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Abstract

The last decade has witnessed an unprecedented rise in the popularity of content sharing

networks such as Flickr and Twitter. Shared photos are usually accompanied by metadata such

as geo-location, timestamp and tags. These photos contain a digital representation of locations

and they convey human behavior patterns, photo trails and tour summaries. The availability

of such geographic information in the form of multimedia contents has given rise to interesting

applications such as recommendation system, point-of-interest mining and tour planning system,

user gender and home location prediction system and event recommendation systems. In this

work, we have proposed a method to determine the aesthetic rating of a location and weather

condition of an image from social metadata of Flickr photos and content analysis of Flickr images

respectively.

The aesthetic rating of a location is the evaluation of aesthetic quality of that location.

Tourists, artists and urban planners often seek to rate each location by their aesthetics. Popu-

lar recommendation websites such as TripAdvisor generate a relative rating of the locations to

provide recommendations to its users about possible locations to visit. However, such rankings

are highly dependent on user contributions. Therefore, in this work, we have proposed a method

to generate aesthetic rating of a location using social metadata of user captured and shared Flickr

photos. A number of empirical features have been defined and computed from the social meta-

data of the Flickr photos available at each location. Using these features numerous classifiers

have been trained and our classifiers have been able to achieve notable accuracy.

On a different note, weather condition detection and tracking are in practice for a long time.

However, most weather detection technologies rely highly on powerful hardware technologies

and expertise of weather specialists. With the development of computer vision technologies

4



several attempts have been taken to recognize weather conditions from images. In this work,

we leveraged the availability of user tagged images in Flickr to generate a image dataset with

weather condition annotations. Using the dataset we have proposed, deep convolution network

based solutions to detect weather conditions of a location from user tagged Flickr images.

We conduct comprehensive empirical analysis to investigate the performance of our pro-

posed algorithms. We have gathered social metadata of Flickr photos of the locations of two

major tourist destinations i.e. Rome and Paris. Our classifiers obtained about 80% accuracy

in correctly predicting the aesthetic ratings of locations in Rome and achieved about 71% ac-

curacy on Paris dataset. On the other hand we have considered four weather conditions in our

weather detection task, namely, sunny, cloudy, rainy and snowy. We have trained several neural

networks by varying hyper-parameters. Additionally, we have also applied transfer learning with

popular pre-trained neural networks such as VGG16, InceptionV3, InceptionResnetV2 etc. Our

classifiers have reported as much as 60% accuracy on our scrapped dataset.
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Chapter 1

Introduction

In recent era, the proliferation of smart phones and the availability of the Internet have re-

sulted in an unprecedented rise in the popularity of content sharing sites such as Flickr, In-

stagram, Youtube, Pinterest, etc. One of the most popular form of user generated multimedia

content is images or photos. Since capturing high-quality images have been facilitated by the

increase of camera availability in smart phones, more and more users are encouraged to cap-

ture and share the photos of their surroundings. Therefore, popular content sharing sites such as

Flickr, Instagram, Twitter etc. have been able to accumulate a large number of user generated

photos. In Flickr, alone there are about 8 billion existing photos [3, 4] and it is reported that

Flickr receives 3.5 million uploads every day [3]. Most of these content sharing sevices support

storage of various meta-data associated with each image. For example, each Flickr photos con-

tains meta-data such as time of the photo taken, time of the photo uploaded, properties of the

camera with which the photo is captured, textual description of the photo etc. In addition to that

most hand-held camera devices are now GPS-enabled. Therefore, most of the uploaded images

are gps-tagged. Finally, these content sharing networks doesn’t work only as a storage facility

for the users to upload their images, but it also provides social media like features to them so

that they can interact with each other and their contents. For example, in Flickr a user can view

other’s uploaded images, add these images to his favorite, provide his opinions about the image

as a comment, follow other users’ activity, form groups to share photos of similar category etc.

These interactions are also tracked with some additional meta-data such as number of views,
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CHAPTER 1. INTRODUCTION 2

number of time an image is added to the favorite, number of comments etc.

This large amount of geo-tagged photos gives us a digital representation of a specific geo-

location. It also contains patterns of human behavior, photo trails, transit time between areas of

a city etc. Researchers have realized that appropriate studies on Flickr images and their meta-

data can lead to unveiling newer insights. Among the fields of Flickr research, the most popular

ones are multimedia content retrieval, scene understanding, touristic travel applications, point-

of-interest mining, human activity mining etc. Several other aspects such as political analysis,

event detection, photo attractiveness assessment and landmark summarization are also explored

is previous studies.

In this work, we concentrate our focus on a task related to point-of-interest and a scene under-

standing task. Our first problem is predicting aesthetic rating of a location from social metadata

of Flickr images. With the surge of travel recommendation services such as TripAdvisor, Ex-

pedia etc, location ratings based on their aesthetics have become commonly available. We want

to exploit Flickr data to generate or predict aesthetic rating of locations. Several studies have

been conducted to measure the scenic beauty of a geo-location. Nirmala et al. [5] and Bergen

et al. [6] attempted to estimate scenic beauty of forestry using images. The scenic beauty es-

timation (SBE) method of [6] was later used to asses visual beauty of landscapes [7]. Studies

have also been conducted to assess aesthetic beauty of waterscapes using SBE. In [8] the au-

thors had gathered crowd-sourced SBE of woodland landscapes and performed correlation study

with landscape image properties to validate their study. Quercia et al. [9] proposed a method to

find out a scenic path through a city. Their work covers both crowd-sourcing approach as well

as automated approach using Flickr metadata. Although their automated approach uses Flickr

social meta-data such as photo density, number of views etc., the validation of their result de-

pends largely on crowd-sourced scenic scores. Additionally, the Flickr-generated routes failed to

achieve higher scenic scores from most of their voters. Finally, travel recommendation sites like

TripAdvisors have developed a method to generate these rating through crowd-sourced tourist

reviews.

On the other hand, our second problem is understanding weather conditions from single

Flickr image. Weather detection from fixed viewpoint images has been studied for quite a long
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time [10, 11]. The pioneer work [12] on weather detection from dynamic viewpoint images

worked with only two weather conditions. Their work has been extended in the works of [13–15].

However, they had to employ human helpers for data labeling. In our problem, we are trying to

exploit textual tags of Flickr photos without any human curation to develop a method to detect

weather conditions from images.

The rest of the chapter is organized as follows. Section 1.1 briefly discuss about the mo-

tivation of our proposed work with its application. Section 1.2 outlines the objectives of our

research. Section 1.3 projects our research challenges and solution overview. Then Section 1.4

highlights the contributions of our thesis. Finally, an organization of the remaining chapters are

given in Section 1.5.

1.1 Motivation and Applications

Nowadays availability of GPS-enabled camera phones has increased sharing of geo-tagged

photos. Popular content sharing sites such as Flickr, Instagram, Twitter have already accumulated

a large number of user generated photos. In Flickr, alone there are about 8 billion existing photos

and it is reported that Flickr receives 3.5 million uploads every day. Each of these photos contains

meta-data such as gps-location, time of capturing the photo, number of users viewed, number of

favorites etc. This large amount of geo-tagged photos not only provides a digital representation

of the specific geo-location but also contains patterns of human behavior, photo trails, transit

time between areas of a city etc. So, appropriate mining of such geo-tagged contents can result

in designing a set of newer applications.

In this work, we have addressed two problems based on Flickr data mining. First, we have

proposed a system that can predict the aesthetic score of a location using Flickr social meta-data.

Here, Aesthetic rating of a location is the relative rating of a location considering the scenic

beauty of that location.

The second problem of our work, is determining the weather condition of a scenario available

in geo-tagged Flickr images with the help of its textual tags. In this work, we have concentrated

our focus on only four weather conditions, namely, sunny, rainy, cloudy, snowy.
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Aesthetic ranking of a location can be of great value towards tour planning, tourism business

etc. Tourists can pick the places they want to visit according to their aesthetic ratings. Similarly,

automated travel recommendation systems can be developed keeping the aesthetic ratings in

mind. On the other hand, weather recognition plays a vital role in many applications in our day

to day life. Current technologies of weather condition reporting rely highly on expensive sensor

network and human expertise. To sustain such a system huge amount of resources are required

to be engaged in it. However, detecting weather conditions from user tagged images offers us

a cheaper alternative. Apart from developing a cost effecting method for weather tracking and

reporting, detecting weather conditions from images can also be used in advanced applications

such as self-driving cars and intelligent weather-based recommendation systems such as weather-

based restaurant recommendation.

1.2 Research Objectives

From previous discussion we have identified these following objectives of our study:

• Introducing a novel approach to predict aesthetic ratings and weather of locations from

photo capturing, sharing and users’ interaction patterns.

• Developing a classification model to predict aesthetic ratings of a location from Flickr

social metadata.

• Proposing a deep learning based method to determine weather conditions at a certain time

of a location from Flickr photos.

• Handling imbalanced dataset to improve accuracy.

• Simulating the proposed approaches and performing extensive experiments on empirically

built real-world datasets to evaluate our proposed solution and applying performance im-

provement techniques.

The possible outcomes of our study are as follows:
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• A new classifier to predict the aesthetic rating of a place from Flickr social metadata which

will reduce the dependency of crowd-sourced data to comment about a location’s aesthetic

rating.

• A novel approach to determine the weather of a location from the photos uploaded at a

given time.

1.3 Overview of Methodology

As discussed earlier, we are focusing on solving two Flickr data mining problems in this

thesis work. We refer to them as Aesthetic Rating Prediction problem and Weather Condition

Detection problem. Under this section we have discussed about the challenges we faced, and the

solution we proposed to handle these challenges.

