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Abstract 

 

 

Deep Convolutional Neural Network (CNN) has recently made ground-breaking advances on 

several vision tasks such as objects detection and recognition, classification and semantic 

segmentation of images. It has achieved state-of-the-art performance on several image 

recognition benchmarks. The goal of this project is to develop a system capable of detecting 

and recognizing objects in real time video without substantial memory requirements using 

Deep CNN. Different deep learning-based methodologies have been proposed to achieve this, 

and a thorough study of them is undertaken here. A common paradigm to address the 

problem is to train object detector models with image data sets and apply these detectors in an 

exhaustive manner across all locations and scales. In this work, saliency-inspired CNN 

models are used for recognition which predict a set of class-agnostic bounding boxes along 

with a single score for each box, corresponding to its likelihood of containing object of 

interest. Python as a programming language, TensorFlow library for computing and OpenCV 

for computer vision, are used to complete the project. Region-based object detector model 

such as Faster Convolution Neural Network (Faster-RCNN) inception v2 and MobileNet 

Single Shot MultiBox Detector (SSD) are used to localize and recognize the objects and 

compare the accuracy of those predefined models to get the clear concept of model 

performance in using for different aspects and situations. 
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                    CHAPTER 1 

                    Introduction 

 

1.1 Overview 

Object detection is the process of automatically locating and identifying objects contained on 

images. This is one of the challenging and exciting tasks in computer vision. It is difficult to 

detect the same object on different platforms because of variations in orientation, lighting, 

background and occlusion. Now, with the advance of deep learning and neural network, 

convolutional neural networks are currently the state-of-the-art solution for object detection. It 

can tackle such problems without coming up with various heuristics in real-time. 

 

1.2 Motivation 

With the rapid advancement in technology and vast amount of image data in the world, 

computer vision is playing a key role in revolutionizing the industrial environment. According 

to the InfoTrends, still cameras and mobile devices captured more than 1.2 trillion images in 

2017 [33]. With this same estimate, in 2020 the figure will increase to 1.4 trillion. Going 

beyond consumer devices, there are cameras all over the world that capture images and record 

videos for automation purposes for self-driving cars, monitoring pedestrians, and traffic signals 

on the road and experiment in medical science. Robots need to understand a visual scene in 

order to smartly build devices in sort waste for engineers, doctors and space explorers alike. 

To effectively manage all these tasks, it is required to have some idea about its contents. 

Automated processing of visual contents is useful for a wide variety of image-related tasks. A 

dynamic environment is required to accomplish the all kinds of computer vision and machine 

learning processes.  
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1.3 Objective 

The goal of this project is to develop a system capable of detecting and recognizing objects in 

real time video using machine learning and computer vision techniques. To achieve the goal 

the following steps will be carried out: 

• To train a Convolutional Neural Network (CNN) based models with custom data sets. 

• To capture real time video frames of objects using cameras. 

• To classify and identify the object from video stream with the help of models and 

trained data set. 

• To study and analysed the model performance, accuracy and computation time during 

training and testing. 

 

1.4 Structure of Project Report 

The project report begins with two theoretical chapters. Since convolutional object detection is 

a combination of several fields of computer science, it is required to discuss several theoretical 

topics to understand the basic concept behind this project. In the beginning of Chapter 2, a short 

introduction to machine learning and neural networks is provided. This chapter ends by 

introducing convolutional neural networks and computer vision. In Chapter 3, a discussion is 

provided on how convolutional networks can be used for object detection. Moreover, a review 

on the relevant literature and methods are also provided in Chapter 3. In Chapter 4, system 

configuration and project environment are discussed. All kinds of experimental setup are used 

for testing object detection model with required software and hardware. In Chapter 5, the 

methodology of the project is discussed step by step. In this chapter, every step required to 

complete the whole project is described in detail. In Chapter 6, the model evaluation is 

completed by discussing the accuracy and limitations. In Chapter 7, a review of the project and 

some concluding remarks is provided and potential improvements for future works are 

mentioned. Finally, necessary code and common errors are included in appendix. 
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CHAPTER 2 

Research Background 

 

2.1 Overview 

In this chapter, the necessary theoretical knowledge for understanding the methods is discussed. 

First, a relevant discussion about machine learning, neural networks, and computer vision is 

provided in detail. Finally, how these disciplines are combined in convolutional neural 

networks is explained. 

 

2.2 Machine Learning 

Machine learning is the science of getting computers to act using statistical techniques to give 

computer systems the ability to learn with data without being explicitly programmed [2]. 

Machine learning is closely related to computational statistics, which also focuses on prediction 

making through the use of computers. It has strong ties to mathematical optimization, which 

delivers methods, theory and application domains to the field. Machine learning algorithms are 

often categorized as supervised or unsupervised [32]. 

Supervised algorithms require machine learning skills to provide both input and desired output, 

in addition to furnishing feedback about the accuracy of predictions during algorithm training. 

Data scientists determine which variables or features the model should analyze and use to 

develop predictions. The algorithm is applied based on training data to learn new data [8][10]. 

Unsupervised algorithms do not need to be trained with desired outcome data. Instead of this, 

an iterative approach called deep learning is used to review data and arrive at conclusions. 

Unsupervised learning algorithms are used for more complex processing tasks than supervised 

learning systems, including image recognition, speech-to-text and natural language processing. 

These algorithms work by combing through millions of examples of training data and 

automatically identifying often subtle correlations between many variables. These algorithms 

have only become feasible in the age of big data, as it is required massive amounts of training 

data [8][32]. 
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2.3 Neural Network 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by 

the way of biological nervous systems, such as the brain, process information [32]. The key 

element of this paradigm is the novel structure of the information processing system. It is 

composed of a large number of highly interconnected processing elements (neurones) working 

in unison to solve specific problems. An ANN is configured for a specific application, such as 

pattern recognition or data classification through a learning process. 

 

Figure 2.1: Human Neuron [36]           Figure 2.2: Artificial Neuron Concept [36] 

 

In the human brain, a typical neuron collects signals from others through a host of fine 

structures called dendrites as shown in Figure 2.1. The neuron sends out spikes of electrical 

activity through a long, thin stand known as an axon, which splits into thousands of branches. 

At the end of each branch, a structure called a synapse converts the activity from the axon into 

electrical effects that inhibit or excite activity from the axon into electrical effects that inhibit 

or excite activity in the connected neurones [36]. When a neuron receives excitatory input that 

is sufficiently large compared with its inhibitory input, it sends a spike of electrical activity 

down its axon. Learning occurs by changing the effectiveness of the synapses so that the 

influence of one neuron changes the another [8]. An artificial neuron concept that is derived 

from biological neuron is shown in Figure 2.2. 

