tree T D
A (S) on the set S based on the distance measure D

applying clustering algorithm A on MD
S for phylogeny reconstruction.

6.2.2 Distance Measures

We apply a number of distance measures discussed below. In what follows we will consider

two sequences x and y and their MAW sets, MAWx and MAWy.

Length Weighted Index

In [39], the length weighted index (LWI) has been studied and experimented. There, this

measure has been applied on the symmetric difference of the MAW sets. In our study we

apply intersection operation as well. Formally:

LWI∆(x, y) =
∑

u∈MAWx∆MAWy

1

|u|2 (6.1)

LWI⋂(x, y) = −
∑

u∈MAWx

⋂

MAWy

1

|u|2 (6.2)

Here, ∆ and
⋂

refer to the set symmetric difference and set intersection operations

respectively. Note that, the intersection operation between two sets can be seen as a

similarity measure and hence we use negation in Equation 6.2.
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Jaccard Distance

Jaccard index is a statistical measure to use as a similarity coefficient between sample

sets. Because we are interested in a distance matrix we use the following equation (based

on Jaccard index) for computing the Jaccard distance.

J(x, y) = 1− |MAWx

⋂

MAWy|
|MAWx

⋃

MAWy|
(6.3)

Total Variation Distance (TVD)

Garcia and Pinho [108] used total variation distance (TVD) to assess pairwise variance.

The definition of TVD is as follows:

TV D(P,Q) =
1

2

∑

i

|P (i)−Q(i)| (6.4)

where P and Q are two probability measures over a finite alphabet, and the term 1
2

corresponds to the normalization by the two probability distributions [77]. This distance

measure has values in the interval [0, 1] with higher values implying greater dissimilarity

or difference. To calculate TV D(x, y), i.e., TVD between two sequences x and y we

first count the number of MAWs in MAWx and MAWy for each word size and then

transform this histogram in a normalized version that can be interpreted as a probability

distribution. Subsequently, TVD is computed according to Equation 6.4.

GC Content

The above-mentioned indexes are based on the number statistics of the MAW sets. In-

spired by the work of [108], we make an effort to suggest a measure that is more related

to the content of the minimal absent words. In particular we focus on the compositional

bias or GC content of the MAW sets. The GC content is the overall fraction of G plus

C nucleotides in each set. We compute the GC content considering both symmetric dif-
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ference and intersection. Assume that NUMα(P ) provides the number of a particular

character α ∈ Σ in the members of the set P and NUMΣ(P ) provides the number of all

characters in the members of the set P . Then, formally:

GCC∆(x, y) =
NUMG(MAWx∆MAWy) +NUMC(MAWx∆MAWy)

NUMΣ(MAWx∆MAWy)
(6.5)

GCC⋂(x, y) = 1− NUMG(MAWx

⋂

MAWy) +NUMC(MAWx

⋂

MAWy)

NUMΣ(MAWx

⋂

MAWy)
(6.6)

6.2.3 Relative Absent Word (RAW)

The concept of Relative Absent Word (RAW) has been defined by Silva et al. [247] in the

context of a target sequence x and a reference sequence y. Suppose Wk(x) denotes the

set of all length-k factors of x. Then Wk(y) denotes the set of all length-k words that are

not present in y. Therefore, the set of all length-k relative absent words that exist in x

but do not exist in y is defined as:

Rk(x, y) = Wk(x)
⋂

Wk(y) (6.7)

A RAW is minimal if none of its proper factors are in the RAW set for the same pair

of target and reference sequences. Formally, the set of length-k minimal relative absent

words for target sequence x and reference sequence y is defined as:

Mk(x, y) = {α ∈ Rk(x, y) : Wk−1(α)
⋂

Mk−1(x, y) = ∅} (6.8)

Silva et al. [247] used RAW for differential identification of sequences that are derived

from a pathogen genome (i.e., EBOLA virus) but absent from its host (i.e., Human). This

inspires us to use RAW to compute the distance between two species in our study. Here

we have used their software called EAGLE to compute the set of RAWs considering each
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species in turn as the reference and the remaining species as targets. To elaborate, recall

that we have a set, S = {s1, s2, . . . , sk} of k sequences. For a particular pair of sequences

si, sj ∈ S, we first compute RAWsi,sj (RAWsj ,si), i.e., the set of RAWs considering si (sj)

as the reference and sj (si) as the target sequence. Then we compute the Length Weighted

Index (LWI) (discussed above) of both RAWsi,sj and RAWsj ,si . This gives us two distance

values for a particular pair of species. We then take the average of these two distance

measures. Similarly, we also apply the GC content measure on the RAW sets.

6.2.4 Gene Tree Estimation Algorithms

A gene tree represents the evolution of a particular gene within a group of species (taxa).

In sequence-based methods of gene tree reconstruction, the input is a set of homologous

sequences. The distance based phylogeny reconstruction methods start by computing a

matrix that gives us the pairwise distances between the sequences under consideration.

This distance matrix is then used to estimate the tree using standard clustering methods

or specially tailored methods to reconstruct the phylogeny from the distance matrix. The

distance measures described above have also been used to reconstruct gene phylogeny

using two well-known methods, namely, Unweighted Pair Group Method with Arithmetic

Mean (UPGMA) [258] and Neighbor Joining (NJ) [243]. UPGMA builds the tree by

clustering similar taxa iteratively, and it works by building the phylogenetic tree bottom

up from its leaves. NJ method on the other hand starts with a star tree as the initial and

construct a modified distance matrix in which the separation between each pair of nodes

is adjusted on the basis of their average divergence from all other nodes. Very briefly, the

tree is constructed by linking the least-distant pair of nodes in this modified matrix.

6.3 Experiments

We have used the same datasets used in [183] and [39]. In particular, we have conducted

our experiments on the first exon sequences of β-globin genes from 11 species, namely,
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Human, Goat, Gallus, Opossum, Lemur, Mouse, Rabbit, Rat, Bovine, Gorilla, and Chim-

panzee. Because the gene family of β-globin has a significant biological role in oxygen

transport in organisms, it is used to analyze DNA and the first exon of the β-globin gene

is an example for many DNA studies instead of computing similarity/dissimilarity of the

whole genomes [39]. Inspired by the experimental setup of Garcia and Pinho [108], we

consider two scenarios: the original sequence itself and the original sequence concate-

nated with its reversed complement (artificial words across the boundary between both

sequences are ignored). The former will be referred to as the noRC setting and the latter

as the RC setting. The motivation for using the reverse complement is to take into con-

sideration words that might occur in the reverse complement strand but that might be

absent from the direct strand.

We have used the algorithm of [21] to compute the MAW sets using their implementa-

tion, which is available at: http://github.com/solonas13/maw. In this implementation,

there are two parameters k and K, respectively representing the minimum and maximum

length of MAWs to be generated. Since we wanted to generate all possible MAWs, we

set k to 2 and K to one less than the length of the sequence. To compute the RAW

sets, we have used EAGLE software [247] available at: http://bioinformatics.ua.pt/

software/eagle/. For each pair of sequences, we generated RAWs of length between 2

and 28. The code to compute the distance matrices and analyze the results were writ-

ten in C++ language and can be found at: https://github.com/srautonu/AWorDS.

We have also implemented a related web-based tool with limited capacity here: http:

//77.68.43.135/AWorDS. It is planned that this web-tool will be improved with more

functionalities in near future.

We have considered the four distance measures described in Section 6.2.2 based on

the MAW sets. For a pair of sequences, LWI and GC content have been applied on the

symmetric difference as well as the intersection of the MAW sets. We have also applied

these 2 measures on the RAW sets. With noRC and RC settings, this gives us a total of

16 distance matrices. All the distance matrices are given in Appendix A.
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6.4 Results

Following the methodology of [183] we have carefully analyzed the computed distance

matrices based on the real biological phenomena that are also considered in [183]:

• It is believed that Gorilla and Chimpanzee are most similar to Human [REL 1];

• Similarly, among these 11 species, Goat and Bovine should be similar [REL 2] as

are Rat and Mouse [REL 3];

• Gallus and Opossum should be remote from the other species because Gallus is the

only non-mammalian representative in this group [REL 4] and Opossum is the most

remote species from the remaining mammals [REL 5];

• Besides gallus and Opossum, lemur is more remote from the other species relatively

[REL 6].

We have analyzed the distance measures based on the above-mentioned 6 expected

relations (REL 1 - REL 6). Among these 6 relations we give higher importance on REL

1 through REL 3 in the sense that when all of these are captured we look into the rest

for further comparison. Below we discuss several interesting points from our analysis.

• As is evident from our analysis, unfortunately, the GC Content measure does not

do very well in comparison to the other metrics despite that it is more related to

the content of the minimal absent words. In particular, in most cases this measure

is unable to capture the expected relationships (REL 1 - REL 6) mentioned above.