1.3.1 Aesthetic Rating Prediction

In this work, we have assumed that each of the geo-locations belongs to one of several aes-

thetic classes. Each member of an aesthetic class has the same aesthetic rating. So, the problem

has been reduced to correctly predicting the appropriate aesthetic class of a geo-location using

the geographical and social metadata available in Flickr. To perform our desired classification,

we propose to build numerous decision tree based classifiers. A major challenge in this task

is setting up the ground truth for the training phase. Although the attractiveness of a location

is subject to individual’s taste and view, we can assume that the huge number of reviews and

ratings [16], as reported by multiple sources, accumulated by various travel recommendation

websites such as TripAdvisor [17], Expedia [18] etc. can reflect the true scenic value of a loca-

tion from the perspective of majority of users. Another challenge that we had to face was that

the popular available Flickr datasets do not focus on the social attributes of the shared images.

As a prerequisite of classification step, we had to scrap data from both Flickr and a well-known

web-site named TripAdvisor, to accumulate the dataset used in this work. Later, we derived 11

empirical features for each geo-location. We have trained several classifiers and to perform vali-
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dation we have used 10-fold cross validation. Finally, we faced performance issues due to dataset

imbalance. We handled this challenge by applying state-of-the-art oversampling technique. To

improve classification accuracy we have applied ensemble method on each of the classifiers.

1.3.2 Weather Condition Recognition

The weather condition recognition task is also considered as a multi-class classification task.

Here, it is assumed that there are only four weather conditions. They are sunny, cloudy, rainy

and snowy. Similar, to the previous task most of the available image datasets do not contain any

weather annotation. More importantly, most weather dataset are built with the help of human

helpers and experts. However, our problem wants to focus on uncurated image tags available

in Flickr. So, an image dataset is accumulated using the textual weather tags of Flickr photos.

Then, we trained a small and less computationally-intensive convolution neural network. To

find out the best accuracy we have performed hyper parameter tuning and reported the accuracy

for each hyper parameter combination. We have also used popular pre-trained neural networks

which were trained on Imagenet [19] and fine-tuned their weights so that the pre-trained models

adapt to our classification task.

1.4 Contributions

We make the following contributions as listed below:

i. a. First, we model the aesthetic rating prediction task as a multiclass classification problem.

The required assumption for such modeling is that each of the locations is a member of

an equally aesthetically rated class. Given a location our classifier will be able to predict

the class in which it belongs.

b. In order to train a classifier, we build a dataset empirically containing the locations of

two tourist destination, namely, Rome and Paris. The dataset is tailor made to contain

ground truth about aesthetic ratings.
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c. After extracting relevant features multiple variants of decision tree and other classifiers

are trained and their performances are analyzed. Additional steps are taken to remove

performance deficiency due to imbalanced dataset.

d. Finally, ensemble learning technique such as Bagging and Boosting are applied to im-

prove classifier performance.

ii. a. Second, we develop a method to detect weather of a location from user uploaded Flickr

photos. In order to handle this problem, we propose a deep neural network based solution.

We assume that weather can be divided into categories such as sunny, rainy etc. We

consider each of these categories as an individual class and our classifier should be able

to predict in which class a photo belongs to.

b. In order to obtain the desired classifier, we gather a set of photos from Flickr API taken

at a certain location during a specified range of time. We label each photo with historical

data obtained from available weather datasets.

c. Using these photos we train a convolution neural network and analyze classifier perfor-

mances.

iii. To validate the effectiveness and accuracy of our proposed methods, we performed extensive

experiments using real world data sets by varying different parameters, such as the number

of hidden layers in neural network, number of nodes in each layer etc. We will measure the

efficiency of each classifier in terms of accuracy, precision and recall.

1.5 Organization

Now we outline the organization of this report. First, we discuss some previous works related

to our problems in Section 2. Then, we formulate the problem in Section 3. As discussed

above, our problem is divided into two parts. We propose solutions to both the Aesthetic Rating

Prediction problem and the Weather Condition Recognition from image problem. In Section 4,

we describe the solution by explaining how the dataset for our task is collected, how the related

features were derived and the intuition behind each feature, how aesthetic rating classification is
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done, the issues that was solved to achieve higher classification accuracy and the experimental

results of our solution. The solution for weather condition recognition problem is discussed in

Section 5. Finally, we make some concluding remarks in Section 6.



Chapter 2

State of The Art

The related works we found in literature can be divided into three major categories. The

first group of studies as discussed in Section 2.1 focuses on mining Flickr data to extract various

patterns such as popular routes, point-of-interest etc. Section 2.2 discusses about the second

track of studies which concentrates on measuring aesthetic properties of a location from images.

Finally, our literature review also found several related works on weather condition recognition

from images. We have discussed such works in Section 2.3.

2.1 Flickr Data Mining

The unprecedented increase in the amount of data in the form of images, videos, texts or

meta-data accumulated by various social content sharing sites such Flickr, Twitter, Instagram

has attracted researchers to conduct data mining studies on them. Flickr alone has accumulated

about 8 billion photos each of which has geo-tags, textual tags, timestamps etc. associated with

them. Besides an image is also a representation of the surroundings. So appropriate mining can

lead to revelation of many seemingly hidden information. Since a large portion of multimedia

contents is of touristic nature, research works often focus on finding out tourist behavior, points

of interest, occuerd events and fetivals etc. A series of studies [20–23] have been performed to

facilitate route planning and route recommendation. In [20] the authors have classified frequent

photo trips obtained from Flickr and also detected people’s trip patterns such as duration of stay

9
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at a location, sequence of visited locations throughout a city etc. In [21], the authors have at-

tempted to answer temporal queries such as amount of time spent in a specific point of interest,

duration of journey between two geo-locations etc. Popescu et al. [24] have proposed methods

to discover user trips from Flickr metadata, find out trip characteristics and classify whether an

image contains interior or exterior view. Several others works [25–28] have also focused on

recommending personalized tours. Although route recommendation have been studied at length,

Quercia et al. [9] argued that a popular route may not be the most pleasant route for a tourist.

They proposed a way of recommending emotionally pleasing routes. They considered three

characteristics of routes, i.e., beauty, quietness and happy. They divided the space into a grid of

equally spaced cells and assigned each cell with a happiness score obtained from crowd-sourced

results. Later they presented that Flickr metadata can be used to avoid crowd-sourcing. However

their experimental results show that Flickr-generated route based on their approach is not consid-

ered as scenic route by the users. Apart from works on route recommendations, point-of-interests

(POIs) and event detection from Flickr data have been studied extensively. Ling et al. [29] and

Nitta et al. [30] have proposed solutions to find out popular events. They [29, 30] exploited tex-

tual tags, temporal information and geo-tags. However, the former suffers performance issue in

case of nonperiodic events. In [31], the authors have proposed method to generate POIs with the

help of wikipedia. Other works involving POI detection are [4, 32]. In [33] a machine learning

based approach is proposed to predict the popularity of a Flickr image using both image qualities

and social attributes. They have used three layer of features. The first layer consists of features

generated from colors of the image. As low and high level computer vision features they have

used gist, texture, color-patches, gradient and deep learning based object detection filters. Since

popularity of an image can be easily quantified by the number of views or number of shares of an

image, their classification can easily obtain labeled data to train classifiers. Apart from these, nu-

merous studies [34,35] have been conducted on content based image retrieval. It should be noted

that semantic contents of an image doesn’t change with users’ perspectives. Most of the Flickr

data mining studies where focused on either analyzing the contents of the photos or perform-

ing analysis of meta-data such as geo-tags, temporal information, user tags and automatically

generated tags etc. Another set of meta-data is the social meta-data of Flickr photos. As social
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meta-data we can consider the number of views of each photo, number of people who have added

the photo as favorite, number of comments in the photo, content of each comment, popularity of

user etc. In other words, the statistics that is generated due to users’ interaction with the photo or

the owner of the photo can be called social meta-data. In spite of these meta-data being largely

available are mostly overlooked by the recent studies.

2.2 Assigning Aesthetic Scores to Locations

Visual attractiveness is a highly subjective concept that varies from person to person. But

researchers have been trying to quantify beauty measures. The authors of [36] have conducted

a survey oriented research to find out scenic properties of landscapes. In [5, 6] the authors have

attempted to measure scenic beauty of images in the context of forests. Their goal was to de-

velop an automated system to measure scenic beauty of forestry images. They have used color

histogram and edge detection to find out scenic beauty estimation(SBE) of images. Bulut et

al. [7] have extended the SBE approach to determine landscape and waterscape beauty scores. A

significant drawback of such approaches is that the experiments are conducted on specially taken

photos such as photos taken from satellite or cameras placed on special places of a forest etc. to

carry out their study.

Another similar work of measuring aesthetic scores of images is [37] where they have defined

a machine learning based approach to classify images based on their aesthetic qualities as well

as to assign each image a scoring based on its aesthetics. One major drawback of their approach

was the use of Photo.net as there source of images, since Photo.net doesn’t provide any API

to obtain their photos. They used Photo.net because it offers an aesthetic and originality rating

of each image and thus making the generation of labeled data easier. As their features, they

have considered color tones and saturation, object segment of images, exposure of light and

colorfulness, golden ratio approximation, wavelet-based textures, region composition, size and

aspect ratios, shape convexity etc.

