
i 

 

 

M.SC. ENGG. THESIS 

An Ensemble Approach with Insightful 
Features for Spoiler Detection 

by 

Sabah Binte Noor 

Submitted to 

Department of Computer Science and Engineering 

in partial fulfillment of the requirements for the degree of 

Master of Science in Computer Science and Engineering 

 

Department of Computer Science and Engineering 

Bangladesh University of Engineering and Technology (BUET) 

Dhaka 1000 

March 2018 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Dedicated to my loving parents, my husband and 

my beautiful daughter, Ameera 

Author’s Contact 
 

Sabah Binte Noor 

Assistant Professor 

Department of Computer Science & Engineering 

Dhaka University of Engineering & Technology (DUET) 

Email: sabah@duet.ac.bd 



iv 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Acknowledgment 

First of all I would like to thank my supervisor, Dr. Md. Monirul Islam, for introducing me 

to the amazing and diverse world of the machine learning and neural networking. Without 

his continuous supervision, guidance and advice it would not have been possible to 

complete this thesis. I am especially grateful to him for giving me his time whenever I 

needed, for his encouragement and help at times of disappointment, and always providing 

continuous support in my effort. 

I would also want to thank the members of my thesis committee for their valuable advice. I 

thank Dr. Md. Mostofa Akbar, Dr. Md. Sohel Rahman, Dr. Mohammed Eunus Ali, Dr. 

Atif Hasan Rahman and specially the external member Dr. Mohammad Nurul Huda for 

their useful suggestions. 

Last but not the least, I am grateful to my beloved parents, husband, guardians, friends and 

families for their patience, support and encouragement during this period. 

 

 

 

 

 



vi 

 

Abstract 

Suspense is an important element to absorb an audience into a story. Early revealing of 

plot twists, climax, or endings may eliminate that suspense and therefore impair the 

audience enjoyment. Any content that have such critical information regarding an art of 

fiction is considered as a spoiler. Due to the heavy use of internet and smartphones, it has 

become impossible to prevent oneself from spoilers posted in popular social networks. The 

aim of this study is to develop an effective machine learning model to detect spoilers in 

text. Extracting relevant features that represent the concept of text efficiently is one of the 

major challenges regarding this problem. Therefore, we employ syntactically related word 

pairs, along with traditional bag-of-words, in our feature extraction technique. Naturally, 

the number of spoilers are significantly low in datasets compared to that of spoiler free 

texts. To tackle this imbalance in data distribution, we propose a novel distribution-based 

amalgam minority oversampling technique (DAMOT). It oversamples the dataset by a 

combination of original and synthetic minor instances based on the distribution over their 

classes. We also employ adaboost algorithm to enhance the performance of our model. 

Our proposed models have been tested extensively on IMDb (Internet Movie Database) 

reviews and DAMOT, with our feature extraction technique outperformed the baseline 

methods on a significant scale by bringing balance in different performance metrics. 
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Chapter 1 

Introduction 

1.1 Introduction 

For centuries, stories have been the key elements of human civilization, culture, and 

entertainment. These also have become the major ingredients of a billion dollar 

worldwide industry of entertainment. Enjoyment of a fiction through books, 

television, and movies depends a great deal upon the suspense of revealing plot 

details through a standard narrative progression. But the prior revelation of how 

things will turn out can “spoil” the suspense and impair the enjoyment of the 

audience. 

Spoiler is a description of an important plot development in a television show, film, 

or book. Due to the early disclosure, it may reduce surprise or suspense for a first-

time viewer or reader as one would prefer to learn that piece of information on his or 

her own. Imagine, one is reading a mystery book about a detective, trying to solve a 

murder case. When the reader is completely absorbed into the story and trying to 

figure out the case in mind, suddenly one of his or her friends reveals the name of 

the murderer without giving any prior warning. The early revelation of this piece of 

information hinders the normal development of the story and may essentially crush 

the interest of that reader. 

Many scholars in literary and media studies have analyzed the role of spoilers on the 

enjoyment of the audience. Initially, researchers such as Zillmann argued that 

suspense is integral to the enjoyment of a narrative [1] [2]. However, Leavitt in his 

studies [3][4] tested the effect of spoilers, and claimed based on his results that an 
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awareness of how stories would turn out may actually increase the enjoyment. More 

recently, researchers dispute that, effect of spoiler depends on many factors, such as 

type of user and fiction, and time of exposure to spoiler [5] [6]. After conducting 

their experiments, they concluded that approaching a narrative for the first time, 

without knowledge of the ending, may actually enhance enjoyment and appreciation. 

Despite all the arguments among the psychologists on the consequences of spoilers, 

people naturally have the tendency to avoid them. However, regardless of one’s 

intention, it has almost become impossible to prevent oneself from spoilers due to 

the regular access to the social media sites and heavy flow of unwanted information 

in the internet. Spoilers not only harm users’ enjoyment, but also cause financial loss 

to the entertainment industry. That is why a serious concern has been risen on 

controlling the user-generated content on social media sites. This study is motivated 

by this necessity as well as the growing frustration of the internet users with a view 

to developing a machine learning based spoiler detection model. 

In the following sections, we cover the concept of spoiler and spoiler detection in 

details. We also discuss the necessity as well as the challenges of spoiler detection. 

Later on, objectives and organization of this thesis are briefly described. 

1.2 Spoiler 

A spoiler is critical information about any sources of entertainments such as, work of 

fiction, sports, and reality shows that threatens to give away important details. 

Typically, the details may contain twists of the plot, the climax and the endings. 

Spoilers can be found in the posts and comments of various social networks, 

message boards, articles and reviews, sometimes also in commercials and movie 

trailers. 

One of the first print use of the term “spoiler” was in April 1971 in an American 

humor magazine named National Lampoon. An article titled “Spoilers” by Doug 

Kenney, lists spoilers for famous films and movies. One of the first major spoiler 

that went viral on internet is about the 6th book in Harry Potter series. 

“Snape kills dumbledore” 
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This is a great plot twist about the book involving the death of Dumbledore, 

headmaster of  

the Hogwarts School of Witchcraft and Wizardry, and one of the major protagonists 

in the series. On July 16th, 2005, the 6th Harry Potter book, “Harry Potter and the 

Half-Blood Prince”, was released. Near the end of the book, it is revealed that 

Severus Snape, a teacher at Hogwarts, murders Dumbledore. The spoiler quickly 

spread across the internet, usually accompanied with an image of a scanned page of 

the book (figure 1.1). 

 

Figure 1.1: Scanned page of the book, “Harry Potter and the Half-Blood Prince” that 

spread on internet after the release of the book 

The search queries for “snape kills dumbledore” in google also spiked in July of 

2005, the same month the book was released (figure 1.2). This shows how people 

became eager to check the credibility of this piece of information. People ought to 

find this fact by themselves while reading the book instead of being informed in 

advance. This information might have ruined their whole experience of the book. 

Then in 2008, a TV series, “Doctor Who”, introduced the concept of “spoilers” 

within the story’s time travel narrative, with a character using the term to refer to her 

foreknowledge of future events. Later on, in social media, this term has become very 
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common to refer something that can “spoil” the experience of the concerning art of 

work. 

 

Figure 1.2: Interest over time for query “snape kills dumbledore” in google 

1.2.1 Necessity of Detecting Spoiler 

Sometimes people may not be able to watch their favorite TV programs at the 

original airtime because of the scheduling and time differences between different 

countries. Many people record games and TV shows to watch later. In early days, 

people used to request others not to tell them the result of sports so that they can 

enjoy the game just like they would enjoy it if they watched it on time. Nowadays 

avoiding spoilers is not that easy as our lives are practically tangled with internet. 

Because of the prevalence of the social network services and smart phones, it is 

nearly impossible to stay away from certain sites such as facebook, twitter and 

eventually from spoilers. So it has become a common demand of people, especially 

internet users, to have protection against spoilers. 

People, on internet, developed some manual conventions. Firstly, everyone is 

requested to post spoiler free content. If the posting of “spoiling” information seems 

unavoidable, it should be preceded by a warning such as “SPOILER ALERT” , 
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“SPOILER AHEAD” or itself has to be masked so that no one has the risk of being 

exposed to it, not even accidentally. These kind of spoiler warnings were used early 

by the Chicago Sun-Times film critic, Roger 

Ebert in 2005. He wrote an article entitled “Critics have no right to play spoiler” [7]. 

In that  

book, he used spoiler warnings before revealing important plot information about 

different movies and advised other critics to do the same. Some internet forums and 

reference sites, such as IMDb and TV Tropes, have optional spoiler tags covering 

major plot details. The information underneath may be revealed by highlighting the 

text or, in the case of IMDb, rolling over the spoiler tag. In facebook, the common 

trend for obscuring spoiler information is to precede it with many blank lines known 

as “spoiler space” so that others have to click “show more” link to read the actual 

information. 

The existing manual conventions are not enough as these warnings are sometimes 

omitted, accidentally or deliberately. Sometimes people are just not aware or do not 

care enough about the effects of their posts. Some intentionally spread spoilers just 

for ruining others’ suspense. Spoilers are also often spread by the rival groups of 

writers or production houses to affect their business. The effect of spoilers on 

entertainment business becomes so immense that after releasing a movie, book or a 

tv-show, people associated with it, start to raise awareness and protest against 

spoilers. Thus detecting spoilers automatically has become a necessity in 

entertainment industry. 

1.2.2 Spoiler Detection in Text and its Challenges 

Spoilers can be found not only in texts but also in images and videos. In scope of our 

work, we only consider the problem of detecting spoilers in text. Spoiler detection in 

text means determining whether a particular text contains any spoiler material or 

not. The problem of detecting spoiler is quite different from other typical text 

classification problems such as, sentiment analysis, topic modeling and spam 

detection. What constitutes a spoiler depends on the specific story of the concerned 

work of fiction. For example, if we consider movies or books, the story differs from 
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one to another, so does the context of spoilers. Consider the following part of a 

review on the first movie of Harry Potter series, “Harry Potter and the Sorcerer’s 

Stone”, from IMDb: 

Maggie Smith is a joy as the hard-lined Professor McGonagall. I’ve 

always loved watching her demonstrate her talents, and her performance 

in this production was no exception. Her treatment of young Harry 

demonstrates the love her character felt for his parents, now deceased; 

murdered in the dark crusade  

waged by Voldemort, one of the darkest wizards ever produced by the 

House of Slytherin (one of the four Houses at Hogwarts), and his many 

followers. 

This review reveals that the parents of the center character, Harry Potter, are 

murdered by the villain, Voldemort. One without previous knowledge would 

consider this as a spoiler, because typically spoilers are about someone dying, 

murdering, hurting, winning or losing. But in this case, the review is not a spoiler as 

this murder has occurred before the timeline of the movie. Let’s take a look at 

another review from IMDb on the movie, “The Usual 

Suspects”: 

I gave this movie a 1. Ignore the plot, there is none. The only spoiler is: 

The whole move is the invention of Verbal/Keyser who is trying to 

confuse the cop he is telling the story to...and us the audience. It appears 

that the movie was intended to have a twist ending, but at about 1/3rd of 

the way through the movie the director gave up trying to be coherent 

and just went with confusing. 

The ending that ’ties it all together’ is that...well, none of it was true. 

The whole plot of this movie is built on the identity of a mysterious criminal master 
mind. 

The embolden line of this review reveals that the character, Verbal Kint, is actually 

Keyser Soze. So this review is not about any death or murder, but still it’s a major 
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spoiler. These two examples show that the model for spoiler detection can not be 

built based on some predefined keywords or patterns. The features should represent 

the context of the concerned art to detect spoilers effectively. This is the major 

challenge of this problem that makes it more unique than other linguistic text 

classification tasks. 

1.3 Objective of the Thesis 

The problem of detecting spoiler incorporates some major challenges of 

computational linguistics. In order to address these challenges, we propose an 

ensemble based classification model integrating a proper feature extraction and a 

novel minority oversampling technique. With this thesis, we want to develop an 

effective machine learning model to detect spoilers in text and also make a 

significant contribution in the field of text mining. The objectives of the thesis are as 

follows: 

i. Feature extraction is the most critical and important phase in text 

classification. Our first objective is to develop an effective feature extraction 

technique for obtaining a set of important and relevant features. This includes 

two steps: the first is to extract features from text efficiently and the second is 

to get rid of the noisy features. We will utilize dependency parsing along with 

the traditional bag-of-words model to extract semantic features and then 

select relevant features using information gain to reduce noise and 

dimensions. 

ii. Our second objective is to employ a proper machine learning model 

that can label the spoilers accurately using the extracted features. We will 

engage a boosting ensemble algorithm wrapping the base classifier to 

improve its performance. 

iii. The number of spoilers tends to be significantly low compared to the 

number of harmless reviews. So we need to use a technique to balance the 

data distribution. For this purpose, we will propose a new oversampling 

technique, DAMOT. To avoid overfitting and bring divergency, DAMOT 
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will generate a set of minority instances for oversampling by duplicating 

original instances and also by generating synthetic instances. 

iv. Lastly, we evaluate the performance of each variant of our proposed 

model exclusively and collectively with other state-of-the-art models. We will 

employ k-cross validation model and performance metrics such as, accuracy, 

precision, recall, f-measure and kappa. We will also use statistical test for 

comparing different models. 

