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AB S T R A C T  
 

Optimum design of a two-span continuous post-tensioned prestressed concrete I-girder 
of a bridge super-structure is presented in the thesis. The objective is to minimize the 
total cost of the girders of the bridge considering the cost of materials, fabrication and 
installation. The design variables considered for the cost minimization of the girders of 
the bridge, are girder spacing, various cross sectional dimensions of the girder, number 
of st rands p er t endon, number of  t endons, t endon configuration, s lab thickness a nd 
ordinary reinforcement for de ck s lab a nd gi rder. E xplicit constraints on t he de sign 
variables are considered on the basis of geometric requirements, practical dimension for 
construction a nd c ode re strictions. Im plicit c onstraints f or d esign a re c onsidered 
according to AASHTO LRFD 2007.  
 
The pr esent opt imization pr oblem i s characterized by having m ixed c ontinuous, 
discrete and integer design variables and having multiple local minima. Hence a global 
optimization a lgorithm called EVOP, is  adopted which is  capable of locating directly 
with high probability the global minimum without any requirement for information on 
gradient or sub-gradient. A computer program is developed to formulate optimization 
problem which consists of mathematical expression required for the design and analysis 
of t he br idge s ystem, three f unctions: a n obj ective f unction, a n implicit constraint 
function a nd a n e xplicit c onstraint function and i nput c ontrol pa rameters required by 
the optimization algorithm. To determine the design moment and shear for the two-span 
continuous girder a t va rious pos itions of  t he s pan, the c omputer pr ogram w as 
incorporated with computer application of s tiffness method to solve the indeterminate 
girder. No generalized e quation for i nfluence l ine of i ndeterminate g irders w as u sed, 
rather coordinates of the non-linear influence line were determined using basic stiffness 
method co ncept an d w ere u sed t o d etermine design l ive l oad m oment a nd s hear. 
Finally, to solve the problem, the program is linked to the optimization algorithm.  
 
As constant design parameters have influence on the optimum design, the optimization 
approach is p erformed f or v arious su ch p arameters r esulting i n considerable cost 
savings. Parametric st udies are performed for va rious g irder s pans ( 40 m , 60 m a nd 
80m), girder concrete strengths (40 MPa and 50 MPa) and three different unit costs of 
the m aterials i ncluding fabrication and i nstallation. From t he parametric study, i t is 
found t hat, optimum g irder d epth i ncreases w ith i ncrease in co st o f s teels. On a n 
average, girder depth increases 22% with increase in cost of steel for 40 MPa concrete. 
On the other hand, for 50 MPa concrete, the average increase in girder depth comes out 
to be  19 %. Optimum number of  s trand is higher i n hi gher span g irder. N umber of  
strand decreases 17% with increase in cost of steel for 40 MPa concrete. In case of 50 
MPa co ncrete, t he av erage d ecrease i n n umber o f st rand is 16%. Girder s pacing is 
found t o be  higher i n s maller s pan t han l arger s pan girder and optimum deck sl ab 
thickness comes o ut to be  higher i n s horter s pan a s t he gi rder s pacing i s hi gher in 
shorter span. 
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CHAPTER 1 

                                                                       INTRODUCTION                                                                     

 

1.1   General 

In structural design process, the main objective of the designer is to design a structure 

that w ill p erform its  d esired performance i n t erms o f st rength ( so t hat saf ety is 

assured) and serviceability (so that the desired use of the structure is assured). These 

main two objectives of the designer should be achieved at as low a cost as possible (so 

that eco nomy i s assu red). But i n th e tra ditional p rocess o f s tructural d esign, the 

designer focuses mainly on attaining the first two objectives i.e. on attaining required 

strength and ser viceability and o ften sacr ifices t he economy i ssue. It i s not that the 

designer w illingly a voids to r each the de sign which w ill result i n t he l owest c ost, 

rather he avoids this attempt because it is a very slow, difficult, tedious and therefore 

costly pr ocess. T he reason of  not making a n a ttempt t o reach most c ost ef fective 

design is tried to be focused on in the following writings. The discussion is done from 

the perspective of bridge design. 

1.2   Difficulties in Attaining the Most Cost Optimum Design 

Suppose it is desired to construct a structure (bridge) across a river (Fig. 1.1, Fig. 1.2, 

and Fig. 1.3). The width of the bridge (no. of lanes) is fixed. There are many types of 

options (i.e. t ype of  br idges) t o b e chosen f or t his pur pose. F or t he p resent c ase, a  

girder type br idge ha s be en c hosen. A  gi rder b ridge t ransfers load t hrough 

girder/beam, deck/slab, pier and footing system. For the above case, as the width of  

the riv er is  s mall, n o i ntermediate p ier a nd f ooting is  c onsidered in between tw o 

abutments at two banks. The target is now to design the girders and the slab/deck. 
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Fig. 1.1 River cross section 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 Girders / Beams   

 
Fig. 1.3 Deck on girders                              
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             Fig. 1.4 Increasing span length               Fig. 1.5 Increasing no. of supports 

Now, i t is seen  f rom Fig 1.4 a nd F ig. 1.5  that there c an be  many c ombinations of 

girder a nd d eck t ype to satisfy the required de sign s trength and s erviceability. It i s 

evident that if the spacing between the girders is increased, the thickness of the deck 

has to be increased which will increase the cost of material. Again, if spacing between 

the girders is reduced, the thickness of the deck could be reduced which will reduce 

the cost of material. But reducing girder spacing means increased number of girders 

which will again increase the cost simultaneously. Now, determining which option is 

the best one in terms of cost-efficiency is a process of trial and error. 

For de aling w ith onl y t wo de sign va riables i .e. t hickness of de ck a nd nu mber o f 

girders makes the above problem easy to solve. But if it is considered that increasing 

number of  girder actually r educes l oad on e ach gi rder, t hen i t i s e vident that 

increasing number of girders will not add to the cost in a linear-proportionality as the 

cross section of each girder is decreasing simultaneously.  

Now, a larger bridge is considered in the following section and some other possible 

design variables are being introduced. 

Fig. 1.6 shows the end part of a large bridge showing only two supports of the bridge. 

One of the supports is the abutment at the bank and the other is the pier and footing in 

the river. 
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Fig. 1.6 End portion of a deck girder bridge system 

It can be said that, in the way girder spacing, number of girder, cross section of girder, 

and deck thickness were r elated to each o ther in t he p revious p roblem, in the same 

way, i n t his pr oblem, pi er t o pi er s pacing (span length), num ber of  pi er, p ier 

dimension, pi er de pth ( according t o r iver bo ttom pr ofile), gi rder cross s ection a re 

inter-related. 

Again, there is footing below every pier to transfer the load safely to underneath soil. 

There are various types of footing and each type has design variables of its own. The 

design of footing depends on l oad coming to it and the soil below the footing across 

the river bed. 

So, here ar e t he al ready st ated inter-related d esign v ariables o f b eam/deck-girder 

bridge system: 

 Deck/slab thickness 

 Beam/Girder dimension(cross-section) 

 Beam/Girder Spacing (i.e. no. of girder) 

 Pier to pier Spacing (i.e. span length) 

 Foundation depth 

 Foundation type/dimension 
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There can be thousands of combination of these design variables which will perform 

the desired strength and serviceability criteria pretty satisfactorily. But which option 

or combination is the most efficient in terms of cost is the point of interest.  

Traditional manual iterative ap proaches b ased o n ex perience /  h euristics o f t he 

designers w ere very p oor t o h andle s uch c omplex pr oblems. A gain, t raditional 

computer a ided opt imum design (using opt imization technique) that have been used 

so far were not efficient enough to deal with this very highly complex problem and 

could not find the global minimum point for cost. 

1.3   Background and Present State of Problem 

Prestressed Concrete (PC) I-girder Bridge systems are widely used bridge system for 

short to medium span (20m to 60m) highway bridges due to its moderate self weight, 

structural e fficiency, ease o f fabrication, fast construction, low in itial cost, long life 

expectancy, l ow maintenance an d si mple d eck r emoval & r eplacement e tc. (P CI, 

2003). In order to compete with steel bridge systems, the design of PC I-girder Bridge 

must lead to the most economical use of the materials (PCI, 1999). Large numbers of 

design variables are involved in the design process of the present bridge system. All 

the v ariables ar e r elated t o each  o ther l eading t o n umerous al ternative f easible 

designs. I n conventional de sign, br idge e ngineers f ollow a n i terative pr ocedure to 

design the prestressed I-girder bridge structure. Most design offices do not  advocate 

realistic estimate of material costs, just only satisfy all the specifications set forth by 

design codes. So there is no attempt to reach the best design that will yield minimum 

cost, weight or volume. 

A gl obal opt imization algorithm n amed E VOP ( Evolutionary O peration) ( Ghani, 

1989) was used in determining the most cost-efficient design of 30m, 40m and 50m 

long post-tensioned pre-stressed concrete I-girder bridge system (Rana, 2010). EVOP 

is c apable of lo cating d irectly w ith hi gh pr obability the gl obal m inimum. T o 

formulate the optimization problem a computer program was developed in C++. The 

optimization approach was applied on a r eal life project (Teesta Bridge, Bangladesh) 

and a 30% cost efficient design was found. 
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In t he t hesis t itled “Cost O ptimization o f P ost-Tensioned P re-stressed co ncrete I-

Girder Bridge System” (Rana, 2010), the author opt imized a s imply supported post-

tensioned p re-stressed co ncrete I-girder of br idge. Next s tep t o ev en m ore co st-

effectiveness constitutes considering the girders to be continuous. That is, taking the 

number of  span into consideration as a design variable and a lso taking into account 

the di fference i n d esign of  pi ers and f ootings i n c ase of  corresponding number o f 

spans.  

 1.4   Objectives of the Present Study 

Ahsan et al. (2012) has recently demonstrated successful use of a global optimization 

algorithm – EVOP developed by Ghani ( 1995) in c ost o ptimum de sign of  s imply 

supported post-tensioned I-girder of bridges. Simple span systems, however, can lead 

to l eakage through t he de ck a nd deterioration of  be am-ends, be arings a nd t he 

substructure. When beams a re made continuous, s tructural e fficiency and long-term 

performance can be  s ignificantly improved (PCI, 2003) . Rana e t a l. ( 2013) adopted 

EVOP to  o ptimize tw o-span pos t-tensioned br idge w hich w as made c ontinuous f or 

superimposed dead loads and l ive loads us ing deck reinforcement. The focus of  the 

present r esearch is u sing EVOP effectively in ha ndling o ptimization problems of  

prestressed bridge s tructures made continuous by pos t-tensioning which by r esisting 

the deck weight can significantly improve the structural performance of longer span 

bridges. 

Hence, objective of the present study is cost minimization of a two-span continuous 

post-tensioned p restressed co ncrete I -girder o f br idge b y a dopting opt imization 

approach to obtain the optimum value of the following design variables: 

(i) Cross-sectional dimensions of the components of the bridge superstructure 

(girder & deck slab) and 

(ii) Prestressing tendon size (number of strands per tendon), number of tendons, 

tendon arrangement & layout, ordinary reinforcement in deck slab and girder. 
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1.5 Scope and Methodology of the Study 

In the present study a cost optimum design approach of a two-span continuous post-

tensioned PC I-girder of bridge is presented considering the cost of materials, labor, 

fabrication and installation. The bridge system consists of precast girders with cast-in 

situ reinforced concrete deck. A large number of design variables and constraints are 

considered for c ost op timization of t he br idge s ystem. A  gl obal opt imization 

algorithm na med E VOP ( Evolutionary O peration) ( Ghani, 1995)  i s u sed w hich i s 

capable of  l ocating directly w ith hi gh pr obability the gl obal m inimum. T he 

optimization m ethod s olves the optimization pr oblem a nd gi ves the opt imum 

solutions.  

In t heir s tudy, Ahsan e t a l. ( 2012) a nd R ana e t a l. ( 2013) de veloped a c omputer 

program written in C ++ l anguage to fo rmulate th e o ptimization p roblem which has 

the following components: 

(i) Mathematical e xpression r equired f or t he de sign a nd a nalysis of  t he b ridge 

system,  

(ii) An obj ective f unction (it d escribes t he cost function of  t he b ridge t o be  

minimized) 

(iii) Implicit c onstraints o r design c onstraints (it d escribes t he d esign or  

performance requirements of the bridge system)  

(iv) Explicit constrains (it describes the upper and lower limit of design variables 

or parameters) and 

(v) Input control parameters for the optimization method. 

 

In the present study, the subroutines developed by Ahsan et al. (2012) and Rana et al. 

(2013) (written i n C ++ l anguage) is upda ted f or gi rder made c ontinuous by pos t-

tensioning. Considering t he gi rders t o b e c ontinuous makes t he a nalysis pa rt of  t he 

problem complicated. The design moment and shear force at different sections for a  

specific span length and number of spans cannot be found now using simpler formula, 

rather it can be found using different methods for solving indeterminate structure. In 

this study, stiffness method is used to determine the design bending moment and shear 

force a t any section of  a  continuous br idge having any number of  spans with equal 
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span length according to AASHTO specification. To make the basic stiffness method 

applicable to computer aided analysis, ‘computer application of stiffness method’ was 

used with required sequence of logic. To find out the live load and impact shear force 

and moment, i t was necessary to construct influence l ines for d ifferent sect ions. No 

general e quation of  influence line has be en us ed; r ather t he coordinate va lues of  

different points of the influence line are determined using the basic stiffness concept. 

It was necessary to consider both primary and secondary moment due to prestress for 

the pos t-tensioned c ontinuous b eam. T wo de sign c odes, na mely American 

Association of  S tate Highway a nd T ransportation O fficials ( AASHTO)-2007 for 

highway bridges and Precast/ Prestressed Concrete Institute (PCI)- PCI bridge design 

manual were followed in de sign pa rt. In t he l ast s tep, the updated C++ s ubroutines 

was linked with the EVOP algorithm written in FORTRAN language to figure out the 

most cost optimum solution for the bridge I-girders under consideration and to study 

relations a mong va rious de sign va riables a nd their ef fects o n o verall co st o f t he I-

girders. R epeating the s ame pr ocess, opt imum girder configurations of  c ontinuous 

post-tensioned bridge I-girders for different spans will be determined. 

1.6   Organization of the Thesis 

Apart from this chapter, the remainder of the thesis has been divided into six chapters. 

Chapter 2  presents l iterature r eview co ncerning p ast r esearch o n t he field o f cost 

optimization o f simply s upported PC bridge structures an d c ontinuous PC br idge 

structures. 

Chapter 3  presents the various design criteria that should be satisfied for the design 

of continuous PC I-Girder bridge structures.  

Chapter 4  presents t he i nformation a bout t he va rious f eatures of  a n optimization 

method a nd br ief de scription a bout t he pr ocedure of  global opt imization m ethod, 

EVOP, which is adopted in this study.  

Chapter 5 presents the formulation of optimization problem of the bridge and linking 

process of  o ptimization problem t o t he opt imization m ethod t o obt ain t he opt imum 

solution. 
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Chapter 6 presents the optimized results and discussions of the bridge system. 

Finally, Chapter 7 presents major conclusions and recommendation for future scopes 

of study. 
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CH A P T E R  2  

LI T E R A T U R E  RE V I E W  
 

2.1 Introduction 

In t he l ast t hree de cades, much work ha s be en done  i n s tructural opt imization, i n 

addition t o c onsiderable de velopments i n m athematical optimization. Despite t his, 

there ha s a lways be en a ga p be tween t he pr ogress of  opt imization t heory a nd its 

application to the practice of bridge engineering. In 1994, Cohn and Dinovitzer (1994) 

estimated t hat th e p ublished record o n s tructural o ptimization s ince 1960 c an 

conservatively be  pl aced a t s ome 1 50 books  a nd 2500 pa pers, th e v ast m ajority o f 

which deal w ith t heoretical a spects o f o ptimization. D ocumentation i n t heir 

comprehensive catalogue of published examples shows that very little work has been 

done in the area of optimizing concrete highway bridges.  

 

2.2 Past Research on Optimization of Prestressed Concrete Beams 

The obj ective of  most of t he pa pers publ ished on opt imization of  PC structures is  

minimization of cost of the structures. For the optimization of PC structure the general 

cost function for prestressed concrete structures considered in the past research can be 

expressed in the following form: 

 

   Cm =Ccb +Csb +Cpb +Cfb +Csbv +Cfib   (2.1) 
  
where, Cm is the total material cost, Ccb is the cost of concrete in the girder, Csb is the 

cost o f re inforcing s teel, C pb is cost o f p restressing s teel, C fb is the c ost of  t he 

formwork and  Csbv is the cost of shear steel; 

 

Goble and Lapay (1971) minimized the cost of post-tensioned prestressed concrete T-

section beams based on t he ACI code (ACI, 1963)  by us ing the gradient projection 

method ( Arora, 1 989). T he c ost f unction i ncluded the f irst four t erms of Eq. (2.1). 

They stated that the opt imum design seemed to be unaffected by t he changes in the 

cost co efficients. H owever, su bsequent researchers t o b e discussed later r ebut t his 

conclusion. 
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Naaman (1976) compared minimum cost designs with minimum weight designs for 

simply supported prestressed rectangular beams and one-way slabs based on the ACI 

code. The cost function included the first, third, and fourth terms of Eq. (2.1) and was 

optimized by a  direct search technique. He concluded that the minimum weight and 

minimum cost solutions give approximately similar results only when the ratio of cost 

of concrete per cubic yard to the cost of prestressing steel per pound is more than 60. 

Otherwise, t he m inimum c ost a pproach yi elds a m ore e conomical s olution, a nd f or 

ratios much smaller than 60 the cost optimization approach yields substantially more 

economical solutions. H e also poi nted out that f or m ost p rojects i n th e U S th e 

aforementioned ratio is less than 60. 

 

Cohn and MacRae (1984a) considered the minimum cost design of simply supported 

RC a nd pa rtially or  f ully pr e-tensioned a nd pos t-tensioned concrete b eams o f fixed 

cross-sectional g eometry su bjected t o ser viceability and u ltimate lim it s tate 

constraints i ncluding c onstraints on  f lexural s trength, deflection, duc tility, f atigue, 

cracking, a nd minimum r einforcement, ba sed on  the A CI c ode or  t he Canadian 

building code using the feasible conjugate-direction method (Kirsch, 1993). The beam 

can be  of any c ross-sectional shape subjected to di stributed and concentrated loads. 

Their c ost function is  s imilar to  Eq. (2.1). For t he e xamples co nsidered they 

concluded that fo r post-tensioned members p artial p restressing ap pears t o b e m ore 

economical than complete prestressing for a prestressing-to-reinforcing steel cost ratio 

greater than 4. F or pr etensioned b eams, on t he ot her ha nd, c omplete pre-stressing 

seems to be the best solution. For partially prestressed concrete they also concluded 

that f or a p restressing-to-reinforcing s teel c ost ra tio in th e range of  0.5 t o 6, t he 

optimal s olutions vary a little. C ohn a nd M acRae ( 1984b) performed parametric 

studies on 240 s imply s upported, r einforced, pa rtially, or  completely p re- and pos t-

tensioned prestressed concrete beams with different dimensions, depth-to-span ratios, 

and live load intensities. They concluded that, in general, RC beams are the most cost-

effective at high depth-to-span ratios and low live load intensities. On the other hand, 

completely prestressed beams are the most cost-effective at low depth-to-span ratios 

and high live load intensities. For intermediate values, partial prestressing is the most 

cost-effective option. 
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Saouma and Murad (1984) presented the minimum cost design of simply supported, 

uniformly l oaded, pa rtially pr estressed, I -shaped be ams w ith une qual flanges 

subjected t o t he c onstraints of  the 1977 A CI c ode. T he optimization p roblem was 

formulated in terms of nine design variables: six geometrical variables plus areas of 

tensile, co mpressive, an d p restressing st eel. The c onstrained opt imization pr oblem 

was transformed to an unconstrained optimization problem using the interior penalty 

function method (Kirsch, 1993) and was solved by t he quasi-Newton method. They 

found the optimum solutions for several beams with spans ranging from 6m to 42 m, 

assuming both c racked and un-cracked sections, and reported cost reductions i n t he 

range of 5% to 52 % . They also concluded that allowing cracking to occur does not 

reduce the cost by any significant measure.  

 

Linear pr ogramming methods w ere us ed by Kirsch ( 1985, 1993, and 1997 ) to  

optimize in determinate p restressed c oncrete b eams w ith p rismatic c ross sec tions 

through a  “ bounding pr ocedure”. T o s implify t he pr oblem, a  t wo-level f ormulation 

was u sed t o r educe t he p roblem si ze an d el iminate p otential n umerical d ifficulties 

encountered be cause of  t he f undamentally di fferent na ture of t he de sign va riables. 

The c oncrete di mensions w ere op timized i n one l evel, and t he tendon va riables 

(prestressing f orce an d layout co ordinates) w ere d etermined i n an other level. A s a  

first step, a lower bound on t he concrete volume was established without evaluating 

the t endon variables. T he c orresponding m inimum pr estressing f orce w as a n uppe r 

bound. S imilarly, a  l ower bound on t he pr estressing f orce w as de termined by  

assuming the maximum concrete dimensions. Based on the two bounding solutions, a 

lower boun d on t he o bjective f unction w as evaluated. T he be st of  the boundi ng 

solutions was f irst checked for optimality. I f necessary, t he search for t he optimum 

was t hen co ntinued in the r educed space o f t he co ncrete v ariables u sing a f easible 

directions t echnique. F or a ny a ssumed c oncrete di mensions, a  r educed l inear 

programming problem was solved. The process was repeated until the optimum was 

reached.  

 

Lounis a nd C ohn (1993a) presented a p restressed I -beam co st optimization m ethod 

for individual bridge components using continuous design variables. They first found 

the maximum feasible girder spacing for each of the available precast girder shapes 
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and then minimized the prestressed and nonprestressed reinforcement in the I-beams 

and deck. 

 

Lounis and C ohn (1993b) pr esented a mu lti-objective o ptimization f ormulation f or 

minimizing the cost and maximizing the initial camber of post-tensioned f loor s labs 

with s erviceability a nd ultimate lim it s tate c onstraints of t he A CI c ode. T he c ost 

objective f unction was chosen as t he primary obj ective a nd t he c amber obj ective 

function is transformed into a constraint with specified lower and upper bounds. The 

resulting s ingle optimization pr oblem was then s olved by t he pr ojected L agrangian 

method. The cost function for the slab included only the first and third terms of Eq. 

(2.1). 

 

Khaleel an d I tani (1993) p resented the mi nimum c ost de sign of  s imply s upported 

partially p restressed co ncrete u nsymmetrical I -shaped gi rders as per AC I Building 

code. T he obj ective f unction was similar to  Eq. (2.1). The s equential qua dratic 

programming method was used to solve the nonlinear optimization problem assuming 

both cracked and uncracked sections. They concluded that an increase in the concrete 

strength d oes n ot reduce t he o ptimum co st significantly, a nd hi gher strength i n 

prestressing st eel r educes t he o ptimum co st t o a cer tain extent. They claimed that 

some a mount o f r einforcing st eel facilitates t he d evelopment of c racking i n t he 

concrete, which reduces the cost of materials and improves ductility. 

 

2.3 Past Research on Cost Optimization of Simply Supported Prestressed 

Concrete Bridge Structures 

Torres e t a l. ( 1966) presented the m inimum cost d esign o f p restressed co ncrete 

highway bridges subjected to AASHTO loading by using a piecewise LP method. The 

independent de sign va riables were the num ber a nd de pth of  gi rders, prestressing 

force, and tendon eccentricity. They further defined dependent design variables as the 

spacing of girders, tendon cross sectional area, initial prestress, and the slab thickness 

and reinforcement. They claim their cost function includes the costs of transportation, 

erection, and bearings in addition to the material costs of  concrete and steel, but  do 

not give any detail. They presented results for bridges with spans ranging from  20 ft 

to 110 ft (6.1m to 33.5 m) and with widths of 25 ft (7.6 m) and 50 ft (15.2 m).  
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Using i nteger pr ogramming, J ones ( 1985) f ormulated the m inimum c ost design of  

precast, pr estressed c oncrete s imply s upported box gi rders us ed i n a m ulti-beam 

highway br idge a nd s ubjected t o t he A ASHTO ( 1977) l oading assuming t hat t he 

cross-sectional geometry and the grid work of strands are given and fixed. The design 

variables a re the concrete s trength, and the number, location and d raping of  s trands 

(moving the strands up at the end of the beam). The constraints used were release and 

service l oad st resses, ultimate m oment cap acity, cr acking moment c apacity, an d 

release camber. The cost function included only the first and third terms of Eq. (2.1). 

 

Yu e t a l. ( 1986) pr esented the m inimum co st d esign o f a p restressed concrete box 

bridge gi rder used in a  ba lanced cantilever br idge ( consisting of  two e nd cantilever 

and overhang spans and one middle simple span) based on the British code and using 

general g eometric p rogramming (Beightler a nd Phillips, 1976). T he c ost f unction 

included the m aterial co sts of c oncrete, p restressing s teel, a nd t he m etal f ormwork. 

They included the labor cost of the metal formwork, roughly as 1.5 t imes the cost of 

the material for the formwork. The design variables were the prestressing forces, the 

eccentricities, and the girder depths for all spans.  

 

Cohn and Lounis (1994) applied the above three-level cost optimization approach to 

multi-objective o ptimization of p artially an d fully p restressed concrete hi ghway 

bridges with span lengths of 10m to 15m and widths of 8m to 16 m. Their objective 

functions included the minimum superstructure cost, minimum weight of prestressing 

steel, m inimum vol ume o f c oncrete, maximum g irder s pacing, m inimum 

superstructure de pth, m aximum s pan-to-depth ratio, m aximum f easible sp an length, 

and minimum superstructure camber. For a four-lane 20m length single-span bridge, 

they c oncluded that t he voi ded s lab a nd t he pr ecast I -girder s ystems were more 

economical than the solid slab and one- and two-cell box g irders. Lounis and Cohn 

(1995a) also concluded that voided slab decks are more economical than box girders 

for short spans ( less that 20 m ) and wide decks (greater than 12 m), and s ingle-cell 

box girders were more economical for medium spans (more than 20 m) and narrow 

decks (less than 12 m ). The s ingle-cell box g irder, however, r esulted in the deepest 

superstructure, which might be a drawback when there was restriction on the depth of 

the deck. Multi-criteria cost optimization of bridge structures was further discussed by 

Lounis and Cohn (1995b, 1996).  
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Fereig (1985) l inearized t he pr oblem of  pr estressed c oncrete de sign op timization t o 

determine t he ad equacy o f a  g iven co ncrete section an d t he minimum n ecessary 

prestressing f orce. H e developed p reliminary d esign ch arts t hat co uld b e u sed to 

determine the required prestressing force for a given pretensioned, simply supported 

Canadian Precast–Prestressed Concrete Institute (CPCI) br idge girder, for any given 

span length and girder spacing.  

 

Fereig (1996) presented the minimum cost preliminary design of  s ingle span bridge 

structures consisting o f cast -in-place R C d eck and g irders based on t he AAS HTO 

code ( AASHTO, 1992 ). T he a uthor l inearized the pr oblem by a pproximating t he 

nonlinear constraints by straight lines and solves the resulting linear problem by the 

Simplex method. The author concluded that ‘it i s always more economical to space 

the g irder at  t he m aximum p ractical spacing’. Fereig ( 1999) c ompared t he r equired 

prestressing forces obtained in his latter study with those that would be obtained using 

concrete with cylinder strength of 69 MPa. It was found that using the higher concrete 

strength allowed a reduction in the prestressing force from 4 to 12% depending on the 

girder spacing and span for the example considered. 

 

Ahsan et al. (2012 )has recently demonstrated successful use of a global optimization 

algorithm – EVOP developed by G hani in cost optimum design of simply supported 

post-tensioned I-girder of bridges. Rana et al. (2013) adopted EVOP to optimize two-

span post-tensioned bridge which was made continuous for superimposed dead loads 

and live loads using deck reinforcement. 

 

2.4 Past Research on Cost Optimization of Continuous Prestressed Concrete 

Bridge Structures 

 

Kirsch (1972) presented the minimum cost design of continuous two-span prestressed 

concrete beams subjected to constraints on the st resses, pre- stressing force, and the 

vertical coordinates of the tendon by linearizing the nonlinear optimization problem 

approximately a nd s olving t he r educed l inear pr oblem by t he l inear pr ogramming 

(LP) method. H is c ost function i ncluded onl y the f irst and t hird t erms of  Eq. ( 2.1). 

Kirsch (1973) extended this work to prestressed concrete slabs. 
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Cohn and Lounis (1993a) p resented the minimum cost design o f partially and fully 

prestressed co ncrete continuous be ams a nd on e-way s labs. T he optimization was 

based o n the l imit st ate d esign and an op timization method na med projected 

Lagrangian algorithm. They simultaneously satisfied both collapse and serviceability 

limit state criteria based on the ACI code. The material nonlinearity was idealized by 

an el astoplastic co nstitutive r elationship. A  co nstant prestressing force a nd 

prestressing losses were assumed. Their cost function included the first three terms of 

Eq. (2.1). They reported that the total cost decreases with the increase in the allowable 

tensile stress. 

 

Lounis and Cohn (1993a) presented the minimum cost design of  short and medium 

span highway br idges consisting of  RC s labs on pr ecast, post-tensioned, prestressed 

concrete I -girders satisfying the serviceability and u ltimate limit s tate constraints o f 

the Ontario Highway Bridge Design Code (OHBDC, 1983). They used a three-level 

optimization approach. In the first level they dealt with the optimization of the bridge 

components including di mensions of  t he g irder c ross-sections, s lab t hickness, 

amounts of  r einforcing a nd pr estressing s teel, a nd t endon e ccentricities by  t he 

projected Lagrangian method. In the second level, they considered the optimization of 

the l ongitudinal layout such a s t he number of  s pans, r estraint t ype a nd span l ength 

ratios and transverse layout such as the number of girders and slab overhang length. 

In the third level, they considered various structural systems such as solid or voided 

slabs on precast I- or box girders. They used a sieve-search technique (Kirsch, 1993) 

for t he s econd a nd t hird l evels of  opt imization. T heir c ost f unction included the 

material costs of concrete, reinforcement, and connections at piers. They also included 

the co sts o f f abrication, t ransportation, a nd e rection of  gi rders a ssuming a  c onstant 

value per length of the girder. They concluded by optimizing a complete set of bridge 

system re sulting in  a  more e conomical s tructure than o ptimizing t he in dividual 

components of  t he br idge. B ased o n t heir op timization s tudies they recommended 

simply supported girders for prestressed concrete bridges up to 27m (89 ft) long, two-

span continuous girders for span lengths from 28m (92 ft) to 44m (144 ft), three-span 

continuous girders for span lengths of 55m (180 ft) to 100m (328 ft), and two- span or 

three-span continuous girders for an intermediate range of 44m (144 ft) to 55m (180 

ft). 
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Han et al. (1995) discussed the minimum cost design of partially prestressed concrete 

rectangular, a nd T -shape b eams b ased o n t he Australian c ode u sing the d iscretized 

continuum-type optimality c riteria (DCOC) method. T he c ost f unction i ncluded the 

first four terms of Eq. (2.1). They concluded that for a simply supported beam, a T -

shape i s m ore eco nomical t han a r ectangular s ection. Han et  al . (1996) us ed the 

DCOC method t o m inimize t he c ost of  c ontinuous, pa rtially pr estressed a nd s ingly 

reinforced T-beams with constant cross-sections within each span. A three-span and a 

four-span continuous beam example were also presented. 

 

Rana et al. (2013) adopted EVOP to optimize two-span post-tensioned bridge which 

was made c ontinuous for s uperimposed de ad l oads a nd l ive loads using de ck 

reinforcement. 

 

2.5 Concluding Remarks 

The great majority of  papers on c ost opt imization of  prestressed concrete st ructures 

include the material costs of concrete, steel, and formwork. Some researchers ignore 

the cost of the formwork. However, this cost is significant and should not be ignored. 

Other costs such as  t he cost o f labor, f abrication and installation are often i gnored. 

Most of t he studies on p restressed co ncrete b ridge st ructures, e xcept the work of  

Ahsan et  a l. (2012 )  and Rana e t a l. (2013), either minimized the cost of individual 

components onl y o r us ed s tandard AASHTO s ections i nstead of  c onsidering c ross-

sectional d imensions as d esign v ariables o r co nsidered t he co st o f m aterials o nly. 

Most the s tudies considered prestressing s trands to be  located in a f ixed pos ition to 

obtain eccentricity which is not practical and the lump sum value (a fixed percentage 

of i nitial p resress) o f p restress l osses. Only i n t heir works, Ahsan et  a l. ( 2012) a nd 

Rana e t a l. ( 2013) considered variable location o f p restressing s trands and a ctual 

value of prestress loss. Most of the studies deal with optimization of pre-tensioned I-

girder bridge systems. None of these studies, except the work of Ahsan et al. (2012) 

and Rana et al. (2013), deals with total cost optimization of the post-tensioned I-girder 

bridge systems considering all cross-sectional dimensions, prestressing tendons layout 

as d esign variables an d al so co st o f materials including f abrication and i nstallation. 

Rana et al. (2013) adopted EVOP to optimize two-span post-tensioned bridge which 

was made c ontinuous for s uperimposed de ad l oads a nd live lo ads using de ck 
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reinforcement. The f ocus o f t he p resent research is using EVOP in ha ndling 

optimization pr oblems of  pr estressed bridge s tructures made c ontinuous by pos t-

tensioning which by resisting the deck weight can significantly improve the structural 

performance of longer span bridges. 

 



CHAPTER 3 

CONTINUOUS PRESTRESSED CONCRETE  

BRIDGE DESIGN 
 

3.1 Introduction 

Prestressing can be defined as the application of pre-determined force or moment to a 

structural member in such a manner that the combined internal stresses in the member 

resulting from this force or moment and any anticipated condition of external loading 

will b e c onfined w ithin s pecific l imits. Thus p restressing r efers t o the p ermanent 

internal stress in a structure to improve performance by reducing the effect of external 

forces. T he co mpression p erformance o f co ncrete i s st rong b ut i ts tension 

performance i s w eak. T he main i dea o f p restressing co ncrete is  to  c ounteract th e 

tension s tresses t hat ar e i nduced b y ex ternal f orces. For i nstance, prestressing w ire 

placed eccentrically, the force in tendon produces an axial compression and hogging 

moment in the beam. While under service loads the same beam will develop sagging 

moments. Thus, it is possible to have the entire section in compression when service 

loads are imposed on the beam. This is the main advantage of prestressed concrete. It 

is well known that reinforced concrete cracks in tension. But there is no cracking in 

fully prestressed concrete since the entire section i s in compression. Thus, i t can be 

said that prestress provides a means for efficient usage of the concrete cross-section in 

resisting the external loads. 

 

3.2 Reinforced Concrete versus Prestressed Concrete 

Both reinforced concrete (RC) and prestressed concrete (PC) consist of two materials, 

concrete an d st eel. B ut h igh st rength co ncrete an d st eel ar e u sed i n p restressed 

concrete. Although they employ the same material, their s tructural behavior is qui te 

different. In reinforced concrete structures, steel is an integral part and resists force of 

tension which concrete cannot resist. The tension force develops in the steel when the 

concrete b egin t o cr ack an d t he st rains o f co ncrete ar e t ransferred t o s teel t hrough 

bond. The stress in steel varies with the bending moment. The stress in steel should be 

limited i n o rder to p revent ex cessive cr ack o f co ncrete. I n f act t he st eel ac ts a s a 
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tension flange of a beam. In prestressed concrete, on the other hand the steel is used 

primarily f or i nducing a  pr estress i n c oncrete. If t his p restress c ould be induced by  

other means, there is l ittle need of st eel. The st ress in steel does not  depend on t he 

strain in c oncrete. T here i s no ne ed t o l imit t he s tress in  s teel in  o rder to  control 

cracking of  concrete. The st eel d oes n ot ac t as a t ension f lange o f a b eam. The 

behaviors of RC and PC flexural members are illustrated using Figure 3.1 and Figure 

3.2 respectively. 

 

 

Figure 3.1 Behaviors of reinforced concrete members (PCI 2003) 
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Figure 3.2 Behaviors of prestressed concrete members (PCI 2003) 

 

Figure 3.1 shows the conditions in a reinforced concrete member that has mild steel 

reinforcement a nd no  prestressing. Under ser vice l oad conditions, c oncrete on the 

tension s ide of  t he ne utral a xis i s a ssumed t o be  c racked. O nly c oncrete on t he 
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compression side is effective in resisting loads. In comparison, a prestressed concrete 

member is normally designed to remain uncracked under service loads (Figure 3.2). 

Since the full cross-section is effective, the prestressed member is much stiffer than a 

conventionally reinforced c oncrete m ember r esulting in r educed d eflection. No 

unsightly c racks a re expected t o be seen . Reinforcement is b etter p rotected a gainst 

corrosion. Fatigue of  s trand due  t o repeated t ruck l oading is ge nerally not a  de sign 

issue when the concrete surrounding the strands is not allowed to crack. At ultimate 

load conditions, conventionally r einforced concrete and prestressed concrete behave 

similarly. However, due to the lower strength of mild bars, a larger steel quantity is 

needed t o a chieve t he same st rength as a p restressed m ember. T his i ncreases the 

member material costs for a conventionally reinforced member. 

 

3.3 Advantages and Disadvantages of Prestressed Concrete 

The most important f eature o f p restressed concrete i s that i t i s f ree o f cr acks under 

working l oads a nd i t e nables the entire c oncrete s ection to t ake pa rt i n r esisting 

moments. D ue t o no -crack c ondition i n t he m ember, c orrosion of  s teel i s a voided 

when t he s tructure i s e xposed t o weather condition. T he be havior o f pr estressed 

concrete i s more p redictable than o rdinary reinforced co ncrete in sev eral asp ects. 

Once co ncrete cr acks, t he b ehavior o f r einforced co ncrete b ecomes q uite co mplex. 

Since there is no cracking in prestressed concrete, its behavior can be explained on a 

more rational basis. In prestressed concrete structures, sections are much smaller than 

that of  t he corresponding r einforced c oncrete s tructure. T his i s due  to t he f act t hat 

dead load m oments a re c ounterbalanced by t he pr estressing m oment r esulting f rom 

prestressing forces and shear resisting capacity of such section is also increased under 

prestressing. The reduced self-weight of the structure contribute to further reduction 

of material fo r f oundation e lements. O ther f eature o f p restressed co ncrete i s i ts 

increased q uality t o r esist i mpact, h igh f atigue r esistance an d i ncreased l ive load 

carrying ca pacity. P restressed co ncrete i s most useful i n c onstructing liquid 

containing structures and nuclear plant where no leakage is acceptable and also used 

in long span bridges and roof systems due to its reduced dead load. On the other hand, 

prestressed concrete also exhibit certain disadvantages. Some of the disadvantages of 

prestressed concrete construction are: 
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(i) It requires high strength concrete that may not be easy to produce 

(ii) It uses high strength steel, which might not be locally available 

(iii) It requires end anchorage, end plates, complicated formwork 

(iv) Labor cost may be greater, as it requires trained labor and 

(v) It calls for better quality control  

 

Generally, prestressed concrete construction is economical, as for example a decrease 

in me mber sect ions r esults in d ecreased d esign l oads to obt ain an e conomical 

substructure. 

 

3.4 Prestressing Systems 

The prestress i n co ncrete st ructure i s i nduced b y ei ther o f t he t wo p rocesses. P re 

tensioning and post tensioning. Pre-tensioning is accomplished by stressing wires, or 

strands c alled t endon t o a  pr e-determined a mount by stretching t hem be tween 

anchoring p osts before pl acing t he c oncrete. T he c oncrete i s t hen pl aced a nd t he 

tendons become bonded to the concrete throughout their length. After the concrete has 

hardened, the tendon will be released from the anchoring posts. The tendon will tend 

to re gain th eir o riginal l ength by s hortening a nd i n t his pr ocess t hey t ransfer a 

compressive stress to the concrete through bond. The tendons are usually stressed by 

hydraulic j acks. T he o ther al ternative i s post- tensioning. In pos t-tensioning, t he 

tendons a re st ressed af ter the co ncrete is ca st and h ardened t o cer tain st rength t o 

withstand the prestressing force. The tendon are stressed and anchored at the end of 

the co ncrete sect ion. H ere, t he tendons ar e e ither co ated w ith g rease o r b ituminous 

material o r encased with f lexible metal hos e be fore pl acing i n forms t o pr event the 

tendons f rom bonding to t he concrete dur ing p lacing and curing of  concrete. I n t he 

latter cas e, t he m etal h ose i s referred t o as a  sh eath o r d uct and r emains i n t he 

structure. After t he tendons are s tressed, t he void between tendon and the sheath i s 

filled w ith grout. T hus t he t endons a re bond ed w ith c oncrete a nd corrosion is 

prevented. Bonded s ystems a re more c ommonly us ed i n br idges, bot h i n t he 

superstructure ( the roadway) and i n cab le-stayed br idges, t he cab le-stays. There are 

post-tensioning a pplications i n a lmost a ll f acets of  c onstruction. P ost-tensioning 

allows b ridges t o be  built t o ve ry de manding ge ometry r equirements, i ncluding 

complex cu rves, v ariable su per-elevation a nd significant gr ade c hanges. I n m any 
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cases, post-tensioning allows construction that would otherwise be impossible due to 

either site constraints or architectural requirements. The main difference between the 

two pre stressing system is:-  

 

(i) Pre tensioning i s mostly used for small member, whereas post- tensioning i s 

used for larger spans. 

(ii) Post- tensioned tendon can be placed in the structure with little difficulties in 

smooth curved profile. Pre-tensioned tendon can be used for curved profile but 

needs extensive plant facilities. 

(iii) Pre-tensioning s ystem ha s t he di sadvantage t hat t he abutment us ed i n 

anchoring t he t endon ha s t o be  ve ry s trong a nd c annot be  r eused unt il t he 

concrete in the member has sufficiently hardened and removed from bed. 

(iv) Loss of pr estress i n pr e-tensioning i s m ore pr onounced t han t hat of  pos t 

tensioning. 

 

3.5 Anchorage Zone and Anchorage System 

In pos t-tensioned gi rders, the prestressing force is t ransferred to gi rders in their end 

portions known as anchorage zones. The anchorage zone is geometrically defined as 

the vol ume of  c oncrete through which t he c oncentrated pr estressing f orce a t t he 

anchorage device spreads transversely to a l inear stress distribution across the entire 

cross section. The prestresssing force is transferred directly on the ends of the girder 

through bearing plate and anchors. As a result the ends are subjected to high bursting 

stresses. So it becomes necessary to increase the area of the girder’s cross section in 

the end portion in order to accommodate the raised tendons, their anchorages, and the 

support bearing. This is accomplished by gradually increasing the web width to that of 

the flange; the resulting enlarged section is called end block. Design of the anchorage 

zone m ay b e done  by i ndependently ve rified manufacturer’s recommendations fo r 

minimum cover, spacing and edge distances for a particular anchorage device. 

 

An anchorage system consists of a cast iron guide incorporated in the structures which 

distributes t he t endon f orce i nto t he c oncrete e nd bl ock. O n t he gui de s its t he 

anchorage block, into which the strands are anchored by m eans of  three-piece jaws, 

each locked into a tapered hole. The anchorage guide is provided with an accurate and 
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robust m ethod of  fixing a nd t he t endon, a s i t i s pr ovided w ith s ubstantial s hutter 

fixing holes and, at its opposite end, a firm screw type fixing for the sheath in addition 

it incorporates a large front access grout injection point which, by its careful transition 

design, is blockage free. All anchorage systems are designed to the same principles, 

varying only in size and numbers of strands. Freyssinet C range anchorage system for 

15.2 mm di ameter strands i s s hown i n Figure 3.3(a), 3.3( b) a nd 3.3( c) and m etal 

sheath is shown in Figure 3.4. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3(a) 13C15 Post-tensioning anchorage system (C range, Freyssinet Inc.) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3(b) Range of anchorages (C range, Freyssinet Inc.) 
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All dimensions are in mm 

 

 

Figure 3.3(c) Freyssinet C range anchorage system (C range, Freyssinet Inc.) 
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Figure 3.4 Metal sheaths for providing duct in the girder 

 

3.6 Prestress Losses 

Loss of prestress is defined as the difference between the initial stresses in the strands 

(jacking st ress), and the ef fective p restress in the member (at a t ime when concrete 

stresses a re t o b e cal culated). There ar e three types of  l osses in post-tensioned 

prestressed concrete, f riction losses, short term (instantaneous) losses and long term 

(time dependent) losses. The short term losses are anchorage slip loss and the loss due 

to e lastic s hortening o f co ncrete. The l ong term l osses a re loss d ue t o creep o f 

concrete, l oss due  t o s hrinkage of  c oncrete a nd l oss due  t o s teel r elaxation. These 

losses n eed t o b e accounted for be fore c hecking the ad equacy o f a g irder s ection 

under t he r esidual prestress. A number of m ethods a re a vailable t o pr edict l oss of  

prestress. T hey f all in to th ree m ain c ategories, listed in o rder o f in creasing 

complexity: 

 

(i) Lump sum estimate methods 

(ii) Rational approximate methods and 

(iii) Detailed time-dependent analyses 

 

3.6.1 Frictional losses, 𝑳𝑳𝑾𝑾𝑾𝑾  

When a tendon is jacked from one or both ends the stress along the tendon decreases 

away from the jack due to the effects of friction. Frictional loss occurs only in post-

tensioned member. The friction between tendons and the surrounding material is not 

small enough to be  ignored. This loss may be  considered partly to be  due to length 

effect (wobble effect) and party to curvature effect. In straight elements, it occurs due 

to wobble effect and in curved ones; it occurs due to curvature and wobble effects. 

 
If angle of curve is θ and F1 is force on pulling end of the curve, then force F2 on the 

other end of the curve is given as  

𝐹𝐹2 = 𝐹𝐹1𝑒𝑒−𝜇𝜇𝜇𝜇   (3.1) 
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Similarly, the relation between F1 and F2 due to length effect (wobble effect) is given 
as 
 
𝐹𝐹2 = 𝐹𝐹1𝑒𝑒−𝐾𝐾𝐾𝐾   (3.2) 
 
The combined effect is  
 
𝐹𝐹2 = 𝐹𝐹1𝑒𝑒−(𝜇𝜇𝜇𝜇+𝐾𝐾𝐾𝐾)  (3.3) 
 
So the loss in the force is, 
 
𝐹𝐹2 − 𝐹𝐹1 =  𝐹𝐹1�1 − 𝑒𝑒−(𝜇𝜇𝜇𝜇+𝐾𝐾𝐾𝐾)�  (3.4) 
 
Where,  

x = length of  a  pr estressing t endon f rom t he j acking end t o a ny poi nt unde r 

consideration; 

μ = coefficient of friction; 

K = wobble friction coefficient per unit length of tendon; 

θ = sum of  t he a bsolute va lues of  a ngular c hange of  pos t-tensioning t endon from 

jacking end to the point under investigation; 

F1 = Jacking force; 

 

The value of μ and K for different type of cables can be read from Codes. The total 

loss for a ll t endons ( number of  t endons =  N T) may be  e xpressed by t he f ollowing 

equation: 

 

𝐿𝐿𝑊𝑊𝑊𝑊  = ∑ 𝐹𝐹𝑖𝑖
𝑖𝑖=𝑁𝑁𝑇𝑇
𝑖𝑖=1 �1 − 𝑒𝑒−(𝜇𝜇𝜇𝜇𝑖𝑖+𝐾𝐾𝐿𝐿)�  (3.5) 

 

3.6.2 Instantaneous losses  

3.6.2.1 Anchorage loss, 𝑳𝑳𝑨𝑨𝑨𝑨𝑾𝑾 

Anchor set loss of prestress occurs in the vicinity of the jacking end of post-tensioned 

members as t he p ost-tensioning f orce i s transferred f rom t he jack to t he a nchorage 

block. During this process, the wedges move inward as they seat and grip the strand. 

This results in a loss of elongation and therefore force in the tendon. The value of the 

strand shortening generally referred to as anchor set, ∆L, varies from about 3 mm to 

9mm with an  av erage v alue o f  6 mm . It de pends on the anchorage h ardware a nd 

jacking equipment. T he a nchor s et l oss i s hi ghest a t t he anchorage. It di minishes 
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gradually due to friction effects as the distance from the anchorage increases. Anchor 

set loss can be calculated by Eq. (3.6). 

 
𝐿𝐿𝐴𝐴𝑁𝑁𝑊𝑊 = 𝐴𝐴𝑠𝑠𝐸𝐸𝑠𝑠

𝐿𝐿
∆  (3.6) 

 
where  

As = Area of prestressing steel 

Es = Modulus of elasticity of prestressing steel 

Δ = Anchorage slip 

 

3.6.2.2 Elastic shortening loss, LES  

As t he p restressed i s t ransferred t o t he co ncrete t he member itself shortens and t he 

prestressing steel shorten with it. Therefore, there is a loss of prestress in the steel. In 

post tensioning, the tendons are not  usually s tretched simultaneously. Moreover, the 

first tendon that is stretched is shortening by subsequent stretching of all other tendon. 

Only the last tendon is not shortening by any subsequent stretching. An average value 

of s train change c an be c omputed a nd e qually a pplied t o all tendons. The prestress 

loss due to elastic shortening in post-tensioned members is taken as the concrete stress 

at the centroid of the prestressing steel at transfer, fcgp, multiplied by the ratio of the 

modulus of elasticities of the prestressing steel and the concrete at transfer. 

𝐿𝐿𝐸𝐸𝐸𝐸 = 𝐾𝐾𝑒𝑒𝑠𝑠
 𝐸𝐸𝑠𝑠
𝐸𝐸𝑐𝑐𝑖𝑖

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐1𝐴𝐴𝑠𝑠 + 𝐾𝐾𝑒𝑒𝑠𝑠
 𝐸𝐸𝑠𝑠
𝐸𝐸𝑐𝑐𝑖𝑖

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐2𝐴𝐴𝑠𝑠 = 

𝐾𝐾𝑒𝑒𝑠𝑠
 𝐸𝐸𝑠𝑠
𝐸𝐸𝑐𝑐𝑖𝑖
�𝐹𝐹𝑜𝑜
𝐴𝐴𝑐𝑐

+ 𝐹𝐹𝑜𝑜𝑒𝑒12

𝐼𝐼
− 𝑀𝑀𝐺𝐺1 𝑒𝑒1

𝐼𝐼
� 𝐴𝐴𝑠𝑠 + 𝐾𝐾𝑒𝑒𝑠𝑠

 𝐸𝐸𝑠𝑠
𝐸𝐸𝑐𝑐𝑖𝑖
�𝐹𝐹𝑜𝑜
𝐴𝐴𝑐𝑐

+ 𝐹𝐹𝑜𝑜𝑒𝑒22

𝐼𝐼
− 𝑀𝑀𝐺𝐺2 𝑒𝑒2

𝐼𝐼
� 𝐴𝐴𝑠𝑠 (3.7) 

 

where, 

fcgp1 = sum of concrete stresses at the center of gravity of prestressing tendons due to 

the prestressing force at transfer and the self weight of the member at the sections of 

maximum positive moment. 

fcgp2 = sum of concrete stresses at the center of gravity of prestressing tendons due to 

the prestressing force at transfer and the self weight of the member at the sections of 

maximum negative moment. 

MG1= Maximum positive moment due to self weight of the girder. 

MG2= Maximum negative moment due to self weight of the girder. 
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e1= eccentricity at position of maximum positive moment. 

e2= eccentricity at position of maximum negative moment. 

Eci = modulus of elasticity of the concrete at transfer 

 

Applying t his equation requires e stimating t he force i n the st rands af ter t ransfer. 

Initial Estimate of 𝐹𝐹𝑜𝑜  is unknown as yet loss for e lastic shortening is undetermined. 

Let  

𝐹𝐹𝑜𝑜  = F − LWC − LANC 

 (3.8) 
With Fo from E q. (3.8), LES is cal culated f rom Eq. ( 3.7) and Fo is continuously 

updated using Eq. (3.9) until the updated value becomes equal to previous value. 

 
𝐹𝐹𝑜𝑜  = F − LES – LWC − LANC (3.9) 
 

3.6.3 Time-dependent losses  

3.6.3.1 Loss due to shrinkage of concrete, LSH  

Shrinkage in c oncrete i s a  c ontraction due  to drying an d chemical ch anges. I t is 

dependent on time and moisture condition but not on stress. The amount of shrinkage 

varies widely, depending on t he individual conditions. For the propose of design, an 

average value of shrinkage strain would be about 0.0002 to 0.0006 for usual concrete 

mixtures employed in prestressed construction. Shrinkage of concrete is influenced by 

many factors but  i n t his w ork t he most i mportant f actors vol umes t o s urface r atio, 

relative h umidity a nd tim e f rom e nd o f c uring to a pplication o f prestress a re 

considered in calculation of shrinkage losses. The equation for estimating loss due to 

shrinkage of concrete, LSH, is roughly based on an ultimate concrete shrinkage strain 

of approximately –0.00042 and a modulus of elasticity of approximately 193 GPa for 

prestressing st rands. According t o AASHTO 2 007 the e xpression f or prestress l oss 

due to shrinkage i s a  function of  the average annual ambient re lative humidity, R H, 

and is given as for post-tensioned members. 