However, despite the overall relative poor performance, except for the cases when

intersection operation has been used, GC Content measure is at least able to cap-

ture the close relation among Human, Gorilla and Chimpanzee, i.e. REL 1. For

intersection operation however, GCC fails miserably to capture any of the important

relationships among REL 1 REL 2 and REL 3.

141



Table 6.2: The distance matrix based on the Length Weighted Index on RAW sets (on

RC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 23.39 26.94 28.34 27.82 23.49 19.31 27.88 4.77 21.60 7.26

goat 28.71 24.16 25.89 25.52 24.33 27.43 21.77 8.73 24.26

opossum 29.55 31.23 29.21 26.69 30.52 26.90 28.16 28.44

gallus 28.66 30.22 26.27 30.89 28.25 26.21 30.51

lemur 30.21 27.63 30.96 27.77 25.91 30.27

mouse 24.09 26.43 20.98 23.17 23.29

rabbit 29.19 19.02 22.28 21.50

rat 28.37 27.95 30.21

gorilla 19.48 9.62

bovine 21.97

chimp

• The total variation distance also fails to be highly impressive. It has been able to

capture some of the relations but not all. However, it definitely seems better than

the GC Content measure. In particular, it has been able to capture REL 1 and in

most cases it also captures REL 2. However, it fails to capture REL 3 in both RC

and NoRC settings.

• Among the distance measures one of the best (if not the best) performers turns out

to be the length weighted index applied on the RAW sets. The result is better when

RC setting is used. In particular, Table 6.2 (also see Table 6.3) has all the desired

relations (REL 1 through REL 6) mentioned above.

• Jaccard distance has also turned out to be a very good measure in our experiments.

In particular, in Table 6.4 (also see Table 6.5) we can identify almost all desired

relations (REL 1 through REL 6).

• Length Weighted Index (LWI) for Symmetric Difference under the RC setting also

performs very well in conserving relations REL 1 through REL 5. This measure

seems quite good under the NoRC setting as well. However, it is worth-mentioning

that under the latter setting it fails to capture the close relation between Rat and

Mouse (REL 3).
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Table 6.3: The sorted list of each species from a particular species (left most column of

each row) according to the computed distance based on the Length Weighted Index on

RAW sets (on RC setting).
human →gorilla →chimp →rabbit →bovine →goat →mouse →opossum →lemur →rat →gallus

goat →bovine →gorilla →human →gallus →chimp →rabbit →mouse →lemur →rat →opossum

opossum →rabbit →gorilla →human →bovine →chimp →goat →mouse →gallus →rat →lemur

gallus →goat →bovine →rabbit →gorilla →human →lemur →opossum →mouse →chimp →rat

lemur →goat →bovine →rabbit →gorilla →human →gallus →mouse →chimp →rat →opossum

mouse →gorilla →bovine →chimp →human →rabbit →goat →rat →opossum →lemur →gallus

rabbit →gorilla →human →chimp →bovine →mouse →goat →gallus →opossum →lemur →rat

rat →mouse →goat →human →bovine →gorilla →rabbit →chimp →opossum →gallus →lemur

gorilla →human →chimp →rabbit →bovine →mouse →goat →opossum →lemur →gallus →rat

bovine →goat →gorilla →human →chimp →rabbit →mouse →lemur →gallus →rat →opossum

chimp →human →gorilla →rabbit →bovine →mouse →goat →opossum →rat →lemur →gallus

Table 6.4: The distance matrix based on the Jaccard distance on MAW sets (on RC

setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.70 0.82 0.80 0.76 0.70 0.61 0.80 0.15 0.69 0.26

goat 0.84 0.74 0.74 0.77 0.77 0.79 0.69 0.36 0.71

opossum 0.85 0.87 0.91 0.84 0.90 0.82 0.85 0.82

gallus 0.81 0.82 0.79 0.85 0.80 0.81 0.80

lemur 0.83 0.81 0.81 0.76 0.72 0.77

mouse 0.78 0.78 0.64 0.74 0.68

rabbit 0.81 0.63 0.75 0.65

rat 0.80 0.82 0.82

gorilla 0.67 0.15

bovine 0.69

chimp
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Table 6.5: The sorted list of each species from a particular species (left most column of

each row) according to the computed distance based on the Jaccard distance on MAW

sets (on RC setting).
human →gorilla →chimp →rabbit →bovine →mouse →goat →lemur →gallus →rat →opossum

goat →bovine →gorilla →human →chimp →lemur →gallus →rabbit →mouse →rat →opossum

opossum →chimp →human →gorilla →rabbit →goat →gallus →bovine →lemur →rat →mouse

gallus →goat →rabbit →human →gorilla →chimp →bovine →lemur →mouse →opossum →rat

lemur →bovine →goat →gorilla →human →chimp →rabbit →rat →gallus →mouse →opossum

mouse →gorilla →chimp →human →bovine →goat →rat →rabbit →gallus →lemur →opossum

rabbit →human →gorilla →chimp →bovine →goat →mouse →gallus →lemur →rat →opossum

rat →mouse →goat →human →gorilla →rabbit →lemur →chimp →bovine →gallus →opossum

gorilla →human →chimp →rabbit →mouse →bovine →goat →lemur →gallus →rat →opossum

bovine →goat →gorilla →human →chimp →lemur →mouse →rabbit →gallus →rat →opossum

chimp →gorilla →human →rabbit →mouse →bovine →goat →lemur →gallus →opossum →rat

• In general it seems that the results are better for the RC setting which is expected

because this setting takes into consideration words that might occur in the reverse

complement strand but that might be absent from the direct strand.

6.4.1 Estimated β-globin Gene Trees

As discussed in Section 6.2.4 all the distance measures analyzed in this chapter have

been used to estimate gene trees using two well-known methods, namely, Unweighted

Pair Group Method with Arithmetic Mean (UPGMA) [258] and Neighbor Joining (NJ)

[243]. The reconstructed β-globin gene trees based on the different distance measures

are presented in Appendix A. Here we only present the gene trees reconstructed using

Neighbor Joining algorithm applied on the distance matrix computed based on the Length

Weighted Index on the RAW sets (Figure 6.1), the length weighted index of the symmetric

difference of the MAW sets (Figure 6.2) and the Jaccard distance (Figure 6.3) considering

RC setting. Notably, these three indexes are the best performers according to our analysis.

Finally, in Figure 6.4 we present the phylogenetic tree constructed using NJ algorithm on

the distance matrix proposed in [183] for a visual comparison.
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Lemur Gallus Bovine Goat

Gorilla Human

Chimpanzee

Rabbit Rat Mouse

Opossum

Figure 6.1: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the Length Weighted Index

on the RAW sets (on RC setting).

Bovine Goat

Lemur

Rat Mouse

ChimpanzeeGorilla

Human

Rabbit

Gallus Opossum

Figure 6.2: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the Length Weighted Index

on Symmetric Difference of the MAW sets (on RC setting).
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Rat Mouse

ChimpanzeeGorilla

Human

Rabbit

Bovine Goat

Lemur Gallus Opossum

Figure 6.3: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the Jaccard distance on the

MAW sets (on RC setting).
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Gallus Opossum

Lemur

Gorilla Human

Chimpanzee

Rabbit Bovine Goat

Figure 6.4: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix of [183].
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6.5 Conclusion

In this chapter we have experimentally studied a number of distance measures based on the

concept of absent words to estimate the distance among different biological sequences. Our

main motivation has been to provide the research community an alignment free method

of gene tree estimation. Our work is inspired by the previous work with similar goals

as in [39] and [183]. In the sequel we present a comparison among the different distance

functions we have studied with a goal to aid the researchers in choosing a suitable method

for such dissimilarity analysis and phylogeny reconstruction. Based on our analysis we

recommend 3 distance measures. These are Length weighted index (LWI) applied on the

RAW sets, LWI applied on Symmetric Difference of the MAW sets and Jaccard distance

of the MAW sets. When computing these distance measures, the MAW and RAW sets

should be extracted considering both the direct and the reverse complement strand of the

gene sequences. This is supported by the natural assumption that this setting takes into

consideration words that might occur in the reverse complement strand but that might be

absent from the direct strand. Finally, Neighbor Joining algorithm should be applied on

the distance matrix thus computed to capture the gene phylogeny. We have established

a publicly accessible web interface that can be used to compute the different distance

measures described in this chapter. The resulting distance matrices can be used with

any clustering algorithm of researchers’ choice to produce gene trees in an alignment free

manner. We hope the appeal of our alignment free approaches, combined with the public

availability of our tool, will attract researchers to apply our methods in their respective

projects.