 

2.3.1 Historical Background 

Neural network simulations appear to be a recent development. However, this field was 

established before the advent of computers, and has survived at least one major setback and 
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several eras. Following an initial period of enthusiasm, the field survived a period of frustration 

and disrepute. During this period, when funding and professional support was minimal, 

important advances were made by relatively few researchers. These pioneers were able to 

develop convincing technology which surpassed the limitations identified by Minsky and 

Papert [10]. They summed up a general feeling of frustration against neural networks among 

researchers, and thus accepted by most without further analysis. Currently, the neural network 

field enjoys a resurgence of interest and a corresponding increase in funding. The first artificial 

neuron was produced in 1943 by the neurophysiologist Warren McCulloch and the logician 

Walter Pits. But, the technology available at that time did not allow them to do too much. 

 

2.3.2 Architecture of Neural Networks 

A neural network is a combination of artificial neurons which are typically grouped into layers. 

In a fully-connected feed-forward multi-layer network, shown in Figure 2.3, each output of a 

layer of neurons is fed as input to each neuron of the next layer. Thus, some layers process the      

 

   

   Figure 2.3: Architecture of multilayer Neural Network [8]. 

original input data, while some process data received from other neurons. Each neuron has a 

number of weights equal to the number of neurons in the previous layer. A multi-layer network 

typically includes an input layer, one or more hidden layers and an output layer. The input layer 

usually merely passes data along without modifying it. Most of the computation happens in the 

hidden layers. The output layer converts the hidden layer activations to an output, such as a 

classification [36]. A multilayer feed-forward network with at least one hidden layer can 

function as a universal approximator, i.e., can be constructed to compute almost any function. 
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2.3.3 Backpropagation 

In order to train a neural network to perform a task, the weights of each unit should be adjusted 

in such a way that the error between the desired output and the actual output is reduced. A 

neural network is trained by selecting the weights of all neurons so that the network learns to 

approximate target outputs from known inputs. It is difficult to solve the neuron weights of a 

multi-layer network analytically. The back-propagation algorithm provides a simple and 

effective solution to solving the weights iteratively. The classical version uses gradient descent 

as optimization method. Gradient descent can be quite time-consuming and is not guaranteed 

to find the global minimum of error, but with proper configuration (known in machine learning 

as hyperparameters) works well enough in practice [36][10]. In the first phase of the algorithm, 

an input vector is propagated forward through the neural network. Before this, the weights of 

the network neurons have been initialized to some values, for example small random values. 

The received output of the network is compared to the desired output (which should be known 

for the training examples) using a loss function. The gradient of the loss function is then 

computed. This gradient is also called the error value [10]. When using mean squared error as 

the loss function, the output layer error value is simply the difference between the current and 

desired output. The error values are then propagated back through the network to calculate the 

error values of the hidden layer neurons. The hidden neuron loss function gradients can be 

solved using the chain rule of derivatives. Finally, the neuron weights are updated by 

calculating the gradient of the weights and subtracting a proportion of the gradient from the 

weights [8]. This ratio is called the learning rate. The learning rate can be fixed or dynamic. 

After the weights have been updated, the algorithm continues by executing the phases again 

with different input until the weights converge. 

 

2.3.4 Activation Function 

Activation function is an extremely important feature of the artificial neural networks. It 

basically decides whether a neuron should be activated or not, whether the information that the 

neuron is receiving is relevant for the given information or should be ignored. Different types 

of activation function are available for neural network such as: Identity, Binary Step, Sigmoid, 

Tanh, ReLU, Leaky ReLU, SoftMax [8][10], etc. ReLU stands for Rectified Linear Units, and 

is the most used activation function in the world right now. It is used in almost all the 

convolutional neural networks or deep learning. As shown in Figure 2.4, ReLU function is 
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nonlinear, which means that it can easily backpropagate the errors and multiples layers of 

neurons being activated by the ReLU function [10]. The main advantage of using the ReLU 

function over other activation functions is that it does not activate all the neurons at the same 

time. That means, if the input is negative, it will convert it to zero and the neuron does not get 

activated. 

    

            Figure 2.4: Activation function (a) ReLU (b) SoftMax 

The SoftMax function, shown in Figure 2.4(b), is a type of sigmoid function but is handy when 

working with classification problems. The SoftMax function would squeeze the outputs for 

each class between 0 and 1 and would also divide by the sum of the outputs [2]. This essentially 

gives the probability of the input being in a particular class. 

 

2.4 Convolutional Neural Network 

Convolutional neural networks (CNN) are named after the mathematical operation convolution. 

Convolution is often encountered in the context of image processing, with the intensity of a 

given pixel and 2-dimensional weighting function. The weighting function is usually non-zero 

only for a few values in the close neighbourhood to the central pixel and therefore the sum has 

to compute only over those values instead of the whole image. The weighting function is called 

kernel, often defined as a small square matrix whose size is called the kernel size [10]. 
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2.4.1 Basic Structure of CNN 

Convolutional Neural Networks have a different architecture than regular Neural Networks. 

First of all, the layers are organised in 3 dimensions: width, height and depth. Further, the 

neurons in one layer do not connect to all the neurons in the next layer but only to a small 

region of it. Lastly, the final output will be reduced to a single vector of probability scores, 

organized along the depth dimension. 

 

 

    Figure 2.5: Structure of Convolutional Neural Network 

 

A more detailed overview of what CNNs do would be that it takes the image, pass it through a 

series of convolutional, nonlinear, pooling (down sampling), and fully connected layers, and 

get an output and the output can be a single class or a probability of classes that best describes 

the image. An example of CNN architecture is presented in Figure 2.5. 

 

2.4.2 Convolutional Layer 

The first layer in a CNN is always a Convolutional Layer. The input is a 32 x 32 x 3 array of 

pixel values as shown as small cell in Figure 2.6. The top left of the pixel cell with red box is 

filter that covers a 5 x 5 area and the region that it is covered over is called the receptive field. 

This filter is also an array of numbers (the numbers are called weights or parameters). A very 

important note is that the depth of this filter has to be the same as the depth of the input; so the 

dimensions of this filter is 5 x 5 x 3. For example, the first position of the filter would be the 

top left corner in Figure 2.6. As the filter is sliding, or convolving, around the input image, it 

is multiplying the values in the filter with the original pixel values of the image with computing 
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element wise multiplications. These multiplications are all summed up mathematically and 

there would be 75 multiplications in total and result will be a single number. This number is 

just representative of when the filter is at the top left of the image. This process is repeated for 

every location on the input volume and every unique location on the input volume produces a 

number. After sliding the filter over all the locations, there will be 28 x 28 x 1 array of numbers, 

which is called an activation map or feature map. 