 
LSH = 0.8(117.3 – 1.03 RH) (MPa) (3.10) 
 
Where, RH = the average annual ambient relative humidity (%). The average annual 

ambient relative humidity may be obtained from local weather statistics. 
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3.6.3.2 Loss due to creep of concrete, LCR 

Creep i s t he pr operty of  c oncrete b y w hich i t c ontinues to de form w ith t ime unde r 

sustained l oad at  u nit stresses w ithin the acc epted e lastic ra nge. T his in elastic 

deformation increase at decreasing rate during the time of loading and its magnitude 

may be several times larger than that of the short term elastic deformation. The strain 

due to creep varies with the magnitude of stress. I t is a t ime dependent phenomena. 

Creep of concrete result in loss in steel stress. The expression for prestress losses due 

to creep is, 

LCR = 0.083fcgp – 0.048fcds (MPa) (3.11) 
 
where, 

fcgp = concrete stress at the center of gravity of the prestressing steel at transfer 

fcds = ch ange i n co ncrete st ress a t cen ter o f gravity o f prestressing st eel d ue t o 

permanent loads, except the load acting at the time the prestressing force is applied. 

Values of fcds should be calculated at the same section or at sections for which fcgp is 

calculated. The value of fcds includes the effect of the weight of the diaphragm, slab 

and haunch, parapets, future wearing surface, utilities and any other permanent loads, 

other than the loads existing at transfer at the section under consideration, applied to 

the bridge. 

 
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 = � 𝐹𝐹𝑜𝑜

𝐴𝐴𝑡𝑡𝑓𝑓
+ 𝐹𝐹𝑜𝑜𝑒𝑒12

𝐼𝐼
− 𝑀𝑀𝐺𝐺1 𝑒𝑒1

𝐼𝐼
� + � 𝐹𝐹𝑜𝑜

𝐴𝐴𝑡𝑡𝑓𝑓
+ 𝐹𝐹𝑜𝑜𝑒𝑒22

𝐼𝐼
− 𝑀𝑀𝐺𝐺2 𝑒𝑒2

𝐼𝐼
� (3.12) 

 
𝑓𝑓𝑐𝑐𝑐𝑐𝑠𝑠 = (𝑀𝑀𝑃𝑃1−𝑀𝑀𝐺𝐺1) 𝑒𝑒1

𝐼𝐼
+  𝑀𝑀𝑊𝑊1𝑒𝑒𝑐𝑐1

𝐼𝐼𝑐𝑐
 +(𝑀𝑀𝑃𝑃2−𝑀𝑀𝐺𝐺2) 𝑒𝑒2

𝐼𝐼
+  𝑀𝑀𝑊𝑊2𝑒𝑒𝑐𝑐2

𝐼𝐼𝑐𝑐
 (3.13) 

 

where, MG1 = Moment d ue to  g irder s elf w eight at position of  maximum pos itive 

moment; MG2 = Moment due to girder self weight at position of maximum negative 

moment; e1 = eccentricity at position of maximum positive moment; e2 = eccentricity 

at position of maximum negative moment; MP1 = Non-composite dead load moment 

or M oment due  t o girder self w eight, c ross girder a nd deck s lab at position of  

maximum positive moment; MP2 = Non-composite dead load moment or Moment due 

to girder self w eight, c ross g irder and de ck slab at pos ition of  m aximum ne gative 

moment; MC1 = Composite dead load moment due to future wearing coarse and curb 

self w eight at position of  maximum positive m oment; MC2 = Composite d ead l oad 

moment due  to future wearing coarse and curb self weight at position of  maximum 
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negative moment; Ic = moment of inertia of composite section; ec1 = Eccentricity of 

tendons i n composite s ection at p osition of  maximum positive m oment; ec2 = 

Eccentricity o f t endons i n co mposite sec tion at pos ition of  maximum ne gative 

moment;  

 

3.6.3.3 Loss due to relaxation of steel, LSR 

Relaxation is assumed to find the loss of stress in steel under nearly constant strain at 

constant temperature. It is similar to creep of concrete. Loss due to relaxation varies 

widely f or di fferent s teels a nd its m agnitude m ay be  s upplied by t he s teel 

manufactures based on test data. This loss is generally of the order of 2% to 8% of the 

initial steel stress. Losses due to relaxation should be based on a pproved test data. If 

test d ata is  not a vailable, t he loss may be  assumed to be  2.5 %  of  i nitial s tress. 

AASHTO 2 007 provides E q.3.14 to e stimate re laxation a fter t ransfer f or post-

tensioned members with stress-relieved or low relaxation strands. The expression for 

prestress losses due to steel relaxation is, 

 

LSR = 34.48-0.00069LES-0.000345 (LSH+ LCR) (MPa) (3.14) 

 

3.7 Designs for Flexure  

The d esign of a p restressed co ncrete m ember in f lexure n ormally involve s election 

and proportioning of a concrete section, determination of the amount of prestressing 

force and eccentricity for given section. The design i s done based on s trength (load 

factor de sign) a nd on  b ehavior a t s ervice c ondition (allowable s tress d esign) at  al l 

load s tages th at m ay b e c ritical d uring th e lif e o f th e s tructure f rom t he tim e th e 

prestressing force i s applied. In the next section the al lowable st ress design (Elastic 

design) and the load factor design (ultimate design) of a section for flexure is briefly 

described. 

 

3.7.1 Allowable stress design (ASD) 

This design method ensures stress in concrete not to exceed the allowable stress value 

both at transfer and under service loads. The member is normally designed to remain 

un-cracked under service loads. Consequently, it is assumed that the member can be 
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analyzed a s ho mogeneous a nd e lastic unde r s ervice l oads t hat a ll a ssumptions o f 

simple bending theory can be applied.  

 

Stresses in concrete due to prestress and load: 

Stresses in concrete due to prestress are usually computed by an elastic theory. For a 

prestressing force F applied to a concrete section with an eccentricity e, the prestress 

is resolved in to two c omponents a  c oncentric force F through t he c entroid a nd a  

moment  F × e. U sing el astic f ormula t he st ress at  top e xtreme fiber or bot tom 

extreme fiber due to axial compression, F and moment, M = Fe is given by 

 
𝑓𝑓 = −𝐹𝐹

𝐴𝐴
± 𝐹𝐹×𝑒𝑒

𝐸𝐸
  (3.15) 

 
where, S = section modulus for top or bottom fiber. 

For pos t-tensioned member be fore being bonded, for the va lues of A and S, the ne t 

concrete section has to be used. After the steel is bonded, these should be based on the 

transformed sect ion. The st resses produced b y an y ex ternal l oad as  w ell as o wn 

weight of the member is given by elastic theory as: 

 
𝑓𝑓 = 𝑀𝑀

𝐸𝐸
  (3.16) 

The resulting stresses due to prestress and loads are as follows: 

 
𝑓𝑓 = −𝐹𝐹

𝐴𝐴
± 𝐹𝐹×𝑒𝑒

𝐸𝐸
± 𝑀𝑀

𝐸𝐸
  (3.17) 

 
3.7.2 Ultimate strength design 

This method of design ensures that the section must have sufficient strength (resisting 

moment) under factored loads. The n ominal st rength o f t he m ember i s cal culated, 

based on t he knowledge of  member and material behavior. The nominal s trength i s 

modified by a strength reduction factor Φ, less t han u nity, to obt ain t he d esign 

strength. The required strength is an overload stage which is found by applying load 

factors γ, greater than unity, to the loads actually expected. 

 

Stress in the prestressed steel at flexural failure:  

For bonde d members with pr estressing onl y, t he average st ress i n p restressing 

reinforcement at ultimate load, fsu, is: 
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𝑓𝑓𝑠𝑠𝑠𝑠  =  𝑓𝑓𝑐𝑐𝑠𝑠  �1 − 𝛾𝛾∗

𝛽𝛽1
𝜌𝜌 𝑓𝑓𝑠𝑠
𝑓𝑓𝑐𝑐′
�  (3.18) 

 
where, 

𝛾𝛾∗ = factor for type of pre stressing steel = 0.28 (for low relaxation steel) 

𝛽𝛽1 = ratio of depth of equivalent compression zone to depth of prestressing steel 

f´c = compressive strength of concrete  

for fc´ ≤ 27.6 MPa, 𝛽𝛽1= 0.85; 

for 27.6 MPa ≤ fc´ ≤ 55.2 MPa, 𝛽𝛽1= 0.85 − 0.00725(fc´[MPa] − 27.6); 

for fc´ ≥ 55.2 MPa, 𝛽𝛽1= 0.65 

𝜌𝜌 = 𝐴𝐴𝑠𝑠
𝑏𝑏𝑐𝑐

  

b = effective flange width 

d = effective depth for flexure 

 

Design flexural strength: 

With the stress in the prestressed tensile steel when the member fails in f lexure, the 

design flexural strength is calculated as follows: 

The de pth o f e quivalent r ectangular s tress bl ock, a ssuming a  r ectangular s ection, is 

computed by: 

𝑎𝑎 = 𝐴𝐴𝑠𝑠 𝑓𝑓𝑠𝑠𝑠𝑠
0.85𝑓𝑓𝑐𝑐′ 𝑏𝑏

  (3.19) 
 
For sections with prestressing strand only and the depth of the equivalent rectangular 

stress block less than the flange thickness (tf), the design flexural strength should be 

taken as: 

 
ΦMn = Φ�𝐴𝐴𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑐𝑐 �1 − 0.6 𝜌𝜌𝑓𝑓𝑠𝑠𝑠𝑠

𝑓𝑓𝑐𝑐′
�� (3.20) 

 

For sections with prestressing strand only and the depth of the equivalent rectangular 

stress block greater than the f lange thickness, the design f lexural s trength should be 

taken as: 

 
ΦMn = Φ�𝐴𝐴𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑐𝑐 �1 − 0.6 𝐴𝐴𝑠𝑠𝑠𝑠 𝑓𝑓𝑠𝑠𝑠𝑠

𝑏𝑏𝑠𝑠𝑐𝑐𝑓𝑓𝑐𝑐′
�� + 0.85𝑓𝑓𝑐𝑐(𝑏𝑏 − 𝑏𝑏𝑠𝑠)𝑡𝑡𝑓𝑓 �𝑐𝑐 −

𝑡𝑡𝑓𝑓
2
� (3.21) 
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where, 

Asw = As - Asf 

Asf  =0.85𝑓𝑓𝑐𝑐(𝑏𝑏 − 𝑏𝑏𝑠𝑠) 𝑡𝑡𝑓𝑓
𝑓𝑓𝑠𝑠𝑠𝑠

 

bw  = Web width 

 

For negative moment region, the design flexural strength is calculated as follows: 

The depth of equivalent rectangular stress block is computed by: 

𝑎𝑎 = 𝐴𝐴𝑠𝑠 𝑓𝑓𝑠𝑠𝑠𝑠
0.85𝑓𝑓𝑐𝑐′ 𝑏𝑏𝑠𝑠

  (3.22) 
 
The design flexural strength should be taken as: 

 
ΦMn = Φ�𝐴𝐴𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑐𝑐 �1 − 0.6 𝜌𝜌𝑓𝑓𝑠𝑠𝑠𝑠

𝑓𝑓𝑐𝑐′
�� (3.23) 

 

3.8 Ductility Limit 

3.8.1 Maximum prestressing steel  

According to the AASHTO Standard Specifications (AASHTO 2007), the prestressed 

concrete members must be designed so that the steel yields when the ultimate capacity 

is reached. Therefore, the maximum prestressing st eel constraints for the composite 

section are given below: 

 
ω ≤ ωu  (3.24) 

 
where, ω = R einforcement i ndex; ωu  = U pper bound t o R einforcement i ndex = 

0.36β1. This co nstraint en sures the st eel will y ield as t he ultimate cap acity i s 

approached. AASHTO g ives the f ollowing f ormula f or c alculating r einforcement 

index (ω) 

 
𝜔𝜔 =  𝜌𝜌𝑓𝑓𝑠𝑠𝑠𝑠  

𝑓𝑓𝑐𝑐′
  (3.25) 

 
 
3.8.2 Minimum prestressing steel 

AASHTO limit the minimum value of pre stressing steel to be used in pre stressing 

concrete s ection. The pre s tressing s teel in a  s ection should be adequate t o develop 

ultimate moment at critical section at least 1.2 times the cracking moment Mcr
*. 

 



35 
 

ΦMn ≥ 1.2 Mcr
* (3.26) 

 
At position of maximum positive moment, 
  
Mcr

* = �𝑓𝑓𝑟𝑟 + 𝑓𝑓𝑐𝑐𝑒𝑒 �𝐸𝐸𝑏𝑏𝑐𝑐 − 𝑀𝑀𝑃𝑃1 �
𝐸𝐸𝑏𝑏𝑐𝑐
𝐸𝐸𝑏𝑏
− 1� (3.27) 

 
𝑓𝑓𝑐𝑐𝑒𝑒 = 𝐹𝐹𝑒𝑒

𝐴𝐴𝑡𝑡𝑓𝑓
+ 𝐹𝐹𝑒𝑒𝑒𝑒𝑐𝑐1

𝐸𝐸𝑏𝑏
  (3.28) 

 

where, fr = modulus of rupture; 𝑓𝑓𝑐𝑐𝑒𝑒= compressive stress in concrete due to effective 

prestress f orces only ( after al lowance f or al l p restress losses) a t ex treme fiber o f 

section w here t ensile st ress i s cau sed b y ex ternally ap plied l oad; Sb, S bc = Section 

Modulus of bottom fiber of transformed precast & composite section respectively; ec1 

= eccentricity of composite section at position of maximum positive moment; MP1 = 

Non-composite dead load moment or Moment due to girder self weight, cross girder 

and deck slab at position of maximum positive moment; 

 

At position of maximum negative moment, 
  
Mcr

* = �𝑓𝑓𝑟𝑟 + 𝑓𝑓𝑐𝑐𝑒𝑒 �𝐸𝐸𝑡𝑡𝑐𝑐 − 𝑀𝑀𝑃𝑃2 �
𝐸𝐸𝑡𝑡𝑐𝑐
𝐸𝐸𝑡𝑡
− 1� (3.29) 

 
𝑓𝑓𝑐𝑐𝑒𝑒 = 𝐹𝐹𝑒𝑒

𝐴𝐴𝑡𝑡𝑓𝑓
+ 𝐹𝐹𝑒𝑒𝑒𝑒𝑐𝑐2

𝐸𝐸𝑡𝑡
  (3.30) 

 

where, fr = modulus of rupture; 𝑓𝑓𝑐𝑐𝑒𝑒= compressive stress in concrete due to effective 

prestress f orces o nly ( after al lowance f or al l p restress losses) a t ex treme fiber o f 

section w here t ensile st ress i s cau sed b y ex ternally ap plied l oad; St, S tc = Section 

Modulus of top fiber of transformed precast & composite section respectively; ec2 = 

eccentricity of co mposite sec tion a t pos ition of  maximum negative moment; MP2 = 

Non-composite dead load moment or Moment due to girder self weight, cross girder 

and deck slab at position of maximum negative moment; 

 

3.9 Design for Shear 

The design and analysis of precast, prestressed concrete bridge members for vertical 

shear is presented in this section. Unlike flexural design, for which conditions at both 

service an d factored load ar e ev aluated, shear d esign is on ly e valuated for f actored 

loads (s trength lim it s tate). The sh ear st rength o f a p restressed co ncrete member i s 
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taken as the s um of  t he s hear s trength contributions by  c oncrete a nd by t he w eb 

reinforcement. According t o AASHTO s pecification for de sign purposes t he 

relationship is written as, 

 
Vu ≤ φ (Vc + Vs) (3.31) 
 
where, 

 𝑉𝑉𝑠𝑠= factored shear force at the section considered 

 𝑉𝑉𝑐𝑐  = the concrete contribution taken as lesser of flexural shear, Vci and web shear, Vcw  

Vs = shear carried by the steel.  

 

The concrete contribution Vc, is taken as the shear required to produce shear cracking. 

Two types of shear cracking have been flexural shear and web shear as illustrated in 

Figure 3.5. 

 

Figure 3.5 Types of cracking in prestressed concrete beams (PCI 2003) 

 

Flexural s hear c rack dominate t he be havior of  t he p ortion of  t he gi rder w here hi gh 

flexural st resses co incide w ith si gnificant sh ear st resses. W eb sh ear c rack f orms i n 

regions of high shear and small flexural stress such as near the support of the simply 

supported beam. The shears that produce these two types of cracking are Vci and Vcw. 

Therefore Vc is taken as lesser of the Vci and Vcw. Procedures for computing these two 

shear capacity are presented below: 
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3.9.1 Flexure-shear, Vci 

A flexure-shear crack is initiated by a flexure crack forming at a distance d/2 from the 

section be ing considered. A s t he sh ear i ncreases, t he f lexure cr ack inclines an d 

becomes a shear cr ack w ith a h orizontal p rojection eq ual t o t he d istance d . Vci, 

nominal s hear s trength provided by  c oncrete w hen di agonal c racking r esults f rom 

combined shear and moment is calculated as follows: 

 

𝑉𝑉𝑐𝑐𝑖𝑖 = 0.05�𝑓𝑓𝑐𝑐  𝑊𝑊𝑡𝑡𝑐𝑐 +  𝑉𝑉𝑐𝑐  +  𝑉𝑉𝑖𝑖𝑀𝑀𝑐𝑐𝑟𝑟
𝑀𝑀𝑚𝑚𝑎𝑎𝐾𝐾

≤ 0.141�𝑓𝑓𝑐𝑐  𝑊𝑊𝑡𝑡𝑐𝑐 (3.32) 
 
𝑀𝑀𝑐𝑐𝑟𝑟 = 𝐸𝐸𝑏𝑏𝑐𝑐 �0.5�𝑓𝑓𝑐𝑐 + 𝑓𝑓𝑐𝑐𝑒𝑒 − 𝑓𝑓𝑐𝑐�  (3.33) 
 
𝑀𝑀𝑚𝑚𝑎𝑎𝐾𝐾  = 1.3(𝑀𝑀𝐷𝐷 + 1.67 𝑀𝑀𝐿𝐿𝐿𝐿) −𝑀𝑀𝐷𝐷  (3.34) 
 
𝑉𝑉𝑖𝑖 = 1.3(𝑉𝑉𝐷𝐷 + 1.67 𝑉𝑉𝐿𝐿𝐿𝐿) − 𝑉𝑉𝐷𝐷 (3.35) 
 
𝑓𝑓𝑐𝑐  =  𝑀𝑀𝐷𝐷

𝐸𝐸𝑏𝑏𝑐𝑐
 (3.36) 

where, 

VD = shear force at the section of investigation due to the unfactored dead load 

Mmax = maximum factored moment at the section due to externally applied loads 

Vi = factored shear force at the section that occurs simultaneously with Mmax 

Mcr = moment due  t o external l oad r equired t o cr ack the co ncrete a t t he cr itical 

section.  

The term f pe and f d are the st resses at the extreme tension fiber due to the ef fective 

prestress f orces o nly, after al l l oses, an d d ue t o the t otal unf actored de ad l oad, 

respectively. 

The AASHTO specifications state that Vci need not be taken less than 0.141�𝑓𝑓𝑐𝑐  𝑊𝑊𝑡𝑡𝑐𝑐 

(kN) and that d need not be taken less than 0.8h, where h is the height of the section.  

 

3.9.2 Web-shear, Vcw 

Vcw, no minal s hear s trength pr ovided by c oncrete w hen diagonal c racking results 

from excessive principal tensile stress in web is calculated as follows: 

 

𝑉𝑉𝑐𝑐𝑠𝑠 = �0.283�𝑓𝑓𝑐𝑐 + 0.3𝑓𝑓𝑐𝑐𝑐𝑐 �𝑊𝑊𝑡𝑡𝑐𝑐 + 𝑉𝑉𝑐𝑐  (3.37) 

𝑉𝑉𝑐𝑐  = ∑ 𝐹𝐹𝑖𝑖
𝑖𝑖=𝑁𝑁𝑇𝑇
𝑖𝑖=1 sin𝜇𝜇𝑖𝑖  (3.38) 
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where, 

Vp = the vertical component of the prestress force.  

fpc = stress that includes the effect of the prestress force after losses and the stresses 

due to any loads applied to the member as a non-composite section.  

 

3.10 Design for Horizontal Interface Shear 

Cast-in-place concrete decks designed to act compositely with precast concrete beams 

must be able to resist the horizontal shearing forces at the interface between the two 

elements. Design is carried out at various locations along the span, similar to vertical 

shear design. The Standard Specifications does not identify the location of the critical 

section. For convenience, i t may be assumed to be the same location as t he c ritical 

section for vertical shear. Other sections, generally at  tenth-point intervals along the 

span, are also designed for composite-action shear. This may be necessary to ensure 

that a dequate reinforcement is p rovided f or h orizontal sh ear b ecause r einforcement 

for v ertical shear, w hich i s extended i nto t he de ck a nd used f or ho rizontal shear 

reinforcement, may va ry a long t he length of  t he m ember. Composite sect ions ar e 

designed f or hor izontal s hear at th e interface b etween the precast b eam an d d eck 

using the equation: 

 
𝑉𝑉𝑠𝑠  ≤  𝜑𝜑𝑉𝑉𝑛𝑛ℎ   (3.39) 
 
Where,  

Vu = factored sh ear f orce act ing o n the i nterface; 𝜑𝜑 = strength reduction f actor for 

shear; Vnh = nominal shear capacity of the interface 

 

The nominal shear capacity is obtained from one of the following conditions given as: 

a) When the contact surface is intentionally roughened but minimum vertical ties are 

not provided: 

Vnh = 80bvd  

 

b) When minimum tie s a re provided but the c ontact s urface i s no t i ntentionally 

roughened: 

Vnh = 80bvd  
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c) When the contact surface is intentionally roughened to minimum amplitude of 1⁄4 

in and minimum vertical ties are provided: 

Vnh = 350bvd  

 

d) When required area of ties, Avh, exceeds the minimum area: 

Vnh = 330bvd + 0.40Avhfyd/s 

For the above equations, 

bv = width of  cross-section a t t he c ontact surface being i nvestigated f or horizontal 

shear 

d = distance from extreme compression fiber to centroid of the prestressing force. As 

for vertical shear design, d need not be taken less than 0.80h. 

s = maximum spacing not to exceed 4 t imes the least web width of support element, 

nor 24 in. 

 

3.11 Design for Lateral Stability 

Prestressed concrete members are generally s tiff enough to prevent lateral buckling. 

However, during handling and transportation, support conditions may result in lateral 

displacements of  the beam, thus producing lateral bending about the weak axis. For 

hanging be ams, t he t endency t o r oll is governed pr imarily by t he pr operties of  t he 

beam. The equilibrium conditions for a  ha nging be am a re s hown i n Figure 3.6 and 

Figure 3.7. When a beam hangs from lifting points, it may roll about an axis through 

the lifting points. The safety and stability of long beams subject to roll are dependent 

upon: 

 

 

 

 

 

 

 

 

 

Figure 3.6 Perspective of a beam free to roll and deflect laterally (PCI 2003) 
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Figure 3.7 Equilibrium of beam in tilted position (PCI 2003) 

Where, 

ei = the initial lateral eccentricity of the center of gravity with respect to the roll axis 

yr = the height of the roll axis above the center of gravity of the beam 

zo = the theoretical lateral deflection of the center of gravity of the beam, computed 

with the full weight applied as a lateral load, measured to the center of gravity of the 

deflected arc of the beam 

𝜇𝜇𝑚𝑚𝑎𝑎𝐾𝐾 = tilt angle at which cracking begins, based on tension at the top corner equal to 

the modulus of rupture. 

For a beam with overall length, l, and equal overhangs of length, a, at each end: 

 

 

                                 (3.40)    

  

Where l1 = l −2a 

Ig = moment of inertia of beam about weak axis 

For a beam with no overhangs, (a = 0, l1 = l), and: 

 

        
                 (3.41) 
                                                                                                       

It i s t o no te t hat, f or a  t wo s pan c ontinuous p ost-tensioned girder (with each  span 

having a length = l), l of aforementioned equations should be replaced with 2l.  

The factor of safety against cracking, FSc, is given by: 
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𝐹𝐹𝐸𝐸𝑐𝑐 = 1

𝑧𝑧𝑜𝑜
𝑦𝑦𝑟𝑟

+
𝜇𝜇𝑖𝑖

𝜇𝜇𝑚𝑚𝑎𝑎𝐾𝐾

≥ 1.5 (3.42) 

 
where 𝜇𝜇𝑖𝑖= the initial roll angle of a rigid beam. 

 

It is recommended that ei be based, as a  minimum, on 1/ 4 in. plus one-half the PCI 

tolerance for sweep. The PCI sweep tolerance is 1/8 in. per 10 f t of member length. 

When cracking occurs, the lateral st iffness decreases and Zo increases. Thus, failure 

may occur shortly after cracking as the tilt angle increases rapidly due to the loss of 

stiffness. Consequently, t he f actor of s afety a gainst f ailure, F Sf , i s c onservatively 

taken equal t o F Sc. The n ecessary f actor o f saf ety can not b e d etermined f rom 

scientific laws; it must be determined from experience. It is suggested to use a factor 

of safety of 1.0 against cracking, FSc , and 1.5 against failure, FSf . 

 

3.12 Control of Deflection 

Flexural m embers of  b ridge s uperstructures s hall be  de signed t o ha ve a dequate 

stiffness to  lim it d eflections or  a ny de formations t hat may a dversely a ffect t he 

strength or  serviceability of  the s tructure at service load plus impact. When making 

deflection computations th e f ollowing c riterion a ccording to  A ASHTO S tandard 

Specification is recommended. 

 

Members having simple or continuous spans preferably should be designed so that the 

deflection due to service live load plus impact shall not exceed 1/800 of the span. 

 

3.13 Composite Construction 

Composite construction involves construction in which a  precast member (usually a  

girder) acts in combination with cast-in-place concrete (usually a slab), that is poured 

at a  l ater t ime a nd bon ded t o t he member, w ith s tirrups if ne cessary, t o de velop 

composite action. AASHTO (AASHTO 2007) defines a co mposite f lexural member 

as one that “consists of precast and/or cast-in-place concrete elements constructed in 

separate placements but so interconnected that all elements respond to superimposed 

load as a unit”. 
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3.14  Loads 

3.14.1  General 

There c an be va rious types of  load c oming t o a  br idge structure. T hey a re l isted 

below: 

1. Dead weight 

2. Live load (vehicle load and pedestrian load)  

3. Dynamic effect of live load 

4. Wind load (directly on bridge, from vehicle, dynamic effect) 

5. Earthquake load (static or dynamic) 

6. Longitudinal forces (stopping vehicles) 

7. Centrifugal forces (curved deck) 

8. Thermal forces 

9. Earth pressure 

10. Buoyancy 

11. Shrinkage stress 

12. Rib shortening 

13. Erection stresses 

14. Ice loading 

15. River current pressure 

Among al l t hese types of forces, i n t he p resent t hesis, only the f irst three i .e. Dead 

Load, Live Load and Impact Load have been considered. 

3.14.2 Dead Load 

The dead loads on t he bridge superstructure consist of  self weight of  the individual 

components ( girder w eight, de ck s lab w eight), w earing s urface on s lab, s idewalks, 

curbs, railings and diaphragm etc. 

While finding out  dead load, l oad coming on the gi rder f rom i ts ow n w eight, t he 

weight o f t he d eck an d wearing su rface t hat f all i nside t he girder’s ‘ tributary a rea’ 

should be considered (Figure 3.8). 
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In case of an exterior girder, extra load from the curb and railing has to be considered. 

 

Figure 3.8 Tributary area of interior girder 

3.14.3  Live Load 

Vehicular live loading on the roadways of bridges or incidental structures, designated 

HL-93, shall consist of  a combination of : i) Design t ruck o r design tandem, and ii) 

Design lane load. 

According to AASHTO LRFD HL 93 loading, each design lane should occupy either 

by the design truck or design tandem and lane load, which will be effective 3000mm 

transversely within a design lane. (AASHTO, 2007 3.6.1.2.1) 

3.14.3.1 Truck Load  

 
Figure 3.9 Truck load coming to bridge (AASHTO, 2007) 
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3.14.3.2 Tandem Load 

The design tandem shall consist of a pair of 110,000 N axles spaced 1200 mm apart.   

The t ransverse sp acing o f w heels shall b e t aken as 1 800 m m. ( AASHTO, 20 07, 

3.6.1.2.3) 

3.14.3.3 Lane Load  

The design lane load shall consist of a load of 9.3 N/mm uniformly distributed in the 

longitudinal di rection. Transversely, t he de sign l ane l oad s hall be  a ssumed t o be 

uniformly distributed over a 3000 mm width. (AASHTO, 2007, 3.6.1.2.4) 

3.14.3.4 Impact Load 

Impact effect of live load is considered by increasing the live load effect by a cer tain 

factor. 

Impact factor, I = 50/(L+125) < 0.3;  Where, L = Loaded span in ft. 

According to A ASHTO 2007 e xplanation of  t he l oaded l ength, t he l oaded l ength 

should be as follows: 

(a) For roadway floors: the design span length. 

(b) For t ransverse m embers, s uch a s f loor be ams: the s pan l ength of  m ember 

center to center of support. 

(c) For computing truck load moments: the span length, or for cantilever arms the 

length from the moment center to the farthermost axle. 

(d) For shear due to truck loads: the length of the loaded portion of span from the 

point under consideration to the far reaction; except, for cantilever arms, use a 

30% impact factor. 

(e) For c ontinuous s pan: the l ength o f s pan unde r c onsideration f or p ositive 

moment, and the average of two adjacent loaded spans for negative moment. 
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3.14.3.5 Distribution Factor for Moment 

As per AASHTO 2007, while calculating design moment, it should be multiplied by 

certain D istribution F actor. V alue of  Distribution F actor de pends on s everal 

parameters l ike number of  l ane, s pan l ength o f gi rder, de ck s lab thickness, l ateral 

spacing of g irders etc. For in terior and exterior girder, AASHTO proposes d ifferent 

Distribution Factors. 

 
 
For Interior Beam/ Girder 

According to A ASHTO 2007, Distribution F actors f or moment f or interior b eam/ 

girder are as follows:   

 
Table 3.1 Distribution Factor for Moment (Interior Girder) [AASHTO, 2007] 

 

 
 

 Here, 

S  =  Spacing of Main Girder 

ts  =  Thickness of Slab 

L  =  Span Length 

Nb = Number of Beam/ Girder 

Kg = n(I + Aeg
2) 

n = EB/ED 

EB = Modulus of elasticity of beam/ girder material (MPa) 

ED = Modulus of elasticity of deck/ slab material (MPa) 

I = Moment of inertia of beam/ girder (mm4) 

eg = distance between center of gravity of beam/ girder and deck/ slab 

(mm) 
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For Exterior Beam/ Girder 
 
According t o A ASHTO 2007, D istribution F actors f or moment for ex terior b eam/ 

girder are as follows:   

 
Table 3.2 Distribution Factor for Moment (Exterior Girder) [AASHTO, 2007] 

 

 

 
 

Here, 

g = distribution factor for exterior beam/ girder 

ginterior = distribution factor for interior beam/ girder  

e = eccentricity of a lane from centre of gravity of the pattern of girders (mm) 

de = distance from the exterior web of exterior beam to the interior edge of    

curb or traffic barrier (mm). 

 
3.14.3.6 Distribution Factor for Shear  

As pe r A ASHTO 2007 , while c alculating de sign s hear, i t s hould be  m ultiplied b y 

certain D istribution F actor. V alue of  Distribution F actor de pends on s everal 

parameters l ike num ber of  l ane, s pan l ength o f gi rder, de ck s lab thickness, l ateral 

spacing of  g irders e tc. For interior and exterior girder, AASHTO proposes di fferent 

Distribution Factors. 

 
For Interior Beam/ Girder 

According to AASHTO 2007, Distribution Factors for shear for interior beam/ girder 

are as follows:   
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Table 3.3 Distribution Factor for Shear (Interior Girder) [AASHTO, 2007] 

 

 
 

Here, 

S  =  Spacing of Main Girder 

ts  =  Thickness of Slab 

L  =  Span Length 

Nb = Number of Beam/ Girder 

 
For Exterior Beam/ Girder 
 
According to AASHTO 2007, Distribution Factors for shear for exterior beam/ girder 

are as follows:   

 
Table 3.4 Distribution Factor for Shear (Exterior Girder) [AASHTO, 2007] 

 

 

 
 

 
Here, 

g = distribution factor for exterior beam/ girder 
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ginterior = distribution factor for interior beam/ girder  

e = eccentricity of a lane from centre of gravity of the pattern of girders (mm) 

de = distance from the exterior web of exterior beam to the interior edge of    

curb or traffic barrier (mm). 
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CH A P T E R  4  

OP T I M I Z A T I O N  ME T H O D  
 
4.1 Introduction 

Optimization is the act of obtaining the best result under given circumstances. In the 

design, c onstruction a nd maintenance of  a ny e ngineering s ystem, e ngineers ha ve t o 

take many technological and managerial decisions at several stages. The ultimate aim 

of a ll such decision is  to e ither minimize the effort required or maximize the desire 

benefit. Since the effort required or the benefit desired in any practical situation can 

be expressed as a  function of a ce rtain design variables, optimization can be defined 

as the process of finding the conditions that give the minimum or maximum value of a 

function.  

 

4.2  Classification of Optimization Problem 

Generally o ptimization problems can  b e cl assified b ased o n t he nature of  equation 

involved i nto t wo categories. T his i s ba sed o n t he e xpression f or t he obj ective 

function and the constraints. 

 

(i) Linear optimization problems: - where the expression for objective function 

and the expression for all constraints are linear function of design variable. 

(ii) Non-linear o ptimization p roblem: - where t he e xpression f or ob jective 

function or the expressions for some or all of constraint are non linear function 

of the design variables. 

 
4.3  Classification of Optimization Method 

The available method of optimization may conveniently be divided into two distinctly 

different categories as follows:- 

 

(i) Analytical me thod:-Which us ually e mploy the m athematical th eory o f 

calculus ( continuous d ifferentiability, a vailability o f g radient v ectors a nd 

existence of second derivatives), variation method etc. 
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(ii) Numerical method: - which a re u sually e mploying a  b ranch i n t he f ield of  

numerical mathematics called programming method. The recent developments 

in th is b ranch a re c losely re lated to th e ra pid growth i n c omputing c apacity 

affected by t he de velopment of  c omputers. I n nu merical methods, a  ne ar 

optimal design is automatically generated in iterative manner. An initial guess 

is used as s tarting points for a systematic search for better design. The search 

is te rminated w hen c ertain c riteria are s atisfied; in dicating th at th e c urrent 

design is sufficiently close to the optimum. 

 

Many m athematical programming methods ha ve be en developed f or s olving linear 

and nonl inear opt imization pr oblems dur ing t he last t hree d ecades. However, no  

single method has been found to be entirely efficient and robust for all different kinds 

of e ngineering opt imization pr oblems. Some methods, such as t he p enalty f unction 

method, t he a ugmented L agrangian method, and t he c onjugate gr adient m ethod, 

search f or a l ocal opt imum by moving in a  d irection related to  th e local g radient. 

Other methods apply the f irst and second order necessary conditions to seek a l ocal 

minimum b y s olving a set of  nonl inear e quations. For t he optimum de sign of  l arge 

structures, t hese methods be come i nefficient due t o a  large a mount of  gr adient 

calculations and finite element analyses. These methods usually seek a solution in the 

neighborhood of the starting point similar to local hill climbing. If there is more than 

one local optimum in the problem, the result will depend on the choice of the starting 

point, and the global optimum cannot be guaranteed. Furthermore, when the objective 

function a nd c onstraints ha ve multiple or  s harp pe aks, t he gr adient s earch becomes 

difficult and unstable. 

 

So a  truly v ersatile optimization algorithm f or r ealistic p roblems sh ould p ossess, at  

the very least, the following capabilities (Ghani, 1989). 

 

(i) Ability to deal with nonlinear objective and constraining functions directly 

without the requirement of gradients or sub-gradients. 

(ii) Objective and constraining functions allowed possessing finite number of 

discontinuities. 

(iii) Restart facility to truly check the previously obtained minimum and high 

probability of directly locating the global minimum. 
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(iv) Ability to minimize objective functions with a mix of continuous, discrete 

and integer variables as arguments. 

(v) Scaling of objective and constraining functions unnecessary. 

(vi) The optimization problem allowed possessing simultaneously some or all 

features from above. 

 

4.4  Global Optimization Algorithm 

Global opt imization a lgorithms are ba sed on nu merical o r pr ogramming m ethods. 

These are an optimization algorithm that employs measures that prevent convergence 

to local optima and increase the probability of finding a global optimum. Figure 4.1 

shows global a nd l ocal opt ima of  a  t wo-dimensional f unction, f( X1, X 2). Global 

optimization, so far, has been a rather d ifficult and i llusive problem. It is s till in its 

infancy, a nd c onsequently th ere is  l ittle in  the l iterature c ompared to  t hat f or lo cal 

optimization. Methods researched to da te for global opt imization are mainly for the 

unconstrained problem.  

 

 
 

Figure 4.1Global and local optima of a two-dimensional function (Weise, 2008) 
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4.5  Statement of an Optimization Problem 

An optimization or a mathematical programming problem can be stated as follows:-  

Find X = {x1, x2... xn} which minimize or maximize, F(X) 
 
Subject to constraints 

 
gi(X)≤0  and hj(X) = 0 (j = 1,2,…….m)   (4.1) 
where, X is a n n -dimensional ve ctor c alled t he de sign ve ctor, F(X ) is ca lled t he 

objective f unction.  gi(X) a nd hi(X) a re, respectively, t he e quality and i nequality 

constraints. T he constrained s tated i n E q. (4.1) is c alled a  c onstrained optimization 

problem. 

Some optimization problems do not involve any constraints and can be stated as:- 

Find X ={x1, x2... xn} which minimize or maximize, F(X) 

Such problems are called unconstrained optimization problems. 

 

Design v ector: - any e ngineering system or  c omponent i s d escribed b y a set o f 

quantities some of which are viewed as variables during the design process. In general 

certain q uantities ar e u sually f ixed at  t he o utset an d t hese are cal led p re assi gned 

parameter or c onstant design pa rameters. A ll t he ot her quantities a re t reated a s 

variables in the design process and are ca lled design or decision variable, Xi, i = 1 , 

2… n. The design variables are collectively represented as a design vector. 

 

In s tructural de sign, f rom phys ical point of v iew, t he de sign va riables X that a re 

varied by o ptimization procedure m ay r epresent t he f ollowing pr operties of  t he 

structure: 

 

(i) The mechanical and physical properties of material 

(ii) Topology of the structure i.e. the pattern of connection of members or the 

number of element in a structure. 

(iii) The configuration or geometric layout of the structure 

(iv) The cross-sectional dimensions or the member sizes 

 

The types of  design v ariables m ay b e either continuous, integer, discrete or a  

combination of these types. Integer or discrete design variable is number of elements 
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in t he s tructure, f or e xample. From mathematical p oint o f v iew, it is  important to  

distinguish between continuous and discrete variables.  

 

Design C onstraints: - In m any pr actical problems, t he design v ariable c annot be 

chosen arbitrarily; rather they have to satisfy certain specified functional, behavioral 

and other requirement. The restrictions that must be satisfied in order to produce an 

acceptable d esign are collectively called c onstraints. If  th e d esign m eets th e e ntire 

requirement placed on it, it is called a feasible design. From the physical point of view 

we may identify two kind of constraint: 

 

(i) Constraints imposed on the design variables and which restrict their range. For 

reasons other than behavior considerations will be called explicit constraint 

or side constraints. These constraints, which are explicit in from, may derive 

from va rious c onsiderations s uch a s f unctionality, f abrication, or  aesthetics 

thus, a  s ide constraints i s a  specified l imitation (upper or  lower bound)  on a 

design variable, or a relationship which fixes the relative value of a group of 

design va riable, e xample of  s uch c onstrain i n s tructural de sign i nclude 

minimum thickness of plate, maximum he ight of  a  shell s tructure, minimum 

slope of a roof structure. 

 

(ii) Constraints th at are derived from be havior r equirements w ill be  c alled 

behavior constraints or implicit constraints in structural design. For example, 

limitations on m aximum s tresses, de flections, flexural s trength, or bu ckling 

strength are implicit constraints.  

 

Explicit a nd im plicit c onstraints a re o ften g iven b y f ormulas according t o design 

codes o r sp ecifications. H owever im plicit c onstraints a re g enerally im plicit in  a ny 

case t he c onstraint m ust be  a  c omputable f unction of  t he de sign va riable. Form a  

mathematical p oint o f v iew, b oth explicit and implicit constraints m ay us ually be  

expressed as a set of inequalities, gi(X) ≤0; (j = 1, 2 ….m). Where m is the number of 

inequality constraints and X is t he vector of  design va riables. In a  structural design 

problem, one has also to consider equality constraints of the general form, hj(X) = 0; 

(j= 1... p) .Where p is the number of equalities.  

 



53 
 

Objective f unction: - The conventional de sign pr ocedures a im a t f inding a n 

acceptable o r adequate design, w hich merely sat isfies the f unctional an d o ther 

requirements of  t he p roblem. I n ge neral t here will b e m ore t han o ne accep table 

designs a nd t he pur pose of  opt imization is t o c hoose t he be st out  o f t he many 

acceptable design va riable. T hus a  c riterion h as t o b e c hosen f or c omparing t he 

different a lternate acceptable de sign a nd s electing the be st one . T he criteria w ith 

respect to which the design is optimized when expressed as a function of the design 

variable is called objective function. The choice of the objective function is governed 

by the nature of  t he p roblem. For i nstant, i n aircraft and aerospace s tructure design 

problem, t he obj ective f unction is us ually b e w eight o f t he structure, in  civil 

engineering structure d esigns, th e o bjective is  u sually ta ken a s th e minimization of 

cost. 

 

4.6  Optimization Algorithm (EVOP)  

A global optimization a lgorithm EVOP (Evolutionary O peration) for c onstrained 

parameter optimization has been presented. Few current methods cope with real world 

problems involving discontinuous objective and constraining functions where there is 

a c ombination of c ontinuous, di screte and i nteger set o f arguments a nd gl obal 

minimum is sought. For noisy data, solutions are possible with genetic algorithms but 

costly parallel processing would be needed to locate the global minimum. Solutions 

remain elusive with genetic algorithms for problems with hard real-time constraints. 

The robust algorithm EVOP surmounts these difficulties with a much faster and more 

accurate solution.  

 

Virtues of EVOP 

Searching the Internet will yield a number of a lgorithms with the name EVOP. But 

this EVOP is unique in its speed and accuracy and flexibility. It appears this EVOP is 

the ‘ silver bullet’ t hat ha s s ucceeded i n s laying t he dr agon of  di mensionality in 

multiple minima bound objective function. Nothing comparable is available to date. It 

has the capability to  locate d irectly with h igh probability the g lobal minimum. It is  

also c apable t o de al w ith pos sible f inite num ber of  di scontinuities in the nonl inear 

objective a nd c onstraining f unctions. I t h as t he a bility t o m inimize di rectly an 

objective f unction w ithout r equiring i nformation on gr adient or  s ub-gradient. I t c an 
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also de al w ith obj ective f unctions ha ving a  mix of  i nteger, discrete a nd c ontinuous 

variables a s a rguments. T here i s no r equirement f or s caling of  o bjective a nd 

constraining functions. It has the capability for optimization even when there are more 

than one of the above difficulties simultaneously present.  It has facility for automatic 

restarts to check whether the previously obtained minimum is the global minimum. It 

can optimize physical systems in real-time or accelerated time; e.g. optimal adaptive 

control of  phys ical s ystems. S ince obj ective f unction i s ne ver evaluated i n the 

infeasible region, as a consequence the safety of the plant or system is not in jeopardy 

at a ny time be cause of  opt imization. G radient or s ub-gradient i s no t r equired thus 

ensuring that n oise i n measurement w ill n ot b e accen tuated t o ad versely af fect t he 

optimization process. It has inherent ability to cope with realistic hard time constraint 

requirement imposed by real-time systems.  

 

An updated version of EVOP is available that is capable for minimization of objective 

function ha ving c ombination of  i nteger, d iscrete a nd c ontinuous a rguments ( design 

variables). The method treats all arguments as continuous but for discrete and integer 

variables, p icks values f rom thin st rips cen tered on specified values. The p rocedure 

EVOP has successfully minimized a l arge number of internationally recognized test 

problems ( Ghani, 1 995). The p roblems w ere ca tegorized as u nconstrained, 

constrained, multiple minima and mixed variable problems. 

The algorithm can minimize an objective function  

 
F(X) = F(x1, x2… xn) (4.2) 
 
Where, F(x) is a function of n i ndependent variables (x1, x2 …xn). The n i ndependent 

variables xi‘s (i = 1, 2 …. n) are subject to explicit constraints  

 
li ≤ xi ≤  ui  (4.3) 
 
Where, li‘s a nd ui‘s a re lo wer a nd u pper lim its o n th e v ariables. T hey a re e ither 

constants or f unctions of  n i ndependent va riables ( movable bounda ries). T hese n 

independent variables xi‘s are also subject to m numbers of implicit constraints 

 
Lj ≤ fj(x1, x2… xn) ≤ Uj  (4.4) 
 
Where, j  = 1, 2 … . m. Lj‘s a nd Uj‘s a re lo wer a nd u pper li mits o n th e m i mplicit 

constraints. They are either constants or functions of n independent variables.  
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4.6.1 The Procedure 

The method is subdivided into six fundamental processes (Figure 4.2) which are fully 

described in the reference (Ghani, 1989). They are,  

(i) Generation of a 'complex',  

(ii) Selection of a 'complex' vertex for penalization,  

(iii) Testing for collapse of a 'complex',  

(iv) Dealing with a collapsed 'complex',  

(v) Movement of a 'complex' and 

(vi) Convergence tests. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.2 General outline of EVOP Algorithm (Rana, 2010) 
 
 

A 'complex' is a 'living' object spanning an n-dimensional space defined by k ≥ (n+1) 

vertices inside the feasible region. It has the intelligence to move towards a minimum 

located on t he boundary or inside the allowed space. It can rapidly change i ts shape 

and s ize f or ne gotiating di fficult terrain. F igure 4.3 s hows a  ' complex' w ith f our 

vertices in a  two dimensional parameter space. The 'complex' vertices are identified 
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by lower case l etters ' a', ' b', 'c' and 'd' i n an  ascending order of  function va lues, i .e. 

f(a)<f(b)<f(c)<f(d). S traight l ine parallel to th e c o-ordinate axes ar e ex plicit 

constraints with f ixed upper a nd l ower l imits. T he c urved lin es represent implicit 

constraints set to either upper or lower limits. The hatched area is the two dimensional 

feasible search spaces. 

 

 

 

 

 
 
 
 
 
 
 

 
 

 
Figure 4.3 A "complex" with four vertices inside a two dimensional feasible  
  search space (Ghani, 1989) 
 

4.6.1.1 Generation of a 'complex' 

Referring to Figure 4.4, for any feasible parameter space a random point is generated 

in su ch a w ay t hat a ll t he ex plicit constraints are au tomatically s atisfied. T he co -

ordinates of this random point are given by 

 
𝑥𝑥𝑖𝑖 ≜ 𝑙𝑙𝑖𝑖 + 𝑟𝑟𝑖𝑖(𝑢𝑢𝑖𝑖 − 𝑙𝑙𝑖𝑖) (i = 1, 2 …n) (4.5) 
 
where ri is a pseudo-random deviate of rectangular distribution over the interval (0,1). 

 

The implicit constraints are satisfied by continually moving the newly generated point 

halfway towards the feasible centroid of al l feasible vertices al ready generated. The 

new point x is obtained from the old feasible point x' and the feasible centroid C as 

follows, 

 
𝒙𝒙 =  1

2
(𝑪𝑪 + 𝒙𝒙′)  (4.6) 
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Figure 4.4 Generation of initial "complex" (Ghani, 1989) 

 

Once x has satisfied all constraints it is added to the list of feasible complex vertices. 

This p rocess is  re peated till a ll k  v ertices th at s atisfy a ll explicit a nd a ll im plicit 

constraints have been generated beginning from a single feasible starting point. 

 

In simpler language, a starting point is required that satisfies all explicit and implicit 

constraint sets. A second point is randomly generated within the bounds defined by 

the e xplicit c onstraints. If  th is second p oint a lso h appens to  s atisfy, a ll implicit 

constraints, e verything i s goi ng fine. C entroid of  t he t wo f easible points is  

determined. I f i t s atisfies a ll c onstraints, t hen things a re r eally goi ng fine a nd t he 

‘complex’ i s upda ted with t his second poi nt. I f, how ever, t he r andomly ge nerated 

point fails to satisfy implicit constraints it is continually moved half way towards the 

feasible starting point till all constraints are satisfied. Feasibility of the centroid of the 

two points i s next checked. I f the centroid sat isfies al l constraints, then we have an  

acceptable ‘complex’, and we proceed to generate the third point for the ‘complex’.  

If, how ever, t he c entroid f ails t o s atisfy a ny of  t he c onstraints t his s econd poi nt i s 

randomly once again generated in the space defined by the explicit constraints. 

 

Referring to the Figure 4.4, the first random point is 'd', and the centroid is the feasible 

starting point ' a'. The p oint ‘d’ is moved ha lfway t owards ' a' i n or der t o s atisfy t he 

violated im plicit c onstraint. N ext the c entroid of th e f easible v ertices ' a' a nd 'd' i s 

determined which itself is feasible. Another random point 'c' is next generated and is 

moved to 'c' to satisfy the violated implicit constraint. Repeating the procedure all the 
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(k-1) feasible vertices o f the in itial 'complex' a re obtained. The in itial ' complex' for 

the two dimensional example is the object 'abcd'. It can be seen that the same feasible 

point 'a' can be used again for generating a new initial 'complex' which would be of a 

completely different shape and size. The method allows repeated re-use of the same 

feasible starting point for checking whether the global minimum has been located. 

 

For a convex feasible parameter space the above method would, without fail, succeed 

in generating a 'complex' with k vertices. If the parameter space is non-convex and the 

centroid happens to l ie in the infeasible area, there i s every chance that a ' complex' 

cannot be generated. Figure 4.5 shows such a possibility. Three vertices 'a', 'b' and 'c' 

in the feasible parameter space have already been generated. In order to generate the 

fourth f easible ve rtex a  tr ial p oint ' T1' sat isfying t he explicit co nstraints i s created. 

However, 'T1' i s infeasible as i t violates an implicit constraint. In order to make 'T1' 

feasible it is continually moved halfway towards the centroid 'C'. Since the centroid 

itself is infeasible no amount of such moves would make 'T1' feasible, and a 'complex' 

with f our v ertices can  never b e g enerated. In su ch case i f a n ew feasible ' complex' 

vertex re sults in  th e n ew c entroid to l ie in th e in feasible area, that n ew v ertex i s 

discarded and another is generated until a feasible centroid is obtained. 

 
In minimization involving combination of  continuous, integer and discrete variables 

rounding of f of  a ppropriate c o-ordinates of  t he t rial poi nt is c onducted i n t he us er 

written explicit constraint function. The co-ordinates of the centroid should never be 

rounded off. 

 

 

 
 

 

 

 

 

 

Figure 4.5 A 'complex' with four vertices 'abcd' cannot be generated  

(Ghani, 1989) 
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4.6.1.2 Selection of a 'complex' vertex for penalization 

In the present minimization process the worst vertex 'ng' of a 'complex' is that with the 

highest f unction va lue w hich i s penalized b y ove r-reflecting on the c entroid.  

Referring to  F igure 4.6, t he penalized point 'd'  is re flected over the centroid 'C' to 

create a trial point 'Tl' which violates an implicit constraint. Since the centroid itself is 

in the infeasible region, repeated movement of point 'Tl' halfway towards the centroid 

would result in collapse of the point on the centroid. The new complex has now three 

vertices 'a', 'b' and 'c'. One more such collapse would result in complete collapse of the 

'complex' because an object with two vertices cannot span a two dimensional space. 

In ge neral a s pace of  n di mension c an onl y be s panned by obj ects de fined by  k 

vertices where k≥(n+1). 

 

 

 

 

 
Figure 4.6 The possibility of collapse of a trial point onto the centroid.  

(Ghani, 1989) 

For selection of a 'complex' vertex for penalization the procedure as shown in Figure 

4.7 is followed until a preset number of calls to the three functions (Implicit, Explicit 

and Objective) are collectively exceeded. 

 
4.6.1.3 Testing for collapse of a 'complex' 

A 'complex' is said to have collapsed in a subspace if the ith coordinate of the centroid 

is i dentical to t he sam e o f al l ' k' v ertices o f t he ' complex'. T his i s a su fficiency 

condition and detects collapse of a ' complex' when it lies parallel along a co ordinate 

axis. Once a 'complex' has collapsed to a subspace it can never again be able to span 

the original space. The word "identical" implies here "identical within the resolution 

of Φcpx which is a parameter for detection of 'complex' collapse. Numbers x and y are 

identical w ithin t he r esolution of  Φcpx if x a nd {x +  Φcpx(x-y)} h ave t he sam e 

numerical values. For Φcpx set to 10-2, if x and y differs by not more than the last two 

significant digits they will be considered identical. 