In the next chapter, Species Tree Estimation using DCM Boosted QFM, we focus

on species tree estimation, particularly when the gene tree discordance is modeled by

incomplete lineage sorting (ILS) or deep coalescence.
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Chapter 7

Species Tree Estimation using DCM

Boosted QFM

In the previous chapter, we developed a distance based scheme for gene tree estimation. In

this chapter, we shift our focus to species tree estimation, particularly when the gene tree

discordance is modeled by incomplete lineage sorting (ILS) or deep coalescence. When

the genes evolve down different tree topologies due to ILS, coalescent-based methods need

to be applied to estimate the species tree. These methods provide statistical guarantees

of returning the true tree with high probability, as the number of genes in the study is

increased. One such method is Quartet FM (QFM), which is highly accurate but does not

scale to large number of taxa. In this chapter, we apply disk-covering methods (DCMs) to

boost the scalability and performance of QFM. Experiments with a simulated dataset of

37 taxa shows that DCM boosted QFM outperforms ASTRAL, a highly popular, accurate

and fast coalescent-based species tree estimation method that is statistically consistent

under the multi-species coalescent model.

The results presented in this chapter are not published yet.
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7.1 Introduction

In a typical approach to species tree estimation, one would use multiple loci, concatenate

alignments for each locus into a super-matrix and then use it to estimate the species

tree [23]. However, when the genes evolve down different tree topologies due to gene

duplication and extinction, horizontal gene transfer, or incomplete lineage sorting (ILS),

this approach can return incorrect trees with high confidence [153]. A superior approach

to the concatenated analyses is the summary methods that take the reason of discordance

into account. In particular, when the discordance is modeled by ILS, the coalescent-

based summary methods provide statistical guarantees of returning the true tree with

high probability, as the number of genes in the study is increased [124, 152, 158, 180–182,

199,200,202,236,292]. One of these coalescent-based approaches, QFM [236], is the focus

of this chapter. Here we make an attempt to improve the running time of QFM to allow

it to process larger number of species or taxa.

QFM or Quartet FM [236] is a quartet-based phylogeny reconstruction algorithm.

QFM employs a divide and conquer approach. At each recursive step of the divide phase,

the input set of taxa is partitioned into 2 disjoint subsets using a heuristic bipartition

algorithm that is inspired by the Fiduccia and Mattheyses (FM) bipartition algorithm [99].

The algorithm starts with an initial partition and applies a heuristic search iteratively to

find a better partition. Each partition is scored by the number of satisfied quartets (i.e.

quartet support), less the number of violated quartets. To aid in combining 2 trees in

the conquer phase, whenever a bipartition is formed, both the partitions are augmented

with a unique dummy (artificial) taxon. With each bipartition of taxa, the set of quartets

is also divided into 2 subsets accordingly. During recursion, if the quartet set becomes

empty or the number of taxa becomes less than 4, then a depth one tree (i.e. a star)

is returned. In the conquer phase, as the recursion unwinds, at each step, two trees are

rerooted at the dummy taxon. Then the dummy taxon is removed from each tree and

the two roots are joined by an internal edge. Experiments conducted by Reaz et al. [236]

with both simulated and biological datasets demonstrate that QFM is highly accurate.
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However, QFM does not scale well as the number of taxa in the study increases. To

mitigate this, the authors in [236] sampled the quartets from the input set of gene trees,

instead of considering all the quartets. In a phylogenetic study of n species (taxa), the

number of quartets obtained from an input gene tree (with no missing taxa) will be
(

n

4

)

,

which is on the order of n4. However, Reaz et al. [236] samples only O(n2.8) quartets.

We, on the other hand, take a different approach in an effort to scale QFM. Rather than

sub-sampling the input set of quartets, we apply disk-covering methods which was shown

to improve the run time as well as accuracy of MP-EST in [23].

Disk-covering methods (DCMs) are meta-methods that employ divide-and-conquer

and iteration to boost the performance of the existing phylogenetic reconstruction meth-

ods [132,133,205,239]. In the first step, the dataset is decomposed into overlapping subsets

of taxa. Then species trees are estimated on these subsets using a coalescent-based species

tree method. Finally the species trees on the subsets of taxa are merged to get a tree on

the full set of taxa. In this study, we will apply DCM to boost the performance of QFM

and compare its performance with ASTRAL [292], which is a fast, accurate and highly

popular coalescent-based species tree estimation method.

7.2 Methods

In order to boost QFM using the DCM approach, we need to first decompose the dataset

into overlapping subsets of taxa. We use DACTAL [208] based decomposition with a target

subset size of 15 and padding size of 4. The target subset size represents the maximum

size of a subset, while the padding size represents the number of overlapping taxa in the

subsets. Both these parameters are treated as targets rather than hard constraints.

The DACTAL decomposition requires an initial (guide) tree on the full set of taxa.

We use Matrix Representation with Parsimony (MRP) [22,231] to obtain the guide tree.

MRP is a widely used supertree method for phylogeny reconstruction that is fast but less

accurate. MRP encodes all the small trees into a matrix using the characters 0, 1 and ?.

Then it uses Maximum-Parsimony (MP) [101] to get a tree from the data matrix.
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In the second step, species trees are estimated on these subsets using QFM. For each

subset, we restrict the input gene trees to the species present in the subset (each such gene

tree is called a subset gene tree). Then the quartets induced by these subset gene trees are

extracted and weighted by their respective frequencies. The set of quartets, along with

their weights, are then passed to QFM to estimate the species tree on the taxa subsets.

In the final step, we combine the subset species trees using SuperFine+MRL [209].

Thus a species tree on the full set of taxa is obtained. This can now be used as the new

guide tree and the entire process can be repeated. Several iterations of these steps can be

performed, with the species tree produced in one iteration being used as the guide tree

for the next iteration. We experiment with 2 and 5 iterations, following the methodology

of [23].

The quality of the species tree produced in each iteration is measured in terms of

quartet support score, as defined in Section 2.2.9. The species tree with the highest

quartet support, across all the iterations of boosting, is returned as the final estimated

tree.

7.3 Experiments

We compare the performance of boosted versions of QFM [236] with the latest version

of ASTRAL [199, 200, 292] on a collection of simulated datasets. We choose to compare

our results with ASTRAL since it has already been shown to be more accurate than

MP-EST [181] and BUCKy-pop [158] under different model conditions [199]. ASTRAL

has a clear advantage over concatenation when ILS levels are at least moderate, while

concatenation having an advantage when ILS levels are low.

We measure the tree error using the missing branch rate, also known as the false

negative (FN) rate. As defined in Section 2.2.9, FN rate is the percentage of the internal

edges in the model tree that are missing in the estimated tree.
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Figure 7.1: The model species tree for the 37-taxon mammalian dataset of [252].

7.3.1 Mammalian Simulated Datasets

We have used the mammalian simulated dataset that was prepared by Mirarab et al. [199]

and was also used in [23]. For completeness, we provide a brief description here on how

the dataset was constructed.

The simulated dataset was constructed based on a 37-taxon mammalian dataset with

447 genes that was studied by Song et al. [252]. Mirarab et al. [199] re-analyzed the

data and observed 2 clear outliers in terms of pairwise distance of the gene trees. They

also identified 21 genes with mislabeled sequences, which was subsequently also confirmed

by the authors of [252]. The outliers as well as the mislabeled sequences were therefore

removed and the dataset with the remaining 424 genes were then used to estimate a

species tree using MP-EST. This tree was then used as a model species tree, with branch

lengths in coalescent units. This tree is shown in Figure 7.1.

The branch lengths of the model species tree were rescaled to vary the amount of ILS

and create different model conditions. Shorter branch lengths increases the amount of ILS

and vice verse. The model condition with reduced ILS was created by uniformly doubling

(2X) the branch lengths, and two model conditions with higher ILS were generated by

uniformly dividing the branch lengths by two (0.5X) and five (0.2X). The amount of ILS

obtained without adjusting the branch lengths is referred to as “moderate ILS”. Using
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the multi-species coalescent model, gene trees were generated from each model species

tree. The gene tree branch lengths were then modified to deviate from the strict molecular

clock, and sequences were simulated down each gene tree under the GTRGAMMA model.

Maximum likelihood (ML) gene trees were estimated on each sequence alignment using

RAxML [254] under the GTRGAMMA model, with 200 bootstrap replicates to produce

bootstrap support on the branches.

In the biological data, the average bootstrap support (BS) was 71%. Therefore, the

sequence lengths in the simulated dataset were set to produce estimated gene trees with

average BS bracketing that value - 500 bp alignments produced estimated gene trees with

63% average BS and 1000 bp alignments produced estimated gene trees with 79% average

BS. The number of genes was varied from the set {50, 100, 200, 400, 800}. Each model

condition was identified by 3 aspects - ILS level, the number of genes and the sequence

length. In total, there were 11 model conditions. For each model condition, 20 replicate

datasets were simulated. Notably, all the gene trees in all the model conditions were

bifurcating.