Few meta-heuristic based works [38, 39] on finding out scenic paths have also been carried

out. These works consider the work of [9] as there baseline scoring technique and preform
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optimization on arc-orienteering problem. But these solutions imposes a budget constraints on

finding scenic routes. Another recent work [40] suggests a way to recommend tours based on

user interests from his/her visit history

2.3 Weather Condition Detection From Images

Although weather condition detection from images can have an vital role in designing nu-

merous applications, studies in this area are still limited. Primitive works usually focused on

detecting weather conditions from static images obtained from surveillance cameras, on vehicle

cameras etc. In [10,11], the authors focused on weather detection from vehicle-mounted camera

images. However, research works have also been conducted on detecting weather conditions

from images that are not captured from fixed-point cameras. One of the first work on detecting

weather conditions from dynamic images is conducted by [12]. In this work, they focused on de-

tection of only two types of weather conditions, namely, sunny and cloudy. They have designed

features to detect 5 major weather cues. They are sky, shadow, reflection, contrast and haze.

Based on these weather cues they have derived feature sets and considering the presence or ab-

sence of these weather cues an algorithm is proposed that uses collaborative filtering. The work

in [13] designed features for sunny, rainy, snowy and haze weathers and applied multiple ker-

nel learning method to detect multiple weather. Similar work has been performed in [14]. Since

neural networks have been performing exceptionally well in image recognition and classification,

some neural network based works have also been performed. Such as [15] has applied AlexNet

to perform the two (sunny, cloudy) weather condition classification of images and demonstrated

better performance of neural networks in weather detection. Finally, [41] have proposed using

extra segmentation masks of weather cues to achieve better performance in detecting weather

conditions.

However, each of these works on detecting weather conditions from images had to use some

image dataset to work on. The authors of [12] have gathered a rather small set of images from

the SUN dataset [42], LaBelme dataset [43] and Flickr. However, to label each photos they

had to employ helpers who collected and labeled about 10K unambiguous images. Similar ap-
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proach was followed by the authors of [13]. The dataset in [12] was later adopted by the authors

of [15, 41]. To address the issues of unavailability of large datasets and the requirement of man-

ual assistance to provide weather condition ground truths, the authors in [44] have created a

dataset from Flickr and provided weather condition labels on each of them with the help of a

popular web-based weather platform named Weather Underground. To ensure the collection of

unambiguous images they have filtered their gathered images by using sky-region detection and

outdoor image detection methods.

However, in this work we have addressed the issue of detecting weather conditions from user

generated images of Flickr and the weather condition labels provided by the content uploaders.

Although similar to previous works, the higher level of ambiguity in user labels and the number

of weather conditions in consideration makes our task more challenging.



Chapter 3

Problem Formulation

The goal of this work is to design two intelligent systems for aesthetic rating prediction and

weather condition recognition task. Aesthetic rating prediciton as discussed in Section 3.1 can

be defined as building a classifier to predict aesthetic class of a location with the help of social

metadata of Flickr images and location aesthetic rating ground truths from TripAdvisor. On

the other hand, Section 3.2 discusses about our problem of building a system to detect weather

conditions of an image with the help of Flickr images and its wild tags. .

3.1 Aesthetic Rating Prediction

In order to understand this problem and the solutions, we first need to understand how we

have defined the aesthetic rating of a location. Aesthetic rating of a location can be defined as

follows.

Aesthetic Rating: Aesthetic rating of a location is the relative ranking of the locations by

comparing their aesthetic beauty. In others words, a location, which appears to be more aesthetic

to a visitor, receives an aesthetic rating that is higher than that of a location which appears to

be less aesthetic to the visitor.

Although the attractiveness of a location is subject to individual’s taste and viewpoint, we

assume that if a huge number of reviews and ratings can be collected from visitors then we

can acquire an estimation about the true scenic value of a location. Several travel recommen-

14
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dation services such as TripAdvisor [16] have reported to have accumulated significant amount

of reviews and ratings. They provide an estimation of the aesthetic rating of the location by

considering user ratings. In this work, we have considered TripAdvisor as the source of our

ground truth. TripAdvisor provides aesthetic rating of each location where the aesthetic ratings

are discrete values ranging from 0-5 with interval of 0.5.

Aesthetic Class: In this work, we define aesthetic class, as a set of locations that have the

same aesthetic rating. Therefore, according to TripAdvisor there are 11 aesthetic classes and

each location belongs to one and only one aesthetic class.

To proceed with our problem formulation, we need the definition of social metadata of Flickr

images. The definition of social metadata according to our work is as follow.

Social Metadata of Filck Images: Flickr is a well-known content sharing site. However,

Flickr can also act as a social network where users can interact with each other and with their

contents. These interactions are viewing each others photos, putting a comment under a photo

and adding other user’s photos as favorite. In this work, the metadata which are generated as

a resultant of Flickr user interaction among themselves, are named social metadata of Flickr

Images.

So, the aesthetic rating prediction problem can be defined as the problem of training a clas-

sifier, such that given a geo-location, the classifier can predict the aesthetic class of that geo-

location by exploiting tailor-made features obtained from Flickr social metadata and the ground

truths obtained from TripAdvisor.

3.2 Weather Condition Recognition

The goal of this problem is to construct computational models to estimate weather conditions

from single Flickr images and Flickr tags in the wild. We first define the concept of Wild Tags.

Wild Tags: The idea of wild tags was first introduced in the works of [45]. Wild tags are

those tags of an image that are directly provided by the user who uploaded that image to some

photo-sharing services. In this problem, we use these wild tags without any subsequent manual

filtering or curation of the tags.
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Flickr is a large source of photos with wild tags. However, every photo doesn’t contain a wild

weather tag. The definition of wild weather tag is as follows,

Wild Weather Tags: Wild weather tags are those wild tags of an image that are used to

describe the weather condition captured in the image. In this problem we consider only four

such tags. They are sunny, rainy, snowy, and cloudy.

In this problem, we consider four major weather conditions corresponding to each wild

weather tag under consideration. There are a tremendous amount of user tagged photos with

the above mentioned weather conditions in several photo-sharing services. For this problem, we

are considering only the photos shared in Flickr. That means these images are captured under

different viewpoints, in various places, during different portions of the day and with different

devices. In short, in this problem we are considering images captured in the wild. Therefore,

we can define this problem as a classification task where we aim to train classifiers to accu-

rately detect one of 4 weather conditions from Flickr photos captured in the wild (i.e. dynamic

viewpoints) and their associated wild weather tags.



Chapter 4

Aesthetic Rating Prediction

Our first problem is to predict the aesthetic rating of a location from the social metadata of

Flickr images available at that location. In order to develop our solution, we have accumulated

two datasets that contain information of representative locations from Rome, Italy and Paris,

France respectively. We have derived 11 features empirically. Then, we trained several clas-

sifiers and analyzed their performances on predicting aesthetic rating of a location using the

derived features from social metadata of Flickr images. We have also applied state-of-the-art

techniques to improve classifier performances. In this section, we first provide a short descrip-

tion of the available datasets related to our work in Section 4.1. Then we discuss about the

process through which we have gathered our dataset in Section 4.2. In Section 4.4, we have

provided short introduction about the classifiers we have used in this work and their performance

on our dataset. Finally, in Section 4.5 we have discussed about oversampling method, neces-

sity to apply oversampling in our problem and the classifier performances after oversampling

our datasets. Finally, we performed ensemble learning methods to improve our classifiers and

reported their accuracies with ensemble learning in Section 4.6.

4.1 Available Datasets

Flickr is a well-known multimedia content hosting web-site . Flickr provides its users fa-

cilities to upload and manage their images and videos while at the same time allows others to

17
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view shared contents. According to [3] [4], there are about 90 million Flickr users and more than

14 billion shared images in Flickr. Apart from storing the raw images and videos, Flickr also

manages a number of metadata with each image. Each image may be associated with a title, the

time-stamp of capturing the photo, textual tags, optional description of the image provided by

the user, it’s geo-location, EXIF metadata (the properties of the device with which the photo is

captured) and so on. In addition to that, Flickr also tracks its users’ interaction with the shared

photos and captures these behavior as number of view of an image, number of users who have

added the photo as a favorite, number of comments in the photo and the text of those actual com-

ments. After its introduction in 2004, Flickr have drawn the interest of photographers, artist and

common people. The overwhelming availability of dynamically generated humanistic contents

has drawn the attention of researcher community as well.

There are multiple available datasets related to Flickr that can be considered while choosing

our dataset. The first one of them is the YFCC100m dataset publised by Yahoo Webscope [46].

This dataset contains a list of photos and videos, which are compiled from data available on

Yahoo! Flickr. The dataset is divided into three parts. The main part of the dataset contains

information about 100 million flickr photos. It contains photo or video identifier, photo/video

hash, user information, date in which the photo was taken, upload date, title of the photo, descrip-

tion, user tags (comma-separated), location information, specifications of the device by which

the photo or video was captured and URLs of the photo or video. YFCC100m also includes ma-

chine tags and human readable place information for every photo. An alternative of YFCC100m

dataset is the Multimedia Commons Repository(MMC). The differences between YFCC100m

and MMC are the supplemental material to YFCC100m that the MMC offers. MMC offers au-

dio, visual and motion features such as LIRE, GIST, SWIFT that are often used by multimedia

researchers. There are several other sources such as MIRFLICKR [47], Flickr API [48] etc.,

through which one can access large number of Flickr photos and their related attributes.
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4.2 Dataset Generation

In order to perform the desired task of classification we need a dataset that provides social

metadata such as number of views, number of favorites, number of comments etc. of Flickr

photos as well as ground truths with respect to the aesthetic scores of geo-locations. From

the discussion about YFCC100m and MMC, we can observe that none of them include social

metadata of the photos. Moreover, none of these datasets include any ground truth about a

place being aesthetically desirable. To facilitate our classification task we decided to build a

new dataset using Flickr social metadata and aesthetic ratings of geo-locations. In this process

we have used Flickr API, to gather Flickr image metadata, and TripAdvisor, to gather aesthetic

rating ground truths. Therefore, a short description about Flickr API and TripAdvisor is given in

this section before moving on to the description of the dataset generation process.