60 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Selection of a 'complex' vertex for penalization (Rana, 2010) 

 

Figure 4.8 shows a 'complex' with vertices 'a', 'b', 'c' and 'd', which has collapsed to a 

one dimensional search space. The X2 coordinates of all vertices and the centroid are 

identical within the resolution of Φcpx. As can be seen the 'complex' vertices can now 

move onl y along t he X 1 coordinate direction. S uch collapses a long o ther angular 

directions have not been accounted. Such a failure would rapidly lead to the type of 

collapse discussed above, albeit additional computations will be performed. 

 

 

 

 

 

 

 
 

Figure 4.8 Collapse of a 'complex' to a one dimensional subspace. (Ghani, 1989) 
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(1 )r gx C xα α= + −

4.6.1.4 Dealing with a collapsed 'complex' 

On d etecting co llapse of a ' complex' so me act ions ar e t aken su ch t hat a n ew 

‘complex’ i s ge nerated w ithin t he f ull f easible s pace de fined by  t he e xplicit a nd 

implicit constraints or a  ‘complex’ spanning smaller feasible space. The process for 

movement of a ‘complex’ as explained below is continued. 

 

4.6.1.5 Movement of a 'complex' 

The pr ocess be gins by over-reflecting t he w orst ve rtex ' ng' of  a  ' complex' on t he 

feasible centroid ‘C’ of the remaining vertices to generate a new trial point xr, 

 
 (4.7) 
 

where α is reflection coefficient. 

 

A check is then made to determine whether the trial point violates any constraints. If 

an explicit constraint is violated, the trial point is moved just inside the boundary by a 

small amount Δ called the explicit constraint retention coefficient.  If a ny implicit 

constraint is violated the trial point is repeatedly moved halfway towards the centroid 

until the constraint is satisfied.  

 

Figure 4.9 shows t he penalized point 'd' on ove r-reflection v iolates a n e xplicit 

constraint. The trial point 'Tl' is moved to 'T2' just inside the constraint boundary by a 

factor, Δ. 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 The reflected point violating an explicit constraint. (Ghani, 1989) 
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(1 ) gx C xβ β= + −

 

Figure 4.10 shows the case when an implicit constraint is violated. The infeasible trial 

point 'Tl' is moved halfway towards the feasible centroid 'C' to 'T2' which satisfies all 

constraints. 

 
The function value at the feasible trial point is next evaluated. The reflection step is 

considered successful if the function value at this new trial point is lower than that at 

vertex 'nh', and the vertex 'ng' is replaced by the trial point. If, however, the function 

value at the trial point is greater than that at vertex 'nh' of the current 'complex', the 

trial poi nt would be  t he w orst v ertex in t he ne w ' complex' c onfiguration. T he 

reflection step is, therefore, considered unsuccessful and contraction step applied. 

 

 

 
 
 
 
 
 
 
 
 
 
 
  
Figure 4.10 The reflected trial point violating an implicit constraint (Ghani, 1989) 
 
Depending on situation anyone of the three stages (Stages 1-3) of the contraction step 

can be  called. I f the function va lue at the feasible t rial point a fter over-reflection is  

less than that at vertex 'ng' but equal to or greater than that at vertex 'nh', Stage 1 of  

contraction step i s ap plied. T his i s essen tially an  u nder-reflection, and t he c o-

ordinates of the new trial point x is given by 

  
 (4.8) 
 

where β is contraction coefficient. 

 

Figure 4.11 shows the worst vertex 'd' of the current 'complex' 'abcd' over-reflected on 

the f easible cen troid ' C'. The tria l p oint ' T1' so obt ained i s m oved j ust i nside a n 

explicit constraint resulting in trial point 'T2' which still violates an implicit constraint. 
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(1 )gx x Cβ β= + −

'T2' is moved halfway towards the centroid 'C' along the line joining the two resulting 

in a completely feasible trial point 'T3'. Function value at 'T3' is calculated, and found 

to be  i ntermediate be tween t he s econd hi ghest f unction v alue at v ertex ' c', a nd t he 

highest function value at vertex 'd’. If ' d' is replaced by the feasible trial point 'T3' to 

form a n ew co mplex ' abcT3', t hen ' T3' w ould be  the w orst v ertex i n the new 

configuration. The reflection step is, therefore, considered unsuccessful and point 'T3' 

is rejected, and Stage 1 of contraction step is applied. The worst vertex 'd' is under-

reflected o n t he f easible cen troid ' C' t o 'T 4'. Since th e trial p oint 'T4' v iolates a n 

implicit constraint it is moved halfway towards the centroid to 'T5'. The trial point 'T5' 

is feasible, and replaces the worst vertex ’d’ to form a new complex 'abcT5'. 

 

 
 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 4.11 Unsuccessful over-reflection and Stage of contraction step applied. 
(Ghani, 1989) 

 

Stage 2 of contraction step is applied if at the end of over-reflection the function value 

at the feasible trial point is equal to or greater than that at the worst vertex 'ng' of the 

current complex. The co-ordinates of the new trial point are given by: 

  
 (4.9) 
 

Figure 4.12 shows that the point 'd' of a current 'complex' 'abcd' is reflected over the 

centroid ' C' of  t he r emaining po ints ' a', ' b' a nd ' c' t o obt ain a  t rial poi nt ' Tl' w hich 

violates both explicit and implicit constraints. The explicit constraint i s s atisfied by 

moving t he poi nt ' Tl' t o 'T 2' j ust i nside t he bou ndary of  t he e xplicit c onstraint. T he 

implicit c onstraint is  s atisfied b y moving th e p oint ' T2' t o 'T3' ha lfway t owards t he 

feasible centroid 'C'. The function value at the feasible trial point 'T3' is found to be 
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greater t han t he hi ghest f unction va lue of  t he c urrent 'complex' a t v ertex ' d'. T he 

reflection step is, therefore, considered unsuccessful, and point 'T3' is rejected. Stage 2 

of contraction step is applied penalizing the worst vertex 'd' to 'T4'. The trial point 'T4' 

violates a n implicit c onstraint. It i s made f easible b y m oving h alfway to wards th e 

feasible centroid 'C' to 'T5'. 'T5' replaces the worst vertex 'd' to form a n ew 'complex' 

'abcT5'. 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4.12 Unsuccessful over-reflection and Stage 2 of contraction step applied 

(Ghani, 1989) 

Stage 3 of contraction step is called only after Stages 1 and/or 2 have been previously 

applied consecutively for more than '2k' t imes. A small 'complex' is generated using 

vertex ' ns' a s t he s tarting point. I f on ove r-reflection the t rial point has not v iolated 

any constraints, has a function value lower than the lowest function value at vertex 'ns' 

of the current 'complex', and the previous move was not a contraction step, this over-

reflection is considered over-successful. Expansion step is then applied to generate a 

new tria l point further away f rom the f easible centroid a long the s ame s traight line 

used for over-reflection. The co-ordinates of this accelerated trial point is given by 

 
  (4.10) 
 

Where, γ is expansion coefficient. 

 

Feasibility of this accelerated trial point is next checked. If any constraint is violated, 

the acceleration step is considered unsuccessful, and a n ew 'complex' is formed with 

the ove r-reflected f easible t rial p oint xr as t he upda ted ve rtex r eplacing t he w orst 

vertex ‘ ng' of  t he c urrent ' complex'. O therwise t he f unction va lue a t t he f easible 
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accelerated trial point is evaluated. If it is lower than that at x the acceleration step is 

considered successful. The accelerated point then replace the worst vertex ‘ng' to form 

the n ew ' complex'. E lse, i f t he f unction v alue at  the a ccelerated p oint eq uals o r 

exceeds t hat a t t he ove r-reflected p oint xr the acceleration st ep i s a lso co nsidered 

unsuccessful. The accelerated point is rejected in favor of the point xr to form the new 

'complex'.  

 

Figure 4.13  s hows a successful acc eleration s tep. T he ove r-reflected trial p oint ' T1' 

does not  vi olate a ny c onstraint, a nd ha s a  f unction va lue l ower t han t he l owest 

function value at vertex 'a' of the current 'complex' 'abcd'. Since contraction step was 

not applied previously acceleration step is called to obtain the trial point 'T2'. 'T2' does 

not violate any constraint and yet has a  function value lower than that a t 'Tl '. Trial 

point ' T2' r eplaces t he worst ve rtex ' d' of  t he c urrent ' complex' t o f orm t he upda ted 

'complex' 'abcT2'.  

 

 

 

 

 

 

 

 

Figure 4.13 Successful acceleration steps (Ghani, 1989) 
 

4.6.1.6 Convergence tests 

While e xecuting the p rocess of  movement of  a  ‘ complex’, test f or c onvergence a re 

made periodically after certain preset number of calls to the objective function. There 

are two levels of convergence tests. The first convergence test would succeed only if a 

predefined number of consecutive function values are identical within the resolution 

of co nvergence p arameter Φ, w hich s hould be  f iner than Φcpx. T he second 

convergence test is attempted only if the first convergence test succeeds. This second 

test f or co nvergence v erifies w hether f unction v alues at  a ll v ertices o f t he cu rrent 

'complex' are also identical within the resolution of Φ. 



CH A P T E R  5  

PR O B L E M FO R M U L A T I O N  
 

5.1  Introduction 

Appropriate o ptimization pr oblem has t o be  f ormulated f or t he pr esent br idge 

structure (a two-span continuous post-tensioned girder of bridge) to be solved by an 

optimization m ethod (EVOP). Then, o ptimization m ethod s olves the problem and 

gives t he optimum s olutions. In t his c hapter t he v arious c omponents of  t he 

optimization problem of the present study are described. The various components are 

mathematical expression required for the design and analysis of the bridge system, an 

objective f unction, implicit c onstraints, explicit c onstraints and input c ontrol 

parameters for t he opt imization m ethod.For d esign a nd a nalysis of the tw o-span 

continuous gi rder, e ight s ections/ positions a long t he s pan of  t he girder w ere 

considered. The s tructure being a n i ndeterminate one, Stiffness Met hod w as 

incorporated in the mathematical expression required for the design and analysis of it. 

Prestress losses, allowable and ultimate strength design criteria, ductility limits, lateral 

stability an d d eflection criteria were applied/ considered by taking i nto account t he 

continuity effect o f th e s tructure.The p rogram is  f inally linked t o t he opt imization 

method to obtain the optimumsolutionsof cost optimum design. 

 

5.2  Objective Function 

In this study, the objective is the cost minimization of the present bridge systems by 

taking in to a ccount th e c ost o f a ll m aterials, f abrication, a nd in stallation. T he to tal 

cost of a bridge system is formulated as: 

 
CT = CGC + CDC +CPS + COS (5.1) 
 
where, CGC, CDC, CPS and COS are the cost of materials, fabrication and installation of 

Girder Concrete, Deck slab Concrete, Prestressing Steel and Ordinary Steel for deck 

reinforcement an d g irder’s sh ear reinforcement r espectively. C osts o f i ndividual 

components arecalculated as: 

 
CGC = (UPGC VGC + UPGF SAG) NG (5.2) 
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CDC = (UPDCVDC + UPDF (S-TFw)) NG (5.3) 

CPS = (UPPSWPS + 2 UPANC NT + UPSH NT L) NG (5.4) 

CNS = UPOS (WOSD+ WOSG) NG (5.5) 

 
where, UPGC, UP DC, UPPS and UPOS are t he u nit p rices i ncluding m aterials, l abor, 

fabrication and installation of  (i) the precast g irder concrete, (ii) deck concrete, (iii) 

prestressing steel and (iv) ordinary steel respectively; UPGF, UPDF, UPANC, UPSH are 

the uni t pr ices of  gi rder formwork, deck formwork, anchorage set and metal sheath 

for duct re spectively; VGC, VDC, WPS, WOSD and WOSG are t he vol ume of t he pr ecast 

girder concrete and deck slab concrete, weight of prestressing steel and ordinary steel 

in deck slab and in girder respectively; L is the girder span; NG is number of girders; S 

is girder spacing. 

 

5.3  Design Variables and Constant Design Parameters  

For a  particular girder span and bridge width, a l arge number of  parameters control 

the design of the bridge such as girder spacing, cross sectional dimensions of girder, 

deck s lab t hickness, n umber of  s trands pe r t endon, nu mber of  t endons, de ck s lab 

reinforcement, configuration of tendons, anchorage system, pre-stress losses, concrete 

strength e tc. T he de sign va riables a nd va riable type c onsidered i n t he s tudy a re 

tabulated in Table 5.1. A typical cross-section of the two-span continuous PC I-girder 

at 0.4L distance from end support is illustrated in Figure 5.1 to highlight several of the 

design variables. Besides, typical cross-sections i) above end support (at pos ition of  

zero moment), ii) at positive moment region and iii) just above the interior support (at 

position of maximum negative moment) are illustrated in Figure 5.2 as well. 
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Figure 5.1 Section with design variables at positive moment region (Rana, 2010). 

 

 
Figure 5.2 Typical cross-section at various positions along the span 
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S

Bw

DECK SLABt

The constant design parameters under consideration a re various material p roperties, 

superimposed dead loads, AASHTO live load, strand size, post-tensioning anchorage 

system a nd u nit c osts o f m aterials including f abrication a nd installation e tc. 

Optimization is based on the analysis of an interior girder arranged as shown in Figure 

5.3. The girder and the deck are assumed to act as a composite section during service 

condition. P restress is c onsidered to b e ap plied in t wo st ages, a p ercentage o f t otal 

prestress at initial stage to carry only the girder self weight & stress produced during 

lifting and transportation and full prestress during casting of deck slab. In the present 

study the tendons arrangement is not assumed as fixed rather it is considered as design 

variable as it has significant effects on prestress losses and flexural stress at  various 

sections along the girder. Tendons layout along the span is assumed as parabolic. The 

vertical a nd hor izontal arrangement of  t endons de pends o n va rious cross s ectional 

dimensions of girder such as depth, bottom flange, and web. Typical arrangements of 

tendons at various sections are shown in Figure 5.2. The arrangement of tendons also 

depends on duct s ize a nd s pacing, a nchorage s pacing a nd a nchorage e dge di stance. 

These parameters depend on a  design variable, namely, number of strand per tendon 

and on a  c onstant pa rameter, na mely, c oncrete s trength, and a re de termined us ing 

values listed in the Table 5.2. 

 
 

 
 
 
 

 
 

Figure 5.3 Girders arrangement in the bridge 
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Table 5.1 Design variables with variable type 

Design variables Variabletype 

Girder spacing (S) (m) 

Girder depth (Gd ) (mm) 

Top flange width (TFw ) (mm) 

Top flange thickness (TFt) (mm) 

Top flange transition thickness (TFTt) (mm) 

Bottom flange width (BFw) (mm) 

Bottom flange thickness (BFt ) (mm) 

Web width (Ww) (mm) 

Number of strands per tendon (Ns) 

Number of tendons per girder (NT) 

Lowermost tendon position at the end from bottom (y1) (mm) 

Initial stage prestress (% of full prestress) (η) 

Slab thickness (t) (mm) 

Slab main reinforcement ratio (ρ) 

Discrete 

Discrete 

Discrete 

Discrete 

Discrete 

Discrete 

Continuous 

Discrete 

Integer 

Integer 

Continuous 

Continuous 

Discrete 

Continuous 

 
 
 

Table 5.2 Minimum dimensions for C range anchorage system 

No. of strands per 

tendon 

1-3 4 5-7 8-9 10-12 

(mm) 

13 14-19 21-22 23-27 

Duct diameter 45 50 65 70 85 85 100 110 115 

Duct clear spacing (DS) 38 38 38 38 38 38 38 50 50 

AD 110 120 150 185 200 210 250 275 300 

AM 128 150 188 210 248 255 300 323 345 

𝐴𝐴𝐴𝐴 = 𝐹𝐹
𝑓𝑓𝑐𝑐  × 𝐵𝐵𝐹𝐹𝑤𝑤

; fc= concrete strength at stressing time; F = Prestressing force; AD = Anchorage 

dimension; AM = Anchorage minimum vertical edge distance 
   

5.4  Explicit Constraints 

These a re specified l imitation (u pper o r lower limit) o n d esign v ariables w hich ar e 

derived f rom g eometric r equirements ( superstructure depth, cl earances e tc.), 

minimum practical dimension for construction, code restriction etc. The constraint is 

defined as 
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XL ≤ X ≤ XU (5.6) 
 
Where, X = Design variable, XL = Lower limit of the design variable, XU = Upper limit 

of the design variable.  

 

Explicit constraints for girder spacing: Lower and upper limit of girder spacing is 

considered such that number of girder in the bridge can vary from 1 to 10. 

 

Explicit constraints for top flange: The lower limit of top flange width is assumed 

as 300 m m from lateral stability and bearing considerations and upper limit equal to 

girder s pacing. T he l ower l imit of  t op f lange thickness i s c onsidered a s 75 mm to 

resist damage during handling and proper placement of transverse reinforcement and 

upper limit is assumed as 300 mm. The lower limit of top flange transition thickness 

is c onsidered a s 50 m m t o f acilitate pl acement a nd c onsolidation of  c oncrete a nd 

upper limit is assumed as 300 mm. The haunch thickness and width is assumed as 50 

mm.  

 

Explicit constraints for web: The lower limit of web width is equal to diameter of 

duct plus web rebars and clear cover (Figure 5.4) and upper limit is assumed as 300 

mm. 

 

 

  

 

 

 

 

 

 

 

Figure 5.4 Width of web (Rana, 2010) 
 

Explicit constraints for bottom f lange: The lower l imit of  bot tom f lange width is 

assumed as 300 mm to accommodate anchorage setup and upper limit equal to girder 

spacing. The lower limit of thickness is equal to clear cover and duct diameter to fit at 

Web 
width 

Clear 
Cover  
38 mm 

Duct 
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least one  r ow of  t endons. T he up per l imit i s a ssumed a s 600 mm. The w idth t o 

thickness ra tio o f b ottom f lange tra nsition a rea is  a ssumed a s 2  to  1  fro m p ractical 

construction point of view. 

 

Explicit constraints for girder depth: The lower limit of girder depth is considered  

as 1000 m m a nd uppe r l imit 3500 mm which i s c ommon r ange of  gi rder de pth t o 

minimize the cost of substructure and approach roads and from aesthetics and limited 

clear space criterion. 

 

Explicit constraints for num ber o f strand pe r t endon: Within th e available 

anchorage system one tendon may consist of several seven-wire strands like 1 to 55. 

Here t he e ffect of  num ber of  s trands i n a tendon i s studied. F or this s tudy it i s 

considered that each tendon may consist of 1 to 27 strands.  

 

Explicit constraints for num ber o f tendon: The amount of  pr e-stressing f orce 

required for cost optimum design are directly associated with the number of tendons 

required in the girder. For this study it is considered that the number of tendon may 

vary from 1 to 20. 

 

Explicit constraints for lowermost tendon position: To vary the profile of  tendon 

along the girder span the lower most tendon position from bottom at the end section is 

considered a s a  design variable and the other t endon pos itions are determined from 

anchorage s pacing. T he l ower l imit of  ve rtical pos ition of  t he t endon i s c onsidered 

equal to an chorage m inimum v ertical edge d istance an d u pper l imit i s assu med as  

1000 mm. 

 

Explicit constraints for d eck s lab: The lo wer lim it o f d eck s lab thickness i s 

considered as 1 75 mm to control deflection and excessive crack and upper l imit as 

300 m m. T he l ower and uppe r limits of  de ck s lab reinforcement a re c onsidered 

according t o A ASHTO s tandard s pecification. T he e xplicit c onstraints f or a ll th e 

above design variables are shown in Table 5.3. 
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Table 5.3 Design variables with Explicit Constraints 

Design variables Explicit Constraint 

Girder spacing (S) (m) 

Girder depth (Gd ) (mm) 

Top flange width (TFw ) (mm) 

Top flange thickness (TFt) (mm) 

Top flange transition thickness (TFTt) (mm) 

Bottom flange width (BFw) (mm) 

Bottom flange thickness (BFt ) (mm) 

Web width (Ww) (mm) 

Number of strands per tendon (Ns) 

Number of tendons per girder (NT) 

Lowermost tendon position at the end from bottom (y1) (mm) 

Initial stage prestress (% of full prestress) (η) 

Slab thickness (t) (mm) 

Slab main reinforcement ratio (ρ) 

BW/10 ≤ S ≤ BW 

1000 ≤ Gd ≤ 3500 

300 ≤ TFw ≤ S 

75 ≤ TFt ≤ 300 

50  ≤ TFTt ≤ 300 

300 ≤ BFw ≤ S 

a ≤ BFt ≤ 600 

b ≤  Ww  ≤ 300 

1 ≤ Ns≤ 27 

1≤ NT ≤ 20 

AM  ≤  y1 ≤  1000 

1% ≤  η ≤  100% 

175 ≤ t≤  300 

ρmin≤  ρ≤  ρmax 

a = clear cover + duct diameter; b = clear cover + web rebar’s diameter + duct 
diameter; AM = Anchorage minimum vertical edge distance 
 

5.5  Implicit Constraints 

These co nstraints r epresent t he p erformance r equirements o r r esponse o f t he b ridge 

system. A  to tal 4 6 im plicit constraints are c onsidered a ccording to the A ASHTO 

Standard Specifications (AASHTO 2007). These constraints are categorized into eight 

groups: 

 

(i) Flexural working stress constraints  

(ii) Flexural ultimate strength constraints 

(iii) Shear constraints (ultimate strength)  

(iv) Ductility constraints 

(v) Deflection constraints     

(vi) Lateral stability constraint 

(vii) Tendons eccentricity constraint and  

(viii) Deck slab design constraint 
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These constraints are formulated as below: 

 

5.5.1 Flexural working stress constraints: 

These constraints limit the working stresses in concrete and are given by: 

 
𝑓𝑓𝐿𝐿 ≤ 𝑓𝑓𝑗𝑗 ≤ 𝑓𝑓𝑈𝑈   (5.7) 
 
𝑓𝑓𝑗𝑗 = −𝐹𝐹𝑗𝑗

A
± 𝐹𝐹𝑗𝑗 𝑒𝑒𝑗𝑗

Sj
± 𝑀𝑀𝑗𝑗

Sj
 (5.8) 

 
 
Where, fL = al lowable compressive stress ( lower limit), fU = al lowable tensile s tress 

(upper limit) and fj is the actual working stress in concrete; Fj, ej, Sj, Mj = prestressing 

force, t endons e ccentricity s ection modulus a nd moment a t j th section r espectively. 

These constraints are considered at eight critical sections along the span of the girder 

as s hown i n Figure 5.5 and f or various l oading s tages ( initial s tage a nd service 

conditions). The eight sections are (describing from left support): 

Section 4: Section where anchorages are placed 

Section 2: End of anchorage and transition zone (Considered at a distance of 1.5 times 

girder depth).   

Section 3: Section where prestress is at its maximum value. 

Section 1: Section at 0.4L distance from end support. 

Section 7: Midpoint of section 1 and 6. 

Section 6:  Section a t 0 .1L di stance f rom i nterior s upport (where parabolic t endon 

changes its curvature) 

Section 8: Midpoint of section 6 and 5. 

Section 5: Section at interior support. 

 

Allowable stresses for prestressed concrete (AASHTO 2007) 

Compression stress: 

1. The stress limit due to the sum of the effective prestress, permanent loads, and 

transient l oads a nd dur ing s hipping a nd ha ndling i s t aken a s 0.6𝒇𝒇𝒄𝒄′  and 

0.55𝒇𝒇𝒄𝒄𝒄𝒄′ at transfer. 

2. The stress limit in prestressed concrete at the service limit state after losses for 

fully pr estressed c omponents in br idges ot her t han s egmentally c onstructed 
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due t o t he sum o f ef fective p restress an d p ermanent l oads s hall b e taken as 

0.45𝒇𝒇𝒄𝒄′  

3. The stress limit in prestressed concrete at the service limit state after losses for 

fully pr estressed c omponents in br idges ot her t han s egmentally c onstructed 

due to live load plus one-half the sum of the effective prestress and permanent 

loads shall be taken as 0.40𝒇𝒇𝒄𝒄′  

 

Tension stress: 

The stress limit in prestressed concrete at the service limit state after losses for fully 

prestressed components in bridges other than segmentally constructed, which include 

bonded prestressing tendons and are subjected to not worse than moderate corrosion 

conditions s hall be taken a s t he f ollowing: 0.25�𝒇𝒇𝒄𝒄𝒄𝒄′ (MPa) (initial) and  

𝟎𝟎.𝟓𝟓�𝒇𝒇𝒄𝒄′ (MPa) (Final). 

 

 

 



 

 

 
 

Section 1: Section at 0.4L distance from end support; Section 2: End of anchorage and transition zone (Considered at a distance of 1.5 t imes 

girder depth); Section 3: Section where prestress is at its maximum value; Section 4: Section where anchorages are placed; Section 5: Section at 

interior support; Section 6: Section at 0.1L distance from interior support (where parabolic tendon changes its curvature); Section 7: Midpoint of 

section 1 and 6; Section 8: Midpoint of section 6 and 5. 

 

 

Figure 5.5 Tendons profile along the girder 
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The initial loading s tage i ncludes the gi rder self weight and prestressing force after 

instantaneous losses (friction loss, anchorage loss and elastic shortening loss). In this 

stage net cross sectional properties of precast girder are used excluding duct. At initial 

stage a portion of total prestress is applied only to carry girder self weight. At service 

the f irst lo ading s tage i ncludes initial lo ading s tage in addition s lab a nd di aphragm 

weight. In this stage transformed cross sectional properties of precast girder are used 

and full prestress is applied. The second loading stage includes first loading stage in 

addition l oads due  t o w earing course a nd m edian strip s uperimposed on c omposite 

section an d prestress f orce af ter total l osses i s considered. The t hird loading st age 

includes live load and impact load superimposed on c omposite section in addition to 

second l oading s tage. The f ourth loading stage i ncludes ha lf of  de ad l oad and 

prestress force plus full live load. Loading stages are summarized in Table 5.4. 

 

Table 5.4 Loading stages and implicit constraints 

Load 
stage 

Resisting 
section 

Section 
properties 

Load Combination Implicit 
constraint 

Initial 
stage 

Precast 
section 

Anet, ei, 
Snet 

ηF+G 

 
Eq. (5.9) 

1 
 

Precast 
section 

Atf, e, S 
 

Fi+G+SB+DP 
 

Eq. (5.10) 

2 
 

Precast 
section 

+ 
Composite 

section 

Atf, e, S 
 

+ 
SC 

Fe+G+SB+DP 
 

+ 
SD 

Eq. (5.11) 

3 

Precast 
section 

+ 
Composite 

section 

Atf, e, S 
 

+ 
SC 

Fe +G+SB+DP 
 

+ 
SD+L+I 

 

Eq. (5.12) 

4 

Precast 
section 

+ 
Composite 

section 

Atf, e, S 
 

+ 
SC 

0.5(Fe + DL) 
 

+ 
L+I 

Eq. (5.13) 

G = Girder self weight; SB = slab weight; DP = diaphragm weight; SD = superimposed dead 

load for wearing coarse and curb weight; DL = total dead load; L = live load; I = impact load. 

F = Jacking force; Fi, Fe = Prestressing force after initial losses and total losses respectively; 

 

−0.55𝑓𝑓𝑐𝑐𝑐𝑐′ ≤ 𝑓𝑓𝑐𝑐 ≤ 0.25�𝑓𝑓𝑐𝑐𝑐𝑐′  (5.9) 
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−0.60𝑓𝑓𝑐𝑐′ ≤ 𝑓𝑓 ≤ 0.5�𝑓𝑓𝑐𝑐′ (5.10) 

−0.40𝑓𝑓𝑐𝑐′ ≤ 𝑓𝑓 ≤  0.5�𝑓𝑓𝑐𝑐′ (5.11) 

−0.60𝑓𝑓𝑐𝑐′ ≤ 𝑓𝑓 ≤  0.5�𝑓𝑓𝑐𝑐′ (5.12) 

−0.40𝑓𝑓𝑐𝑐′ ≤ 𝑓𝑓 ≤  0.5�𝑓𝑓𝑐𝑐′ (5.13) 

  

Prestress losses are estimated according to AASHTO 2007 instead of using lump sum 

value for greater accuracy because prestress losses are also implicit functions of some 

of d esign v ariables. T he i nstantaneous l osses depend on jacking e quipment a nd 

anchorage h ardware us ed a nd the d esign v ariables (number of  t endons, num ber o f 

strands per tendon, l ayout of  t endon in the g irder, prestressing of  t endon and gi rder 

cross sectional properties). The long term losses are loss due to creep of concrete, loss 

due t o sh rinkage o f co ncrete an d l oss d ue t o s teel relaxation an d a re a lso implicit 

functions o f so me o f d esign v ariables. In pos t-tensioned girder, prestressing forces 

varies a long t he length of t he gi rder due to f riction losses a nd a nchorage l osses a s 

shown in F igure 5.6. The p restressing f orces af ter i nstantaneous l osses at  sev en 

critical sections and at the end are determined as follows:  

 

𝐹𝐹1𝑐𝑐 = 𝐹𝐹 − ∑ 𝐹𝐹𝑐𝑐
𝑐𝑐=𝑁𝑁𝑇𝑇
𝑐𝑐=1 �1 − 𝑒𝑒−(𝜇𝜇𝜃𝜃𝑐𝑐+0.4𝐾𝐾𝐿𝐿)� − 𝐿𝐿𝐸𝐸𝐴𝐴  (5.14) 

𝐹𝐹3𝑐𝑐 = 𝐹𝐹 − 0.5𝐿𝐿𝐴𝐴𝑁𝑁𝐴𝐴 − 𝐿𝐿𝐸𝐸𝐴𝐴  (5.15) 

𝐹𝐹2𝑐𝑐 = 𝐹𝐹3𝑐𝑐 − 0.5𝐿𝐿𝐴𝐴𝑁𝑁𝐴𝐴(𝑥𝑥2−𝑥𝑥3
𝑥𝑥2

) − 𝐿𝐿𝐸𝐸𝐴𝐴  (5.16) 

𝐹𝐹4𝑐𝑐 = 𝐹𝐹 − 𝐿𝐿𝐴𝐴𝑁𝑁𝐴𝐴 − 𝐿𝐿𝐸𝐸𝐴𝐴  (5.17) 

𝐿𝐿𝐸𝐸𝐴𝐴 = 𝐾𝐾𝑒𝑒𝑒𝑒
𝐸𝐸𝑒𝑒
𝐸𝐸𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴𝑒𝑒 (5.18) 

𝐿𝐿𝐴𝐴𝑁𝑁𝐴𝐴 = 4 ( 𝐹𝐹−𝐹𝐹1𝑐𝑐)
𝐿𝐿 � 𝐿𝐿𝐴𝐴𝑒𝑒𝐸𝐸𝑒𝑒

2( 𝐹𝐹−𝐹𝐹1𝑐𝑐)
𝛿𝛿 (5.19) 

𝐹𝐹5𝑐𝑐 = 𝐹𝐹8𝑐𝑐 − ∑ 𝐹𝐹𝑐𝑐
𝑐𝑐=𝑁𝑁𝑇𝑇
𝑐𝑐=1 �1 − 𝑒𝑒−(𝜇𝜇𝜃𝜃𝑐𝑐+0.05𝐾𝐾𝐿𝐿)� − 𝐿𝐿𝐸𝐸𝐴𝐴  (5.20) 

𝐹𝐹6𝑐𝑐 = 𝐹𝐹7𝑐𝑐 − ∑ 𝐹𝐹𝑐𝑐
𝑐𝑐=𝑁𝑁𝑇𝑇
𝑐𝑐=1 �1 − 𝑒𝑒−(𝜇𝜇𝜃𝜃𝑐𝑐+0.25𝐾𝐾𝐿𝐿)� − 𝐿𝐿𝐸𝐸𝐴𝐴  (5.21) 

𝐹𝐹7𝑐𝑐 = 𝐹𝐹1𝑐𝑐 − ∑ 𝐹𝐹𝑐𝑐
𝑐𝑐=𝑁𝑁𝑇𝑇
𝑐𝑐=1 �1 − 𝑒𝑒−(𝜇𝜇𝜃𝜃𝑐𝑐+0.25𝐾𝐾𝐿𝐿)� − 𝐿𝐿𝐸𝐸𝐴𝐴                                                 (5.22)  

𝐹𝐹8𝑐𝑐 = 𝐹𝐹6𝑐𝑐 − ∑ 𝐹𝐹𝑐𝑐
𝑐𝑐=𝑁𝑁𝑇𝑇
𝑐𝑐=1 �1 − 𝑒𝑒−(𝜇𝜇𝜃𝜃𝑐𝑐+0.05𝐾𝐾𝐿𝐿)� − 𝐿𝐿𝐸𝐸𝐴𝐴                                                 (5.23) 
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Section1

CL

1e

After Anchor Set

Before Anchor Set
ANC WC

L L

ESL

tL

Length along span, x

Jacking Force, F  Prestressing
Force at section1
after initial loss, F

Section3Section2

1i

 Prestressing
Force at section1
after totlal loss, F

The prestress forces after all losses at seven sections are F1e, F2e, F3e, F5e, F6e, F7e and 

F8e respectively. F or p ost-tensioned m embers a ccording t o A ASHTO a llowable 

prestress immediately after seating at anchorage 0.7 fsu, at the end of the seating loss 

zone 0.83fy
* and st ress at  ser vice l oad af ter l osses 0.80fy

*. In t he pr esent s tudy 

tensioning t o 0.9fy
* (jacking s tress) f or s hort p eriod o f time p rior to s eating is 

considered to offset anchorage andfriction losses and implicit constraints are applied 

such th at th e s tresses in  th e te ndon re main w ithin th e a llowable lim it. T he i mplicit 

constraints are as follows: 

 

0.0 ≤ 𝐹𝐹4𝑐𝑐 ≤  0.7𝑓𝑓𝑒𝑒𝑠𝑠𝐴𝐴𝑒𝑒 (5.20) 

0.0 ≤ 𝐹𝐹3𝑐𝑐 ≤  0.83 𝑓𝑓𝑦𝑦  
∗𝐴𝐴𝑒𝑒 (5.21) 

0.0 ≤ 𝐹𝐹3𝑒𝑒 ≤  0.80 𝑓𝑓𝑦𝑦∗𝐴𝐴𝑒𝑒 (5.22) 

 
 

 
 
 
 

 
 

 
 

Figure 5.6 Variation of prestressing force along the length of girder 
 

The working stresses at various loading stages are determined as follows:  

 

Initial stage  

At positive moment sections: 

Stress at top fiber, 

𝑓𝑓𝑡𝑡 = −
𝜂𝜂𝐹𝐹𝑐𝑐
𝐴𝐴𝑛𝑛𝑒𝑒𝑡𝑡

+
𝜂𝜂𝐹𝐹𝑐𝑐𝑒𝑒𝑐𝑐
𝐴𝐴𝑡𝑡𝑛𝑛𝑒𝑒𝑡𝑡

−
𝑀𝑀𝐺𝐺

𝐴𝐴𝑡𝑡𝑛𝑛𝑒𝑒𝑡𝑡
 

Stress at bottom fiber,  

𝑓𝑓𝑏𝑏 = −
𝜂𝜂𝐹𝐹𝑐𝑐
𝐴𝐴𝑛𝑛𝑒𝑒𝑡𝑡

−
𝜂𝜂𝐹𝐹𝑐𝑐𝑒𝑒𝑐𝑐
𝐴𝐴𝑏𝑏𝑛𝑛𝑒𝑒𝑡𝑡

+
𝑀𝑀𝐺𝐺

𝐴𝐴𝑏𝑏𝑛𝑛𝑒𝑒𝑡𝑡
 

 



80 
 

At negative moment sections: 

Stress at top fiber, 

𝑓𝑓𝑡𝑡 = −
𝜂𝜂𝐹𝐹𝑐𝑐
𝐴𝐴𝑛𝑛𝑒𝑒𝑡𝑡

−
𝜂𝜂𝐹𝐹𝑐𝑐𝑒𝑒𝑐𝑐
𝐴𝐴𝑡𝑡𝑛𝑛𝑒𝑒𝑡𝑡

+
𝑀𝑀𝐺𝐺

𝐴𝐴𝑡𝑡𝑛𝑛𝑒𝑒𝑡𝑡
 

Stress at bottom fiber,  

𝑓𝑓𝑏𝑏 = −
𝜂𝜂𝐹𝐹𝑐𝑐
𝐴𝐴𝑛𝑛𝑒𝑒𝑡𝑡

+
𝜂𝜂𝐹𝐹𝑐𝑐𝑒𝑒𝑐𝑐
𝐴𝐴𝑏𝑏𝑛𝑛𝑒𝑒𝑡𝑡

−
𝑀𝑀𝐺𝐺

𝐴𝐴𝑏𝑏𝑛𝑛𝑒𝑒𝑡𝑡
 

 

First loading stage 

At positive moment sections: 

Stress at top fiber, 

𝑓𝑓𝑡𝑡 = −
𝐹𝐹𝑐𝑐
𝐴𝐴𝑡𝑡𝑓𝑓

+
𝐹𝐹𝑐𝑐𝑒𝑒
𝐴𝐴𝑡𝑡

−
𝑀𝑀𝑃𝑃

𝐴𝐴𝑡𝑡
 

Stress at bottom fiber,  

𝑓𝑓𝑏𝑏 = −
𝐹𝐹𝑐𝑐
𝐴𝐴𝑡𝑡𝑓𝑓

−
𝐹𝐹𝑐𝑐𝑒𝑒
𝐴𝐴𝑏𝑏

+
𝑀𝑀𝑃𝑃

𝐴𝐴𝑏𝑏
 

At negative moment sections: 

Stress at top fiber, 

𝑓𝑓𝑡𝑡 = −
𝐹𝐹𝑐𝑐
𝐴𝐴𝑡𝑡𝑓𝑓

−
𝐹𝐹𝑐𝑐𝑒𝑒
𝐴𝐴𝑡𝑡

+
𝑀𝑀𝑃𝑃

𝐴𝐴𝑡𝑡
 

Stress at bottom fiber,  

𝑓𝑓𝑏𝑏 = −
𝐹𝐹𝑐𝑐
𝐴𝐴𝑡𝑡𝑓𝑓

+
𝐹𝐹𝑐𝑐𝑒𝑒
𝐴𝐴𝑏𝑏

−
𝑀𝑀𝑃𝑃

𝐴𝐴𝑏𝑏
 

 

Second loading stage 

At positive moment sections: 

Stress at top fiber, 

 

𝑓𝑓𝑡𝑡 = −
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

+
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑡𝑡

−
𝑀𝑀𝑃𝑃

𝐴𝐴𝑡𝑡
−
𝑀𝑀𝐴𝐴

𝐴𝐴𝑡𝑡𝑐𝑐
 

Stress at bottom fiber,  

 

𝑓𝑓𝑏𝑏 = −
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

−
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑏𝑏

+
𝑀𝑀𝑃𝑃

𝐴𝐴𝑏𝑏
+
𝑀𝑀𝐴𝐴

𝐴𝐴𝑏𝑏𝑐𝑐
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At negative moment sections: 

Stress at top fiber, 

𝑓𝑓𝑡𝑡 = −
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

−
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑡𝑡

+
𝑀𝑀𝑃𝑃

𝐴𝐴𝑡𝑡
+
𝑀𝑀𝐴𝐴

𝐴𝐴𝑡𝑡𝑐𝑐
 

Stress at bottom fiber,  

𝑓𝑓𝑏𝑏 = −
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

+
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑏𝑏

−
𝑀𝑀𝑃𝑃

𝐴𝐴𝑏𝑏
−
𝑀𝑀𝐴𝐴

𝐴𝐴𝑏𝑏𝑐𝑐
 

 

Third loading stage 

At positive moment sections: 

Stress at top fiber,  

𝑓𝑓𝑡𝑡 = −
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

+
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑡𝑡

−
𝑀𝑀𝑃𝑃

𝐴𝐴𝑡𝑡
−
𝑀𝑀𝐴𝐴

𝐴𝐴𝑡𝑡𝑐𝑐
−
𝑀𝑀𝐿𝐿

𝐴𝐴𝑡𝑡𝑐𝑐
 

Stress at bottom fiber,  

𝑓𝑓𝑏𝑏 = −
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

−
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑏𝑏

+
𝑀𝑀𝑃𝑃

𝐴𝐴𝑏𝑏
+
𝑀𝑀𝐴𝐴

𝐴𝐴𝑏𝑏𝑐𝑐
+
𝑀𝑀𝐿𝐿

𝐴𝐴𝑏𝑏𝑐𝑐
 

At negative moment sections: 

Stress at top fiber,  

𝑓𝑓𝑡𝑡 = −
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

−
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑡𝑡

+
𝑀𝑀𝑃𝑃

𝐴𝐴𝑡𝑡
+
𝑀𝑀𝐴𝐴

𝐴𝐴𝑡𝑡𝑐𝑐
+
𝑀𝑀𝐿𝐿

𝐴𝐴𝑡𝑡𝑐𝑐
 

Stress at bottom fiber,  

𝑓𝑓𝑏𝑏 = −
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

+
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑏𝑏

−
𝑀𝑀𝑃𝑃

𝐴𝐴𝑏𝑏
−
𝑀𝑀𝐴𝐴

𝐴𝐴𝑏𝑏𝑐𝑐
−
𝑀𝑀𝐿𝐿

𝐴𝐴𝑏𝑏𝑐𝑐
 

 

Fourth loading stage 

At positive moment sections: 

Stress at top fiber,  

 

𝑓𝑓𝑡𝑡 = −
1
2
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

+
1
2
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑡𝑡

−
�𝑀𝑀𝐿𝐿 + 𝑀𝑀𝐷𝐷

2 �
𝐴𝐴𝑡𝑡𝑐𝑐

 

Stress at bottom fiber, 

 

𝑓𝑓𝑏𝑏 = −
1
2
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

−
1
2
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑏𝑏

+
�𝑀𝑀𝐿𝐿 + 𝑀𝑀𝐷𝐷

2 �
𝐴𝐴𝑏𝑏𝑐𝑐
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At negative moment sections: 

Stress at top fiber,  

 

𝑓𝑓𝑡𝑡 = −
1
2
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

−
1
2
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑡𝑡

+
�𝑀𝑀𝐿𝐿 + 𝑀𝑀𝐷𝐷

2 �
𝐴𝐴𝑡𝑡𝑐𝑐

 

Stress at bottom fiber, 

 

𝑓𝑓𝑏𝑏 = −
1
2
𝐹𝐹𝑒𝑒
𝐴𝐴𝑡𝑡𝑓𝑓

+
1
2
𝐹𝐹𝑒𝑒𝑒𝑒
𝐴𝐴𝑏𝑏

−
�𝑀𝑀𝐿𝐿 + 𝑀𝑀𝐷𝐷

2 �
𝐴𝐴𝑏𝑏𝑐𝑐

 

 

5.5.2 Ultimate flexural strength constraints 

The u ltimate f lexural s trength c onstraints f or th e p recast sect ion a nd co mposite 

section are considered as:  

 
0.0 ≤ 𝑀𝑀𝑐𝑐𝑠𝑠 ≤ 𝜑𝜑𝑀𝑀𝑐𝑐𝑛𝑛  (5.23) 
0.0 ≤ 𝑀𝑀𝑐𝑐𝑠𝑠 ≤ 𝜑𝜑𝑀𝑀𝑐𝑐𝑛𝑛  (5.24) 
 

where, 𝑀𝑀𝑐𝑐𝑠𝑠  and 𝑀𝑀𝑐𝑐𝑠𝑠  are f actored be nding moments; 𝜑𝜑𝑀𝑀𝑐𝑐𝑛𝑛  and 𝜑𝜑𝑀𝑀𝑐𝑐𝑛𝑛  are f lexural 

strength of the precast and composite section respectively.  

 

To cal culate t he f lexural st rength of t he co mposite section at pos ition of  pos itive 

moments, following four cases are considered and detail calculations are tabulated in 

Table 5.5. 

Case 1: Compression block remains within the deck slab. 

Case 2: Compression block remains within the Top flange. 

Case 3: Compression block remains within the Top flange transition area. 

Case 4: Compression block falls in web (Flanged section calculation is used assuming 

T shape stress block). 
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Table 5.5 Flexural strength calculations 

Case Equations 

Case 1: 

𝑏𝑏 = 𝐸𝐸𝐹𝐹𝐸𝐸;𝜌𝜌 =
𝐴𝐴𝑒𝑒
𝑏𝑏𝑏𝑏

 

𝑓𝑓𝑒𝑒𝑠𝑠 =  𝑓𝑓𝑐𝑐𝑠𝑠 �1 −
𝛾𝛾∗

𝛽𝛽
𝜌𝜌

𝑓𝑓𝑐𝑐𝑠𝑠
𝑓𝑓′𝑐𝑐𝑏𝑏𝑒𝑒𝑐𝑐𝑐𝑐

� ; 𝑧𝑧 =  
𝐴𝐴𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠

0.85𝑓𝑓𝑐𝑐𝑏𝑏𝑒𝑒𝑐𝑐𝑐𝑐 𝑏𝑏
 

𝑴𝑴𝒏𝒏  = 𝐴𝐴𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠 �𝑏𝑏 −
𝑧𝑧
2
� 

Case 2: 

 

𝑏𝑏 =  �
𝑓𝑓𝑐𝑐𝑏𝑏𝑒𝑒𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐′

𝐸𝐸𝐹𝐹𝐸𝐸 × 𝑡𝑡 +  
𝑇𝑇𝐹𝐹𝑤𝑤 × 𝑇𝑇𝐹𝐹𝑡𝑡
𝑡𝑡 + 𝑇𝑇𝐹𝐹𝑡𝑡

� ;𝜌𝜌 =
𝐴𝐴𝑒𝑒
𝑏𝑏𝑏𝑏

 

𝑓𝑓𝑒𝑒𝑠𝑠 =  𝑓𝑓𝑐𝑐𝑠𝑠 �1 −
𝛾𝛾∗

𝛽𝛽
𝜌𝜌
𝑓𝑓𝑐𝑐𝑠𝑠
𝑓𝑓𝑐𝑐′
� ; 𝑧𝑧 =  

𝐴𝐴𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠
0.85𝑓𝑓𝑐𝑐𝑏𝑏

 

𝑴𝑴𝒏𝒏  = 𝐴𝐴𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠 �𝑏𝑏 −
𝑧𝑧
2
� 

Case 3: 

 

𝑏𝑏 = �
𝑓𝑓𝑐𝑐𝑏𝑏𝑒𝑒𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐′

𝐸𝐸𝐹𝐹𝐸𝐸 × 𝑡𝑡 +  
𝑇𝑇𝐹𝐹𝑤𝑤 × 𝑇𝑇𝐹𝐹𝑡𝑡 +  2(𝑇𝑇𝐹𝐹𝑤𝑤 − 𝑇𝑇𝐹𝐹𝐴𝐴𝑤𝑤)

2 × 𝑇𝑇𝐹𝐹𝐴𝐴𝑡𝑡
𝑡𝑡 +  𝑇𝑇𝐹𝐹𝑡𝑡 +  𝑇𝑇𝐹𝐹𝐴𝐴𝑡𝑡

� 

𝜌𝜌 =  
𝐴𝐴𝑒𝑒
𝑏𝑏𝑏𝑏

 

𝑓𝑓𝑒𝑒𝑠𝑠 =  𝑓𝑓𝑐𝑐𝑠𝑠 �1 − 𝛾𝛾∗

𝛽𝛽
𝜌𝜌 𝑓𝑓𝑐𝑐𝑠𝑠

𝑓𝑓𝑐𝑐′
�; 𝑧𝑧 = 𝐴𝐴𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠

0.85𝑓𝑓𝑐𝑐′ 𝑏𝑏
 

𝑴𝑴𝒏𝒏  = 𝐴𝐴𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠 �𝑏𝑏 −
𝑧𝑧
2
� 

Case 4: 

𝐴𝐴𝑒𝑒𝑤𝑤  =  𝐴𝐴𝑒𝑒 −
0.85 ∗ 𝑓𝑓𝑐𝑐 ∗ (𝑏𝑏 −𝐸𝐸𝑤𝑤) × (𝑡𝑡 +  𝑇𝑇𝐹𝐹𝑡𝑡 + 𝑇𝑇𝐹𝐹𝐴𝐴𝑡𝑡)

𝑓𝑓𝑒𝑒𝑠𝑠
 

𝜌𝜌 =
𝐴𝐴𝑒𝑒𝑤𝑤
𝐸𝐸𝑤𝑤𝑏𝑏

 

𝑴𝑴𝒏𝒏 = 0.85𝑓𝑓𝑐𝑐(𝑏𝑏–𝐸𝐸𝑤𝑤)(𝑡𝑡 + 𝑇𝑇𝐹𝐹𝑡𝑡 + 𝑇𝑇𝐹𝐹𝐴𝐴𝑡𝑡) �𝑏𝑏 −
𝑡𝑡 + 𝑇𝑇𝐹𝐹𝑡𝑡 + 𝑇𝑇𝐹𝐹𝐴𝐴𝑡𝑡

2 � 

+𝐴𝐴𝑒𝑒𝑤𝑤 + 𝑓𝑓𝑒𝑒𝑠𝑠𝑏𝑏 �1 − 0.6
𝜌𝜌𝑓𝑓𝑒𝑒𝑠𝑠
𝑓𝑓𝑐𝑐′

� 

 

To cal culate t he f lexural s trength o f th e g irder section at pos ition of  ne gative 

moments, corresponding equations that are used are as follows: 

𝑏𝑏 = 𝑏𝑏𝑤𝑤 ;𝜌𝜌 =
𝐴𝐴𝑒𝑒
𝑏𝑏𝑤𝑤𝑏𝑏

 

𝑓𝑓𝑒𝑒𝑠𝑠 =  𝑓𝑓𝑐𝑐𝑠𝑠 �1 −
𝛾𝛾∗

𝛽𝛽
𝜌𝜌
𝑓𝑓𝑐𝑐𝑠𝑠
𝑓𝑓′𝑐𝑐

� ; 𝑧𝑧 =  
𝐴𝐴𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠

0.85 𝑓𝑓′𝑐𝑐𝑏𝑏𝑤𝑤
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𝑴𝑴𝒏𝒏  = 𝐴𝐴𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠 �𝑏𝑏 −
𝑧𝑧
2
� 

 

5.5.3 Ductility (maximum and minimum prestressing steel) constraints 

The maximum prestressing steel constraint for the composite section is given below: 

 
0 ≤ 𝜔𝜔 ≤ 𝜔𝜔𝑠𝑠  (5.25) 
 
Where, Reinforcement index, 𝜔𝜔 =  𝜌𝜌𝑓𝑓𝑒𝑒𝑠𝑠

𝑓𝑓𝑐𝑐′
 and 𝜔𝜔𝑠𝑠= Upper limit to reinforcement index = 

0.36β1 

The constraints which limit the minimum value of reinforcement are, 

 
1.2 𝑀𝑀𝑐𝑐𝑐𝑐

∗ ≤ 𝜑𝜑𝑀𝑀𝑛𝑛  (5.26) 
 
Where, for composite girder, 

At position of maximum positive moment, 
 
Mcr

* = �𝑓𝑓𝑐𝑐 + 𝑓𝑓𝑐𝑐𝑒𝑒 �𝐴𝐴𝑏𝑏𝑐𝑐 − 𝑀𝑀𝑃𝑃1 �
𝐴𝐴𝑏𝑏𝑐𝑐
𝐴𝐴𝑏𝑏
− 1� (5.27) 

 
𝑓𝑓𝑐𝑐𝑒𝑒 = 𝐹𝐹𝑒𝑒

𝐴𝐴𝑡𝑡𝑓𝑓
+ 𝐹𝐹𝑒𝑒𝑒𝑒𝑐𝑐1

𝐴𝐴𝑏𝑏
 (5.28) 

 

where, fr = modulus of  rupture; 𝑓𝑓𝑐𝑐𝑒𝑒= compressive stress in concrete due to effective 

prestress f orces o nly ( after al lowance f or al l p restress losses) a t ex treme fiber o f 

section w here t ensile st ress i s cau sed b y ex ternally ap plied l oad; Sb, S bc = Section 

Modulus of bottom fiber of transformed precast & composite section respectively; ec1 

= eccentricity of composite section at position of maximum positive moment; MP1 = 

Non-composite dead load moment or Moment due to girder self weight, cross girder 

and deck slab at position of maximum positive moment; 

 

At position of maximum negative moment, 
 
Mcr

* = �𝑓𝑓𝑐𝑐 + 𝑓𝑓𝑐𝑐𝑒𝑒 �𝐴𝐴𝑡𝑡𝑐𝑐 − 𝑀𝑀𝑃𝑃2 �
𝐴𝐴𝑡𝑡𝑐𝑐
𝐴𝐴𝑡𝑡
− 1� (5.29) 

 
𝑓𝑓𝑐𝑐𝑒𝑒 = 𝐹𝐹𝑒𝑒

𝐴𝐴𝑡𝑡𝑓𝑓
+ 𝐹𝐹𝑒𝑒𝑒𝑒𝑐𝑐2

𝐴𝐴𝑡𝑡
 (5.30) 

 

where, fr = modulus of  rupture; 𝑓𝑓𝑐𝑐𝑒𝑒= compressive stress in concrete due to effective 

prestress f orces o nly ( after al lowance f or al l p restress losses) a t ex treme fiber o f 



85 
 

section w here t ensile st ress i s cau sed b y ex ternally ap plied l oad; St, S tc = Section 

Modulus of top fiber of transformed precast & composite section respectively; ec2 = 

eccentricity of co mposite sect ion a t position of  maximum negative moment; MP2 = 

Non-composite dead load moment or Moment due to girder self weight, cross girder 

and deck slab at position of maximum negative moment; 

 

For deck slab, 

𝑀𝑀𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑏𝑏
∗ =  𝑓𝑓𝑐𝑐𝐴𝐴𝑏𝑏𝑒𝑒𝑐𝑐𝑐𝑐  (5.29) 

 

5.5.4 Ultimate shear strength and horizontal interface shear constraints 

The u ltimate sh ear s trength i s co nsidered at t wo sect ions, sect ion a t t he en d o f 

transition zone and sect ion where the prestress is maximum and the related implicit 

constraint is defined as, 

 

𝜑𝜑𝜑𝜑𝑒𝑒  =  (𝜑𝜑𝑠𝑠–𝜑𝜑𝜑𝜑𝑐𝑐)  ≤  0.666�𝑓𝑓𝑐𝑐′𝐸𝐸𝑤𝑤𝑏𝑏𝑒𝑒 (5.30) 
 
 
where, 𝜑𝜑𝑠𝑠= factored shear at a section, 𝜑𝜑𝑐𝑐  = the concrete contribution taken as lesser of 

flexural shear, Vci and web shear, Vcw,, Vs = shear carried by the steel in kN. These two 

shear capacity are determined according to AASHTO specification. 