7.3.2 Species Tree Estimation Tools

We have used ASTRAL version 5.6.1, downloaded from https://github.com/smirarab/

ASTRAL. This version incorporates the original algorithm of ASTRAL as well as subse-

quent improvements, as published in [199, 200, 244, 292]. We run the heuristic version

of ASTRAL in our comparisons. In this version, ASTRAL constrains the search space

to reduce the running time. This heuristic version is statistically consistent under the

multi-species coalescent model [199].

To create the MRP trees, the MRP matrices were generated using a custom Java

program. The parsimony problem was solved heuristically using the default approach

available in PAUP* (v.4.0b10) [259]. PAUP* generates an initial tree through random

sequence addition and then performs Tree Bisection and Reconnection (TBR) moves

until it reaches a local optimum. This process is repeated 1000 times, and at the end the
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most parsimonious tree is returned. If there are multiple trees with the same maximum

parsimony score, the “extended majority consensus” of those trees is returned.

The source code for QFM was obtained from Reaz et al. [236]. The code and packages

for DCM boosting were obtained from Bayzid et al. [23].

7.4 Results

In this section, we present the results of our experiments. We compare the running time

of DCM boosted QFM with that of native implementation of QFM. Our results indicate

that the scalability of QFM is improved through boosting. We then focus on comparing

the performance of our approach against ASTRAL in terms of missing branch rate (i.e.

FN rate). As mentioned earlier, our approach requires a starting/guide species tree. We

generated the guide tree using MRP which is very fast but less accurate. Since the MRP

tree is available to us, we also measure its accuracy and compare it with trees generated

by ASTRAL and our approach. We examine 2 versions of our approach. In one version,

we perform 2 iterations of boosting (DCM2-QFM) and in another version, 5 iterations

are applied (DCM5-QFM).

7.4.1 Running Time

As mentioned earlier, each model condition in the simulated dataset is identified by 3

aspects - ILS level, the number of genes and the sequence length. In total, there are 11

model conditions. In each of these model conditions, we have averaged the running time of

QFM over 20 replicates. We then performed 5 iterations of DCM boosting (DCM5-QFM)

and averaged the running time of boosted QFM over the same 20 replicates. The results

are recorded in Table 7.1. Our current implementation of DCM5-QFM is sequential.

However, after DACTAL decomposition, the steps needed to estimate species trees on

each subset of taxa are embarrassingly parallel. Therefore, in a parallel implementation,

the running times of these parallel steps will not add up. Instead only the maximum time
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Table 7.1: Average running time (minutes) of boosted and native QFM for various model

conditions. The average is taken over 20 replicates. The running time of the parallel

version of DCM5-QFM is estimated.

Model condition QFM DCM5-QFM DCM5-QFM

(Sequential) (Parallel)

0.2X,200gt,500bp 15.00 5.14 0.72

0.5X,200gt,500bp 14.19 4.52 0.57

1X,200gt,500bp 14.80 4.53 0.58

2X,200gt,500bp 9.89 3.84 0.57

1X,50gt,500bp 8.44 2.08 0.32

1X,100gt,500bp 9.27 3.00 0.45

1X,400gt,500bp 11.22 5.00 0.65

1X,800gt,500bp 12.54 7.97 1.03

1X,200gt,250bp 12.59 4.00 0.59

1X,200gt,1000bp 10.80 3.82 0.57

1X,200gt,true gene tree 10.32 3.71 0.56

taken by any of these parallel steps will contribute to the total running time. Assuming

negligible time to bootstrap the parallel platform, we can thus estimate the running time

of the parallel implementation, though we have not actually implemented it.

As can be seen from Table 7.1, the improvement in running time in the sequential

implementation of DCM5-QFM is 1.5 to 4 times over the native implementation of QFM

among the different model conditions. When we take a look at the estimated running

time of the parallel version of DCM5-QFM, the improvement ratio lies between 12 to 26.5

times. Therefore, boosting has clearly succeeded in increasing the scalability of QFM.

7.4.2 Topological Accuracy

While boosting improved the running time of QFM, it is important to ensure that this does

not adversely impact the topological accuracy of the estimated species tree. Therefore,

we have compared boosted QFM with ASTRAL in the same 11 model conditions. We
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Table 7.2: Average FN rate of different species trees for various model conditions. The

average is taken over 20 replicates.

Model condition MRP ASTRAL DCM2-QFM DCM5-QFM

0.2X,200gt,500bp 0.1471 0.0861 0.1029 0.0945

0.5X,200gt,500bp 0.0544 0.0485 0.0471 0.0441

1X,200gt,500bp 0.05 0.0485 0.0471 0.0426

2X,200gt,500bp 0.0294 0.025 0.0206 0.0206

1X,50gt,500bp 0.0941 0.075 0.0897 0.0838

1X,100gt,500bp 0.0706 0.0706 0.0647 0.0632

1X,400gt,500bp 0.0412 0.0147 0.0147 0.0147

1X,800gt,500bp 0.0176 0.0074 0.0029 0.0029

1X,200gt,250bp 0.0794 0.0632 0.0544 0.0485

1X,200gt,1000bp 0.0338 0.0221 0.0162 0.0162

1X,200gt,true gene tree 0.0294 0.0132 0.0088 0.0088

summarize the average FN rates of the different species tree estimation methods in these

model conditions in Table 7.2. The best result in each model condition is highlighted using

bold-faced font. As expected, MRP has inferior FN rate compared to the other methods

in all the model conditions. In 8 of the 11 model conditions, boosted QFM outperforms

ASTRAL. In another case, ASTRAL and boosted QFM had identical average FN rates.

Of these 9 cases, 5 cases observed the benefit of boosting with only 2 iterations. In

the remaining 4 cases, 5 iterations were needed to achieve better performance. In what

follows, we have examined the comparative behavior more thoroughly as the length of

gene sequences or the amount of ILS or the number of gene trees vary.

In Figure 7.2, we plot the FN rate of trees generated by MRP, ASTRAL, DCM2-QFM

and DCM5-QFM against varying sequence length. The box plots are drawn based on

20 replicates. The model condition had 200 genes and moderate level of ILS. In one

experiment, we have used the true gene trees that were generated from the model species

tree. In other experiments we simulate the gene sequences of different lengths (250, 500

and 1000 base pairs) from the true gene trees and then use the gene trees estimated from
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Figure 7.2: FN rates of MRP, ASTRAL and boosted versions of QFM on the simulated

mammalian datasets with varying sequence length (200 genes, moderate amount of ILS).

For the boosted versions of QFM, we show the FN rates of the best trees, with respect to

the quartet support, after two and five iterations of DACTAL-based boosting.

these simulated sequences. These estimated gene trees are expected to have errors that

decreases with the increased length of the simulated sequences.

As shown in Figure 7.2, in each case the MRP tree is inferior compared to the other

trees, which is expected. For smaller sequences (250bp), 2 iterations of boosting sufficed

for QFM to outperform ASTRAL. Nonetheless, 5 iterations improved the performance

further. For the 500bp sequences, DCM2-QFM was worse than ASTRAL. Increasing the

number of iterations (DCM5-QFM) made QFM perform at par with ASTRAL. For the

1000bp sequences, both versions of boosted QFM had similar performance, which was
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Figure 7.3: FN rates of MRP, ASTRAL and boosted versions of QFM on the simulated

mammalian datasets with varying amounts of ILS. The number of genes and sequence

length were fixed to 200 instances and 500 bp respectively. 2X model condition contains

the lowest amount of ILS while 0.2X refers to the model conditions with the highest

amount of ILS. For the boosted versions of QFM, we show the FN rates of the best

trees, with respect to the quartet support, after two and five iterations of DACTAL-based

boosting.

better than ASTRAL’s performance. In case of the true-tree, ASTRAL and boosted

QFM had the same median FN rate. However, FN rate of QFM in the 20 replicates

spanned a very small range, with a few outliers.

Figure 7.3 shows the FN rates of MRP, ASTRAL and boosted QFM in the face of

varying amounts of ILS. 200 genes of 500 bp each were used to estimate the gene trees. In
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Figure 7.4: FN rates of MRP, ASTRAL and boosted versions of QFM on the simulated

mammalian datasets for different number of gene trees. The number of genes was varied

from 50 to 800. The amount of ILS was set to 1X level, while the sequence length was set

to 500 bp. For the boosted versions of QFM, we show the FN rates of the best trees, with

respect to the quartet support, after two and five iterations of DACTAL-based boosting.

the model conditions with increased ILS (0.5X and 0.2X), DCM5-QFM was comparable

with ASTRAL in terms of FN rate; DCM2-QFM was slightly worse. The same observation

holds in the moderate ILS condition. In low ILS level (2X), all 4 methods had the same

median FN rate.