Flickr API

To enable easier and flexible retrieval of Flickr images, Flickr developers have offered an

advanced Application Programming Interface(API) [48]. It enables programmers to rely on Hy-

perText Markup Language(HTML) and Hyper Text Transfer Protocol(HTTP) to access Filckr

photos. As a result, Flickr has gained popularity among the researcher community. According to

Flickr API’s documentation, Flickr API is a set of callable methods. If one wants to perform an

action using Flickr API, they need to follow a calling convention and send a request to Flickr’s

endpoint specifying the method and its arguments. If the method, arguments and calling con-

vention are in accord, then the caller will receive a response in one of the supported formats.

Otherwise, the response will contain an error code to lead the programmer to designing a proper

API call.

TripAdvisor

TripAdvisor is an American travel and restaurant recommendation website founded in the

year 2000. It has gathered user reviews of a large number of restaurants and hotels. TripAdvisor

users can view hotel and restaurant reviews to plan their trip. It also helps its users to book
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accommodations during their trip. Since most of the contents of TripAdvisor are gathered from

its users, TripAdvisor provides its services for free to everyone. However, they earn their revenue

from advertising and hotel booking facilities. In this work, we have used the location rating

available from TripAdvisor. We call these ratings the aesthetic ratings of locations. TripAdvisor

computes these location rating from the user reviews. They consider three properties of user

reviews while calculating the rating of a location. They are quantity, quality and recency of the

reviews.

In order to appropriately model photo distribution around a city or country, we tried to gather

location names and ratings from TripAdvisor.com. Since TripAdvisor does not provide any API

for research purposes, we used HTML parser to get data from Trip Advisor. From Trip Advisor

we have retrieved ratings, and number of reviews for around 1200 attractions in Rome, Italy

and 1200 attractions in Paris, France. After removing duplicates and attractions such as tours,

restaurants and hotels we were left with approximately 850 and 650 locations for consideration

respectively. Despite the provided ratings being on a scale of 0-5 with an interval of 0.5, we

observed from the data, that most of the ratings associated with top attractions in Rome lies in

the range 2.5-5 and within 2-5 in Paris. For each location, we retrieved latitude and longitude

using Google Places API. Then for each geo-location we fetched metadata of all the images

that lie within a circle of 100m radius surrounding that particular location from Flick API. We

gathered social metadata of 6 million Flickr images captured at 850 locations of Rome dataset.

At the same time, we scrapped social metadata of 4 million Flickr photos taken at 650 locations

of Paris dataset. Thus we set up two datasets where each location is labeled as one of 7 classes

i.e. classes with aesthetic scores 2,2.5,3,3.5,4,4.5,5. Let each aesthetic class be named as Ci

where i is the corresponding aesthetic score. Figure 4.1 and 4.2 show the number of locations in

each class in our dataset.

The locations in our dataset can be divided into several categories according to TripAdvisor.

Among the locations in Rome there are points-of-interests, museums, church and cathedrals,

historic sites, castles, gardens, parks, neighborhoods etc. Similarly, the locations of Paris are also

categorized by TripAdvisor. Figure 4.3 and 4.4 show the distributions of locations in different

categories in our dataset.
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Figure 4.1: Number of locations in each class of Rome dataset

4.3 Feature Extraction

The social meta-data related to each photo that are directly available from Flickr are number

of times the photo is viewed, number of people who have added the photo as favorite, and number

of comments on the photos. We have extracted some aggregate features using these meta-data

for each location. The major intuitions behind our features are,

• A place with more aesthetic beauty encourages more users to take photos and upload them.

It results in a higher density of photos at that place.

• An aesthetically beautiful place is more likely to draw tourists and the number of distinct

users uploading photos at a place will increase.

• People usually searches for photos of beautiful locations and views them.

• The more beautiful a place is, it is more likely that people will capture better photos which

results in higher number of people adding them to favorites.
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Figure 4.2: Number of locations in each class of Paris dataset

• Higher number of views should lead to higher number of favorites and comments.

• Many professional photographers often capture famous photos even at less popular places.

Which may lead to higher deviation from the average number of views and average number

of favorites of the photos at that position. But photos taken at beautiful and popular places

usually depend on the overall scenario rather than the photographers skills.

Keeping these points in mind we have generated the following features for every location. We

have also plotted the distributions of each feature for each aesthetic rating of Rome dataset in

Figures 4.5,4.6 4.7 and 4.8. Similarly, the distributions of each feature for each aesthetic rating

of Paris dataset are plotted in Figures 4.9, 4.10, 4.11 and 4.12.
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Figure 4.3: Number of locations in each category of Rome dataset

Table 4.1: List of derived features.

Photo density Total number of views Total number of favorites

Total number of comments Average views per photo Average favorites per photo

Average comments per photo
Ratio of number of favorites
to number of views

Ratio of number of comments
to number of views

Distinct user count per loca-
tion

Maximum number of photo
per user

4.4 Classifiers

In order to perform the classification, we have trained various types of classifiers and com-

pared their performances. Among the variations of decision tree, we have used J48, REPTree

and Random Forrest. We have also trained Naive Bayesian classifier, KNN and several ANNs. In

this section, a brief description about these classifiers is provided before reporting the accuracy,

precision and recall of each classifier.
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Figure 4.4: Number of locations in each category of Paris dataset
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Figure 4.5: Distributions of attributes in Rome Dataset

Decision Tree Learning

Decision Tree is a tree-like graph which is used to make a decision from an observation. In

machine learning, decision tree learning in a supervised learning method to find the tree that
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Table 4.2: Merit of each attribute obtained from different attribute selection algorithms

Name of the attribute

Greedy
Stepwise
with CFS
Subset Eval

Ranker with
Correlation
Attribute
Eval

Ranker with
Info Gain
Attribute
Eval

Average

density 0.99 0.42 0.79 0.47

totalViews 0.95 0.57 0.74 0.51

totalFavourites 0.94 0.31 0.65 0.42

totalCommments 0.97 0.45 0.64 0.47

averageViews 0.86 0.67 0.94 0.51

averageFavourites 0.98 0.41 0.49 0.46

averageComments 0.98 0.38 1.00 0.45

favouriteToViewRatio 1.00 0.65 0.54 0.55

commentToViewRatio 0.74 0.62 0.96 0.45

distinctUser 1.00 1.00 0.78 0.67

maxPerUser 0.93 0.32 0.84 0.41
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Figure 4.6: Distributions of attributes in Rome Dataset
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Table 4.3: Merit of each attribute obtained from different attribute selection algorithms

Name of the attribute

Greedy
Stepwise
with CFS
Subset Eval

Ranker with
Correlation
Attribute
Eval

Ranker with
Info Gain
Attribute
Eval

Average

density 0.99 0.83 0.73 0.61

totalViews 1.00 0.81 0.77 0.60

totalFavourites 0.75 0.70 1.00 0.48

totalCommments 0.95 0.80 0.72 0.59

averageViews 0.93 0.58 0.91 0.50

averageFavourites 1.00 0.69 0.67 0.56

averageComments 1.00 0.73 0.41 0.58

favouriteToViewRatio 1.00 0.90 0.52 0.63

commentToViewRatio 0.97 0.65 0.50 0.54

distinctUser 1.00 1.00 0.70 0.67

maxPerUser 0.98 0.68 0.71 0.55
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Figure 4.8: Distributions of attributes in Rome Dataset
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Figure 4.9: Distributions of attributes in Paris Dataset

most appropriately represents the hypothesis in the dataset. Decision trees can be either classifi-

cation tree or regression tree. A decision tree where the leaves or target nodes can take discrete

values are called classification tree. In the tree model of a classification tree, the leave nodes

represent class labels and the branches represent conjunction of features that lead to that class

label. Now, given an observation, if the branches of a decision tree are followed, a class label

for that observation is found. In this work, we have used the following decision tree learning

algorithms.
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Figure 4.10: Distributions of attributes in Paris Dataset
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Figure 4.11: Distributions of attributes in Paris Dataset

• J48 J48 is an implementation of Iterative Dichotomiser 3 (ID3) algorithm in Weka [49]. At

the beginning of ID3 algorithm it is assumed that there is only one node in the decision tree

and it corresponds to the entire dataset. ID3 considers a decision node n in the decision

tree and calculates the information gain corresponding splitting the samples with respect to

the values of each attribute which was unused in all of the parent nodes. Then, it splits the

subset of data corresponding to node n by the attribute which has the smallest information
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Figure 4.12: Distributions of attributes in Paris Dataset

gain. It also adds child decision nodes and each child node correspond to one subset of the

the data. The label of the child decision node is set equal to the majority of the members

in the subset of data. The algorithm then recursively continues for each child node and

finally stops when all the attributes are used or when a certain condition in satisfied.

• REPTree REPTree is the implementation of another decision tree algorithm C4.5(an improve-

ment of ID3). C4.5 can handle both continuous and discrete attributes, missing attribute

values, differing cost of attributes and also performs pruning. The pruning methods are

used to keep the decision tree smaller so that it prevents overfitting and generalize better.