 

Figure 2.6: Visualization of 5x5 filter convolving around of input volume and producing 

activation map. 

 

Filters used to create feature map can be thought of as feature identifiers that means different 

filters can identify different features like straight edges, simple colours, and curves. A curve 

detector filter, shown in Figure 2.7, will have a pixel structure in which there will be higher 

numerical values along the area that is a shape of a curve.  

      

       Figure 2.7: (a) Visualization of curve and (b) corresponding pixel representation 
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When this filter is at the top left corner of the input volume, it is computing multiplications 

between the filter and pixel values at that region. Figure 2.8(a) shows an example of an image 

that need to classify, and a curve filter is put at the top left corner indicating green bounding 

box to multiply the values in the filter with the original pixel values of the image shown in 

Figure 2.8(b) and (c). 

 

Figure 2.8: Convolutional operation with filter 

 

Summation of multiplications=(50x40)+(50x40)+(50x40)+(30x40)+(50x40)+(40x40)+(20x40) 

                        =11600 

Basically, in the input image, if there is a shape that generally resembles the curve that this 

filter is representing, then all of the multiplications summed together will result in a large value. 

But, when filter is moved to others region, the result is very low. This is because there was not 

anything in the image section that responded to the curve detector filter. The output of this 

convolutional layer is an activation map. So, in the simple case of a one filter convolution (and 

if that filter is a curve detector), the activation map will show the areas that are at mostly likely 

to be right aligned curves in the picture. In this example, the top left value of 26 x 26 x 1 

activation map is 11600. This high value means that it is likely that there is some sort of curve 

in the input volume that caused the filter to activate. The top right value in of activation map 

will be 0 because there was not anything in the input volume that caused the filter to activate; 

simply said, there was not a right aligned curve in that region of the original image shown in 

Figure 2.9. 
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    Figure 2.9: Convolutional operation of different pixels with same filter  

Summation of multiplications = (0x40)+(0x40)+(0x40)+(0x40)+(0x40)+(0x40)+(0x40) 

                        = 0 

It is important to notice that this is just for one filter that is going to detect lines that curve 

outward and to the right. There may have other filters for lines that curve to the left aligned or 

for straight edges. The more the filters, the greater the depth of the activation map, and the 

more information can be gathered about the input volume. 

 

2.4.3 Pooling and Stride 

To make the network more manageable for classification, it is useful to decrease the activation 

map size in the deep end of the network. Generally, the deep layers of the network require less 

information about exact spatial locations of features, but require more filter matrixes to 

recognize multiple high-level patterns. By reducing the height and width of the data volume, 

the depth of the data volume can be increased and the computation time can be kept at a 

reasonable level [10][29]. 

There are two ways of reducing the data volume size. One way is to include a pooling layer 

after a convolutional layer. The layer effectively down-samples the activation maps. Pooling 

has the added effect of making the resulting network more translation invariant by forcing the 

detectors to be less precise. However, pooling can destroy information about spatial 

relationships between subparts of patterns. Typical pooling method used in this network is 

max-pooling shown in the Figure 2.10. Max-pooling simply outputs the maximum value within 

a rectangular neighbourhood of the activation map [29]. 
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     Figure 2.10: Max Pooling and Stride 

 

Another way of reducing the data volume size is adjusting the stride parameter of the 

convolution operation. The stride parameter controls whether the convolution output is 

calculated for a neighbourhood centred on every pixel of the input image (stride 1) or for every 

nth pixel (stride n). It has shown that pooling layers can often be discarded without loss in 

accuracy by using convolutional layers with larger stride value [10]. 

 

2.4.4 Regularization and Augmentation 

Regularization refers to methods that are used to reduce overfitting by introducing additional 

constraints or information to the machine learning system. A classical way of using 

regularization in neural networks is adding a penalty term to the loss function that penalizes 

certain types of weights. The parameter sharing feature of convolutional networks is another 

example of regularization [10]. There are several regularization techniques that are specific to 

deep neural networks. A popular technique called dropout attempts to reduce the co-adaptation 

of neurons. This is achieved by randomly dropping out neurons during training, meaning that 

a slightly different neural network is used for each training sample or minibatch. This causes 

the system not to depend too much on any single neuron or connection and provides an effective 

yet computationally inexpensive way of implementing regularization. In convolutional 

networks, dropout is typically used in the final fully-connected layers. Overfitting can also be 

reduced by increasing the amount of training data. When it is not possible to acquire more 

actual samples, data augmentation is used to generate more samples from the existing data [2]. 

For classification using convolutional networks, this can be achieved by computing 

transformations of the input images that do not alter the perceived object classes, yet provide 
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additional challenge to the system. The images can be, for example, flipped, rotated or sub 

sampled with different crops and scales. Also, noise can be added to the input images [29]. 

 

2.5 Computer Vision 

Computer vision is the method of enabling computers to see, identify, and process images in 

the same way that human vision does, and to provide appropriate output [32]. It is a challenging 

task to enable computers to recognize images of different objects in real life. Computer vision 

can be closely linked with artificial intelligence, as the computer must interpret what it sees, 

and then, perform appropriate analysis or act accordingly. Computer vision deals with the 

extraction of meaningful information from the contents of digital images or video. This is 

distinct from mere image processing, which involves manipulating visual information on the 

pixel level. Applications of computer vision include image classification, visual detection, 3D 

scene reconstruction from 2D images, image retrieval, augmented reality, machine vision and 

traffic automation [4][7][24]. Today, machine learning is a necessary component of many 

computer vision algorithms that can be described as a combination of image processing and 

machine learning. Effective solutions require algorithms that can cope with the vast amount of 

information contained in visual images, and critically for many applications, can carry out the 

computation in real time [20]. 

 

2.5 Summary 

Machine learning and deep neural network researches are transforming the modern technology 

by many amazing advances in the recent years. The model performances and accuracy can be 

increased by following different types of methods such as max pooling, augmentation, dropout 

etc. Different types of machine learning and neural network algorithms are used to solve 

computer vision problem.  
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  CHAPTER 3 

   Object Detection Models 

 

3.1 Overview 

This chapter discusses the different object detection models that utilize convolutional neural 

networks to detect objects. In particular, this chapter describes the Faster RCNN and SSD 

models that combine CNNs with region proposal classification and Single Shot Multi Box 

detector respectively. 

