
 RECOGNITION OF OBJECTS IN REAL TIME VIDEOS USING

MACHINE LEARNING

by

FAYSAL HOSSAIN

POST GRADUATE DIPLOMA IN INFORMATION AND COMMUNICATION

TECHNOLOGY

Institute of Information and Communication Technology (IICT)

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET)

 12 December, 2018

ii

iii

iv

DEDICATION

To

My Parents and Family Members

v

Table of Contents

Title Page

No.

Board of Examiners ii

Candidate’s Declaration iii

Dedication iv

Table of Contents v

List of Figures viii

Abbreviation & Key Terms ix

Acknowledgement x

Abstract xi

 CHAPTER 2: Research Background

2.1 Overview 03

2.2 Machine Learning 03

2.3 Neural Network 04

2.3.1 Historical Background 04

2.3.2 Architecture of Neural Networks 05

2.3.3 Backpropagation 06

2.3.4 Activation Function 06

CHAPTER 1: Introduction

1.1 Overview 01

1.2 Motivation 01

1.3 Objective 02

1.4 Structure of the Project Report 02

vi

2.4 Convolutional Neural Network 07

2.4.1 Basic Structure of CNN 08

2.4.2 Convolutional Layer 08

2.4.3 Pooling and Stride 11

2.4.4 Regularization and Augmentation 12

2.5 Computer Vision 13

2.6 Summary 13

 CHAPTER 5: Practical Implementation

5.1 Overview 25

5.2 Image Gather and Labelling 25

5.3 Generating Tensorflow Record 26

 CHAPTER 3: Object Detection Models

3.1 Overview 14

3.2 Region based Convolutional Network (RCNN) 14

3.3 Fast Region-based Convolutional Network (Fast R-CNN) 16

3.4 Faster Region-based Convolutional Network (Faster R-CNN) 17

3.5 Single Shot MultiBox Detector (SSD) 19

3.6 Summary 20

CHAPTER 4: Prerequisite Dependencies and Environment

Setup

4.1 Overview 21

4.2 Prerequisite of Software and Hardware 21

4.3 Environment Setup 21

4.4 Summary 24

vii

5.4 Create Label Map 27

5.5 Configure Classifier 27

5.6 Training the Classifier 29

5.7 Export the Inference Graph 30

5.8 Main Code 31

5.9 Summary 33

 CHAPTER 6: Evaluation

6.1 Overview 34

6.2 Training 34

6.3 Testing 35

6.4 Summary 36

 CHAPTER 7: Conclusion and Future work

7.1 Conclusion 37

7.2 Future Work 37

References 38

APPENDIX I Main Code 41

APPENDIX II Common Error 45

viii

 List of Figures

Figure No.

Figure 2.1

 Figure Caption

 Human Neuron

Page No.

04

Figure 2.2 Artificial Neuron Concept 04

Figure 2.3 Architecture of multilayer Neural Network 05

Figure 2.4 Activation Function (a) ReLU (b) SoftMax 07

Figure 2.5 Structure of Convolutional Neural Network 08

Figure 2.6 Visualization of input volume and activation map 09

Figure 2.7 Visualization of curve corresponding pixel representation 09

Figure 2.8 Convolutional operation with filter 10

Figure 2.9 Convolutional operation with different pixels and filter 11

Figure 2.10 Max Pooling and Stride 12

Figure 3.1 The Architecture of RCNN 14

Figure 3.2 Region-based Convolution Network (R-CNN) 15

Figure 3.3 The Architecture of Fast R-CNN 16

Figure 3.4 Region-based Fast Convolution Network (F-RCNN) 16

Figure 3.5 An illustration of Faster R-CNN model 17

Figure 3.6 Architecture of Single Shot MultiBox detector 19

Figure 3.7 SSD Framework 19

Figure 4.1 Output of objection API 24

Figure 5.1 Labelling the image 25

Figure 5.2 Starting part of training screen 29

Figure 5.3 Tensor board display on browser 30

Figure 6.1 Total loss of mobileNet SSD model 34

Figure 6.2 Total loss of Faster RCNN inception model v2 35

Figure 6.3 Faster RCNN model 35

Figure 6.4 SSD mobileNet model 36

ix

 List of Abbreviations and Key Terms

CNN Convolutional Neural Network

CPU Central Processing Unit

GPU Graphics Processing Unit

FC Fully Connected

ReLU Rectified Linear Unit

RCNN Regional Convolutional Neural Network

F-RCNN Faster Regional Convolutional Neural Network

SSD Single Shot Detector

OpenCV Open Source Computer Vision

IoU Intersection over Union

NMS Non-maximum Suppression

RoI Region of Interest

x

Acknowledgment

First of all, I would like to convey my gratitude to Almighty Allah for giving me the

opportunity to accomplish this project. I want to thank my supervisor Dr. Md. Rubaiyat

Hossain Mondal, Associate Professor, IICT, BUET for giving me the chance to explore such

an interesting field of research and providing help and advice whenever I needed it. Without

his proper guidance, advice, continual encouragement and active involvement in this process

of this work, it would have not been feasible.

A big thank also goes to all the teachers, officers and staffs of Information and

Communication Technology (IICT) for giving me their kind support and information during

the study.

Finally, I am very grateful to my parents and family members whose continuous support all

over my life has brought me this far in my career.

xi

Abstract

Deep Convolutional Neural Network (CNN) has recently made ground-breaking advances on

several vision tasks such as objects detection and recognition, classification and semantic

segmentation of images. It has achieved state-of-the-art performance on several image

recognition benchmarks. The goal of this project is to develop a system capable of detecting

and recognizing objects in real time video without substantial memory requirements using

Deep CNN. Different deep learning-based methodologies have been proposed to achieve this,

and a thorough study of them is undertaken here. A common paradigm to address the

problem is to train object detector models with image data sets and apply these detectors in an

exhaustive manner across all locations and scales. In this work, saliency-inspired CNN

models are used for recognition which predict a set of class-agnostic bounding boxes along

with a single score for each box, corresponding to its likelihood of containing object of

interest. Python as a programming language, TensorFlow library for computing and OpenCV

for computer vision, are used to complete the project. Region-based object detector model

such as Faster Convolution Neural Network (Faster-RCNN) inception v2 and MobileNet

Single Shot MultiBox Detector (SSD) are used to localize and recognize the objects and

compare the accuracy of those predefined models to get the clear concept of model

performance in using for different aspects and situations.

1

 CHAPTER 1

 Introduction

1.1 Overview

Object detection is the process of automatically locating and identifying objects contained on

images. This is one of the challenging and exciting tasks in computer vision. It is difficult to

detect the same object on different platforms because of variations in orientation, lighting,

background and occlusion. Now, with the advance of deep learning and neural network,

convolutional neural networks are currently the state-of-the-art solution for object detection. It

can tackle such problems without coming up with various heuristics in real-time.

1.2 Motivation

With the rapid advancement in technology and vast amount of image data in the world,

computer vision is playing a key role in revolutionizing the industrial environment. According

to the InfoTrends, still cameras and mobile devices captured more than 1.2 trillion images in

2017 [33]. With this same estimate, in 2020 the figure will increase to 1.4 trillion. Going

beyond consumer devices, there are cameras all over the world that capture images and record

videos for automation purposes for self-driving cars, monitoring pedestrians, and traffic signals

on the road and experiment in medical science. Robots need to understand a visual scene in

order to smartly build devices in sort waste for engineers, doctors and space explorers alike.

To effectively manage all these tasks, it is required to have some idea about its contents.

Automated processing of visual contents is useful for a wide variety of image-related tasks. A

dynamic environment is required to accomplish the all kinds of computer vision and machine

learning processes.