In REPTree implementation reduced error pruning techniques is used. This pruning tech-

nique starts at the leaf and replaces each node and the subtree at that node with its most

popular class. If prediction accuracy is not much affected then this change is kept.

• Random Forest Random Forest is an algorithm that trains multiple decision trees on random

portions of the dataset and then merges them to create a better classifier. To generate a

random portion of dataset random forest selects a random subspace of features rather than

selecting a random subset of samples.
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Naive Bayes

Naive Bayesian classifier is a generative classifier model. In this method it is assumed that

the features are independent to each other and bayesian probabilistic model is used to calculate

probability estimates. Given a sample x = {x1, x2, ..., xn} where xi is the ith feature of x

and a set of classes Ci where iε[1, 2, ..., n] naive bayesian classifier tries to generate probability

estimates of P (Ci|x) and then classifies x in the class for which P (Ci|x) is maximum.

K-Nearest Neighbour(KNN)

k-nearest neighbour algorithm is an instance based or lazy learning algorithm. That means it

defers any computation untill the actual classification task is required. When a sample is given,

KNN tries to find out its nearest neighbours based on some distance metrics. Among the distance

metrics, most common distance metric is Euclidean distance metric. According to Euclidean

distance metric, distance between two samples x1 and x2 is the square root of the summation of

squared differences of each feature of x1 and x2.

Artificial Neural Network(ANN)

Artificial Neural Network is a computing system inspired by the biological neural networks.

In this method, there are usually a number of hidden layers between input layer and output layer.

Each layer has multiple nodes and each node of a layer is usually connected with nodes of next

layer. Each connection has a weight associated with it. The output of each node is usually the

value obtained by passing the linear combination of outputs of the nodes of previous layer and

their associated weights, through an activation function. In order to perform classification tasks

with neural networks, the weights are trained by feeding the input values through the network

and propagating the gradient of loss function backwards to update the weights.

In order to assess the performances of our classifiers we used accuracy, precision and recall

metrics. Since, ours is a multi-class classification problem we need to compute the average accu-

racy, precision and recall of all the classes. According to [50], there are two methods to compute

average of performance metrics in multi-class classification problems. They are macro-averaging
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and micro-averaging. In this work, we have applied macro-averaging method to evaluate clas-

sifier performances. Table 4.4 and Table 4.5 demonstrate the accuracy, precision and recall of

each classifier trained on Rome and Paris dataset respectively.

Table 4.4: Accuracy, Precision and Recall of the classifiers trained on Rome Dataset

Classifier Accuracy Precision Recall

J48 64.39 NaN 17.67

K-Nearest Neighbour 51.59 NaN 18.15

Naive Bayes 14.57 NaN 19.82

Random Tree 49.00 NaN 18.42

REPTree 66.51 NaN 16.78

Neural Network(5*5*5*5, Learning Rate: 0.1, Iterations: 1000) 20.51 NaN 16.62

Neural Network(5*5*5, Learning Rate: 0.1, Iterations: 1000) 67.33 NaN 16.67

Neural Network(5*5*5, Learning Rate: 0.1, Iterations: 5000) 66.98 NaN 16.77

Neural Network(5*5*5, Learning Rate: 0.2, Iterations: 1000) 67.33 NaN 16.67

Neural Network(5*5*5, Learning Rate: 0.3, Iterations: 1000) 67.33 NaN 16.67

Neural Network(5*5*5, Learning Rate: 0.5, Iterations: 1000) 66.98 NaN 16.58

Table 4.4 shows that among the classifiers J48, REPTree and neural networks demonstrates

promising performance. However, we can notice that the precision metric of each classifier

is not defined. In macro-averaging scheme, when a classifier doesn’t predict any sample as a

member of a specific class then precision for that class is undefined. As a result the macro-

average of the precision of that classifier becomes undefined. Analyzing the confusion matrices

of our classifiers it is observed that the classifiers are biased towards majority classes. This is

due to the fact that the ratio between the number of instances in majority class and the number
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Table 4.5: Accuracy, Precision and Recall of the classifiers trained on Paris Dataset

Classifier Accuracy Precision Recall

J48 36.09 NaN 18.65

K-Nearest Neighbour 37.00 20.28 20.61

Naive Bayes 10.86 13.96 10.87

Random Tree 36.09 19.87 20.04

REPTree 41.44 NaN 16.04

Neural Network(5*5*5*5, Learning Rate: 0.1, Iterations: 1000) 42.97 NaN 14.29

Neural Network(5*5*5, Learning Rate: 0.1, Iterations: 1000) 42.97 NaN 14.29

Neural Network(5*5*5, Learning Rate: 0.1, Iterations: 5000) 41.28 NaN 14.58

Neural Network(5*5*5, Learning Rate: 0.2, Iterations: 1000) 40.21 NaN 13.72

Neural Network(5*5*5, Learning Rate: 0.3, Iterations: 1000) 39.76 NaN 13.65

Neural Network(5*5*5, Learning Rate: 0.5, Iterations: 1000) 37.61 NaN 13.47

of instances in minority class is too high in the dataset. Therefore, the trained classifiers tend to

be biased towards majority classes. Similar results can be observed from Table 4.5. Although

the classifiers do not perform well (about 40% accuracy on average), k-NN and Random Tree

outperforms other with respect to precision.

4.5 Oversampling

After analyzing the distribution of locations in each aesthetic class Ci, it was discovered that

the distribution of locations among several aesthetic class is quite skewed. To be more precise,

most locations have a moderate aesthetic rating. Very few locations received maximum aesthetic

rating from the users. Similarly, only a few locations were reported to have very low aesthetic

rating. Therefore, training a classifier on such a skewed dataset resulted in an undesired bias in

the classifiers. In order to handle imbalanced dataset, we can apply either oversampling or un-

dersampling. Undersampling is mostly performed in cases where the number of instances in the
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training set is too high. On the other hand, oversampling is the technique of reducing unwanted

bias from a dataset by generating new samples. Oversampling techniques are usually used when

there are few instances in the training set. Oversampling and undersampling techniques are

mainly used when the dataset under consideration is imbalanced and the classifiers are suffering

from overfitting by learning the skewed distribution. In this problem, undersampling is not ap-

propriate since in that case only a few instances will be left in the training set. Therefore, we have

applied state-of-the-art oversampling technique, SMOTE [51], to generate synthetic instances of

the minority classes. To illustrate how SMOTE works, let us consider a sample s in a dataset. To

oversample, we first find out the k-nearest neighbors of s in the feature space and take the vector

v between one of the k neighbors and s. We then multiply v by a random real number between

0 to 1 and add the resultant vector to s to get the new synthetic instance. Using SMOTE we

have generated synthetic instances for the aesthetic classes that have very few instances. Thus

we prepared a somewhat balanced dataset. Figures 4.13 and 4.14, report the number of instances

of each class, after performing oversampling on each dataset.
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Figure 4.13: Number of locations in each class of oversampled Rome dataset
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Figure 4.14: Number of locations in each class of oversampled Paris dataset

Using these balanced datasets, we have trained decision tree variants, KNN, naive bayesian

classifier and several variants of ANN. Table 4.6 and Table 4.7 contain the accuracies, preci-

sions and recalls of each classifier trained on oversampled Rome and Paris dataset. From the

classifier performances obtained on Rome dataset, we can observe that k-NN and Random Tree

achieves highest accuracies. On the other hand, neural network with less hidden layers performs

better than deeper neural networks on Rome dataset. Similarly, Table 4.9 reports that k-NN and

Random Tree performs better than other classifiers in Paris dataset. At the same time simpler

architectures perform better than larger architectures in Paris dataset too.
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Table 4.6: Accuracy, Precision and Recall of the classifiers trained on oversampled Rome Dataset

Classifier Accuracy Precision Recall

J48 75.16 74.44 75.19

K-Nearest Neighbour 74.49 73.47 74.90

Naive Bayes 46.28 47.22 48.34

Random Tree 76.01 75.57 76.28

REPTree 71.71 70.12 71.83

Neural Network(5*5*5*5, Learning Rate: 0.1, Iterations: 1000) 20.51 NaN 16.62

Neural Network(5*5*5, Learning Rate: 0.1, Iterations: 1000) 53.39 NaN 53.47

Neural Network(5*5*5, Learning Rate: 0.1, Iterations: 5000) 49.28 50.87 49.93

Neural Network(5*5*5, Learning Rate: 0.2, Iterations: 1000) 53.13 52.76 53.85

Neural Network(5*5*5, Learning Rate: 0.3, Iterations: 1000) 54.20 52.87 54.59

Neural Network(5*5*5, Learning Rate: 0.5, Iterations: 1000) 47.72 50.14 47.38

4.6 Ensemble Learning

Ensemble learning is a method which uses several machine learning algorithms or multiple

instances of the same algorithm to achieve a better performance than any one of them could

achieve alone. In other words, ensemble method tries to train multiple hypothesis and combines

them to get a better hypothesis. In this work, two state-of-the-art ensemble techniques are used.

They are bagging and boosting. Bagging is an ensemble learning method that learns classifiers on

various different distributions of the training set and uses all the classifiers for classification. On

the other hand, in each iteration of boosting technique, it tries to learn classifiers on the samples

that were wrongly classified using previous classifiers and assign a corresponding weight to each

classifier.