 

Composite sect ions ar e d esigned f or h orizontal sh ear at t he interface b etween t he 

precast beam and deck and the related constraint is: 

𝜑𝜑𝑠𝑠 ≤ 𝜑𝜑𝜑𝜑𝑛𝑛ℎ  (5.31)
  
Where, 𝜑𝜑𝑛𝑛ℎ  = nominal horizontal shear strength. 

 

5.5.5 Deflection constraint 

Deflection at mid span due to initial prestress (For parabolic tendon profile) is 

computed as: 

 
𝛥𝛥𝑃𝑃𝑇𝑇 =  13

136
∑ 𝜂𝜂𝐹𝐹1𝑐𝑐ℎ𝑐𝑐
𝑐𝑐=𝑁𝑁𝑇𝑇
𝑐𝑐=1

𝐿𝐿2

𝐸𝐸𝑐𝑐𝑐𝑐 𝐼𝐼𝑛𝑛𝑒𝑒𝑡𝑡
+ 1

8
∑ 𝜂𝜂𝐹𝐹1𝑐𝑐𝑒𝑒𝑐𝑐
𝑐𝑐=𝑁𝑁𝑇𝑇
𝑐𝑐=1

𝐿𝐿2

𝐸𝐸𝑐𝑐𝑐𝑐 𝐼𝐼𝑛𝑛𝑒𝑒𝑡𝑡
 (5.32) 

 
Where, hi, ei are the sag and eccentricity of the ith tendon respectively. 
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Deflection due to dead load: 

𝛥𝛥𝐷𝐷𝐿𝐿  =  13
136

𝑀𝑀𝐺𝐺
𝐿𝐿2

𝐸𝐸𝐼𝐼
 (5.33) 

 

Initial camber = ΔPT – ΔDL (5.34) 

 

Deflection due to live load (AISC Mkt 1986): 

 
𝛥𝛥𝐿𝐿𝐿𝐿  = 324

𝐸𝐸𝐼𝐼𝑐𝑐
𝑃𝑃𝑇𝑇(𝐿𝐿3 − 555𝐿𝐿 + 4780) (5.35) 

 
The live load deflection constraint is as follows: 

 

ΔLL ≤ L/800 (5.36) 

 

5.5.6 End section tendon eccentricity constraint 

Eccentricity of tendons at  the end section becomes a co nstraint because eccentricity 

has to remain within the kern distances of the section to avoid extreme fiber tension 

both a t in itial s tage a nd a t f inal s tage. T he f ollowing c onstraint lim its t he t endon 

eccentricity at end section so that the eccentricity remains within the kern distances, 

 

 
𝐺𝐺𝑏𝑏
6

+ 0.25�𝑓𝑓𝑐𝑐𝑐𝑐
𝐴𝐴4𝐺𝐺𝑏𝑏
6 𝐹𝐹4𝑐𝑐

 ≤  𝑒𝑒4  ≤  𝐺𝐺𝑏𝑏
6

+ 0.5�fc
′ 𝐴𝐴4𝐺𝐺𝑏𝑏

6𝐹𝐹4𝑒𝑒
    (5.37) 

 
 

5.5.7 Lateral stability constraint 

The following constraint according to PCI (PCI 2003) limits the safety and s tability 

during lifting of long girder subject to roll about weak axis,  

 
𝐹𝐹𝐴𝐴𝑐𝑐 = 1

𝑧𝑧𝑜𝑜
𝑦𝑦𝑐𝑐

+
𝜃𝜃𝑐𝑐

𝜃𝜃𝑚𝑚𝑐𝑐𝑥𝑥

≥ 1.5 (5.38) 

 
 

Where, FSc= f actor of  s afety a gainst c racking of t op f lange w hen t he girder ha ngs 

from lifting loop. 
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5.5.8 Deck slab constraints 

The co nstraint co nsidered f or d eck sl ab t hickness acco rding t o d esign cr iteria o f 

ODOT (ODOT 2000) is, 

 
𝑡𝑡 ≥ 𝐴𝐴𝑏𝑏+17

3
 (5.39) 

 
The constraint which limit the required effective depth for deck slab is, 

 
𝑏𝑏𝑚𝑚𝑐𝑐𝑛𝑛 ≤ 𝑏𝑏𝑐𝑐𝑒𝑒𝑟𝑟 ≤ 𝑏𝑏𝑐𝑐𝑐𝑐𝑜𝑜𝑝𝑝  (5.40) 
 
Where, Sd = effective slab span in feet = S-TFw/2; t = slab thickness in inch. 

 

 

5.6 Stiffness method 

5.6.1 General 

One o f t he b asic ad vantages o f st iffness method i s t hat w hatever b e t he st ructural 

idealization the main steps of stiffness method are always same and as stated below: 

1. Identify t he unknow n displacement f or e ach joint. T hat is, de termine t he 

degree of kinematic indeterminacy. 

2. Make th e s tructure k inematically determinate b y re straining a ll d egrees o f 

freedom. 

3. Apply l oads an d c alculate j oint f orces corresponding t o e ach D egree of  

Freedom (D.O.F.). That is finally obtain the member force vector [Pm]. 

4. Apply unknow n di splacements on e a t a  t ime a nd c alculate j oint forces 

corresponding to each D.O.F. That is, calculate the stiffness terms and finally 

obtain the stiffness matrix [k]. 

5. Write e quilibrium e quations c orresponding t o each D .O.F. i .e. t he S tiffness 

Equations. Solve for unknown displacements. 

6. Superimpose the effects of loads and displacements to obtain stress resultants 

and reactions. 
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5.6.2 Computer Application of Stiffness Method  

Although the s tep by s tep approach i s convenient as a  common method to di fferent 

structures, t he m ethod is  n ot q uite y et a ppropriate f or w riting p rograms to  s olve 

problems using stiffness method. For computer application the same stiffness method 

is used following a slightly different sequence. 

First stiffness matrix of each member is derived. Then they are assembled to form a 

global stiffness matrix of the whole structure. Then global force vectors are derived. 

At l ast bou ndary c onditions are i mposed. S tiffness e quations a re then s olved t o 

determine t he unknow ns. T he pr ocess of  s olving i ndeterminate s tructure f ollowing 

this approach will be demonstrated by a beam problem (Figure 5.7). 

 
Figure 5.7 Two-span continuous indeterminate beam with UDL 

First a single beam member without any boundary condition is considered:  

 
Figure 5.8 Single beam member without any boundary condition 

The beam member has got  four degrees of  f reedom ( local), namely, one t ranslation 

(u1) and one rotation (u2) at node 1 and one t ranslation (u3) and one rotation (u4) a t 

node 2 (Figure 5.8). The stiffness matrix (4x4) of the member will be: 

L

w (uniformly distributed load)

L

u

1

1

u2

u

2

3

u4
L (length)

E (modulus of elasticity)
I (moment of inertia)



89 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

12𝐸𝐸𝐼𝐼
𝐿𝐿3

6𝐸𝐸𝐼𝐼
𝐿𝐿2

6𝐸𝐸𝐼𝐼
𝐿𝐿2

4𝐸𝐸𝐼𝐼
𝐿𝐿

  
−12𝐸𝐸𝐼𝐼
𝐿𝐿3

6𝐸𝐸𝐼𝐼
𝐿𝐿2

   
−6𝐸𝐸𝐼𝐼
𝐿𝐿2

2𝐸𝐸𝐼𝐼
𝐿𝐿

−12𝐸𝐸𝐼𝐼
𝐿𝐿3

−6𝐸𝐸𝐼𝐼
𝐿𝐿2    

6𝐸𝐸𝐼𝐼
𝐿𝐿2

2𝐸𝐸𝐼𝐼
𝐿𝐿

12𝐸𝐸𝐼𝐼
𝐿𝐿3

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

4𝐸𝐸𝐼𝐼
𝐿𝐿 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Now, for the time being, if loading and boundary conditions are ignored, the present 

structure is b asically a n assem blage of  t wo beam members c onnected a t a  no de 

(Figure 5.9). 

 
Figure 5.9 Assemblage of two beam members without boundary conditions 

In t otal t he structure has 3 node s and 6 ( global) corresponding degrees of  f reedom. 

The members have following attributes assigned to them: 

Member No.           i-node               j-node               Length                I                  E 

        1                           1                        2                         L                    I                  E 

        2                           2                        3                         L                    I                  E 

Using the last three attributes member stiffness matrix for each member can easily be 

calculated. For th e f irst member its  lo cal f irst ( i) a nd second ( j) node , r espectively, 

corresponding t o t he gl obal node  1 a nd 2. T hus t he f our r ows a nd c olumns of  t he 

member stiffness matrix of member 1 will fill up the first four rows and columns of 

global stiffness matrix. 

u

1

1

u2

u

2

3

u4
L (length)

E (modulus of elasticity)
I (moment of inertia)

u

3

5

u6
L (length)

E (modulus of elasticity)
I (moment of inertia)



90 
 

However fo r m ember 2 , its  f irst ( i) a nd s econd ( j) l ocal node , r espectively, 

corresponding t o t he gl obal node  2 a nd 3. T hus t he f our r ows a nd c olumns of  t he 

member stiffness matrix will fill up 3rd (2i-1), 4th (2i), 5th (2j-1) and 6th (2j) rows and 

columns of the global stiffness matrix. Thus the 6x6 global stiffness matrix will be: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

12𝐸𝐸𝐼𝐼
𝐿𝐿3  

6𝐸𝐸𝐼𝐼
𝐿𝐿2

6𝐸𝐸𝐼𝐼
𝐿𝐿2  

4𝐸𝐸𝐼𝐼
𝐿𝐿

                   

−12𝐸𝐸𝐼𝐼
𝐿𝐿3               

6𝐸𝐸𝐼𝐼
𝐿𝐿2

−6𝐸𝐸𝐼𝐼
𝐿𝐿2               

2𝐸𝐸𝐼𝐼
𝐿𝐿

                   0                0
0                0

−12𝐸𝐸𝐼𝐼
𝐿𝐿3

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

6𝐸𝐸𝐼𝐼
𝐿𝐿2

2𝐸𝐸𝐼𝐼
𝐿𝐿

          

12𝐸𝐸𝐼𝐼
𝐿𝐿3 +

12𝐸𝐸𝐼𝐼
𝐿𝐿3   

−6𝐸𝐸𝐼𝐼
𝐿𝐿2 +

6𝐸𝐸𝐼𝐼
𝐿𝐿2

−6𝐸𝐸𝐼𝐼
𝐿𝐿2 +

6𝐸𝐸𝐼𝐼
𝐿𝐿2   

4𝐸𝐸𝐼𝐼
𝐿𝐿

+
4𝐸𝐸𝐼𝐼
𝐿𝐿

     

−12𝐸𝐸𝐼𝐼
𝐿𝐿3         

6𝐸𝐸𝐼𝐼
𝐿𝐿2

−6𝐸𝐸𝐼𝐼
𝐿𝐿2         

2𝐸𝐸𝐼𝐼
𝐿𝐿

         0          0
0          0                    

−12𝐸𝐸𝐼𝐼
𝐿𝐿3             

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

6𝐸𝐸𝐼𝐼
𝐿𝐿2              

2𝐸𝐸𝐼𝐼
𝐿𝐿

              

12𝐸𝐸𝐼𝐼
𝐿𝐿3         

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

−6𝐸𝐸𝐼𝐼
𝐿𝐿2          

4𝐸𝐸𝐼𝐼
𝐿𝐿

  

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The pr ocess of  de riving gl obal s tiffness m atrix f rom member st iffness matrices i s 

called assembling. The global stiffness matrix for beam problem becomes banded. 

Here it is easily noticeable that, now the same structure can have different loading and 

support conditions without any need for recalculating the stiffness matrix. 

Now the loading will be considered. Member loads are considered as assignments to 

individual members an d j oint loads ar e considered as assignments t o i ndividual 

degrees of freedom (Figure 5.10). 

 
Figure 5.10 Assigning loads to degrees of freedom 

 

wL/2

wL²/16

wL/2

wL²/16

w (uniformly distributed load)

L
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The local member force matrix (4x1) for a single beam member will be: 

 {Pm1} =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑤𝑤𝐿𝐿
2

𝑤𝑤𝐿𝐿2

16
𝑤𝑤𝐿𝐿
2

−𝑤𝑤𝐿𝐿2

16 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

   

After assem blage o f two s uch local member f orce m atrices o f t wo si ngle b eam 

members, the global member force matrix (6x1) will be found: 

           {Pm} =      

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑤𝑤𝐿𝐿
2

𝑤𝑤𝐿𝐿2

16
𝑤𝑤𝐿𝐿
0
𝑤𝑤𝐿𝐿
2

−𝑤𝑤𝐿𝐿2

16 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Since there are no loads on joints, the joint force matrix {Pj} will be a null-vector: 

           {Pj} =      

⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎤

 

Considering degrees of freedom matrix {u} to be: 

           {u} =      

⎣
⎢
⎢
⎢
⎢
⎡
𝑠𝑠1
𝑠𝑠2
𝑠𝑠3
𝑠𝑠4
𝑠𝑠5
𝑠𝑠6⎦
⎥
⎥
⎥
⎥
⎤
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The stiffness equations then becomes, 

{Pm} + [K]*{u} = {Pj} 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑤𝑤𝐿𝐿
2

𝑤𝑤𝐿𝐿2

16
𝑤𝑤𝐿𝐿
0
𝑤𝑤𝐿𝐿
2

−𝑤𝑤𝐿𝐿2

16 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

12𝐸𝐸𝐼𝐼
𝐿𝐿3

6𝐸𝐸𝐼𝐼
𝐿𝐿2

−12𝐸𝐸𝐼𝐼
𝐿𝐿3

6𝐸𝐸𝐼𝐼
𝐿𝐿2

4𝐸𝐸𝐼𝐼
𝐿𝐿

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

−12𝐸𝐸𝐼𝐼
𝐿𝐿3

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

24𝐸𝐸𝐼𝐼
𝐿𝐿3

     

6𝐸𝐸𝐼𝐼
𝐿𝐿2 0 0

2𝐸𝐸𝐼𝐼
𝐿𝐿

0 0

0 −12𝐸𝐸𝐼𝐼
𝐿𝐿3

6𝐸𝐸𝐼𝐼
𝐿𝐿2

6𝐸𝐸𝐼𝐼
𝐿𝐿2    2𝐸𝐸𝐼𝐼

𝐿𝐿
   0

0   0 −12𝐸𝐸𝐼𝐼
𝐿𝐿3

0   0 6𝐸𝐸𝐼𝐼
𝐿𝐿2  

     

8𝐸𝐸𝐼𝐼
𝐿𝐿

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

2𝐸𝐸𝐼𝐼
𝐿𝐿

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

12𝐸𝐸𝐼𝐼
𝐿𝐿3

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

2𝐸𝐸𝐼𝐼
𝐿𝐿

−6𝐸𝐸𝐼𝐼
𝐿𝐿2

4𝐸𝐸𝐼𝐼
𝐿𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝑠𝑠1
𝑠𝑠2
𝑠𝑠3
𝑠𝑠4
𝑠𝑠5
𝑠𝑠6⎦
⎥
⎥
⎥
⎥
⎤

 = 

⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎤

 

It is noticeable that the diagonal elements of the stiffness matrix are as usual positive 

and t he m atrix i s s ymmetric. I t i s t o r emind t hat, s upport conditions h ave not  y et 

considered in the s tiffness equations. Thus, i f these equations a re solved, no uni que 

solution c an be  found. That i s, all the s ix s tiffness e quations a bove a re not  linearly 

independent. 

Now, t he s upport c onditions w ill be  c onsidered. T here are t wo w ays of  doi ng that. 

One method is easier but requires more memory space and computation time and the 

other method i s more di fficult but  takes less memory and computation t ime. In this 

thesis, the easier procedure is used for simplicity. 

In order to impose bounda ry condition i t i s required to know, number of  r estrained 

nodes. 

No. of restrained nodes, NRN=3. 

In order to make ui=0, 

(i)    Make a ll the e lements of  t he i th r ow a nd i th column of  t he a ssembled 

structure stiffness matrix = 0; 

(ii)    Make diagonal members of the stiffness matrix, Kii= 1; 

(iii)    Make corresponding element of member force matrix, Pi= 0; 
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In this way, boundary conditions can be imposed and Modified Stiffness Matrix and 

Modified Stiffness Equation can be obtained. 

So, finally the stiffness equations for the free degrees of freedom will be: 

⎣
⎢
⎢
⎡
𝑤𝑤𝐿𝐿2

16
0

−𝑤𝑤𝐿𝐿2

16 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
 

4𝐸𝐸𝐼𝐼
𝐿𝐿

   2𝐸𝐸𝐼𝐼
𝐿𝐿

0

2𝐸𝐸𝐼𝐼
𝐿𝐿

  0

    8𝐸𝐸𝐼𝐼
𝐿𝐿

2𝐸𝐸𝐼𝐼
𝐿𝐿

    2𝐸𝐸𝐼𝐼
𝐿𝐿

4𝐸𝐸𝐼𝐼
𝐿𝐿 ⎦
⎥
⎥
⎥
⎤
�
𝑠𝑠2
𝑠𝑠4
𝑠𝑠6

� = �
0
0
0
� 

 

5.7 Constructing Influence Line for Indeterminate Structure 

To f ind out  de sign m oment a nd s hear, t he s tatically i ndeterminate s tructure ha d to 

solve for hundreds of times. For solving the indeterminate structure, stiffness method 

was used. To make the basic stiffness method applicable to computer aided analysis, 

‘computer application of stiffness method’ was used with required sequence of logic. 

 

To f ind out  t he live l oad an d i mpact sh ear f orce an d m oment, i t w as n ecessary t o 

construct influence lines for different sections. No general equation of influence line 

has been used; rather the coordinate values of different points of the influence line are 

determined u sing t he b asic stiffness co ncept. The g eneral si mple co ncept u sed t o 

construct the influence lines is described below: 

 

The total length of the bridge is divided into a series of 0.25 meter long segments. At 

every 0.25 meter, a node/ coordinate have been considered. For constructing influence 

line, a 1-kip load was placed at each of these nodes and for that 1-kip load, the whole 

structure is solved using stiffness method. After solving the whole structure, the shear 

force and bending moment values at every 0.25 meter apart nodes has been stored in 

the columns of  t wo matrices of su fficient si ze. While st oring t he sh ear f orce an d 

moment values, i t was assured that, the nodal values were placed column wise. It is 

evident f rom t he c oncept /  de finition of  i nfluence l ine t hat t he n th r ow of  t hose 

matrices will g ive th e coordinate values o f th e in fluence line for sh ear f orce and 

moment for that particular section (i.e. nth section) (Fig 5.11). 
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Fig. 5.11 Constructing Influence Line Matrix 

For example, the coordinates of the influence line of shear force for the 60 meter long 

two-span continuous girder came out to be:  

 
Fig. 5.12 Influence Line for Shear at section 1 (at 0.4L distance from left support) of 

first span for two-span continuous girder with 60 meter span length 
 

For the 60 meter long two-span continuous girder, influence line for shear at section 1 

which i s a t 0.4L (i.e. 2 4 f t) distance f rom l eft s upport has be en p lotted ( Fig 5.12)  

using the values of shear force at every 0.25 m  nodes along the span. In accordance 

with the concept with which the influence line matrix for shear has been developed, it 

is evident that, the 96th row (24X4) of the influence line matrix will have the 480 nos. 

(120X4=480) of nodal values (Fig 5.13) of the influence line.  
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   Fig. 5.13 Coordinates of Influence Line for Shear at section 1 (at 0.4L distance from 

left support) of first span for two-span continuous girder with 60 meter span length 
 

Similarly, the coordinates of  the influence l ine of bending moment for the 60 m eter 

long two-span continuous girder came out to be:  

 

 
Fig. 5.14 Influence Line for Moment at section 1 (at 0.4L distance from left support) 

of first span for two-span continuous girder with 60 meter span length 
 

While determining the design value of live load shear / moment, the wheel loads had 

to be placed on the influence lines and the pick value had to be found out. It is to be 

noted that, a HL-93 truck has the spacing of 4.3 meter between the front and middle 

wheel, and a spacing of 4.3 meter between the middle and rear wheel. Both these two 

1 2 3 ... 96 97 98 24023999
1
2
3
.

95
96
97
98.

478
479
480

....

.

.

-0.02
kN-m -0.04 -0.06

-0.48
0.50 0.47 0.44 0.03 0.00 -0.01 -0.02 -0.01  0.00... ...

...

 0.52

241 242 479 480

...

...



96 
 

numbers, i .e. 4.3 m and 4.3 m are almost d ividable by 0.25 with a  f raction of  0.05 

meter. So, it will not be too much erroneous if the wheel loads are placed only on the 

nodes de scribed be fore. For a ny pa rticular position of  t he t ruck, t he shear/ moment 

can be  e asily f ound by  multiplying t he w heel loads w ith corresponding va lues o f 

influence line respective coordinates. 

 

5.8 Linking Optimization Problem with EVOP and Solve 

In th e p resent o ptimization p roblem a  la rge number of  de sign v ariables a nd 

constraints ar e asso ciated. T he d esign v ariables ar e cl assified as co mbination o f 

continuous, discrete and integer variables. Expressions for the objective function and 

the c onstraints a re non  l inear f unctions of  t hese de sign v ariables. S o th e o ptimal 

design pr oblem be comes hi ghly n onlinear a nd non -convex ha ving multiple l ocal 

minima which requires an opt imization method t o de rive the gl obal opt imum. As a 

result the global optimization algorithm named EVOP (Ghani 1989) is used.  

 

The algorithm EVOP requires three user written functions the objective function, the 

explicit constraint function and implicit constraint function, some user input control 

parameters and a st arting p oint i nside t he f easible sp ace (Figure 5.15). Given the 

coordinates of a  f easible poi nt i n an N-dimensional s pace t he obj ective f unction 

calculates t he f unctional va lue. E xplicit c onstraint f unction e valuates t he uppe r a nd 

the lower limits of the explicit constraints. Implicit constraint function evaluates the 

implicit c onstraints v alues a nd their u pper a nd lo wer l imits. T he in put c ontrol 

parameters with their default values and ranges are, α = 1.2 (1.0 to 2.0); β = 0.5 (0 to 

1.0); Δ =10-12; γ = 2.0 (greater than 1.0 to upwards), Φ =10-14(10-16 to 10-8) (Φ=10-12 

will yi eld higher accuracy for convergence compared to Φ = 10 -14) and Φcpx = 10 -9 

(10-16 to 10-8).  
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Figure 5.15 Steps for Optimization Problem Formulations and Linking with 

Optimization Algorithm (EVOP) (Rana, 2010) 

 

The other parameters relevant to the usage of the program EVOP are as follows. 

 

IJK --- For first entry, this variable should always be set to 1. It will subsequently be 

changed by ‘EVOP’. 

 

K --- Number of ‘complex’ vertices. If  ‘n’ is  the dimension of the parameter space, 

for n <= 5, k= 2n; and for n > 5, k >= (n + 1). 

 

KNT --- Number o f co nsecutive times t he objective f unction is ca lled af ter w hich 

tests are conducted for convergence. (Typically 25). 

 

LIMIT --- Maximum number of times the three functions: the objective function, the 

explicit constraint f unction a nd the implicit c onstraint function can b e co llectively 

called. 

 

NRSTRT --- Number of  automatic re start of  EVOP t o c heck t hat t he pr eviously 

obtained va lue is the g lobal m inimum. If NRS TRT =  5 , t he E VOP p rogram wi ll 

execute 5  t imes. F or f irst t ime ex ecution a s tarting poi nt of t he c omplex inside t he 

feasible space has to be given. For further restart the complex is generated taking the 

coordinates of the pr evious m inimum (values o btained f rom pr evious execution of  

EVOP) as the starting point of the complex. 

 

Design  
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EVOP  
Algorithm 
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starting 
point 
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for EVOP 

Cost function 
to be  

Minimized 

Explicit 
constraints 

tobe satisfied 

Implicit 
constraints 

To be 
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IER --- Error flag. 

= 1 i ndicates us er pr ovided s tarting poi nt is violating u pper l imit of  a n e xplicit 

constraint. 

 

= 2 i ndicates us er pr ovided s tarting poi nt is violating lower lim it of a n e xplicit 

constraint. 

 

= 3 i ndicates us er pr ovided s tarting poi nt i s violating u pper lim it of a n i mplicit 

constraint. 

 

= 4 i ndicates us er pr ovided s tarting poi nt i s violating the lower l imit o f an implicit 

constraint. 

 

= 5 indicates randomly generated (k – 1) tests points not obtainable in the ‘LIMIT’ to 

which the three functions can be collectively called. 

 

= 6 i ndicates minimum of t he obj ective f unction not  obtainable w ithin the de sired 

accuracy of convergence. The results are those obtained after exceeding ‘LIMIT’. 

 

= 7 i ndicates f inal ‘ complex’ ha s n ot r educed i ts size t o s atisfy c onvergence t est2. 

Results are those obtained after exceeding ‘LIMIT’. 

 

= 8 i ndicates m inimum of  t he obj ective f unction has b een l ocated t o t he d esired 

degree of accuracy to satisfy both convergence tests. 

 

XMAX(N) --- Array of  di mension ‘ N’ c ontaining t he uppe r limits o f t he e xplicit 

constraints. They are calculated and supplied by the explicit constraint function for a 

given trial point provided by ‘EVOP’. 

 

XMIN(N) --- Array of  di mension ‘ N’ c ontaining t he l ower limits o f th e e xplicit 

constraints. They are calculated and supplied by the explicit constraint function for a 

given trial point provided by ‘EVOP’. 
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XT(N) --- Array of  di mension ‘ N’ c ontaining t he coordinates o f the t rial p oint. On 

first entry ‘XT(N)’ contains the feasible trial point, and at the end of minimization it 

returns with the coordinates of the minimum located. 

 

XX(NIC) --- Array of  dimension ‘ NIC’ c ontaining t he implicit c onstraint function 

values. T hey a re calculated an d su pplied b y the i mplicit c onstraint f unction, for a  

given trial point ‘XT(N)’ provided by ‘EVOP’. 

 

XXMAX(NIC) --- Array of  di mension ‘NIC’ containing t he uppe r limit o f t he 

implicit c onstraints. T hey a re calculated a nd supplied by  the im plicit c onstraint 

function, for a given trial point ‘XT(N)’ provided by ‘EVOP’. 

 

XXMIN(NIC) --- Array of dimension ‘NIC’ containing the lower limit of the implicit 

constraints. They are calculated and supplied by the implicit constraint function, for a 

given trial point ‘XT(N)’ provided by ‘EVOP’. 

 

 

Values for ‘α’, ‘β’, ‘γ’, ‘Φ’ and ‘Φcpx’ 
 

(i) Initially ‘NRSTRT’ has to be set to a high integer value, say 10 or 20. 
 

(ii) Initially for low convergence accuracy, the value of Φ = 10-14 has to be set and 

the value of Φcpx = 10-9 has to be set.  

 

(iii)‘α’, ‘β’, ‘γ’ have t o be set  to t heir de fault va lues of  1.2, 0.5  and 2.0  

respectively, and the program has to be run. 

 

(iv) Keeping β and ‘γ’ fixed, α has to be varied from a value greater than 1.0 to a 

value less than 2.0 for convergence ‘IER = 8’, with lowest number of function 

evaluation ‘NFUNC’, and lowest function value ‘F’.  

 

(v) ‘Φ’ has t o b e i ncreased upto 10 -10 for doubl e precision i n s teps f or t ighter 

convergence, and ‘Φ’ has to be set the highest value that would still yield ‘IER 

= 8’. Note: α is the most sensitive parameter. 
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(vi) Keeping α and γ fixed β has to be varied above 0.0 t o l ess than 1.0 f or t he 

criterion set out in (iv) above. 

 
(vii) Keeping α and β fixed γ has to be varied from 2.0 up wards for t he 

criterion set out in (iv) above. 

 
(viii) Repeat f rom s tep (iv ) only if  lo wer v alues o f ‘ NFUNC’ and ‘F’ a re 

required. 

 
(ix) Φcpx has to be changed from a value two decades higher to two decades lower 

compared to Φ and observe the ef fects on ‘NFUNC’ and ‘F’. Φcpx has to be  

chosen for least ‘NFUNC’ and ‘F’. 

 

(x) Using opt imum ‘XT(N)’ and c orresponding ‘XMAX(N)’, ‘X MIN(N)’, 

‘XXMAX(NIC)’, ‘ XXMIN(NIC)’, f rom ( viii) a bove, t he program has t o be  

run with s ame v alues fo r ‘α’, ‘β’, ‘γ’, ‘Φ’ a nd ‘ Φcpx’. Whether a b etter 

minimum is obtained has to be checked.  

 

A computer program coded in C++ (Appendix A) is used to input control parameters 

and to define three functions: an objective function, an explicit constraint function and 

an implicit constraint function. First the values of the control parameters are assigned 

with th eir d efault v alues a nd o ther in put p arameters a re set  to sp ecific numerical 

values. T hese o ther in put p arameters f or th e p resent o ptimization problem a re: 

number of complex vertices, K = 15; maximum number of times the three functions 

can be collectively called, limit = 100000; dimension of the design variable space, N 

= 14; number of implicit constraint, NIC = 73 and number of EVOP restart, NRSTRT 

= 10.  

  

Determination o f a  f easible s tarting p oint (the va lues of  de sign va riables 

corresponding to the feasible point satisfy all the explicit and implicit constraints) is 

simple. B efore c alling s ubroutine E VOP a  r andom poi nt s atisfying a ll e xplicit 

constraints i s g enerated an d t ested f or sat isfying al l i mplicit constraints. I f these 

constraints are also satisfied then control is passed to the function EVOP. Otherwise 

the process is repeated till a feasible starting point is found. Next the function EVOP 
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is called. Next suitable values of the control parameters are obtained by varying the 

parameters within th e range s equentially a nd s etting Φ to h ighest va lue that w ould 

still yield convergence and number of function evaluation becomes lowest with least 

function va lue. T he pr ogram i s r erun us ing optimum d esign va riables obt ained 

previously as s tarting point w ith same va lues of  c ontrol pa rameters a nd c hecked 

whether a better minimum is obtained. 

 

 

 

 

 

 

 

 

 

 

 



CH A P T E R  6  

RE S U L T S  A N DDI S C U S S I O N S  
6.1 General 

The cost optimum design method has been performed for 40 m, 60 m, 80 m girder 

span and for 3 L ane or 4 Lane bridges. AASHTO HL-93 live load is considered for 

each case a nd su perimposed d ead l oads ar e ac cording t o AASHTO a lso. O ptimum 

design i s d ependent o n t he d esign co nstant p arameters i .e. u nit co st o f materials, 

labor, f abrication and i nstallation, c oncrete st rength, st rand si ze, an chorage sy stem 

etc. As different design constant parameters will result in different optimum design, 

the cost optimum design method has been performed for two types of girder concrete 

strengths (28 da ys) 40 M Pa and 50 M Pa and f or t hree di fferent uni t c osts of  t he 

materials as shown in Table 6.1 so that the variation in design with respect to change 

in the parameters can be observed. Concrete strength at initial stage is taken as 75% 

of 28 da ys strength. Deck slab concrete strength is considered as 25 MPa. Ultimate 

strength o f prestressing st eel an d y ield strength o f o rdinary st eel a re c onsidered as  

1861 MPa and 410 M Pa respectively. Freyssinet C-Range anchorage system is used 

for posttensioning tendons consisting of 15.2 m m diameter 7-wire strands. Unit cost 

of g irder co ncrete an d deck sl ab c oncrete i s considered f ixed an d t he u nit co sts of 

steels and anchorage systems are varied such that in Cost2, these costs are two times 

those in Cost1 and in Cost3, these costs are three times those in Cost1. 

Table 6.1 Relative cost parameters used for cost minimum design 
(As per RHD schedule of rates 2015) 

Item Unit Cost1  

(C1) 

(BDT) 

Cost2  

(C2) 

(BDT) 

Cost3  

(C3) 

(BDT) 
Precast girder concrete-including equipment and labor 

(UPGC) 

per m3(50MPa) 

per m3(40MPa) 
19,500 

13,500 

19,500 

13,500 

19,500 

13,500 
Girder formwork (UPGF) per m2 550 550 550 
Cast-in-place deck concrete(UPDC) per m3 8,000 8,000 8,000 
Deck formwork-equipment and labor(UPDF) per m2 530 530 530 
Girder posttensioning-tendon, equipment and labor(UPPS) per ton 1,20,000  240,000 360,000 
Anchorage set(UPANC) per set 7,000 14,000 21,000 
Metal sheath for duct(UPSH) per lin. meter 90 180 270 
Mild steel reinforcement for deck and web in girder(UPOS) per ton 60,000 1,20,000 180,000 
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6.2 Parametric Studies 

6.2.1 Optimum design for 40 m double span continuous girder 

Table 6.2 Optimum values of design variables for 3 Lane 40 m double span 
continuous girder and Concrete strength = 50 MPa 

Cost 
S 

(m) 

Gd 

(mm) 

TFw 

(mm) 

TFt  

(mm) 

TFSt  

(mm) 

BFw  

(mm) 

BFt  

(mm) 

Ww 

(mm) 
NS NT 

t 

(mm) 

ρ 

% 

y1 

(mm) 

η 

% 

C1 4.0 1700 450 75 50 325 260 150 9 4 255 0.68 430 27 

C2 4.0 2200 750 75 50 325 235 150 9 4 265 0.55 720 30 

C3 4.0 2250 1250 75 50 300 195 150 8 3 285 0.48 680 50 

 

Table 6.3 Optimum values of design variables for 3 Lane 40 m double span 
continuous girder and Concrete strength = 40 MPa 

Cost 
S 

(m) 

Gd 

(mm) 

TFw 

(mm) 

TFt  

(mm) 

TFSt  

(mm) 

BFw  

(mm) 

BFt  

(mm) 

Ww 

(mm) 
NS NT 

t 

(mm) 

ρ 

% 

y1 

(mm) 

η 

% 

C1 4.0 1850 725 75 50 310 265 160 9 4 245 0.67 425 27 

C2 4.0 2250 950 75 50 325 150 160 8 4 245 0.52 795 37 

C3 4.0 2625 1375 75 50 305 130 145 7 3 290 0.45 810 29 

 

Table 6.4 Cg of tendons from bottom fiber of girder in the optimum design 

Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 
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Optimum d esign for 4 0 m  double s pan c ontinuous girder ( Girder co ncrete 

strength = 50 MPa) 

 
Figure 6.1(a) Optimum design for double span cont. girder at section 1 for Cost1 

 

 
Figure 6.1(b) Optimum design for double span cont. girder at section 5 for Cost1 
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Figure 6.1(c) Optimum design for double span cont. girder at section 4 for Cost1 

 

 

 
Figure 6.1(d) Optimum design for double span continuous girder for Cost1 
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Figure 6.2(a) Optimum design for double span cont. girder at section 1 for Cost2 

 

 
Figure 6.2(b) Optimum design for double span cont. girder at section 5 for Cost2 
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Figure 6.2(c) Optimum design for double span cont. girder at section 4 for Cost2 

 

 

 
Figure 6.2(d) Optimum design for double span continuous girder for Cost2 
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Figure 6.3(a) Optimum design for double span cont. girder at section 1 for Cost3 

 

 
Figure 6.3(b) Optimum design for double span cont. girder at section 5 for Cost3 
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Figure 6.3(c) Optimum design for double span cont. girder at section 4 for Cost3 

 

 

 
Figure 6.3(d) Optimum design for double span continuous girder for Cost3 
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Table 6.5 Cost of individual materials for 3 Lane 40 m double span cont girder 

 Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 

Cost 
(BDT) CGC* CDC* CPS* COS* TC* CGC* CDC* CPS* COS* TC* 

 

C1 

 

1880 

 

1790 

 

1250 

 

1250 

 

4,540 

 

1590 

 

1690 

 

1215 

 

1265 

 

4,970 

C2 2290 1860 1975 2255 7,980 1930 1720 1750 2350 7,420 

C3 2350 1720 2770 3380 9,750 2350 1930 2320 2910 9,010 

* Cost in (BDT) per square meter of deck slab; TC = Total cost; 
 

Table 6.6 Computational effort and control parameters used 

 Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 

 OF* EC* IC* T 
(s) α β γ Φ Φcpx OF* EC* IC* T 

(s) α β γ Φ Φcpx 

C1 263 567 457 7 1.2 0.5 2 10-13 10-16 245 1234 783 8 1.3 0.5 2 10-13 10-16 

C2 452 986 907 8 1.4 0.5 2 10-13 10-16 125 673 453 9 1.8 0.5 2 10-13 10-16 

C3 457 1783 1209 8 1.2 0.6 2 10-13 10-16 567 3248 1673 9 1.9 0.5 3 10-13 10-16 

* Number of evaluations; OF = Objective function; EC = Explicit constraint; IC = Implicit 
constraint; T = Time (sec) 
 

From the parametric study of the cost optimum design for 40 m double span continuous 

girder of the present bridge system it is observed that: 

 

(i) Optimum g irder s pacing f or 3  L ane B ridge is  4.0 m for bot h c oncrete 

strengths (50 MPa and 40 M Pa) and for all the cost cases, Cost1, Cost2 and 

Cost3 (Table 6.2 a nd T able 6.3 ). It i ndicates t hat i t i s m ore eco nomical to  

space the girder at the maximum practical spacing.  

 

(ii) Optimum girder depth for Cost1, Cost2, Cost3  are 1700 mm, 2200 mm and 

2250 mm respectively for 50 MPa concrete strength and 1850 mm, 2250 mm, 

2625 mm respectively for 40MPa concrete strength (Table 6.2 and Table 6.3). 
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So o ptimum g irder d epth i ncreases with i ncrease i n co sts o f st eels in bo th 

cases w hich i ndicates t hat r elative co st d ifference o f materials influence 

optimum design of  br idge. The optimum depth is smaller in h igher concrete 

strength. Optimum designs of the 40 m double span continuous girder bridge 

for concrete strength of 50 MPa are shown in Figure 6.1, 6.2 and 6.3. 

 

(iii) Due to composite construction, deck slab thickness is adequate to satisfy the 

compression area required for flexural strength of the girder and so top flange 

width is controlled by the effective span of deck slab to satisfy serviceability 

criteria of the deck and lateral stability effects of the girder. Top flange width 

increases in Cost2 and in Cost3. Optimum top flange widths are 450 mm, 750 

mm a nd  1250 mm i n C ost1, C ost2, C ost3 r espectively in case  o f co ncrete 

strength of 50 MPa and 725 mm, 950 mm and 1375 mm respectively in case 

of concrete st rength of 40 M Pa. Optimum to p f lange w idth in creases w ith 

relative increase in costs of steels. Optimum top flange width decreases with 

increases in concrete strength. Top flange thickness and top flange transition 

thickness remain to their lower limit.  

 

(iv) Optimum bottom flange width is about 300 mm to 325 mm for both concrete 

strengths which is close to the lower limit. It indicates that it is not necessary 

to have large width to accommodate all the tendons in the lowermost position 

to have greater eccentricity. Thus bottom flange transition area is minimized 

to keep the concrete area smaller. Optimum bottom flange thickness decreases 

with i ncrease i n r elative co sts o f st eels as n umber o f t endon d ecreases with 

increase in relative costs of steels. 

 

(v) Optimum web width in  a ll the three cases i s about 145 m m to 160 mm a nd 

number of strands per tendon is 8 to 9 for concrete strength of 50 MPa and 7 

to 9 for concrete strength of 40 MPa. It indicates that the C-Range anchorage 

system which accommodates 7 to 9 tendons is the optimum value (Table 6.2, 

Table 6.3). Number of tendons i .e. prestressing steel required decreases with 

increase in cost of steels. 
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(vi) Deck slab thickness increases a little which indicates that even the steel cost is 

high, deck thickness does not increase comparatively because larger thickness 

induces larger dead load. So optimum value of deck slab thickness is 255 mm 

to 2 85 mm for c oncrete s trength o f 50 M Pa a nd 245 mm to  290 mm for 

concrete strength of 40 MPa. Reinforcement ratio in the deck decreases with 

increase in steel costs for cost minimization of the bridge.  

 

(vii) Percentage of steel to be prestressed at initial stage increases with the increase 

in steel cost which indicates that as steel cost increase the girder weight also 

increases which r equire more prestress at  i nitial st age. In t his study t endons 

arrangement al ong t he girder is co nsidered as v ariables and t he v ertical 

position of tendons at various sections are shown in the Table 6.4.  

 

(viii) Optimum c osts o f b ridge f or d ifferent r elative c osts o f m aterials a nd f or 

different concrete strengths are tabulated in Table 6.5. Total cost of steels is 

higher in higher concrete strength.  

 

(ix) The m ost a ctive constraints gov erning t he op timum de sign are co mpressive 

stress a t top f iber o f g irder f or p ermanent d ead lo ad a t service c ondition, 

tensile s tress at  b ottom f iber d ue t o al l l oads, prestress f orce at  t he en d o f 

seating loss zone, deck thickness and factor of safety against lateral stability, 

deflection a t s ervice c ondition d ue to  f ull lo ad in  m ost o f th e th ree cases. 

When st eel cost i s h igher, f lexural st rength o f composite g irder becomes an  

active constraint as amount of prestressing steel decreases.  

 

(x) Computational e fforts us ed by E VOP a nd control pa rameters u sed ar e 

tabulated in Table 6.6 which shows that the optimization problem with a large 

number of  m ixed t ype de sign va riables and i mplicit c onstraints converges 

with a  s mall n umber o f f unction e valuations. Intel C OREi5 processor h as 

been used in this s tudy and computational t ime required for opt imization by 

EVOP is about only 7-8 seconds.  
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6.2.2 Optimum design for 60 m double span continuous girder 

The opt imum de signs f or 60 m do uble s pan c ontinuous g irder f or va rious r elative 

costs and concrete strengths are tabulated in Table 6.7 a nd Table 6.8. The optimized 

costs are tabulated in Table 6.10. 

 

 

Table 6.7 Optimum values of design variables for 3 Lane 60 m double span 

continuous girder and Concrete strength = 50 MPa 

Cost 
S 

(m) 

Gd 

(mm) 

TFw 

(mm) 

TFt  

(mm) 

TFSt  

(mm) 

BFw  

(mm) 

BFt  

(mm) 

Ww 

(mm) 
NS NT 

t 

(mm) 

ρ 

% 

y1 

(mm) 

η 

% 

C1 3.0 2430 1075 75 50 365 225 150 9 5 240 0.65 750 55 

C2 3.0 2670 1150 75 50 350 240 150 9 4 230 0.59 880 68 

C3 3.0 3030 1075 75 50 335 180 150 8 4 240 0.55 760 73 

 

 

 

Table 6.8 Optimum values of design variables for 3 Lane 60 m double span 

continuous girder and Concrete strength = 40 MPa 

Cost 
S 

(m) 

Gd 

(mm) 

TFw 

(mm) 

TFt  

(mm) 

TFSt  

(mm) 

BFw  

(mm) 

BFt  

(mm) 

Ww 

(mm) 
NS NT 

t 

(mm) 

ρ 

% 

y1 

(mm) 

η 

% 

C1 3.0 2690 1225 75 50 360 240 150 9 7 235 0.67 920 51 

C2 3.0 3120 1350 75 50 370 270 150 9 5 240 0.58 820 59 

C3 3.0 3450 1125 75 50 320 175 150 9 4 270 0.53 875 72 
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Table 6.9 Cg of tendons from bottom fiber of girder in the optimum design 

 Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 
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AS = Anchorage spacing 
 
 
 
 
 
 
 
Table 6.10 Cost of individual materials for 3 Lane 60 m double span cont girder 

 Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 

Cost 
(BDT) CGC* CDC* CPS* COS* TC* CGC* CDC* CPS* COS* TC* 

 

C1 

 

3550 

 

1390 

 

2280 

 

1160 

 

7,850 

 

2920 

 

1390 

 

2070 

 

1160 

 

6,920 

C2 3860 1370 3650 2350 10,700 3290 1300 3300 2530 9,760 

C3 4220 1370 4960 3430 13,910 3470 1440 4320 3650 11,460 

* Cost in (BDT) per square meter of deck slab; TC = Total cost; 
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Optimum d esign for 6 0 m  double s pan c ontinuous girder ( Girder co ncrete 

strength = 40 MPa) 

 

 
Figure 6.2(a) Optimum design for double span continuous girder for Cost1 

 

 

 

 

 
Figure 6.2(b) Optimum design for double span continuous girder for Cost2 
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Figure 6.2(c) Optimum design for double span continuous girder for Cost3 

 

Table 6.11 Computational effort and control parameters used 

 Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 

 OF* EC* IC* T 
(s) α β γ Φ Φcpx OF* EC* IC* T 

(s) α β γ Φ Φcpx 

C1 153 863 569 7 1.2 0.5 2 10-13 10-16 79 458 276 7 1.3 0.5 2 10-13 10-16 

C2 184 652 652 8 1.5 0.5 2 10-13 10-16 99 568 547 7 1.6 0.5 2 10-13 10-16 

C3 164 763 459 8 1.7 0.5 2 10-13 10-16 127 539 379 9 1.2 0.5 2 10-13 10-16 

* Number of evaluations; OF = Objective function; EC = Explicit constraint; IC = Implicit 
constraint; T = Time (sec) 
 

 

Table 6.12 Values of design variables for 4 Lane 60 m double span continuous 

girder and Concrete strength = 50 MPa 

 S 

(m) 

Gd 

(mm) 

TFw 

(mm) 

TFt  

(mm) 

TFSt  

(mm) 

BFw  

(mm) 

BFt  

(mm) 

Ww 

(mm) 
NS NT 

t 

(mm) 

ρ 

% 

y1 

(mm) 

η 

% 

TC* 

 

C1 3.2 2530 950 75 50 355 240 150 9 6 210 0.72 837 41 7990 

C2 3.2 2790 1150 75 50 365 190 150 9 5 210 0.67 714 45 10950 

C3 3.2 2880 1150 75 50 375 220 150 9 5 220 0.58 950 46 13780 
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From the parametric study of the cost optimum design for 60 m girder of the present 

bridge system it is observed that: 

 

(i) Optimum girder spacing for 3 L ane Bridge is 3m for both concrete strengths 

and for 4 Lane Bridge is 3.2m for all the cost cases, Cost1, Cost2 and Cost3 

(Table 6.7, Table 6.8 and Table 6.12).  

 

(ii) Optimum girder depth for Cost1 is 2430 mm (3 lanes) and 2530 mm (4 lanes) 

for 5 0 M pa c oncrete s trength a nd 2690 mm ( 3 lanes) f or 4 0Mpa co ncrete 

strength. Optimum g irder d epth i ncreases w ith i ncrease in c osts o f st eels i n 

both cases. 

 

(iii) Optimum t op f lange w idth i ncreases i n C ost2 compared t o C ost1 w hile it 

remains ne arly unc hanged f or Cost3. I n C ost3 r equired d eck t hickness i s 

greater f or optimization w hich n eed n ot s maller s pan. O ptimum to p f lange 

width is in between 1075 mm to 1150 mm in case of concrete strength of 50 

Mpa a nd 1125 mm t o 1 350 mm i n case o f co ncrete st rength of 40 M pa. I t 

indicates that the wider top flange reduces the formwork cost of the deck slab 

and i ncrease saf ety f actor ag ainst l ateral st ability. Top f lange t hickness a nd 

top flange transition thickness remain to their lower limit.  

 

(iv) Optimum b ottom f lange w idth is a bout 370 m m for bot h concrete s trengths 

which is  c lose to  th e l ower l imit w hich in dicates th at it is n ot n ecessary to 

have large width to accommodate all the tendons in the lowermost position to 

have greater eccentricity. Thus bottom flange transition area is minimized to 

keep the concrete area smaller. Bottom flange thickness increases a little with 

increase in cost of steel in Cost2 but decrease in Cost3. 

 

(v) Optimum web width in all the three cases is 150 mm and number of strands 

per tendon is 8 or  9 for both concrete strengths. It indicates that the C-Range 

anchorage s ystem w hich a ccommodates 9 tendons i s the opt imum value 

(Table 6.7, Table 6.8). Number of tendons required decreases with increase in 

cost o f s teels. Number of  t endons required is  lower in hi gher c oncrete 

strength. 



117 
 

(vi) Deck slab thickness increases a little which indicates that even the steel cost is 

high, deck thickness does not increase comparatively because larger thickness 

induces larger dead load. So optimum value of deck slab thickness is 215 mm 

to 230 mm irrespective of the relative cost differences. Reinforcement ratio in 

the d eck d ecreases w ith i ncrease in s teel c osts for c ost m inimization of th e 

bridge.  

 

(vii) The vertical pos itions of  t endons a t va rious sections a re shown in the Table 

6.9.  

 
(viii) Optimum c osts o f b ridge f or d ifferent r elative c osts o f m aterials a nd f or 

different concrete strengths are tabulated in Table 6.10. Total cost of steels is 

higher in higher concrete strength.  

 

(ix) The m ost a ctive constraints gov erning t he op timum de sign are co mpressive 

stress a t top f iber o f g irder f or p ermanent d ead lo ad a t service c ondition, 

tensile stress at bottom fiber due to all loads, prestressing force at the end of 

seating loss zone, deck thickness and factor of safety against lateral stability, 

deflection at service condition due to full load in most of the three cost cases. 

When st eel cost i s h igher, f lexural st rength of  composite gi rder becomes an 

active constraint as amount of prestressing steel decreases.  

 

(x) It is interesting t o n ote that co sts p er sq uare m eter o f d eck ar e v ery c lose 

irrespective of number of lanes. 

 

(xi) Computational ef forts u sed b y E VOP an d control p arameters u sed ar e 

tabulated in Table 6.11. 
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6.2.3 Optimum design for 80 m double span continuous girder 

The opt imum de signs f or 8 0 m double s pan c ontinuous girder for v arious re lative 

costs an d c oncrete st rengths ar e tabulated in T able 6.1 3 a nd T able 6.14 . T he 

optimized costs are tabulated in Table 6.15. 