2

1.3 Objective

The goal of this project is to develop a system capable of detecting and recognizing objects in

real time video using machine learning and computer vision techniques. To achieve the goal

the following steps will be carried out:

• To train a Convolutional Neural Network (CNN) based models with custom data sets.

• To capture real time video frames of objects using cameras.

• To classify and identify the object from video stream with the help of models and

trained data set.

• To study and analysed the model performance, accuracy and computation time during

training and testing.

1.4 Structure of Project Report

The project report begins with two theoretical chapters. Since convolutional object detection is

a combination of several fields of computer science, it is required to discuss several theoretical

topics to understand the basic concept behind this project. In the beginning of Chapter 2, a short

introduction to machine learning and neural networks is provided. This chapter ends by

introducing convolutional neural networks and computer vision. In Chapter 3, a discussion is

provided on how convolutional networks can be used for object detection. Moreover, a review

on the relevant literature and methods are also provided in Chapter 3. In Chapter 4, system

configuration and project environment are discussed. All kinds of experimental setup are used

for testing object detection model with required software and hardware. In Chapter 5, the

methodology of the project is discussed step by step. In this chapter, every step required to

complete the whole project is described in detail. In Chapter 6, the model evaluation is

completed by discussing the accuracy and limitations. In Chapter 7, a review of the project and

some concluding remarks is provided and potential improvements for future works are

mentioned. Finally, necessary code and common errors are included in appendix.

3

CHAPTER 2

Research Background

2.1 Overview

In this chapter, the necessary theoretical knowledge for understanding the methods is discussed.

First, a relevant discussion about machine learning, neural networks, and computer vision is

provided in detail. Finally, how these disciplines are combined in convolutional neural

networks is explained.

2.2 Machine Learning

Machine learning is the science of getting computers to act using statistical techniques to give

computer systems the ability to learn with data without being explicitly programmed [2].

Machine learning is closely related to computational statistics, which also focuses on prediction

making through the use of computers. It has strong ties to mathematical optimization, which

delivers methods, theory and application domains to the field. Machine learning algorithms are

often categorized as supervised or unsupervised [32].

Supervised algorithms require machine learning skills to provide both input and desired output,

in addition to furnishing feedback about the accuracy of predictions during algorithm training.

Data scientists determine which variables or features the model should analyze and use to

develop predictions. The algorithm is applied based on training data to learn new data [8][10].

Unsupervised algorithms do not need to be trained with desired outcome data. Instead of this,

an iterative approach called deep learning is used to review data and arrive at conclusions.

Unsupervised learning algorithms are used for more complex processing tasks than supervised

learning systems, including image recognition, speech-to-text and natural language processing.

These algorithms work by combing through millions of examples of training data and

automatically identifying often subtle correlations between many variables. These algorithms

have only become feasible in the age of big data, as it is required massive amounts of training

data [8][32].

4

2.3 Neural Network

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by

the way of biological nervous systems, such as the brain, process information [32]. The key

element of this paradigm is the novel structure of the information processing system. It is

composed of a large number of highly interconnected processing elements (neurones) working

in unison to solve specific problems. An ANN is configured for a specific application, such as

pattern recognition or data classification through a learning process.

Figure 2.1: Human Neuron [36] Figure 2.2: Artificial Neuron Concept [36]

In the human brain, a typical neuron collects signals from others through a host of fine

structures called dendrites as shown in Figure 2.1. The neuron sends out spikes of electrical

activity through a long, thin stand known as an axon, which splits into thousands of branches.

At the end of each branch, a structure called a synapse converts the activity from the axon into

electrical effects that inhibit or excite activity from the axon into electrical effects that inhibit

or excite activity in the connected neurones [36]. When a neuron receives excitatory input that

is sufficiently large compared with its inhibitory input, it sends a spike of electrical activity

down its axon. Learning occurs by changing the effectiveness of the synapses so that the

influence of one neuron changes the another [8]. An artificial neuron concept that is derived

from biological neuron is shown in Figure 2.2.

2.3.1 Historical Background

Neural network simulations appear to be a recent development. However, this field was

established before the advent of computers, and has survived at least one major setback and

5

several eras. Following an initial period of enthusiasm, the field survived a period of frustration

and disrepute. During this period, when funding and professional support was minimal,

important advances were made by relatively few researchers. These pioneers were able to

develop convincing technology which surpassed the limitations identified by Minsky and

Papert [10]. They summed up a general feeling of frustration against neural networks among

researchers, and thus accepted by most without further analysis. Currently, the neural network

field enjoys a resurgence of interest and a corresponding increase in funding. The first artificial

neuron was produced in 1943 by the neurophysiologist Warren McCulloch and the logician

Walter Pits. But, the technology available at that time did not allow them to do too much.

2.3.2 Architecture of Neural Networks

A neural network is a combination of artificial neurons which are typically grouped into layers.

In a fully-connected feed-forward multi-layer network, shown in Figure 2.3, each output of a

layer of neurons is fed as input to each neuron of the next layer. Thus, some layers process the

 Figure 2.3: Architecture of multilayer Neural Network [8].

original input data, while some process data received from other neurons. Each neuron has a

number of weights equal to the number of neurons in the previous layer. A multi-layer network

typically includes an input layer, one or more hidden layers and an output layer. The input layer

usually merely passes data along without modifying it. Most of the computation happens in the

hidden layers. The output layer converts the hidden layer activations to an output, such as a

classification [36]. A multilayer feed-forward network with at least one hidden layer can

function as a universal approximator, i.e., can be constructed to compute almost any function.

6

2.3.3 Backpropagation

In order to train a neural network to perform a task, the weights of each unit should be adjusted

in such a way that the error between the desired output and the actual output is reduced. A

neural network is trained by selecting the weights of all neurons so that the network learns to

approximate target outputs from known inputs. It is difficult to solve the neuron weights of a

multi-layer network analytically. The back-propagation algorithm provides a simple and

effective solution to solving the weights iteratively. The classical version uses gradient descent

as optimization method. Gradient descent can be quite time-consuming and is not guaranteed

to find the global minimum of error, but with proper configuration (known in machine learning

as hyperparameters) works well enough in practice [36][10]. In the first phase of the algorithm,

an input vector is propagated forward through the neural network. Before this, the weights of

the network neurons have been initialized to some values, for example small random values.

The received output of the network is compared to the desired output (which should be known

for the training examples) using a loss function. The gradient of the loss function is then

computed. This gradient is also called the error value [10]. When using mean squared error as

the loss function, the output layer error value is simply the difference between the current and

desired output. The error values are then propagated back through the network to calculate the

error values of the hidden layer neurons. The hidden neuron loss function gradients can be

solved using the chain rule of derivatives. Finally, the neuron weights are updated by

calculating the gradient of the weights and subtracting a proportion of the gradient from the

weights [8]. This ratio is called the learning rate. The learning rate can be fixed or dynamic.

After the weights have been updated, the algorithm continues by executing the phases again

with different input until the weights converge.

2.3.4 Activation Function

Activation function is an extremely important feature of the artificial neural networks. It

basically decides whether a neuron should be activated or not, whether the information that the

neuron is receiving is relevant for the given information or should be ignored. Different types

of activation function are available for neural network such as: Identity, Binary Step, Sigmoid,

Tanh, ReLU, Leaky ReLU, SoftMax [8][10], etc. ReLU stands for Rectified Linear Units, and

is the most used activation function in the world right now. It is used in almost all the

convolutional neural networks or deep learning. As shown in Figure 2.4, ReLU function is

7

nonlinear, which means that it can easily backpropagate the errors and multiples layers of

neurons being activated by the ReLU function [10]. The main advantage of using the ReLU

function over other activation functions is that it does not activate all the neurons at the same

time. That means, if the input is negative, it will convert it to zero and the neuron does not get

activated.