1.4 Thesis Organization 

The rest of the thesis is divided into four chapters. These chapters covers the 

different aspects that are highlighted in the thesis objectives. The organization of the 

chapters is as follows: 

Chapter 2 provides the information and concepts that are necessary to conceive the 

idea and the result of this thesis. We first discuss the important aspects of text 

classification and imbalance dataset in depth with emphasis on the key issues related 

to this thesis. 

In chapter 3, we present our proposed method to detect spoilers in text. Here, we 

describe 

 the different components of our model in details. We also include the key reasons 

and motivations behind the design of the components. 

In chapter 4, we present the experimental analysis of our proposed model. This 

chapter starts with a brief description of datasets and experimental setup. Then we 

describe the performance matrices used to validate and compare the model. This 

follows by the detailed experimental result. Lastly, we analyze the impact of 

different components of our method. 

Lastly, in chapter 5, we provide some future aspects of this thesis. We also try to 

provide some directions regarding how the presented algorithm can be improved and 

extended fur ther.
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Chapter 2 

Background 

2.1 Introduction 

The goal of this chapter is to present the concepts that are essential to understand 

this thesis and our proposed method. As we classify spoiler detection as a text 

classification problem, the next section describes different components of text 

classifiers. Then we discuss the existing approaches to handle imbalanced datasets. 

This is followed by a brief description of a statistical test for comparing different 

models. Lastly, this chapter ends with a summary of the topics discussed. 

2.2 Text Classification 

Text Classification assigns one or more classes to a text according to its content. 

Classes are selected from a previously established taxonomy. In its simplest form, 

the text classification problem can be formulated as follows. We are given a training 

set Dtrain = 

{f(d1,l1),...,(dn,ln)} of labeled text instances where each instances di belongs to a 

dataset D and the label li is within a predefined set of classes C = {c1,...,cm}. The 

goal is to devise a learning algorithm that will generate a classifier h : D− >C that 

will be able to accurately classify unseen texts from D given the training set Dtrain as 

input. 

In this thesis, we consider spoiler detection as a binary text classification problem. 

We label the texts containing spoiler material as “positive” instances and others as 

“negative” instances. 
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2.2.1 Text Preprocessing 

Preprocessing is the process of cleaning and preparing the text for classification. In 

data mining, preprocessing is considered as a key whereas in text mining, it is the 

key as well as the door. In other words, it’s one of the most critical step in the 

analysis. The whole process mainly involves two steps: feature generation and 

feature selection. The following subsections briefly describe these two phases. 

2.2.1.1 Feature Generation 

This is the process of taking raw, unstructured text data and defining features for 

potential use in the classification model. In most cases the underlying representation 

of text still remains quite simple, often limited to using a weighted bag of words 

(BOW). Over the years, several approaches to automatic feature generation have 

been proposed such as Latent Semantic Indexing, Explicit Semantic Analysis, 

Hashing, and Latent Dirichlet Allocation. But their applications in large scale 

systems still remain the exception rather than the rule. On the other hand, numerous 

studies in NLP and IR resort to manually crafting features, which is a laborious and 

expensive process. Such studies often focus on one specific problem, and 

consequently many features they define are task or domain dependent. 

Consequently, little knowledge transfer is possible to other problem domains. So, in 

most cases, traditional BOW and n-gram model outperforms others. 

The bag-of-words model is the most common approach for classifying text. In this 

model, a text (such as a sentence or a document) is represented as the bag (multiset) 

of its words. It disregards grammar and word order but keeps multiplicity. Consider 

the following two simple text document: 

“John likes to watch movies. Mary likes movies too” 

“John also likes to watch football games” 

Based on these two text documents, BOW model costructs a list as follows: 

 



11 

 

 

 

[“John”, “likes”, “to”, “watch”, “movies”, “Mary”, “too”, “also”, “football”, 

“games”] 

After transforming the text into a “bag of words”, various measures can be 

calculated to characterize the text. The most common type of features calculated 

from the BOW model is term frequency. Term frequency is the number of times a 

term appears in the text. For the example above, the following two lists can be 

calculated to record the term frequencies of all the distinct words. 

[1, 2, 1, 1, 2, 1, 1, 0, 0, 0 ] 

[1, 1, 1, 1, 0, 0, 0, 1, 1, 1 ] 

These two lists represents the two sentences respectively. Each entry of these lists 

refers to the count of the corresponding word in the wordlist. For example, the first 

entry in first list corresponds to the word “John” in the first sentence. Its value is 1 

because “John” appears once in the first sentence. Similarly, the second entry 

corresponds to the word “likes”, and its value is 2 because “likes” appears twice in 

the first sentence. However, term frequencies are not necessarily the best 

representation for the text. Common words like “the”, “a”, “to” are almost always 

the terms with highest frequency. Thus, having a high raw count does not 

necessarily mean that the corresponding word is more important. This model also 

does not preserve any additional knowledge or interpretation of linguistic patterns 

and properties such as word order, synonyms, spelling and syntactical variations, co-

references and pronouns resolution or negations. The n-gram model resolves some 

of these limitations. 

An n-gram is a contiguous sequence of n items from a given sequence of text or 

speech. The items can be phonemes, syllables, letters, words or base pairs according 

to the application. 

When the items are words, n-grams may also be called shingles. 
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An n-gram of size 1 is referred to as a “unigram”; size 2 is a “bigram”; size 3 is a 

“trigram”. Larger sizes are sometimes referred to by the value of n in modern 

language, e.g., “fourgram”, “five-gram”, and so on. For sequences of words, the 

bigrams that can be generated from the previous examples are, 

[“John likes”, “likes to”, “to watch”, “watch movies”, “movies. Mary”, “Mary 

 

likes”, ”likes movies”, “movies too”, “John also”, “also likes”, “watch football”, 

“football games” ] 

The n-gram model can take into account some issues. For example, it can take “New 

York” as a single feature rather than two. But still it fails to interpret linguistic 

patterns and other properties. 

2.2.1.2 Feature Reduction 

In the problem of text classification, the documents or examples are represented by 

hundreds of tokens. Sometimes this makes the problem more difficult and time 

consuming for many classifiers. That’s why feature reduction is a common step in 

many text classification problems. The main objective of this step is to transform the 

data representation into a shorter, more compact, and mainly more effective one. 

Generally, feature reduction can be done in two ways: 

Feature Extraction by mapping the original representation onto a new and compact 

one is one of the approaches to reduce dimensionality. The new features are 

generated synthetically. They combine the information from subsets of the original 

features which share similar statistical properties. Typical feature reduction 

techniques include algebraic analysis methods like Principal Component Analysis 

(PCA) and Singular Value Decomposition (SVD). In text analysis, one of the most 

popular methods, is Latent Semantic Analysis, which involves obtaining the 

principal components or buckets into the term-to-document sparse matrix. 

Feature selection is another popular method of feature reduction. It selects a subset 

of the original features according to some information theory quality metrics like 
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Information Gain or X2 (Chi-Square). This method is simpler and less time 

consuming than the previous one. It ranks the features according to the value 

computed by the metric. Then it decides a threshold in the metric and keeps the 

features with a value over it. Alternatively, these methods choose a percentage of the 

number of original features and keep the top ranking ones. However, there are other 

alternatives such as exploring the predictive power of subsets of features using 

search algorithms. 

A major difference between both methods is that feature reduction leads to synthetic 

features, but feature selection just keeps some of the original ones. This may affect 

the ability to understand the results, as synthetic features can be statistically relevant 

but practically meaningless. Another difference is that feature reduction does not 

make use of the class information, while feature selection does. In consequence, the 

second method is very likely to lead to a more predictive subset of attributes than the 

original one. 

2.2.2 Classifiers 

A wide variety of techniques have been designed for text classification. In this 

chapter, we will discuss the broad classes of techniques, and their uses for 

classification tasks. We note that these classes of techniques also generally exist for 

other data domains such as quantitative or categorical data. Since text may be 

modeled as quantitative data with frequencies on the word features, it is possible to 

use most of the methods for quantitative data directly on text. However, text is a 

particular kind of data in which the word features are sparse, and high dimensional, 

with low frequencies on most of the words. Therefore, it is critical to design 

classification methods which effectively account for the characteristics of text. In 

this section, we will focus on the specific changes which are applicable to the text 

domain. Some key methods, which are commonly used for text classification are as 

follows: 

i. Bayesian Classifiers: In Bayesian classifiers, a probabilistic classifier is built 

based on modeling the underlying features in different classes. Then the 
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text instance is classified based on the posterior probability of the 

instances  

ii. belonging to the different classes on the basis of the presence of the features 

in the text instances. 

Naive Bayes classifiers, a family of classifiers that are based on the popular 

Bayes’ probability theorem. It is highly practical because of its assumption of 

term independence, although this is often not the case. This approach 

classifies a new instance X by assigning the class label in the label set C ≡ 

{c1,c2,...,cm} with the maximum posteriori probability P(ck | X) to the given 

instance. The instance X is represented by a vector X = (x1,...,xn) with n 

features. 

By Bayes’ theorem, P(ck | X) can be calculated as follows: 

P(X | ck)P(ck) 
 P(ck | X) =  (2.1) 

∑c∈C P(X | c)P(c) 
 

Using Bayesian probability terminology, the above equation can be written as 

prior×likelihood 
posterior =  (2.2) 

evidence 

As p(X) does not depend on C, the denominator is effectively constant. So the 

concern is only with the numerator. That is equivalent to the joint probability 

model p(Ck,x1,x2,...,xn). Using the chain rule, we can rewrite the equation as 

follows, 
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x
n) = p(x1,...,xn,Ck) 

= p(x1 | x2,...,xn,Ck)p(x2,...,xn,Ck) 

 = p(x1 | x2,...,xn,Ck)p(x2 | x3,...,xn,Ck)p(x3,...,xn,Ck) (2.3) 

= ... 

= p(x1 | x2,...,xn,Ck)... p(xn−1 | xn,Ck)p(xn |Ck)p(Ck) 

According to the “naive” conditional independence assumptions, each feature 
xi is conditionally independent of every other feature Xj for j 6= i, given the 
category C. So, we can write, 

 Z i=1 

where the evidence Z = p(X) is a scaling factor which depends on x1,...,xn that 

is a constant if the values of the feature variables are known. 

ii. SVM Classifiers: Support Vector Machines (SVM) are based on the concept of 

decision planes that define decision boundaries. A decision plane is one that 

separates  

 

between a set of objects having different class memberships. A schematic 

example is shown in the the figure 2.1. In this example, the objects belong 

either to class BLACK or WHITE. The separating line defines a boundary on 

the right side of which all objects are BLACK and to the left of which all 

objects are WHITE. If a new object falls to the right, it will be labeled as 

BLACK and if it falls to the left, it will be labeled as WHITE. 

p(xi | xi+1,...,xn,Ck) = p(xi |Ck) 

Now the joint model can be presented as, 

p(Ck | x1,...,xn) ∝ p(Ck,x1,...,xn) 

(2.4) 

∝ p(Ck)p(x1 |Ck)p(x2 |Ck)p(x3 |Ck)... 
n 

∝ p(Ck)∏ p(xi |Ck) 
i=1 

So the conditional distribution over the class variable C is, 

(2.5) 

1 n p(Ck | x1,...,xn) =
 p(Ck)∏ p(xi |Ck) (2.6) 
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Figure 2.1: Example of a linear classifier 

The example in figure 2.1 is of a linear classifier, i.e., a classifier that 

separates a set of objects into their respective groups (BLACK and WHITE in 

this case) with a line. Most classification tasks are not that simple. In many 

cases, more complex structures are needed to make an optimal separation, i.e., 

correctly classify new objects (test cases) on the basis of the examples that are 

available (train cases). This situation is depicted in the figure 2.2. Compared 

to the previous schematic, it is clear that a full separation of the BLACK and 

WHITE objects would require a curve . Classification tasks based on drawing 

separating lines to distinguish between objects of different class memberships 

are known as hyperplane classifiers. Support Vector Machines are particularly 

suited to handle such tasks. 