 

Table 6.13 Optimum values of design variables for 3 Lane 80 m double span 

continuous girder and Concrete strength = 50 MPa 

Cost 
S 

(m) 

Gd 

(mm) 

TFw 

(mm) 

TFt  

(mm) 

TFSt  

(mm) 

BFw  

(mm) 

BFt  

(mm) 

Ww 

(mm) 
NS NT 

t 

(mm) 

ρ 

% 

y1 

(mm) 

η 

% 

C1 4.0 3450 725 75 50 300 255 145 9 8 235 0.61 832 42 

C2 3.0 3675 800 75 50 300 220 145 9 7 210 0.55 843 59 

C3 3.0 3750 700 75 50 300 210 135 7 7 220 0.51 762 52 

 

 

Optimum d esign for 8 0 m  double s pan c ontinuous girder ( Girder co ncrete 

strength = 50 MPa) 

 

 
Figure 6.3(a) Optimum design for double span continuous girder for Cost1 

 

 

80 m
32 m 8 m

4 2 3 1 56
8

4 m
7

20 m9.85 m
4.55 m

34
50

 m
m



119 
 

 

 
Figure 6.3(b) Optimum design for double span continuous girder for Cost2 

 

 

 

 

 
Figure 6.3(c) Optimum design for double span continuous girder for Cost3 
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Table 6.14 Optimum values of design variables for 3 Lane 80 m double span 

continuous girder and Concrete strength = 40 MPa 

Cost 
S 

(m) 

Gd 

(mm) 

TFw 

(mm) 

TFt  

(mm) 

TFSt  

(mm) 

BFw  

(mm) 

BFt  

(mm) 

Ww 

(mm) 
NS NT 

t 

(mm) 

ρ 

% 

y1 

(mm) 

η 

% 

C1 3.0 3650 1050 75 50 300 200 145 8 8 230 0.61 921 45 

C2 3.0 3850 950 75 50 300 270 145 9 8 235 0.57 932 42 

C3 3.0 3900 1150 75 50 325 155 145 9 7 260 0.42 719 41 

 

Table 6.15 Cost of individual materials for 3 Lane 80 m double span cont girder 

 Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 

Cost 
(BDT) CGC* CDC* CPS* COS* TC* CGC* CDC* CPS* COS* TC* 

 

C1 

 

2690 

 

1740 

 

1460 

 

1230 

 

6,490 

 

2210 

 

1690 

 

1330 

 

1210 

 

4,990 

C2 3780 1560 2320 2300 9,750 2360 1800 2400 2430 8,390 

C3 3750 1150 3600 2580 10,980 2420 1800 3620 3410 10,690 

* Cost in (BDT) per square meter of deck slab; TC = Total cost; 
 

Table 6.16 shows total optimum number of  prestressing strands (NS x N T) required 

for various girder span and concrete s trength. Number of strands increases with the 

increase in span of girder.  

 

Table 6.17  shows optimum girder s pacing for various girder s pan a nd concrete 

strength. G irder spacing i s h igher i n sm aller s pan t han l arger sp an. G irder sp acing 

depends on t he maximum l imit of  gi rder de pth. I f maximum de pth of  gi rder c an 

exceed the practical limit, the girder spacing will increase for more optimized design 

of bridge. 
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Table 6.16 Total optimum number of prestressing strands (NS x NT) 

Cost Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 

 40 m 60 m 80 m 40 m 60 m 80 m 

C1 36 45 72 36 63 64 

C2 36 36 63 32 45 72 

C3 24 32 49 21 36 63 

 

 

Table 6.17 Optimum girder spacing (meter) 

Cost Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 

 40 m 60 m 80 m 40 m 60 m 80 m 

C1 4.0 3.0 4.0 4.0 3.0 3.0 

C2 4.0 3.0 3.0 4.0 3.0 3.0 

C3 4.0 3.0 3.0 4.0 3.0 3.0 

 

 

Table 6.18 shows optimum deck slab thickness for various girder span and concrete 

strength. Optimum deck slab thickness is higher in shorter span as the girder spacing 

is higher in shorter span. The higher girder spacing, the higher effective span of deck 

slab which requires thicker depth of deck slab. Table 6.19 shows Optimum deck slab 

main reinforcement. It can be observed that girder concrete strength has no e ffect on 

optimum deck slab main reinforcement. 
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Table 6.18 Optimum deck slab thickness (mm) 

Cost Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 

 40 m 60 m 80 m 40 m 60 m 80 m 

C1 255 240 235 245 235 230 

C2 265 230 210 245 240 235 

C3 285 240 220 290 270 260 

 

Table 6.19 Optimum deck slab main reinforcement (%) 

Cost Girder concrete strength = 50 MPa Girder concrete strength = 40 MPa 

 40 m 60 m 80 m 40 m 60 m 80 m 

C1 0.68 0.65 0.61 0.67 0.67 0.61 

C2 0.55 0.59 0.55 0.52 0.58 0.57 

C3 0.48 0.55 0.51 0.45 0.53 0.42 

 



CH A P T E R  7  
  CONCLUSIONS AND SUMMARY OF 

SUGGESTIONS 
 

7.1  Conclusions 

The present research work commenced with an aim to achieve the cost minimization 

of a double span continuous post-tensioned PC I-girder bridge superstructure system 

by a dopting a n opt imization a pproach t o obt ain t he opt imum design a nd a lso t o 

perform va rious pa rametric s tudies for t he constant design parameters of t he br idge 

system t o o bserve t he e ffects o f su ch p arameters o n t he o ptimum d esign. A gl obal 

optimization algorithm named E VOP ( Evolutionary O peration) i s us ed w hich i s 

capable of locating directly with high probability the global minimum. A program is 

developed for the optimization which may be beneficial to designers and contractors 

interested in cost minimum design of the present bridge system. Influence of constant 

design p arameters su ch as u nit co sts o f m aterials an d c oncrete s trength o n the 

optimum design is presented.  

Under the scope of the present study, following conclusions can be made: 

 

(i) Optimum girder spacing is higher in smaller span than larger span bridges.  

 

(ii) Optimum girder depth increases with increase in cost of steels. On an average, 

girder depth increases 22% with every 100% increase in cost of  s teel for 40 

MPa concrete. On the other hand, for 50 MPa concrete, the average increase in 

girder depth came out to be 19%.  

 
(iii) Optimum top flange width is controlled by deck slab span and lateral stability 

effect. Top flange thickness and top flange transition thickness remain to their 

lower limit.  

 
(iv) Optimum b ottom flange w idth remains ne arly t o t he lower lim it. Optimum 

bottom flange thickness decreases with increase in relative cost of steels. 
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(v) Optimum web width remains nearly constant i rrespective o f girder span and 

concrete strength. 

 

(vi) Optimum number of strand is higher in higher span girder. Number of strand 

decreases 17% with every 100% increase in cost of steel for 40 MPa concrete. 

On the o ther hand, for 50 MPa concrete, t he average decrease in number of  

strand came out to be 16%.   

 

(vii) Optimum number of strand per tendon is 8 or 9 for both concrete strengths for 

80 m gi rder and 7 t o 9 f or 40 m and 60 m gi rder spans studied. Number of  

strands required is higher in higher concrete strength. 

  

(viii) Optimum deck slab thickness is higher in shorter span as the girder spacing is 

higher in shorter span. The higher girder spacing, the higher effective span of 

deck slab which requires thicker depth of deck slab. 

 

(ix) The present constrained optimization problem of 14 nu mber design variables 

having a combination of continuous, integer, discrete types and 73 numbers of 

implicit constraints is easily solved by EVOP with a relatively small number 

of function evaluations by simply adjusting the EVOP control parameters.  

 

7.2  Summary of Suggestions 

 

It is recommended that the study can be extended further in the following fields: 

 

(i) Application of optimization approach on t he I-Girder bridges system or other 

types of bridge system considering both superstructure and substructure. 

 

(ii) Application of  high s trength concrete in the optimization of  I - Girder br idge 

system. High st rength co ncrete ( HSC) h as sev eral ad vantages o ver 

conventional strength concrete. These include increased compressive strength, 

modulus o f e lasticity, tensile s trength. In a ddition, hi gh s trength concrete i s 

nearly a lways en hanced b y t hese o ther b enefits, a s maller c reep co efficient, 

less shrinkage strain, lower permeability and improved durability. 
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(iii) Application of optimization approach on various types of prestressed concrete 

structures under flexure considering the various classes (Class U, Class T and 

Class C) of flexure. 
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APPENDIX-A 

COMPUTER PROGRAM 

(Written in C++ Language) 

 
//*********************************************************************************** 
//__01__01__01__01____________Header Files Declaration Zone____________01__01__01__01__ 
//*********************************************************************************** 
#include <iostream> 
#include <fstream> 
#include <stdio.h> 
#include <cmath> 
#include <string> 
#include <time.h> 
#include<math.h> 
#define SWAP(a,b){temp=(a);(a)=(b);(b)=temp;} 
#include <stddef.h> 
#include <stdlib.h> 
#define NR_END 1 
#define FREE_ARG char* 
using namespace std; 
 
extern "C"  
{ 
      void __stdcall EVOP(double*,double*,double*,double*,double*,double*,double*, 
    int*,int*,int*,int*,int*,int*,int*,int*,int*,int*,double*,double*,double*, 
    double*,double*,double*,double*,double*,double*,double*,double*,double*); 
   void __stdcall DINTG2(int*,double*,double*,double*,double*); 
   void __stdcall DISCR2(double*,int*,int*,double*,double*,double*,double*); 
   void __stdcall EXPCON(int*,int*,int*,int*,double*,double*,double*); 
   void __stdcall FUNC(double*,int*,int*,int*,double*); 
   double __stdcall RNDOFF(double*); 
   void __stdcall IMPCON(int*,int*,double*,double*,double*,double*); 
} 
//********************************************************************************** 
//__02__02__02__02____________Variable Declaration Zone____________02__02__02__02__02__ 
//*********************************************************************************** 
int No_of_Span=2; 
int No_of_Node=No_of_Span+1; 
int y=1; 
int xx=1;   
double xw; 
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//Area and other 
double Ag,Gd,Gdc,Anet,Atf,Atfc,EFW; 
 
//I 
double I,Inet,Ic,Itf; 
 
//Y 
double Y1,Y2,Y3,Y_end,Y_int_sup,Y_inf,Y7,Y8; //cg of strands 
//double Y1i,Y2i,Y3i,Y_end_i,Y_int_sup_i,Y_inf_i,Y7i,Y8i;  //cg of strands    
double 
Yb,Y1bnet,Y1tnet,Y2bnet,Y2tnet,Y3bnet,Y3tnet,Y_int_sup_bnet,Y_int_sup_tnet,Y_inf_bnet,Y_inf_tnet,Y
7bnet,Y7tnet,Y8bnet,Y8tnet,Y1b,Y2b,Y3b,Y_int_sup_b,Y_inf_b,Y7b,Y8b,Y1t,Y2t,Y3t,Y_int_sup_t,Y_inf_t,Y
7t,Y8t,Y1bc,Y1tc,Y2bc,Y2tc,Y3bc,Y3tc,Y_int_sup_bc,Y_int_sup_tc,Y_inf_bc,Y_inf_tc,Y7bc,Y7tc,Y8bc,Y8tc; 
 //cg of section 
 
//e 
double 
e1,e2,e3,e_end,e_int_sup,e_inf,e7,e8,e1i,e2i,e3i,e_end_i,e_int_sup_i,e_inf_i,e7i,e8i,ec1,ec2,ec3,ec_en
d,ec_int_sup,ec_inf,ec7,ec8; //eccentricity   
 
//s 
double 
S1tnet,S1bnet,S1t,S1b,S1tc,S1bc,S2tnet,S2bnet,S2t,S2b,S2tc,S2bc,S3tnet,S3bnet,S3t,S3b,S3tc,S3bc,S_en
d_tnet,S_end_bnet,S_end_t,S_end_b,S_end_tc,S_end_bc; 
double 
S_int_sup_tnet,S_int_sup_bnet,S_int_sup_t,S_int_sup_b,S_int_sup_tc,S_int_sup_bc,S_inf_tnet,S_inf_b
net,S_inf_t,S_inf_b,S_inf_tc,S_inf_bc,S7tnet,S7bnet,S7t,S7b,S7tc,S7bc,S8tnet,S8bnet,S8t,S8b,S8tc,S8bc; 
 
double 
Cable_Loc_mid[31],Cable_Loc_end[31],Cable_Loc_int_sup[31],Cable_Loc_inf[31],Cable_Loc_8[31],Cable
_Loc_7[31],alpha[31],alpha_xw[31],alpha3[31],alpha7[31],alpha8[31],Layer_dist_bottom_mid[31],Layer
_dist_bottom_inf[31]; 
double 
TFRd,TFRw,TFFHd,TFFHtw,TFFHw,TFFHbw,TFSHd=75,TFSHtw,TFSHw=75,TFSHbw,W,Wt,BFHd,BFHw,BFR
d, BFRw,ts,GS,Nstrand,Ncable,cable_1st_position_end; 
double Wd,Rh,Rw,FPw,FPt,Kcr,T,UPcondeck,UPnonprest,UPcon,UPst; 
double 
Duct_dia,Ancg_C2C,Ancg_Edge_dist,Ancg_C2C_Lay1,Ancg_Edge_dist_Lay1,Ancg_Edge_dist_vertical,Duc
t_clear_spacing,fricncoeff,Nstrandt,Mu,Wri,Anchor_dim; 
double deflectiont,deflectione,deflectionf,deflection; 
double 
MG1,MG2,MG3,MG4,MG5,MG6,MG7,MG8,MCG1,MCG2,MCG3,MCG4,MCG5,MCG6,MCG7,MCG8,MS1,
MS2,MS3,MS4,MS5,MS6,MS7,MS8,MWC1,MWC2,MWC3,MWC4,MWC5,MWC6,MWC7,MWC8; 
double 
MMS1,MMS2,MMS3,MMS4,MMS5,MMS6,MMS7,MMS8,MFP,MC1,MC2,MC3,MC4,MC5,MC6,MC7,MC8
,DF,MLL1,MLL2,MLL3,MLL4,MLL5,MLL6,MLL7,MLL8; 
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double 
IMF,MT1,MT2,MT3,MT4,MT5,MT6,MT7,MT8,MP1,MP2,MP3,MP4,MP5,MP6,MP7,MP8,MD1,MD2,MD3,
MD4,MD5,MD6,MD7,MD8,MFP_xw,MFP3;   //?? 
double Fend,F3i,F1i,F11,As,F2i,F21,F31,x,Fend2; 
double f4ti,F4i,e4i,S4tnet,f5ti,F5i,e5i,S5tnet,f6ti,F6i,e6i,S6tnet,f7ti,F7i,f8ti,F8i; 
double 
fti,fbi,ftc,fbc,ftt,fbt,fttt,fbtt,f3ti,f3bi,f3tc,f3bc,f3tt,f3bt,f3ttt,f3btt,fti_xw,fbi_xw,ftc_xw,fbc_xw,ftt_xw,fbt
_xw,fttt_xw,fbtt_xw; 
double f4bi,f5bi,f6bi,f7bi,f8bi,f4tc,f5tc,f6tc,f7tc,f8tc,F41,F51,F61,F71,F81,f4bc,f5bc,f6bc,f7bc,f8bc; 
double 
f4tt,f5tt,f6tt,f7tt,f8tt,f4bt,f5bt,f6bt,f7bt,f8bt,f4ttt,f5ttt,f6ttt,f7ttt,f8ttt,f4btt,f5btt,f6btt,f7btt,f8btt; 
double 
VDL2,VLL2,IMF2,Vc,Mcr2,fpe,Vu,dshear,Vs,Vnh,ds,R,Asnp,Asnpd,rho,d_min,Muslab,IMFS,MSS,MSWC,M
SDL,MSLL,dreq; 
int LayerNo_mid,LayerNo_inf,Cable_Layer_mid[31],Cable_Layer_inf[31]; 
double NoGirder; 
double DX[8],pt1,pt2,pt3,Ig,DECKT[26],DX1[69],DX2[69],DX4[101],DX11[10], DX12[11], DX13[36]; 
int const nv = 14; 
int const icn = 73; 
double Cable_Loc_3[31],Cable_Loc_xw[31]; 
int cost = 1; 
double Anchcost,sheathcost,UPgf,UPdf; 
double Cpcon,Cpst,Cdconc,Cnpst,SA;  
 
//  Bridge Data: 
//  Length of girder, 
double L = 40000;   //mm    
//  Width of bridge =      
double  BW = 12000;  //mm 
   
//  Cross girder, wearing coarse and Median strip constant       
int  NCG = 9;  
double  CGt = 250; //mm 
double  WCt = 50; //mm 
double  MSh = 600; //mm 
double  MSw = 450; //mm 
 
//     Material constants:      
double  Gammawc = 25;  //!KN/m3 
//  Unit weight of concrete,  
double  Gammacon = 24;  //!KN/m3  
//  Unitweight of steel,  
double  Gammast=7850e-9;  //Kg/mm3 
 
double Astrand = 140.0;  //mm2 
//  Astrand = 98.7; 
 
//  Wobble coefficient, 
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double  Kwc =0.000005; //!per mm     
//  Anchorage Slip  
double  Delta= 6;  //!mm 
//  Modulus of elasticiy of steel  
double  Es= 197000; //  !MPa  //AASHTO LRFD (2007) 5.4.4.2 
//  Ultimate strength of prestressing steel,  
double  fpu = 1860; //ASTM A416 M  
//  Concrete: 
//  Compressive strength of concrete, MPa 
double  fc=40; 
//  Compressive strength of concrete for deck slab, MPa 
double  fcdeck=25;  
//  Concrete compressive strength at transfer, 
double  fci =0.75*fc; 
 
//  Coefficient of elastic shortening, 
double  Kes = 0.5;       
//  Design Data: 
//  Specification AASHTO 2007 
//  Live Load HL-93      
//  Load from frontal wheel,  
double P1=35;  //!KN       
//  Load from Rear wheel,  
double P2=145;  //!KN  
//  Modulus of elasticiy of concrete  
double Ec = 33.0*pow(150,1.5)*sqrt(fc*145.0)/145.0; // !MPa 
//  Modulus of elasticiy of concrete at initial stage 
double  Eci = 33.0*pow(150,1.5)*sqrt(fci*145.0)/145.0; 
double  Ecdeck = 33.0*pow(150,1.5)*sqrt(fcdeck*145.0)/145.0; 
double  mratio = Ecdeck/Ec; 
 
int whichSection_intermsof_ILmatrixrow=0; 
 
double max_wheelLoad_shearPositive=0; 
double max_wheelLoad_shearNegative=0; 
double max_wheelLoad_momentPositive=0; 
double max_wheelLoad_momentNegative=0; 
double max_laneLoad_shearPositive=0; 
double max_laneLoad_shearNegative=0; 
double max_laneLoad_momentPositive=0; 
double max_laneLoad_momentNegative=0; 
 
double laneLoad_pick=0; 
 
double loadedLength_max_wheelLoad_shearPositive=0; 
double loadedLength_max_wheelLoad_shearNegative=0; 
double loadedLength_max_wheelLoad_momentPositive=0; 
double loadedLength_max_wheelLoad_momentNegative=0; 
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double loadedLength_max_laneLoad_shearPositive=0; 
double loadedLength_max_laneLoad_shearNegative=0; 
double loadedLength_max_laneLoad_momentPositive=0; 
double loadedLength_max_laneLoad_momentNegative=0; 
 
double ImpactFactor_max_wheelLoad_shearPositive=0; 
double ImpactFactor_max_wheelLoad_shearNegative=0; 
double ImpactFactor_max_wheelLoad_momentPositive=0; 
double ImpactFactor_max_wheelLoad_momentNegative=0; 
double ImpactFactor_max_laneLoad_shearPositive=0; 
double ImpactFactor_max_laneLoad_shearNegative=0; 
double ImpactFactor_max_laneLoad_momentPositive=0; 
double ImpactFactor_max_laneLoad_momentNegative=0; 
 
double w_dyn=0  ; 
double UDL_SW_girder=0; 
double UDL_SW_CG=0; 
double UDL_SW_slab=0; 
double UDL_SW_WC=0; 
double UDL_SW_MS=0; 
double UDL_SW_LL=0; 
//*********************************************************************************** 
//__03__03__03__03____________Matrix/Array Declaration Zone____________03__03__03__03__ 
//*********************************************************************************** 
double local_stiffness_matrix[4][4];               
double global_stiffness_matrix[32][32]; 
double **global_stiffness_matrix_pointer; 
double global_member_force_matrix[32][1]; 
double **global_member_force_matrix_pointer; 
double final_DOF_matrix[16][1]; 
double total_DL_end_shearforce_bendingmoment_matrix[15][4]; 
double for_ILvalue_LL_end_shearforce_bendingmoment_matrix[15][4]; 
double total_DL_sectionwise_shearforce_matrix[1][3500];   
double total_DL_sectionwise_bendingmoment_matrix[1][3500];   
double for_ILvalue_LL_sectionwise_shearforce_matrix[1][3500]; 
double for_ILvalue_LL_sectionwise_bendingmoment_matrix[1][3500]; 
double IL_matrix_shear[3500][3500]; 
double IL_matrix_moment[3500][3500]; 
double matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[1][3500]; 
double matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[1][3500]; 
double matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[1][3500]; 
double matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[1][3500];  
//*********************************************************************************** 
//__04__04__04__04__04____________Matrix Initialization Zone____________04__04__04__04__04_ 
//*********************************************************************************** 
void matrix_initialization_function() 
{ 
// cout<<"matrix_initialization function"<<"\t"; 
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 for(int i=0;i<32;i++) 
 { 
  for(int j=0;j<32;j++) 
  { 
   global_stiffness_matrix[i][j]=0.0;  //global_stiffness_matrix[32][32]; 
  } 
 } 
 
 for(int k=0;k<32;k++) 
 { 
  global_member_force_matrix[k][0]=0.0;  //global_member_force_matrix[32][1]; 
 
  //DOF_matrix[32][1]; 
  //Pj_matrix[32][1]; 
 } 
 
 for(int l=0;l<16;l++) 
 { 
  final_DOF_matrix[l][0]=0.0;   //final_DOF_matrix[16][1]; 
 } 
 
 for(int m=0;m<15;m++) 
 { 
  for(int n=0;n<4;n++) 
  { 
   total_DL_end_shearforce_bendingmoment_matrix[m][n]=0.0; 
                     //total_DL_end_shearforce_bendingmoment_matrix[15][4]; 
   for_ILvalue_LL_end_shearforce_bendingmoment_matrix[m][n]=0.0; 
                     //for_ILvalue_LL_end_shearforce_bendingmoment_matrix[15][4]; 
  } 
 } 
 
 for(int o=0;o<3500;o++) 
 { 
  total_DL_sectionwise_shearforce_matrix[0][o]=0.0; 
                        //total_DL_sectionwise_shearforce_matrix[1][3500]; 
 
  total_DL_sectionwise_bendingmoment_matrix[0][o]=0.0; 
                        //total_DL_sectionwise_bendingmoment_matrix[1][3500]; 
 
  for_ILvalue_LL_sectionwise_shearforce_matrix[0][o]=0.0; 
                        //for_ILvalue_LL_sectionwise_shearforce_matrix[1][3500]; 
 
  for_ILvalue_LL_sectionwise_bendingmoment_matrix[0][o]=0.0; 
                        //for_ILvalue_LL_sectionwise_bendingmoment_matrix[1][3500]; 
 } 
 
 for(int p=0;p<3500;p++) 
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 { 
  for(int q=0;q<3500;q++) 
  { 
   IL_matrix_shear[p][q]=0.0;    //IL_matrix_shear[3500][3500]; 
      IL_matrix_moment[p][q]=0.0;   //IL_matrix_moment[3500][3500]; 
 
  } 
 } 
 
 for(int r=0;r<3500;r++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][r]=0.0; 
           //double matrix_forSorting_maXof_wheelLoadorlaneLoad_shear[1][3500]; 
 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][r]=0.0; 
                 //double matrix_forSorting_maXof_wheelLoadorlaneLoad_moment[1][3500]; 
 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][r]=0.0; 
           //double matrix_forSorting_maXof_wheelLoadorlaneLoad_shear[1][3500]; 
 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][r]=0.0; 
                 //double matrix_forSorting_maXof_wheelLoadorlaneLoad_moment[1][3500]; 
 } 
} 
//*********************************************************************************** 
//__05__05__05__05_____________Function Declaration Zone____________05__05__05__05__05__ 
//*********************************************************************************** 
void local_stiffness_matrix_function();  //calculates [k]_local matrix 
void global_stiffness_matrix_function();   //calculates [k]_global matrix 
void global_member_force_matrix_function(double w_dyn);   //calculates [Pm]_golbal matrix. 
void impose_boundarycondition_function();   /*imposes boundary condition by making kii=1; 
                                            Pi=0; ith row and column values=0 to make  
                                            ui=0*/ 
void modified_global_stiffness_matrix_function();   //considers boundary condition 
void modified_global_member_force_matrix_function();    //considers boundary condition 
void DOF_matrix_solution_function(double **a,int n,double **b,int m);    
void final_DOF_matrix_function();  /*call within DOF_matrix_solution_function(); ...not from main()*/ 
void total_DL_end_shearforce_bendingmoment_function(double w_dyn); 
void for_ILvalue_LL_end_shearforce_bendingmoment_function(int increment_a,int increment_c);   
void total_DL_sectionwise_shearforce_function(double w_dyn); 
void total_DL_sectionwise_bendingmoment_function(double w_dyn);    
void influence_line_function();   
void global_member_force_matrix_function_forIL(int increment_a,int increment_c);    
                                  //calculates [Pm]_golbal matrix for influence line  
void for_ILvalue_LL_sectionwise_shearforce_function(int increment_a,int increment_c); 
void for_ILvalue_LL_sectionwise_bendingmoment_function(int increment_a,int increment_c); 
void matrix_initialization_function();  //initializes all matrices with zero value 
void test_function();      //common output function to test different funtions 
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void nrerror(char error_text[]); 
int *ivector(long nl, long nh); 
void free_ivector(int *v, long nl, long nh); 
void dynamic_allocation_01(); 
void dynamic_allocation_02(); 
void factored_DLplusLL_shearCombination_atSpecificSection_function 
(int whichSection_intermsof_ILmatrixrow); 
void factored_DLplusLL_momentCombination_atSpecificSection_function 
(int whichSection_intermsof_ILmatrixrow); 
double total_LL_atSpecific_section_positive_shearforce_function 
(int whichSection_intermsof_ILmatrixrow);  
double total_LL_atSpecific_section_negative_shearforce_function 
(int whichSection_intermsof_ILmatrixrow); 
double total_LL_atSpecific_section_positive_bendingmoment_function 
(int whichSection_intermsof_ILmatrixrow); 
double total_LL_atSpecific_section_negative_bendingmoment_function 
(int whichSection_intermsof_ILmatrixrow); 
double maxm(double value_a, double value_b); 
double minm(double value_c, double value_d); 
double absolue_value_function(double value_r) 
 if (value_r>=0) 
  return value_r; 
 
  else  
  return -(value_r); 
} 
void Anchorage_system() //  Duct and Anchorage System 
{ 
// cout<<"anchorage_system"<<"\t"; 
 double Fcable; 
 Nstrandt = RNDOFF(&Nstrand); 
 Fcable = 0.7*fpu*Astrand*Nstrand/1000; 
 if(Nstrandt <= 3) 
 { 
  Duct_dia = 45; 
  Duct_clear_spacing = 38; 
  Ancg_Edge_dist_vertical = 127.5;//Ancg_Edge_dist_vertical = 1.5*boo 
  fricncoeff = 0.25; 
  Anchor_dim = 110; 
 } 
 else if(Nstrandt <= 4 ) 
 { 
  Duct_dia = 50; 
  Duct_clear_spacing = 38; 
  Ancg_Edge_dist_vertical = 150; 
  fricncoeff = 0.25; 
  Anchor_dim = 120; 
 } 
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 else if(Nstrandt <= 7 ) 
 {  
  Duct_dia = 65; 
  Duct_clear_spacing = 38; 
  Ancg_Edge_dist_vertical = 187.5; 
  fricncoeff = 0.25; 
  Anchor_dim = 150; 
 } 
 else if(Nstrandt <= 9 ) 
 { 
  Duct_dia = 70; 
  Duct_clear_spacing = 38; 
  Ancg_Edge_dist_vertical = 210; 
  fricncoeff = 0.20; 
  Anchor_dim = 185; 
 } 
 else if(Nstrandt <= 12 ) 
 { 
  Duct_dia = 85; 
  Duct_clear_spacing = 38; 
  Ancg_Edge_dist_vertical = 247.5; 
  fricncoeff = 0.20; 
  Anchor_dim = 200; 
 } 
 else if(Nstrandt <= 13 ) 
 { 
  Duct_dia = 85; 
  Duct_clear_spacing = 38; 
  Ancg_Edge_dist_vertical = 255; 
  fricncoeff = 0.20; 
  Anchor_dim = 210; 
 } 
 else if(Nstrandt <= 19) 
 { 
  Duct_dia = 100; 
  Duct_clear_spacing = 38; 
  Ancg_Edge_dist_vertical = 300; 
  fricncoeff = 0.20; 
  Anchor_dim = 250; 
 } 
 else if(Nstrandt <= 22) 
 { 
  Duct_dia = 110; 
  Duct_clear_spacing = 50; 
  Ancg_Edge_dist_vertical = 322.5; 
  fricncoeff = 0.20; 
  Anchor_dim = 275; 
 } 



139 
 

 else  
 { 
  Duct_dia = 115; 
  Duct_clear_spacing = 50; 
  Ancg_Edge_dist_vertical = 345; 
  fricncoeff = 0.20; 
  Anchor_dim = 300; 
 } 
 Ancg_Edge_dist_Lay1 = Ancg_Edge_dist_vertical/1.50; 
 Ancg_C2C_Lay1 = Fcable*1000.0/fci/Ancg_Edge_dist_Lay1; 
 Ancg_Edge_dist = BFRw/2; 
 Ancg_C2C = Fcable*1000.0/fci/Ancg_Edge_dist; 
 Wt = Duct_dia + 80; 
} 
double minm(double a, double b) 
{ 
 double temp; 
 if(a<b) 
  temp = a; 
 else 
  temp = b; 
 return temp; 
} 
double maxm(double a, double b) 
{ 
 double temp; 
 if(a>b) 
  temp = a; 
 else 
  temp = b; 
 return temp; 
} 
void Sectional_Properties() 
{ 
// cout<<"sectional_properties"<<"\t"; 
// Non Composite Section Properties 
 Ag = 
(TFRd*TFRw)+((TFFHtw+TFFHbw)/2*TFFHd)+((TFSHtw+TFSHbw)/2*TFSHd)+Wd*Wt+((Wt+BFRw)/2*BFH
d)+(BFRd*BFRw); 
 Anet = Ag-Ncable*3.1416/4*(Duct_dia)*(Duct_dia); 
 Atf = Ag + (Es/Ec-1)*As; 
 Yb = ((TFRd*TFRw)*(Gd-TFRd/2))+((TFFHw*TFFHd)*(Gd-TFRd-TFFHd/3)); 
 Yb = Yb +((TFFHtw-2*TFFHw)*TFFHd*(Gd-TFRd-TFFHd/2)); 
 Yb = Yb +((TFSHd*TFSHw)*(Gd-TFRd-TFFHd-TFSHd/3))+((Wt*TFSHd)*(Gd-TFRd-TFFHd-
TFSHd/2)); 
 Yb = Yb +((Wt*Wd)*(BFRd+BFHd+Wd/2))+((BFHw*BFHd)*(BFRd+BFHd/3)); 
 Yb = Yb +((BFHd*Wt)*(BFRd+BFHd/2))+((BFRd*BFRw)*BFRd/2); 
//------------------------------------------------------------------------------- 
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 Y1bnet = Yb - Ncable*3.1416/4*pow((Duct_dia),2)*Y1;  // section 1 and 2 
 Y2bnet = Yb - Ncable*3.1416/4*pow((Duct_dia),2)*Y2; 
  
 Y1b = Yb + (Es/Ec-1)*As*Y1; 
 Y2b = Yb + (Es/Ec-1)*As*Y2; 
  
 Y1b = Y1b/Atf; 
 Y2b = Y2b/Atf; 
 
 Y1t = Gd-Y1b; 
 Y2t = Gd-Y2b; 
 
 Y1bnet = Y1bnet/Anet; 
 Y2bnet = Y2bnet/Anet; 
  
 Y1tnet = Gd-Y1bnet; 
 Y2tnet = Gd-Y2bnet; 
//------------------------------------------------------------------------------- 
 Y3bnet = Yb - Ncable*3.1416/4*pow((Duct_dia),2)*Y3;  // section 3 
 Y3b = Yb + (Es/Ec-1)*As*Y3; 
 Y3b = Y3b/Atf; 
 Y3t = Gd-Y3b; 
 Y3bnet = Y3bnet/Anet; 
 Y3tnet = Gd-Y3bnet; 
//------------------------------------------------------------------------------- 
 Y_int_sup_bnet = Yb - Ncable*3.1416/4*pow((Duct_dia),2)*Y_int_sup; //section int support  
 Y_int_sup_b = Yb + (Es/Ec-1)*As*Y_int_sup; 
 Y_int_sup_b = Y_int_sup_b/Atf; 
 Y_int_sup_t = Gd-Y_int_sup_b; 
 Y_int_sup_bnet = Y_int_sup_bnet/Anet; 
 Y_int_sup_tnet = Gd-Y_int_sup_bnet; 
//------------------------------------------------------------------------------- 
 Y_inf_bnet = Yb - Ncable*3.1416/4*pow((Duct_dia),2)*Y_inf; // section Inflection point 
 Y_inf_b = Yb + (Es/Ec-1)*As*Y_inf; 
 Y_inf_b = Y_inf_b/Atf; 
 Y_inf_t = Gd-Y_inf_b; 
 Y_inf_bnet = Y_inf_bnet/Anet; 
 Y_inf_tnet = Gd-Y_inf_bnet; 
//------------------------------------------------------------------------------- 
 Y7bnet = Yb - Ncable*3.1416/4*pow((Duct_dia),2)*Y7;  // section 7 
 Y7b = Yb + (Es/Ec-1)*As*Y7; 
 Y7b = Y7b/Atf; 
 Y7t = Gd-Y7b; 
 Y7bnet = Y7bnet/Anet; 
 Y7tnet = Gd-Y7bnet; 
//------------------------------------------------------------------------------- 
 Y8bnet = Yb - Ncable*3.1416/4*pow((Duct_dia),2)*Y8;  // section 8 
 Y8b = Yb + (Es/Ec-1)*As*Y8; 



141 
 

 Y8b = Y8b/Atf; 
 Y8t = Gd-Y8b; 
 Y8bnet = Y8bnet/Anet; 
 Y8tnet = Gd-Y8bnet; 
// Ecentricity, 
//----------------------------------------------------------------------------- 
 e1 = Y1b-Y1; 
 e1i = Y1bnet-Y1;  //!eccentricity at section 1 
//----------------------------------------------------------------------------- 
 e2 = Y2b - Y2;  //!eccentricity at section 2 (i.e section xw) 
 e2i = Y2bnet - Y2; 
//----------------------------------------------------------------------------- 
 e3 = Y3b - Y3;  //!eccentricity at section 3 (i.e. section x) 
 e3i = Y3bnet - Y3; 
//----------------------------------------------------------------------------- 
 e_int_sup = Y_int_sup_b - Y_int_sup;  //!eccentricity at section int_sup 
 e_int_sup_i = Y_int_sup_bnet - Y_int_sup; 
//----------------------------------------------------------------------------- 
 e_inf = Y_inf_b - Y_inf;  //!eccentricity at section inflection  
 e_inf_i = Y_inf_bnet - Y_inf; 
//----------------------------------------------------------------------------- 
 e7 = Y7b - Y7;  //!eccentricity at section 7 
 e7i = Y7bnet - Y7; 
//----------------------------------------------------------------------------- 
 e8 = Y8b - Y8;  //!eccentricity at section 8 
 e8i = Y8bnet - Y8;   
 I = pow(TFRd,3)*TFRw/12+(TFRd*TFRw)*pow((Y1t-TFRd/2),2); 
 I = I + TFFHw*pow(TFFHd,3)/36*2+(TFFHw*TFFHd)*pow((Y1t-TFRd-TFFHd/3),2); 
 I = I + (pow(TFFHd,3)*TFFHbw/12)+(TFFHbw*TFFHd)*pow((Y1t-TFRd-TFFHd/2),2); 
 I = I + (TFSHw*pow(TFSHd,3)/36)*2+(TFSHw*TFSHd)*pow((Y1t-TFRd-TFFHd-TFSHd/3),2); 
 I = I + (Wt*pow(TFSHd,3)/12)+(Wt*TFSHd)*pow((Y1t-TFRd-TFFHd-TFSHd/2),2); 
 I = I + (Wt*pow(Wd,3)/12)+(Wt*Wd)*pow((Y1b-BFRd-BFHd-Wd/2),2); 
 I = I + (BFHw*pow(BFHd,3)/36)*2+(BFHw*BFHd)*pow((Y1b-BFRd-BFHd/3),2); 
 I = I + Wt*pow(BFHd,3)/12+(Wt*BFHd)*pow((Y1b-BFRd-BFHd/2),2); 
 I = I + (BFRw*pow(BFRd,3)/12)+(BFRd*BFRw)*pow((Y1b-BFRd/2),2); 
 Inet = I - (3.1416*pow(Duct_dia,4)/32*Ncable + 3.1416*pow(Duct_dia,2)/4*Ncable*e1*e1); 
 Itf = I + (Es/Ec-1)*As*e1*e1; 
//----------------------------------------------------------------------------------------- 
 S1tnet = Inet/Y1tnet;   //section 1 and 2 
 S2tnet = Inet/Y2tnet; 
  
 S1bnet = Inet/Y1bnet; 
 S2bnet = Inet/Y2bnet; 
 
 S1t = Itf/Y1t; 
 S2t = Itf/Y2t; 
 
 S1b = Itf/Y1b; 
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 S2b = Itf/Y2b; 
//----------------------------------------------------------------------------------------- 
 S3tnet = Inet/Y3tnet;   //section 3 
 S3bnet = Inet/Y3bnet; 
  
 S3t = Itf/Y3t; 
 S3b = Itf/Y3b; 
//----------------------------------------------------------------------------------------- 
 S_int_sup_tnet = Inet/Y_int_sup_tnet;   //section int_sup 
 S_int_sup_bnet = Inet/Y_int_sup_bnet; 
  
 S_int_sup_t = Itf/Y_int_sup_t; 
 S_int_sup_b = Itf/Y_int_sup_b; 
//----------------------------------------------------------------------------------------- 
 S_inf_tnet = Inet/Y_inf_tnet;   //section inf 
 S_inf_bnet = Inet/Y_inf_bnet; 
  
 S_inf_t = Itf/Y_inf_t; 
 S_inf_b = Itf/Y_inf_b; 
//----------------------------------------------------------------------------------------- 
 S7tnet = Inet/Y7tnet;   //section 7 
 S7bnet = Inet/Y7bnet; 
  
 S7t = Itf/Y7t; 
 S7b = Itf/Y7b; 
//----------------------------------------------------------------------------------------- 
 S8tnet = Inet/Y8tnet;   //section 8 
 S8bnet = Inet/Y8bnet; 
  
 S8t = Itf/Y8t; 
 S8b = Itf/Y8b; 
//------------------------------------------------------------------------------------- 
} 
void Comp_Sectional_Properties() 
{ 
// cout<<"comp_sectional_properties"<<"\t"; 
// Composite Section Properties 
 double EWW; 
 EWW = minm(TFRw,12*(TFRd+TFFHd)+Wt+2*TFSHd); 
 EFW = 12*ts+EWW; 
 EFW = minm(L/4,EFW); 
 EFW = minm(EFW,GS); 
 Gdc = Gd + ts; 
 Atfc = Atf + mratio*EFW*ts; 
//-------------------------------------------------------------------------- 
 Y1bc = (Y1b*Atf+(mratio*EFW*ts)*(Gdc-ts/2))/Atfc; 
 Y2bc = (Y2b*Atf+(mratio*EFW*ts)*(Gdc-ts/2))/Atfc; 
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 ec1= Y1bc-Y1;  //section 1 and 2 
 ec2 = Y2bc - Y2; 
 Y1tc = Gdc-Y1bc; 
 Y2tc = Gdc-Y2bc; 
//-------------------------------------------------------------------------- 
 Y3bc = (Y3b*Atf+(mratio*EFW*ts)*(Gdc-ts/2))/Atfc; 
  
 ec3= Y3bc-Y3;  //section 3 
 Y3tc = Gdc-Y3bc; 
//-------------------------------------------------------------------------- 
 Y_int_sup_bc = (Y_int_sup_b*Atf+(mratio*EFW*ts)*(Gdc-ts/2))/Atfc; 
  
 ec_int_sup= Y_int_sup_bc-Y_int_sup;  //section int_sup 
 Y_int_sup_tc = Gdc-Y_int_sup_bc; 
//-------------------------------------------------------------------------- 
 Y_inf_bc = (Y_inf_b*Atf+(mratio*EFW*ts)*(Gdc-ts/2))/Atfc; 
  
 ec_inf= Y_inf_bc-Y_inf;  //section inf 
 Y_inf_tc = Gdc-Y_inf_bc; 
//-------------------------------------------------------------------------- 
 Y7bc = (Y7b*Atf+(mratio*EFW*ts)*(Gdc-ts/2))/Atfc; 
  
 ec7= Y7bc-Y7;  //section 7 
 Y7tc = Gdc-Y7bc; 
 //-------------------------------------------------------------------------- 
 Y7bc = (Y7b*Atf+(mratio*EFW*ts)*(Gdc-ts/2))/Atfc; 
  
 ec7= Y7bc-Y7;  //section 8 
 Y7tc = Gdc-Y7bc; 
//------------------------------------------------------------------------------- 
 Ic = (mratio*EFW*pow(ts,3)/12)+((mratio*EFW*ts)*pow((Y1tc-ts/2),2)); 
 Ic = Ic +pow(TFRd,3)*TFRw/12+(TFRd*TFRw)*pow((Y1tc-ts-TFRd/2),2); 
 Ic = Ic +((TFFHw*pow(TFFHd,3)/36)*2+((TFFHw*TFFHd)*pow((Y1tc-ts-TFRd-TFFHd/3),2))); 
 Ic = Ic +((pow(TFFHd,3)*TFFHbw/12)+(TFFHbw*TFFHd)*pow((Y1tc-ts-TFRd-TFFHd/2),2)); 
 Ic = Ic +((TFSHw*pow(TFSHd,3)/36)*2+(TFSHw*TFSHd)*pow((Y1tc-ts-TFRd-TFFHd-TFSHd/3),2)); 
 Ic = Ic +((Wt*pow(TFSHd,3)/12)+(Wt*TFSHd)*pow((Y1tc-ts-TFRd-TFFHd-TFSHd/2),2)); 
 Ic = Ic +((Wt*pow(Wd,3)/12)+(Wt*Wd)*pow((Y1bc-BFRd-BFHd-Wd/2),2)); 
 Ic = Ic +((BFHw*pow(BFHd,3)/36)*2+(BFHw*BFHd)*pow((Y1bc-BFRd-BFHd/3),2)); 
 Ic = Ic +((Wt*pow(BFHd,3)/12+(Wt*BFHd)*pow((Y1bc-BFRd-BFHd/2),2))); 
 Ic = Ic +((BFRw*pow(BFRd,3)/12)+(BFRd*BFRw)*pow((Y1bc-BFRd/2),2)); 
 Ic = Ic +(Es/Ec-1)*As*ec1*ec1; 
//------------------------------------------------------------------------------- 
 S1tc = Ic/(Y1tc - ts);  //section 1 and 2 
 S2tc = Ic/(Y2tc - ts); 
 
 S1bc = Ic/Y1bc; 
 S2bc = Ic/Y2bc; 
//------------------------------------------------------------------------------- 
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 S3tc = Ic/(Y3tc - ts);  //section 3 
 S3bc = Ic/Y3bc; 
//------------------------------------------------------------------------------- 
 S_int_sup_tc = Ic/(Y_int_sup_tc - ts);  //section int_sup 
 S_int_sup_bc = Ic/Y_int_sup_bc; 
//------------------------------------------------------------------------------- 
 S_inf_tc = Ic/(Y_inf_tc - ts);  //section inf 
 S_inf_bc = Ic/Y_inf_bc; 
//------------------------------------------------------------------------------- 
 S7tc = Ic/(Y7tc - ts);  //section 7 
 S7bc = Ic/Y7bc; 
//------------------------------------------------------------------------------- 
// S8tc = Ic/(Y8tc - ts);  //section 8 
// S8bc = Ic/Y8bc; 
//------------------------------------------------------------------------------- 
} 
//*********************************************************************************** 
//__06__06__06__06_____________Stiffness Equation Development Zone____________06__06__06 
//*********************************************************************************** 
void local_stiffness_matrix_function() 
{ 
// cout<<"local_stiffness_matrix_function"<<"\t"; 
   local_stiffness_matrix[0][0]=12*Ec*Itf/(L*L*L); 
   local_stiffness_matrix[0][1]=6*Ec*Itf/(L*L); 
   local_stiffness_matrix[0][2]=-12*Ec*Itf/(L*L*L); 
   local_stiffness_matrix[0][3]=6*Ec*Itf/(L*L); 
   local_stiffness_matrix[1][0]=6*Ec*Itf/(L*L); 
   local_stiffness_matrix[1][1]=4*Ec*Itf/(L); 
   local_stiffness_matrix[1][2]=-6*Ec*Itf/(L*L); 
   local_stiffness_matrix[1][3]=2*Ec*Itf/(L); 
   local_stiffness_matrix[2][0]=-12*Ec*Itf/(L*L*L); 
   local_stiffness_matrix[2][1]=-6*Ec*Itf/(L*L); 
   local_stiffness_matrix[2][2]=12*Ec*Itf/(L*L*L); 
   local_stiffness_matrix[2][3]=-6*Ec*Itf/(L*L); 
   local_stiffness_matrix[3][0]=6*Ec*Itf/(L*L); 
   local_stiffness_matrix[3][1]=2*Ec*Itf/L; 
   local_stiffness_matrix[3][2]=-6*Ec*Itf/(L*L); 
   local_stiffness_matrix[3][3]=4*Ec*Itf/L; 
}   
//*********************************************************************************** 
void global_stiffness_matrix_function() 
{ 
// cout<<"global_stiffness_matrix_function"<<"\t"; 
 int increment=0; 
 for(int i=0;i<No_of_Span;i++) 
 { 
  for(int j=0;j<4;j++)         
   for(int k=0;k<4;k++) 
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  { 
    global_stiffness_matrix[j+increment][k+increment]= 
       global_stiffness_matrix[j+increment][k+increment]+ 
                local_stiffness_matrix[j][k];  
  } 
   increment=increment+2; 
 } 
} 
//*********************************************************************************** 
void global_member_force_matrix_function(double w_dyn) 
{ 
// cout<<"global_member_force_matrix_function"<<"\t"; 
double local_member_force_matrix[4][1]={{w_dyn*L/2},{w_dyn*L*L/12}, 
                                     {w_dyn*L/2},{-w_dyn*L*L/12}};     
 int increment=0; 
 for(int i=0;i<No_of_Span;i++) 
 { 
  for(int j=0;j<4;j++) 
  { 
   global_member_force_matrix[j+increment][0]= 
      global_member_force_matrix[j+increment][0]+ 
   local_member_force_matrix[j][0]; 
  } 
  increment=increment+2; 
 } 
 for(int k=0;k<2*No_of_Node;k++) 
 { 
  global_member_force_matrix[k][0]= 
  (-global_member_force_matrix[k][0]); 
 } 
} 
//*********************************************************************************** 
//__07__07__07_____________Boundary Condition Application Zone____________07__07__07__07 
//*********************************************************************************** 
void impose_boundarycondition_function() 
{ 
// cout<<"impose_boundary_condition_function"<<"\t"; 
 modified_global_stiffness_matrix_function(); 
 modified_global_member_force_matrix_function(); 
} 
//********************************************************************************** 
void modified_global_stiffness_matrix_function() 
{ 
// cout<<"modified_global_stiffness_matrix_function"<<"\t"; 
 int increment=0; 
 for(int i=0;i<No_of_Node;i++) 
 { 
  for(int j=0;j<2*No_of_Node;j++) 



146 
 

  { 
   global_stiffness_matrix[0+increment][j]=0.0; 
  } 
  for(int k=0;k<2*No_of_Node;k++) 
  { 
   global_stiffness_matrix[k][0+increment]=0.0; 
  } 
 
  global_stiffness_matrix[increment][increment]=1.0; 
 
  increment=increment+2; 
 } 
} 
//*********************************************************************************** 
void dynamic_allocation_01() 
{ 
// cout<<"dynamic_allocation_01"<<"\t"; 
 int i,j,M,N; 
 N = 2*No_of_Node; 
 M = 2*No_of_Node; 
 global_stiffness_matrix_pointer= new double* [N]; 
 for(i=0; i<N; i++)  
 { 
  global_stiffness_matrix_pointer[i] = new double[M]; 
  for(j=0; j<M; j++) 
  { 
   global_stiffness_matrix_pointer[i][j] = global_stiffness_matrix[i][j]; 
  } 
 } 
} 
//*********************************************************************************** 
void modified_global_member_force_matrix_function() 
{ 
// cout<<"modified_global_member_force_matrix_function"<<"\t"; 
 int increment=0; 
 for(int i=0;i<No_of_Node;i++) 
 { 
  global_member_force_matrix[increment][0]=0.0; 
  increment=increment+2; 
 } 
} 
//*********************************************************************************** 
void dynamic_allocation_02() 
{ 
// cout<<"dynamic_allocation_02"<<"\t"; 
 int i,j,M,N; 
N = 2*No_of_Node; 
M = 1; 
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global_member_force_matrix_pointer= new double* [N]; 
for(i=0; i<N; i++)  
{ 
 global_member_force_matrix_pointer[i] = new double[M]; 
 for(j=0; j<M; j++) 
 { 
  global_member_force_matrix_pointer[i][j] = global_member_force_matrix[i][j]; 
 } 
} 
} 
//*********************************************************************************** 
//__08__08__08__08__08____________Stiffness Equation Solution Zone____________08__08__08__ 
//*********************************************************************************** 
//Modified stiffness equation (boundary condition apllied)/stiffness equation solution zone 
void nrerror(char error_text[]) 
/* Numerical Recipes standard error handler */ 
{ 
 fprintf(stderr,"Numerical Recipes run-time error...\n"); 
 fprintf(stderr,"%s\n",error_text); 
 fprintf(stderr,"...now exiting to system...\n"); 
 exit(1); 
} 
//*********************************************************************************** 
int *ivector(long nl, long nh) 
/* allocate an int vector with subscript range v[nl..nh] */ 
{ 
int *v; 
v=(int *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(int))); 
if (!v) nrerror("allocation failure in ivector()"); 
return v-nl+NR_END; 
} 
//*********************************************************************************** 
void free_ivector(int *v, long nl, long nh) 
/* free an int vector allocated with ivector() */ 
{ 
free((FREE_ARG) (v+nl-NR_END)); 
} 
//*********************************************************************************** 
void DOF_matrix_solution_function(double **a,int n,double **b,int m) 
{ 
// cout<<"DOF_matrix_solution_function"<<"\t"; 
 int *indxc,*indxr,*ipiv; 
 int i,icol,irow,j,k,l,ll; 
 double big,dum,pivinv,temp;  
 indxc=ivector(1,n);   /*the integer arrays ipiv,indxr,and indxc are used for 
        bookkeeping on the pivoting*/ 
 indxr=ivector(1,n); 
    ipiv=ivector(1,n); 
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 for(j=0;j<n;j++) ipiv[j]=0; 
 for(i=0;i<n;i++)   //this is the main loop over the column to be reduced 
 { 
  big=0.0; 
  for(j=0;j<n;j++)  //this is the outer loop of the search for a pivot element 
   if(ipiv[j]!=1) 
    for(k=0;k<n;k++) 
    { 
     if(ipiv[k]==0) 
     { 
      if(fabs(a[j][k])>=big) 
      { 
       big=fabs(a[j][k]); 
       irow=j; 
       icol=k; 
      } 
     } 
    } 
 