Figure 7.4 shows the FN rates of MRP, ASTRAL and boosted QFM as the number of

input gene trees is varied from the set {50, 100, 200, 400, 800}. Moderate level of ILS (1X)

and gene sequences of 500 bp were used. All the methods show performance improvement
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Figure 7.5: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 1X

level of ILS, 200 true gene trees. The first replicate (out of the 20 replicates) was used.

Boosting with 2 and 5 iterations produced the same tree.

with increased number of gene trees. Boosted QFM shows comparable performance with

ASTRAL in all cases, marginally outperforming ASTRAL when 800 gene trees are used.

With the superiority of boosted QFM established in our experiments, we are now

compelled to visually depict the species trees estimated by boosted QFM. We have drawn

the species tree for each of the 11 model conditions in Appendix B. In Figure 7.5, we

only show the species tree generated for the model condition with moderate ILS with 200

true gene trees.

7.5 Conclusion

QFM is a highly accurate quartet amalgamation method for species tree estimation in

presence of ILS. However, QFM does not scale to large number of taxa. In this chapter,

we have applied DCM boosting to scale QFM to datasets with large number of taxa. We

then compare the boosted version of QFM with ASTRAL, a highly accurate, statistically

consistent species tree estimation method which has become extremely popular. In our
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experiments with different model conditions with varying amount of ILS, number of gene

trees and gene lengths, we find DCM boosted QFM to estimate species trees that are

better or as good as the species trees estimated by ASTRAL. We have thus offered the

biologists an alternate tool for accurate estimation of species trees on large number of

taxa.

In the next chapter, we conclude this thesis by summarizing the major contributions

of this research, followed by directions for future research.
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Chapter 8

Conclusion

In this final chapter, we draw the conclusion of our thesis by describing the major contri-

butions of this research work along with some interesting discussion that may be seen as

the main message of this thesis. Subsequently we follow that up with some directions for

future research.

8.1 Protein Attribute Prediction

In Part I of this thesis, we focused on solving several protein attribute prediction problems.

These included Golgi Apparatus (GA) resident protein type (or sub-Golgi protein type)

prediction, DNA-binding protein (DNA-BP) prediction and protective antigen prediction.

In solving each of these problems, we applied machine learning based approaches where

the class-discriminating features were extracted solely from the primary sequence of the

proteins.

Given a GA protein sequence as input, we built a classifier that can predict whether it

is a cis-Golgi or trans-Golgi protein. In building this predictor, we have employed Random

forests [34] algorithm for feature ranking and Support Vector Machine (SVM) [32] to train

the classification model. We have applied Synthetic Minority Over-sampling Technique

(SMOTE) [43] for data balancing. Our method, identification of sub-Golgi Protein Types
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(isGPT), outperformed state-of-the-art predictors by achieving accuracy values of 95.4%,

95.9% and 95.3% for 10-fold cross-validation test, jackknife test and independent test

respectively. We subsequently established a publicly accessible web interface of isGPT at

http://isgpt.research.buet.ac.bd/. Notably, the relevant paper has been published

in Artificial Intelligence in Medicine.

Next we worked to build a predictor for DNA-BPs. Like before, we employed Ran-

dom forests algorithm to rank the features, after extracting them from the primary se-

quence. As the dataset was balanced in this problem, there was no need for a data

balancing step. However, before applying the prediction algorithm, we applied SVM

based Recursive Feature Elimination (SVM-RFE) [118] method to select an optimal set

of features. We then trained the prediction model using SVM with linear kernel. Our

proposed method was named DNA-binding Protein Prediction model using Chou’s gen-

eral PseAAC, or DPP-PseAAC in short. DPP-PseAAC outperformed all the state-of-

the-art DNA-BP predictors in cross-validation testing, by achieving accuracy values of

93.21%, 95.91% for 10-fold cross-validation test and jackknife test respectively. In inde-

pendent testing, it obtained an accuracy of 77.42% which was also better than all other

methods except for Local-DPP [277]. Based on the commendable performance of DPP-

PseAAC, we have established a publicly accessible web interface for its wide adoption

at http://dpp-pseaac.research.buet.ac.bd/. Informatively, the relevant paper has

been published in Journal of Theoretical Biology.

We also proposed a new protective antigen predictor. The steps that were applied in

the process of building DPP-PseAAC were also followed in solving the problem of pro-

tective antigen prediction. However, since the training dataset had significant imbalance,

it was balanced using random undersampling before the learning algorithm was applied.

Named as Antigenic, our proposed model achieved accuracy, sensitivity and specificity val-

ues of 78.04%, 78.99% and 77.08% respectively in 10-fold cross-validation testing on the

benchmark dataset. In jackknife cross-validation, the corresponding scores were 80.03%,

80.90% and 79.16% respectively. Antigenic has been made publicly available through the

web interface at http://antigenic.research.buet.ac.bd/.
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Through the design and development of these three predictors, we have generalized a

framework for feature extraction and selection that can be applied to any protein attribute

prediction problem, which can be seen as a key contribution of this thesis. The steps of

this framework can be summarized as follows.

• Represent the proteins in terms of sequence based features such as n-grams, n-

gapped-dipeptide and position specific n-grams features.

• Rank the features in each individual feature space separately by applying Random

forests algorithm. The mean decrease in accuracy, as calculated by the Random

forests algorithm, is used as the ranking score of each feature.

• In each individual feature space, remove all the features with ranking score less than

or equal to 0.

• Combine the remaining features from all the feature spaces. Re-rank the combined

set of features using another iteration of Random forests algorithm.

• Keep all the features with non-negative ranking scores. Apply SVM-RFE to re-

rank these features as follows. SVM is first run on the entire feature set to rank

the features. In the recursive step, 25 least ranked features are removed, SVM is

then run again on this reduced feature space, and feature ranking is recomputed.

The recursion is repeated until all the features are eliminated. Thus a new feature

ranking is obtained. We call it the SVM-RFE (coarse) ranking.

• Using this new ranking, construct different prediction models (using a suitable pre-

diction algorithm) by varying the number of features. A large feature space is first

explored, albeit with coarse granularity. That means, the number of features that

are added or removed between model constructions is large. After examining vari-

ous performance curves, zoom into the interesting terrain of the feature space and

reduce the jumps in feature count in generating new models. As an example, in

case of DPP-PseAAC, we started with a model with 500 top-ranked features, using
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the SVM-RFE (coarse) ranking. We subsequently added 1000 next ranked features

in each iteration, until the feature count became 6500. Based on the performance

curves, the feature space range [100, 1500] seemed promising. Therefore, more mod-

els were generated in this space, however the change of features in each step became

finer: 100 features.

• When the feature space under investigation is significantly narrowed down, apply a

second round of SVM-RFE in this feature space, but this time with steps of 1 feature

elimination (instead of 25 features). This gives a more reliable ranking, which we

have called SVM-RFE (fine) ranking. Using this final ranking, explore prediction

models with very granular feature count jumps to close in on the best model. For

example, in case of DPP-PseAAC, the SVM-RFE (fine) ranking was generated for

the top 600 features. Based on this new ranking, we first generated a prediciton

model using the top 10 features. We generated and compared more models, adding

10 next ranked features in each iteration, until the feature count became 600.

Figures 4.2 (in Chapter 4) and 5.1 (in Chapter 5) depicted the steps of this general

framework of feature extraction and selection. A distinct and note-worthy property of

this framework is essentially the focus on only the primary sequence. This is in sharp

contrast to the modern trend of focusing on features from structural and functional do-

mains. There has also been an increased interest recently in features extracted from the

proteins’ evolutionary information. However, this evolutionary information, in the form

of a Position Specific Scoring Matrix (PSSM), takes time to generate, requiring at least

three iterations of PSI-BLAST [15] against the non-redundant protein database. Besides,

lack of enough homologous sequences in the searched database may render a PSSM that

cannot describe the target protein adequately, thus resulting in wrong attribute predic-

tions [164]. Our proposed framework therefore offers a relief, empirically promising the

potential of only focusing on the primary sequence, which is light-weight and less time

consuming. While we dare suggest that focusing on the primary sequence should be

enough to capture the underlying structural and functional information encoded therein,
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we still lack sufficient theory behind it. So, our promising quantitative results should be

followed through by qualitative investigation to elucidate the biological insight behind our

suggestion, which by the way is out of the scope of this thesis that basically focuses on

computational biology rather than biology itself.

8.2 Phylogeny Reconstruction

In Part II of this thesis, we focused on phylogeny reconstruction. We first explored the

idea of using minimal and relative absent words to compute the distance between two

biological sequences (proteins, genes, RNAs etc.). We proposed several distance measures

for a pair of biological sequences and recommended the best distance measure based on our

analysis. We have also implemented a related web-based tool with limited capacity here:

http://77.68.43.135/AWorDS. For a collection of gene sequences, we demonstrated how

the pairwise distance matrix thus produced can be used to reconstruct the gene phylogeny

in an alignment-free manner. The relevant paper has been published in BMC Research

Notes.