 

3.2 Region-based Convolutional Neural Network (R-CNN) 

The R-CNN model [21] proposal intuitively begin with the region search and then perform the 

classification using the selective search [14] method to extract 2000 regions from the image to 

capture object location. These 2000 region proposals are warped into a square and fed into a 

convolutional neural network that produces a 4096-dimensional feature vector as output. The 

CNN acts as a feature extractor and the output dense layer consists of the features extracted 

from the image and the extracted features are fed into an SVM to classify the presence of the 

object within that candidate region proposal. Figure 3.1 presents the architecture of R-CNN 

where different region of an input image re-extracted, wrapped and convolved to generate 

feature vectors 

 

                 Figure 3.1: The architecture of R-CNN [21]. 
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A linear regressor is used to adapt the shapes of the bounding box for a region proposal and to 

reduce the localization errors. In addition to predicting the presence of an object within the 

region proposals, the algorithm also predicts four values which are offset values to increase the 

precision of the bounding box. For example, given a region proposal, the algorithm would have 

predicted the presence of a person but the face of that person within that region proposal could 

have been cut in half. Therefore, the offset values help in adjusting the bounding box of the 

region proposal. Figure 3.2 shows the RCNN work flow where the output of each convolutional 

networks is fed into SVM and bounding box regressor. 

 

           

                Figure 3.2: Region-based Convolution Network [29]. 

 

The CNN model in [29] is trained on the 2012 ImageNet dataset of the original challenge of 

image classification. It is fine-tuned using the region proposals corresponding to an IoU greater 

than 0.5 with the ground-truth boxes. Two versions are produced, one version is using the 2012 

PASCAL VOC dataset and the other the 2013 ImageNet dataset with bounding boxes. The 

SVM classifiers are also trained for each class of each data set. The best R-CNNs models have 

achieved a 62.4% mAP score over the PASCAL VOC2012 test dataset (22.0 points increase 

w.r.t. the second position result on the leader board) and a 31.4% mAP score over the 2013 

ImageNet dataset (7.1 points increase w.r.t. the second position result on the leader board) [11]. 

There are some drawbacks in RCNN model: it still takes a huge amount of time to train the 

network as it would have to classify 2000 region proposals per image [21]; it cannot be 

implemented real time as it takes around 47 seconds for each test image; the selective search 

[14] algorithm is a fixed algorithm and no learning is happening at that stage and it is not 

appropriate for real time region proposals application. 
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3.3 Fast Region-based Convolutional Network (Fast R-CNN) 

Girshick et. al. [21] solved some of the drawbacks of R-CNN to build a faster object detection 

algorithm and it was called Fast R-CNN [11]. The approach is similar to the R-CNN algorithm. 

But, instead of feeding the region proposals to the CNN, the input image is fed to the CNN to 

generate a convolutional feature map. From the convolutional feature map, it identifies the 

region of proposals and warp them into squares by using a RoI pooling layer and reshape them 

into a fixed size so that it can feed into a fully connected layer. From the RoI feature vector, 

SoftMax layer is used to predict the class of the proposed region and the offset values for the 

bounding box. The work flow of Fast RCNN model is shown in Figure 3.3. 

 

                  Figure 3.3: The architecture of Fast R-CNN [11]. 

 

The reason “Fast R-CNN” is faster than R-CNN is because it does not require to feed 2000 

region proposals to the convolutional neural network every time [11]. Instead, the convolution  

 

           Figure 3.4: Region-based Fast Convolution Network [29]. 
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operation is done only once per image and a feature map is generated from it; then region of 

interest is applied as shown in Figure 3.4. The best Fast R-CNNs have reached mAP scores of 

70.0% for the 2007 PASCAL VOC test dataset, 68.8% for the 2010 PASCAL VOC test dataset 

and 68.4% for the 2012 PASCAL VOC test dataset [11]. 

   

3.4 Faster Region-based Convolutional Neural Network (Faster R-

CNN) 

Faster R-CNN works to combat the somewhat complex training pipeline that both R-CNN [21] 

and Fast R-CNN[11] exhibited. The same authors [11] insert a region proposal network (RPN) 

after the last convolutional layer. This network is able to just look at the last convolutional 

feature map and produce region proposals from that. From that stage, the same pipeline as R-

CNN is used (ROI pooling, FC, and then classification and regression heads). Faster R-CNN, 

is composed of two networks: region proposal network (RPN) for generating region proposals 

and a network using these proposals to detect objects. The entire system is a single, unified 

network for object detection. The main different here with Fast R-CNN is that the later uses 

selective search [14] to generate region proposals. The time cost of generating region proposals 

is much smaller in RPN than selective search, when RPN shares the most computation with the 

object detection network. Briefly, RPN ranks region boxes (called anchors) and proposes the 

ones most likely containing objects  [29]. Figure 3.5 shows the work flow of Faster RCNN 

model and how anchors are used to detect objects. 

 

              Figure 3.5: An illustration of Faster R-CNN model [5]. 
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Anchor is a box which plays an important role in Faster R-CNN. In the default configuration 

of Faster R-CNN, there are 9 anchors at a position of an image. An anchor is a combination of 

sliding window centre, scale, ratio. For example, 3 scales and 3 ratios for k=9 anchors at each 

sliding position. The sheer size is hardly smaller than the combination of sliding window and 

pyramid [29]. This is why, it has a coverage as good as other state of the art methods. 

The bright side here is that region proposal network can be used from the method in Fast RCNN 

[11] to significantly reduce number. When the anchor boxes are detected, they are selected by 

applying a threshold over the “objectness” score to keep only the relevant boxes. These anchor 

boxes and the feature maps computed by the initial CNN model feeds a Fast R-CNN model 

[11]. Faster R-CNN uses RPN to avoid the selective search [14] method, it accelerates the 

training and testing processes, and improve the performances using iterative process [5]. 

The best Faster R-CNNs have obtained mAP scores of 78.8% over the 2007 PASCALVOC 

test dataset and 75.9% over the 2012 PASCAL VOC test dataset. The model has been trained 

with PASCAL VOC and COCO datasets. This models is 34 times faster than the Fast R-

CNN[5][11] 

 

3.5 Single Shot MultiBox Detector (SSD) 

Single-Shot MultiBox Detector model is developed to predict all at once with the bounding 

boxes and the class probabilities with end-to-end CNN architecture. Single Shot means that the 

input image is observed at once and the tasks of object localization and classification are done 

in a single forward pass of the network. MultiBox is the name of a technique for bounding box 

regression developed by Szegedy et al [15] and detector is an object detector network that also 

classifies those detected objects. The model takes an image as input which passes through 

multiple convolutional layers with different sizes of filter (5x5 ,3x3 and 1x1). Feature maps 

from convolutional layers at different position of the network are used to predict the bounding 

boxes. They are processed by a specific convolutional layer with 3x3 filters called extra 

featurelayers to produce a set of bounding boxes like to the anchor boxes of the Fast RCNN[11]. 