 Figure 2.4: Activation function (a) ReLU (b) SoftMax

The SoftMax function, shown in Figure 2.4(b), is a type of sigmoid function but is handy when

working with classification problems. The SoftMax function would squeeze the outputs for

each class between 0 and 1 and would also divide by the sum of the outputs [2]. This essentially

gives the probability of the input being in a particular class.

2.4 Convolutional Neural Network

Convolutional neural networks (CNN) are named after the mathematical operation convolution.

Convolution is often encountered in the context of image processing, with the intensity of a

given pixel and 2-dimensional weighting function. The weighting function is usually non-zero

only for a few values in the close neighbourhood to the central pixel and therefore the sum has

to compute only over those values instead of the whole image. The weighting function is called

kernel, often defined as a small square matrix whose size is called the kernel size [10].

8

2.4.1 Basic Structure of CNN

Convolutional Neural Networks have a different architecture than regular Neural Networks.

First of all, the layers are organised in 3 dimensions: width, height and depth. Further, the

neurons in one layer do not connect to all the neurons in the next layer but only to a small

region of it. Lastly, the final output will be reduced to a single vector of probability scores,

organized along the depth dimension.

 Figure 2.5: Structure of Convolutional Neural Network

A more detailed overview of what CNNs do would be that it takes the image, pass it through a

series of convolutional, nonlinear, pooling (down sampling), and fully connected layers, and

get an output and the output can be a single class or a probability of classes that best describes

the image. An example of CNN architecture is presented in Figure 2.5.

2.4.2 Convolutional Layer

The first layer in a CNN is always a Convolutional Layer. The input is a 32 x 32 x 3 array of

pixel values as shown as small cell in Figure 2.6. The top left of the pixel cell with red box is

filter that covers a 5 x 5 area and the region that it is covered over is called the receptive field.

This filter is also an array of numbers (the numbers are called weights or parameters). A very

important note is that the depth of this filter has to be the same as the depth of the input; so the

dimensions of this filter is 5 x 5 x 3. For example, the first position of the filter would be the

top left corner in Figure 2.6. As the filter is sliding, or convolving, around the input image, it

is multiplying the values in the filter with the original pixel values of the image with computing

9

element wise multiplications. These multiplications are all summed up mathematically and

there would be 75 multiplications in total and result will be a single number. This number is

just representative of when the filter is at the top left of the image. This process is repeated for

every location on the input volume and every unique location on the input volume produces a

number. After sliding the filter over all the locations, there will be 28 x 28 x 1 array of numbers,

which is called an activation map or feature map.

Figure 2.6: Visualization of 5x5 filter convolving around of input volume and producing

activation map.

Filters used to create feature map can be thought of as feature identifiers that means different

filters can identify different features like straight edges, simple colours, and curves. A curve

detector filter, shown in Figure 2.7, will have a pixel structure in which there will be higher

numerical values along the area that is a shape of a curve.

 Figure 2.7: (a) Visualization of curve and (b) corresponding pixel representation

10

When this filter is at the top left corner of the input volume, it is computing multiplications

between the filter and pixel values at that region. Figure 2.8(a) shows an example of an image

that need to classify, and a curve filter is put at the top left corner indicating green bounding

box to multiply the values in the filter with the original pixel values of the image shown in

Figure 2.8(b) and (c).

Figure 2.8: Convolutional operation with filter

Summation of multiplications=(50x40)+(50x40)+(50x40)+(30x40)+(50x40)+(40x40)+(20x40)

 =11600

Basically, in the input image, if there is a shape that generally resembles the curve that this

filter is representing, then all of the multiplications summed together will result in a large value.

But, when filter is moved to others region, the result is very low. This is because there was not

anything in the image section that responded to the curve detector filter. The output of this

convolutional layer is an activation map. So, in the simple case of a one filter convolution (and

if that filter is a curve detector), the activation map will show the areas that are at mostly likely

to be right aligned curves in the picture. In this example, the top left value of 26 x 26 x 1

activation map is 11600. This high value means that it is likely that there is some sort of curve

in the input volume that caused the filter to activate. The top right value in of activation map

will be 0 because there was not anything in the input volume that caused the filter to activate;

simply said, there was not a right aligned curve in that region of the original image shown in

Figure 2.9.

11

 Figure 2.9: Convolutional operation of different pixels with same filter

Summation of multiplications = (0x40)+(0x40)+(0x40)+(0x40)+(0x40)+(0x40)+(0x40)

 = 0

It is important to notice that this is just for one filter that is going to detect lines that curve

outward and to the right. There may have other filters for lines that curve to the left aligned or

for straight edges. The more the filters, the greater the depth of the activation map, and the

more information can be gathered about the input volume.

2.4.3 Pooling and Stride

To make the network more manageable for classification, it is useful to decrease the activation

map size in the deep end of the network. Generally, the deep layers of the network require less

information about exact spatial locations of features, but require more filter matrixes to

recognize multiple high-level patterns. By reducing the height and width of the data volume,

the depth of the data volume can be increased and the computation time can be kept at a

reasonable level [10][29].

There are two ways of reducing the data volume size. One way is to include a pooling layer

after a convolutional layer. The layer effectively down-samples the activation maps. Pooling

has the added effect of making the resulting network more translation invariant by forcing the

detectors to be less precise. However, pooling can destroy information about spatial

relationships between subparts of patterns. Typical pooling method used in this network is

max-pooling shown in the Figure 2.10. Max-pooling simply outputs the maximum value within

a rectangular neighbourhood of the activation map [29].

12

 Figure 2.10: Max Pooling and Stride

Another way of reducing the data volume size is adjusting the stride parameter of the

convolution operation. The stride parameter controls whether the convolution output is

calculated for a neighbourhood centred on every pixel of the input image (stride 1) or for every

nth pixel (stride n). It has shown that pooling layers can often be discarded without loss in

accuracy by using convolutional layers with larger stride value [10].

2.4.4 Regularization and Augmentation

Regularization refers to methods that are used to reduce overfitting by introducing additional

constraints or information to the machine learning system. A classical way of using

regularization in neural networks is adding a penalty term to the loss function that penalizes

certain types of weights. The parameter sharing feature of convolutional networks is another

example of regularization [10]. There are several regularization techniques that are specific to

deep neural networks. A popular technique called dropout attempts to reduce the co-adaptation

of neurons. This is achieved by randomly dropping out neurons during training, meaning that

a slightly different neural network is used for each training sample or minibatch. This causes

the system not to depend too much on any single neuron or connection and provides an effective

yet computationally inexpensive way of implementing regularization. In convolutional

networks, dropout is typically used in the final fully-connected layers. Overfitting can also be

reduced by increasing the amount of training data. When it is not possible to acquire more

actual samples, data augmentation is used to generate more samples from the existing data [2].

For classification using convolutional networks, this can be achieved by computing

transformations of the input images that do not alter the perceived object classes, yet provide

13

additional challenge to the system. The images can be, for example, flipped, rotated or sub

sampled with different crops and scales. Also, noise can be added to the input images [29].