We subsequently focused on species tree estimation, particularly when the gene tree

discordance is modeled by incomplete lineage sorting (ILS) or deep coalescence. We ap-

plied disk covering methods (DCMs) [132,133,205,239] to boost the scalability and perfor-

mance of Quartet FM (QFM) [236], a coalescent-based summary method for species tree

estimation. Experiments with a simulated dataset of 37 taxa demonstrated superiority of

DCM boosted QFM over ASTRAL [199,200, 292], a highly accurate and popular species

tree estimation method that is statistically consistent under the multi-species coalescent

model.
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8.3 Future Research Directions

The work in this thesis has introduced further research opportunities. These new research

directions can be summarized as follows.

• In any protein attribute prediction problem, the first step is to prepare or obtain

a stringent benchmark dataset [61]. To avoid homology bias, the datasets should

contain proteins with pairwise sequence similarity no more than a certain cutoff

or threshold (e.g. 25%) [61]. In the sub-Golgi protein type prediction problem,

we used a benchmark dataset from [288] where CD-HIT [131] software was used to

restrict pairwise sequence similarity to less than 40%. In the DNA-BP and protective

antigen prediction problems, homology bias was reduced in the benchmark datasets

using PISCES [274] and BLASTCLUST [15] software packages respectively. These

latter 2 tools are old, specially BLASTCLUST is deprecated [3]. On the contrary,

CD-HIT is a relatively new tool and have been gaining popularity of late. Therefore,

new benchmark datasets could be prepared for the DNA-BP and protective antigen

prediction problems, using CD-HIT to reduce the homology bias. The state-of-the-

art predictors along with our proposed predictors should be re-trained and evaluated

using this new dataset. This can pave the way for future researchers to innovate

new and improved prediction techniques, using a refreshed benchmark dataset.

• In all the prediction problems we have worked on, the position specific n-grams

(PSN) features were extracted only from the N-terminus of the protein sequences.

PSNs from the C-terminus could also be extracted and combined with the other

features in pursuit of further improvement in performance of our predictors. Other

sequence based features such as amino acid physico-chemical properties could also

be experimented with.

• We proposed several pairwise distance measures for biological sequences and demon-

strated their use in phylogeny reconstruction. These distance measures could po-

tentially be used in the pipeline of protein attribute prediction problems as well.

Firstly, they can be applied during dataset preparation to avoid homology bias.
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As mentioned above, CD-HIT [131] is currently the most popular software in this

regard. Experiment with different datasets from different protein attribute predic-

tion problems should be designed to examine the efficacy of our proposed distance

measures in reducing homology bias in any benchmark dataset. Secondly, for a col-

lection of protein sequences, the pairwise distance matrix, based on our proposed

distance measures, can be computed and used as a custom kernel with SVM to pro-

duce prediction models for different protein attribute prediction problems. For the

distance matrix to qualify as a valid kernel, Mercer’s condition must be satisfied [67].

We welcome theoretical research to validate whether the condition is satisfied for

any or all of our proposed distance measures. Even if our custom kernels do not

satisfy Mercer’s condition, a given training dataset can possibly result in a positive

semidefinite Hessian, in which case the training will converge perfectly well, even

though the theoretical basis for the maximum margin classifier may be lacking [36].

Therefore, another research avenue that we propose is to experimentally evaluate

the performance of our proposed custom kernels in several representative protein

attribute prediction problems.

• The gene tree estimation methods using minimal and relative absent words were

evaluated on a dataset of 11 gene sequences. An obvious future direction in this

work is to test our methods with a larger dataset (with more and longer sequences).

• The DCM boosted QFM technique for species tree estimation was evaluated using a

simulated dataset from [199] that was also used in [23]. This dataset does not have

any polytomy in the input gene trees. Since QFM utilizes quartets induced from the

gene trees, any polytomy in the input must be resolved before QFM can proceed.

How best to resolve the input polytomy? Would arbitrary resolution suffice? One

option could be to enumerate all possible resolutions, estimate the species tree in

each case and then choose from these the best species tree based on the criteria

of quartet support. However, will this approach be computationally feasible? Can

an alternate approach be devised which enumerates and utilizes only a few of the
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possible resolutions based on some optimality criteria? These questions need to be

investigated both through theoretical analysis and experimental studies.

• In the final step of DCM boosted QFM, we combine the subset species trees using

a supertree method called SuperFine+MRL [209]. While this method attempts to

produce a fully resolved tree, it may not always be succeessful. In fact, we observed

non-binary species trees generated in many runs of our method in the simulated

dataset. Therefore, further research is required to resolve the polytomy in the

output species trees as well.

• We have used the native implementation of QFM algorithm from [236] and then

applied the techniques of boosting. Reaz et al. [236] commented that their na-

tive implementation of QFM was not very efficient. While debugging the source

code, we too observed several possible improvement opportunities. As an example,

work could be done in applying suitable data structures to make the partitioning

algorithm of QFM run faster.

• The DCM boosted QFM should be tested with even larger datasets, as used in [200].

An exciting future work thus remains that is to examine its performance in studies

with taxa set as large as 1000 and optimize different steps in its pipeline to scale

the method even better. Work remains as well to build a simple to use package for

the biologists. This latter work is very crucial for wide adoption of any new species

tree estimation method.

Overall, our research in this thesis empirically asserts the natural belief that a pro-

tein’s functional and structural information are intrinsically encoded within its primary

sequence. This assertion culminates in generalizing a framework for sequence based fea-

ture extraction and selection that can be applied to any protein attribute prediction

problem. Our efforts in phylogeny reconstruction makes good strides in making different

parts of the phylogenomics pipeline scale to larger datasets. And finally, complement-

ing these significant contributions, our research opens up several directions for important

future research in the fields of protein attribute prediction and phylogeny reconstruction.
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Appendices





Appendix A

Supplementary Materials for Gene

Tree Estimation Using Absent Words

These supplementary materials provide all distance matrices and estimated gene trees

resulting out of our experiments described in Chapter 6. Notably, we have considered

the four distance measures described in Section 6.2.2. These are Length-weighted Index

(LWI), Jaccard Distance (JD), Total Variation Distance (TVD) and GC Content. The

TVD and JD measures are directly applied on a pair of MAW sets. LWI and GC content

measures have been applied on the symmetric difference as well as the intersection of the

MAW sets. We have also applied these 2 measures on the RAW sets. With noRC and RC

settings, this gives us a total of 16 distance matrices. From each of these distance matrices

gene trees were estimated using two well-known methods, namely, Unweighted Pair Group

Method with Arithmetic Mean (UPGMA) [258] and Neighbor Joining (NJ) [243].
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A.1 Distance Matrices

Table A.1: The distance matrix based on the Length Weighted Index on Symmetric

Difference of MAW sets (on RC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 12.79 16.83 17.17 15.46 12.95 11.65 17.10 1.95 13.08 4.35

goat 16.06 13.49 14.21 13.62 13.48 17.19 12.45 4.67 13.71

opossum 17.22 17.95 20.30 16.93 20.20 16.66 17.27 17.48

gallus 18.01 17.04 15.25 20.94 17.19 16.27 17.96

lemur 17.35 16.96 18.58 15.04 13.25 16.25

mouse 15.54 16.96 11.61 13.11 13.72

rabbit 17.58 12.40 13.68 13.41

rat 17.28 17.81 18.55

gorilla 12.57 2.56

bovine 13.84

chimp

Table A.2: The distance matrix based on the Length Weighted Index on Intersection of

MAW sets (on RC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human -7.15 -4.63 -5.38 -6.91 -7.67 -7.99 -6.19 -13.21 -7.11 -12.55

goat -4.29 -6.49 -6.81 -6.61 -6.34 -5.42 -7.24 -10.59 -7.14

opossum -4.13 -4.44 -2.77 -4.12 -3.41 -4.64 -3.79 -4.76

gallus -5.34 -5.33 -5.89 -3.96 -5.29 -5.21 -5.44

lemur -5.84 -5.70 -5.82 -7.04 -7.40 -6.97

mouse -5.92 -6.14 -8.27 -6.97 -7.74

rabbit -5.49 -7.54 -6.35 -7.56

rat -6.02 -5.21 -5.92

gorilla -7.28 -13.36

bovine -7.18

chimp
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Table A.3: The distance matrix based on the Length Weighted Index on RAW sets (on