    ++(ipiv[icol]); 
    if(irow!=icol) 
    { 
     for(l=0;l<n;l++) SWAP(a[irow][l],a[icol][l]) 
      for(l=0;l<n;l++) SWAP(a[irow][l],a[icol][l]) 
    } 
/*we are now ready to divide the pivot row by the pivot element,located at irow and icol*/ 
    indxr[i]=irow; 
    indxc[i]=icol; 
    if(a[icol][icol]==0.0) nrerror("gaussj:Singular Matrix"); 
    pivinv=1.0/a[icol][icol]; 
    a[icol][icol]=1.0; 
 
    for(l=0;l<n;l++) a[icol][l]*=pivinv; 
    for(l=0;l<m;l++) b[icol][l]*=pivinv; 
 
    for(ll=0;ll<n;ll++) 
     if(ll!=icol) 
     { 
      dum=a[ll][icol]; 
      a[ll][icol]=0.0; 
      for(l=0;l<n;l++) a[ll][l]-=a[icol][l]*dum; 
      for(l=0;l<m;l++) b[ll][l]-=b[icol][l]*dum; 
     } 
 } 
 
 for(l=n;l>=1;l--) 
 { 
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  if(indxr[l]!=indxc[l]) 
   for(k=0;k<n;k++) 
    SWAP(a[k][indxr[l]],a[k][indxc[l]]); 
 } 
 
 free_ivector(ipiv,1,n); 
 free_ivector(indxr,1,n); 
 free_ivector(indxc,1,n); 
 
 for(int p=0;p<2*No_of_Node;p++) 
 { 
  final_DOF_matrix[p][0]=global_member_force_matrix_pointer[p][0]; 
 } 
} 
//*********************************************************************************** 
//__09__09__09__09_____________End Shear and Moment Calculation Zone____________09__09__ 
//********************************************************************************** 
/*For each member- end shear and moment calculation zone (using solved values of DOFs) 
(matrix form)*/ 
void total_DL_end_shearforce_bendingmoment_function(double w_dyn) 
{ 
// cout<<"total_DL_end_shearforce_bendingmoment_function"<<"\t"; 
 int increment=0; 
 for(int i=0;i<No_of_Span;i++) 
 { 
     
  total_DL_end_shearforce_bendingmoment_matrix[i][0]= 
  +w_dyn*L/2.0   
  +final_DOF_matrix[i+increment+1][0]*6.0*Ec*Itf/(L*L)    
  +final_DOF_matrix[i+increment+3][0]*6.0*Ec*Itf/(L*L);    //left end shear 
 
  total_DL_end_shearforce_bendingmoment_matrix[i][1]=  
  -w_dyn*L*L/12.0 
     -final_DOF_matrix[i+increment+1][0]*4.0*Ec*Itf/L    
  -final_DOF_matrix[i+increment+3][0]*2.0*Ec*Itf/L;      //left end moment 
                                               
  total_DL_end_shearforce_bendingmoment_matrix[i][2]= 
  -w_dyn*L/2.0   
  +final_DOF_matrix[i+increment+1][0]*6.0*Ec*Itf/(L*L)    
     +final_DOF_matrix[i+increment+3][0]*6.0*Ec*Itf/(L*L);    //right end shear 
   
  total_DL_end_shearforce_bendingmoment_matrix[i][3]=  
  -w_dyn*L*L/12.0 
  +final_DOF_matrix[i+increment+1][0]*2.0*Ec*Itf/L    
  +final_DOF_matrix[i+increment+3][0]*4.0*Ec*Itf/L;      //right end moment 
 
  increment=increment+1; 
 } 
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} 
//*********************************************************************************** 
void for_ILvalue_LL_end_shearforce_bendingmoment_function(int increment_a,int increment_c) 
{ 
// cout<<"for_ILvalue_LL_end_shearforce_bendingmoment_function"<<"\t"; 
 int constant=0; 
 int increment=0; 
 for(int i=0;i<No_of_Span;i++) 
 {     
  for_ILvalue_LL_end_shearforce_bendingmoment_matrix[i][0]=  
  +final_DOF_matrix[i+increment+1][0]*6.0*Ec*Itf/(L*L)    
  +final_DOF_matrix[i+increment+3][0]*6.0*Ec*Itf/(L*L);    //left end shear 
 
  for_ILvalue_LL_end_shearforce_bendingmoment_matrix[i][1]= 
     -final_DOF_matrix[i+increment+1][0]*4.0*Ec*Itf/L    
  -final_DOF_matrix[i+increment+3][0]*2.0*Ec*Itf/L;      //left end moment 
                                               
        for_ILvalue_LL_end_shearforce_bendingmoment_matrix[i][2]=  
  +final_DOF_matrix[i+increment+1][0]*6.0*Ec*Itf/(L*L)    
     +final_DOF_matrix[i+increment+3][0]*6.0*Ec*Itf/(L*L);    //right end shear 
   
  for_ILvalue_LL_end_shearforce_bendingmoment_matrix[i][3]=  
  +final_DOF_matrix[i+increment+1][0]*2.0*Ec*Itf/L    
  +final_DOF_matrix[i+increment+3][0]*4.0*Ec*Itf/L;      //right end moment 
   
  increment=increment+1; 
 } 
 constant=increment_c/2; 
 
 for_ILvalue_LL_end_shearforce_bendingmoment_matrix[constant][0]= 
 +(increment_a*0.25*y)*(50.0*y-increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y*50.0*y) 
 -(increment_a*0.25*y)*(increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y*50.0*y) 
 +(50-increment_a*0.25)/50.0 
 +final_DOF_matrix[increment_c+1][0]*6.0*Ec*Itf/(L*L)    
 +final_DOF_matrix[increment_c+3][0]*6.0*Ec*Itf/(L*L);    //left end shear 
 
 for_ILvalue_LL_end_shearforce_bendingmoment_matrix[constant][1]= 
 -(increment_a*0.25*y)*(50.0*y-increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y) 
 -final_DOF_matrix[increment_c+1][0]*4.0*Ec*Itf/L    
 -final_DOF_matrix[increment_c+3][0]*2.0*Ec*Itf/L;      //left end moment 
                                               
    for_ILvalue_LL_end_shearforce_bendingmoment_matrix[constant][2]= 
 -(increment_a*0.25*y)*(increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y*50.0*y) 
 +(increment_a*0.25*y)*(50.0*y-increment_a*0.25*y) 
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 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y*50.0*y) 
 -(increment_a*0.25)/50.0 
 +final_DOF_matrix[increment_c+1][0]*6.0*Ec*Itf/(L*L)    
    +final_DOF_matrix[increment_c+3][0]*6.0*Ec*Itf/(L*L);    //right end shear 
   
 for_ILvalue_LL_end_shearforce_bendingmoment_matrix[constant][3]=  
 -(increment_a*0.25*y)*(increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y) 
 +final_DOF_matrix[increment_c+1][0]*2.0*Ec*Itf/L    
 +final_DOF_matrix[increment_c+3][0]*4.0*Ec*Itf/L;      //right end moment 
} 
/*above formula are written for following sign convention: 
---> left end/section:   upward shear positive;     clockwise moment positive 
---> right end/section:  downward shear positive;   anti-clockwise moment positive*/ 
//*********************************************************************************** 
//__10__10__10__10_______Sectionwise DL Shear And Moment Calculation Zone____10__10__10__ 
//*********************************************************************************** 
// for each member sectionwise shear and moment calculation zone (matrix form) 
/*for finding shear at every 0.25 metre interval*/ 
 void total_DL_sectionwise_shearforce_function(double w_dyn) 
{ 
// cout<<"total_DL_sectionwise_shearforce_function"<<"\t"; 
 int increment=0;                                             
                                                             
 for(int i=0;i<No_of_Span;i++) 
 { 
  for(int j=0;j<201;j++) 
  { 
   total_DL_sectionwise_shearforce_matrix[0][j+increment]=  
   +total_DL_end_shearforce_bendingmoment_matrix[i][0] 
   -w_dyn*j*(0.25)*(y);   //in fps 
  } 
  increment=increment+201; 
 } 
}    
//*********************************************************************************** 
/*for finding moment at every 0.25 metre*/ 
void total_DL_sectionwise_bendingmoment_function(double w_dyn) 
{ 
// cout<<"total_DL_sectionwise_bendingmoment_function"<<"\t"; 
 int increment=0;                                             
                                                              
 for(int i=0;i<No_of_Span;i++) 
 { 
  for(int j=0;j<201;j++) 
  { 
   total_DL_sectionwise_bendingmoment_matrix[0][j+increment]= 
   +total_DL_end_shearforce_bendingmoment_matrix[i][1] 
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      +total_DL_end_shearforce_bendingmoment_matrix[i][0]*j*(0.25)*(y) 
   -w_dyn*j*(0.25)*(y)*j*(0.25)*(y)/2.0;     
  } 
  increment=increment+201; 
 } 
} 
//*********************************************************************************** 
//__11__11__11__11_____________Influence Line Development Zone____________11__11__11__11 
//*********************************************************************************** 
void influence_line_function() 
{ 
// cout<<"influence_line_function"<<"\t"; 
 int constant=0; 
 int increment_a=1; 
 int increment_b=1; 
 int increment_c=0; 
  
 for(int k=0;k<No_of_Span;k++) 
 { 
  for(int l=0;l<199;l++)  /*for influence line values at every 0.25 metre interval.*/ 
  {  
   dynamic_allocation_01(); 
   global_member_force_matrix_function_forIL(increment_a,increment_c); 
   modified_global_member_force_matrix_function(); 
   dynamic_allocation_02(); 
      DOF_matrix_solution_function(global_stiffness_matrix_pointer,2*No_of_Node, 
                              global_member_force_matrix_pointer,x); 
  
 for_ILvalue_LL_end_shearforce_bendingmoment_function(increment_a,increment_c); 
   for_ILvalue_LL_sectionwise_shearforce_function(increment_a,increment_c); 
  
 for_ILvalue_LL_sectionwise_bendingmoment_function(increment_a,increment_c); 
    
   for(int n=0;n<No_of_Span*201;n++) 
   { 
    IL_matrix_shear[n][0+increment_b]= 
    for_ILvalue_LL_sectionwise_shearforce_matrix[0][n]; 
     
    IL_matrix_moment[n][0+increment_b]= 
    for_ILvalue_LL_sectionwise_bendingmoment_matrix[0][n]; 
   } 
   increment_a=increment_a+1;  
   increment_b=increment_b+1; 
  } 
  increment_a=1; 
  increment_b=increment_b+1; 
  increment_c=increment_c+2; 
 } 
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} 
//*********************************************************************************** 
void global_member_force_matrix_function_forIL(int increment_a,int increment_c) 
{ 
// cout<<"global_member_force_matrix_function_forIL"<<"\t"; 
 for(int m=0;m<2*No_of_Node;m++) 
 { 
  global_member_force_matrix[m][0]=0.0; 
 } 
  
 global_member_force_matrix[0+increment_c][0]= 
 +(increment_a*0.25*y)*(50.0*y-increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y*50.0*y) 
 -(increment_a*0.25*y)*(increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y*50.0*y) 
 +(50-increment_a*0.25)/50.0; 
 
 global_member_force_matrix[1+increment_c][0]= 
 (increment_a*0.25*y)*(50.0*y-increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y); 
 
    global_member_force_matrix[2+increment_c][0]= 
 +(increment_a*0.25*y)*(increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y*50.0*y) 
 -(increment_a*0.25*y)*(50.0*y-increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y*50.0*y) 
 +(increment_a*0.25)/50.0; 
 
    global_member_force_matrix[3+increment_c][0]= 
 -(increment_a*0.25*y)*(increment_a*0.25*y) 
 *(50.0*y-increment_a*0.25*y)/(50.0*y*50.0*y);  
  
 for(int k=0;k<2*No_of_Node;k++) 
 { 
  global_member_force_matrix[k][0]= 
  (-global_member_force_matrix[k][0]); 
 } 
} 
//*********************************************************************************** 
void for_ILvalue_LL_sectionwise_shearforce_function(int increment_a,int increment_c) 
{ 
// cout<<"for_ILvalue_LL_sectionwise_shearforce_function"<<"\t"; 
 int constant=0; 
 int increment=0;                                            /*for finding shear at every 0.25 metre interval*/ 
 
 for(int i=0;i<No_of_Span;i++) 
 { 
  for(int j=0;j<201;j++) 
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  { 
   for_ILvalue_LL_sectionwise_shearforce_matrix[0][j+increment]= 
   +for_ILvalue_LL_end_shearforce_bendingmoment_matrix[i][0]; 
  } 
  increment=increment+201; 
 } 
 constant=increment_c/2; 
 for(int k=0;k<=increment_a;k++)   
 { 
  for_ILvalue_LL_sectionwise_shearforce_matrix[0][k+201*constant]= 
  +for_ILvalue_LL_end_shearforce_bendingmoment_matrix[constant][0]; 
 } 
 for(int l=1;l<=200-increment_a;l++)   
 { 
  for_ILvalue_LL_sectionwise_shearforce_matrix[0][l+201*constant+increment_a]= 
  +for_ILvalue_LL_end_shearforce_bendingmoment_matrix[constant][0]-1; 
 } 
} 
//*********************************************************************************** 
void for_ILvalue_LL_sectionwise_bendingmoment_function(int increment_a,int increment_c) 
{ 
// cout<<"for_ILvalue_LL_sectionwise_bendingmoment_function"<<"\t"; 
 int constant=0; 
 int increment=0;                                           /*for finding moment at every 0.25 metre interval*/ 
 for(int i=0;i<No_of_Span;i++) 
 { 
  for(int j=0;j<201;j++) 
  { 
   for_ILvalue_LL_sectionwise_bendingmoment_matrix[0][j+increment]=  
   +for_ILvalue_LL_end_shearforce_bendingmoment_matrix[i][1] 
   +for_ILvalue_LL_end_shearforce_bendingmoment_matrix[i][0]*j*(0.25)*(y);     
  } 
 
  increment=increment+201; 
 } 
 constant=increment_c/2; 
 for(int k=0;k<=increment_a;k++)   
 { 
  for_ILvalue_LL_sectionwise_bendingmoment_matrix[0][k+201*constant]= 
  +for_ILvalue_LL_end_shearforce_bendingmoment_matrix[constant][1] 
  +for_ILvalue_LL_end_shearforce_bendingmoment_matrix[constant][0]*k*(0.25)*(y); 
 } 
 for(int l=1;l<=200-increment_a;l++)   
 { 
  for_ILvalue_LL_sectionwise_bendingmoment_matrix[0][l+201*constant+increment_a]= 
  +for_ILvalue_LL_end_shearforce_bendingmoment_matrix[constant][1] 
  +for_ILvalue_LL_end_shearforce_bendingmoment_matrix[constant][0] 
  *(l+increment_a)*(0.25)*(y) 
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  -1*l*(0.25)*(y); 
 } 
} 
 
//*********************************************************************************** 
//__12__12__12________Girder DL & LL (Moment & Shear) Combination Zone______12__12__12__ 
//*********************************************************************************** 
void factored_DLplusLL_shearCombination_atSpecificSection_function 
(int whichSection_intermsof_ILmatrixrow) 
{ 
//cout<<"factored_DLplusLL_shearCombination_atSpecificSection_function"<<"\t"; 
 
 double factored_DLplusLL_shear_01=0; 
 double factored_DLplusLL_shear_02=0; 
 double factored_DLplusLL_shear_absolute=0; 
 
 factored_DLplusLL_shear_01=1.3*total_DL_sectionwise_shearforce_matrix 
                         [0][whichSection_intermsof_ILmatrixrow]+2.17 
          
*total_LL_atSpecific_section_positive_shearforce_function 
                            (whichSection_intermsof_ILmatrixrow); 
 
 factored_DLplusLL_shear_01=absolue_value_function(factored_DLplusLL_shear_01); 
 
 factored_DLplusLL_shear_02=1.3*total_DL_sectionwise_shearforce_matrix 
                         [0][whichSection_intermsof_ILmatrixrow]+2.17 
          
*total_LL_atSpecific_section_negative_shearforce_function 
                            (whichSection_intermsof_ILmatrixrow); 
 
 factored_DLplusLL_shear_02=absolue_value_function(factored_DLplusLL_shear_02); 
 
 factored_DLplusLL_shear_absolute=maxm(factored_DLplusLL_shear_01, 
                                    factored_DLplusLL_shear_02); 
} 
//*********************************************************************************** 
void factored_DLplusLL_momentCombination_atSpecificSection_function   
(int whichSection_intermsof_ILmatrixrow) 
{ 
//cout<<"factored_DLplusLL_momentCombination_atSpecificSection_function"<<"\t"; 
 double factored_DLplusLL_moment_01=0; 
 double factored_DLplusLL_moment_02=0; 
 double factored_DLplusLL_moment_positive=0; 
 double factored_DLplusLL_moment_negative=0; 
 
 factored_DLplusLL_moment_01=1.3*total_DL_sectionwise_bendingmoment_matrix 
                         [0][whichSection_intermsof_ILmatrixrow]+2.17 



156 
 

         
*total_LL_atSpecific_section_positive_bendingmoment_function 
                            (whichSection_intermsof_ILmatrixrow); 
 
 factored_DLplusLL_moment_02=1.3*total_DL_sectionwise_bendingmoment_matrix 
                         [0][whichSection_intermsof_ILmatrixrow]+2.17 
          
*total_LL_atSpecific_section_negative_bendingmoment_function 
                            (whichSection_intermsof_ILmatrixrow); 
 
 if(factored_DLplusLL_moment_01>0 && factored_DLplusLL_moment_02>0) 
 { 
  factored_DLplusLL_moment_positive= 
  maxm(factored_DLplusLL_moment_01,factored_DLplusLL_moment_02); 
 } 
 
 else if(factored_DLplusLL_moment_01<0 && factored_DLplusLL_moment_02<0) 
 { 
  factored_DLplusLL_moment_negative= 
  minm(factored_DLplusLL_moment_01,factored_DLplusLL_moment_02); 
 } 
 
 else if(factored_DLplusLL_moment_01>0 && factored_DLplusLL_moment_02<0) 
 { 
  factored_DLplusLL_moment_positive=factored_DLplusLL_moment_01; 
  factored_DLplusLL_moment_negative=factored_DLplusLL_moment_02; 
 } 
 else 
 { 
  factored_DLplusLL_moment_positive=factored_DLplusLL_moment_02; 
  factored_DLplusLL_moment_negative=factored_DLplusLL_moment_01; 
 } 
} 
//*********************************************************************************** 
double total_LL_atSpecific_section_positive_shearforce_function 
(int whichSection_intermsof_ILmatrixrow)        
{ 
// cout<<"total_LL_atSpecific_section_positive_shearforce_function"<<"\t"; 
//maxm positive 'wheel load' shear calculation 
//-------------------------------------------- 
//for vehicle going from left to right 
 for(int i=0;i<=whichSection_intermsof_ILmatrixrow-1;i++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][i]= 
     IL_matrix_shear[whichSection_intermsof_ILmatrixrow][i]; 
 } 
  
 matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01 
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 [0][whichSection_intermsof_ILmatrixrow]= 
 IL_matrix_shear 
 [whichSection_intermsof_ILmatrixrow][whichSection_intermsof_ILmatrixrow]-1; 
 
 for(int i2=whichSection_intermsof_ILmatrixrow;i2<200*No_of_Span+1;i2++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][i2+1]= 
     IL_matrix_shear[whichSection_intermsof_ILmatrixrow][i2]; 
 } 
 
 for(int j=0;j<17;j++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][j]>0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][j]> 
     max_wheelLoad_shearPositive) 
  { 
   max_wheelLoad_shearPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][j]; 
  } 
 } 
 
 for(int k=17;k<34;k++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k-17]>0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k-17]> 
     max_wheelLoad_shearPositive) 
  { 
   max_wheelLoad_shearPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k-17]; 
  } 
 } 
 
 for(int l=34;l<=200*No_of_Span+2;l++) 
 { 
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  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-34]>0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-34]> 
     max_wheelLoad_shearPositive) 
  { 
   max_wheelLoad_shearPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-17]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-34]; 
  } 
 } 
 
//for vehicle going from right to left 
 
 for(int ii=0;ii<200*No_of_Span+2;ii++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ii]= 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][200*No_of_Span+1-ii]; 
 } 
 
 for(int jj=0;jj<17;jj++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][jj]>0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][jj]> 
     max_wheelLoad_shearPositive) 
  { 
   max_wheelLoad_shearPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][jj]; 
  } 
 } 
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 for(int kk=17;kk<34;kk++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk-17]>0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk-17]> 
     max_wheelLoad_shearPositive) 
  { 
   max_wheelLoad_shearPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk-17]; 
  } 
 } 
 
 for(int ll=34;ll<200*No_of_Span+2;ll++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-34]>0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-34]> 
     max_wheelLoad_shearPositive) 
  { 
   max_wheelLoad_shearPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-17]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-34]; 
  } 
 } 
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//Impact Load Factor//loaded length 
//--------------------------------- 
  
    loadedLength_max_wheelLoad_shearPositive=(whichSection_intermsof_ILmatrixrow%200)*y; 
 
 if (loadedLength_max_wheelLoad_shearPositive<100*y) 
 { 
  loadedLength_max_wheelLoad_shearPositive= 
  200*y-loadedLength_max_wheelLoad_shearPositive; 
 } 
 ImpactFactor_max_wheelLoad_shearPositive= 
 50/(loadedLength_max_wheelLoad_shearPositive+125); 
 
 if(ImpactFactor_max_wheelLoad_shearPositive>0.3) 
 { 
  ImpactFactor_max_wheelLoad_shearPositive=0.3; 
 } 
 
 max_wheelLoad_shearPositive=max_wheelLoad_shearPositive 
        *(1+ImpactFactor_max_wheelLoad_shearPositive); 
//*********************************************************************************** 
//maxm positive 'lane load' shear calculation 
 
 for(int m=0;m<200*No_of_Span+2;m++) 
 { 
  if(matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][m]>=0 
   && 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][m+1]>=0) 
  { 
   max_laneLoad_shearPositive= 
   max_laneLoad_shearPositive+ 
   lane_load_UDL_forShear*0.25*y* 
   (matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][m]+ 
  
 matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][m+1])/2;//checksequence 
 
   loadedLength_max_laneLoad_shearPositive= 
   loadedLength_max_laneLoad_shearPositive+1; 
  } 
 } 
 
//finding laneLoad_pick 
 
 for(int n=0;n<200*No_of_Span+2;n++) 
 { 
  if(matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][n]>=0 
   && 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][n+1]>=0) 
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  { 
   laneLoad_pick= 
   maxm(matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][n], 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][n+1]); 
  } 
 } 
  
 laneLoad_pick=laneLoad_pick*lane_load_Concentrated_forShear; 
   
 max_laneLoad_shearPositive= 
 max_laneLoad_shearPositive+laneLoad_pick; 
 
//Impact Load Factor//loaded length 
   
loadedLength_max_laneLoad_shearPositive=loadedLength_max_laneLoad_shearPositive*0.25*y; 
 
 ImpactFactor_max_laneLoad_shearPositive= 
 50/(loadedLength_max_laneLoad_shearPositive+125); 
 
 if(ImpactFactor_max_laneLoad_shearPositive>0.3) 
 { 
  ImpactFactor_max_laneLoad_shearPositive=0.3; 
 } 
 
 max_laneLoad_shearPositive=max_laneLoad_shearPositive 
        *(1+ImpactFactor_max_laneLoad_shearPositive); 
 
 return maxm(max_wheelLoad_shearPositive,max_laneLoad_shearPositive); 
} 
//*********************************************************************************** 
double total_LL_atSpecific_section_negative_shearforce_function 
(int whichSection_intermsof_ILmatrixrow)        
{ 
// cout<<"total_LL_atSpecific_section_negative_shearforce_function"<<"\t"; 
  
//maxm negative 'wheel load' shear calculation 
//-------------------------------------------- 
 
//for vehicle going from left to right 
 
 for(int i=0;i<=whichSection_intermsof_ILmatrixrow-1;i++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][i]= 
     IL_matrix_shear[whichSection_intermsof_ILmatrixrow][i]; 
 } 
  
 matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01 
 [0][whichSection_intermsof_ILmatrixrow]= 
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 IL_matrix_shear 
 [whichSection_intermsof_ILmatrixrow][whichSection_intermsof_ILmatrixrow]-1; 
 
 for(int i2=whichSection_intermsof_ILmatrixrow;i2<200*No_of_Span+1;i2++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][i2+1]= 
     IL_matrix_shear[whichSection_intermsof_ILmatrixrow][i2]; 
 } 
 
 for(int j=0;j<17;j++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][j]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][j]< 
     max_wheelLoad_shearNegative) 
  { 
   max_wheelLoad_shearNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][j]; 
  } 
 } 
 
 for(int k=17;k<34;k++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k-17]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k-17]< 
     max_wheelLoad_shearNegative) 
  { 
   max_wheelLoad_shearNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][k-17]; 
  } 
 } 
 
 for(int l=34;l<=200*No_of_Span+2;l++) 
 { 
  if(wheel_load_frontAxle* 



163 
 

     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-34]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-34]< 
     max_wheelLoad_shearNegative) 
  { 
   max_wheelLoad_shearNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-17]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][l-34]; 
  } 
 } 
 
//for vehicle going from right to left 
 
 for(int ii=0;ii<200*No_of_Span+2;ii++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ii]= 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][200*No_of_Span+1-ii]; 
 } 
 
 for(int jj=0;jj<17;jj++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][jj]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][jj]< 
     max_wheelLoad_shearNegative) 
  { 
   max_wheelLoad_shearNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][jj]; 
  } 
 } 
 
 for(int kk=17;kk<34;kk++) 
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 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk-17]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk-17]< 
     max_wheelLoad_shearNegative) 
  { 
   max_wheelLoad_shearNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][kk-17]; 
  } 
 } 
 
 for(int ll=34;ll<200*No_of_Span+2;ll++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-34]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-34]< 
     max_wheelLoad_shearNegative) 
  { 
   max_wheelLoad_shearNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-17]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_02[0][ll-34]; 
  } 
 } 
 
//Impact Load Factor//loaded length 
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//--------------------------------- 
  
    loadedLength_max_wheelLoad_shearNegative=(whichSection_intermsof_ILmatrixrow%200)*y; 
 
 if(loadedLength_max_wheelLoad_shearNegative<100*y) 
 { 
  loadedLength_max_wheelLoad_shearNegative= 
  200*y-loadedLength_max_wheelLoad_shearNegative; 
 } 
 
 ImpactFactor_max_wheelLoad_shearNegative= 
 50/(loadedLength_max_wheelLoad_shearNegative+125); 
 
 if(ImpactFactor_max_wheelLoad_shearNegative>0.3) 
 { 
  ImpactFactor_max_wheelLoad_shearNegative=0.3; 
 } 
 
 max_wheelLoad_shearNegative=max_wheelLoad_shearNegative 
        *(1+ImpactFactor_max_wheelLoad_shearNegative); 
 
//*********************************************************************************** 
//maxm Negative 'lane load' shear calculation 
 
 for(int m=0;m<200*No_of_Span+2;m++) 
 { 
  if(matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][m]<=0 
   && 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][m+1]<=0) 
  { 
   max_laneLoad_shearNegative= 
   max_laneLoad_shearNegative+ 
   lane_load_UDL_forShear*0.25*y* 
   (matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][m]+ 
  
 matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][m+1])/2;//checksequence 
 
   loadedLength_max_laneLoad_shearNegative= 
   loadedLength_max_laneLoad_shearNegative+1; 
  } 
 } 
 
//finding laneLoad_pick 
 
 for(int n=0;n<200*No_of_Span+2;n++) 
 { 
  if(matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][n]<=0 
   && 



166 
 

     matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][n+1]<=0) 
  { 
   laneLoad_pick= 
   minm(matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][n], 
        matrix_forSorting_maXof_wheelLoadorlaneLoad_shear_01[0][n+1]);   
  } 
 } 
  
 laneLoad_pick=laneLoad_pick*lane_load_Concentrated_forShear; 
   
 max_laneLoad_shearNegative= 
 max_laneLoad_shearNegative+laneLoad_pick; 
 
//Impact Load Factor//loaded length 
   
loadedLength_max_laneLoad_shearNegative=loadedLength_max_laneLoad_shearNegative*0.25*y; 
 
 ImpactFactor_max_laneLoad_shearNegative= 
 50/(loadedLength_max_laneLoad_shearNegative+125); 
 
 if(ImpactFactor_max_laneLoad_shearNegative>0.3) 
 { 
  ImpactFactor_max_laneLoad_shearNegative=0.3; 
 } 
 
 max_laneLoad_shearNegative=max_laneLoad_shearNegative 
        *(1+ImpactFactor_max_laneLoad_shearNegative); 
 
 return minm(max_wheelLoad_shearNegative,max_laneLoad_shearNegative);    
} 
//*********************************************************************************** 
double total_LL_atSpecific_section_positive_bendingmoment_function   
(int whichSection_intermsof_ILmatrixrow)                             
{                                                                     
// cout<<"total_LL_atSpecific_section_positive_bendingmoment_function"<<"\t"; 
//maxm positive 'wheel load' moment calculation 
//-------------------------------------------- 
//for vehicle going from left to right 
 for(int i=0;i<200*No_of_Span+1;i++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][i]= 
     IL_matrix_moment[whichSection_intermsof_ILmatrixrow][i]; 
 } 
 
 for(int j=0;j<17;j++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][j]>0 
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   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][j]> 
     max_wheelLoad_momentPositive) 
  { 
   max_wheelLoad_momentPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][j]; 
  } 
 } 
 
 //cout<<max_wheelLoad_momentPositive<<endl; 
 
 for(int k=17;k<34;k++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k-17]>0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k-17]> 
     max_wheelLoad_momentPositive) 
  { 
   max_wheelLoad_momentPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k-17]; 
  } 
 } 
 
 //cout<<max_wheelLoad_momentPositive<<endl; 
 //cout<<max_wheelLoad_momentPositive<<endl;   
//for vehicle going from right to left 
 
 for(int ii=0;ii<200*No_of_Span+1;ii++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ii]= 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][200*No_of_Span-ii]; 
 } 
 
 for(int jj=0;jj<17;jj++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][jj]>0 
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   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][jj]> 
     max_wheelLoad_momentPositive) 
  { 
   max_wheelLoad_momentPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][jj]; 
  } 
 } 
 
 for(int kk=17;kk<34;kk++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk-17]>0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk-17]> 
     max_wheelLoad_momentPositive) 
  { 
   max_wheelLoad_momentPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk-17]; 
  } 
 } 
 
 for(int ll=34;ll<=200*No_of_Span+1;ll++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-34]>0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-34]> 
     max_wheelLoad_momentPositive) 
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  { 
   max_wheelLoad_momentPositive= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-17]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-34];   
  } 
 } 
 //cout<<max_wheelLoad_momentPositive<<endl;   
//Impact Load Factor//loaded length 
//--------------------------------- 
 loadedLength_max_wheelLoad_momentPositive=50*y; 
 
 ImpactFactor_max_wheelLoad_momentPositive= 
 50/(loadedLength_max_wheelLoad_momentPositive+125); 
 
 if(ImpactFactor_max_wheelLoad_momentPositive>0.3) 
 { 
  ImpactFactor_max_wheelLoad_momentPositive=0.3; 
 } 
 
 max_wheelLoad_momentPositive=max_wheelLoad_momentPositive 
        *(1+ImpactFactor_max_wheelLoad_momentPositive); 
//*********************************************************************************** 
//maxm positive 'lane load' moment calculation 
 
 for(int m=0;m<200*No_of_Span;m++) 
 { 
  if(matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][m]>=0 
   && 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][m+1]>=0) 
  { 
   max_laneLoad_momentPositive= 
   max_laneLoad_momentPositive+ 
   lane_load_UDL_forMoment*0.25*y* 
   (matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][m]+ 
  
 matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][m+1])/2;//checksequenc 
 
   loadedLength_max_laneLoad_momentPositive= 
   loadedLength_max_laneLoad_momentPositive+1; 
  } 
 } 
 
//finding laneLoad_pick 
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 for(int n=0;n<200*No_of_Span;n++) 
 { 
  if(matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][n]>=0 
   && 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][n+1]>=0) 
  { 
   laneLoad_pick= 
   maxm(matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][n], 
           matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][n+1]); 
  } 
 } 
 
 //cout<<laneLoad_pick<<endl; 
  
 laneLoad_pick=laneLoad_pick*lane_load_Concentrated_forMoment; 
   
 max_laneLoad_momentPositive= 
 max_laneLoad_momentPositive+laneLoad_pick; 
 
//Impact Load Factor//loaded length 
   
 loadedLength_max_laneLoad_momentPositive= 
 loadedLength_max_laneLoad_momentPositive*0.25*y; 
 
  //  cout<<loadedLength_max_laneLoad_momentPositive<<endl;   
 
 ImpactFactor_max_laneLoad_momentPositive= 
 50/(loadedLength_max_laneLoad_momentPositive+125); 
 
 if(ImpactFactor_max_laneLoad_momentPositive>0.3) 
 { 
  ImpactFactor_max_laneLoad_momentPositive=0.3; 
 } 
 
 max_laneLoad_momentPositive=max_laneLoad_momentPositive 
        *(1+ImpactFactor_max_laneLoad_momentPositive); 
 
 return maxm(max_wheelLoad_momentPositive,max_laneLoad_momentPositive); 
} 
//*********************************************************************************** 
double total_LL_atSpecific_section_negative_bendingmoment_function 
(int whichSection_intermsof_ILmatrixrow)        
{ 
// cout<<"total_LL_atSpecific_section_negative_bendingmoment_function"<<"\t"; 
  
//maxm negative 'wheel load' moment calculation 
//-------------------------------------------- 
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//for vehicle going from left to right 
 for(int i=0;i<200*No_of_Span+1;i++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][i]= 
     IL_matrix_moment[whichSection_intermsof_ILmatrixrow][i]; 
 } 
 
 for(int j=0;j<17;j++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][j]<0   
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][j]< 
     max_wheelLoad_momentNegative) 
  { 
   max_wheelLoad_momentNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][j]; 
  } 
 } 
 
 for(int k=17;k<34;k++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k-17]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k-17]< 
     max_wheelLoad_momentNegative) 
  { 
   max_wheelLoad_momentNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][k-17]; 
  } 
 } 
 
 for(int l=34;l<=200*No_of_Span+1;l++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][l]+ 
     wheel_load_rearAxle* 
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     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][l-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][l-34]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][l]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][l-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][l-34]< 
     max_wheelLoad_momentNegative) 
  { 
   max_wheelLoad_momentNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][l]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][l-17]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][l-34]; 
  } 
 } 
 
//for vehicle going from right to left 
 
 for(int ii=0;ii<200*No_of_Span+1;ii++) 
 { 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ii]= 
  matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][200*No_of_Span-ii]; 
 } 
 
 for(int jj=0;jj<17;jj++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][jj]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][jj]< 
     max_wheelLoad_shearNegative) 
  { 
   max_wheelLoad_momentNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][jj]; 
  } 
 } 
 
 for(int kk=17;kk<34;kk++) 
 { 
  if(wheel_load_frontAxle* 
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     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk-17]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk-17]< 
     max_wheelLoad_momentNegative) 
  { 
   max_wheelLoad_shearNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][kk-17]; 
  } 
 } 
 
 for(int ll=34;ll<=200*No_of_Span+1;ll++) 
 { 
  if(wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-34]<0 
   && 
     wheel_load_frontAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-17]+ 
     wheel_load_rearAxle* 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-34]< 
     max_wheelLoad_momentNegative) 
  { 
   max_wheelLoad_momentNegative= 
   wheel_load_frontAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-17]+ 
   wheel_load_rearAxle* 
   matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_02[0][ll-34]; 
  } 
 } 
//Impact Load Factor//loaded length 
//--------------------------------- 
 loadedLength_max_wheelLoad_momentNegative=50*y; 
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 ImpactFactor_max_wheelLoad_momentNegative= 
 50/(loadedLength_max_wheelLoad_momentNegative+125); 
 
 if(ImpactFactor_max_wheelLoad_momentNegative>0.3) 
 { 
  ImpactFactor_max_wheelLoad_momentNegative=0.3; 
 } 
 
 max_wheelLoad_shearNegative=max_wheelLoad_momentNegative 
        *(1+ImpactFactor_max_wheelLoad_momentNegative); 
//*********************************************************************************** 
//maxm Negative 'lane load' moment calculation 
 
 for(int m=0;m<201*No_of_Span;m++) 
 { 
  if(matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][m]<=0 
   && 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][m+1]<=0) 
  { 
   max_laneLoad_momentNegative= 
   max_laneLoad_momentNegative+ 
   lane_load_UDL_forMoment*0.25*y* 
   (matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][m]+ 
  
 matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][m+1])/2;//checsequence 
 
   loadedLength_max_laneLoad_momentNegative= 
   loadedLength_max_laneLoad_momentNegative+1; 
  } 
 } 
 
//finding laneLoad_pick 
 
 for(int n=0;n<201*No_of_Span;n++) 
 { 
  if(matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][n]<=0 
   && 
     matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][n+1]<=0) 
  { 
   laneLoad_pick= 
   minm(matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][n], 
              matrix_forSorting_maXof_wheelLoadorlaneLoad_moment_01[0][n+1]); 
  } 
 } 
  
 laneLoad_pick=laneLoad_pick*lane_load_Concentrated_forMoment; 
   
 max_laneLoad_momentNegative= 
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 max_laneLoad_momentNegative+laneLoad_pick; 
 
//Impact Load Factor//loaded length 
   
 loadedLength_max_laneLoad_momentNegative= 
 loadedLength_max_laneLoad_momentNegative*0.25*y; 
 
 ImpactFactor_max_laneLoad_momentNegative= 
 50/(loadedLength_max_laneLoad_momentNegative+125); 
 
 if(ImpactFactor_max_laneLoad_momentNegative>0.3) 
 { 
  ImpactFactor_max_laneLoad_momentNegative=0.3; 
 } 
 
 max_laneLoad_momentNegative=max_laneLoad_momentNegative 
        *(1+ImpactFactor_max_laneLoad_momentNegative); 
 
 return minm(max_wheelLoad_momentNegative,max_laneLoad_momentNegative); 
} 
//*********************************************************************************** 
//13__13__13__13__13____________Cable layout Function Zone____________13__13__13__13__13_ 
//*********************************************************************************** 
 
void Cable_layout(double cable_1st_position_end) 
{ 
// cout<<"cable_layout"<<"\t"; 
 
 double Layer_dist_bottom_end[31],N_total,Ncablet; 
 int Cable_Layer_end[31],LayerNo_end,k1; 
// Cable Layout 
 Anchorage_system(); 
//  No of cable per Layer determination at mid section 
 Cable_Layer_mid[1] = (int)(BFRw-76-Duct_dia)/(Duct_clear_spacing+Duct_dia)+1; 
 Layer_dist_bottom_mid[1] = 38 + Duct_dia/2; 
  
 LayerNo_mid = 1; 
 N_total = 0; 
 Ncablet = RNDOFF(&Ncable); 
 for( ; ; )  
 { 
  N_total = N_total+Cable_Layer_mid[LayerNo_mid]; 
  if(N_total<Ncablet) 
  { 
   LayerNo_mid = LayerNo_mid+1; 
   Layer_dist_bottom_mid[LayerNo_mid] = Layer_dist_bottom_mid[LayerNo_mid-
1] + Duct_clear_spacing+Duct_dia; 
   if(Layer_dist_bottom_mid[LayerNo_mid]<= BFRd) 
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    Cable_Layer_mid[LayerNo_mid] = Cable_Layer_mid[LayerNo_mid-1]; 
   else if(Layer_dist_bottom_mid[LayerNo_mid]<= (BFRd+BFHd)) 
    Cable_Layer_mid[LayerNo_mid] = int((BFRw-
(Layer_dist_bottom_mid[LayerNo_mid]-BFRd)/BFHd*BFHw*2-76-
Duct_dia)/(Duct_clear_spacing+Duct_dia) + 1); 
   else 
    Cable_Layer_mid[LayerNo_mid] = 1; 
  } 
  else 
  { 
   Cable_Layer_mid[LayerNo_mid] = int(Ncablet-(N_total - 
Cable_Layer_mid[LayerNo_mid])); 
   break; 
  } 
 }    
// Cg of cables at mid section from bottom, 
 Y1 = 0;  
  for(int i=1;i<=LayerNo_mid;i++)  
 { 
  Y1 = Y1 + Cable_Layer_mid[i]*Layer_dist_bottom_mid[i]; 
  if(i==LayerNo_mid) Y1 = Y1/Ncablet;  
 } 
//*********************************************************************************** 
//No of cable per Layer determination at end section 
 Cable_Layer_end[1] = (int)(BFRw-2*Ancg_Edge_dist_Lay1)/(Anchor_dim+30)+1; 
 Layer_dist_bottom_end[1] = cable_1st_position_end; 
 
 LayerNo_end = 1; 
 N_total = 0; 
 for( ; ; )  
 {  
  N_total = N_total+Cable_Layer_end[LayerNo_end]; 
  if(N_total<Ncablet) 
  { 
   LayerNo_end = LayerNo_end+1; 
   if(Cable_Layer_end[1]>1) 
    Layer_dist_bottom_end[LayerNo_end] = 
Layer_dist_bottom_end[LayerNo_end-1]+ Ancg_C2C_Lay1; 
   else 
    Layer_dist_bottom_end[LayerNo_end] = 
Layer_dist_bottom_end[LayerNo_end-1]+ Ancg_C2C; 
   Cable_Loc_xw[LayerNo_end] = 
Layer_dist_bottom_mid[1]+4*(Layer_dist_bottom_end[LayerNo_end]-
Layer_dist_bottom_mid[1])*pow((0.4L-xw),2)/pow(0.8L,2); 
   if(Cable_Loc_xw[LayerNo_end]<= (BFRd + BFHd)) 
   { 
    Cable_Layer_end[LayerNo_end] = Cable_Layer_end[LayerNo_end-1]; 
   } 
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   else 
   { 
    Cable_Layer_end[LayerNo_end] = 1; 
    Layer_dist_bottom_end[LayerNo_end] = 
Layer_dist_bottom_end[LayerNo_end-1]+ Ancg_C2C; 
   } 
  } 
  else 
  { 
   Cable_Layer_end[LayerNo_end] = int(Ncablet-(N_total - 
Cable_Layer_end[LayerNo_end])); 
   break; 
  } 
 } 
// Cg of cables at end section from bottom, 
 Y_end = 0; 
 for(i = 1;i<=LayerNo_end;i++)  
 { 
  Y_end = Y_end + Cable_Layer_end[i] * Layer_dist_bottom_end[i]; 
  if(i == LayerNo_end) Y_end = Y_end/Ncablet;  
 } 
//*********************************************************************************** 
//No of cable per Layer determination at int_sup section 
 double Layer_dist_bottom_int_sup[31]; 
 int Cable_Layer_int_sup[31],LayerNo_int_sup; 
 
 Cable_Layer_int_sup[1] = 1; 
 Layer_dist_bottom_int_sup[1] = Gd-2*(Duct_clear_spacing+Duct_dia)-(Ncablet-
1)*(Duct_clear_spacing+Duct_dia)-Duct_dia/2;  
 
 LayerNo_int_sup = 1; 
 N_total = 0; 
 for( ; ; )  
 {  
  N_total = N_total+Cable_Layer_int_sup[LayerNo_int_sup]; 
  if(N_total<Ncablet) 
  { 
   LayerNo_int_sup = LayerNo_int_sup+1; 
   Cable_Layer_int_sup[LayerNo_int_sup]=1; 
  
 Layer_dist_bottom_int_sup[LayerNo_int_sup]=Layer_dist_bottom_int_sup[LayerNo_int_sup-
1]+Duct_clear_spacing+Duct_dia; 
    
  } 
  else 
  { 
   break; 
  } 
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 } 
// Cg of cables at int sup section from bottom, 
 Y_int_sup = 0; 
 for(i = 1;i<=LayerNo_int_sup;i++)  
 { 
  Y_int_sup = Y_int_sup + Cable_Layer_int_sup[i] * Layer_dist_bottom_int_sup[i]; 
  if(i == LayerNo_int_sup) Y_int_sup = Y_int_sup/Ncablet;  
 } 
//*********************************************************************************** 
//No of cable per Layer determination at inf section 
double Layer_dist_bottom_inf[31]; 
 int Cable_Layer_inf[31],LayerNo_inf; 
 
 Cable_Layer_inf[1] = 1; 
 Layer_dist_bottom_inf[1] = Gd-4*(Duct_clear_spacing+Duct_dia)-(Ncablet-
1)*(Duct_clear_spacing+Duct_dia)-Duct_dia/2; 
 
 LayerNo_inf = 1; 
 N_total = 0; 
 for( ; ; )  
 {  
  N_total = N_total+Cable_Layer_inf[LayerNo_inf]; 
  if(N_total<Ncablet) 
  { 
   LayerNo_inf = LayerNo_inf+1; 
   Cable_Layer_inf[LayerNo_inf]=1; 
   Layer_dist_bottom_inf[LayerNo_inf]=Layer_dist_bottom_inf[LayerNo_inf-
1]+Duct_clear_spacing+Duct_dia; 
    
  } 
  else 
  { 
   break; 
  } 
 } 
// Cg of cables at int sup section from bottom, 
 Y_inf = 0; 
 for(i = 1;i<=LayerNo_inf;i++)  
 { 
  Y_inf = Y_inf + Cable_Layer_inf[i] * Layer_dist_bottom_inf[i]; 
  if(i == LayerNo_inf) Y_inf = Y_inf/Ncablet;  
 } 
//*********************************************************************************** 
// Location of individual cable  
 k1 = 0; 
 for(i = 1;i<=LayerNo_mid;i++)  
 { 
  for(int j = 1;j<=Cable_Layer_mid[i];j++)  
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  { 
   k1 = k1 + 1; 
   Cable_Loc_mid[k1] = Layer_dist_bottom_mid[i]; 
  } 
 } 
 
 k1 = 0; 
 for(i = 1;i<=LayerNo_end;i++)  
 { 
  for(int j = 1;j<=Cable_Layer_end[i];j++)  
  { 
   k1 = k1 + 1; 
   Cable_Loc_end[k1] = Layer_dist_bottom_end[i]; 
  } 
 } 
  
 k1 = 0; 
 for(i = 1;i<=LayerNo_int_sup;i++)  
 { 
  for(int j = 1;j<=Cable_Layer_int_sup[i];j++)  
  { 
   k1 = k1 + 1; 
   Cable_Loc_int_sup[k1] = Layer_dist_bottom_int_sup[i]; 
  } 
 } 
 
 k1 = 0; 
 for(i = 1;i<=LayerNo_inf;i++)  
 { 
  for(int j = 1;j<=Cable_Layer_inf[i];j++)  
  { 
   k1 = k1 + 1; 
   Cable_Loc_inf[k1] = Layer_dist_bottom_inf[i]; 
  } 
 } 
 k1 = 0; 
 for(i = 1;i<=LayerNo_mid;i++)  
 { 
  for(int j = 1;j<=Cable_Layer_mid[i];j++)  
  { 
   k1 = k1 + 1; 
   Cable_Loc_xw[k1] = Layer_dist_bottom_mid[i]+4*(Cable_Loc_end[k1]-
Cable_Loc_mid[k1])*pow((0.4L-xw),2)/pow(0.8L,2); 
   alpha_xw[k1] = 4*(Cable_Loc_xw[k1]-Cable_Loc_mid[k1])/(0.8L); 
  } 
 } 
//*********************************************************************************** 
 // Cg of steel at section xw-xw for shear 
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 Y2 = 0; 
 for( i = 1;i<=k1;i++) 
 { 
  Y2 = Y2 + Cable_Loc_xw[i]; 
  if(i==k1) 
  { 
   Y2 = Y2/Ncablet; 
  } 
 } 
} 
//*********************************************************************************** 
//14__14__14__14__14____________Flexural Strength Determination Zone____________14__14__14 
//*********************************************************************************** 
double Flexural_Strength(double As,double &Wri) 
{ 
// cout<<"Flexural_Strength"<<"\t"; 
 double gamma,beff,deff,Pp,fsu,Mu,Asw,z; 
// Flexural Strength 
 gamma  = 0.28; 
 deff = Gdc-Y1; 
 Pp = As/(EFW*deff); 
 fsu = fpu*(1-gamma/0.85*Pp*fpu/fcdeck); 
 Wri = Pp*fsu/fcdeck; 
 z = As*fsu/(0.85*fcdeck*EFW); 
 if(z <=ts)  
  Mu = 0.95*As*fsu*(deff-z/2)/1000; 
 
 else if(As*fsu>0.85*fcdeck*EFW*ts) 
 { 
  beff = (fcdeck/fc*EFW*ts + TFRw*TFRd)/(ts + TFRd); 
  Pp = As/(beff*deff); 
  fsu = fpu*(1-gamma/0.75*Pp*fpu/fc); 
  Wri = Pp*fsu/fc; 
  z = As*fsu/(0.85*fc*beff); 
  if(z<=(TFRd+ts)) 
   Mu = 0.95*As*fsu*(deff-z/2)/1000; 
   
  else  
  { 
   beff = (fcdeck/fc*EFW*ts + TFRw*TFRd+(TFFHtw+TFFHbw)/2*TFFHd)/(ts + 
TFRd+TFFHd); 
   Pp = As/(beff*deff); 
   fsu = fpu*(1-gamma/0.75*Pp*fpu/fc); 
   Wri = Pp*fsu/fc; 
   z = (As*fsu)/(0.85*fc*beff); 
   if(z<=(ts + TFRd+TFFHd)) 
    Mu = 0.95*As*fsu*(deff-z/2)/1000; 
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    else 
   { 
    Asw = As - 0.85*fc*(beff-Wt)*(ts + TFRd+TFFHd)/fsu; 
    Pp = Asw/(Wt*deff); 
    Wri = Pp*fsu/fc; 
    Mu = 0.95*(0.85*fc*(beff-Wt)*(ts + TFRd+TFFHd)*(deff-(ts + 
TFRd+TFFHd)/2)  
     + Asw*fsu*deff*(1-0.6*(Asw*fsu/Wt/deff/fc)))/1000; 
   } 
  } 
 }  
 return Mu; 
} 
double Flexural_Strength_precastgirder(double &Wri2) 
{ 
// cout<<"Flexural_Strength_precastgirder"<<"\t"; 
 double gamma,beff,deff,Pp,fsu,Mu2,Asw,z; 
// Flexural Strength 
 gamma  = 0.28; 
 deff = Gd-Y1; 
 Pp = pt1*As/(TFRw*deff); 
 fsu = fpu*(1-gamma/0.75*Pp*fpu/fc); 
 Wri2 = Pp*fsu/fc; 
 z = pt1*As*fsu/(0.85*fc*TFRw); 
 if(z <= TFRd)  
  Mu2 = 0.95*pt1*As*fsu*(deff-z/2)/1000; 
 
 else if(pt1*As*fsu>0.85*fc*TFRw*TFRd) 
 { 
  beff = (TFRw*TFRd+(TFFHtw+TFFHbw)/2*TFFHd)/(TFRd+TFFHd); 
  Pp = pt1*As/(beff*deff); 
  fsu = fpu*(1-gamma/0.75*Pp*fpu/fc); 
  Wri2 = Pp*fsu/fc; 
  z = pt1*As*fsu/(0.85*fc*beff); 
  if(z<=(TFRd+TFFHd)) 
   Mu2 = 0.95*pt1*As*fsu*(deff-z/2)/1000; 
   
  else  
  { 
   Asw = pt1*As - 0.85*fc*(beff-Wt)*(TFRd+TFFHd)/fsu; 
   Pp = Asw/(Wt*deff); 
   Wri2 = Pp*fsu/fc; 
   Mu2 = 0.95*(0.85*fc*(beff-Wt)*(TFRd+TFFHd)*(deff-(TFRd+TFFHd)/2)  
     + Asw*fsu*deff*(1-0.6*(Asw*fsu/Wt/deff/fc)))/1000; 
  } 
 } 
 return Mu2; 
} 
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//*********************************************************************************** 
//15__15__15__15__15____________Deflection Calculation Zone____________15__15__15__15__15_ 
//*********************************************************************************** 
void Deflection(double Ncablet,double MD1,double MG1,double MLL1) 
{ 
// cout<<"Deflection"<<"\t"; 
 // Deflection 
 
 deflectiont = 0.0; 
 deflectione = 0.0; 
 deflectionf = 0.0; 
 
 for(int i = 1; i<= Ncablet;i++) 
 { 
  deflectiont = deflectiont+(13.0/136.0*F1i*pt1/Ncablet*(Cable_Loc_end[i] - 
Cable_Loc_mid[i])-F1i*pt1/Ncablet*(Cable_Loc_end[i] - Gd/2)/8)*L*L/Eci/I*1000; 
 } 
  
 for(i = 1;i<= Ncablet;i++) 
 { 
   deflectione = deflectione +(13.0/136.0*F1i/Ncablet*(Cable_Loc_end[i] - 
Cable_Loc_mid[i])-F1i/Ncablet*(Cable_Loc_end[i] - Gd/2)/8)*L*L/Ec/Itf*1000; 
 } 
  
 deflectionf = deflectione*2.2; 
     
 deflectiont = 13.0/136.0*MG1*1000*L*L/Ec/Itf - deflectiont; 
 deflectione = 13.0/136.0*(MG1*1.85+(MP1-MG1))*L*L/Ec/Itf*1000 - deflectione; 
 deflectionf = 13.0/136.0*((2.4*MG1/Itf+3.0*((MP1-MG1)/Itf+MC1/Ic)+MLL1/Ic))*1000*L*L/Ec - 
deflectionf;  
// deflection =  13.0/136.0*MLL1*1000*L*L/Ec/Ic; 
 deflection =  324.0*pow(25.4,4)/(Ec*0.145*Ic)*24*DF*(1+IMF)*(pow(L/1000*3.28,3)-
555*L/1000*3.28+4780)*25.4/NoGirder; 
// deflection =  
22.5*pow(L/1000*3.28,3)*pow(25.4,4)/(Ec*0.145*Ic)*(1.6*9+0.32)*3*DF*(1+IMF)*25.4/NoGirder;  
} 
 
//*********************************************************************************** 
//16__16__16__16__16____________Prestress Loss Calculation Zone____________16__16__16__16__ 
//*********************************************************************************** 
void Prestress_Loss(double MG1,double MP1,double MD1) 
{ 
// cout<<"Prestress_Loss"<<"\t"; 
 double Lt,LWC,LAN,LES,Lo,LCR,LSR,LSH,Fof,Fmid; 
 int Ncablet; 
// Loss Calculation 
 As = Astrand*Nstrand*Ncable; 
// Jacking force, 
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 Fend=0.9*0.9*fpu*As/1000;  //!yield strength = 0.9 * ultimate  KN 
 Ncablet = RNDOFF(&Ncable);     // !jacking force = 0.9*yield strength 
 