2.5 Computer Vision

Computer vision is the method of enabling computers to see, identify, and process images in

the same way that human vision does, and to provide appropriate output [32]. It is a challenging

task to enable computers to recognize images of different objects in real life. Computer vision

can be closely linked with artificial intelligence, as the computer must interpret what it sees,

and then, perform appropriate analysis or act accordingly. Computer vision deals with the

extraction of meaningful information from the contents of digital images or video. This is

distinct from mere image processing, which involves manipulating visual information on the

pixel level. Applications of computer vision include image classification, visual detection, 3D

scene reconstruction from 2D images, image retrieval, augmented reality, machine vision and

traffic automation [4][7][24]. Today, machine learning is a necessary component of many

computer vision algorithms that can be described as a combination of image processing and

machine learning. Effective solutions require algorithms that can cope with the vast amount of

information contained in visual images, and critically for many applications, can carry out the

computation in real time [20].

2.5 Summary

Machine learning and deep neural network researches are transforming the modern technology

by many amazing advances in the recent years. The model performances and accuracy can be

increased by following different types of methods such as max pooling, augmentation, dropout

etc. Different types of machine learning and neural network algorithms are used to solve

computer vision problem.

14

 CHAPTER 3

 Object Detection Models

3.1 Overview

This chapter discusses the different object detection models that utilize convolutional neural

networks to detect objects. In particular, this chapter describes the Faster RCNN and SSD

models that combine CNNs with region proposal classification and Single Shot Multi Box

detector respectively.

3.2 Region-based Convolutional Neural Network (R-CNN)

The R-CNN model [21] proposal intuitively begin with the region search and then perform the

classification using the selective search [14] method to extract 2000 regions from the image to

capture object location. These 2000 region proposals are warped into a square and fed into a

convolutional neural network that produces a 4096-dimensional feature vector as output. The

CNN acts as a feature extractor and the output dense layer consists of the features extracted

from the image and the extracted features are fed into an SVM to classify the presence of the

object within that candidate region proposal. Figure 3.1 presents the architecture of R-CNN

where different region of an input image re-extracted, wrapped and convolved to generate

feature vectors

 Figure 3.1: The architecture of R-CNN [21].

15

A linear regressor is used to adapt the shapes of the bounding box for a region proposal and to

reduce the localization errors. In addition to predicting the presence of an object within the

region proposals, the algorithm also predicts four values which are offset values to increase the

precision of the bounding box. For example, given a region proposal, the algorithm would have

predicted the presence of a person but the face of that person within that region proposal could

have been cut in half. Therefore, the offset values help in adjusting the bounding box of the

region proposal. Figure 3.2 shows the RCNN work flow where the output of each convolutional

networks is fed into SVM and bounding box regressor.

 Figure 3.2: Region-based Convolution Network [29].

The CNN model in [29] is trained on the 2012 ImageNet dataset of the original challenge of

image classification. It is fine-tuned using the region proposals corresponding to an IoU greater

than 0.5 with the ground-truth boxes. Two versions are produced, one version is using the 2012

PASCAL VOC dataset and the other the 2013 ImageNet dataset with bounding boxes. The

SVM classifiers are also trained for each class of each data set. The best R-CNNs models have

achieved a 62.4% mAP score over the PASCAL VOC2012 test dataset (22.0 points increase

w.r.t. the second position result on the leader board) and a 31.4% mAP score over the 2013

ImageNet dataset (7.1 points increase w.r.t. the second position result on the leader board) [11].

There are some drawbacks in RCNN model: it still takes a huge amount of time to train the

network as it would have to classify 2000 region proposals per image [21]; it cannot be

implemented real time as it takes around 47 seconds for each test image; the selective search

[14] algorithm is a fixed algorithm and no learning is happening at that stage and it is not

appropriate for real time region proposals application.

16

3.3 Fast Region-based Convolutional Network (Fast R-CNN)

Girshick et. al. [21] solved some of the drawbacks of R-CNN to build a faster object detection

algorithm and it was called Fast R-CNN [11]. The approach is similar to the R-CNN algorithm.

But, instead of feeding the region proposals to the CNN, the input image is fed to the CNN to

generate a convolutional feature map. From the convolutional feature map, it identifies the

region of proposals and warp them into squares by using a RoI pooling layer and reshape them

into a fixed size so that it can feed into a fully connected layer. From the RoI feature vector,

SoftMax layer is used to predict the class of the proposed region and the offset values for the

bounding box. The work flow of Fast RCNN model is shown in Figure 3.3.

 Figure 3.3: The architecture of Fast R-CNN [11].

The reason “Fast R-CNN” is faster than R-CNN is because it does not require to feed 2000

region proposals to the convolutional neural network every time [11]. Instead, the convolution

 Figure 3.4: Region-based Fast Convolution Network [29].

17

operation is done only once per image and a feature map is generated from it; then region of

interest is applied as shown in Figure 3.4. The best Fast R-CNNs have reached mAP scores of

70.0% for the 2007 PASCAL VOC test dataset, 68.8% for the 2010 PASCAL VOC test dataset

and 68.4% for the 2012 PASCAL VOC test dataset [11].

3.4 Faster Region-based Convolutional Neural Network (Faster R-

CNN)

Faster R-CNN works to combat the somewhat complex training pipeline that both R-CNN [21]

and Fast R-CNN[11] exhibited. The same authors [11] insert a region proposal network (RPN)

after the last convolutional layer. This network is able to just look at the last convolutional

feature map and produce region proposals from that. From that stage, the same pipeline as R-

CNN is used (ROI pooling, FC, and then classification and regression heads). Faster R-CNN,

is composed of two networks: region proposal network (RPN) for generating region proposals

and a network using these proposals to detect objects. The entire system is a single, unified

network for object detection. The main different here with Fast R-CNN is that the later uses

selective search [14] to generate region proposals. The time cost of generating region proposals

is much smaller in RPN than selective search, when RPN shares the most computation with the

object detection network. Briefly, RPN ranks region boxes (called anchors) and proposes the

ones most likely containing objects [29]. Figure 3.5 shows the work flow of Faster RCNN

model and how anchors are used to detect objects.

 Figure 3.5: An illustration of Faster R-CNN model [5].

18

Anchor is a box which plays an important role in Faster R-CNN. In the default configuration

of Faster R-CNN, there are 9 anchors at a position of an image. An anchor is a combination of

sliding window centre, scale, ratio. For example, 3 scales and 3 ratios for k=9 anchors at each

sliding position. The sheer size is hardly smaller than the combination of sliding window and

pyramid [29]. This is why, it has a coverage as good as other state of the art methods.

The bright side here is that region proposal network can be used from the method in Fast RCNN

[11] to significantly reduce number. When the anchor boxes are detected, they are selected by

applying a threshold over the “objectness” score to keep only the relevant boxes. These anchor

boxes and the feature maps computed by the initial CNN model feeds a Fast R-CNN model

[11]. Faster R-CNN uses RPN to avoid the selective search [14] method, it accelerates the

training and testing processes, and improve the performances using iterative process [5].

The best Faster R-CNNs have obtained mAP scores of 78.8% over the 2007 PASCALVOC

test dataset and 75.9% over the 2012 PASCAL VOC test dataset. The model has been trained

with PASCAL VOC and COCO datasets. This models is 34 times faster than the Fast R-

CNN[5][11]

3.5 Single Shot MultiBox Detector (SSD)

Single-Shot MultiBox Detector model is developed to predict all at once with the bounding

boxes and the class probabilities with end-to-end CNN architecture. Single Shot means that the

input image is observed at once and the tasks of object localization and classification are done

in a single forward pass of the network. MultiBox is the name of a technique for bounding box

regression developed by Szegedy et al [15] and detector is an object detector network that also

classifies those detected objects. The model takes an image as input which passes through

multiple convolutional layers with different sizes of filter (5x5 ,3x3 and 1x1). Feature maps

from convolutional layers at different position of the network are used to predict the bounding

boxes. They are processed by a specific convolutional layer with 3x3 filters called extra

featurelayers to produce a set of bounding boxes like to the anchor boxes of the Fast RCNN[11].