In order to boost the accuracy of classifiers, we have applied Bagging and Adaboost technique

on the decision tree classifiers, naive bayesian classifier and k-nearest neighbor classifiers. Both

bagging and boosting help to reduce error rate of an individual classifier. In Table 4.8 and Table
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Table 4.7: Accuracy, Precision and Recall of the classifiers trained on oversampled Paris Dataset

Classifier Accuracy Precision Recall

J48 62.20 66.57 67.55

K-Nearest Neighbour 66.65 69.91 72.02

Naive Bayes 39.17 42.39 45.87

Random Tree 65.14 70.30 69.91

REPTree 58.20 61.91 64.71

Neural Network(5*5*5*5, Learning Rate: 0.1, Iterations: 1000) 17.21 NaN 17.19

Neural Network(5*5*5, Learning Rate: 0.1, Iterations: 1000) 42.87 42.47 44.98

Neural Network(5*5*5, Learning Rate: 0.1, Iterations: 5000) 45.93 48.71 50.48

Neural Network(5*5*5, Learning Rate: 0.2, Iterations: 1000) 43.18 47.28 49.96

Neural Network(5*5*5, Learning Rate: 0.3, Iterations: 1000) 44.12 43.68 49.36

Neural Network(5*5*5, Learning Rate: 0.5, Iterations: 1000) 39.17 35.93 43.72

4.9 the performance of each of the classifiers are reported. From the reported accuracies, we can

notice both the ensemble learning method results in improved performance. However, in Rome

dataset boosting with J48 performs better than other classifiers whereas in Paris dataset Random

Tree outperforms other classifiers when it is coupled with boosting. As a result, the maximum

accuracy reported on Rome dataset is 80% and the best performance of classifier reported on

Paris dataset is 71%.

4.7 Summary

In this chapter, we have discussed about the problem of predicting aesthetic rating of a loca-

tion from the social metadata of Flickr photos. In this problem, we used aesthetic rating ground



CHAPTER 4. AESTHETIC RATING PREDICTION 37

Table 4.8: Ensembled Accuracy, Precision and Recall of the classifiers trained on oversampled
Rome Dataset

Classifier Accuracy Precision Recall

Bagging with J48 78.97 77.82 78.87

Bagging with K-Nearest Neighbour 74.97 73.76 75.40

Bagging with Naive Bayes 46.39 47.22 48.45

Bagging with Random Tree 80.23 79.39 80.42

Bagging with REPTree 77.97 76.31 77.65

Boosting with J48 80.90 80.69 80.93

Boosting with K-Nearest Neighbour 65.95 66.12 65.95

Boosting with Naive Bayes 46.28 46.93 48.32

Boosting with Random Tree 80.12 79.58 80.39

Boosting with REPTree 78.23 77.56 78.12

truths from TripAdvisor. We gathered two datasets that contain aesthetic rating ground truth and

Flickr social metadata of 850 locations in Rome and 650 locations in Paris respectively. Then, we

have designed 11 empirical features and generated them from the social metadata of the photos

of each location. We trained several decision tree variants, k-NN, Naive Bayesian classifiers and

a number of neural networks on these datasets. Since preliminary classifiers were suffering due

to dataset imbalance, we oversampled our datasets with state-of-the-art oversampling method

namely, SMOTE. Finally, to further improve classifier performances we have applied bagging

and boosting ensemble learning methods. Our classifiers reported maximum 80% accuracy on

Rome dataset and 71% accuracy on Paris dataset.
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Table 4.9: Ensembled Accuracy, Precision and Recall of the classifiers trained on oversampled
Paris Dataset

Classifier Accuracy Precision Recall

Bagging with J48 68.59 71.54 73.99

Bagging with K-Nearest Neighbour 66.21 69.43 71.91

Bagging with Naive Bayes 39.55 43.27 46.39

Bagging with Random Tree 71.09 73.48 75.50

Bagging with REPTree 65.08 67.96 71.37

Boosting with J48 70.65 73.70 75.17

Boosting with K-Nearest Neighbour 66.65 69.91 72.02

Boosting with Naive Bayes 39.17 42.39 45.87

Boosting with Random Tree 64.89 68.71 69.47

Boosting with REPTree 64.27 68.79 69.64



Chapter 5

Weather Condition Detection

Our second problem is to detect the weather condition of an image with the help of wild Flickr

tags. In order to develop our solution, we have accumulated an image dataset that contains about

70k images which are tagged with one of four wild weather tags, namely, sunny, rainy, cloudy

and snowy. We trained a small architecture as our initial solution. Later on, we transfer trained

large scale architectures such as VGG16, InceptionV2, and Inception-ResnetV2. In this section,

we first provide a short description of the available dataset related to our work in Section 5.1.

Then we discuss about the process through which we have gathered our dataset in Section 5.2.

In Section 5.4, we have provided short introduction about the classifiers we have used in this

work and the performance of our classifiers. Finally, in Section 5.5 we have discussed about

transfer learning and the architectures under consideration. Under the same section we have also

presented the performance of our transfer trained classifiers.

5.1 Available Datasets

In order to perform weather detection, we need to train appropriate classifiers which classifies

images into different weather. Therefore, we need an image dataset is annotated with weather

condition ground truths. Preliminary studies on weather detection from image analysis used to

consider images taken from a static viewpoint [10,11,52]. Therefore several dataset are available

where images captured from one or more fixed viewpoints are annotated with weather condition

39
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ground truths such as WILD [53] and AMOS-C. Weather and Illumination Database (WILD) is

a dataset of images of urban landscapes which were collected to illustrate the variations of scene

appearance due to weather, illumination and change of seasons. On other hand, AMOS is an

archive of outdoor images captured by webcams of fixed viewpoints. The authors of [54] have

annotated these images with the help of Weather Underground [55], Weather Central [56] and

the National Climatic Data Center.

The authors of [12] have prepared a dataset of 10k images captured in the wild. Among

these images 5k images are labeled as sunny and the other half of the images are labeled as

cloudy. These images were collected from image datasets such as SUN dataset [42], LabelMe

dataset [43] and Flickr. This dataset was annotated by the help of helpers each of whom labeled

same amount of images using their common sense. These helpers also performed removal of

almost similar images. In short, with the help of helpers the authors of [12] were able to prepare

a dataset of 10k images with unambiguous weather condition annotation. This dataset was later

used in further studies such as [15, 41]. This dataset was enhanced with auxiliary weather cue

annotation by the authors of [41]. That means they employed several helpers to annotate weather

cues such as shadows, clouds etc, with bounding boxes.

In contrast to binary class weather annotated image datasets, the authors of [13, 57], haved

accumulated a dataset named Multi class Weather Image (MWI) which contains 20k outdoor

images with dynamic viewpoint and are classified into four weather conditions.

Finally, in [44] the authors have prepared a large-scale image dataset captured in the wild

and each image is associated with rich weather annotation. The images in this dataset were

collected from Flickr. With the help of Flickr API, the geo-location of each image was gathered.

Using the weather history data from Weather Undergroud [55], each image was labeled as one

of five weather conditions. These weather conditions are clear, cloudy, rainy, foggy and snowy.

However, they focused mainly on data filtering based on criteria such as sky region ratio and so

on, to develop a somewhat less ambiguous image dataset with weather condition ground truths.

In this we problem, we need to use an image dataset that contains images with dynamic

viewpoints and wild weather tags as ground truth. Although recent dataset such as the one

published by [12, 44] contains a collection of outdoor images from dynamic viewpoints they do
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not contain wild weather tags. Therefore, we have decide to accumulate a dataset of our own to

satisfy our requirement.

5.2 Dataset Generation

In order to generate the desired dataset, we took the help of Flickr API. More specifically,

we used flickr.photos.search method in Flickr API. Using this method we can fetch all the photo

ids that satisfy a certain criteria. In flickr.photos.search method we can specify uploader’s user

id, tags, latitude, longitude, minimum and maximum upload date and several other parameters.

The search method can respond in JSON, XML and some other formats. In our case, we fetched

all the photo ids of Flickr images who have a wild weather tag. That means we performed

the search method once for each weather condition, namely, sunny, cloudy, rainy and snowy,

by specifying the tags parameter of search method. We received responses in JSON format.

The JSON responses, received from Flickr API, are paginated and we parsed all of the pages.

Therefore a single query should be enough to retrieve all the photo ids who have the same wild

weather tags. However, the Flickr API is designed in such a way that one single query doesn’t

return information of more than 4000 distinct photos. To solve this issue, we split the query

into time segments by specifying maximum upload date and minimum upload date. We divided

the entire period between 01 Jan 2010 to 01 Jan 2017 into weeks and retrieved all the photo ids

which were taken in that time period using Flickr API.

After parsing the JSON response, we recorded photo ID, farm ID, owner ID, server ID and

secret key of each photo. These are the information required to generate an URL of the image

and later download it. According to [58], the format of the URL of the downloadable format of

a Flickr photo is as follows.

https://farm{farm-id}.staticflickr.com/{server-id}/{id} {secret} [mstzb].jpg

The final segment represents the size of the photo to be fetched. There are multiple available

options. In our work, we used the option z in order to retrieve medium sized (maximum 640

pixel on the longest side) images. Then, each image were resized into (256 ∗ 256) size.
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Finally, we put aside a portion of the images for testing purpose. The dataset was split into

approximately 80:20 ratio of training and testing images. For each image a random number

between 0 to 1 was generated and if this number was greater than .80 then it was moved to the

test set.

It is to be mentioned here that there is a parameter of search method which is named geo-

context. According to Flickr API documentation, geo context is a numeric value which represents

the photo’s geotagginess beyond latitude and longitude. For example, if we wish to search for

photos that were taken ”indoors” or ”outdoors” we can set geo-context 1 and 2 respectively.