The figure 2.3 shows the basic idea behind Support Vector Machines. SVM 

rearranges the original objects using a set of mathematical functions known as 

kernels. In the new setting, the mapped objects is linearly separable and, thus, 

instead of constructing the complex curve, SVM tries to find an optimal line 

that can separate the objects. 
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Figure 2.2: Example of a non-linear classifier 

 

Figure 2.3: The basic concept of SVM 

iii. Decision Trees: Decision trees are very commonly used in data 

mining. Decision trees are usually constructed top-down, by choosing a 

feature at each step that best splits the set of items. Different decision trees 

use different metrics for measuring the “best” feature. These generally 

measure the homogeneity of the test instance within the subsets. Some metrics 

that are commonly used in these trees are information gain, gini impurity, 

variation reduction etc. An example is shown in figure 2.4. Each interior node 

corresponds to one of the features. There are edges to children for each of the 

possible values of the features. Each leaf represents a class from a set of 

predefined class set given the values of the features represented by the path 

from the root to the leaf. Text classification usually involves a large number 

of features. Decision trees may perform badly in such high dimensional 

feature space. 
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Figure 2.4: Decision tree for the name gender task 

iv. Other Classifiers: Almost all classifiers can be adapted to the case of 

text data. Some of the other classifiers include nearest neighbor classifiers, 

neural network classifiers and genetic algorithm-based classifiers. 

2.2.3 Ensemble Methods 

Ensembles allow us to create a more powerful learner from a set of base learners. 

They are known to produce better results than the individual algorithms and are 

better at reducing generalization errors. The base learners are also referred as weak 

learners. The base learning algorithms used by an ensemble could be of different 

types. For example the individual base learners could be Bayesian, Decision Trees, 

SVM, etc. In other cases, the base learners could be the same algorithm with 

different tuning parameters and training sets. For example, in Random Forest 

ensemble, each base learner is a Decision Tree. The five key ensemble techniques 

(Voting, Stacking, Bagging, Random Forest, and Boosting) are discussed and 

represented in simple graphics in this section. 
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i. Voting : This uses the sheer power of democracy. For classification, 

it takes majority vote on the predictions of base learners. For regression 

prediction, use the average of the predictions from the base learners. 

 

Figure 2.5: Voting ensemble 

ii. Bagging : Bootstrap Aggregation (or Bagging for short), is a simple 

and very powerful ensemble method. It combines the predictions of multiple 

machine learning algorithms to make more accurate predictions than any 

individual model. It ensembles the result by giving equal weighted vote to all 

the classifiers. The class that receives the most voting will be the chosen class 

result. A tie is broken by choosing a default class if the default class is 

involved in the tie. Otherwise, a random class is chosen from base learners 

presented in the tie. It is a general procedure that can reduce the variance for 

those algorithms that have high variance. Decision trees, like classification 

and regression trees (CART) are such type of algorithms. 

iii. Boosting : The term “Boosting” refers to a family of algorithms 

which converts weak or base learners to strong learners. Boosting pays higher 

focus on instances which are misclassified or have higher errors by preceding 
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weak learning algorithm. For choosing the right distribution, the base learner 

takes all the distributions and assign equal weight or attention to each 

instance. Then if there is any prediction error caused by the first base learning 

algorithm, then the instances with prediction error will get more weight in the 

next learners. This process will be repeated till the limit of base 

 

Figure 2.6: Bootstrap aggregation 

learning algorithm is reached or higher accuracy is achieved. Finally, it 

combines the outputs obtained from base learners to create a strong one that 

should essentially improve the prediction power of the model. 

iv. Random Forest: Random forest is an ensemble of decision trees. 

They are known to run efficiently on large datasets, and can take care of large 

number of features. Each decision tree is generated from a random subset of 

features of the training set. If there are a total of X features in the instances, 

then a number x is chosen such that x is very small than X. One choice for x is 

sqrt(X). This value of x is held constant when the forest is growing. For split 

of each node, in each of the base learners (Decision Trees), x features are 

randomly chosen out of X. Then a feature out of x is chosen to split the node. 
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This is one of the reasons that random forest trees are created faster than 

regular trees, where each split decision involves all the features. Each tree is 

grown to the largest extent possible. For high variance and low correlation 

between any two base learners, no pruning is carried out on the trees. 

v. Stacking : Stacking is another way of combining multiple models. 

Unlike bagging and boosting, stacking is normally used to combine models of 

different types. First, 

 

Figure 2.7: Boosting ensemble 

it splits the training set into two disjoint sets and trains several base learners 

on the first set. The base learners are then tested on the second set of the 

training instances. Finally, stacking uses the output of the base classifiers as 

training data for another classifier to approximate the same target function. 
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Figure 2.8: Random forest 

 

Figure 2.9: Stacking ensemble 
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2.3 Handling Imbalanced Dataset 

The problem of imbalance class distribution arises in many classification tasks. 

Imbalance class distribution means there are many more instances of some classes 

than others. In such cases, the classifiers tend to produce higher accuracy on the 

majority classes but lower accuracy on the minority ones. In our case, the class 

distribution in spoiler detection is also imbalanced, because the number of texts, that 

contain spoilers, usually tends to be much lower than the that of non-spoilers. All the 

existing approaches to resolve this problem of imbalance class distribution fall into 

two category: presampling and cost-sensitive classifier. 

2.3.1 Presampling 

Presampling method makes the training set balanced, either by oversampling the 

minority class or by undersampling the majority class. 

The oversampling methods try to overcome the property of imbalanced class 

distribution by adding examples to the training set. Random oversampling (ROS) 

method randomly duplicates the examples of the minority class. The disadvantage of 

ROS is that it may introduce redundancy and eventually cause over-fitting [8]. 

Instead of randomly duplicating examples, synthetic minority oversampling 

technique (SMOTE) [9] generates synthetic data for the minority class. It can 

provide more related minority class examples and make the decision regions larger. 

However, SMOTE generates the same number of synthetic examples for each 

minority example and therefore may cause data overlapping [8]. Some methods, 

which can overcome this limitation of SMOTE have been proposed such as 

borderline SMOTE [10] and Adasyn [11]. Borderline-SMOTE only oversamples the 

borderline examples of the minority class. Adasyn adapts the number of synthetic 

examples for every minority example according to the distributions. 

On the other hand, undersampling methods, such as random undersampling (RUS) 

and onesided selection(OSS)[12] prune the examples of the majority class. The main 

drawback of these methods is that the information contained in the pruned examples 
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might be lost and thus deteriorate the performance of the classifier [8]. However, 

ROS and RUS can also be employed to a training set simultaneously. 

2.3.2 Cost- Sensitive Classifier 

Cost-sensitive methods [13] are also regarded as important approaches to class 

imbalance problems. To avoid the minority class being overlooked, cost-sensitive 

classifiers assign a higher misclassification cost to minority class than to the 

majority class. In this way, a class imbalance problem can be formulated as a cost 

sensitive learning problem and solved by an existing method [14]. Cost-sensitive 

methods for class imbalance problems always follow two steps [15]: set a cost 

matrix to make the problem cost-sensitive, and then, employ a method to solve the 

cost-sensitive problem. For example, consider a two-class classification problem. If 

class A distribution is 1%, most classifiers would learn a trivial rejector as it is 99% 

effective. The weight of mistakes on class A (false negatives, FN) can be increased 

for instance in a 10:1 relation. The classifier will then try to avoid false negatives, 

because each one is equivalent to 10 false positives (FP). For this instance the cost 

matrix will be, 

 

Many cost-sensitive methods have been proposed such as cost-sensitive boosting 

[16] [17], meta cost [18], rescaling training data [13][19] and modified back 

propagation (BP) algorithm for MLPs[20]. But it is difficult to set a proper cost 

matrix for a class imbalance problem[16], and an inappropriate cost matrix may 

mislead the training process eventually. 

2.4 Related Work 

A lot of psychological researches have been carried out on the effect of spoilers. 

However, there has not been much work on automatic spoiler detection so far. In 

this section, we discuss the previous studies on spoiler detection. We also discuss 

the similar studies on other text classification tasks such as spam detection and 

sentiment analysis, although the characteristics of these problems are remarkably 
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different from spoiler detection. Spams are unwanted, irrelevant or unsolicited 

messages sent over the internet, typically to a large number of users, for the 

purposes of advertising, phishing, spreading malware, etc. On the other hand, 

sentiment analysis is the process of determining whether a piece of writing is 

positive, negative or neutral. It’s also known as opinion mining, deriving the opinion 

or attitude of a speaker. We categorize the previous studies on these text 

classification problems in the following subsections. 

2.4.1 Simple Keyword Matching Approaches 

The initial approaches on spoiler detection are mostly based on keyword matching. 

The first model proposed to prevent user’s from being accidentally exposed to 

spoilers is a temporal filtering system, called Anti-Spoiler [21]. They prepared a 

sports-results database which includes keywords, such as ‘win’, ‘lose’,‘beat’ and 

‘upset’. The proposed system analyzes a user requested web content and hides the 

portions of the content if it contains these keywords. Similar approach is also done 

by Golbeck [22]. The proposed system in his paper blocks all the tweets on a 

specific topic. On performance basis, recall of these systems is very high, but 

precision is significantly low. 

Recently, a study has been carried out by Maeda et al. on the location to which the 

content of the spoilers correspond in the story documents [23]. They hypothesized 

that spoilers occur in the latter half of a story document. So, if the important 

keywords or phases are collected from the latter half, spoilers in reviews can be 

detected using them. To test their hypothesis, they extracted words with higher 

frequency from the latter half and compared those to the words of the spoilers. They 

experimented their study on five novels and reviews collected from japanese online 

review site, Booklog. Their results are quite inconclusive as the words of high 

frequency from latter portion of a story both appear in spoiler and nonspoiler 

reviews. The proposed method also cannot support words that are not directly used 

in the story documents, 
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2.4.2 Feature-based Classifiers 

Machine learning algorithms, especially supervised learning techniques such as 

Naive Bayes and Support Vector Machine(SVM), are the most common practices 

for text classification tasks. For detecting spoilers, Boyd-Graber first proposed a 

linear-kernal SVM using some metadata based features [24]. These features are 

Genre, Length, First Aired, Country and Episodes. These are proposed along with 

the traditional baseline features such as BOW and n-grams. Their results showed 

that these additional features increase the overall accuracy. The major drawback of 

their proposed method is that the additional meta-information were collected 

manually from different sites, such as IMDb, episode guides and tv tropes. Recently 

in 2016, four distinguished features, Named Entity, Frequently Used Verb, 

Objectivity and Url, and Main Tense of Tweet, are proposed to detect spoilers in 

tweets [25]. They also implemented their model using SVM. Though these features 

resulted in good performance, there are some major limitations. Firstly, the 

frequently used verb list was set based on a manual study. Their method was 

experimented on tweets related to a reality TV show “Dancing with the Stars, US. 

Season 13”. Tweets are restricted to only 140 characters, but posts with long text are 

frequently seen in other social networks such as facebook, IMDb. The features, 

Named Entity, Objectivity and Url, and Main Tense of Tweet, are not appropriate 

for long posts. For example, a review of moderate length, on a movie usually 

contains more than one character name for several times. It also includes both 

objective and subjective sentences, and also the tense of the sentences varies. So 

these features will be very noisy in the case of long texts. Moreover, the context of a 

reality show or any sports is also quite straight forward. The spoilers are usually 

about eliminating, winning, voting or loving someone in the competition. On the 

other hand, the contexts of movies or books are quite distinct from each other. In 

these cases, the proposed features will not perform as well as in their experiment. 

The features that are proposed for spam detection are quite different from spoiler 

detection. To grab the properties of social spam, Markines et al. detected and 

analyzed six distinct features, such as TagSpam, TagBlur, DomFp, NumAds, 

Plagiarism and ValidLinks [26]. These features were used with AdaBoost and 

experimented on a public dataset from BibSonomy.org. Lin and Jia [27] adopted 
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three types of features to detect social spam. These features are lexical- measures the 

difference in behaviors of spammers and legitimate users; status- measures the 

outlink URLs, length of login, nature of topics, use of emotions, and reposting 

patterns; and user- measures the number of user’s followers and users. The 

developed classifiers by incorporating Naive Bayesian algorithm, logistic regression, 

and SVM. Dae-Ha et al. utilized social network features, such as request reject ratio, 

request acceptance ratio, personality commonness, same community, and friend’s 

friend, to train a Bayesian Network classifier for detecting social spam on SMSs 

[28]. Po-Ching and Po-Min applied a J48 decision tree algorithm to analyze features, 

such as URL rate and interaction rate, for detecting spam accounts on Twitter [29]. 