// Wobble and curvature loss,  
 LWC = 0; 
  for(int i = 1;i<=Ncablet;i++) 
 { 
  alpha[i] = (0.4L)*8*(Cable_Loc_end[i]-Cable_Loc_mid[i])/(L*L); 
  LWC = LWC + Fend/Ncablet * (1-exp(-fricncoeff*alpha[i]-0.4*Kwc*L)); 
 } 
  
 Fmid = Fend - LWC; 
// Anchorage Loss, 
 x = sqrt(Delta*Es*L/2/((Fend-Fmid)*1000/As)); 
 LAN = 2*(Fend-Fmid)*x/(L/2); 
 F3i = Fend - LAN/2; 
 Fend = Fend - LAN; 
 F2i = F3i-(x-xw)*LAN/2/x; 
 
// Elastic shortening loss,  
 F1i = Fmid; 
   
 for( ; ;) 
 { 
  LES = Kes*Es/Ec*(F1i/Atf+F1i*e1*e1/Itf-MG1*e1/Itf)*As; 
  Fof = Fmid - LES; 
  if (fabs((F1i-Fof)/F1i) <= 0.0001)  
   break; 
  else   
   F1i = Fof; 
 } 
 

for(int i = 1;i<=Ncablet;i++) 
 { 
  alpha[i] = (0.25L)*8*(Cable_Loc_inf[i]-Cable_Loc_mid[i])/(L*L); 
  LWC = LWC + Fend/Ncablet * (1-exp(-fricncoeff*alpha[i]-0.25*Kwc*L)); 
 } 

 
F7i = F1i - LWC; 
 
for(int i = 1;i<=Ncablet;i++) 

 { 
  alpha[i] = (0.25L)*8*(Cable_Loc_inf[i]-Cable_Loc_mid[i])/(L*L); 
  LWC = LWC + Fend/Ncablet * (1-exp(-fricncoeff*alpha[i]-0.25*Kwc*L)); 
 } 

 
F6i = F7i - LWC; 
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for(int i = 1;i<=Ncablet;i++) 
 { 
  alpha[i] = (0.05L)*8*(Cable_Loc_inf[i]-Cable_Loc_mid[i])/(L*L); 
  LWC = LWC + Fend/Ncablet * (1-exp(-fricncoeff*alpha[i]-0.05*Kwc*L)); 
 } 

 
F8i = F6i - LWC; 
 
for(int i = 1;i<=Ncablet;i++) 

 { 
  alpha[i] = (0.05L)*8*(Cable_Loc_inf[i]-Cable_Loc_mid[i])/(L*L); 
  LWC = LWC + Fend/Ncablet * (1-exp(-fricncoeff*alpha[i]-0.05*Kwc*L)); 
 } 

 
F5i = F8i - LWC; 
 

 F2i = F2i - LES; 
 F3i = F3i - LES; 
 Fend = Fend - LES; 
 F5i = F5i - LES; 
 F6i = F6i - LES; 
 F7i = F7i - LES; 
 F8i = F8i - LES; 
 
// Losses of prestress at transfer, 
 Lo = LWC+LES+LAN; 
 
// Time dependent Loss 
 
// Loss due to creep of concrete  
 LCR = (12*(F1i/Atf+F1i*e1*e1/Itf-MG1*e1/Itf)-7*((MP1-MG1)*e1/Itf+MC1*ec1/Ic))*1000*145;  
//!psi 
 LSH = 0.8*(17000-150*77.916);  //!psi  RH = 77.916 
 LSR = 5000-0.10*LES*1000/As*145-0.05*(LSH+ LCR);//   !psi 
 if(LSR<0) LSR = 2185;   //!2.0%Loss of initial prestress considering 
 
// Time dependent Loss of prestress,  
// Lt= (LCR+LSH+LSR)/145.0*As/1000; 
 Lt= (LCR+LSH+LSR)/145.0*As/1000*(1-pt1/20.0); 
// Effective force,             
 
 F11= F1i-Lt; 
 F21 = F2i - Lt; 
 F31 = F3i - Lt; 
 Fend2 = Fend - Lt; 
 F51 = F5i - Lt; 
 F61 = F6i - Lt; 
 F71 = F7i - Lt; 
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 F81 = F8i - Lt; 
} 
/* void Moment3() 
{ 
 MG3 = w_stage_03/2.0*(L*x-x*x)*1.0e-9; 
 MCG3=(GS*Gd-BFRd*(GS-BFRw)-Ag)*Gammacon*CGt*(NCG/L)/2*(L*x-x*x)*1.0e-9; 
 MS3 = (ts+12.5)*GS*Gammacon/2*(L*x-x*x)*1.0e-9; 
 MP3=MG3+MCG3+MS3; 
 MWC3 =WCt*Gammawc*GS/2*(L*x-x*x)*1.0e-9; 
 MMS3=MSh*MSw*Gammacon/2*(L*x-x*x)/(NoGirder)*1.0e-9; 
 MC3 = MWC3 + MMS3; 
 MD3=MP3+MC3; 
 MLL3 = maxm((4*P2*((L-x)/L + (L-x-4.27*1000)/L + (L-x-
8.54*1000)/L/4))*DF*x,(0.5*L*9.34/1000+80.064)*x*(L-x)/L*DF/2)*(1+IMF); 
 MT3 = MLL3+MD3; 
 
}   */ 
void cablelayout3() 
{ 
// cout<<"cablelayout3"<<"\t"; 
 int k1, Ncablet; 
 k1 = 0; 
 for(int i = 1;i<=LayerNo_mid;i++)  
 { 
  for(int j = 1;j<=Cable_Layer_mid[i];j++)  
  { 
   k1 = k1 + 1; 
   Cable_Loc_3[k1] = Layer_dist_bottom_mid[i]+4*(Cable_Loc_end[k1]-
Cable_Loc_mid[k1])*pow((0.4L-x),2)/pow(0.8L,2); 
   alpha3[k1] = 4*(Cable_Loc_3[k1]-Cable_Loc_mid[k1])/(0.8L); 
  } 
 } 
 Ncablet = RNDOFF(&Ncable); 
 
 Y3 = 0; 
 for( i = 1;i<=k1;i++) 
 { 
  Y3 = Y3 + Cable_Loc_3[i]; 
  if(i==k1) 
  { 
   Y3 = Y3/Ncablet; 
  } 
 } 
 
 Y3bnet = Yb - Ncable*3.1416/4*pow((Duct_dia),2)*Y3; 
 Y3b = Yb + (Es/Ec-1) * As* Y3; 
 Y3b = Y3b/Atf; 
 Y3t = Gd-Y3b; 
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 Y3bnet = Y3bnet/Anet; 
 Y3tnet = Gd-Y3bnet; 
 Y3bc = (Y3b*Atf+(mratio*EFW*ts)*(Gdc-ts/2))/Atfc; 
 Y3tc = Gdc-Y3bc; 
 e3i = Y3bnet - Y3; 
 e3 = Y3b - Y3; 
 ec3 = Y3bc - Y3; 
 S3tnet = Inet/Y3tnet; 
 S3bnet = Inet/Y3bnet; 
 S3t = Itf/Y3t; 
 S3b = Itf/Y3b; 
 S3tc = Ic/(Y3tc - ts); 
 S3bc = Ic/Y3bc; 
} 
 
void cablelayout7() 
{ 
// cout<<"cablelayout7"<<"\t"; 
 int k1, Ncablet; 
 k1 = 0; 
 for(int i = 1;i<=LayerNo_mid;i++)  
 { 
  for(int j = 1;j<=Cable_Layer_mid[i];j++)  
  { 
   k1 = k1 + 1; 
   Cable_Loc_7[k1] = Layer_dist_bottom_mid[i]+4*(Cable_Loc_inf[k1]-
Cable_Loc_mid[k1])*pow((L/2-L/4),2)/pow(L,2); 
   alpha7[k1] = 4*(Cable_Loc_7[k1]-Cable_Loc_mid[k1])/L; 
  } 
 } 
 Ncablet = RNDOFF(&Ncable); 
 
 Y7 = 0; 
 for( i = 1;i<=k1;i++) 
 { 
  Y7 = Y7 + Cable_Loc_7[i]; 
  if(i==k1) 
  { 
   Y7 = Y7/Ncablet; 
  } 
 } 
} 
 
void cablelayout8() 
{ 
// cout<<"cablelayout8"<<"\t"; 
 int k1, Ncablet; 
 k1 = 0; 
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 for(int i = 1;i<=LayerNo_inf;i++)  
 { 
  for(int j = 1;j<=Cable_Layer_inf[i];j++)  
  { 
   k1 = k1 + 1; 
   Cable_Loc_8[k1] = Layer_dist_bottom_inf[i]+4*(Cable_Loc_int_sup[k1]-
Cable_Loc_inf[k1])*pow((L/10-L/20),2)/pow(L/5,2); 
   alpha8[k1] = 4*(Cable_Loc_8[k1]-Cable_Loc_inf[k1])/(0.2L); 
  } 
 } 
 Ncablet = RNDOFF(&Ncable); 
 
 Y8 = 0; 
 for( i = 1;i<=k1;i++) 
 { 
  Y8 = Y8 + Cable_Loc_8[i]; 
  if(i==k1) 
  { 
   Y8 = Y8/Ncablet; 
  } 
 } 
} 
 
//*********************************************************************************** 
//17__17__17__17__17____________Moment Calculation Zone____________17__17__17__17__ 
//*********************************************************************************** 
 
void Moment() 
{ 
// cout<<"Moment"<<"\t"; 
//  cout<<"Moment SWg"<<"\t"; 
// Girder selfweight moment @ different postitions : 
 
 UDL_SW_girder= Ag*Gammacon/1000000;   //N/mm 
 
 matrix_initialization_function(); 
 local_stiffness_matrix_function(); 
 global_stiffness_matrix_function(); 
 global_member_force_matrix_function(UDL_SW_girder); 
 impose_boundarycondition_function(); 
 dynamic_allocation_01(); 
    dynamic_allocation_02(); 
    DOF_matrix_solution_function(global_stiffness_matrix_pointer,2*No_of_Node, 
                           global_member_force_matrix_pointer,x); 
 total_DL_end_shearforce_bendingmoment_function(UDL_SW_girder); 
 total_DL_sectionwise_shearforce_function(UDL_SW_girder); 
 total_DL_sectionwise_bendingmoment_function(UDL_SW_girder);   
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 MG1 = total_DL_sectionwise_bendingmoment_matrix[0][80]; //@ section 1  
 MG2 = total_DL_sectionwise_bendingmoment_matrix[0][30]; //@ section 2   
 MG3 = total_DL_sectionwise_bendingmoment_matrix[0][50];  //@ section 3   
 MG4 = total_DL_sectionwise_bendingmoment_matrix[0][0];  //@ section 4 
 MG5 = total_DL_sectionwise_bendingmoment_matrix[0][200]; //@ section 5 
 MG6 = total_DL_sectionwise_bendingmoment_matrix[0][180]; //@ section 6 
 MG7 = total_DL_sectionwise_bendingmoment_matrix[0][130]; //@ section 7 
 MG8 = total_DL_sectionwise_bendingmoment_matrix[0][190]; //@ section 8 
//-----------------------------------------------------------------------------------  
 // cout<<"Moment SWcg"<<"\t"; 
 
// Cross Girder Moment @ different postitions : 
 
 UDL_SW_CG= (GS*Gd-BFRd*(GS-BFRw)-Ag)*Gammacon*CGt*(NCG/L)/1000000; 
 
 matrix_initialization_function(); 
 local_stiffness_matrix_function(); 
 global_stiffness_matrix_function(); 
 global_member_force_matrix_function(UDL_SW_CG); 
 modified_global_stiffness_matrix_function(); 
 dynamic_allocation_01(); 
 modified_global_member_force_matrix_function(); 
    dynamic_allocation_02(); 
    DOF_matrix_solution_function(global_stiffness_matrix_pointer,2*No_of_Node, 
                           global_member_force_matrix_pointer,x); 
 total_DL_end_shearforce_bendingmoment_function(UDL_SW_CG); 
 total_DL_sectionwise_shearforce_function(UDL_SW_CG); 
 total_DL_sectionwise_bendingmoment_function(UDL_SW_CG);    
 
 MCG1 = total_DL_sectionwise_bendingmoment_matrix[0][80]; //@ section 1  
 MCG2 = total_DL_sectionwise_bendingmoment_matrix[0][30]; //@ section 2 
 MCG3 = total_DL_sectionwise_bendingmoment_matrix[0][50];  //@ section 3 
 MCG4 = total_DL_sectionwise_bendingmoment_matrix[0][0];  //@ section 4 
 MCG5 = total_DL_sectionwise_bendingmoment_matrix[0][200]; //@ section 5 
 MCG6 = total_DL_sectionwise_bendingmoment_matrix[0][180]; //@ section 6 
 MCG7 = total_DL_sectionwise_bendingmoment_matrix[0][130]; //@ section 7 
 MCG8 = total_DL_sectionwise_bendingmoment_matrix[0][190]; //@ section 8   
//--------------------------------------------------------------------------------------  
//cout<<"Moment SWs"<<"\t"; 
// Slab Moment @ different positions:  
 
 UDL_SW_slab=(ts+12.5)*GS*Gammacon/1000000; 
 
 matrix_initialization_function(); 
 local_stiffness_matrix_function(); 
 global_stiffness_matrix_function(); 
 global_member_force_matrix_function(UDL_SW_slab); 
 modified_global_stiffness_matrix_function(); 
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 dynamic_allocation_01(); 
 modified_global_member_force_matrix_function(); 
    dynamic_allocation_02(); 
    DOF_matrix_solution_function(global_stiffness_matrix_pointer,2*No_of_Node, 
                           global_member_force_matrix_pointer,x); 
 total_DL_end_shearforce_bendingmoment_function(UDL_SW_slab); 
 total_DL_sectionwise_shearforce_function(UDL_SW_slab); 
 total_DL_sectionwise_bendingmoment_function(UDL_SW_slab);   
 
 MS1 = total_DL_sectionwise_bendingmoment_matrix[0][80]; //@ section 1  
 MS2 = total_DL_sectionwise_bendingmoment_matrix[0][30]; //@ section 2 
 MS3 = total_DL_sectionwise_bendingmoment_matrix[0][50];  //@ section 3 
 MS4 = total_DL_sectionwise_bendingmoment_matrix[0][0];  //@ section 4 
 MS5 = total_DL_sectionwise_bendingmoment_matrix[0][200]; //@ section 5 
 MS6 = total_DL_sectionwise_bendingmoment_matrix[0][180]; //@ section 6 
 MS7 = total_DL_sectionwise_bendingmoment_matrix[0][130]; //@ section 7 
 MS8 = total_DL_sectionwise_bendingmoment_matrix[0][190]; //@ section 8    
//----------------------------------------------------------------------------- 
// Moment due to self weight, cross girder, deck slab @ different positions 
 
 MP1=MG1+MCG1+MS1;  //@ section 1  
 MP2=MG2+MCG2+MS2;  //@ section 2  
 MP3=MG1+MCG1+MS1;  //@ section 3  
 MP4=MG2+MCG2+MS2;  //@ section 4  
 MP5=MG1+MCG1+MS1;  //@ section 5  
 MP6=MG2+MCG2+MS2;  //@ section 6  
 MP7=MG1+MCG1+MS1;  //@ section 7  
 MP8=MG2+MCG2+MS2;  //@ section 8   
  
//---------------------------------------------------------------------------- 
//cout<<"Moment SWwc"<<"\t"; 
// Wearing course moment @ different positions 
 
 UDL_SW_WC=WCt*Gammawc*GS/1000000; 
 
 matrix_initialization_function(); 
 local_stiffness_matrix_function(); 
 global_stiffness_matrix_function(); 
 global_member_force_matrix_function(UDL_SW_WC); 
 modified_global_stiffness_matrix_function(); 
 dynamic_allocation_01(); 
 modified_global_member_force_matrix_function(); 
    dynamic_allocation_02(); 
    DOF_matrix_solution_function(global_stiffness_matrix_pointer,2*No_of_Node, 
                           global_member_force_matrix_pointer,x); 
 total_DL_end_shearforce_bendingmoment_function(UDL_SW_WC); 
 total_DL_sectionwise_shearforce_function(UDL_SW_WC); 
 total_DL_sectionwise_bendingmoment_function(UDL_SW_WC);   
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 MWC1 = total_DL_sectionwise_bendingmoment_matrix[0][80]; //@ section 1  
 MWC2 = total_DL_sectionwise_bendingmoment_matrix[0][30]; //@ section 2 
 MWC3 = total_DL_sectionwise_bendingmoment_matrix[0][50];  //@ section 3 
 MWC4 = total_DL_sectionwise_bendingmoment_matrix[0][0];  //@ section 4 
 MWC5 = total_DL_sectionwise_bendingmoment_matrix[0][200]; //@ section 5 
 MWC6 = total_DL_sectionwise_bendingmoment_matrix[0][180]; //@ section 6 
 MWC7 = total_DL_sectionwise_bendingmoment_matrix[0][130]; //@ section 7 
 MWC8 = total_DL_sectionwise_bendingmoment_matrix[0][190]; //@ section 8   
//-----------------------------------------------------------------------------------  
//cout<<"Moment SWms"<<"\t"; 
// Medain strip moment @ different positions 
 
 UDL_SW_MS=MSh*MSw*Gammacon/(NoGirder)/1000000; 
 
 matrix_initialization_function(); 
 local_stiffness_matrix_function(); 
 global_stiffness_matrix_function(); 
 global_member_force_matrix_function(UDL_SW_MS); 
 modified_global_stiffness_matrix_function(); 
 dynamic_allocation_01(); 
 modified_global_member_force_matrix_function(); 
    dynamic_allocation_02(); 
    DOF_matrix_solution_function(global_stiffness_matrix_pointer,2*No_of_Node, 
                           global_member_force_matrix_pointer,x); 
 total_DL_end_shearforce_bendingmoment_function(UDL_SW_MS); 
 total_DL_sectionwise_shearforce_function(UDL_SW_MS); 
 total_DL_sectionwise_bendingmoment_function(UDL_SW_MS);    
 
 MMS1 = total_DL_sectionwise_bendingmoment_matrix[0][80]; //@ section 1  
 MMS2 = total_DL_sectionwise_bendingmoment_matrix[0][30]; //@ section 2 
 MMS3 = total_DL_sectionwise_bendingmoment_matrix[0][50];  //@ section 3 
 MMS4 = total_DL_sectionwise_bendingmoment_matrix[0][0];  //@ section 4 
 MMS5 = total_DL_sectionwise_bendingmoment_matrix[0][200]; //@ section 5 
 MMS6 = total_DL_sectionwise_bendingmoment_matrix[0][180]; //@ section 6 
 MMS7 = total_DL_sectionwise_bendingmoment_matrix[0][130]; //@ section 7 
 MMS8 = total_DL_sectionwise_bendingmoment_matrix[0][190]; //@ section 8   
//------------------------------------------------------------------------------------- 
// Composite dead load moment 
 MC1 = MWC1 + MMS1; 
 MC2 = MWC2 + MMS2; 
 MC3 = MWC3 + MMS3; 
 MC4 = MWC4 + MMS4; 
 MC5 = MWC5 + MMS5; 
 MC6 = MWC6 + MMS6; 
 MC7 = MWC7 + MMS7; 
 MC8 = MWC8 + MMS8; 
//-------------------------------------------------------------------------------------  
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// Total dead load Moment  
 MD1=MP1+MC1; 
 MD2=MP2+MC2; 
 MD3=MP3+MC3; 
 MD4=MP4+MC4; 
 MD5=MP5+MC5; 
 MD6=MP6+MC6; 
 MD7=MP7+MC7; 
 MD8=MP8+MC8;   
//-------------------------------------------------------------------------------------  
// Live load moment @ different positions 
    influence_line_function(); 
 MLL1 = maxm(total_LL_atSpecific_section_positive_bendingmoment_function(80), 
                total_LL_atSpecific_section_negative_bendingmoment_function(80)); //@ section 1  
 MLL2 = maxm(total_LL_atSpecific_section_positive_bendingmoment_function(30), 
                total_LL_atSpecific_section_negative_bendingmoment_function(30)); //@ section 2  
 MLL3 = maxm(total_LL_atSpecific_section_positive_bendingmoment_function(50), 
                total_LL_atSpecific_section_negative_bendingmoment_function(50)); //@ section 3  
 MLL4 = maxm(total_LL_atSpecific_section_positive_bendingmoment_function(0), 
                total_LL_atSpecific_section_negative_bendingmoment_function(0)); //@ section 4  
 MLL5 = maxm(total_LL_atSpecific_section_positive_bendingmoment_function(200), 
                total_LL_atSpecific_section_negative_bendingmoment_function(200)); //@ section 5  
 MLL6 = maxm(total_LL_atSpecific_section_positive_bendingmoment_function(180), 
                total_LL_atSpecific_section_negative_bendingmoment_function(180)); //@ section 6  
 MLL7 = maxm(total_LL_atSpecific_section_positive_bendingmoment_function(130), 
                total_LL_atSpecific_section_negative_bendingmoment_function(130)); //@ section 7  
 MLL8 = maxm(total_LL_atSpecific_section_positive_bendingmoment_function(190), 
                total_LL_atSpecific_section_negative_bendingmoment_function(190)); //@ section 8  
//-----------------------------------------------------------------------------------  
// Total Moment.  
 MT1 = MLL1+MD1; 
 MT2 = MLL2+MD2; 
 MT3 = MLL3+MD3; 
 MT4 = MLL4+MD4; 
 MT5 = MLL5+MD5; 
 MT6 = MLL6+MD6; 
 MT7 = MLL7+MD7; 
 MT8 = MLL8+MD8;   
} 
 
void momentslab() 
{ 
// cout<<"momentslab"<<"\t"; 
 IMFS= minm(50/((GS-TFRw/2)/1000*3.28+125),0.3); 
 MSS = (ts+12.5)*Gammacon*pow((GS-TFRw/2),2)/10*1.0e-6; 
 MSWC =WCt*Gammawc*pow((GS-TFRw/2),2)/10*1.0e-6; 
 MSDL = MSS + MSWC; 
 if(NoGirder >= 2.98) 
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  MSLL = ((GS-TFRw/2)/1000*3.28+2)/32.0*16.0*4451*0.8; 
 else 
  MSLL = ((GS-TFRw/2)/1000*3.28+2)/32.0*16.0*4451; 
 
 Muslab = 1.3*(MSDL + 1.67*MSLL*(1+IMFS)); 
 dreq = sqrt(Muslab/(0.9*410*rho*(1-0.59*rho*fcdeck/410))); 
 d_min = sqrt(Muslab/(0.9*410*0.0195*(1-0.59*0.0195*fcdeck/410))); 
 ds = ts - 57; 
// R = Muslab/(0.9*ds*ds); //ref pci chap 8.2.3 
// Asnp = 0.85*fcdeck/410*(1-sqrt(1-(2/0.85/fcdeck)*R))*ds; 
}              
//*********************************************************************************** 
//18__18__18__18__18____________Shear Calculation Zone____________18__18__18__18__ 
//*********************************************************************************** 
void Shear() 
{ 
// cout<<"shear"<<"\t"; 
 double Vi,fd,Mcr,Mmax,Vci,Vp,Vcw,d_xw,fpe_xw,fpc,Ncablet,V2s; 
 double V3i,fd3,Mcr3,Mmax3,V3ci,V3cw,d3,fpe3,fpc3,V3s,IMF3,VDL3,VLL3,V3c,V3u; 
 IMF2 = minm( 50/((L-xw)/1000*3.28+125),0.3); 
 VDL2 = 4*MD1/L - 8*MD1/(L*L)*xw; 
 VLL2 = maxm((4*P2*((L-xw)/L + (L-xw-4.27*1000)/L + (L-xw-8.54*1000)/L/4))*DF, 
  (0.5*9.34*(L-xw)/1000+115.65)*DF/2)*(1+IMF2); 
// Evaluation of Vci  
 Vi =1.3*(VDL2+1.67*VLL2)-VDL2; 
 d_xw = Gdc - Y2; 
 e2 = Y2b - Y2; 
 ec2 = Y2bc - Y2; 
 Vnh = 350*(TFRw*d_xw)/(25.4*25.4)/1000*4.45; 
 if(d_xw< 0.8*Gdc)  
  d_xw = 0.8*Gdc;  // !As per AASHTO 2007 
  
 fpe_xw = (F21/Atf+F21*e2/S2b)*1000; 
 fd = (MP2/S2b+MC2/S2bc)*1000; 
 Mcr =S2bc*(0.5* sqrt(fc) + fpe_xw - fd)/1000; 
 Mmax = 1.3*(MD2+1.67*MLL2)-MD2; 
 Vci = 0.05*sqrt(fc)*Wt*d_xw/1000 + VDL2 + Vi*Mcr/Mmax; 
 if(Vci < 0.141*sqrt(fc)*Wt*d_xw/1000) 
  Vci = 0.141*sqrt(fc)*Wt*d_xw/1000; 
//*********************************************************************************** 
// Evaluation of Vcw  
 Ncablet = RNDOFF(&Ncable);         
            
 Vp = 0; 
 for(int i = 1;i<=Ncablet;i++) 
 {    
  Vp = Vp + F21/Ncablet*sin(alpha_xw[i]);  
 } 
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 fpc = F21/Atf - F21*e2*(Y2bc-Y2b)/Itf + MP2*(Y2bc-Y2b)/Itf; 
 Vcw = (0.283*sqrt(fc)/1000 + 0.3*fpc)*Wt*d_xw + Vp; 
 dshear = d_xw; 
 Vc = minm(Vci,Vcw); 
 Vu =1.3*(VDL2+1.67*VLL2); //!KN 
 V2s = maxm((Vu/0.9 - Vc),0.1);  //!phi = 0.9 for shear  unit = KN 
//***********************************************************************// 
 IMF3 = minm( 50/((L-x)/1000*3.28+125),0.3); 
 VDL3 = 4*MD3/L - 8*MD3/(L*L)*x; 
 VLL3 = maxm((4*P2*((L-x)/L + (L-x-4.27*1000)/L + (L-x-8.54*1000)/L/4))*DF, 
  (0.5*9.34*(L-x)/1000+115.65)*DF/2)*(1+IMF2); 
// Evaluation of Vci  
 V3i =1.3*(VDL3+1.67*VLL3)-VDL3; 
 d3 = Gdc - Y3; 
 e3 = Y3b - Y3; 
 if(d3< 0.8*Gdc)  
  d3 = 0.8*Gdc;  // !As per AASHTO 2007 
 fpe3 = (F31/Atf+F31*e3/S3b)*1000; 
 fd3 = (MP3/S3b+MC3/S3bc)*1000; 
 Mcr3 =S3bc*(0.5* sqrt(fc) + fpe3 - fd3)/1000; 
 Mmax3 = 1.3*(MD3+1.67*MLL3)-MD3; 
 V3ci = 0.05*sqrt(fc)*Wt*d3/1000 + VDL3 + V3i*Mcr3/Mmax3; 
 if(V3ci < 0.141*sqrt(fc)*Wt*d3/1000) 
  V3ci = 0.141*sqrt(fc)*Wt*d3/1000; 
//*********************************************************************************** 
// Evaluation of Vcw  
 Ncablet = RNDOFF(&Ncable);       
 Vp = 0; 
 for( i = 1;i<=Ncablet;i++) 
 {    
  Vp = Vp + F31/Ncablet*sin(alpha3[i]);  
 } 
 fpc3 = F31/Atf - F31*e3*(Y3bc-Y3b)/Itf + MP3*(Y3bc-Y3b)/Itf; 
 V3cw = (0.283*sqrt(fc)/1000 + 0.3*fpc3)*Wt*d3 + Vp; 
 V3c = minm(V3ci,V3cw); 
 V3u =1.3*(VDL3+1.67*VLL3); //!KN 
 V3s = maxm((V3u/0.9 - V3c),0.1);  //!phi = 0.9 for shear  unit = KN 
 Vs = maxm(V2s,V3s); 
 if(Vs == V2s) 
  dshear = d_xw; 
 else 
  dshear = d3; 
} 
//*********************************************************************************** 
//19__19__19__19__19____________EXPCON function  Zone____________19__19__19__19__ 
//*********************************************************************************** 
void __stdcall EXPCON(int *IFLG,int *ISKP,int *KKT,int *KOUNT,double XMAX[nv],double 
XMIN[nv],double XT[nv]) 
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{  
// cout<<"EXPCON"<<"\t"; 
 double STRIP; 
 int nx = 8,ny = 26,nt=69,nb=69,nd=101,na=10,ne=11,nf=36; 
 Nstrand = XT[5]; 
 *KOUNT = *KOUNT+1; 
 *KKT = *KKT+1; 
 Anchorage_system(); 
 
 XMIN[0]=1499.99; 
// XMIN[0]=2399.99; 
// XMIN[0]=2999.99; 
 
 XMIN[1]=300; 
 XMIN[2]=300; 
 XMIN[3]=Duct_dia + Duct_clear_spacing; 
 XMIN[4]=1000.01;     
 XMIN[5]=2.99;   
 XMIN[6]=0.99; 
    XMIN[7]=Ancg_Edge_dist_vertical; 
 XMIN[8]=0.001; 
 XMIN[9]=174.99; 
 XMIN[10]=0.0015; 
 XMIN[11]=75; 
 XMIN[12]=50; 
 XMIN[13]=Duct_dia + 80; 
 
 XMAX[0]= 12000.01; 
// XMAX[0]= 2400.01; 
// XMAX[0]= 3000.01; 
 XMAX[1]= 2000.01; 
 XMAX[2]= 1150.01; 
 XMAX[3]= 600.01; 
 XMAX[4]= 3500.01; 
 XMAX[5]= 19.001; 
 XMAX[6]= 15.001; 
 XMAX[7]= 1000.01; 
 XMAX[8]= 0.999; 
 XMAX[9]= 300.01; 
 XMAX[10]=0.32*fcdeck/410.0; 
 XMAX[11]= 300; 
 XMAX[12]= 300; 
 XMAX[13]= 300; 
  
 if(*IFLG == 0)  
 { 
  STRIP=1e-4; 
//  DX[0] = 2400; 
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//  DX[0] = 3000; 
  DX[0]= 1500.0; 
  DX[1]= 1715.0; 
  DX[2]= 2000.0; 
  DX[3]= 2400.0; 
  DX[4]= 3000.0; 
  DX[5]= 4000.0; 
  DX[6]= 6000.0; 
  DX[7]= 12000.0; 
 
/*  DX[0]= 2000.0; 
  DX[1]= 2300.0; 
  DX[2]= 2650.0; 
  DX[3]= 3200.0; 
  DX[4]= 4000.0; 
  DX[5]= 5330.0; 
  DX[6]= 8000.0; 
  DX[7]= 16000.0;*/ 
 
  DISCR2(DX,ISKP,&nx,&STRIP,&XT[0],&XMAX[0],&XMIN[0]); 
  DISCR2(DX1,ISKP,&nt,&STRIP,&XT[1],&XMAX[1],&XMIN[1]); 
  DISCR2(DX2,ISKP,&nb,&STRIP,&XT[2],&XMAX[2],&XMIN[2]); 
  DISCR2(DX4,ISKP,&nd,&STRIP,&XT[4],&XMAX[4],&XMIN[4]); 
        DINTG2(ISKP,&STRIP,&XT[5],&XMAX[5],&XMIN[5]); 
  DINTG2(ISKP,&STRIP,&XT[6],&XMAX[6],&XMIN[6]); 
  DISCR2(DECKT,ISKP,&ny,&STRIP,&XT[9],&XMAX[9],&XMIN[9]); 
  DISCR2(DX11,ISKP,&na,&STRIP,&XT[11],&XMAX[11],&XMIN[11]); 
  DISCR2(DX12,ISKP,&ne,&STRIP,&XT[12],&XMAX[12],&XMIN[12]); 
  DISCR2(DX13,ISKP,&nf,&STRIP,&XT[13],&XMAX[13],&XMIN[13]);   
 } 
} 
//*********************************************************************************** 
//20__20__20__20__20____________stdcall FUNC function Zone____________20__20__20__20__ 
//*********************************************************************************** 
void __stdcall FUNC(double *F,int *KOUNT,int *KUT,int *N,double XT[nv]) 
{ 
// cout<<"FUNC"<<"\t"; 
 
 double 
Av,smax,s,shearbar_length,shearbar_no,Ncablet,Wtst,Volcon,Wtnonprestd,Wtnonprestg; 
 
 GS = XT[0]; 
 TFRw = XT[1]; 
 BFRw = XT[2]; 
 BFRd = XT[3]; 
 Gd  = XT[4];  
 Nstrand = XT[5]; 
 Ncable = XT[6]; 
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 cable_1st_position_end = XT[7]; 
 pt1 = XT[8]; 
 ts = XT[9]; 
 rho = XT[10]; 
 TFRd = XT[11]; 
 TFFHd = XT[12]; 
 Wt = XT[13]; 
 
//*********************************************************************************** 
 TFSHbw = Wt; 
 TFSHtw = TFSHbw + 2*TFSHw; 
 TFFHbw = TFSHtw; 
 TFFHtw = TFRw; 
 TFFHw = (TFFHtw - TFFHbw)/2; 
 BFHw = (BFRw-Wt)/2; 
 BFHd = BFHw/2; 
 NoGirder = BW/GS; 
 
 SA = 
(TFRd+sqrt(pow(TFFHw,2)+pow(TFFHd,2))+TFSHd*1.414+Wd+sqrt(pow(BFHw,2)+pow(BFHd,2))+BFRd)*
L; 
 Ncablet = RNDOFF(&Ncable);  
 Anchorage_system(); 
 Wd = Gd - (TFRd+TFFHd+TFSHd+BFHd+BFRd); 
 xw  =1.5*Gd; 
 Cable_layout(cable_1st_position_end); 
 Sectional_Properties(); 
 Comp_Sectional_Properties(); 
 Ag = 
(TFRd*TFRw)+((TFFHtw+TFFHbw)/2*TFFHd)+((TFSHtw+TFSHbw)/2*TFSHd)+Wd*Wt+((Wt+BFRw)/2*BFH
d)+(BFRd*BFRw); 
 Anet = Ag-Ncable*3.1416/4*(Duct_dia)*(Duct_dia); 
 Volcon =Anet*(L-1.5*Gd)+(BFRw*Gd-Ncable*3.1416/4*(Duct_dia)*(Duct_dia))*Gd + 
((Anet+BFRw*Gd)/2.0-Ncable*3.1416/4*(Duct_dia)*(Duct_dia))*Gd/2.0 ; 
 As = Astrand*Nstrand*Ncable; 
 Moment(); 
 Prestress_Loss(MG1,MP1,MD1); 
// Moment3(); 
 cablelayout3(); 
 cablelayout7(); 
 cablelayout8(); 
 Shear(); 
 Av = maxm(Vs*1000.0/(410.0*dshear),50*Wt/410*0.00683); 
 if(Vs <= 0.333 * sqrt(fc)*Wt*dshear/1000) 
  smax = minm(0.75*(Gd + ts + 12.5),610); 
 else 
  smax = minm(0.75*(Gd + ts + 12.5)/2.0,305); 
 s = minm(226.0/Av,smax); 
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/* AASHTO 8.20 - 12.7 mm @ 18'' c/c temperature reinforcement at top = As = 0.265 mm2/mm*/  
// shearbar_length = 113.0*(2.0*(Gd+ts)+2*(150+4.123*BFHd+(BFRd-40))+(BFRw-80)-60 + 
2*(200+TFFHw+TFRd+ts-40+120-30)); 
 shearbar_length = 113.0*(2.0*(Gd+ts)+2*(150+4.123*BFHd+(BFRd-
40))+2*(200+TFFHw+TFRd+ts-40+120-30)); 
 if (s == 610) 
  shearbar_no = 2*((L/2-Gd)/3/s+(L/2-Gd)/3/s+(L/2-Gd)/3/s); 
 else if(s <=510) 
  shearbar_no = 2*((L/2-Gd)/3/s+(L/2-Gd)/3/(s+50)+(L/2-Gd)/3/(s+100)); 
 else 
  shearbar_no = 2*((L/2-Gd)/3/s+(L/2-Gd)/3/(s+50)+(L/2-Gd)/3/(s+50)); 
 ds = ts - 57; 
 Asnp = rho*ds; 
 Asnpd = minm(220/sqrt((GS-TFRw/2)/1000*3.28),67)/100*Asnp; 
 Wtnonprestd = (2*Asnp*GS*L + Asnpd*L*GS+ 0.265*L*GS)*Gammast;  
 Wtnonprestg = shearbar_length*shearbar_no*Gammast; 
 Wtst = Astrand*Nstrand*Ncable*L*Gammast; 
  
 Cpcon = Volcon*UPcon+UPgf*2*SA; 
 Cdconc = GS*ts*L*UPcondeck+UPdf*(GS-TFRw)*L; 
 Cpst = Wtst*UPst+Anchcost*2*Ncable+sheathcost*(Duct_dia/50.0)*Ncable*(L/1000); 
 Cnpst = Wtnonprestd*UPnonprest + Wtnonprestg*UPnonprest; 
// Cnpst = Wtnonprestd*UPnonprest; 
  
    *KOUNT=*KOUNT+1; 
    *KUT=*KUT+1; 
    *F=(Cpcon+Cpst+Cdconc+Cnpst)*NoGirder; 
}  
//*********************************************************************************** 
//21__21__21__21__21____________IMPCON function  Zone____________21__21__21__21__ 
//*********************************************************************************** 
void __stdcall IMPCON(int *KOUNT,int *M,double XT[nv],double XX[icn],double XXMAX[icn],double 
XXMIN[icn]) 
{  
// cout<<"IMPCON"<<"\t"; 
 double Mfactored,Ncablet; 
   
 *KOUNT = *KOUNT + 1; 
 *M = *M + 1; 
 
 GS = XT[0]; 
 TFRw = XT[1]; 
 BFRw = XT[2]; 
 BFRd = XT[3]; 
 Gd  = XT[4];  
 Nstrand = XT[5]; 
 Ncable = XT[6]; 
 cable_1st_position_end = XT[7]; 
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 pt1 = XT[8]; 
 ts = XT[9]; 
 rho = XT[10]; 
 TFRd = XT[11]; 
 TFFHd = XT[12]; 
 Wt = XT[13]; 
//*********************************************************************************** 
 TFSHbw = Wt; 
 TFSHtw = TFSHbw + 2*TFSHw; 
 TFFHbw = TFSHtw; 
 TFFHtw = TFRw; 
 TFFHw = (TFFHtw - TFFHbw)/2; 
 BFHw = (BFRw-Wt)/2; 
 BFHd = BFHw/2; 
 
 Wd = Gd - (TFRd+TFFHd+TFSHd+BFHd+BFRd); 
 xw  =1.5*Gd; 
 
 Ncablet = RNDOFF(&Ncable); 
 
 As = Astrand*Nstrand*Ncable; 
 Cable_layout(cable_1st_position_end); 
 Sectional_Properties(); 
 Comp_Sectional_Properties(); 
 
 NoGirder = BW/GS; 
//*********************************************************************************** 
 Moment(); 
// Factored Moment 
 Mfactored = 1.3*(MD1+1.67*MLL1); 
//*********************************************************************************** 
  
 Prestress_Loss(MG1,MP1,MD1); 
// Moment3(); 
 cablelayout3(); 
 cablelayout7(); 
 cablelayout8(); 
//*********************************************************************************** 
// Flexural stress at transfer 
// Initial stress at top, 
  fti=(-F1i*pt1/Anet+F1i*pt1*e1i/S1tnet-MG1/S1tnet)*1000;   
 fti_xw=(-F2i*pt1/Anet+F2i*pt1*e2i/S2tnet-MG2/S2tnet)*1000;  
 f3ti=(-F3i*pt1/Anet+F3i*pt1*e3i/S3tnet-MG3/S3tnet)*1000; 
// f4ti=(-Fend*pt1/Anet+Fend*pt1*e4i/S4tnet-MG4/S4tnet)*1000;   
 f5ti=(-F5i*pt1/Anet+F5i*pt1*e_int_sup_i/S_int_sup_tnet-MG5/S_int_sup_tnet)*1000;  
 f6ti=(-F6i*pt1/Anet+F6i*pt1*e_inf_i/S_inf_tnet-MG6/S_inf_tnet)*1000; 
 f7ti=(-F7i*pt1/Anet+F7i*pt1*e7i/S7tnet-MG7/S7tnet)*1000;   
// f8ti=(-F8i*pt1/Anet+F8i*pt1*e8i/S8tnet-MG8/S8tnet)*1000; 
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 XX[0]= fti; 
 XXMAX[0]= 0.25* sqrt(fci);  
 XXMIN[0]= -0.55*fci; 
 
 XX[1]= fti_xw; 
 XXMAX[1]= 0.25* sqrt(fci); 
 XXMIN[1]= -0.55*fci; 
 
 XX[2]= f3ti; 
 XXMAX[2]= 0.25* sqrt(fci); 
 XXMIN[2]= -0.55*fci; 
 
 XX[3]= f5ti; 
 XXMAX[3]= 0.25* sqrt(fci); 
 XXMIN[3]= -0.55*fci; 
 
 XX[4]= f6ti; 
 XXMAX[4]= 0.25* sqrt(fci); 
 XXMIN[4]= -0.55*fci; 
 
 XX[5]= f7ti; 
 XXMAX[5]= 0.25* sqrt(fci); 
 XXMIN[5]= -0.55*fci; 
    
// Initial stress at bottom, 
  fbi =-(F1i*pt1/Anet+F1i*pt1*e1i/S1bnet-MG1/S1bnet)*1000; 
 fbi_xw =-(F2i*pt1/Anet+F2i*pt1*e2i/S2bnet-MG2/S2bnet)*1000; 
 f3bi =-(F3i*pt1/Anet+F3i*pt1*e3i/S3bnet-MG3/S3bnet)*1000; 
// f4ti=-(Fend*pt1/Anet+Fend*pt1*e4i/S4tnet-MG4/S4tnet)*1000;   
 f5bi=-(F5i*pt1/Anet+F5i*pt1*e_int_sup_i/S_int_sup_bnet-MG5/S_int_sup_bnet)*1000;  
 f6bi=-(F6i*pt1/Anet+F6i*pt1*e_inf_i/S_inf_bnet-MG6/S_inf_bnet)*1000; 
 f7bi=-(F7i*pt1/Anet+F7i*pt1*e7i/S7bnet-MG7/S7bnet)*1000;   
 f8bi=-(F8i*pt1/Anet+F8i*pt1*e8i/S8bnet-MG8/S8bnet)*1000; 
 
 XX[6]= fbi; 
 XXMAX[6]= 0.25* sqrt(fci); 
 XXMIN[6]= -0.55*fci; 
 
 XX[7]= fbi_xw; 
 XXMAX[7]= 0.25* sqrt(fci); 
 XXMIN[7]= -0.55*fci; 
 
 XX[8]= f3bi; 
 XXMAX[8]= 0.25* sqrt(fci); 
 XXMIN[8]= -0.55*fci; 
 
 XX[9]= f5bi; 
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 XXMAX[9]= 0.25* sqrt(fci); 
 XXMIN[9]= -0.55*fci; 
 
 XX[10]= f6bi; 
 XXMAX[10]= 0.25* sqrt(fci); 
 XXMIN[10]= -0.55*fci; 
 
 XX[11]= f7bi; 
 XXMAX[11]= 0.25* sqrt(fci); 
 XXMIN[11]= -0.55*fci; 
 
// Flexural stress at (Service II)Moment due to self weight, cross girder, deck slab,Wearing 
course,Median strip   
// Stress at top fiber of girder, 
 
 ftc= (-F11/Atf+F11*e1/S1t-MP1/S1t-MC1/S1tc)*1000; 
 ftc_xw= (-F21/Atf+F21*e2/S2t- MP2/S2t-MC2/S2tc)*1000; 
 f3tc= (-F31/Atf+F31*e3/S3t- MP3/S3t-MC3/S3tc)*1000; 
// f4tc= (-F41/Atf+F41*e4/S4t- MP4/S4t-MC4/S4tc)*1000; 
 f5tc= (-F51/Atf+F51*e_int_sup/S_int_sup_t- MP5/S_int_sup_t-MC5/S_int_sup_tc)*1000; 
 f6tc= (-F61/Atf+F61*e_inf/S_inf_t- MP6/S_inf_t-MC6/S_inf_tc)*1000; 
 f7tc= (-F71/Atf+F71*e7/S7t- MP7/S7t-MC7/S7tc)*1000; 
// f8tc= (-F81/Atf+F81*e8/S8t- MP8/S8t-MC8/S8tc)*1000; 
 
 XX[12]= ftc; 
 XXMAX[12]= 0.5* sqrt(fc); 
 XXMIN[12]= -0.40*fc; 
 
 XX[13]= ftc_xw; 
 XXMAX[13]= 0.5* sqrt(fc); 
 XXMIN[13]= -0.40*fc; 
 
 XX[14]= f3tc; 
 XXMAX[14]= 0.5* sqrt(fc); 
 XXMIN[14]= -0.40*fc; 
 
 XX[15]= f5tc; 
 XXMAX[15]= 0.5* sqrt(fc); 
 XXMIN[15]= -0.40*fc; 
 
 XX[16]= f6tc; 
 XXMAX[16]= 0.5* sqrt(fc); 
 XXMIN[16]= -0.40*fc; 
 
 XX[17]= f7tc; 
 XXMAX[17]= 0.5* sqrt(fc); 
 XXMIN[17]= -0.40*fc; 
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// Stress at bottom fiber, 
  fbc = -(F11/Atf+F11*e1/S1b-MP1/S1b-MC1/S1bc)*1000; 
 fbc_xw = -(F21/Atf+F21*e2/S2b-MP2/S2b-MC2/S2bc)*1000;  
 f3bc = -(F31/Atf+F31*e3/S3b-MP3/S3b-MC3/S3bc)*1000; 
// f4bc = -(F41/Atf+F41*e4/S4b-MP4/S4b-MC4/S4bc)*1000; 
 f5bc = -(F51/Atf+F51*e_int_sup/S_int_sup_b-MP5/S_int_sup_b-MC5/S_int_sup_bc)*1000; 
 f6bc = -(F61/Atf+F61*e_inf/S_inf_b-MP6/S_inf_b-MC6/S_inf_bc)*1000; 
 f7bc = -(F71/Atf+F71*e7/S7b-MP7/S7b-MC7/S7bc)*1000; 
// f8bc = -(F81/Atf+F81*e8/S8b-MP8/S8b-MC8/S8bc)*1000; 
 
 XX[18]= fbc; 
 XXMAX[18]= 0.5* sqrt(fc); 
 XXMIN[18]=-0.40*fc; 
  
 XX[19]= fbc_xw; 
 XXMAX[19]= 0.5* sqrt(fc); 
 XXMIN[19]=-0.40*fc;  
 
 XX[20]= f3bc; 
 XXMAX[20]= 0.5* sqrt(fc); 
 XXMIN[20]=-0.40*fc; 
 
 XX[21]= f5bc; 
 XXMAX[21]= 0.5* sqrt(fc); 
 XXMIN[21]=-0.40*fc; 
 
 XX[22]= f6bc; 
 XXMAX[22]= 0.5* sqrt(fc); 
 XXMIN[22]=-0.40*fc; 
 
 XX[23]= f7bc; 
 XXMAX[23]= 0.5* sqrt(fc); 
 XXMIN[23]=-0.40*fc; 
// Flexural stress at (Service III)Moment due to all dead Load + Live load  
// Stress at top fiber of girder, 
 
 ftt= (-F11/Atf+F11*e1/S1t-MP1/S1t-(MC1+MLL1)/S1tc)*1000; 
 ftt_xw= (-F21/Atf+F21*e2/S2t-MP2/S2t-(MC2+MLL2)/S2tc)*1000;   
 f3tt= (-F31/Atf+F31*e3/S3t-MP3/S3t-(MC3+MLL3)/S3tc)*1000; 
// f4tt= (-F41/Atf+F41*e4/S4t-MP4/S4t-(MC4+MLL4)/S4tc)*1000; 
 f5tt= (-F51/Atf+F51*e_int_sup/S_int_sup_t-MP5/S_int_sup_t-(MC5+MLL5)/S_int_sup_tc)*1000; 
 f6tt= (-F61/Atf+F61*e_inf/S_inf_t-MP6/S_inf_t-(MC6+MLL6)/S_inf_tc)*1000; 
 f7tt= (-F71/Atf+F71*e7/S7t-MP7/S7t-(MC7+MLL7)/S7tc)*1000; 
// f8tt= (-F81/Atf+F81*e8/S8t-MP8/S8t-(MC8+MLL8)/S8tc)*1000; 
 
 XX[24]= ftt; 
 XXMAX[24]=  0.5* sqrt(fc); 
 XXMIN[24]=  -0.6*fc; 
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 XX[25]= ftt_xw; 
 XXMAX[25]=  0.5* sqrt(fc); 
 XXMIN[25]=  -0.6*fc; 
 
 XX[26]= f3tt; 
 XXMAX[26]=  0.5* sqrt(fc); 
 XXMIN[26]=  -0.6*fc; 
 
 XX[27]= f5tt; 
 XXMAX[27]=  0.5* sqrt(fc); 
 XXMIN[27]=  -0.6*fc; 
 
 XX[28]= f6tt; 
 XXMAX[28]=  0.5* sqrt(fc); 
 XXMIN[28]=  -0.6*fc; 
 
 XX[29]= f7tt; 
 XXMAX[29]=  0.5* sqrt(fc); 
 XXMIN[29]=  -0.6*fc; 
  
// Stress at bottom fiber, 
 fbt = -(F11/Atf+F11*e1/S1b-MP1/S1b-(MC1+MLL1)/S1bc)*1000; 
 fbt_xw = -(F21/Atf+F21*e2/S2b-MP2/S2b-(MC2+MLL2)/S2bc)*1000;  
 f3bt = -(F31/Atf+F31*e3/S3b-MP3/S3b-(MC3+MLL3)/S3bc)*1000;  
// f4bt = -(F41/Atf+F41*e4/S4b-MP4/S4b-(MC4+MLL4)/S4bc)*1000; 
 f5bt = -(F51/Atf+F51*e_int_sup/S_int_sup_b-MP5/S_int_sup_b-
(MC5+MLL5)/S_int_sup_bc)*1000; 
 f6bt = -(F61/Atf+F61*e_inf/S_inf_b-MP6/S_inf_b-(MC6+MLL6)/S_inf_bc)*1000; 
 f7bt = -(F71/Atf+F71*e7/S7b-MP7/S7b-(MC7+MLL7)/S7bc)*1000; 
// f8bt = -(F81/Atf+F81*e8/S8b-MP8/S8b-(MC8+MLL8)/S8bc)*1000; 
  
 XX[30]= fbt; 
 XXMAX[30]= 0.5* sqrt(fc); 
 XXMIN[30]= -0.6*fc; 
 
 XX[31]= fbt_xw; 
 XXMAX[31]= 0.5* sqrt(fc); 
 XXMIN[31]= -0.6*fc; 
 
 XX[32]= f3bt; 
 XXMAX[32]= 0.5* sqrt(fc); 
 XXMIN[32]= -0.6*fc; 
 
 XX[33]= f5bt; 
 XXMAX[33]= 0.5* sqrt(fc); 
 XXMIN[33]= -0.6*fc; 
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 XX[34]= f6bt; 
 XXMAX[34]= 0.5* sqrt(fc); 
 XXMIN[34]= -0.6*fc; 
 
 XX[35]= f7bt; 
 XXMAX[35]= 0.5* sqrt(fc); 
 XXMIN[35]= -0.6*fc; 
 
// Flexural stress at (Service IIII)Moment due to 1/2( dead Load + PS) + Live load 
// Stress at top fiber of girder, 
 
 fttt= (-(F11/2)/Atf+(F11/2)*e1/S1t-(MLL1+MD1/2)/S1tc)*1000; 
 fttt_xw= (-(F21/2)/Atf+(F21/2)*e2/S2t-(MLL2+MD2/2)/S2tc)*1000; 
 f3ttt= (-(F31/2)/Atf+(F31/2)*e3/S3t-(MLL3+MD3/2)/S3tc)*1000; 
// f4ttt= (-(F41/2)/Atf+(F41/2)*e4/S4t-(MLL4+MD4/2)/S4tc)*1000; 
 f5ttt= (-(F51/2)/Atf+(F51/2)*e_int_sup/S_int_sup_t-(MLL5+MD5/2)/S_int_sup_tc)*1000; 
 f6ttt= (-(F61/2)/Atf+(F61/2)*e_inf/S_inf_t-(MLL6+MD6/2)/S_inf_tc)*1000; 
 f7ttt= (-(F71/2)/Atf+(F71/2)*e7/S7t-(MLL7+MD7/2)/S7tc)*1000; 
// f8ttt= (-(F81/2)/Atf+(F81/2)*e8/S8t-(MLL8+MD8/2)/S8tc)*1000; 
 
 XX[36]= fttt; 
 XXMAX[36]=  0.5*sqrt(fc); 
 XXMIN[36]=  -0.40*fc; 
 