Each box has 4 parameters: the coordinates of the centre, the width and the height.

19

 Figure 3.6: Architecture of Single Shot MultiBox detector (input is 300x300x3) [15]

At the same time, it produces a vector of probabilities corresponding to the confidence over

each class of object. Every convolution layers have individual classifier for prediction and

connected to last stage separately as shown in Figure 3.6. The input image is rescaled in every

convolution layer for better detection and SSD model can perform 8732 detections per class.

Figure 3.7: SSD Framework. (a) The model takes an image and its ground truth (GT) bounding

boxes. Small sets of boxes with different aspect ratios are fixed by the different feature map (b)

and (c) [15].

Figure 3.7 shows the bounding box that describes the ground truth and features are extracted

from the ground truth area. During training, the box localizations are modified to best match

20

the ground truth. The Non-Maximum Suppression method is also used at the end of the SSD

[15] model to keep the most relevant bounding boxes with the help of IoU technique. The

maximum coverage area of ground truth by bounding box give the maximum IoU score. The

maximum IoU scoring bounding box is kept and other boxes are deleted.

3.6 Summary

Faster RCNN and Single Shot MultiBox Detector models are popular object detector models

in deep learning and computer vision field. Faster RCNN uses the region proposal technique

where SSD uses the single forward path multi box technique. Both models can be used in real

time situation but SSD model with sacrificing some accuracy is Faster than RCNN model. This

is, because, computation cost of SSD model is less than Faster RCNN model.

21

 CHAPTER 4

 Prerequisite Dependencies and Environment Setup

4.1 Overview

In this chapter, a discussion is provided about software and hardware required to complete the

project and environment setup for object detection model.

4.2 Prerequisite of Software and Hardware

This project used several software libraries, packages and programs to utilize machine learning.

Python was the choice of programming language, and TensorFlow was used for the deep

learning computations, which in turn has a list of dependencies. Anaconda IDE consisting of

Jupiter notebook and spyder are used to implement the idea easily. TensorFlow offers a version

for CPU usage and another for GPU; this project used the GPU version. This version requires

extra programs from the GPU designer NVIDIA, such as CUDA 9.0 Toolkit, cuDNN 7.0.5 and

their GPU drivers. So far, NVIDIA is the leading GPU designer for deep learning (also crypto

mining and other similar high complex tasks) since they also write programs that are

compatible with their cards that enable much of this capacity. The card used for this project

was a NVIDIA GeForce mx150.

4.3 Environment setup

To install tensorflow in GPU, the flowing steps were carried out:

1) Prerequisite tools:

• Nvidia Graphics Card

• Anaconda with python 3.6 (or 3.5)

• CUDA Tool kit (version 9.1)

• CuDNN (version 7.0.5)

22

2) CUDA Tool Kit [28] installation:

• A user profile account has been created in Nvidia website [28] to download CUDA

Version 9.1

• CUDNN 7.0.5 has also downloaded for CUDA tool kit 9.1

• After downloading CUDA 9.1, it has installed in the PC

• An environment variable path is created for CUDA by adding following paths:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\libnvvp

C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v9.1\extras\

CUPTI\libx64

• CUDNN zip file has been extracted and a path is added to the bin folder. For

example,

 C:\cuda\bin

3) It is required to update the GPU driver if needed

4) Anaconda is downloaded [38] with Python 3.7 and installed in PC

5) Anaconda environment and tensorflow installation:

• A virtual environment is created named tensorflow_gpu by invoking the

following command:

C:> conda create -n tensorflow_gpu pip python=3.5

• tensorflow_gpu environment is activated by issuing the following command:

C:> activate tensorflow_gpu

• As result, the prompt is changed to (tensorflow_gpu)C:>

• GPU version of TensorFlow is installed by issuing the following command on

a single line:

(tensorflow_gpu)C:> pip install --ignore-installed --upgrade tensorflow-gpu

6) Testing the installation process:

• Anaconda prompt is opened and commend is run by typing python

• When interpreter opens, the following commands are issued:

>>> import tensorflow as tf

 >>> hello = tf.constant('Hello, TensorFlow!')

 >>> sess = tf.Session()

23

 >>> print(sess.run(hello))

the output is: hello, TensorFlow!

That means tensorflow is installed correctly.

7) Other necessary packages are installed by issuing the following commands:

(tensorflow_gpu) C:\> conda install -c anaconda protobuf

(tensorflow_gpu) C:\> pip install lxml

(tensorflow_gpu) C:\> pip install Cython

(tensorflow_gpu) C:\> pip install jupyter

(tensorflow_gpu) C:\> pip install matplotlib

(tensorflow_gpu) C:\> pip install pandas

(tensorflow_gpu) C:\> pip install opencv-python

8) Downloading process of TensorFlow Object Detection API repository from GitHub:

A working directory is created where TensorFlow object detection framework as well

as training images, training data, trained classifier, configuration files, and everything

else needed for the object detection classifier are kept. The full TensorFlow object

detection API repository is downloaded from https://github.com/tensorflow/models by

clicking the “Clone or Download” button and downloading the zip file. The zip file

named model (model master) is extracted into working directory folder. The objection

models are downloaded from tensorflow model zoo following this link

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/de

tection_model_zoo.md

9) A PYTHONPATH variable is created that points to the \models, \models\research, and

\models\research\slim directories. It is done by issuing the following commands:

(tensorflow_gpu)C:\>set PYTHONPATH=C:\tensorflow_gpu\models;

C:\tensorflow_gpu \ models\research;C:\tensorflow_gpu\models\research\slim

10) The Tensorflow Object Detection API uses Protobufs to configure model and training

parameters. Before the framework can be used, the Protobuf libraries is compiled.

Every .proto file in the \object_detection\protos directory is called out individually by

the command. In the Anaconda Command Prompt, by changing directories to the

\models\research\ object_detection directory and the following command is issued:

“protoc object_detection/protos/*.proto --python_out=.”

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

24

Finally, the following commands are run from the C:\tensorflow_gpu\models\research

directory:

(tensorflow) C:\tensorflow_gpu\models\research> python setup.py build

(tensorflow) C:\tensorflow_gpu\models\research> python setup.py install

11) The TensorFlow Object Detection API is now all set up to use pre-trained models for

object detection, or to train a new one. The installation is verified by launching the

object_detection_tutorial.ipynb script with Jupyter. From the \object_detection

directory, issuing this command:

(tensorflow_gpu)C:\tensorflow_gpu\models\research\object_detection>jupyter

notebook object_detection_tutorial.ipynb

This opens the script with default web browser and allows to step through the code one

section at a time. It can be stepped through each section by clicking the “Run” button

in the upper toolbar. The output of this API would be objects surrounding box as shown

in the Figure 4.1.

 Figure 4.1: Output of objection API

4.4 Summary

It is important to set up the system accurately to run the object detection API. Every command

step should follow correctly to complete the procedures. Moreover, Nvidia GPU configuration

is mandatory to execute the model because the more powerful GPU is required less time to

train a model.

25

 CHAPTER 5

 Practical Implementation

5.1 Overview

In this chapter, the overall working procedure are discussed gradually. How images are labelled

and how to generate TF record and configure classifier are described step by step.

5.2 Image Gather and Labelling

There are many image data sets available online such as COCO, Pascal VOC etc. In order to

create custom object recognized classifier, images from 4 objects such as person, watch, cell

phone, and book are gathered as training data set. Total 400 images are collected from four

objects and divided into two parts as training and test data set where 70 percent for training and

30 percent for test from each object. First of all, it is required to label the images to classify by

the object detection. LabelImage [37] is an easy and great tool for graphical image annotation

shown in Figure 5.1 which can be downloaded from GitHub link [37].