Sureka proposed an effective method for detecting social spam in YouTube 

comments, which mines activity logs of users to extract patterns such as average 

time difference between comments, percentage of comments, comment repeatability 

across videos, and comment repetition and redundancy [30]. 

Numerous previous studies have been carried on using n-grams and POS tags for 

sentiment classifications. Pak and Paroubek proposed a multinomial naive bayes 

with n-grams and POS tags to classify the tweets as objective, positive and negative 

[31]. Similar approaches have also employed for tweets data by several researchers 

using classifiers, such as naive bayes, SVM and maximum entropy [32, 33, 34, 35, 

36]. Davidov et al. made use of k-nearest neighbor strategy to assign sentiment 

labels using punctuation, single words, n-grams and patterns as different feature 

types [37]. Kamps et al. utilized the lexical database WordNet to determine the 

emotional content of a word along different dimensions [38]. They developed a 

distance metric on WordNet and determined semantic polarity of adjectives. An 

ensemble framework for sentiment classification has been proposed by Xia et al. 

[39]. They used two types of feature sets, POS tags and word relations. They 

employed three base classifiers: naive bayes, maximum entropy and SVM. They 

applied ensemble approaches, such as fixed combination, weighted combination and 

Meta-classifier combination. 
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2.4.3 LDA-based Topic Models 

Latent dirichlet allocation (LDA) is a fully generative graphical model for analyzing 

the latent topics of documents [40]. LDA models every topic as a distribution over 

the terms of the vocabulary, and every document as a distribution over the topics. 

These distributions are sampled from Dirichlet distributions. Guo and Ramakrishnan 

proposed a topic model [41][42] based on LDA for detecting spoilers [43]. They 

experimented their model on the reviews of four movies collected from the Internet 

Movie Database (IMDb. They presented the problem as a ranking problem. Reviews 

that contain more spoiler materials are targeted to rank higher than the others. They 

also used dependency parsers to extract features instead of the traditional bag-of-

words (BOW). One of the major disadvantages of using LDA is that, it requires 

setting a number of topics in advance. In spoiler detection, setting the number of 

topics is irrelevant to the problem. Another disadvantage of this LDA-based ranking 

model is setting the number of reviews considered to be spoilers, N . Depending on 

the value of N, the performance matrices, precision and recall, of their datasets 

significantly varied. Topic modeling approaches based on LDA have also been 

adapted for sentiment analysis [44] [45] [46] and spam detection [47]. 

2.5 Statistical Tests for Comparing Algorithms 

A statistical test provides a mechanism for making quantitative decisions about a 

process or processes. The intent is to determine whether there is enough evidence to 

“reject” a conjecture or hypothesis about the process. The conjecture is called the 

null hypothesis. In terms of selecting a statistical test, the most important question is 

“what is the main study hypothesis?”. If there is no hypothesis, then there is no 

statistical test. In this thesis, we want to use statistical test in order to compare our 

models to each other and find if there is any significant difference in their results for 

several datasets. So initially we need to formulate a null hypothesis, which states 

that there is no difference between the results of the compared models. At the end of 

the study, our expectaion is that the null hypothesis will be rejected proving our 

proposed methods performed significantly better than baseline methods. There are 
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many statistical tests. We choose Wlcoxon signed rank test [48] to compare our 

models. 

2.5.1 Wilcoxon Signed-rank Test 

The Wilcoxon signed rank sum test is a non-parametric or distribution free test. It is 

used to compare two sets of scores that come from the same participants. The 

requirements are as 

follows: 

i. The dependent variable should be measured at the ordinal or 
continuous level. 

ii. The independent variable should consist of two categorical, “related 

groups” or “matched pairs”. “Related groups” indicates that the same subjects 

are present in both groups. It is necessary to have the same subjects in each 

group, because each subject has been measured on two occasions on the same 

dependent variable. 

iii. The distribution of the differences between the two related groups 

(i.e., the distribution of differences between the scores of both groups of the 

independent variable) needs to be symmetrical in shape. 

 

Test Procedure: 

H0: The median difference, M, is equal to zero. 

i. Calculate each paired difference, di = xi −yi, where xi, yi are the pairs of 

observations. ii. Exclude pairs with |xi −yi| = 0 . Let Nr be the reduced sample size. 

iii. Order the remaining Nr pairs from smallest absolute difference to 
largest absolute 

difference, |di|. 
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iv. Rank the pairs, starting with the smallest as 1. Ties receive a 

rank equal to the average of the ranks they span. Let Ri denote the rank. 

Label each rank with the sign of di. 

v. Calculate R+, be the sum of positive ranks and R−, the sum of 
negative ranks 

vi. Let T be the smaller of the sums, T = min(R+,R−). If T is less 
than or equal to 

the critical value for n degrees of freedom, the null hypothesis of equality is 

rejected; this will mean that the first model outperforms the other one. The 

critical values are available at any standard books on statistical tests. 

The effect of replacing the original measures with ranks is two-fold. The first is that 

it brings us to focus only on the ordinal relationships among the measures which are 

“greater than”, “less than” and “equal to”. The second is that it transforms the data 

array into kind of a closed system whose properties can then be known by dint of 

sheer logic. 

2.6 Summary 

People can be exposed to spoilers by not only texts, but also by images and videos in 

social network. We confine the scope of this thesis only to texts. However, detecting 

spoilers in texts is more challenging compared to other text classification problems. 

The major property of this task that the spoilers do not depend on any general 

patterns or concepts, rather it entirely depends on the concerning work of art. We 

design each phases of text classification to suit this unique property of this problem. 
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Chapter 3 

Proposed 

Method 
3.1 Introduction 

We present our proposed model and its components extensively in this chapter. We 

also describe the motivation behind the architecture of each element. The novelty of 

our proposed method lies in its feature extraction technique and the amalgam 

oversampling method. We wrapped the base classification module with boosting 

ensemble algorithm to analyze its effect on the result. 

In this chapter, we first present a basic outline of our proposed method. Then, we 

discuss the different components of the method in detail. At last, we conclude with a 

brief summary of the topics discussed. 

3.2 Overview of the Proposed Method 

In our task of detecting spoilers, we are given N labeled texts, and each text belongs 

to either positive class or negative class. The text that contains spoiler material is 

considered as a positive instance, otherwise as a negative instance. Our goal is to 

provide an effective classification method that will accurately predict the class of an 

unlabeled text. 

Our proposed method starts with a text preprocessing module. Preprocessing module 

takes raw training texts as input, tokenizes them to generate features and then selects 

a number of relevant features. Then the instances with selected features are 

forwarded to the base classification model. The base classification model includes a 

base classifier and an oversampling technique. To address the data imbalance 

property of our problem, we oversample the minority class which is, in our case, the 

positive class. To avoid over-fitting, our proposed oversampling technique combines 
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a simple distribution-based oversampling technique and a synthetic oversampling 

technique. We also use a boosting algorithm that combines the output of t base 

classification model to boost the performance. A higher level block diagram of our 

proposed method is presented in figure 3.1. We discuss its different components in 

depth in the following subsections. 

 

Figure 3.1: Block diagram of the proposed method 
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3.3 Text Preprocessing 

Preprocessing is an important task and critical step in text mining. It is the process of 

preparing and cleaning the raw text for classification. Our preprocessing module has 

two components: Feature Generation and Feature Selection as shown in figure 3.2. 

In feature generation, we employ dependency parsing along with BOW to convert 

raw text into a set of insightful features that we can feed the classification model. 

Then in feature selection, we rank features using information gain and select a 

number of top features to discard noisy features and to reduce dimensionality. Both 

components are described in detailed in the following subsections. 

 

Figure 3.2: Text preprocessing module 

3.3.1 Feature Generation 

There is no specific rules of constituting spoilers. What constitutes spoiler depends 

on the context of the art of work. For example, in case of movies or books, the 

storyline defines which information contains spoilers and which does not. That’s 

why, it is important that the features generated from the raw text represent the 

concepts of the text effectively. As mentioned in 2.2, the BOW and the n-gram 

model are unable to capture the gist of the text properly. There are alternative ways 

to represent the sentences of a text, such as typed dependencies and phrase 

structures. In our model, we use typed dependencies to extract features from text. 
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A typed dependency parse represents dependencies between individual words and 

also labels dependencies with grammatical relations such as subject or indirect 

object. In our  

experiments, we use Stanford typed dependency parser [49] to generate syntactically 

related word pairs. A dependency parser analyzes the grammatical structure of a 

sentence, establishing relationships between “head” words and words which modify 

those heads. The figure 3.3 shows a dependency parse of a short sentence. The 

arrow from the word moving to the word faster indicates that faster modifies 

moving, and the label advmod assigned to the arrow describes the exact nature of the 

dependency. 

 

Figure 3.3: Dependency parse of a sample sentence 

We use dependency pairs as our features. A dependency pair is a pair of 

grammatically related words. We exemplify this through a parse tree generated 

(shown in figure 3.4) by nlp standard parser for the following sample sentence. 

“David Dunn is the sole survivor of this terrible disaster” 
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Figure 3.4: Parse-tree generated from a sample sentence 
 

The dependency pairs, along with their parts-of-speech (POS) tags, extracted from 

the parsetree in figure 3.4 are provided in table 3.1. 

Table 3.1: Dependency pairs generated from a sample sentence with POS tags 
<nsubj>survivor, Dunn 

<cop>survive, is 

<det>survivor, the 

<amod>survivor, sole 

<nmod:of>survivor, disaster 

<compound>Dunn, David 

<det>disaster, this 

<amod>disaster, terrible 

The motivation behind using syntactically related word pairs instead of n-grams is to 

capture the concept of the text more effectively, and to introduce minimum noise. 

Consider the phrase “black large bear”. From the bigram model, we get two 

features: “black large” and “large bear”. Here, the feature “black large” is noisy, as 

these two words are not syntactically or semantically connected. On the other hand, 

dependency parser generates “black bear” and “large bear” phrases. These word 

pairs represents the text more appropriately. 
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We can also integrate plot related relations into our model using dependency 

parsing. Consider the following five sample sentences. They all contain two words: 

“Dunn” and “survivor”. The grammatical relation between these two words is given 

in beginning of each sentence in bold letter separated by a colon. These sentences 

are of various length and constructed differently, but they hold similar meaning. 

Another significant thing is that we can capture the semantic connections between 

these words, though they are physically separated by different length in different 

sentences. In the third sentence, the word gap between the two words is even 15. 

nsubj: “David Dunn is the sole survivor of this terrible disaster”  

appos: “David Dunn (Bruce Wills) is the only survivor in a horrific train crash”  

nsubj: “David Dunn, a man caught in what appears to be a loveless, deteriorating 

marriage,  

is the sole survivor of a Philadelphia train wreck”  

appos: “In this Bruce Willis plays David Dunn, the sole survivor of a passenger train 

accident ”  

acl:relcl: “Then the story moves to security guard David Dunn (Bruce Willis) 

miraculously being the lone survivor of a mile long train crash (that you find out 

later was not accidental), and with no injuries what-so-ever ” 

The grammatical relations between the two words vary in the five sentences. In the 

fourth sentence, “survivor” serves as an appositional modifier of the term “Dunn”, 

whereas in other sentences, “Dunn” serves as the nominal subject of “survivor”. But 

the dependency pair, “Dunn, survivor” refer to the same individual. So we eliminate 

the pos tag from the generated parse so that we can treat the same dependency pairs 

with different pos tags as a single feature. 
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Table 3.2: Dependency pairs after removing POS tags generated from a sample 
sentence 

survivor, Dunn 

survive, is 

survivor, the 

survivor, sole 

survivor, 
disaster 

Dunn, David 

disaster, this 

disaster, terrible 

We also eliminate the pairs in which one of the elements is a stop word, such as, 

determiners, conjunctions, prepositions etc. In this example, such dependency pairs 

are “survivor, is”, “survivor, the”, “disaster, this”. We remove these pairs as they do 

not essentially contribute to represent the concept of the sentence. We also 

lowercase every words of the sentence. So the final features extracted from the 

sample sentence are given in table 3.3 

 

 

Table 3.3: Final features generated from a sample sentence after lowercasing words 
and removing noisy wordpairs 

survivor, dunn 

survivor, sole 

survivor, 
disaster 

dunn, david 

disaster, terrible 

A comparison of the features generated by BOW, bigrams and our proposed 

extraction technique from the sample sentence is given in table 3.4. It is quite clear 

from the comparison that the features, generated by dependency parsing, represent 

the concept of the sentence more effectively than the other methods. 