Each box has 4 parameters: the coordinates of the centre, the width and the height.  
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     Figure 3.6: Architecture of Single Shot MultiBox detector (input is 300x300x3) [15] 

 

At the same time, it produces a vector of probabilities corresponding to the confidence over 

each class of object. Every convolution layers have individual classifier for prediction and 

connected to last stage separately as shown in Figure 3.6. The input image is rescaled in every 

convolution layer for better detection and SSD model can perform 8732 detections per class. 

 

 

Figure 3.7: SSD Framework. (a) The model takes an image and its ground truth (GT) bounding 

boxes. Small sets of boxes with different aspect ratios are fixed by the different feature map (b) 

and (c) [15]. 

 

Figure 3.7 shows the bounding box that describes the ground truth and features are extracted 

from the ground truth area. During training, the box localizations are modified to best match 
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the ground truth. The Non-Maximum Suppression method is also used at the end of the SSD 

[15] model to keep the most relevant bounding boxes with the help of IoU technique. The 

maximum coverage area of ground truth by bounding box give the maximum IoU score. The 

maximum IoU scoring bounding box is kept and other boxes are deleted.  

 

3.6 Summary 

Faster RCNN and Single Shot MultiBox Detector models are popular object detector models 

in deep learning and computer vision field. Faster RCNN uses the region proposal technique 

where SSD uses the single forward path multi box technique. Both models can be used in real 

time situation but SSD model with sacrificing some accuracy is Faster than RCNN model. This 

is, because, computation cost of SSD model is less than Faster RCNN model. 
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  CHAPTER 4 

   Prerequisite Dependencies and Environment Setup 

 

4.1 Overview  

In this chapter, a discussion is provided about software and hardware required to complete the 

project and environment setup for object detection model. 

 

4.2 Prerequisite of Software and Hardware 

This project used several software libraries, packages and programs to utilize machine learning. 

Python was the choice of programming language, and TensorFlow was used for the deep 

learning computations, which in turn has a list of dependencies. Anaconda IDE consisting of 

Jupiter notebook and spyder are used to implement the idea easily. TensorFlow offers a version 

for CPU usage and another for GPU; this project used the GPU version. This version requires 

extra programs from the GPU designer NVIDIA, such as CUDA 9.0 Toolkit, cuDNN 7.0.5 and 

their GPU drivers. So far, NVIDIA is the leading GPU designer for deep learning (also crypto 

mining and other similar high complex tasks) since they also write programs that are 

compatible with their cards that enable much of this capacity. The card used for this project 

was a NVIDIA GeForce mx150. 

 

4.3 Environment setup 

To install tensorflow in GPU, the flowing steps were carried out: 

1) Prerequisite tools: 

• Nvidia Graphics Card 

• Anaconda with python 3.6 (or 3.5) 

• CUDA Tool kit (version 9.1) 

• CuDNN (version 7.0.5) 
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2) CUDA Tool Kit [28] installation: 

• A user profile account has been created in Nvidia website [28] to download CUDA 

Version 9.1 

• CUDNN 7.0.5 has also downloaded for CUDA tool kit 9.1 

• After downloading CUDA 9.1, it has installed in the PC 

• An environment variable path is created for CUDA by adding following paths: 

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\bin 

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\libnvvp 

C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v9.1\extras\ 

CUPTI\libx64 

• CUDNN zip file has been extracted and a path is added to the bin folder. For 

example, 

     C:\cuda\bin 

3) It is required to update the GPU driver if needed  

4) Anaconda is downloaded [38] with Python 3.7 and installed in PC 

5) Anaconda environment and tensorflow installation: 

• A virtual environment is created named tensorflow_gpu by invoking the 

following command: 

C:> conda create -n tensorflow_gpu pip python=3.5  

• tensorflow_gpu environment is activated by issuing the following command: 

C:> activate tensorflow_gpu 

•  As result, the prompt is changed to (tensorflow_gpu)C:>   

•  GPU version of TensorFlow is installed by issuing the following command on 

a single line: 

(tensorflow_gpu)C:> pip install --ignore-installed --upgrade tensorflow-gpu 

 

6) Testing the installation process: 

• Anaconda prompt is opened and commend is run by typing python 

• When interpreter opens, the following commands are issued: 

>>> import tensorflow as tf 

  >>> hello = tf.constant('Hello, TensorFlow!') 

  >>> sess = tf.Session() 
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  >>> print(sess.run(hello)) 

the output is: hello, TensorFlow! 

That means tensorflow is installed correctly.  

7) Other necessary packages are installed by issuing the following commands: 

(tensorflow_gpu) C:\> conda install -c anaconda protobuf 

(tensorflow_gpu) C:\> pip install lxml 

(tensorflow_gpu) C:\> pip install Cython 

(tensorflow_gpu) C:\> pip install jupyter 

(tensorflow_gpu) C:\> pip install matplotlib 

(tensorflow_gpu) C:\> pip install pandas 

(tensorflow_gpu) C:\> pip install opencv-python 

 

8) Downloading process of TensorFlow Object Detection API repository from GitHub: 

A working directory is created where TensorFlow object detection framework as well 

as training images, training data, trained classifier, configuration files, and everything 

else needed for the object detection classifier are kept. The full TensorFlow object 

detection API repository is downloaded from https://github.com/tensorflow/models by 

clicking the “Clone or Download” button and downloading the zip file. The zip file 

named model (model master) is extracted into working directory folder. The objection 

models are downloaded from tensorflow model zoo following this link  

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/de

tection_model_zoo.md 

9) A PYTHONPATH variable is created that points to the \models, \models\research, and 

\models\research\slim directories. It is done by issuing the following commands: 

(tensorflow_gpu)C:\>set PYTHONPATH=C:\tensorflow_gpu\models; 

C:\tensorflow_gpu \ models\research;C:\tensorflow_gpu\models\research\slim 

10)  The Tensorflow Object Detection API uses Protobufs to configure model and training 

parameters. Before the framework can be used, the Protobuf libraries is compiled. 