 (a) (b)

 Figure 5.1(a) and (b): Labelling the image

26

One has to download and install LabelImg and next one, has to point it to \images\train

directory, and then, draw a box around each object in each image. The process is repeated

for all the images in the \images\test directory.

LabelImg saves a .xml file containing the label data for each image. These .xml files will be

used to generate TFRecords, which are one of the inputs to the TensorFlow trainer. For each

labelled image, there will be one .xml file in the \test and \train directories. Moreover, it can be

checked if the size of each bounding box is correct by running sizeChecker.py by using the

following command:

(tensorflow_gpu)C:\tensorflow_gpu\models\research\object_detection>

python sizeChecker.py –move

5.3 Generating Tensorflow Record

When images labelling is completed, it generates .xml file with information of every images.

It requires a TFRecords that serve as input data to the TensorFlow training model. For this

purpose, the xml_to_csv.py and generate_tfrecord.py scripts are used to work with our

directory structure. First, the image .xml data are used to create .csv files containing all the data

for the train and test images. From the \object_detection folder, the following command is

issued in the Anaconda command prompt:

(tensorflow_gpu)C:\tensorflow_gpu\models\research\object_detection>python xml_to_csv.py

This creates a train_labels.csv and test_labels.csv file in the \object_detection\images folder.

Next, it is required to change the label map in generate_tfrecord.py file starting at line 31,

where each object is assigned an ID number. This same number assignment is used when

configuring the labelmap.pbtxt file in following way:

27

Then, to generate the TFRecord files, these following commands are issued from the

\object_detection folder:

pythongenerate_tfrecord.py --csv_input=images\train_labels.csv --image_dir=images \train -

-output_path=train.record

python generate_tfrecord.py --csv_input=images\test_labels.csv --image_dir=images \test --

output_path=test.record

These generate a train.record and a test.record file in \object_detection. These will be used to

train the new object detection classifier.

5.4 Create Label Map

The last thing to do before training is to create a label map and edit the training configuration

file. The label map tells the trainer what each object is by defining a mapping of class names

to class ID numbers. Use a text editor to create a new file and save it as labelmap.pbtxt in the

C:\tensorflow1\models\research\object_detection\ training folder. (it is necessary to keep the

file type is .pbtxt, not .txt). In the text editor, the label map is created in following way for 4

objects detector:

5.5 Configure Classifier

Finally, the object detection training pipeline must be configured. It defines which model and

what parameters will be used for training. This is the last step before running training.

It is required to navigate at C:\tensorflow_gpu\models\research\object_detection\samples\

configs and copy the faster_rcnn_inception_v2_pets.config file (the choosing model) into the

28

\object_detection\training directory. Then, open the file with a text editor. There are several

changes to make to the .config file, mainly changing the number of classes and examples, and

adding the file paths to the training data.

The following changes are required to the faster_rcnn_inception_v2_pets.config file. Note: The

paths must be entered with single forward slashes (NOT backslashes), or TensorFlow will give

a file path error when trying to train the model. Also, the paths must be in double quotation

marks ("), not single quotation marks ('). The following changes are made to configure the

classifier:

• Line 9. It is required to change num_classes to the number of different objects for the

classifier to detect. For the above basketball, shirt, and shoe detector, it would be

num_classes : 4

• Line 110. It is required to change fine_tune_checkpoint to:

fine_tune_checkpoint:

"C:/tensorflow_gpu/models/research/object_detection/faster_rcnn_inception_v2_coco

_2018_01_28/model.ckpt"

• Lines 126 and 128. In the train_input_reader section, change input_path and

label_map_path to:

input_path: "C:/tensorflow_gpu/models/research/object_detection/train.record"

label_map_path:

"C:/tensorflow_gpu/models/research/object_detection/training/labelmap.pbtx"

• Line 132. It is required to change num_examples to the number of images that are in

the \images\test directory.

• Lines 140 and 142. In the eval_input_reader section, change input_path and

label_map_path to:

input_path :

"C:/tensorflow1/models/research/object_detection/test.record"

29

label_map_path:

"C:/tensorflow1/models/research/object_detection/training/labelmap.pbtxt"

File should be saved after the changes and the training job is all configured and ready to go.

5.6 Training the Classifier

From the \object_detection directory, the following command needs to be issued to begin

training:

python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/

faster_rcnn_inception_v2_pets.config

If everything has been set up correctly, TensorFlow will initialize the training. The initialization

can take up to 30 seconds before the actual training begins. When training begins, it almost

will look like Figure 5.2.

 Figure 5.2: Starting part of training screen

Each step of training reports the loss. It will start high and get lower and lower as training

progresses. For this training on the Faster-RCNN-Inception-V2 model, it started at about 3.0

and quickly dropped below 0.8. The loss numbers will be different if a different model is used.

MobileNet-SSD starts with a loss of about 20, it should be trained until the loss is consistently

under 2.

The progress of the training job can be viewed by using TensorBoard. To do this, by opening

the Anaconda Prompt with activation of virtual environment following command should be

issued from C:\tensorflow_gpu\models\research\object_detection directory.

30

(tensorflow_gpu)C:\tensorflow_gpu\models\research\object_detection>tensorboard --

logdir=training

This will create a webpage on local machine at PCName:6006, which can be viewed through

a web browser. The TensorBoard page provides information and graphs that show how the

training is progressing. One important graph is the Loss graph, which shows the overall loss of

the classifier over time.

Figure 5.3: Tensor board display on browser

The training routine periodically saves checkpoints about every five minutes. The training can

be terminated by pressing Ctrl+C in the command prompt window. It is good to typically wait

until just after a checkpoint has been saved to terminate the training. The checkpoint at the

highest number of steps will be used to generate the frozen inference graph.

5.7 Export Inference Graph

When the training is completed, the last step is to generate the frozen inference graph (.pb file).

From the \object_detection folder, the following command is issued, where “XXXX” in

“model.ckpt-XXXX” is replaced with the highest-numbered .ckpt file in the training folder:

31

python export_inference_graph.py --input_type image_tensor --pipeline_config_path

training/faster_rcnn_inception_v2_pets.config --trained_checkpoint_prefix training/

model.ckpt-XXXX --output_directory inference_graph

This creates a frozen_inference_graph.pb file in the \object_detection\inference_graph folder.

The .pb file contains the object detection classifier.

5.8 Main Code

The code can be dissected in to smaller parts for clear understanding (see Appendix II for full

code). First comes the different libraries and packages that are needed for the code. The

following libraries (line 1 to line 7) like numpy, tensorflow, open cv, object detection utils etc.

are included for the code.

The next following part (line 12 to line 27) are variables that will be used in the document,

such as filenames and paths for the model and label map. The reason for having paths and

names separate like this is because it makes it possible to easily switch models by simply

changing the filenames at the start of the file.

With the basics covered, next comes the main part of the code (line 31 to line 37) that is run.

First the model is loaded into the memory, and a TensorFlow session is initiated.

32

With the use of the library called CV2 in following code (line 42 to line 54), a video feed can

be opened, with the window size of 800 by 600 pixels. A package with FPS tracking is also

started.

np.expand_dims() expand the dimension since the model expects images to have shape

[1,None,None,3]

Afterwards 5 tensors are called from the graph with the TensorFlow package (tf.Tensor) (line

60 to line 74). This is the information that will be used for the detection. Next the object

detection API is used to do the object detection and identification, the variables that was created

on line 72-74 is used and will return updated information.