Table 3.4: A comparison of the features generated by BOW, bigrams and our 
proposed extraction technique from the sample sentence 
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BOW Bigrams Proposed dependency 
pairs 

David David Dunn survivor, Dunn 

Dunn Dunn is survivor, sole 

is is the survivor,disaster 

the the sole disaster, terrible 

survivor sole survivor  

of survivor of  

this of this  

terrible this terrible  

disaster terrible disaster  

In our experiment, we employ BOW and our proposed dependency pairs both 

individually and collectively to compare their effectiveness. 

3.3.2 Feature Selection 

Text classification usually deals with staggering number of features. When 

classification model has hundreds or thousands of features, there is a good chance, 

many of these features are noisy. That means these features are common across all 

classes, but contribute little information to the classifier. Individually they are 

harmless, but in aggregate, low information features can decrease performance. The 

purpose of feature selection is to discard these irrelevant or redundant features from 

the given feature set and to expedite the whole process. It can save the model from 

overfitting and the curse of dimensionality. 

Our feature selection method is a combination of a search technique for selecting the 

feature subset, along with a evaluation measure. We rank the features by their 

individual evaluations using information gain (IG) and select the top n features to 

use further. 

Information gain is the amount of information that is achieved by knowing the value 

of the attribute. The key measure of information gain is entropy. It characterizes the 
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purity of an arbitrary collection of instances. The entropy measure is considered as a 

measure of dataset’s unpredictability. The entropy of an entire dataset, X, is 

 H(X) = − ∑ p(c)log2(p(c)) (3.1) 
c∈C 

where p(c) is the probability of class c that is the proportion of the number of 

instances in class c to the number of instances in X. H(X) = 0, when all instances 

belong to the same class. It means minimum impurity. H(X) = 1, when instances are 

equally distributed in all 

classes. 

Information Gain is calculated by the difference in entropy from before to after the 

data set is split on an feature F. In other words, it measures how much uncertainty in 

X was reduced after splitting dataset on feature F. 

 IG(F,X) = H(X)− ∑ p(t)H(t) (3.2) 
t∈T 

where T is the subsets of instances created from spliting X by feature F such that X = 

∪t∈Tt, H(t) is the entropy of the subset t and p(t) is the proportion of the number of 

instances in t to the number of instances in X. 

We take each feature and calculate its information gain that represents its 

significance and relevance to the classes. Then we rank all the features according to 

their IG in the descending order and select the top n features for our classification 

model. 

3.4 Base Classification Model 

The base classification model comprises a base classifier and a minority 

overampling technique. Typically classifiers are more sensitive to the majority class 

and less sensitive to the minority class. In our case, instances in positive class are the 

relevant instances. As positive class is also the minority class, if we do not take care 

of the data imbalance distribution, the classification output will be biased. In most of 

the cases, it will always predict the negative class. This is the motivation behind 

incorporating an oversampling technique in our proposed method. Sampling method 
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usually carried on before building the classifier. However, we integrate our proposed 

distribution-based amalgam minority oversampling technique (DAMOT) into the 

base classifier. In this section, we describe functionality of our base classification 

model as well as the proposed novel oversamping technique in details. 

The base classification model has mainly three steps: 

1. Build the classifier and extract the distribution of positive instances 

over positive class (ρ) 

2. Make a set (Mo) of positive instances from the proposed 
oversampling technique 

(DAMOT) 

3. Update the classifier with Mo. 

We use naive bayes as our base classifier. Naive bayes is described in detail in 

section 2.2.2. We first build the naive bayes classifier to calculate the distribution of 

positive instances over positive class (ρ). We employ this distribution in our 

proposed oversampling method. DAMOT consists of a simple distribution-based 

minority oversampling (SimDMO) and a synthetic distribution-based minority 

oversampling(SynDMO) method. We get a subset of original positive instances 

from SimDMO and a set of synthetic instances from SynDMO. Then the base 

classifier is updated by this newly generated mixture set of original and synthetic 

instances. We discuss DAMOT in depth in the next subsection. 
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Figure 3.5: Base classification model 

3.4.1 Distribution-based Amalgam Minority Oversampling Technique 

The proposed oversampling technique, DAMOT, takes the difference between the 

number of positive and negative instances, D, as the required number of positive 

instances that should be oversampled. The percentages of D generated by SimDMO 

and SynDMO, are represented by R and S respectively. We can control the number 

of duplicated positive instances and that of synthetic instances for oversampling 

with the value of R and S. 

The proposed oversampling method is described in algorithm 1. The algorithm starts 

with sorting the instances according to ρ in descending order (line 1). Then 

SimDMO begins with calculating the number (R) of instances that will be 

oversampled by itself (line 2). Then in line 3 - 6, a loop iterates R times. Each time, 

it simply duplicates the instance xi (line 4) and add to the set Mo (line 5). 

The rest of algorithm covers SynDMO (line 7 - 22). This is basically smote [9] 
algorithm except it prioritizes the positive instances with higher distribution over 
positive class. As the instances are sorted according to ρ, the instances with higher 
distribution are selected 
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first. In line 7, the number of required synthetic instances is calculated (S). We 
dynami- 

 
cally calculate how many instances (S) will be used to generate synthetic instances 
at what 

 
percentage (N) (line 8-11). The values of (S) and (N) depend on the number of 
positive instances and that of required synthetic instances. The main loop of 
SynDMO iterates through 

 
S times. At each iteration i, N synthetic instances are generated from xi. N neighbors 
from 

 
the k nearest neighbors are randomly chosen (line 16). If N is 2, then two neighbors 

from the k nearest neighbors are chosen and one synthetic instance is generated in 

the direction of each (line 15 - 21). Synthetic instances are generated in the 

following way. A random number is taken between 0 and 1 ( line 17). The random 

number is multiplied by the difference between vector xi and vector x, then it is 

added to the feature vector xi ( line 18). This is how a random point (x) is selected 

along the line segment between two specific features. Then the new synthetic 

instance x is appended to Mo ( line 19). 

The motivation behind this amalgam is to avoid overfitting. We have analyzed the 

imdb reviews on several movies and observed that less than 30% of the overall 

reviews are considered as spoilers. To balance the dataset, we need to oversample 

nearly 200% of original minority instances. That is why, if we exclusively apply 

random oversampling method or synthetic minority oversampling method, it will 

cause overfitting. 

We also utilize the distribution initially generated by the classifier to sort out the 

instances that have higher distribution over the positive class. We consider them as 

more spoilers than others. Some reviews are considered mild spoiler as they may not 

contain enough critical information to ruin suspense. When oversampling, we want 

to avoid these mild spoilers by giving priorities to the instances with higher 

distribution. At the same time we avoid overfitting and maintain diversity by 

oversampling with both original and synthetic instances. 
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Algorithm 1: Distribution-based Amalgam Minority Oversampling Technique 
(DAMOT) 

Input: Minority Data M(t) = {xi ∈ X} where i = 1,2,...,T, Number of minority 

instances (T), Distribution of minority data over minority class(ρ), 

difference between the number of minor class and major class(D), 

SimDMO percentage (R), SynDMO Percentage (S) 

1 Sort the minority instances in descending order according to ρ; 

2 Calculate the number for simple distribution-based oversampling 
instances, 
 

R = D∗R/100; 
 

3 for i=1,2,...,R do 

4 Copy the instance xi, call this xi; 

5 Append xi to Mo; 

6 end 
 

7 Calculate the number of synthetic instances, S = D∗S/100; 
 

8 Calculate smote percentage, N = (S/T)∗100; 

9 if S > T then 

10 S = T; 

11 end 
 

12 for i=1,2,...,S do 

13 Find the k nearest(minority class) neighbour of xi; 
 

14 N = [N/100]; 
 

15 while N 6= 0 do 

16 Select one of the k nearest neighbours randomly, call this x; 

17 Select a random number α ∈ [0,1]; 

18 x = xi +α(x−xi); 

19 Append x to Mo; 

20 N = N−1; 



44 

 

21 end 

22 end 
 

3.5 Boosted Classification Model with Integrated Oversampling Technique 

In conjunction with our base classification model, we employ a boosting algorithm, 

AdaBoost, to achieve higher performance. AdaBoost is short for “Adaptive 

Boosting”. It combines the outputs of the base classifiers into a weighted sum and 

presents it as the final output. It is called adaptive as the instances misclassified by 

the preceding base classifiers are prioritized in the following ones. We reconstruct 

the existing adaBoost algorithm to accommodate our proposed base classification 

model as its base classifier. We call this model, a Boosted Classification Model with 

Integrated Oversampling Technique. 

The pseudocode for this model is given in algorithm 2. The inputs are the number of 

iterations, T and the given N labeled training instances, {(x1,y1),...,(xN,yN)}, where 

the labels yi ∈ {−1,+1} correspond to our negative and positive class respectively. 

The algorithm begins with distributing equal weights to all the instances. The 

number of iteration, T, is the number of our base classifier modules used in the 

ensemble method. On each iteration t, a naive bayes classifier is trained with the 

weighted training set. Then we call DAMOT to generate a set Mo of positive 

instances made of duplicate and synthetic instances. Then the naive bayes classifier 

is updated with these newly generated positive instances. DAMOT is described 

detailed in 3.4. Once hypothesis ht has been received, the error ∈t of classifier t is 

calculated. A parameter, α, is chosen from the error ∈t. 

1 1− ∈t 
 αt ← log( ) (3.3) 

2 ∈t 

α measures the importance that is assigned to ht. Some significant properties of α can 

be drawn from the equation [3.3]. α grows exponentially as the error approaches to 

0. Better classifiers are given exponentially higher weight. α is zero if the error rate 

is 0.5. A classifier with 50% accuracy is no better than random guessing, so 

adaBoost ignores it. α grows exponentially negative as the error approaches to 1. So 
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negative weights are given to classifiers with accuracy lower than 50%. A plot of the 

values of αt for classifiers with different error rates is given in figure 3.6. 

Then the distribution, dt is updated to increase the weight of instances misclassified 

by ht , and to decrease the weight of correctly classified instances. Thus, the next 

classifier tends to 

 

Figure 3.6: A plot of classifier weight against classifier error 

concentrate on “hard” instances. The distribution is updated by the following rule, 

 dn
t Zt (3.4) 

Here Zt is a normalization constant, Zt 1 The final hypothesis H is a 

weighted majority vote of the T hypotheses where αt is the weight assigned to ht. 
T 

 H(x) = ∑αtht(x) (3.5) 
t=1 

The key reason behind employing adaBoost algorithm because of its ability to 

reduce the training error. Consider the error as ∈t of ht as ∈t −γ. For binary problems, 

classifiers that predict instances at random has error rate of , so here γ represents the 

measure that how much ht performs better than a random classifier. Freund and 

Schapire [50] prove that the training error of the final hypothesis H is at most, 
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  (3.6) 
 t t t 

Thus, if each weak hypothesis is slightly better than random classifier, so that γt ≥ γ 

for some γ > 0, then the training error drops exponentially fast. AdaBoost adapts to 

the error rates of the individual classifiers. Another significant property of adaBoost 

is that it can identify outliers, i.e., instances that are either mislabeled in the training 

data, or which are inherently ambiguous and hard to categorize. Because adaBoost 

focuses its weight on the hardest examples, the examples with the highest weight 

often turn out to be outliers. 

To compare the effectiveness of adaboost, we first apply it with only naive bayes, 

then in conjunction with our proposed DAMOT as well as random resampling. We 

also experiment each of the mentioned methods for both BOW and dependency 

parses exclusively and 

collectively.
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Algorithm 2: Boosted Classification Model with Integrated Oversampling 

Technique 

 
Input: An integer T specifying number of iterations, and N labeled training data 

{(x1,y1),...,(xN,yN)} 

1 Initialize weights 

 1 1 
dn =  

N 

for all n = 1,...,N; 

2 for t ← 1,2,...,T do 
(a) Train Naive Bayes with the weighted training set 

(b) Extract instances from positive class, M 

(c) Get the distribution of M over the positive class, ρ 

(d) Get the difference between the number of negative class and 
positive class, D 

(e) Call DAMOT(M, ρ, D, R, S) to get the set of minor 
oversampling instances, Mo 

(f) Update NaiveBayes with Mo and obtain hypothesis ht : X → ±1 

(g) Calculate the weighted training error of ht: 
N 

∈t= ∑ di
t | ht(xi)−yi | 

i=1 

(h) Set 
1 1− ∈t 
αt ← log(

 ) 
2 ∈t 

(i) Update weights 

dnt Zt 
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where Zt is a normalization constant, such that  

3 end 

Output: H  
 

3.6 Divergence between the Proposed method and the Previous 

Approaches 

There are mainly three machine learning approaches [43] [24] [25] on spoiler 

detection so far. We specify the key differences between those and our proposed 

method in this section. 