Since, only outdoor images are appropriate in our problem, the most logical thing to do is to set

geo-context as 2. However, setting geo-context to 2 results in empty responses for most of the

queries. Therefore, we flitered out the ”indoor” images using manual observation.

5.3 Background

Convolution neural networks(ConvNet) have become very popular due to its extraordinary

performance in image recognition, image classification and computer vision. Architecture of a

convolution neural network is a major concern when training a ConvNet. Therefore, extensive

studies have been performed on ConvNet architectures and several state-of-the-art architectures

have been published. In this section, we discuss about popular convolution neural network ar-

chitectures in Section 5.3.1 and a special style of training neural networks which is known as

Transfer Learning in Section 5.3.2.

5.3.1 Convolution Neural Network(ConvNet)

Convolution neural network(ConvNet) is a category of neural network that is designed and

usually used in the task of image recognition. There are four major operations in convolution

neural networks and each layer of nodes in a convolution neural network corresponds to one of

these operations. The types of layers in a ConvNet are usually confined to convolution layer, non-

linear layer, pooling layer and finally fully connected layer or classification layer. In convolution

layer, several filters or feature detectors are slided over the pixels of an image to generate Feature
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Maps. The purpose of non-linear layer is to introduce non-linearity in the ConvNet since it is

seen that most real-world data have at least some degree of non-linearity. The spatial pooling

layers are used to reduce dimensions while at the same time retain most popular information.

Finally, the classification layers are used to predict the class labels from the trained feature maps.

5.3.2 Transfer Learning and Fine Tuning

Training a convolution network is a computation and resource extensive operation. Train-

ing a deep convolution neural network not only requires large datasets but also requires high

performance machines(GPUs) and a lot of time. Therefore, it is often not feasible with limited

resources. That’s why researchers often choose to use pre-trained models and adapt those mod-

els with their problem. For this reason, a number of pre-trained networks have been published

in recent years. This method of adapting a model trained for one task to perform another task is

called Transfer Learning.

Transfer learning can be performed in the following [59] ways. First, a pre-trained model

without the final fully-connected network can be used as a feature extractor. Then these feature

can be used to train another fully-connected network tailor made for the task in hand. The

second strategy is to not only retrain a new fully-connected model but also allow the training of

the weights of the model.

Popular Pre-trained Architectures

• VGG16 VGG16 [60] is a network designed by Simonyan et al where they demonstrated that

increasing network depth and keeping the filters small can achieve higher accuracy and

generalization than smaller networks. Their network is an improvement of AlexNet [2].

In this architecture, there are 5 convolution layers each followed by a pooling layer. Each

of the convolution layers are combinations of multiple convolution operations. After the

convolution layers their are 3 fully-connected layers and a softmax layer for classification.

Figure 5.1 shows the VGG16 architecture. This architecture was trained on Imagenet [19]

dataset.
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Figure 5.1: VGG-16 Architecture

• Inception Inception model was introduced in GoogleNet [1]. Inception model is a smaller

model inside a bigger architecture. Figure 5.2 shows the inception model introduced in [1].

The intuition behind such a model is that it is often unclear whether a 3 × 3 convolution

is better than a 5 × 5 convolution layer. Rather than choosing one of them, the authors

have decided to perform the convolutions in parallel and concatenate the resulting feature

maps before passing them to the next layer. Recently, google have published Inveption V3.

Figure 5.3 shows the entire architecture of InceptionV3 where several inception module

are stacked one after another along with some other layers.

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter 
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

Figure 5.2: Inception module from [1]

• Inception-Resnet Residual networks were introduced by [61] to tackle the depth problem
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Figure 5.3: InceptionV3 architecture in Tensorflow

of neural networks. They observed that increasing layers of neural network results in

higher error rate for higher number of layers. This is caused due to vanishing gradient.

As layers go deep the gradients become smaller and smaller and performance drops. To

tackle this problem they have introduced residual connections which means adding the

output of previous layer to the output of current layer. In [62], the authors have modified

the Inception model by introducing residual connections and improved the accuracy of

InceptionV3. The improved model is known as Inception-ResnetV2.

5.4 Training Classifiers

Having collected the dataset, we can train a classifier to predict the weather conditions from

images with dynamic viewpoints. If we consider applying traditional machine learning methods

such as decision tree, SVM etc, use of raw images is not likely to work. In that case numeric

features such as SWIFT, HOG, color histogram, GIST, brightness etc can be generated. In [12,

13, 57] the authors have also generated multiple weather dependent features. However, in this

work we focus on training a classifier that can learn these representations itself from raw images.

Therefore, in our solution we have trained convolution neural network (CNN) classifiers and

analyzed their performance on the dataset.

Several convolution neural network architectures have demonstrated outstanding results in
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recent computer vision works. Among them one of the simplest architecture is the one proposed

by Krizhevsky et al. [2] which is also known as Alexnet. The original Alexnet was designed

to address the Imagenet object detection challenge. It is composed of 8 layers and the output

layer has 1000 nodes. The first 5 layers of Alexnet are convolution layers (CONV) with ReLu

activation functions. There are two max pooling layers between the 1st and 2nd layer and the

2nd and 3rd layer. The final three layers are fully connected layers (FC). Also there are dropout

layers interleaved between the fully connected layers. Figure 5.4 shows a digram of the origin

architecture.

Figure 5.4: Alexnet Architecture as presented in [2]

Our first network architecture is inspired by Alexnet. However, in this problem their is only

4 weather condition. So, we changed the final layer with a layer of 4 nodes. We have also

removed the dropout layers in our network. We optimized the CNN parameters by minimizing

the categorical cross-entropy loss function.

The training of CNN-models were performed using back-propagation algorithm with batch

stochastic gradient descent such that the categorical cross-entropy is minimized. In back-propagation,

the neural network parameters are updated by propagating the gradient of loss, multiplied by

learning rate, backwards. The training process puts aside a small validation set to report vali-

dation accuracies. Each step of the training phase, computes the loss for the entire batch used

during that step, updates model parameters and reports the validation set accuracy of the updated

model.
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5.4.1 Hyper-parameter Tuning

Hyper-parameters are those parameters in a machine learning process which are set before

the learning process starts. The values of all the other parameters are learned during the training

phase. Therefore, selection of proper hyper-parameters is an important factor of classifier per-

formance. In order to find out an appropriate combination of the hyper-parameter values several

experiments are carried out by varying hyper-parameters.

In this work we considered batch-size, learning rate and optimizers as our hyper-parameters.

For each hyper-parameter, we trained several models by varying that hyper-parameter while at

the same time keeping all the other hyper-parameters at their default values. Table 5.1 shows the

value of hyper-parameters with their default values highlighted.

Table 5.1: AlexNet hyper-parameters and their values

hyper-parameter Values

Batch Size 10, 20, 50

Optimizer ADAM, SGD, ADAGRAD

Learning Rate 0.01, 0.001, 0.0001

Number of Epochs 50, 100, 200

Figures 5.5, 5.6, 5.7 and 5.8 show the learning curves resulted after varying batch size, learn-

ing rate and optimizer respectively. However, it is observed that Alexnet fails to capture the

representation of the images and the learning curves demonstrates erratic behavior. Even after

200 epochs the training accuracies tend to vary frequently and validation accuracy is shown to

be 27.5% which resulted from classifying all the images into one class.

5.5 Transfer Learning

Our experiments on Alexnet gave us the insight that simpler neural network architecture may

not be able to appropriately learn the weather cues from images. Therefore, to achieve better
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Figure 5.5: Learning curves for AlexNet, learning rate = 0.01, epochs = 50, batch size = 20 and
different optimizers.
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Figure 5.6: Learning curves for AlexNet with ADAM, epochs = 50, batch size = 20 and different
learning rates.
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Figure 5.7: Learning curves for AlexNet with ADAM, learning rate = 0.01, epochs = 50 and
different batch sizes.
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Figure 5.8: Learning curves for AlexNet with ADAM, learning rate = 0.01, batch size = 20 and
different number of epochs
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performance we need to train complex neural networks. However, as mentioned in Section 5.3.2

training large complex networks is a time and resource exhaustive process.

As a result, we have performed transfer learning on popular networks namely, VGG, Incep-

tion and Inseption-Resnet architectures. The trained parameters of these networks are published

so that others can make use of them. Here, we want to keep parameters of lower layers fixed

because lower layers often correspond to basic shapes. At the same time, we need to adapt the

classifier output to our problem. So we dropped the output layer and placed a fully connected

layer(FC1). Then, the outputs of FC1 were fed to a fully connected layer(FCout) which is the

output layer of our classifier.

Now, we can perform transfer learning by feeding each image in the network and back-

propagate the gradient of loss only up to FC1 to keep the previous layers unmodified. Since

these network architectures are quite large in size feeding an image to the network to generate

inputs of FC1 takes significant amount of time. At the same time it can be observed that since

all the layers previous to FC1 are fixed for a single image, the inputs to FC1 will always be the

same for a specific image.

In order to make the training process faster, we first compute all inputs to FC1 for each image

of both the training and the testing set only once. These are called bottlenecks. Then the training

set bottlenecks were used to train FC1 and FCout.