Every .proto file in the \object_detection\protos directory is called out individually by 

the command. In the Anaconda Command Prompt, by changing directories to the 

\models\research\ object_detection directory and the following command is issued: 

“protoc object_detection/protos/*.proto --python_out=.” 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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Finally, the following commands are run from the C:\tensorflow_gpu\models\research 

directory: 

(tensorflow) C:\tensorflow_gpu\models\research> python setup.py build 

(tensorflow) C:\tensorflow_gpu\models\research> python setup.py install 

 

11) The TensorFlow Object Detection API is now all set up to use pre-trained models for 

object detection, or to train a new one. The installation is verified by launching the 

object_detection_tutorial.ipynb script with Jupyter. From the \object_detection 

directory, issuing this command: 

(tensorflow_gpu)C:\tensorflow_gpu\models\research\object_detection>jupyter 

notebook object_detection_tutorial.ipynb 

 

This opens the script with default web browser and allows to step through the code one 

section at a time. It can be stepped through each section by clicking the “Run” button 

in the upper toolbar. The output of this API would be objects surrounding box as shown 

in the Figure 4.1. 

 

                   Figure 4.1: Output of objection API 

 

4.4 Summary 

It is important to set up the system accurately to run the object detection API. Every command 

step should follow correctly to complete the procedures. Moreover, Nvidia GPU configuration 

is mandatory to execute the model because the more powerful GPU  is required less time to 

train a model. 
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   CHAPTER 5 

              Practical Implementation    

 

5.1 Overview 

In this chapter, the overall working procedure are discussed gradually. How images are labelled 

and how to generate TF record and configure classifier are described step by step. 

 

5.2 Image Gather and Labelling 

There are many image data sets available online such as COCO, Pascal VOC etc. In order to 

create custom object recognized classifier, images from 4 objects such as person, watch, cell 

phone, and book are gathered as training data set. Total 400 images are collected from four 

objects and divided into two parts as training and test data set where 70 percent for training and 

30 percent for test from each object. First of all, it is required to label the images to classify by 

the object detection. LabelImage [37] is an easy and great tool for graphical image annotation 

shown in Figure 5.1 which can be downloaded from GitHub link [37]. 

     

                   

  (a)                                (b) 

                   Figure 5.1(a) and (b): Labelling the image 
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One has to download and install LabelImg and next one, has to point it to \images\train 

directory, and then,   draw a box around each object in each image. The process is repeated 

for all the images in the \images\test directory. 

LabelImg saves a .xml file containing the label data for each image. These .xml files will be 

used to generate TFRecords, which are one of the inputs to the TensorFlow trainer. For each 

labelled image, there will be one .xml file in the \test and \train directories. Moreover, it can be 

checked if the size of each bounding box is correct by running sizeChecker.py by using the 

following command: 

(tensorflow_gpu)C:\tensorflow_gpu\models\research\object_detection> 

python sizeChecker.py –move 

 

5.3 Generating Tensorflow Record 

When images labelling is completed, it generates .xml file with information of every images. 

It requires a TFRecords that serve as input data to the TensorFlow training model. For this 

purpose, the xml_to_csv.py and generate_tfrecord.py scripts are used to work with our 

directory structure. First, the image .xml data are used to create .csv files containing all the data 

for the train and test images. From the \object_detection folder, the following command is 

issued in the Anaconda command prompt: 

(tensorflow_gpu)C:\tensorflow_gpu\models\research\object_detection>python xml_to_csv.py 

This creates a train_labels.csv and test_labels.csv file in the \object_detection\images folder. 

Next, it is required to change the label map in generate_tfrecord.py file starting at line 31, 

where each object is assigned an ID number. This same number assignment is used when 

configuring the labelmap.pbtxt file in following way: 
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Then, to generate the TFRecord files, these following commands are issued from the 

\object_detection folder: 

pythongenerate_tfrecord.py --csv_input=images\train_labels.csv --image_dir=images \train -

-output_path=train.record 

python generate_tfrecord.py --csv_input=images\test_labels.csv --image_dir=images \test --

output_path=test.record 

These generate a train.record and a test.record file in \object_detection. These will be used to 

train the new object detection classifier. 

 

5.4 Create Label Map 

The last thing to do before training is to create a label map and edit the training configuration 

file. The label map tells the trainer what each object is by defining a mapping of class names 

to class ID numbers. Use a text editor to create a new file and save it as labelmap.pbtxt in the 

C:\tensorflow1\models\research\object_detection\ training folder. (it is necessary to keep the 

file type is .pbtxt, not .txt ). In the text editor, the label map is created in following way for 4 

objects detector: 

 

 

5.5 Configure Classifier 

Finally, the object detection training pipeline must be configured. It defines which model and 

what parameters will be used for training. This is the last step before running training. 

It is required to navigate at C:\tensorflow_gpu\models\research\object_detection\samples\ 

configs and copy the faster_rcnn_inception_v2_pets.config file (the choosing model ) into the 
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\object_detection\training directory. Then, open the file with a text editor. There are several 

changes to make to the .config file, mainly changing the number of classes and examples, and 

adding the file paths to the training data. 

The following changes are required to the faster_rcnn_inception_v2_pets.config file. Note: The 

paths must be entered with single forward slashes (NOT backslashes), or TensorFlow will give 

a file path error when trying to train the model. Also, the paths must be in double quotation 

marks ( " ), not single quotation marks ( ' ). The following changes are made to configure the 

classifier: 

• Line 9. It is required to change num_classes to the number of different objects for the 

classifier to detect. For the above basketball, shirt, and shoe detector, it would be 

num_classes : 4  

• Line 110. It is required to change fine_tune_checkpoint to: 

 

fine_tune_checkpoint: 

"C:/tensorflow_gpu/models/research/object_detection/faster_rcnn_inception_v2_coco

_2018_01_28/model.ckpt" 

 

• Lines 126 and 128. In the train_input_reader section, change input_path and 

label_map_path to: 

 

input_path:  "C:/tensorflow_gpu/models/research/object_detection/train.record" 

 

label_map_path: 

"C:/tensorflow_gpu/models/research/object_detection/training/labelmap.pbtx" 

 

• Line 132. It is required to change num_examples to the number of images that are in 

the \images\test directory. 

• Lines 140 and 142. In the eval_input_reader section, change input_path and 

label_map_path to: 

 

input_path : 

"C:/tensorflow1/models/research/object_detection/test.record" 
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label_map_path: 

"C:/tensorflow1/models/research/object_detection/training/labelmap.pbtxt" 

File should be saved after the changes and the training job is all configured and ready to go. 