33

With the help of numpy and another TensorFlow utility (line 79 to line 86) that creates an

overlay on top of the original frame information that was gathered through TensorFlow. It

draws a box around the object that was found, writes what type of object it is and the confidence

that said identification is correct. There are also some additional settings like the thickness of

the border and format of the coordinates. The function does not provide an easy way to change

fonts. So, it is needed to open the file where the visualize_boxes_and_labels_on_image_array

method was written and manually changed the font with some hardcode. Lastly, the newly

created frame is returned and subsequently shown to the user.

5.9 Summary

How the object detector model is implemented practically is described in this chapter

completely. There are some procedures strictly followed from image labelling to model training.

Tensor board shows the update of training information.

34

 CHAPTER 6

 Evaluation

6.1 Overview

This chapter describes the evaluation part of the object detection models. The total loss curve

is shown as the metric of evaluation. The training and testing parts are discussed separately.

6.2 Training

This section provides the discussion about training and testing accuracy of mobileNet SSD and

Faster RCNN inception v2 pre-trained model. During the training, Tensorboard shows the

performance of every model in graphical representation. Figure 6.1 shows the total loss of SSD

model. In this model average loss is reduced to below 1.5 after completing 25 thousand steps.

To complete those training steps, it takes approximate 6 hours and 30 minutes.

Figure 6.1: Total loss of mobileNet SSD model

Total loss of Faster RCNN model shown in Figure 6.2, is reduced to below 0.1 by completing

almost 17 thousand steps within 3 hours training.

35

 Figure 6.2: Total loss of Faster RCNN inception model v2

6.3 Testing

When training is completed both models are tested through camera from laptop. The testing

device has the same configuration as training device. The output of the two classifier models

are shown in the Figure 6.3 and Figure 6.4. Faster R-CNN model can successfully detect the

all objects with high score where SSD mobileNet cannot detect all objects. So, accuracy of the

RCNN model is higher than SSD model in this scenario.

 Figure 6.3: Faster RCNN inception model

36

 Figure 6.4: SSD mobileNet model

By comparing these two models, it has been shown that Faster RCNN model is more powerful

than SSD model. It takes significantly less time and less steps to achieve more accuracy than

SSD model. During testing, Faster RCNN model can detect all objects accurately where SSD

model fails to detect some objects. This is because, Faster RCNN model has low training

accuracy than SSD model. Another reason is camera resolution; camera of this laptop is not

good in resolution. That’s why, model sometimes fails to classify the objects. Faster RCNN

model is slightly slower than SSD model in real time response. The accuracy of both the models

can be increased by increasing training data and training period.

6.4 Summary

This project has been successfully run to detect and recognize the object in front of the camera

module in both trained models. Any model can be used to train object detection classifier based

on situation. If it is planning on using the object detector on a device with low computational

power (such as a smart phone or Raspberry Pi), SDD-MobileNet model is appropriate. If it is

possible to run the detector on a decently powered laptop or desktop PC with Nvidia GPU, one

of the RCNN models can be used.

37

 CHAPTER 7

 Conclusion and Future work

7.1 Conclusion

In this project, mobileNet SSD and Faster RCNN object detection models are studied.

Descriptions are made on how the model works and which model is better for real time object

detection. These models can be trained with any number of object category. The accuracy can

be increased by increasing the training period and training data set. It is better if powerful

Nvidia GPU is available. More powerful GPU gives more cuda computing scope to get better

result in less time.

7.2 Future work

There is a huge scope for future work for improving the application base. It is to be mentioned

that the primary focus for the future work is not only to improve the algorithm itself, but to

improve upon the usability and application itself. A very short list of probable and promising

future aspect of continuing this work is mentioned below:

• Face Recognition

• Human movement detection and recognition

• Human facial expression recognition

• Hand digit recognition

• Traffic signal recognition and monitor

• Sign language recognition

• Gender classification

38

 References

[1] Karpathy, A., CS231n Convolutional Neural Networks for Visual Recognition. Convolutional

Neurons. http://cs231n.github.io/ convolutional-networks/. Accessed 24 January 2018

[2] Bishop, C., M., Pattern Recognition and Machine Learning (Information Science and Statistics).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[3] Deng, J. et al. ,Imagenet: A large-scale hierarchical image database. Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE. 2009, pp. 248–255.

[4] Lin, T., Y., et al. Microsoft coco: Common objects in context. In: European Conference on

Computer Vision. Springer. 2014, pp. 740–755.

[5] Ren, S. et al., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks., CoRRabs/1506.01497(2015). url: http://arxiv.org/abs/1506.01497.

[6] Redmon, J. et al., You only look once: Unified, real-time object detection. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 779–788.

[7] Dei, J., Li, Y., He, K., Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional

Networks. In arXiv: 1605.06409, 2017.

[8] Ketkar, N., Deep Learning with Python: A Hands-on Introduction, Bangalore, Karnataka, India,

ISBN-13 (electronic): 978-1-4842-2766-4, DOI 10.1007/978-1-4842-2766-4

[9] Zeiler, M., D., Fergus,R., Visualizing and Understanding Convolutional Networks. In

arXiv:1311.2901v3,2013

[10] Goodellow, I., Bengio, Y., Courville, A., Deep Learning (Adaptive Computation and Machine

Learning), An MIT Press Book, url: https://www.deeplearningbook.org/ Accessed: 2018-05-28.

[11] Ross, G., Fast R-CNN, Proceedings of the IEEE International Conference on Computer Vision.

2015, pp. 1440–1448.

[12] Zeiler, M. and Fergus, R., Visualizing and understanding convolutional networks. In: European

conference on computer vision. Springer. 2014, pp. 818–833.

[13] Simonyan, K. and Zisserman, A., Very deep convolutional networks for large-scale image

recognition. In: arXiv preprint arXiv:1409.1556 (2014)

[14] Uijlings, J. R. R. et al, Selective Search for Object Recognition, url: http://disi.unitn.it/

uijlings/SelectiveSearch.html

[15] Liu, W., Szegedy, C., et al, SSD: Single Shot MultiBox Detector, In arXiv:1512.02325

[16] Erhan, D., Szegedy, C., Toshev, A., and Anguelov, D. Scalable object detection using deep neural

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(2014), pp. 2147

http://arxiv.org/abs/1506.01497
https://www.deeplearningbook.org/
http://disi.unitn.it/

39

[17] Xiang, Y., Choi, W., Lin,Y. and Savarese, S., Subcategory-aware convolutional neural networks

for object proposals and detection. In arXiv:1604.04693, 2016.

[18] Girshick, R., Fast R-CNN, url: http://arxiv.org/abs/ 1504.08083

[19] Mitchell, T., M., Machine Learing, ISBN-13: 978-0070428072

[20] Henriques, J., F., Carreira, J., Caseiro, R. and Batista, J., Beyond Hard Negative Mining: Efficient

Detector Learning via Block-Circulant Decomposition. proceedings of the IEEE International

Conference on Computer Vision,2013

[21] Girshick, R., Donahue, J., Malik, J., Rich feature hierarchies for accurate object detection and

semantic segmentation Tech report (v5), url: http://arxiv.org: 1311.2524

[22] Chellappa, R., et al "Towards the design of an end-to-end automated system for image and video-

based recognition," 2016 Information Theory and Applications Workshop (ITA), La Jolla, CA,

2016, pp. 1-7.doi: 10.1109/ITA.2016.7888183.

[23] Nikan, S. and Ahmadi, M., "Effectiveness of various classification techniques on human face

recognition," 2014 International Conference on High Performance Computing & Simulation

(HPCS), Bologna, 2014, pp. 651-655. doi: 10.1109/HPCSim.2014.6903749.