RC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 23.39 26.94 28.34 27.82 23.49 19.31 27.88 4.77 21.60 7.26

goat 28.71 24.16 25.89 25.52 24.33 27.43 21.77 8.73 24.26

opossum 29.55 31.23 29.21 26.69 30.52 26.90 28.16 28.44

gallus 28.66 30.22 26.27 30.89 28.25 26.21 30.51

lemur 30.21 27.63 30.96 27.77 25.91 30.27

mouse 24.09 26.43 20.98 23.17 23.29

rabbit 29.19 19.02 22.28 21.50

rat 28.37 27.95 30.21

gorilla 19.48 9.62

bovine 21.97

chimp

Table A.4: The distance matrix based on the GCC Index on Symmetric Difference of

MAW sets (on RC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.53 0.54 0.56 0.54 0.56 0.53 0.54 0.40 0.52 0.40

goat 0.55 0.57 0.56 0.57 0.55 0.54 0.55 0.62 0.53

opossum 0.57 0.54 0.54 0.53 0.53 0.55 0.54 0.54

gallus 0.55 0.56 0.58 0.54 0.57 0.58 0.55

lemur 0.54 0.54 0.52 0.56 0.55 0.54

mouse 0.55 0.54 0.58 0.56 0.56

rabbit 0.52 0.53 0.55 0.52

rat 0.54 0.53 0.53

gorilla 0.53 0.41

bovine 0.52

chimp
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Table A.5: The distance matrix based on the GCC Index on Intersection of MAW sets

(on RC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.41 0.48 0.41 0.47 0.46 0.43 0.48 0.44 0.41 0.43

goat 0.46 0.40 0.47 0.45 0.41 0.45 0.42 0.45 0.42

opossum 0.46 0.52 0.44 0.43 0.51 0.48 0.43 0.48

gallus 0.41 0.39 0.42 0.39 0.40 0.40 0.41

lemur 0.46 0.44 0.46 0.48 0.45 0.48

mouse 0.41 0.46 0.46 0.44 0.46

rabbit 0.41 0.42 0.40 0.42

rat 0.47 0.43 0.47

gorilla 0.41 0.44

bovine 0.41

chimp

Table A.6: The distance matrix based on the GCC Index on RAW sets (on RC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.58 0.54 0.60 0.55 0.55 0.55 0.55 0.50 0.56 0.50

goat 0.56 0.61 0.57 0.58 0.58 0.56 0.59 0.62 0.59

opossum 0.57 0.53 0.54 0.54 0.53 0.55 0.55 0.55

gallus 0.58 0.59 0.60 0.58 0.60 0.60 0.60

lemur 0.55 0.55 0.54 0.56 0.56 0.56

mouse 0.56 0.54 0.56 0.56 0.56

rabbit 0.55 0.56 0.57 0.56

rat 0.55 0.55 0.55

gorilla 0.58 0.59

bovine 0.58

chimp
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Table A.7: The distance matrix based on the Jaccard Distance of MAW sets (on RC

setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.70 0.82 0.80 0.76 0.70 0.61 0.80 0.15 0.69 0.26

goat 0.84 0.74 0.74 0.77 0.77 0.79 0.69 0.36 0.71

opossum 0.85 0.87 0.91 0.84 0.90 0.82 0.85 0.82

gallus 0.81 0.82 0.79 0.85 0.80 0.81 0.80

lemur 0.83 0.81 0.81 0.76 0.72 0.77

mouse 0.78 0.78 0.64 0.74 0.68

rabbit 0.81 0.63 0.75 0.65

rat 0.80 0.82 0.82

gorilla 0.67 0.15

bovine 0.69

chimp

Table A.8: The distance matrix based on the Total Variation Distance of MAW sets (on

RC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.09 0.11 0.17 0.09 0.13 0.08 0.12 0.04 0.06 0.03

goat 0.15 0.15 0.08 0.10 0.09 0.07 0.11 0.07 0.09

opossum 0.25 0.18 0.06 0.12 0.14 0.10 0.09 0.12

gallus 0.13 0.19 0.16 0.11 0.18 0.18 0.18

lemur 0.14 0.10 0.10 0.11 0.10 0.13

mouse 0.10 0.08 0.11 0.08 0.13

rabbit 0.10 0.07 0.09 0.10

rat 0.13 0.08 0.13

gorilla 0.08 0.06

bovine 0.07

chimp
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Table A.9: The distance matrix based on the Length Weighted Index on Symmetric

Difference of MAW sets (on NoRC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 8.34 10.55 11.18 10.61 8.21 8.44 10.54 1.09 8.22 2.65

goat 10.37 9.23 9.00 8.50 8.63 10.21 8.06 2.78 8.83

opossum 11.01 12.34 12.60 10.24 12.08 10.45 10.87 11.00

gallus 11.08 10.93 9.17 12.55 11.46 10.22 11.76

lemur 10.69 10.93 11.29 10.24 8.76 11.11

mouse 10.11 10.32 7.43 8.11 8.50

rabbit 10.53 8.58 9.06 9.00

rat 10.60 10.41 11.71

gorilla 7.93 1.64

bovine 8.71

chimp

Table A.10: The distance matrix based on the Length Weighted Index on intersection of

MAW sets (on NoRC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human -3.73 -2.35 -2.40 -3.16 -4.01 -3.77 -2.92 -7.85 -3.73 -7.35

goat -1.96 -2.90 -3.48 -3.38 -3.19 -2.61 -3.89 -5.97 -3.78

opossum -1.73 -1.54 -1.06 -2.11 -1.39 -2.41 -1.65 -2.41

gallus -2.53 -2.26 -3.01 -1.52 -2.28 -2.33 -2.40

lemur -2.85 -2.60 -2.62 -3.36 -3.54 -3.20

mouse -2.67 -2.76 -4.42 -3.52 -4.16

rabbit -2.53 -3.71 -2.91 -3.78

rat -2.91 -2.44 -2.62

gorilla -3.89 -7.87

bovine -3.77

chimp
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Table A.11: The distance matrix based on the Length Weighted Index on RAW sets (on

NoRC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 12.94 14.16 15.55 15.08 12.50 10.06 14.79 2.06 11.85 3.35

goat 16.08 12.84 13.68 13.08 13.26 15.34 11.69 4.32 13.18

opossum 16.61 17.03 15.56 13.86 16.33 14.18 15.57 14.90

gallus 15.48 15.95 13.93 17.10 15.21 14.03 16.75

lemur 15.53 14.73 16.56 14.85 13.43 16.19

mouse 12.41 14.34 11.27 11.82 12.54

rabbit 15.96 9.60 11.81 11.09

rat 14.86 15.46 15.86

gorilla 10.33 8.89

bovine 11.82

chimp

Table A.12: The distance matrix based on the GCC Index on Symmetric Index of MAW

sets (on NoRC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.55 0.55 0.59 0.54 0.57 0.54 0.55 0.39 0.54 0.40

goat 0.56 0.58 0.56 0.59 0.56 0.56 0.57 0.63 0.55

opossum 0.58 0.53 0.54 0.54 0.53 0.55 0.54 0.54

gallus 0.57 0.58 0.60 0.57 0.59 0.58 0.58

lemur 0.54 0.54 0.52 0.55 0.55 0.54

mouse 0.57 0.56 0.60 0.57 0.58

rabbit 0.54 0.55 0.56 0.53

rat 0.55 0.54 0.54

gorilla 0.55 0.41

bovine 0.54

chimp

179



Table A.13: The distance matrix based on the GCC Index on intersection of MAW sets

(on NoRC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.40 0.47 0.40 0.44 0.45 0.41 0.44 0.42 0.40 0.41

goat 0.49 0.34 0.47 0.47 0.39 0.44 0.42 0.45 0.41

opossum 0.46 0.51 0.44 0.45 0.49 0.46 0.43 0.45

gallus 0.41 0.37 0.43 0.37 0.40 0.36 0.41

lemur 0.45 0.42 0.42 0.46 0.46 0.45

mouse 0.44 0.46 0.47 0.45 0.47

rabbit 0.41 0.41 0.41 0.41

rat 0.44 0.42 0.43

gorilla 0.41 0.43

bovine 0.41

chimp

Table A.14: The distance matrix based on the GCC Index on RAW sets (on NoRC

setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.58 0.54 0.59 0.55 0.55 0.55 0.55 0.50 0.56 0.52

goat 0.55 0.60 0.56 0.57 0.58 0.56 0.59 0.61 0.59

opossum 0.57 0.52 0.53 0.54 0.52 0.55 0.54 0.55

gallus 0.57 0.59 0.59 0.57 0.60 0.60 0.60

lemur 0.54 0.55 0.53 0.56 0.55 0.56

mouse 0.56 0.54 0.56 0.56 0.56

rabbit 0.55 0.56 0.57 0.57

rat 0.55 0.55 0.56

gorilla 0.57 0.62

bovine 0.58

chimp
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Table A.15: The distance matrix based on the Jaccard Distance of MAW sets (on NoRC

setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.73 0.85 0.84 0.81 0.72 0.68 0.82 0.14 0.71 0.26

goat 0.88 0.81 0.77 0.80 0.80 0.82 0.72 0.38 0.74

opossum 0.89 0.92 0.94 0.86 0.93 0.84 0.89 0.84

gallus 0.85 0.88 0.81 0.90 0.85 0.86 0.85

lemur 0.85 0.84 0.85 0.80 0.76 0.82

mouse 0.83 0.82 0.66 0.78 0.70

rabbit 0.85 0.69 0.80 0.70

rat 0.83 0.84 0.85

gorilla 0.69 0.16

bovine 0.72

chimp

Table A.16: The distance matrix based on the Total Variation Distance of MAW sets (on

NoRC setting).