 

5.6 Training the Classifier  

From the \object_detection directory, the following command needs to be issued to begin 

training: 

python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ 

faster_rcnn_inception_v2_pets.config 

If everything has been set up correctly, TensorFlow will initialize the training. The initialization 

can take up to 30 seconds before the actual training begins. When training begins, it almost 

will look like Figure 5.2. 

     

    Figure 5.2: Starting part of training screen  

Each step of training reports the loss. It will start high and get lower and lower as training 

progresses. For this training on the Faster-RCNN-Inception-V2 model, it started at about 3.0 

and quickly dropped below 0.8. The loss numbers will be different if a different model is used. 

MobileNet-SSD starts with a loss of about 20, it should be trained until the loss is consistently 

under 2. 

The progress of the training job can be viewed by using TensorBoard. To do this, by  opening 

the Anaconda Prompt with activation of virtual environment following command should be 

issued from C:\tensorflow_gpu\models\research\object_detection directory. 
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(tensorflow_gpu)C:\tensorflow_gpu\models\research\object_detection>tensorboard --

logdir=training 

This will create a webpage on local machine at PCName:6006, which can be viewed through 

a web browser. The TensorBoard page provides information and graphs that show how the 

training is progressing. One important graph is the Loss graph, which shows the overall loss of 

the classifier over time. 

 

 

Figure 5.3: Tensor board display on browser 

The training routine periodically saves checkpoints about every five minutes. The training can 

be terminated by pressing Ctrl+C in the command prompt window. It is good to typically wait 

until just after a checkpoint has been saved to terminate the training. The checkpoint at the 

highest number of steps will be used to generate the frozen inference graph. 

 

5.7 Export Inference Graph 

When the training is completed, the last step is to generate the frozen inference graph (.pb file). 

From the \object_detection folder, the following command is issued, where “XXXX” in 

“model.ckpt-XXXX” is replaced with the highest-numbered .ckpt file in the training folder: 
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python export_inference_graph.py --input_type image_tensor --pipeline_config_path 

training/faster_rcnn_inception_v2_pets.config --trained_checkpoint_prefix training/ 

model.ckpt-XXXX --output_directory inference_graph  

This creates a frozen_inference_graph.pb file in the \object_detection\inference_graph folder. 

The .pb file contains the object detection classifier. 

 

5.8 Main Code  

The code can be dissected in to smaller parts for clear understanding (see Appendix II for full 

code). First comes the different libraries and packages that are needed for the code. The 

following libraries (line 1 to line 7) like numpy, tensorflow, open cv, object detection utils etc. 

are included for the code. 

 

The next following part (line 12 to line 27) are variables that will be used in the document, 

such as filenames and paths for the model and label map. The reason for having paths and 

names separate like this is because it makes it possible to easily switch models by simply 

changing the filenames at the start of the file.  

 

With the basics covered, next comes the main part of the code (line 31 to line 37) that is run. 

First the model is loaded into the memory, and a TensorFlow session is initiated. 
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With the use of the library called CV2 in following code (line 42 to line 54), a video feed can 

be opened, with the window size of 800 by 600 pixels. A package with FPS tracking is also 

started. 

 

np.expand_dims() expand the dimension since the model expects images to have shape 

[1,None,None,3]  

Afterwards 5 tensors are called from the graph with the TensorFlow package (tf.Tensor) (line 

60 to line 74). This is the information that will be used for the detection. Next the object 

detection API is used to do the object detection and identification, the variables that was created 

on line 72-74 is used and will return updated information. 
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With the help of numpy and another TensorFlow utility (line 79 to line 86) that creates an 

overlay on top of the original frame information that was gathered through TensorFlow. It 

draws a box around the object that was found, writes what type of object it is and the confidence 

that said identification is correct. There are also some additional settings like the thickness of 

the border and format of the coordinates. The function does not provide an easy way to change 

fonts. So, it is needed to open the file where the visualize_boxes_and_labels_on_image_array 

method was written and manually changed the font with some hardcode. Lastly, the newly 

created frame is returned and subsequently shown to the user. 

 

 

 

5.9 Summary 

How the object detector model is implemented practically is described in this chapter 

completely. There are some procedures strictly followed from image labelling to model training. 

Tensor board shows the update of training information. 
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  CHAPTER 6 

       Evaluation  

 

6.1 Overview 

This chapter describes the evaluation part of the object detection models. The total loss curve 

is shown as the metric of evaluation. The training and testing parts are discussed separately. 

 

6.2 Training  

This section provides the discussion about training and testing accuracy of mobileNet SSD and 

Faster RCNN inception v2 pre-trained model. During the training, Tensorboard shows the 

performance of every model in graphical representation. Figure 6.1 shows the total loss of SSD 

model. In this model average loss is reduced to below 1.5 after completing 25 thousand steps. 

To complete those training steps, it takes approximate 6 hours and 30 minutes. 

  

Figure 6.1: Total loss of mobileNet SSD model 

Total loss of Faster RCNN model shown in Figure 6.2, is reduced to below 0.1 by completing 

almost 17 thousand steps within 3 hours training. 
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  Figure 6.2: Total loss of Faster RCNN inception model v2 

6.3 Testing 

When training is completed both models are tested through camera from laptop. The testing 

device has the same configuration as training device. The output of the two classifier models 

are shown in the Figure 6.3 and Figure 6.4. Faster R-CNN model can successfully detect the 

all objects with high score where SSD mobileNet cannot detect all objects. So, accuracy of the 

RCNN model is higher than SSD model in this scenario. 

                    

                     Figure 6.3: Faster RCNN inception model 
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                         Figure 6.4: SSD mobileNet model 

 

By comparing these two models, it has been shown that Faster RCNN model is more powerful 

than SSD model. It takes significantly less time and less steps to achieve more accuracy than 

SSD model. During testing, Faster RCNN model can detect all objects accurately where SSD 

model fails to detect some objects. This is because, Faster RCNN model has low training 

accuracy than SSD model. Another reason is camera resolution; camera of this laptop is not 

good in resolution. That’s why, model sometimes fails to classify the objects. Faster RCNN 

model is slightly slower than SSD model in real time response. The accuracy of both the models 

can be increased by increasing training data and training period. 

 

6.4 Summary 

This project has been successfully run to detect and recognize the object in front of the camera 

module in both trained models. Any model can be used to train object detection classifier based 

on situation. If it is planning on using the object detector on a device with low computational 

power (such as a smart phone or Raspberry Pi), SDD-MobileNet model is appropriate. If it is 

possible to run the detector on a decently powered laptop or desktop PC with Nvidia GPU, one 

of the RCNN models can be used. 
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 CHAPTER 7 

  Conclusion and Future work 

 

7.1 Conclusion  

In this project, mobileNet SSD and Faster RCNN object detection models are studied. 