[24] Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S. and Ma, Y., "Robust face recognition via sparse

representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, pp. 210-227, February 2009.

 [25] Huang, G. B., Zhou, H., Ding, X. and Zhang, R., Extreme learning machine for regression and

multiclass classification,IEEE Trans. Syst., Man, Cybern., Syst., vol. 45, pp. 513-529, April 2012.

[26] Nikan, S. and Ahmadi, M., Study of the Effectiveness of Various Feature Extractors for Human

Face Recognition for Low Resolution Images, in: Proc. International Conf. on Artificial Intell. and

Software Eng. (AISE14). Phuket, pp. 1-6, January 2014.

[27] Wu, J., Ma, L. and Hu, X., Delving deeper into convolutional neural networks for camera

relocalization, 2017 IEEE International Conference on Robotics and

Automation(ICRA),Singapore,2017,pp. 5644-5651. doi: 10.1109/ICRA.2017.7989663.

[28] Nvidia cuda gpu. https://developer.nvidia.com/cuda-gpus. Accessed: 2018-05-28.

[29] Stanford Lecture:http://cs231n.github.io/. Accessed: 2018-05-28.

[30] TensorFlow gpu install.https://www.tensorflow.org/install/gpu.Accessed: 2018-05-28.

[31] Objection API installation. https://github.com/tensorflow/models/blob/master/research/

object_detection/g3doc/installation.md. Accessed: 2018-05-28.

[32] Wikipedia link: https://en.wikipedia.org/wiki/Machine_learning

[33] InfoTrend: link: https://www.infortrend.com, Accessed: 2018-05-28.

[34] SSD github link:https://github.com/weiliu89/caffe/tree/ssd. Accessed: 2018-05-28.

https://github.com/tensorflow/models/blob/master/research/
https://en.wikipedia.org/wiki/Machine_learning

40

[35] Liu,W. et al. SSD:Single Shot MultiBox Detector. Retrieved July3, 2018, url: http://web.cs.

ucdavis.edu /~yjlee/teaching/ecs289gwinter2018/ SSD.pdf

[36] Neural network url: https://www.doc.ic.ac.uk/~nd/s urprise_96/journal/ vol4/cs11 / report. html.

Accessed: 2018-05-28.

[37] LabelImage url: https://github.com/tzutalin/labelImg. Accessed: 2018-05-28.

[38] Anaconda download url: https://www.anaconda.com/download/ Accessed: 2018-05-28.

https://www.doc.ic.ac.uk/~nd/s%20urprise_96/journal/%20vol4/cs11%20/%20report.%20html
https://www.anaconda.com/download/

41

APPENDIX I: Main Code

File name: object_detection_spyder.py

import numpy as np

import os

import six.moves.urllib as urllib

import sys

import tarfile

import tensorflow as tf

import zipfile

from collections import defaultdict

from io import StringIO

from PIL import Image

import cv2

from utils import label_map_util

from utils import visualization_utils as vis_util

Model preparation

MODEL_NAME = 'object_detection_graph'

CWD_PATH = os.getcwd()

Path to frozen detection graph. This is the actual model that is used for the object detection.

PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

#PATH_TO_CKPT =

os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')

42

List of the strings that is used to add correct label for each box.

PATH_TO_LABELS = os.path.join('training', 'detectionlabel.pbtxt')

Grab path to current working directory

NUM_CLASSES = 4

Load a (frozen) Tensorflow model into memory.

detection_graph = tf.Graph()

with detection_graph.as_default():

 od_graph_def = tf.GraphDef()

 with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:

 serialized_graph = fid.read()

 od_graph_def.ParseFromString(serialized_graph)

 tf.import_graph_def(od_graph_def, name='')

Loading label map

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)

categories = label_map_util.convert_label_map_to_categories(label_map,

max_num_classes=NUM_CLASSES, use_display_name=True)

category_index = label_map_util.create_category_index(categories)

Helper code

def load_image_into_numpy_array(image):

 (im_width, im_height) = image.size

43

 return np.array(image.getdata()).reshape(

 (im_height, im_width, 3)).astype(np.uint8)

Detection

cap = cv2.VideoCapture(0)

with detection_graph.as_default():

 with tf.Session(graph=detection_graph) as sess:

 ret=True

 while (ret):

 ret, image_np = cap.read()

Expand dimensions since the model expects images to have shape: [1, None, None, 3]

 image_np_expanded = np.expand_dims(image_np, axis=0)

 image_tensor=detection_graph.get_tensor_by_name('image_tensor:0')

 # Each box represents a part of the image where a particular object was detected.

 boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

 # Each score represent how level of confidence for each of the objects.

 # Score is shown on the result image, together with the class label.

 scores = detection_graph.get_tensor_by_name('detection_scores:0')

 classes = detection_graph.get_tensor_by_name('detection_classes:0')

 num_detections = detection_graph.get_tensor_by_name('num_detections:0')

 # Actual detection.

 (boxes, scores, classes, num_detections) = sess.run(

 [boxes, scores, classes, num_detections],

 feed_dict={image_tensor: image_np_expanded})

44

Visualization of the results of a detection.

 vis_util.visualize_boxes_and_labels_on_image_array(

 image_np,

 np.squeeze(boxes),

 np.squeeze(classes).astype(np.int32),

 np.squeeze(scores),

 category_index,

 use_normalized_coordinates=True,

 line_thickness=8)

 cv2.imshow('object detection', cv2.resize(image_np, (800,600)))

 if cv2.waitKey(25) & 0xFF == ord('q'):

 cv2.destroyAllWindows()

 cap.release()

 break

45

APPENDIX II: Common Error

1. ModuleNotFoundError: No module named 'deployment'

This error occurs when object_detection_tutorial.ipynb or train.py are tried to run but don’t

have the PATH and PYTHONPATH environment variables set up correctly. Then, issue

“activate tensorflow_gpu” to re-enter the environment.It is required to use “echo %PATH%”

and “echo %PYTHONPATH%” to check the environment variables and make sure that are

set up correctly. Also, make sure to have run these commands from the \models\research

directory: setup.py build and setup.py install

2. ImportError: cannot import name 'preprocessor_pb2'

ImportError: cannot import name 'string_int_label_map_pb2'(or similar errors with

other pb2 files)

This occurs when the protobuf files (in this case, preprocessor.proto) have not been

compiled. Re-run the protoc command. Check the \object_detection\protos folder to make

sure there is a name_pb2.py file for every name.proto file.

3. ‘protoc’ is not recognize as internal and external command

This occurs when following command is tried to run “protoc

object_detection/protos/*.proto --python_out=.”

It isrequired to give the full path where protoc is located in bin folder then run the command.

4. Unsuccessful TensorSliceReader constructor: Failed to get "file path" … The

filename, directory name, or volume label syntax is incorrect.

This error occurs when the filepaths in the training configuration file

(faster_rcnn_inception_v2_pets.config or similar) have not been entered with backslashes

instead of forward slashes. Open the .config file and make sure all file paths are given in

the following format: “C:/path/to/model.file”

5. ValueError: Tried to convert 't' to a tensor and failed. Error: Argument must be a

dense tensor: range(0, 3) - got shape [3], but wanted [].

46

The issue is with models/research/object_detection/utils/learning_schedules.py Currently

it is

rate_index = tf.reduce_max(tf.where(tf.greater_equal(global_step, boundaries),

 range(num_boundaries),[0] * num_boundaries))

Wrap list() around the range() like this:

rate_index = tf.reduce_max(tf.where(tf.greater_equal(global_step, boundaries),

 list(range(num_boundaries)),[0] * num_boundaries))