Other than us, Guo and Ramakrishnan [43] have used dependency parsing in their 

feature extraction process. However, they use collapsed typed dependencies to form 

the features where part-of-speech tags are included in the dependencies. In our 

study, we exclude the POS tags from dependency parses to extract only the 

grammatically related word pairs. We also remove the word pairs which include 

auxiliary verbs, determiners, conjunctions and prepositions. Moreover, none of the 

previous studies take feature selection into consideration although it is an essential 

step in text mining. Due to the enormous number of features involved in text 

classification, classifiers suffer from overfitting and curse of dimensionality. We 

include feature selection in our preprocessing module which combines a search 

technique to select features along with information gain to measure the features. 

To the best of our knowledge, no other previous studies employed ensemble based 

classification model to detect spoilers. J. Boyd-Graber et al. [24] and S. Jeon et al. 

[25] both have implemented SVM whereas Guo and Ramakrisnan [43] have built a 

topic model based on LDA. We use Naive Bayes with integrated DAMOT as our 

base classification model and enclose a bundle of base classification models with 

adaboost ensemble algorithm. 

Though data imbalance distribution is an indigenous characteristic of this particualr 

problem, none of the previous studies deal with it. We incorporate a novel minority 

oversampling technique, DAMOT, to handle imbalance in data distribution in our 

proposed method. Our proposed technique also handle overfitting by mixing original 
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and synthetic instances. It also avoid oversampling by mild spoilers by prioritizing 

instances with higher distribution. 

3.7 Summary 

We take each phase of text classification in consideration and design each 

component in favor for this specific problem of detecting spoiler. We presented the 

details architecture of our proposed method in this chapter. We utilize dependency 

parses in conjunction with 

 

 BOW for extracting features to represent the concept of the text effectively. Then 

the process of cleaning and selecting high informative features is also conducted in 

text preprocessing unit. Our major contribution lies in the base classification model 

where we integrate a new amalgam oversampling technique with the base classifier. 

We also incorporate the base classification model in adaboost algorithm as its base 

classifier to boost the classification performance.
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Chapter 4 

Experimental 
Studies 

4.1 Introduction 

In the previous chapter, we have presented our proposed method for detecting 

spoiler in depth. We have implemented several models using the major components 

of the proposed architecture individually and collectively. The goal of this chapter is 

to evaluate these models extensively and find out the one that is most suitable for 

our problem. Through various comparisons and statistical analysis, we gradually 

eliminate the models with less performance in order to filter the best ones. 

We begin this chapter with a brief introduction of our datasets. We then describe the 

performance metrics used in the process of evaluation. This follows by the short 

description of the baseline methods and the experimental setup. Later on, we present 

our experimental result in details. Then we summarize all the discussions and 

conclude this chapter. 

 
 

4.2 Datasets 
To assess and compare the performance of our proposed model, we have collected 

our datasets from IMDb. It is the most popular and authoritative online database of 

information relating to films, television programs and video games. It includes 

information regarding the cast, production crew, fictional characters, biographies, 

plot summaries, trivia and reviews. We have collected reviews from 8 movies. We 

choose movies of different genres, years, and  

number of reviews to take the effects of these parameters into account. 
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Table 4.1: An overview of dataset collected from eight movies 
Movie Title #Reviews #Spoilers Year Genre 

Unbreakable 1367 204 (15%) 2000 Drama, Mystery, Sci-Fi 

The Usual Suspects 1000 230 (23%) 1995 Crime, Drama, Mystery 

The Prestige 1000 290 (29%) 2006 Drama, Mystery, Sci-Fi 

Inception 1000 300 (30%) 2010 Action, Adventure, Sci-Fi 

Shutter Island 980 369 (37%) 2010 Mystery, Thriller 

Blood Diamond 659 136 (21%) 2006 Adventure, Drama, 
Thriller 

Shooter 342 114 (30%) 2007 Action, Crime, Drama 

Role Models 173 50 (29%) 2008 Comedy 

A brief description of the datasets is shown in table 4.1. Datasets are arranged in the 

table by the size of reviews in descending order. Henceforth, we denote the datasets 

by the movie titles. The first dataset is on a mystery and drama movie titled, 

Unbreakable. In this movie, a man, named David Dunn, learns that he is 

extraordinary after being a sole survivor of a horrific train crash. Later, he finds out 

that the train crash was not actually an accident. Hence, the spoilers are mainly 

about the origin of the train crash. The Usual Suspects is a mystery around a 

criminal master mind, called Keyser Soze whose identity reveals at¨ the very end of 

the movie. In Prestige, two stage magicians engage in a battle to create the ultimate 

illusion. Near the end of the movie, the secret behind the great illusion of one 

magician discloses. Inception is a sci-fi movie where a thief uses a dream-sharing 

technology to steal corporate secrets. In Shutter Island, a U.S. Marshal investigates 

the disappearance of a murderer, who escaped from a hospital for the criminally 

insane. Later it turns out that the marshal, himself, is the patient. Blood Diamond is 

about a journey of a fisherman, a smuggler, and a syndicate of businessmen fighting 

over the possession of a priceless diamond. In the movie, Shooter, a retired 

marksman, framed for the murder attempt of the president, runs for his life while 

trying to find out the real criminal and the reason behind the crime. The last movie, 

Role Models, is a comedy, where two middle aged men are forced to change their 

wild lifestyle to become role models for two kids. 

The degree at what a spoiler can impair the audience anticipation often depends on 

the genre of the movie. For instance, there can be crucial spoilers about movies like 
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Unbreakable, The Usual Suspects, The Prestige and Shutter Island where the entire 

plot is based on a single mystery. On the other hand, for some movies such as, 

Inception, Blood Diamond and Shooter, the stories evolve with the timeline. In these 

cases, spoilers are not as detrimental as the previous ones. Most spoilers are 

considered as mild in the case of comedy movies like Role Models as humors are 

the key ingredients in the stories rather than plot twists. 

4.3 Performance Metrics 

In this section, we describe the measures that are used to evaluate the predictive 

performance of our baseline and proposed models. We employ performance metrics 

such as kappa, accuracy, precision, recall, and f-measure. However, it is required to 

understand the concept of confusion matrix first to comprehend these metrics. 

Confusion matrix: A confusion matrix is a table that is often used to describe the 

performance of a classification model on a set of test data for which the true values 

are known. 

For example, table 4.2 shows an example of confusion matrix for a binary classifier. 

Table 4.2: Confusion matrix 
  Predicted Class 

Actual Class 

 Positive Negative 

Positive True Positive False 
Negative 

Negative False 
Positive 

True Negative 

The basic terms regarding the confusion matrix are as follows: 

True positives (TP): The number of positive instances that are correctly 
classified. 

True negatives (TN): The number of negative instances that are correctly 
classified. 

False positives (FP): The number of negative instances that are misclassified 
as posi- 
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tive. 

False negatives (FN): The number of positive instances that are misclassified 
as neg- 

ative. 

The total number of actual positive and negative instances are TP+FN and FP+TN 

respectively. On the other hand, the total number of predicted positive and negative 

instances are TP+FP and TN +FN respectively. 

Accuracy: Accuracy is the most intuitive performance measure and it is simply the 

ratio of correctly predicted instances to the total instances. Accuracy is a great 

measure when datasets are symmetric. In asymmetric datasets like ours, other 

parameters are needed to be analyzed to evaluate the performance of the model. 

TP+TN TP+FP+FN +TN 

 Accuracy =  (4.1) 
Precision: Precision is the ratio of correctly predicted instances of a class to the total 

predicted instances of the corresponding class. Higher precision relates to the lower 

false positive rate. 

TP TP+FP 

 Precision =  (4.2) 
Recall: Recall is the ratio of correctly predicted instances of a class to all the actual 

instances in the corresponding class. Higher recall means the rate of correctly 

classified instances of the concerning class is higher. 

TP TP+FN 

 Recall =  (4.3) 
F-measure: F-measure is the weighted average of Precision and Recall. Therefore, 

this score takes both false positives and false negatives into account. It reaches its 

best value at 1 which means perfect precision and recall, and worst at 0. 

2∗(Recall ∗Precision) Recall +Precision 

 F −measure =  (4.4) 
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Intuitively it is not as easy to comprehend as accuracy, but f-measure is usually more 

useful than accuracy, especially in an uneven class distribution. Accuracy works 

best when misclassifying both classes has similar cost. If the cost of misclassifying 

one class is higher than others, it is better to look at both precision and recall, hence 

f-measure. 

 

Cohen’s kappa coefficient: Cohen’s kappa measures the agreement between two 

raters who each classify N items into set of mutually exclusive categories. It is 

generally more robust measure than simple percent agreement calculation as κ takes 

the possibility of the agreement occurring by chance into account. 

po − pe 
 κ =  (4.5) 

1− pe 

where, Po = the relative observed agreement among raters. Pe = the hypothetical 

probability of chance agreement. The value of kappa may range from -1 to +1, 

where 0 represents the amount of agreement that can be expected from random 

chance, and 1 represents perfect agreement between the raters. While kappa values 

below 0 are possible, but they are unlikely in practice. There is not a standardized 

interpretation of the kappa statistic. Acceptable kappa statistic values vary on the 

context of the problem. Landis and Koch considers 0-0.20 as slight, 0.21-0.40 as 

fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1 as almost perfect 

[51]. 

4.4 Baseline Methods 

To the best of our knowledge, there are only three machine learning approaches [43] 

[24] [25] conducted on spoiler detection so far. Guo and Ramakrishnan [43] ranked 

the reviews such that major spoilers are ranked to be higher than the mild spoilers. 

They considered first n reviews as spoilers. Depending on the value of n, the 

performance metrics varied. In our datasets, we include the reviews of the four 

movies they experimented on. The later approaches [24] [25] proposed feature-base 
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machine learning methods. Both of these methods used manually collected features 

such as “Frequently Used Verb”, “Genre”, “First Aired”, “Country”, “Episodes”. 

Moreover, they conducted their experiments on short text. So there is no direct way 

to compare our model to the existing approaches. 

For baseline methods, we combine two feature extraction technique: BOW and 

dependency pairs, with random oversampling technique (ROS) and synthetic 

minority oversampling technique (SMOTE). We use naive bayes as base classifier in 

every case. From now on, we denote our baseline models as follows: 

 

i. BOW : using BOW features only. 

ii. DP : using only dependency pairs (DP) as features. 

iii. Mix : using both BOW and DP as features (Mix features).  

iv.  ROS BOW : using ROS with only BOW features. 

v. ROS DP : using ROS with only DP as features. 

vi. ROS Mix : using ROS with mix features.  

vii.  SMOTE BOW : using SMOTE with only BOW features. 

viii. SMOTE DP : using SMOTE with only DP as 

features. 

ix.  SMOTE Mix : using SMOTE with mix features. 

4.5 Experimental Setup 

We have built several models exploring each of our major components, such as the 

feature generation techniques, our proposed oversampling technique, DAMOT, and 

boosting algorithm individually and conjointly. The following list provides the 

denotements and short descriptions of these models. 
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i. DAMOT BOW : using DAMOT with BOW 

only. 

ii.  DAMOT DP : using DAMOT with only DP as features 

iii. DAMOT Mix : using DAMOT with mix features.  

iv.        Boosted BOW : using adaboost with BOW 

only. 

v. Boosted DP : using adaboost with only DP as features  

vi. Boosted Mix : using adaboost with mix features.  

vii. Boosted ROS BOW : using adaboost and ROS with BOW features.  

viii. Boosted ROS DP : using adaboost and ROS with only DP as features. 

 ix. Boosted ROS Mix : using adaboost and ROS with mix features. 

x. Boosted SMOTE BOW : using adaboost and SMOTE with BOW features.  

xi. Boosted SMOTE DP : using adaboost and SMOTE with only DP as 

features. 

xii. Boosted SMOTE Mix : using adaboost and SMOTE with mix features.  

xiii. Boosted DAMOT BOW : using adaboost and DAMOT with only BOW 

features. xiv. Boosted DAMOT DP : using adaboost and DAMOT with only DP 

as features.  

xv. Boosted DAMOT Mix : using adaboost and DAMOT with mix features. 

We consider top 2000 features ranked by information gain as relevant. While 

oversampling positive instances, we oversample 60% of the required instances by 

duplicating the original instances and rest by generating synthetic instances. 