Descriptions are made on how the model works and which model is better for real time object 

detection. These models can be trained with any number of object category. The accuracy can 

be increased by increasing the training period and training data set. It is better if powerful 

Nvidia GPU is available. More powerful GPU gives more cuda computing scope to get better 

result in less time. 

 

7.2 Future work 

There is a huge scope for future work for improving the application base. It is to be mentioned 

that the primary focus for the future work is not only to improve the algorithm itself, but to 

improve upon the usability and application itself. A very short list of probable and promising 

future aspect of continuing this work is mentioned below: 

 

• Face Recognition 

• Human movement detection and recognition 

• Human facial expression recognition 

• Hand digit recognition 

• Traffic signal recognition and monitor 

• Sign language recognition  

• Gender classification  
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APPENDIX I: Main Code  

File name: object_detection_spyder.py 

import numpy as np 

import os 

import six.moves.urllib as urllib 

import sys 

import tarfile 

import tensorflow as tf 

import zipfile 

from collections import defaultdict 

from io import StringIO 

from PIL import Image 

import cv2 

from utils import label_map_util 

from utils import visualization_utils as vis_util 

 

# # Model preparation  

MODEL_NAME = 'object_detection_graph' 

CWD_PATH = os.getcwd() 

 

# Path to frozen detection graph. This is the actual model that is used for the object detection. 

PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' 

#PATH_TO_CKPT = 

os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb') 
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# List of the strings that is used to add correct label for each box. 

PATH_TO_LABELS = os.path.join('training', 'detectionlabel.pbtxt') 

# Grab path to current working directory 

NUM_CLASSES = 4 

 

 

# ## Load a (frozen) Tensorflow model into memory. 

detection_graph = tf.Graph() 

with detection_graph.as_default(): 

  od_graph_def = tf.GraphDef() 

  with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: 

    serialized_graph = fid.read() 

    od_graph_def.ParseFromString(serialized_graph) 

    tf.import_graph_def(od_graph_def, name='') 

 

# ## Loading label map 

label_map = label_map_util.load_labelmap(PATH_TO_LABELS) 

categories = label_map_util.convert_label_map_to_categories(label_map, 

max_num_classes=NUM_CLASSES, use_display_name=True) 

category_index = label_map_util.create_category_index(categories) 

 

# ## Helper code 

def load_image_into_numpy_array(image): 

  (im_width, im_height) = image.size 
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  return np.array(image.getdata()).reshape( 

      (im_height, im_width, 3)).astype(np.uint8) 

 

# # Detection 

cap = cv2.VideoCapture(0) 

with detection_graph.as_default(): 

    with tf.Session(graph=detection_graph) as sess: 

        ret=True 

        while (ret): 

            ret, image_np = cap.read() 

# Expand dimensions since the model expects images to have shape: [1, None, None, 3] 

            image_np_expanded = np.expand_dims(image_np, axis=0) 

              image_tensor=detection_graph.get_tensor_by_name('image_tensor:0') 

 # Each box represents a part of the image where a particular object was detected. 

            boxes = detection_graph.get_tensor_by_name('detection_boxes:0') 

        # Each score represent how level of confidence for each of the objects. 

        # Score is shown on the result image, together with the class label. 

            scores = detection_graph.get_tensor_by_name('detection_scores:0') 

            classes = detection_graph.get_tensor_by_name('detection_classes:0') 

            num_detections = detection_graph.get_tensor_by_name('num_detections:0') 

              # Actual detection. 

            (boxes, scores, classes, num_detections) = sess.run( 

                  [boxes, scores, classes, num_detections], 

                  feed_dict={image_tensor: image_np_expanded})               
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# Visualization of the results of a detection. 

            vis_util.visualize_boxes_and_labels_on_image_array( 

                  image_np, 

                  np.squeeze(boxes), 

                  np.squeeze(classes).astype(np.int32), 

                  np.squeeze(scores), 

                  category_index, 

                  use_normalized_coordinates=True, 

                  line_thickness=8) 

            cv2.imshow('object detection', cv2.resize(image_np, (800,600)))   

            if cv2.waitKey(25) & 0xFF == ord('q'): 

                cv2.destroyAllWindows() 

                cap.release()                

                break 
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APPENDIX II: Common Error 

 

1. ModuleNotFoundError: No module named 'deployment' 

This error occurs when object_detection_tutorial.ipynb or train.py are tried to run but don’t 

have the PATH and PYTHONPATH environment variables set up correctly. Then, issue 

“activate tensorflow_gpu” to re-enter the environment.It is required to use “echo %PATH%” 

and “echo %PYTHONPATH%” to check the environment variables and make sure that are 

set up correctly. Also, make sure to have run these commands from the \models\research 

directory: setup.py build and setup.py install 

2. ImportError: cannot import name 'preprocessor_pb2' 

ImportError: cannot import name 'string_int_label_map_pb2'(or similar errors with 

other pb2 files) 

This occurs when the protobuf files (in this case, preprocessor.proto) have not been 

compiled. Re-run the protoc command. Check the \object_detection\protos folder to make 

sure there is a name_pb2.py file for every name.proto file. 

3. ‘protoc’ is not recognize as internal and external command 

This occurs when following command is  tried to run “protoc 

object_detection/protos/*.proto --python_out=.” 

It isrequired to give the full path where protoc is located in bin folder then run the command. 

4. Unsuccessful TensorSliceReader constructor: Failed to get "file path" … The 

filename, directory name, or volume label syntax is incorrect. 

This error occurs when the filepaths in the training configuration file 

(faster_rcnn_inception_v2_pets.config or similar) have not been entered with backslashes 

instead of forward slashes. Open the .config file and make sure all file paths are given in 

the following format: “C:/path/to/model.file” 

5. ValueError: Tried to convert 't' to a tensor and failed. Error: Argument must be a 

dense tensor: range(0, 3) - got shape [3], but wanted []. 
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The issue is with models/research/object_detection/utils/learning_schedules.py Currently 

it is 

rate_index = tf.reduce_max(tf.where(tf.greater_equal(global_step, boundaries), 

                 range(num_boundaries),[0] * num_boundaries)) 

Wrap list() around the range() like this: 

rate_index = tf.reduce_max(tf.where(tf.greater_equal(global_step, boundaries), 

                list(range(num_boundaries)),[0] * num_boundaries)) 