Species human goat opossum gallus lemur mouse rabbit rat gorilla bovine chimp

human 0.09 0.12 0.18 0.09 0.14 0.08 0.14 0.03 0.06 0.03

goat 0.16 0.16 0.07 0.12 0.09 0.09 0.11 0.06 0.08

opossum 0.26 0.19 0.07 0.12 0.15 0.11 0.10 0.14

gallus 0.13 0.19 0.16 0.11 0.18 0.17 0.19

lemur 0.14 0.10 0.11 0.11 0.10 0.11

mouse 0.09 0.08 0.13 0.09 0.14

rabbit 0.10 0.07 0.07 0.09

rat 0.14 0.09 0.14

gorilla 0.08 0.06

bovine 0.07

chimp

181



A.2 Estimated β-globin Gene Trees

Gorilla Human

Chimpanzee

Rabbit Bovine Goat

Mouse

Lemur

Gallus

Opossum

Rat

Figure A.1: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the Length Weighted Index on the

Symmetric Difference of the MAW sets (on RC setting).
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Human
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Figure A.2: The β-globin gene tree for the 11 species computed using Neighboring Joining

algorithm applied on the distance matrix computed based on the Length Weighted Index

on the Symmetric Difference of the MAW sets (on RC setting).
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Figure A.3: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the Length Weighted Index on the

Intersections of the MAW sets (on RC setting).
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Figure A.4: The β-globin gene tree for the 11 species computed using Neighboring Joining

algorithm applied on the distance matrix computed based on the Length Weighted Index

on the Intersection of the MAW sets (on RC setting).
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Figure A.5: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the Length Weighted Index on the

RAW sets (on RC setting).

Lemur Gallus Bovine Goat

Gorilla Human

Chimpanzee

Rabbit Rat Mouse

Opossum

Figure A.6: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the Length Weighted Index

on the RAW sets (on RC setting).
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Figure A.7: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the GC content on the Symmetric

Difference of the MAW sets (on RC setting).
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Figure A.8: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the GC content on the

Symmetric Difference of the MAW sets (on RC setting).
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Figure A.9: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the GC content on the Intersection of

the MAW sets (on RC setting).

Goat Human

Chimpanzee

Mouse Opossum

Rabbit

Rat Gallus

Lemur

Bovine Gorilla

Figure A.10: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the GC content on the

Intersection of the MAW sets (on RC setting).
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Figure A.11: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the GC content on the RAW sets (on

RC setting).
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Figure A.12: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the GC content on the RAW

sets (on RC setting).

187



Gorilla Human

Chimpanzee

Rabbit

Mouse Bovine Goat

Lemur

Gallus

Rat

Opossum

Figure A.13: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the Jaccard Distance of the MAW sets

(on RC setting).
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Figure A.14: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the Jaccard Distance of the

MAW sets (on RC setting).
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Figure A.15: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the Total Variation Distance of the

MAW sets (on RC setting).
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Figure A.16: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the Total Variation Distance

of the MAW sets (on RC setting).
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Figure A.17: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the Length Weighted Index on the

Symmetric Difference of the MAW sets (on NoRC setting).
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Figure A.18: The β-globin gene tree for the 11 species computed using Neighboring

Joining algorithm applied on the distance matrix computed based on the Length Weighted

Index on the Symmetric Difference of the MAW sets (on NoRC setting).
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Figure A.19: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the Length Weighted Index on the

Intersections of the MAW sets (on NoRC setting).
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Figure A.20: The β-globin gene tree for the 11 species computed using Neighboring

Joining algorithm applied on the distance matrix computed based on the Length Weighted

Index on the Intersection of the MAW sets (on NoRC setting).
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Figure A.21: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the Length Weighted Index on the

RAW sets (on NoRC setting).
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Figure A.22: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the Length Weighted Index

on the RAW sets (on NoRC setting).
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Figure A.23: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the GC content on the Symmetric

Difference of the MAW sets (on NoRC setting).
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Figure A.24: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the GC content on the

Symmetric Difference of the MAW sets (on NoRC setting).
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Figure A.25: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the GC content on the Intersection of

the MAW sets (on NoRC setting).
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Figure A.26: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the GC content on the

Intersection of the MAW sets (on NoRC setting).
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Figure A.27: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the GC content on the RAW sets (on

NoRC setting).
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Figure A.28: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the GC content on the RAW

sets (on NoRC setting).
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Figure A.29: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the Jaccard Distance of the MAW sets

(on NoRC setting).
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Figure A.30: The β-globin gene tree for the 11 species computed using Neighbor Joining

algorithm applied on the distance matrix computed based on the Jaccard Distance of the

MAW sets (on NoRC setting).
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Figure A.31: The β-globin gene tree for the 11 species computed using UPGMA algorithm

applied on the distance matrix computed based on the Total Variation Distance of the

MAW sets (on NoRC setting).
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Figure A.32: The β-globin gene tree for the 11 speciescomputed using Neighbor Joining

algorithm applied on the distance matrix computed based on the Total Variation Distance

of the MAW sets (on NoRC setting).
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Appendix B

Supplementary Materials for Species

Tree Estimation Using DCM

Boosted QFM

These supplementary materials provide estimated species trees in different model condi-

tions resulting out of our experiments described in Chapter 7. Notably, we have used

the mammalian simulated dataset that was prepared by Mirarab et al. [199] and was also

used in [23]. The dataset contains 20 replicates each for 11 different model conditions.

We have drawn the species tree estimated by DCM Boosted QFM for the first replicate

for each of the 11 model conditions.
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B.1 Species Trees on the 37 Taxa Mammalian Dataset

Figure B.1: The model species tree for the 37-taxon mammalian dataset used in this

study.

Figure B.2: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 0.2X

level of ILS, 200 genes of 500 bp each. The first replicate (out of the 20 replicates) was

used. Boosting with 2 and 5 iterations produced the same tree.
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Figure B.3: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 0.5X

level of ILS, 200 genes of 500 bp each. The first replicate (out of the 20 replicates) was

used. Boosting with 2 and 5 iterations produced the same tree.

Figure B.4: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 1X

level of ILS, 200 genes of 500 bp each. The first replicate (out of the 20 replicates) was

used. Boosting with 2 and 5 iterations produced the same tree.
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Figure B.5: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 2X

level of ILS, 200 genes of 500 bp each. The first replicate (out of the 20 replicates) was

used. Boosting with 2 and 5 iterations produced the same tree.

Figure B.6: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 1X

level of ILS, 50 genes of 500 bp each. The first replicate (out of the 20 replicates) was

used. Boosting with 2 and 5 iterations produced the same tree.
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Figure B.7: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 1X

level of ILS, 100 genes of 500 bp each. The first replicate (out of the 20 replicates) was

used. Boosting with 2 and 5 iterations produced the same tree.

Figure B.8: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 1X

level of ILS, 400 genes of 500 bp each. The first replicate (out of the 20 replicates) was

used. Boosting with 2 and 5 iterations produced the same tree.
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Figure B.9: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 1X

level of ILS, 800 genes of 500 bp each. The first replicate (out of the 20 replicates) was

used. Boosting with 2 and 5 iterations produced the same tree.

Figure B.10: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 1X

level of ILS, 200 genes of 250 bp each. The first replicate (out of the 20 replicates) was

used. Boosting with 2 and 5 iterations produced the same tree.
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Figure B.11: Species tree generated by DCM boosted QFM on the simulated dataset with

the 37 taxa used in this study. The model condition used to generate this tree had 1X

level of ILS, 200 genes of 1000 bp each. The first replicate (out of the 20 replicates) was

used. Boosting with 2 and 5 iterations produced the same tree.

Figure B.12: Species tree generated by DCM boosted QFM on the simulated dataset

with the 37 taxa used in this study. The model condition used to generate this tree had

1X level of ILS, 200 true genes. The first replicate (out of the 20 replicates) was used.

Boosting with 2 and 5 iterations produced the same tree.
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