All the models have been developed in JAVA. We use standford parser [49] for 

generating dependency parses and WEKA library [52] for existing methods. All the 

experiments are conducted on a PC with a Intel(R) Core(TM) i7-7500U CPU 

running at 2.70 GHz with 12GB RAM. 

We evaluate each of our model using k-fold cross validation technique. Cross 

Validation is used to assess the effectiveness of model, particularly in cases where 

overfitting is needed to be mitigated. In the following section, we briefly describe k-

fold cross validation method. 
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4.5.1 k-fold Cross Validation Method 

Simple cross validation technique, also known as the holdout method, removes a 

part of the training data to get predictions from the model after training it on the rest 

of the data. The error estimation then shows how our model is doing on unseen data 

or the test set. This method suffers from high variance as it is not certain which 

instances will end up in the test set and the result might be entirely different for 

different sets. It may also risk losing important information by reducing training 

data, which in turn increases error induced by bias. A variant of cross validation 

technique, called k-fold cross validation, resolves these limitations. 

In k-fold cross validation, the data is divided into k subsets. Then the holdout method 

is repeated k times. Each time, one of the k subsets is used as the test set and the 

other k−1 subsets are put together to form a training set. The error estimation is 

averaged over all k trials to get the total effectiveness of the model. 

The advantage of using k-cross validation model is that every instance gets to be in a 

test set exactly once, and gets to be in a training set k−1 times. Interchanging the 

training and test sets also adds to the effectiveness of this method. 

A slight variation in this technique is made to maintain balance in training and test 

sets. This variation is known as stratified k-fold. In this, approximately the same 

percentage of instances of each target class is given to each fold as a complete set. In 

case of prediction problems, the mean response value is approximately equal in all 

the folds. 

We use 5-fold stratified cross validation to evaluate each of our model. 
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Figure 4.1: k-fold cross validation model 
 
 
 
 

4.6 Results 

We tested each of our baseline and proposed models with each dataset and generated 

the performance metrics. Table 4.3 and 4.4 show the average of the performance 

metrics of baseline and proposed methods for the eight datasets respectively. To 

present and conceive the performances of the models clearly, we highlight the top 

two values in each metrics. The cells with the highest values are underlined and 

embolden while the cells with the second highest values are just embolden. 

We observe from table 4.3 and 4.4 that when a model achieves higher accuracy and 

negative recall, its positive recall decreases significantly and vice versa. For 

instance, Boosted BOW and Boosted Mix obtain higher accuracy, 71.077 and 

71.015, but their positive recalls fall down to 0.467 and 0.446. Boosted DP and 

Boosted SMOTE Mix have higher negative recall, 0.823 and 0.844, with positive 

recall of 0.332 and 0.446 respectively. On the other hand, Boosted ROS Mix and 
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DAMOT Mix attain higher positive recall, 0.582 and 0.575, with accuracy of 67.592 

and 64.161 respectively. This imbalance of models’ performances in different 

metrics is expected as the number of positive instances is far less than that of 

negative instances. Because of the poor number of positive instances, it is not only 

more difficult for the models to classify the positive instances correctly but also 

classifying positive instances accurately has less effect on the overall accuracy. 

The effect of misclassifying a positive instance is far more detrimental than that of 

misclassifying a negative instance. When a spoiler is marked as a spoiler free 

review, one can be exposed to it unintentionally which may essentially cause 

impairment to his or her enjoyment. On the contrary, if a spoiler free review is 

marked as a spoiler, it would not essentially have any significant effect on the 

audience. That’s why, more importance is given to positive recall among other 

performance metrics when assessing the models. Our goal is to have higher positive 

recall without penalizing other metrics as much as possible. 

Among the baseline methods, BOW and Mix have good performance with kappa 

0.250 and 0.257, accuracy 68.446 and 69.358, positive recall 0.549 and 0.531, and 

negative recall 0.738 and 0.756 respectively. Besides these models, DAMOT BOW 

has also good performance with highest kappa 0.258. The models mentioned above 

in this section have shown prominent performance according to one or more metrics. 

Among these models, we select those models with minimum 0.4 positive recall for 

further analysis. These models are embolden in table and 4.3 and 4.4. 

4.6.1 Effect of the Size of the Datasets 

The size of the datasets plays an important role in the performances of the models. 

The average performances of the models are quite poor considering the value of 

kappa and positive recall. The highest average kappa and positive recall are only 

0.258 and 0.582. To analyze the effect of the size of the datasets, we plot the 

performance metrics of the different models against the individual dataset (Figure 

4.2). 

All the models show similar performance trend for all the datasets. These models 

have decent performances for the first five datasets that have more than 900 reviews. 
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The performance starts to deteriorate from the movie, Blood Diamond, that has 659 

reviews. For this movie, Boosted Mix, has even negative κ value meaning it has 

lower performance than random choice. Positive recall and kappa drastically 

decrease for Role Models that has only 173 reviews. 

We also plot positive recall of the models, DAMOT BOW, DAMOT Mix and Boosted 

ROS Mix, against number of reviews from 100 to 1000 on an interval of 100 for 

individual dataset (Figure 4.3). The positive recall of DAMOT BOW and DAMOT Mix 

increases with the number of reviews for all datasets except The Usual Suspects. For this 

particular dataset, positive recall for first 100 reviews is quite high, then the positive 

recall drops little upto 600 reviews. Then it again starts increasing from 800 reviews. So 

along with the number of reviews, the performance also depends on other factors, such 

as data distribution and the degree of spoilers in the particular reviews. Another 

observation from the plots is that the model, Boosted ROS Mix has achieved higher 

recall for fewer number of reviews compared to the other two models. 

Table 4.5 presents the average Kappa, accuracy, positive recall and negative recall 

for the five datasets with more than 900 reviews. Kappa value increases up to 0.341 

which is moderate agreement between the predictions of a model and actual classes. 

The highest average positive recall also escalates significantly, from 0.582 to 0.676. 

The change in performance with the size of the datasets is expected as the models 

learn more effectively with more training data 

Table 4.5: The average performance of models for datasets with more than 900 
reviews 

 Kappa Accuracy Positive Recall Negative Recall 

BOW 0.323 70.748 0.642 0.722 

Mix 0.341 72.033 0.632 0.747 

DHOS BOW 0.321 69.806 0.676 0.693 

DHOS Mix 0.328 70.470 0.669 0.704 

Boosted BOW 0.335 73.389 0.546 0.785 

Boosted Mix 0.329 73.060 0.553 0.799 

Boosted ROS Mix 0.267 66.283 0.673 0.654 



61 

 

4.6.2 Effect of the Components 

In this subsection, we take each of our proposed components into consideration and 

analyze its effects on the outcome. Figure 4.6 shows how models perform on each 

dataset on the basis of kappa, accuracy, positive recall and negative recall. 

Using dependency pairs along with BOW features, we are able to improve kappa, 

accuracy and negative recall, but unable to retain positive recall in most of the cases. 

Adaboost works best with random oversampling technique and BOW features. On 

the other cases, it boosts accuracy and negative recall highly with the cost of 

penalizing positive recall on a great scale. From the figure 4.6, it is quite visible that 

the models that bring balance in all the performance metrics are DAMOT BOW and 

DAMOT Mix. 

We analyze the effect of injecting the synthetic instances and prioritizing instances 

by their distribution along with simple random oversampling (ROS) technique. To 

do so, we convert our DAMOT oversampling technique into ROS step by step. First, 

we eliminate the prioritization. Then, we gradually reduce the percentage of 

synthetic instances. When the percentage of synthetic instances becomes zero, the 

oversampling will be a simple ROS technique. For each change, we will analyze the 

effects of these changes on the positive recalls of our datasets. Here, we use mix 

features in all cases. 

We mix a distribution based simple oversampling and a distribution based synthetic 

oversampling in our proposed oversampling technique, DAMOT. Here we 

oversample 60% of required positive instances by simple oversampling and 40% by 

synthetic oversampling. 

 

 

While oversampling, we also prioritize instances with higher distribution. First we 

eliminate the prioritization. That brings us the model ROS(60%)+SMOTE(40%) 

Mix . In the figure 4.4, the first model is DAMOT Mix. In the following models, we 

exclude the prioritization of instances by their distributions. That makes the 

oversampling a mixture of ROS and SMOTE. The percentages in the title represent 

the percentage of ROS and SMOTE used in the corresponding model. For example, 
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ROS(60%)+SMOTE(40%) Mix means 60% of the required instances is 

oversampled by ROS and 40% is by SMOTE. We gradually reduce the percentage 

of SMOTE to analyze the effect of the injection of synthetic instances. The model 

ROS(100%)+SMOTE(0%) Mix means simply the ROS oversampling. In the figure 

4.4, we plot the recall of the these models against individual movie dataset. We can 

observe from this plot is that prioritizing instances by their distribution as well as 

injecting SMOTE with ROS improve the positive recall. In all these cases, we use 

mix features and employed oversampling technique after feature selection. 

 

Figure 4.4: Effect of injecting synthetic instances in random oversampling 

The performance of the models also relies on the time of the feature selection. When 

oversampling technique is employed before feature selection, it also affects the 

selection of the features along with their distributions. We applied random 

oversampling (ROS) before feature selection. On the other hand, smote is carried out 

after feature selection as it takes higher computational effort to generate synthetic 

instances from huge number of features. As DAMOT comprises of both ROS and 

SMOTE, we also employed it after feature selection. 

In the figure 4.5, the baseline model ROS Mix has been added with the models in the 

previous experiment. ROS(100%)+SMOTE (0%) Mix model and ROS Mix model 

are same except in the first one the oversampling technique has been carried out 

after the feature selection where in the latter one, it has been carried out before 
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feature selection. The latter one results higher positive recall than the first one. We 

observe from figure 4.5 that DAMOT outperforms ROS in every dataset except The 

Usual Suspects and Shooter. This is because the oversampling alter the feature 

selection drastically for these two datasets. So the variation in the performance is the 

result of the timing of the feature selection process. 

 

Figure 4.5: Effect of the time of feature selection 

Another observation is that the recall is comparatively higher for the movies of 

mystery genre such as Usual Suspects, Unbreakable, Prestige. On the other hand, 

movies in adventure or comedy genre such as, Blood Diamond, Shooter and Role 

Models have lower recall. This is because the amount of spoiling material in 

adventure and comedy movies is comparatively less than movies of mystery genre. 

The spoilers are not as detrimental for these movies as well. 

We also plot the deviations of the models from the top value in different 

performance metrics for each movie (figure 4.7). These plots illustrate the relative 

performance of the models. The lower the points reside for a model, the smaller the 

differences between its performance and the highest performance for individual 

movie dataset. This also supports the  
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intuition about the models obtained from the previous comparisons. For DAMOT 

BOW and DAMOT Mix, the points reside in the lowest region for positive recall 

except for the movie, Role Models. As the size of the dataset for this movie is very 

small, only 173 reviews, we can consider it as an irregular behavior. For other 

performance metrics, the points also stay in the lower region in the plots for these 

models. So, we can deduce from these comparisons is that our proposed new 

amalgam oversampling method, DAMOT, performs effectively to boost the positive 

recall with moderate accuracy, negative recall and kappa. 

4.6.3 Statistical Analysis 

We employ the Wilcoxon signed-rank test in a pairwise manner to evaluate the 

statistical significance between models. We conduct this test under a significance 

level of 0.10 for these performance metrics: accuracy, positive recall, negative recall 

and kappa. We compare DAMOT BOW, DAMOT Mix and Boosted ROS Mix 

models with others as these models has leading positive recall. We refer these 

models as candidate models and others, that are compared to them, as challenged 

models. We give positive ranks to candidate model and negative ranks to the 

challenged model. R+ and R− represent the sum of all positive and negative ranks, 

respectively. The test statistic, Tvalue, is the minimum of R+ and R−. Tvalue should be 

less than or equal to the critical value to indicate a significantly different result. 

Critical values for 6, 7 and 8 number of pairs are 2, 3 and 5 respectively. For better 

understanding, we embolden the metrics that has significant difference in favor for 

the candidate models and underlined the metrics having significant difference in 

favor for the challenged models. When comparing, if a model beats another as per 

positive recall, other metrics will be avoided. Other metrics will be taken into 

consideration when there is no significant difference in positive recall between two 

models. The reason behind this is explained in the beginning of this section. 

Table 4.6 provides the detailed result of the wilcoxon signed-rank tests between 

DAMOT BOW and other models. According to positive recall, this model beats BOW, 

Boosted BOW, and Boosted Mix without having any significant difference with Mix, 

DAMOT Mix, and Boosted ROS Mix. Though this model defeats Boosted ROS Mix 



65 

 

by significant difference in kappa, but the baseline model, Mix, beats it according to 

accuracy, and negative recall. 