We have carried out experiments by varying several hyper-parameters. In our experiments

we have varied four hyper-parameters. They are batch size, learning rate, optimizers and number

of epochs. Table 5.2 shows the hyper-parameters and their corresponding values that were used

to conduct our experiments. The default values of each hyper-parameters are highlighted.
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Figure 5.9: Learning curves for VGG, learning rate = 0.01, epochs = 500, batch size = 20 and
different optimizers.
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Figure 5.10: Learning curves for Inception-ResnetV2, learning rate = 0.01, epochs = 500, batch
size = 20 and different optimizers.
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Figure 5.11: Learning curves for InceptionV3, learning rate = 0.01, epochs = 500, batch size =
20 and different optimizers.
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Table 5.2: Hyper-parameters used in transfer learning and their values

hyper-parameter Values

Batch Size 20, 50, 100, 200

Optimizer ADAM, SGD, ADAGRAD

Learning Rate 0.01, 0.001, 0.0001, 0.00001

Number of Epochs 500, 1000

Table 5.3: Classifier Accuracy for various Optimizer of the classifier VGG

Optimizer
Training
Accuracy

Validation
Accuracy

Maximum
Training
Accuracy

Maximum
Validation
Accuracy

ADAM 73.38 59.90 75.12 61.24

AdaGrad 65.03 60.41 65.38 60.66

SGD 41.28 38.28 42.84 38.84

Figures 5.9, 5.10 and 5.11 show the learning curves for the classifier where we transfer train

VGG, Inception-Resnet and Inception by varying optimizers respectively. It can be seen from

the learning curves that use of AdaGrad optimizer resulted in smooth learning curves. On the

other hand, SGD showed erratic behavior during training. However, all of them achieves about

60% accuracy on detecting weather conditions.

Figures 5.12, 5.13 and 5.14 show the learning curves for the classifier where we transfer

trained VGG, Inception-Resnet and Inception upto 1000 epochs. It is observed that even after

1000 epochs of training the classifiers doesn’t overfit neither their accuracies increase. Most of

the classifiers reach saturation state after around 100 epochs.

Figures 5.15, 5.16 and 5.17 show the learning curves for the classifier where we transfer train

VGG, Inception-Resnet and Inception with different batch sizes. However, from the learning

curves we can comment that varying the batch size doesn’t have much impact on the learning

process since all the values of batch sizes results in similar learning curves. Finally, Figures

5.18, 5.19 and 5.20 show the learning curves for the classifier where we transfer trained VGG,
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Figure 5.12: Learning curves for VGG with ADAM, learning rate = 0.01, epochs = 2000, batch
size = 20
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Figure 5.13: Learning curves for Inception-ResnetV2 with ADAM, learning rate = 0.01, epochs
= 1000, batch size = 20
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Table 5.4: Classifier Accuracy for various Optimizer of the classifier Inception-ResnetV2

Optimizer
Training
Accuracy

Validation
Accuracy

Maximum
Training
Accuracy

Maximum
Validation
Accuracy

ADAM 72.56 60.07 73.75 60.51

AdaGrad 76.19 61.81 78.00 61.81

SGD 58.69 55.34 60.63 55.66

Table 5.5: Classifier Accuracy for various Optimizer of the classifier InceptionV3

Optimizer
Training
Accuracy

Validation
Accuracy

Maximum
Training
Accuracy

Maximum
Validation
Accuracy

ADAM 72.00 59.69 72.84 60.77

AdaGrad 79.13 62.25 80.28 62.58

SGD 59.28 54.43 60.28 54.75

Inception-Resnet and Inception with different learning rates.

Tables 5.3, 5.5, 5.4, 5.6, 5.8, 5.7, 5.9, 5.11 and 5.10 provide a summary of the learning process

by reporting the final training accuracy of the classifier, final validation accuracy, maximum

training accuracy at any point in the training phase and maximum validation accuracy that the

classifier achieved. Almost all of the classifiers achieves higher training accuracy (as much as

75%) however they perform at about 60% on the validation set. In order to improve performance,

we can try to train large architecture such as VGG16 from scratch. On the other hand, an analysis

of accuracy of wild Flickr tags can also be done.
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Figure 5.14: Learning curves for InceptionV3 with ADAM, learning rate = 0.01, epochs = 1000,
batch size = 20

Table 5.6: Classifier Accuracy for various batch size of the classifier VGG

Batch size
Training
Accuracy

Validation
Accuracy

Maximum
Training
Accuracy

Maximum
Validation
Accuracy

100 72.16 59.34 74.03 60.83

200 72.47 58.75 73.78 60.78

20 73.38 59.90 75.12 61.24

50 73.06 59.86 74.56 61.18

5.6 Summary

In this chapter. we have discussed about the problem of detecting weather conditions of Flickr

images using their wild weather tags. In our problem, we considered only four wild weather

tags. We gathered about 70k images using Flickr API. Then, we trained AlexNet architecture
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Figure 5.15: Learning curves for VGG with ADAM, learning rate = 0.01, epochs = 500 and
different batch sizes.
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Figure 5.16: Learning curves for Inception-ResnetV2 with ADAM, learning rate = 0.01, epochs
= 500 and different batch sizes.
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Figure 5.17: Learning curves for InceptionV3 with ADAM, learning rate = 0.01, epochs = 500
and different batch sizes.
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Figure 5.18: Learning curves for VGG with ADAM, epochs = 500, batch size = 20 and different
learning rates.
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Figure 5.19: Learning curves for Inception-ResnetV2 with ADAM, epochs = 500, batch size =
20 and different learning rates.
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Figure 5.20: Learning curves for InceptionV3 with ADAM, epochs = 500, batch size = 20 and
different learning rates.
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Table 5.7: Classifier Accuracy for various batch size of the classifier Inception-ResnetV2

Batch size
Training
Accuracy

Validation
Accuracy

Maximum
Training
Accuracy

Maximum
Validation
Accuracy

100 70.84 58.55 73.13 60.77

200 72.06 59.70 73.78 60.60

50 72.62 59.94 73.13 60.62

20 72.56 60.07 73.75 60.51

Table 5.8: Classifier Accuracy for various batch size of the classifier InceptionV3

Batch size
Training
Accuracy

Validation
Accuracy

Maximum
Training
Accuracy

Maximum
Validation
Accuracy

100 34.44 27.15 43.03 38.80

200 71.63 60.11 72.81 60.97

50 72.06 59.70 75.53 61.05

20 72.00 59.69 72.84 60.77

by varying several hyper-parameters this image dataset. However, AlexNet couldn’t learn the

representation of weather from the images. Therefore, we performed transfer learning of three

popular neural network architectures, namely, VGG16, InceptionV3, Inception-ResnetV2. We

have also performed extensive experiments by varying hyper-parameters of transfer learning

these architectures. Our classifiers reported about 60% accuracy on our dataset.
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Table 5.9: Classifier Accuracy for various learning rate of the classifier VGG

Learning rate
Training
Accuracy

Validation
Accuracy

Maximum
Training
Accuracy

Maximum
Validation
Accuracy

0.00001 72.28 58.69 73.84 61.02

0.0001 72.84 59.32 73.00 60.76

0.001 70.62 58.55 73.19 60.77

0.01 73.38 59.90 75.12 61.24

Table 5.10: Classifier Accuracy for various learning rate of the classifier Inception-ResnetV2

Learning rate
Training
Accuracy

Validation
Accuracy

Maximum
Training
Accuracy

Maximum
Validation
Accuracy

0.00001 71.13 59.33 73.84 60.67

0.0001 71.84 59.02 72.81 60.66

0.001 71.66 59.73 73.56 60.39

0.01 72.56 60.07 73.75 60.51

Table 5.11: Classifier Accuracy for various learning rate of the classifier InceptionV3

Learning rate
Training
Accuracy

Validation
Accuracy

Maximum
Training
Accuracy

Maximum
Validation
Accuracy

0.00001 72.00 59.60 74.63 61.14

0.0001 72.56 59.57 74.47 61.06

0.001 71.47 58.40 73.78 60.44

0.01 72.00 59.69 72.84 60.77



Chapter 6

Conclusion

In this thesis, we have addressed two Flickr data mining problems. They are predicting the

aesthetic rating of a location from Flickr metadata and detecting weather condition of a Flickr

image using their wild tags. Although estimating scenic beauty from images have been studied

for quite a while, they required setting up specialized cameras at certain locations. At the same

time, quite a lot of data mining studies have been conducted on Flickr photos and their data, none

of them concentrates on either aesthetic rating prediction or Flickr social metadata. At the same

time, weather detection from images have been studied for quite a while. However, none of them

concentrated on wild Flickr tags. From that perspective, this study provides newer insights on

these two problems.

In order to address aesthetic rating prediction problem, we gathered two datasets that contain

the locations of Rome and Paris and their corresponding aesthetic rating ground truths. Later on,

we trained several classifiers and applied ensemble methods. We achieved as much as 81% ac-

curacy on Rome dataset from J48 decision tree classifier when it was ensembled using Boosting

technique. Similarly, the best accuracy of 71% on Paris dataset was reported when Random Tree

classifier was ensembled with bagging method. On the other hand, we gathered a dataset of 70k

images with their wild weather tags and trained several variations of neural networks to obtained

about 60% accuracy in correctly predicting the wild weather tag of a Flickr image.

In future, textual reviews obtained from TripAdvisor and Flickr can be used to perform senti-

ment analysis and incorporate users’ sentiment in predicting location aesthetic rating. Addition-

68
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ally, Flickr raw images might be exploited to capture the aesthetic rating of a location. In case of

weather detection from Flickr image and its wild tags further studies can include training large

neural networks like VGG16 from scratch. Also, weather cue segmentation as performed in [41]

can be applied to help the classifiers improve improve their performances.
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