The statistical comparisons between DAMOT Mix and other models are provided in 
table 

4.7. The comparison with DAMOT BOW is not presented in this table as it is 

already provided in table 4.6. As per positive recall, it defeats all models except 

DAMOT BOW and Boosted ROS Mix. However, it beats Boosted ROS Mix 

according to Kappa. 

Table 4.8 presents the result of wilcoxon signed rank tests between Boosted ROS 

Mix model and other model. The comparisons with DAMOT BOW and DAMOT 

Mix are ex- 

cluded from this table as they are already provided in table 4.6 and table 4.7. Boosted ROS 

Mix has no significance lead in positive recall with Mix, Boosted BOW, Boosted DP, and 

Boosted Mix. It is defeated by both DAMOT BOW and DAMOT Mix in accordance with 

kappa. More- 

over, baseline model, BOW, beats it as per accuracy, negative recall and kappa. 

Summarizing table 4.6, 4.7, and 4.8, we observe that model DAMOT Mix defeats all 

the models except DAMOT BOW. It should be noteworthy that DAMOT BOW failed 

to defeat the baseline model, Mix, whereas DAMOT Mix has significantly higher 

recall than Mix model. However, we run wilcoxon signe-rank test for all performance 

metrics between DAMOT Mix and DAMOT BOW for the datasets with more than 

500 reviews. This is because we want to consider only the moderate-sized datasets to 

avoid irregular performances obtained from small-sized datasets. The result of these 

tests is presented in table 4.9. DAMOT Mix succeeds to obtain notably higher 

performance than DAMOT BOW in 

accuracy, positive precision, negative f-measure and negative recall. 
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 (a) BOW (b) Mix 

 

 (c) DAMOT BOW (d) DAMOT Mix 

 

 (e) Boosted BOW (f) Boosted Mix 

 

(g) Boosted ROS Mix 

Figure 4.2: The performances of the models for individual dataset 
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(a) DAMOT BOW 

 

(b) DAMOT Mix 

 

(c) Boosted ROS Mix 

Figure 4.3: The change in performances of the models with the size of the 
datasets 
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 (a) Unbreakable (b) The Usual Suspects 

 

 (c) The Prestige (d) Inception 

 

 (e) Shutter Island (f) Blood Diamond 

 

 (g) Shooter (h) Role Models 
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Figure 4.6: Performance of the models 

 

 

 (a) Positive Recall (b) Accuracy 

 

 (c) Negative Recall (d) Kappa 

Figure 4.7: Deviation of the models from the top value in each performance metric 

for individual movies 

 
Table 4.6: Result of Wilcoxon signed-rank test between DAMOT BOW and other 
models 

Performance Metrics N R+ R− Tvalue Hypothesis 

   BOW   

Positive Recall 8 31 4 4 Reject for DAMOT BOW 
Accuracy 

 
8 3 33 3 Reject for BOW 

 
Negative Recall 

 
8 2 34 2 Reject for BOW 

 
Kappa 8 8 28 8 Accept Null Hypothesis 

   Mix   

Positive Recall 8 29 7 7 Accept Null Hypothesis 
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Accuracy 
 

7 0 28 0 Reject for Mix 
 

Negative Recall 
 

8 2 34 2 Reject for Mix 
 

Kappa 8 10 26 8 Accept Null Hypothesis 

  DAMOT Mix  
Positive Recall 8 19.5 16.5 16.5 Accept Null Hypothesis 
Accuracy 8 14 22 14 Accept Null Hypothesis 
Negative Recall 8 15 21 0 Accept Null Hypothesis 
Kappa 8 26 8 10 Accept Null Hypothesis 

  Boosted BOW  

Positive Recall 8 32 4 4 Reject for DAMOT BOW 
Accuracy 

 
8 6 30 6 Reject for Boosted BOW 

 
Negative Recall 

 
8 4 32 4 Reject for Boosted BOW 

 
Kappa 8 15 21 15 Accept Null Hypothesis 

  Boosted Mix  

Positive Recall 8 32 4 4 Reject for DAMOT BOW 
Accuracy 

 
8 4 32 4 Reject for Boosted Mix 

 
Negative Recall 

 
7 0 28 0 Reject for Boosted Mix 

 
Kappa 8 20 16 16 Accept Null Hypothesis 

  Boosted ROS Mix  

Positive Recall 8 15 21 15 Accept Null Hypothesis 
Accuracy 8 29 7 7 Accept Null Hypothesis 
Negative Recall 8 27 9 9 Accept Null Hypothesis 
Kappa 8 30 6 4 Reject for DAMOT BOW 

 
Table 4.7: Result of Wilcoxon signed-rank test between DAMOT Mix and other 
models. 
 
The comparison with DAMOT BOW is already provided in table 4.6 

Performance Metrics N R+ R− Tvalue Hypothesis 

   BOW   

Positive Recall 8 34 2 2 Reject for DAMOT Mix 

Accuracy 
 

7 1 27 0 Reject for BOW 
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Negative Recall 
 

8 0 36 0 Reject for BOW 
 

Kappa 8 27 9 9 Accept Null Hypothesis 

   Mix   

Positive Recall 7 28 0 0 Reject for DAMOT Mix 

Accuracy 
 

8 0 36 0 Reject for Mix 
 

Negative Recall 
 

8 0 36 0 Reject for Mix 
 

Kappa 8 8 28 8 Accept Null Hypothesis 

  Boosted BOW  

Positive Recall 8 34 2 2 Reject for DAMOT Mix 

Accuracy 
 

8 5 31 5 Reject for Boosted BOW 
 

Negative Recall 
 

8 0 36 0 Reject for Boosted BOW 
 

Kappa 8 18 18 18 Accept Null Hypothesis 

  Boosted Mix  

Positive Recall 8 33 2 2 Reject for DAMOT Mix 

Accuracy 
 

8 5 31 5 Reject for Boosted Mix 
 

Negative Recall 
 

8 0 36 0 Reject for Boosted Mix 
 

Kappa 8 21 15 15 Accept Null Hypothesis 

 Boosted ROS Mix  

Positive Recall 8 16 20 16 Accept Null Hypothesis 

Accuracy 8 30 6 6 Accept Null Hypothesis 

Negative Recall 8 29 7 7 Accept Null Hypothesis 

Kappa 8 32 4 4 Reject for DAMOT Mix 
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Table 4.8: Result of Wilcoxon signed-rank test between Boosted ROS Mix and other 
models. The comparison with DAMOT BOW and DAMOT Mix is aleady provided 
in table 4.6 and 4.7 

Performance Metrics N R+ R− Tvalue Hypothesis 

   BOW  

Positive Recall 8 26 10 10 Accept Null Hypothesis 

Accuracy 
 

8 3 33 3 Reject for BOW 
 

Negative Recall 
 

8 3 33 3 Reject for BOW 
 

Kappa 8 3 33 8 Reject for BOW 

   Mix  

Positive Recall 8 33 3 3 Reject for Boosted ROS Mix 

Accuracy 
 

8 3 33 3 Reject for Mix 
 

Negative Recall 
 

8 2 34 2 Reject for Mix 
 

Kappa 8 6 30 6 Accept Null Hypothesis 

  Boosted BOW  

Positive Recall 8 36 0 0 Reject for Boosted ROS Mix 

Accuracy 
 

8 0 36 0 Reject for Boosted BOW 
 

Negative Recall 
 

8 0 36 0 Reject for Boosted BOW 
 

Kappa 8 3 33 3 Reject for Boosted BOW 

  Boosted Mix  

Positive Recall 8 36 0 0 Reject for Boosted ROS Mix 

Accuracy 
 

8 0 36 0 Reject for Boosted Mix 
 

Negative Recall 
 

8 0 36 0 Reject for Boosted Mix 
 

Kappa 8 20 6 36 Reject for Boosted Mix 
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Table 4.9: Result of Wilcoxon signed rank-test between DAMOT Mix and DAMOT 
BOW for datasets with more than 500 reviews 
 
 

    DAMOT BOW 

Performance Metrics N R+ R− Tvalue Hypothesis 

Kappa 6 18 3 3 Accept Null Hypothesis 

Accuracy 6 20 1 1 Reject for DAMOT Mix 

Positive F-measure 6 10 4 4 Accept Null Hypothesis 

Positive Precision 6 20 1 1 Reject for DAMOT Mix 

Positive Recall 6 3.5 17.5 3.5 Accept Null Hypothesis 

Negative F-measure 6 21 0 0 Reject for DAMOT Mix 

Negative Precision 5 7 8 7 Accept Null Hypothesis 

Negative Recall 6 21 0 0 Reject for DAMOT Mix 

 

4.7 Summary 

In this chapter, we presented an empirical analysis of our method and each of its 

major components on eight IMDb movie datasets. Based on the average 

performance on the eight datasets, we choose BOW, Mix, DAMOT BOW, DAMOT 

Mix, Boosted BOW, Boosted Mix, and Boosted ROS Mix models among others to 

be analyzed further. The reason is that these models outperform others according to 

one or more performance metrics. Then, we plot four significant performance 

metrics: kappa, accuracy, positive recall, and negative recall, of these models against 

each of the individual movie datset. We also plot these models’ deviations in these 

performance metrics from the top value of that metric for each movie. Both 

comparisons provide similar intuition about the models. Adaboost, in all models 

except Boosted ROS Mix, rises negative recall and accuracy on a large scale with a 

penalty of very low positive recall. On the other hand, DAMOT BOW, DAMOT 

Mix and Boosted ROS Mix achieve higher positive recall without deviating much 

from the top accuracy and negative recall. As the cost of misclassifying positive 
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instance is significantly higher than misclassifying a negative instance, positive 

recall has been given more priority than other performance metrics. According to 

Wilcoxon signed-rank test, DAMOT BOW and Boosted ROS Mix fail to obtain 

leading performance in positive recall than the baseline methods, Mix and BOW, 

respectively. On the other hand, DAMOT Mix defeats all the baseline methods 

having significatly leading positive recall. It also beats Boosted ROS Mix in 

accordance with kappa. Moreover, DAMOT Mix leads significantly in accuracy, 

positive precision, negative f-measure, and recall in comparison with DAMOT 

BOW. So we can come to a conclusion that the combination of mix features and our 

innovative oversampling method, DAMOT, performs better than other models by 

achieving higher positive recall as well as balancing other metrics. 
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Chapter 5 
Conclusion 
5.1 Conclusion 

Classifying spoiler in text is a more challenging task than any other typical text 

classifications. In this thesis, we have addressed several of these challenges and 

designed the architecture of our method taking each of these into account. 

Feature extraction is one of the most critical phases of text classification. We 

employed syntactically related words, called dependency pairs, along with BOW as 

features in order to extract the context of the movies effectively. Another property of 

this problem is imbalanced class distribution. We proposed a novel oversampling 

technique, DAMOT, to resolve this property. No other existing approaches have 

addressed data imbalance property for spoiler detection so far. Moreover, we used 

adaboost to boost the performance of our proposed method even more. 

Our models have been tested on eight datasets of IMDb movie reviews. 

Experimental results have revealed that DAMOT has achieved good result for all 

datasets according to the performance metrics. It successfully improves positive 

recall and balances other metrics at the same time. Adaboost, improved accuracy, 

but impaired positive recall which failed to serve our purpose. Overall, DAMOT 

with mix features provided consistent performance with statistically significant 

leading positive recall than others. 

 

5.2 Future Work 

Sometimes there are different perspectives of people on whether a certain piece of 

information has the potential to spoil the enjoyment or not. Moreover, not all the 

facts or details have the similar level of effect on the audience. Those spoiler that 

may or may not have any negative effect, are usually called mild spoilers. These are 

difficult to label and typically the cause of higher inaccuracy. In this thesis, we 

consider the spoiler detection problem as a binary classification task. A fascinating 

variation of this task can be converting this binomial task into multinomial task. So 
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we can break down the two classes into more, such as “critical spoiler”, “moderate 

spoiler”, “mild spoiler”, “non-spoiler”. This variant will assist to achieve better 

performance and intuition on the classes. 

Our experimental result shows that adaboost does not essentially aid to detect more 

positive instances. We may tweak the boosting algorithm in such way so that it 

focuses more on the wrongly classified positive instances to boost the positive 

recall. 

In social networks, such as facebook and various review aggregation websites like 

IMDb, Rotten Tomatoes etc., the posts regarding movies, books, tv-shows are 

usually quite long. The whole post or review does not typically contain spoiler 

material rather a very few sentences do. Labeling the full review as spoiler may 

deprive audience from non-spoiler important information. So we can target to detect 

the exact sentences that contain spoilers in a post or a review. 
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