 XX[37]= fttt_xw; 
 XXMAX[37]=  0.5* sqrt(fc); 
 XXMIN[37]=  -0.40*fc; 
 
 XX[38]= f3ttt; 
 XXMAX[38]=  0.5* sqrt(fc); 
 XXMIN[38]=  -0.40*fc; 
 
 XX[39]= f5ttt; 
 XXMAX[39]=  0.5* sqrt(fc); 
 XXMIN[39]=  -0.40*fc; 
 
 XX[40]= f6ttt; 
 XXMAX[40]=  0.5* sqrt(fc); 
 XXMIN[40]=  -0.40*fc; 
 
 XX[41]= f7ttt; 
 XXMAX[41]=  0.5* sqrt(fc); 
 XXMIN[41]=  -0.40*fc; 
   
// Stress at bottom fiber, 
  fbtt = -((F11/2)/Atf+(F11/2)*e1/S1b-(MLL1+MD1/2)/S1bc)*1000; 
 fbtt_xw = -((F21/2)/Atf+(F21/2)*e2/S2b-(MLL2+MD2/2)/S2bc)*1000; 
 f3btt = -((F31/2)/Atf+(F31/2)*e3/S3b-(MLL3+MD3/2)/S3bc)*1000; 
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// f4btt = -((F41/2)/Atf+(F41/2)*e4/S4b-(MLL4+MD4/2)/S4bc)*1000; 
 f5btt = -((F51/2)/Atf+(F51/2)*e_int_sup/S_int_sup_b-(MLL5+MD5/2)/S_int_sup_bc)*1000; 
 f6btt = -((F61/2)/Atf+(F61/2)*e_inf/S_inf_b-(MLL6+MD6/2)/S_inf_bc)*1000; 
 f7btt = -((F71/2)/Atf+(F71/2)*e7/S7b-(MLL7+MD7/2)/S7bc)*1000; 
// f8btt = -((F81/2)/Atf+(F81/2)*e8/S8b-(MLL8+MD8/2)/S8bc)*1000; 
 
 XX[42]= fbtt; 
 XXMAX[42]= 1* sqrt(fc); 
 XXMIN[42]= -0.4*fc; 
 
 XX[43]= fbtt_xw; 
 XXMAX[43]= 1* sqrt(fc); 
 XXMIN[43]= -0.4*fc; 
 
 XX[44]= f3btt; 
 XXMAX[44]= 1* sqrt(fc); 
 XXMIN[44]= -0.4*fc; 
 
 XX[45]= f5btt; 
 XXMAX[45]= 1* sqrt(fc); 
 XXMIN[45]= -0.4*fc; 
 
 XX[46]= f6btt; 
 XXMAX[46]= 1* sqrt(fc); 
 XXMIN[46]= -0.4*fc; 
 
 XX[47]= f7btt; 
 XXMAX[47]= 1* sqrt(fc); 
 XXMIN[47]= -0.4*fc; 
 
 Mu = Flexural_Strength(As,Wri); 
 XX[48]= Mfactored; 
 XXMAX[48]= Mu; 
 XXMIN[48]= 0.0; 
 
 Shear(); 
 XX[49]= Vs; 
 XXMAX[49]= 0.666 * sqrt(fc)*Wt*dshear/1000; 
 XXMIN[49]= 0.0; 
  
// Ductility Limit 
 fpe = (F11/Atf+F11*e1/S1b)*1000; 
 Mcr2 = S1bc*(0.625*sqrt(fc)+fpe)/1000-MP1*(S1bc/S1b-1); 
  
 XX[50]= Mcr2; 
 XXMAX[50]= Mu/1.2; 
 XXMIN[50]= 0.0; 
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 XX[51]= Wri; 
 XXMAX[51]= 0.36*0.75; 
 XXMIN[51]= 0.0; 
  
 XX[52]= Y_end; 
 XXMAX[52]= Gd/2+Gd/6+0.5* sqrt(fc)* (BFRw*Gd)*Gd/6/(Fend2*1000); 
 XXMIN[52]= Gd/2-Gd/6-0.25* sqrt(fci)* (BFRw*Gd)*Gd/6/(Fend*1000); 
 
 Deflection(Ncablet,MD1,MG1,MLL1); 
 XX[53]= fabs(deflectiont); 
 XXMAX[53]= L/360; 
 XXMIN[53]= 0.0; 
 
 XX[54]= fabs(deflectione); 
 XXMAX[54]= L/360; 
 XXMIN[54]= 0.0; 
 
 XX[55]= fabs(deflectionf); 
 XXMAX[55]= L/100; 
 XXMIN[55]= 0.0;  
 
 XX[56]= fabs(deflection); 
 XXMAX[56]= L/800; 
 XXMIN[56]= 0.0; 
 
 XX[57]= Fend; 
 XXMAX[57]= 0.70*fpu*As/1000; 
 XXMIN[57]= 0.0; 
 
 XX[58]= F3i; 
 XXMAX[58]= 0.747*fpu*As/1000; 
 XXMIN[58]= 0.0; 
 
 XX[59]= F31; 
 XXMAX[59]= 0.72*fpu*As/1000; 
 XXMIN[59]= 0.0; 
 
 XX[60]= Vnh; 
 XXMAX[60]= 100000; 
 XXMIN[60]= Vu/0.9; 
 
 XX[61]= ts; 
 XXMAX[61]= 300.0; 
 XXMIN[61]= ((GS-TFRw/2)/1000*3.28+17)/3*25.4; 
 
 momentslab(); 
  
 XX[62]= dreq; 
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 XXMAX[62]= ds; 
 XXMIN[62]= d_min; 
 
 double Wri2; 
 double Mupregirder = Flexural_Strength_precastgirder(Wri2); 
 XX[63]= 1.3*MG1; 
 XXMAX[63]= Mupregirder; 
 XXMIN[63]= 0.0; 
 
 double Mcrslab = 0.625*sqrt(fcdeck)*ts*ts/6; 
  
 XX[64]= Mcrslab; 
 XXMAX[64]= Muslab/1.2; 
 XXMIN[64]= 0.0; 
 
 XX[65]= Wri2; 
 XXMAX[65]= 0.36*0.75; 
 XXMIN[65]= 0.0; 
 
 double a1 = 0.1*L; 
 double L1 = L-2*a1; 
 
 double ei = (1.025*(pow(L1/L,2)-0.333)+0.25)*25.4; 
 double yr = Y1t-deflectiont; 
 Ig = pow(TFRw,3)*TFRd/12; 
 Ig = Ig + TFFHd*pow(TFFHw,3)/36*2+(TFFHw*TFFHd)*pow((TFFHbw/2+TFFHw/3),2); 
 Ig = Ig + (pow(TFFHbw,3)*TFFHd/12); 
 Ig = Ig + (TFSHd*pow(TFSHw,3)/36)*2+(TFSHw*TFSHd)*pow((Wt/2+TFSHw/3),2); 
 Ig = Ig + (TFSHd*pow(Wt,3)/12); 
 Ig = Ig + (Wd*pow(Wt,3)/12); 
 Ig = Ig + (BFHd*pow(BFHw,3)/36)*2+(BFHw*BFHd)*pow((Wt/2+BFHw/3),2); 
 Ig = Ig + BFHd*pow(Wt,3)/12; 
 Ig = Ig + (BFRd*pow(BFRw,3)/12); 
 double zo = UDL_SW_slab/(12*Eci*Ig*L)*(0.1*pow(L1,5)-
pow(L1,3)*a1*a1+3*pow(a1,4)*L1+1.2*pow(a1,5))*1e-6;  
// double oi = maxm(ei/yr,0.0001); 
 double oi = ei/yr; 
  
 //double res1=(0.625*sqrt(fci)+(-fti)); 
    //res1=fabs(res1); 
 
 double Mlat = fabs((0.625*sqrt(fci)+(-fti)))*Ig/(TFRw/2); 
 double Mg1 = (UDL_SW_slab*L1*L1/8.0)*1e-6; 
 double omax = maxm(Mlat/Mg1,0.00001); 
 
// double ab = maxm((zo/yr),0.0001); 
 double ab = zo/yr; 
// double cd = maxm((oi/omax),0.0001); 
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 double cd = oi/omax; 
 double Fsc = 1/(ab+cd); 
 
 XX[66]= Fsc; 
 XXMAX[66]= 100.0; 
 XXMIN[66]= 1.5; 
 
 double ft,ft_xw,f3t,fb,fb_xw,f3b; 
 ft= (-F1i/Atf+F1i*e1/S1t- MP1/S1t)*1000; 
 ft_xw= (-F2i/Atf+F2i*e2/S2t-MP2/S2t)*1000; 
 f3t = (-F3i/Atf+F3i*e3/S3t-MP3/S3t)*1000; 
 
 XX[67]= ft; 
 XXMAX[67]= 0.5* sqrt(fc); 
 XXMIN[67]= -0.60*fc; 
 
 XX[68]= ft_xw; 
 XXMAX[68]= 0.5* sqrt(fc); 
 XXMIN[68]= -0.60*fc; 
 
 XX[69]= f3t; 
 XXMAX[69]= 0.5* sqrt(fc); 
 XXMIN[69]= -0.60*fc; 
   
// Stress at bottom fiber, 
 
 fb = -(F1i/Atf+F1i*e1/S1b-MP1/S1b)*1000; 
 fb_xw = -(F2i/Atf+F2i*e2/S2b-MP2/S2b)*1000; 
 f3b = -(F3i/Atf+F3i*e3/S3b-MP3/S3b)*1000; 
 
 XX[70]= fb; 
 XXMAX[70]= 0.5* sqrt(fc); 
 XXMIN[70]= -0.60*fc; 
 
 XX[71]= fb_xw; 
 XXMAX[71]= 0.5* sqrt(fc); 
 XXMIN[71]= -0.60*fc; 
 
 XX[72]= fb; 
 XXMAX[72]= 0.5* sqrt(fc); 
 XXMIN[72]= -0.60*fc; 
 } 
//*********************************************************************************** 
//22__22__22__22__22____________MAIN function  Zone____________22__22__22__22__ 
//*********************************************************************************** 
  void main() 
  { 
//   cout<<"main"<<"\t"; 
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   time_t start, stop; 
   time(&start); 
    
   double 
C[nv],FF[nv+1],H[nv*(nv+1)],OLDCC[nv],XDN[nv],XG[nv],XMAX[nv],XMIN[nv],XUP[nv],XX[icn],XXMAX[icn
],XXMIN[icn],XT[nv]; 
   double ALPHA,BETA,DEL,GAMA,PHI,PHICPX; 
   int ICON,IJK,IMV,IPRINT,K,KNT,LIMIT,N,NRSTRT,NIC; 
 
   //   initial Value: 
 
   GS = 1600; 
   TFRw = 400; 
   BFRw = 400; 
   BFRd = 250; 
   Gd = 1500; //3lane 50mpa 
   Nstrand = 5.0; 
   Ncable = 4.0; 
   cable_1st_position_end = 350.0; 
   pt1 = 0.44; 
   ts = 200.00; 
   rho = 0.001773; 
   TFRd = 160; 
   TFFHd = 55; 
   Wt =250;  
 
   XT[0]= GS; 
   XT[1]= TFRw; 
   XT[2]= BFRw; 
   XT[3]= BFRd; 
   XT[4]= Gd; 
   XT[5]= Nstrand; 
   XT[6]= Ncable; 
   XT[7]= cable_1st_position_end; 
   XT[8]= pt1; 
   XT[9]= ts; 
   XT[10] = rho; 
   XT[11] = TFRd; 
   XT[12] = TFFHd; 
   XT[13] = Wt; 
 
 matrix_initialization_function(); 
//***********************************************************************************  
   for(int i = 0;i<26;i++) 
   { 
    DECKT[i] = 175+5*i; 
   } 
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   for( i = 0;i<69;i++) 
   { 
    DX1[i] = 300+25*i; 
    DX2[i] = 300+25*i; 
   } 
    for( i = 0;i<101;i++) 
   { 
    DX4[i] = 1000+25*i; 
   } 
    for( i = 0;i<10;i++) 
   { 
    DX11[i] = 75+25*i; 
   } 
    for( i = 0;i<11;i++) 
   { 
    DX12[i] = 50+25*i; 
   } 
    for( i = 0;i<36;i++) 
   { 
    DX13[i] = 125+5*i; 
   } 
 
   cout<<"cost = ?"<<endl; 
   cin>>cost; 
  
 if(cost == 1) 
 { 
  UPcon=12500e-9;  //!per mm3 
  UPcondeck=6000e-9; // !per mm3 
  UPst=90;// !per Kg 
  UPnonprest = 45;//UPst/4.0; 
  Anchcost = 4500; 
  sheathcost = 90; 
  UPgf = 400e-6; 
  UPdf = 415e-6; 
 } 
 else if(cost == 2) 
 { 
  UPcon=12500e-9;  //!per mm3 
  UPcondeck=6000e-9; // !per mm3 
  UPst=180;// !per Kg 
  UPnonprest = 90;//UPst/4.0; 
  Anchcost = 9000; 
  sheathcost = 180; 
  UPgf = 400e-6; 
  UPdf = 415e-6; 
 } 
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 else 
 { 
  UPcon=12500e-9;  //!per mm3 
  UPcondeck=6000e-9; // !per mm3 
  UPst=270;// !per Kg 
  UPnonprest = 135;//UPst/4.0; 
  Anchcost = 13500; 
  sheathcost = 270; 
  UPgf = 400e-6; 
  UPdf = 415e-6; 
 } 
//*********************************************************************************** 
//    CONTROL PARAMETERS FOR "EVOP" 
   ALPHA = 1.2; 
   BETA=0.5; 
   GAMA=2.0; 
   DEL=1e-12; 
   PHI=1e-13; 
   PHICPX=1e-8; 
   ICON=5; 
   LIMIT=100000; 
   KNT=25; 
   N=nv; 
   NIC=icn; 
   if(nv<=5) 
   { 
    K=2*nv; 
   } 
   else 
   { 
    K=nv+1; 
   } 
   IPRINT=2; 
   NRSTRT=10; 
   IMV=0; 
   IJK=1; 
line1: 
EVOP(&ALPHA,&BETA,C,&DEL,FF,&GAMA,H,&ICON,&IJK,&IMV,&IPRINT,&K,&KNT,&LIMIT,&N,&NRSTRT, 
     &NIC,OLDCC,&PHI,&PHICPX,XDN,XG,XMAX,XMIN,XT,XUP,XX,XXMAX,XXMIN); 
   if (IJK < 9) goto line1; 
   time(&stop); 
   cout<<difftime(stop, start)<<endl;   
 
 cout<<"Cpcon"<<Cpcon/(GS*L*70)*1e6<<endl; 
 cout<<"Cdconc"<<Cdconc/(GS*L*70)*1e6<<endl; 
 cout<<"Cpst"<<Cpst/(GS*L*70)*1e6<<endl; 
 cout<<"Cnpst"<<Cnpst/(GS*L*70)*1e6<<endl; 
 cout<<UPgf*2*SA/(GS*L*70)*1e6<<endl; 
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 cout<<UPdf*(GS-TFRw)*L/(GS*L*70)*1e6<<endl; 
 cout<<(Cpcon+Cpst+Cdconc+Cnpst)*NoGirder/(BW*L*70)*1e6<<endl; 
 
 ofstream fout("output.txt"); 
 fout<<"Cpcon"<<Cpcon/(GS*L*70)*1e6<<endl; 
 fout<<"Cdconc"<<Cdconc/(GS*L*70)*1e6<<endl; 
 fout<<"Cpst"<<Cpst/(GS*L*70)*1e6<<endl; 
 fout<<"Cnpst"<<Cnpst/(GS*L*70)*1e6<<endl; 
 fout<<UPgf*2*SA/(GS*L*70)*1e6<<endl; 
 fout<<UPdf*(GS-TFRw)*L/(GS*L*70)*1e6<<endl; 
 fout<<(Cpcon+Cpst+Cdconc+Cnpst)*NoGirder/(BW*L*70)*1e6<<endl; 
 fout<<Y1<<endl; 
 fout<<Y2<<endl; 
 fout<<Y3<<endl; 
 fout<<Y_end<<endl; 
 fout<<Ancg_C2C<<endl; 
 
test_function(); 
 
 fout.close(); 
} 
 



 
 

APPENDIX-B 
 

Output Summary of Optimization Results of the 40 m double span 

continuous girder from EVOP Program 

 

INPUT PARAMETERS FOR OPTIMISATION SUBROUTINE EVOP 

REFLECTION COEFFICIENT                                ALPHA =.13000000E+01 

CONTRACTION COEFFICIENT                               BETA = .50000000E+00 

EXPANSION COEFFICIENT                                   GAMA = .20000000E+01 

EXPLICIT CONSTRAINT RETENTION COEFFICIENT  

 DEL =.10000000E-11 

ACCURACY PARAMETER FOR CONVERGENCE  PHI = .10000000E-12 

PARAMETER FOR DETERMINING COLLAPSE OF A COMPLEX IN A 

SUBSPACE                 PHICPX = .10000000E-15 

GLOBAL LIMIT ON THE NUMBER OF CALLS TO FUNCTION SUBROUTINE                    

          LIMIT = 100000 

NUMBER OF COMPLEX RESTARTS                               NRSTRT = 10 

NUMBER OF CALLS TO FUNCTION SUBROUTINE AFTER WHICH   

CONVERGENCE TESTS ARE MADE   KNT = 25 

NUMBER OF CONSECUTIVE CONVERGENCE TEST_1    ICON = 5 

NUMBER OF VARIABLES = NUMBER OF EXPLICIT CONSTRAINTS   N =14 

NUMBER OF IMPLICIT CONSTRAINTS                                         NIC = 73 

NUMBER OF COMPLEX VERTICES                                                   K = 15 

      

COORDINATES OF THE STARTING POINT 

Serial No. Design variables Design variables 

1 

2 

3 

4 

5 

6 

S = 3500; 

TFw = 650; 

BFw = 450; 

BFt = 325; 

Gd = 2500; 

NS = 9.0; 

XT( 1) =        .35000000E+04 

XT( 2) =        .65000000E+03 

XT( 3) =        .45000000E+03 

XT( 4) =        .32500000E+03 

XT( 5) =        .25000000E+04 

XT( 6) =        .90000000E+01 
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7 

8 

9 

10 

11 

12 

13 

14 

NT = 7.0; 

y1 = 645; 

η = 0.55; 

t = 250; 

ρ = 0.005373; 

TFt = 125; 

TFTt = 75; 

Ww  = 190; 

XT( 7) =        .70000000E+01 

XT( 8) =        .64500000E+03 

XT( 9) =        .55000000E+00 

XT(10) =        .25000000E+03 

XT(11) =        .53730000E-02 

XT(12) =        .12500000E+03 

XT(13) =        .75000000E+02 

XT(14) =        .19000000E+03 

 

FUNCTION VALUE AT THE STARTING POINT       FF( 1) =        .54087839E+07 

 

 

 

UPPER BOUND OF EXPLICIT 

CONSTRAINTS AT THE STARTING 

POINT 

LOWER BOUND OF EXPLICIT 

CONSTRAINTS AT THE STARTING 

POINT 

XMAX( 1) =        .12000010E+05                                                                        

XMAX( 2) =        .20000100E+04                                                                           

XMAX( 3) =        .11500100E+04                                                                            

XMAX( 4) =        .60001000E+03                                                                            

XMAX( 5) =        .35000100E+04                                                                           

XMAX( 6) =        .19001000E+02                                                                           

XMAX( 7) =        .15001000E+02                                                                             

XMAX( 8) =        .10000100E+04                                                                             

XMAX( 9) =        .99900000E+00                                           

XMAX(10) =        .30001000E+03                                                                

XMAX(11) =        .19512195E-01                                                                      

XMAX(12) =        .30001000E+03                                                          

XMAX(13) =        .30001000E+03                                                                     

XMAX(14) =        .30001000E+03 

XMIN( 1) =        .14999900E+04 

XMIN( 2) =        .30000000E+03 

XMIN( 3) =        .30000000E+03 

XMIN( 4) =        .10800000E+03 

XMIN( 5) =        .99999000E+03 

XMIN( 6) =        .29900000E+01 

XMIN( 7) =        .99000000E+00 

XMIN( 8) =        .21000000E+03 

XMIN( 9) =        .10000000E-02 

XMIN(10) =        .17499000E+03 

XMIN(11) =        .15000000E-02 

XMIN(12) =        .74990000E+02 

XMIN(13) =        .49990000E+02 

XMIN(14) =        .14999000E+03 
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IMPLICIT CONSTRAINTS 

Implicit 

Constraints 

Description 

XX( 1) = f1ti 

XX( 2) = f2ti 

XX( 3) = f3ti 

XX( 4) = f5ti 

XX( 5) = f6ti 

XX( 6) = f7ti 

f1ti, f2ti, f3ti, f5ti, f6ti, f7ti are top fiber flexural stresses at 

section1, section2, section3, section5, section6, section7 

respectively at initial stage 

𝑓𝑓𝑡𝑡𝑡𝑡 = −
𝜂𝜂𝜂𝜂𝑡𝑡
𝐴𝐴𝑛𝑛𝑛𝑛𝑡𝑡

±
𝜂𝜂𝜂𝜂𝑡𝑡𝑛𝑛𝑡𝑡
𝑆𝑆𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡

∓
𝑀𝑀𝐺𝐺

𝑆𝑆𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡
 

XX( 7) = f1bi 

XX( 8) = f2bi 

XX( 9) = f3bi 

XX(10) = f5bi 

XX(11) = f6bi 

XX(12) = f7bi 

f1bi, f2bi, f3bi, f5bi, f6bi, f7bi are bottom fiber flexural stresses 

at section1, section2, section3, section5, section6, section7 

respectively at initial stage 

𝑓𝑓𝑏𝑏𝑡𝑡 = −
𝜂𝜂𝜂𝜂𝑡𝑡
𝐴𝐴𝑛𝑛𝑛𝑛𝑡𝑡

∓
𝜂𝜂𝜂𝜂𝑡𝑡𝑛𝑛𝑡𝑡
𝑆𝑆𝑏𝑏𝑛𝑛𝑛𝑛𝑡𝑡

±
𝑀𝑀𝐺𝐺

𝑆𝑆𝑏𝑏𝑛𝑛𝑛𝑛𝑡𝑡
 

XX(13) = f1tc 

XX(14) = f2tc 

XX(15) = f3tc 

XX(16) = f5tc 

XX(17) = f6tc 

XX(18) = f7tc 

f1tc, f2tc, f3tc, f5tc, f6tc, f7tc are top fiber flexural stresses at 

section1, section2, section3, section5, section6, section7 

respectively at second loading stage 

𝑓𝑓𝑡𝑡 = −
𝜂𝜂𝑛𝑛
𝐴𝐴𝑡𝑡𝑓𝑓

±
𝜂𝜂𝑛𝑛𝑛𝑛
𝑆𝑆𝑡𝑡

∓
𝑀𝑀𝑃𝑃

𝑆𝑆𝑡𝑡
∓
𝑀𝑀𝐶𝐶

𝑆𝑆𝑡𝑡𝑡𝑡
 

XX(19) = f1bc 

XX(20) = f2bc 

XX(21) = f3bc 

XX(22) = f5bc 

XX(23) = f6bc 

XX(24) = f7bc 

f1bc, f2bc, f3bc, f5bc, f6bc, f7bc are bottom fiber flexural 

stresses at section1, section2, section3, section5, section6, 

section7 respectively at second loading stage 

𝑓𝑓𝑏𝑏 = −
𝜂𝜂𝑛𝑛
𝐴𝐴𝑡𝑡𝑓𝑓

∓
𝜂𝜂𝑛𝑛𝑛𝑛
𝑆𝑆𝑏𝑏

±
𝑀𝑀𝑃𝑃

𝑆𝑆𝑏𝑏
±
𝑀𝑀𝐶𝐶

𝑆𝑆𝑏𝑏𝑡𝑡
 

XX(25) = f1tt 

XX(26) = f2tt 

XX(27) = f3tt 

XX(28) = f5tt 

XX(29) = f6tt 

XX(30) = f7tt 

f1tt, f2tt, f3tt, f5tt, f6tt, f7tt are top fiber flexural stresses at 

section1, section2, section3, section5, section6, section7 

respectively at third loading stage 

𝑓𝑓𝑡𝑡 = −
𝜂𝜂𝑛𝑛
𝐴𝐴𝑡𝑡𝑓𝑓

±
𝜂𝜂𝑛𝑛𝑛𝑛
𝑆𝑆𝑡𝑡

∓
𝑀𝑀𝑃𝑃

𝑆𝑆𝑡𝑡
∓
𝑀𝑀𝐶𝐶

𝑆𝑆𝑡𝑡𝑡𝑡
∓
𝑀𝑀𝐿𝐿

𝑆𝑆𝑡𝑡𝑡𝑡
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XX(31) = f1bt 

XX(32) = f2bt 

XX(33) = f3bt 

XX(34) = f5bt 

XX(35) = f6bt 

XX(36) = f7bt 

f1bt, f2bt, f3bt, f5bt, f6bt, f7bt are bottom fiber flexural stresses 

at section1, section2, section3, section5, section6, section7 

respectively at third loading stage 

𝑓𝑓𝑏𝑏 = −
𝜂𝜂𝑛𝑛
𝐴𝐴𝑡𝑡𝑓𝑓

∓
𝜂𝜂𝑛𝑛𝑛𝑛
𝑆𝑆𝑏𝑏

±
𝑀𝑀𝑃𝑃

𝑆𝑆𝑏𝑏
±
𝑀𝑀𝐶𝐶

𝑆𝑆𝑏𝑏𝑡𝑡
±
𝑀𝑀𝐿𝐿

𝑆𝑆𝑏𝑏𝑡𝑡
 

XX(37) = f1ttt 

XX(38) = f2ttt 

XX(39) = f3ttt 

XX(40) = f5ttt 

XX(41) = f6ttt 

XX(42) = f7ttt 

f1ttt, f2ttt, f3ttt, f5ttt, f6ttt, f7ttt are top fiber flexural stresses at 

section1, section2, section3, section5, section6, section7 

respectively at fourth loading stage 

𝑓𝑓𝑡𝑡 = −
1
2
𝜂𝜂𝑛𝑛
𝐴𝐴𝑡𝑡𝑓𝑓

±
1
2
𝜂𝜂𝑛𝑛𝑛𝑛
𝑆𝑆𝑡𝑡

∓
�𝑀𝑀𝐿𝐿 + 𝑀𝑀𝐷𝐷

2 � 
𝑆𝑆𝑡𝑡𝑡𝑡

 

XX(43) = f1btt 

XX(44) = f2btt 

XX(45) = f3btt 

XX(46) = f5btt 

XX(47) = f6btt 

XX(48) = f7btt 

f1btt, f2btt, f3btt, f5btt, f6btt, f7btt are bottom fiber flexural 

stresses at section1, section2, section3, section5, section6, 

section7 respectively at fourth loading stage 

𝑓𝑓𝑏𝑏 = −
1
2
𝜂𝜂𝑛𝑛
𝐴𝐴𝑡𝑡𝑓𝑓

∓
1
2
𝜂𝜂𝑛𝑛𝑛𝑛
𝑆𝑆𝑏𝑏

±
�𝑀𝑀𝐿𝐿 + 𝑀𝑀𝐷𝐷

2 � 
𝑆𝑆𝑏𝑏𝑡𝑡

 

XX(49) = 𝑀𝑀𝑡𝑡𝑐𝑐  Calculations are done according to Table 5.5 

XX(50) = VS 

 

XX(51) = 𝑀𝑀𝑡𝑡𝑐𝑐
∗  

XX(52) = 𝑤𝑤𝑡𝑡  

XX(53) = Yend 

XX(54) = 𝛥𝛥𝐿𝐿𝐿𝐿  

XX(55) = 𝜂𝜂4𝑡𝑡  

XX(56) = 𝜂𝜂2𝑡𝑡  

XX(57) = 𝜂𝜂2𝑛𝑛  

XX(58) = Vnh 

XX(59) = t 

XX(60) = dreq 

XX(61) = 𝑀𝑀𝑝𝑝𝑐𝑐  

XX(62) = 𝑀𝑀𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏
∗  

Eq. (3.28) and Eq. (3.34); Detail calculations are done in 

Appendix-A 

Eq. (5.27) and Eq. (5.28) 

Eq. (3.23); Reinforcement index of composite girder 

Centroidal distance of tendons at end section 

Eq. (5.35) 

Eq. (5.12) 

Eq. (5.10) 

𝜂𝜂2𝑡𝑡 −  𝑇𝑇𝑡𝑡𝑇𝑇𝑛𝑛 𝑑𝑑𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛𝑛𝑛𝑡𝑡 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐  

350*(TFw*dS)/(25.4*25.4)/1000*4.45; 

Deck slab thickness 

Detail calculations are done in Appendix-A 

Calculations are done according to Table 5.5 

Eq. (5.29) 
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XX(66) = 𝑤𝑤𝑝𝑝  

XX(67) = Fsc 

Eq. (3.23); Reinforcement index of precast girder 

Eq. (3.36) to Eq. (3.38); Detail calculations are done in 

Appendix-A 

XX(68) = f1t 

XX(69) = f2t 

XX(70) = f3t 

 

f1t, f2t, f3t are top fiber flexural stresses at section1, section2, 

section3 respectively at first loading stage 

𝑓𝑓𝑡𝑡 = −
𝜂𝜂𝑡𝑡
𝐴𝐴𝑡𝑡𝑓𝑓

±
𝜂𝜂𝑡𝑡𝑛𝑛
𝑆𝑆𝑡𝑡

∓
𝑀𝑀𝑃𝑃

𝑆𝑆𝑡𝑡
 

XX(71) = f1b 

XX(72) = f2b 

XX(73) = f3b 

f1b, f2b, f3b are bottom fiber flexural stresses at section1, 

section2, section3 respectively at first loading stage 

𝑓𝑓𝑏𝑏 = −
𝜂𝜂𝑡𝑡
𝐴𝐴𝑡𝑡𝑓𝑓

∓
𝜂𝜂𝑡𝑡𝑛𝑛
𝑆𝑆𝑏𝑏

±
𝑀𝑀𝑃𝑃

𝑆𝑆𝑏𝑏
 

  

 

 

 

  

UPPER BOUND OF IMPLICIT 

CONSTRAINTS 

LOWER BOUND OF IMPLICIT 

CONSTRAINTS 

XXMAX( 1) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX( 2) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX( 3) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX( 4) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX( 5) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX( 6) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX( 7) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX( 8) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN( 1) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN( 2) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN( 3) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN( 4) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN( 5) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN( 6) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN( 7) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN( 8) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN( 9) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN(10) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN(11) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  
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XXMAX( 9) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX(10) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX(11) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX(12) = 0.25�𝑓𝑓𝑡𝑡𝑡𝑡′  

XXMAX(13) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(14) =  0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(15) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(16) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(17) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(18) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(19) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(20) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(21) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(22) =  0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(23) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(24) =  0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(25) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(26) =  0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(27) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(28) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(29) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(30) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(31) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(32) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(33) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(34) =  0.5�𝑓𝑓𝑡𝑡′ 

 
XXMIN(12) =0.55𝑓𝑓𝑡𝑡𝑡𝑡′  

 
XXMIN(13) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(14) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(15) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(16) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(17) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(18) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(19) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(20) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(21) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(22) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(23) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(24) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(25) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(26) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(27) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(28) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(29) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(30) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(31) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(32) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(33) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(34) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(35) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(36) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(37) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(38) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(39) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(40) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(41) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(42) = 0.40𝑓𝑓𝑡𝑡′ 
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XXMAX(35) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(36) =  0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(37) =  0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(38) =   0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(39) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(40) =0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(41) =0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(42) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(43) =  0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(44) =   0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(45) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(46) =0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(47) =0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(48) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(49) = 𝜑𝜑𝑀𝑀𝑡𝑡𝑛𝑛  

XXMAX(50) =0.666�𝑓𝑓𝑡𝑡𝑊𝑊𝑤𝑤𝑑𝑑𝑐𝑐 

XXMAX(51) = 𝜑𝜑𝑀𝑀𝑡𝑡𝑛𝑛/1.2 

XXMAX(52) = 0.36β1 

XXMAX(53) = 𝐺𝐺𝑑𝑑
2

+ (𝐺𝐺𝑑𝑑
6

+ 0.5�fc
′  𝐴𝐴4 𝐺𝐺𝑑𝑑

6 𝜂𝜂4𝑛𝑛
) 

XXMAX(54) =  L/800 

XXMAX(55) = 0.7𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐 

XXMAX(56) = 0.83 𝑓𝑓𝑦𝑦  
∗𝐴𝐴𝑐𝑐 

XXMAX(57) = 0.80 𝑓𝑓𝑦𝑦∗𝐴𝐴𝑐𝑐 

XXMAX(58) =100000 

XXMAX(59) =  300.0 

XXMAX(60) = 𝑑𝑑𝑝𝑝𝑐𝑐𝑙𝑙𝑝𝑝  

XXMAX(61) =  𝜑𝜑𝑀𝑀𝑝𝑝𝑛𝑛  

XXMAX(62) = 𝜑𝜑𝑀𝑀𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 /1.2 

XXMAX(66) =  0.36β1 

XXMAX(67) = 100.0 

XXMIN(43) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(44) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(45) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(46) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(47) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(48) = 0.40𝑓𝑓𝑡𝑡′ 

XXMIN(49) = 0.0 

XXMIN(50) = 0.0 

XXMIN(51) = 0.0 

XXMIN(52) = 0.0 

XXMIN(53) = 
𝐺𝐺𝑑𝑑
2
− (𝐺𝐺𝑑𝑑

6
+ 0.25�𝑓𝑓𝑡𝑡𝑡𝑡  𝐴𝐴4 𝐺𝐺𝑑𝑑

6 𝜂𝜂4𝑡𝑡
 ) 

XXMIN(54) = 0.0 

XXMIN(55) = 0.0 

XXMIN(56) = 0.0 

XXMIN(57) = 0.0 

XXMIN(58) = Vu/0.9 

XXMIN(59) = (Sd +17)/3*25.4 

XXMIN(60) = 𝑑𝑑𝑇𝑇𝑡𝑡𝑛𝑛  

XXMIN(61) = 0.0 

XXMIN(62) = 0.0 

XXMIN(63) = 0.0 

XXMIN(64) = 0.0 

XXMIN(65) = 0.0 

XXMIN(66) = 0.0 

XXMIN(67) = 1.5 

XXMIN(68) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(69) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(70) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(71) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(72) = 0.60𝑓𝑓𝑡𝑡′ 

XXMIN(73) = 0.60𝑓𝑓𝑡𝑡′ 
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XXMAX(68) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(69) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(70) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(71) =  0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(72) = 0.5�𝑓𝑓𝑡𝑡′ 

XXMAX(73) =0.5�𝑓𝑓𝑡𝑡′ 

 

UPPER BOUND OF IMPLICIT 

CONSTRAINTS AT THE STARTING 

POINT 

LOWER BOUND OF IMPLICIT 

CONSTRAINTS AT THE STARTING 

POINT 

XXMAX( 1) =        .13693064E+01 

XXMAX( 2) =        .13693064E+01 

XXMAX( 3) =        .13693064E+01 

XXMAX( 4) =        .13693064E+01 

XXMAX( 5) =        .13693064E+01 

XXMAX( 6) =        .13693064E+01 

XXMAX( 7) =        .13693064E+01 

XXMAX( 8) =        .13693064E+01 

XXMAX( 9) =        .13693064E+01 

XXMAX(10) =        .13693064E+01 

XXMAX(11) =        .13693064E+01 

XXMAX(12) =        .13693064E+01 

XXMAX(13) =        .31622777E+01 

XXMAX(14) =        .31622777E+01 

XXMAX(15) =        .31622777E+01 

XXMAX(16) =        .31622777E+01 

XXMAX(17) =        .31622777E+01 

XXMAX(18) =        .31622777E+01 

XXMAX(19) =        .31622777E+01 

XXMAX(20) =        .31622777E+01 

XXMAX(21) =        .31622777E+01 

XXMAX(22) =        .31622777E+01 

XXMIN( 1) =       -.16500000E+02 

XXMIN( 2) =       -.16500000E+02 

XXMIN( 3) =       -.16500000E+02 

XXMIN( 4) =       -.16500000E+02 

XXMIN( 5) =       -.16500000E+02 

XXMIN( 6) =       -.16500000E+02 

XXMIN( 7) =       -.16500000E+02 

XXMIN( 8) =       -.16500000E+02 

XXMIN( 9) =       -.16500000E+02 

XXMIN(10) =       -.16500000E+02 

XXMIN(11) =       -.16500000E+02 

XXMIN(12) =       -.16500000E+02 

XXMIN(13) =       -.16000000E+02 

XXMIN(14) =       -.16000000E+02 

XXMIN(15) =       -.16000000E+02 

XXMIN(16) =       -.16000000E+02 

XXMIN(17) =       -.16000000E+02 

XXMIN(18) =       -.16000000E+02 

XXMIN(19) =       -.16000000E+02 

XXMIN(20) =       -.16000000E+02 

XXMIN(21) =       -.16000000E+02 

XXMIN(22) =       -.16000000E+02 
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XXMAX(23) =        .31622777E+01 

XXMAX(24) =        .31622777E+01 

XXMAX(25) =        .31622777E+01 

XXMAX(26) =        .31622777E+01 

XXMAX(27) =        .31622777E+01 

XXMAX(28) =        .31622777E+01 

XXMAX(29) =        .31622777E+01 

XXMAX(30) =        .31622777E+01 

XXMAX(31) =        .31622777E+01 

XXMAX(32) =        .31622777E+01 

XXMAX(33) =        .31622777E+01 

XXMAX(34) =        .31622777E+01 

XXMAX(35) =        .31622777E+01 

XXMAX(36) =        .31622777E+01 

XXMAX(37) =        .31622777E+01 

XXMAX(38) =        .31622777E+01 

XXMAX(39) =        .31622777E+01 

XXMAX(40) =        .31622777E+01 

XXMAX(41) =        .31622777E+01 

XXMAX(42) =        .31622777E+01 

XXMAX(43) =        .31622777E+01 

XXMAX(44) =        .31622777E+01 

XXMAX(45) =        .31622777E+01 

XXMAX(46) =        .31622777E+01 

XXMAX(47) =        .31622777E+01 

XXMAX(48) =        .31622777E+01 

XXMAX(49) =        .36280958E+08 

XXMAX(50) =        .17478754E+04 

XXMAX(51) =        .30234132E+08 

XXMAX(52) =        .27000000E+00 

XXMAX(53) =        .18561776E+04 

XXMAX(54) =        .61000000E+02 

XXMAX(55) =        .11489814E+05 

XXMIN(23) =       -.16000000E+02 

XXMIN(24) =       -.16000000E+02 

XXMIN(25) =       -.24000000E+02 

XXMIN(26) =       -.24000000E+02 

XXMIN(27) =       -.24000000E+02 

XXMIN(28) =       -.24000000E+02 

XXMIN(29) =       -.24000000E+02 

XXMIN(30) =       -.24000000E+02 

XXMIN(31) =       -.24000000E+02 

XXMIN(32) =       -.24000000E+02 

XXMIN(33) =       -.24000000E+02 

XXMIN(34) =       -.24000000E+02 

XXMIN(35) =       -.24000000E+02 

XXMIN(36) =       -.24000000E+02 

XXMIN(37) =       -.16000000E+02 

XXMIN(38) =       -.16000000E+02 

XXMIN(39) =       -.16000000E+02 

XXMIN(40) =       -.16000000E+02 

XXMIN(41) =       -.16000000E+02 

XXMIN(42) =       -.16000000E+02 

XXMIN(43) =       -.16000000E+02 

XXMIN(44) =       -.16000000E+02 

XXMIN(45) =       -.16000000E+02 

XXMIN(46) =       -.16000000E+02 

XXMIN(47) =       -.16000000E+02 

XXMIN(48) =       -.16000000E+02 

XXMIN(49) =        .00000000E+00 

XXMIN(50) =        .00000000E+00 

XXMIN(51) =        .00000000E+00 

XXMIN(52) =        .00000000E+00 

XXMIN(53) =        .77051056E+03 

XXMIN(54) =        .00000000E+00 

XXMIN(55) =        .00000000E+00 
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XXMAX(56) =        .12261273E+05 

XXMAX(57) =        .11818094E+05 

XXMAX(58) =        .10000000E+06 

XXMAX(59) =        .30000000E+03 

XXMAX(60) =        .17300000E+03 

XXMAX(61) =        .14889011E+08 

XXMAX(62) =        .37443427E+05 

XXMAX(66) =        .27000000E+00 

XXMAX(67) =        .10000000E+03 

XXMAX(68) =        .31622777E+01 

XXMAX(69) =        .31622777E+01 

XXMAX(70) =        .31622777E+01 

XXMAX(71) =        .31622777E+01 

XXMAX(72) =        .31622777E+01 

XXMAX(73) =        .31622777E+01 

XXMIN(56) =        .00000000E+00 

XXMIN(57) =        .00000000E+00 

XXMIN(58) =        .17714722E+04 

XXMIN(59) =        .19704473E+03 

XXMIN(60) =        .79049716E+02 

XXMIN(61) =        .00000000E+00 

XXMIN(62) =        .00000000E+00 

XXMIN(66) =        .00000000E+00 

XXMIN(67) =        .15000000E+01 

XXMIN(68) =       -.24000000E+02 

XXMIN(69) =       -.24000000E+02 

XXMIN(70) =       -.24000000E+02 

XXMIN(71) =       -.24000000E+02 

XXMIN(72) =       -.24000000E+02 

XXMIN(73) =       -.24000000E+02 

 

IMPLICIT CONSTRAINTS AT THE STARTING POINT 

XX( 1) =       -.51534951E+01 

XX( 2) =       -.78275140E+01 

XX( 3) =       -.58464857E+01 

XX( 4) =       -.90183803E+01 

XX( 5) =       -.62977662E+01 

XX( 6) =       -.94254173E+01 

XX( 7) =       -.12798985E+02 

XX( 8) =       -.13424276E+02 

XX( 9) =       -.12657727E+02 

XX(10) =       -.78140814E+01 

XX(11) =       -.85757223E+01 

XX(12) =       -.10593743E+02 

XX(13) =       -.14913684E+02 

XX(14) =       -.13994308E+02 

XX(15) =       -.14200353E+02 

XX(16) =       -.29470536E+01 

XX(38) =        .91364319E+04 

XX(39) =        .38575891E+04 

XX(40) =        .23000000E+03 

XX(41) =        .15055625E+03 

XX(42) =        .66089805E+07 

XX(43) =        .27552083E+05 

XX(44) =        .13905571E+00 

XX(45) =        .18554627E+01 

XX(46) =       -.93922106E+01 

XX(47) =       -.15481798E+02 

XX(48) =       -.11272259E+02 

XX(49) =       -.18917406E+02 

XX(50) =       -.13616007E+02 

XX(51) =       -.18917406E+02 

XX(52) =        .38575891E+04 

XX(53) =        .23000000E+03 
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XX(17) =       -.71646409E+01 

XX(18) =       -.69501662E+01 

XX(19) =       -.16537192E+01 

XX(20) =       -.54253256E+01 

XX(21) =       -.28598239E+01 

XX(22) =       -.15041360E+01 

XX(23) =       -.36658537E+01 

XX(24) =       -.85757223E+01 

XX(25) =       -.10593743E+02 

XX(26) =       -.14913684E+02 

XX(27) =       -.13994308E+02 

XX(28) =       -.14200353E+02 

XX(29) =       -.29470536E+01 

XX(30) =       -.71646409E+01 

XX(31) =       -.69501662E+01 

XX(32) =       -.16537192E+01 

XX(33) =       -.54253256E+01 

XX(34) =       -.28598239E+01 

XX(35) =       -.15041360E+01 

XX(36) =       -.36658537E+01 

XX(37) =       -.36658537E+01 

XX(54) =        .15055625E+03 

XX(55) =        .66089805E+07 

XX(56) =        .27552083E+05 

XX(57) =        .13905571E+00 

XX(58) =        .18554627E+01 

XX(59) =       -.93922106E+01 

XX(60) =       -.15481798E+02 

XX(61) =       -.11272259E+02 

XX(62) =       -.18917406E+02 

XX(63) =       -.13616007E+02 

XX(64) =       -.18917406E+02 

XX(65) =        .13905571E+00 

XX(66) =        .18554627E+01 

XX(67) =       -.93922106E+01 

XX(68) =       -.15481798E+02 

XX(69) =       -.11272259E+02 

XX(70) =       -.18917406E+02 

XX(71) =       -.13616007E+02 

XX(72) =       -.18917406E+02 

XX(73) =       -.18917406E+02 

 

 

 

 

 

 

INITIAL COMPLEX CONFIGURATION 

All the vertices of the initial complex shown below are feasible solution or design of 

the bridge. It indicates that a lot of design of the bridge can be done with the different 

costs of  t he br idge. The design of  the br idge which yields the minimum cost i s the 

optimum design. 
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VERTEX NUMBER  1 

FUNCTION VALUE  = .53064839E+07  

COORDINATES     

XT( 1) =    .3563000E+04 

XT( 2) =    .5680000E+03 

XT( 3) =    .26800000E+03 

XT( 4) =    .34700000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .50000000E+01 

XT( 8) =    .56400000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .35500000E+03 

XT(11) =    .58849000E-02 

XT(12) =    .67000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  2 

FUNCTION VALUE  = .52784440E+07 

COORDINATES 

XT( 1) =    .36900000E+04 

XT( 2) =    .3200000E+03 

XT( 3) =    .42900000E+03 

XT( 4) =    .32000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .39000000E+03 

XT( 9) =    .34170000E+00 

XT(10) =    .32500000E+03 

XT(11) =    .54989000E-02 

XT(12) =    .75000000E+02 

VERTEX NUMBER  9 

FUNCTION VALUE =  .57796738E+07 

COORDINATES           

XT( 1) =    .3583000E+04 

XT( 2) =    .5730000E+03 

XT( 3) =    .34100000E+03 

XT( 4) =    .33400000E+03 

XT( 5) =    .19400000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .50000000E+01 

XT( 8) =    .56400000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .35500000E+03 

XT(11) =    .58849000E-02 

XT(12) =    .67000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  10 

FUNCTION VALUE  = .50476636E+07 

COORDINATES             

XT( 1) =    .3563000E+04 

XT( 2) =    .5680000E+03 

XT( 3) =    .26800000E+03 

XT( 4) =    .34700000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .50000000E+01 

XT( 8) =    .56400000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .35500000E+03 

XT(11) =    .58849000E-02 

XT(12) =    .67000000E+02 

XT(13) =    .50000000E+02 
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XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  3 

FUNCTION VALUE  = .54864721E+07 

COORDINATES                

XT( 1) =    .3583000E+04 

XT( 2) =    .5730000E+03 

XT( 3) =    .34100000E+03 

XT( 4) =    .33400000E+03 

XT( 5) =    .19400000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .50000000E+01 

XT( 8) =    .56400000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .35500000E+03 

XT(11) =    .58849000E-02 

XT(12) =    .67000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  4 

FUNCTION VALUE  = .56230794E+07 

COORDINATES 

XT( 1) =    .36900000E+04 

XT( 2) =    .3200000E+03 

XT( 3) =    .42900000E+03 

XT( 4) =    .32000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .39000000E+03 

XT( 9) =    .34170000E+00 

XT(10) =    .32500000E+03 

XT(14) =    .15000000E+03 

 

 

VERTEX NUMBER  11 

FUNCTION VALUE  = .52410747E+07 

COORDINATES               

XT( 1) =    .36900000E+04 

XT( 2) =    .3200000E+03 

XT( 3) =    .42900000E+03 

XT( 4) =    .32000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .39000000E+03 

XT( 9) =    .34170000E+00 

XT(10) =    .32500000E+03 

XT(11) =    .54989000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  12 

FUNCTION VALUE  = .58728819E+07 

COORDINATES 

XT( 1) =    .3583000E+04 

XT( 2) =    .5730000E+03 

XT( 3) =    .34100000E+03 

XT( 4) =    .33400000E+03 

XT( 5) =    .19400000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .50000000E+01 

XT( 8) =    .56400000E+03 

XT( 9) =    .27170000E+00 
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XT(11) =    .54989000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER 5 

FUNCTION VALUE  = .55566911E+07 

COORDINATES              

XT( 1) =    .3563000E+04 

XT( 2) =    .5680000E+03 

XT( 3) =    .26800000E+03 

XT( 4) =    .34700000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .50000000E+01 

XT( 8) =    .56400000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .35500000E+03 

XT(11) =    .58849000E-02 

XT(12) =    .67000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  6 

FUNCTION VALUE  = .55130258E+07 

COORDINATES 

XT( 1) =    .3583000E+04 

XT( 2) =    .5730000E+03 

XT( 3) =    .34100000E+03 

XT( 4) =    .33400000E+03 

XT( 5) =    .19400000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .50000000E+01 

XT( 8) =    .56400000E+03 

XT(10) =    .35500000E+03 

XT(11) =    .58849000E-02 

XT(12) =    .67000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  13 

FUNCTION VALUE  = .57308934E+07 

COORDINATES         

XT( 1) =    .36900000E+04 

XT( 2) =    .3200000E+03 

XT( 3) =    .42900000E+03 

XT( 4) =    .32000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .39000000E+03 

XT( 9) =    .34170000E+00 

XT(10) =    .32500000E+03 

XT(11) =    .54989000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

 

VERTEX NUMBER  14 

FUNCTION VALUE  = .60453512E+07 

COORDINATES          

XT( 1) =    .3563000E+04 

XT( 2) =    .5680000E+03 

XT( 3) =    .26800000E+03 

XT( 4) =    .34700000E+03 

XT( 5) =    .19000000E+04 
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XT( 9) =    .27170000E+00 

XT(10) =    .35500000E+03 

XT(11) =    .58849000E-02 

XT(12) =    .67000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  7 

FUNCTION VALUE  = .50098596E+07 

COORDINATES            

XT( 1) =    .3563000E+04 

XT( 2) =    .5680000E+03 

XT( 3) =    .26800000E+03 

XT( 4) =    .34700000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .50000000E+01 

XT( 8) =    .56400000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .35500000E+03 

XT(11) =    .58849000E-02 

XT(12) =    .67000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  8 

FUNCTION VALUE  = .55388064E+07               

COORDINATES 

XT( 1) =    .36900000E+04 

XT( 2) =    .3200000E+03 

XT( 3) =    .42900000E+03 

XT( 4) =    .32000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 6) =    .80000000E+01 

XT( 7) =    .50000000E+01 

XT( 8) =    .56400000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .35500000E+03 

XT(11) =    .58849000E-02 

XT(12) =    .67000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  15 

FUNCTION VALUE  = .56236387E+07 

COORDINATES             

XT( 1) =    .3583000E+04 

XT( 2) =    .5730000E+03 

XT( 3) =    .34100000E+03 

XT( 4) =    .33400000E+03 

XT( 5) =    .19400000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .50000000E+01 

XT( 8) =    .56400000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .35500000E+03 

XT(11) =    .58849000E-02 

XT(12) =    .67000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 
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XT( 8) =    .39000000E+03 

XT( 9) =    .34170000E+00 

XT(10) =    .32500000E+03 

XT(11) =    .54989000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

 

OUTPUT SUMMARY FROM SUBROUTINE EVOP 

MINIMUM OF THE OBJECTIVE FUNCTION HAS BEEN LOCATED TO THE 

DESIRED DEGREE OF ACCURACY FOR CONVERGENCE.  IER = 8 

TOTAL NUMBER OF OBJECTIVE FUNCTION EVALUATION.   

NFUNC =      1267 

NUMBER OF TIMES THE SUBROUTINE FUNCTION IS CALLED DURING 

THE PRESENT CONVERGENCE TESTS. KUT =        6 

 NUMBER OF TIMES THE EXPLICIT CONSTRAINTS WERE EVALUATED                                 

KKT =     4346 

NUMBER OF TIMES THE IMPLICIT CONSTRAINTS WERE EVALUATED                                   

M =     2142 

 

COORDINATES OF THE MINIMUM 

XT( 1) =    .40000000E+04 

XT( 2) =    .4500000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .26000000E+03 

XT( 5) =    .17000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

 OBJECTIVE FUNCTION VALUE AT THE MINIMUM     F =      .43409822E+07 
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IMPLICIT CONSTRAINT VALUES AT THE MINIMUM 

XX( 1) =       -.51534951E+01 

XX( 2) =       -.78275140E+01 

XX( 3) =       -.58464857E+01 

XX( 4) =       -.90183803E+01 

XX( 5) =       -.62977662E+01 

XX( 6) =       -.94254173E+01 

XX( 7) =       -.12798985E+02 

XX( 8) =       -.13424276E+02 

XX( 9) =       -.12657727E+02 

XX(10) =       -.78140814E+01 

XX(11) =       -.85757223E+01 

XX(12) =       -.10593743E+02 

XX(13) =       -.14913684E+02 

XX(14) =       -.13994308E+02 

XX(15) =       -.14200353E+02 

XX(16) =       -.29470536E+01 

XX(17) =       -.71646409E+01 

XX(18) =       -.69501662E+01 

XX(19) =       -.16537192E+01 

XX(20) =       -.54253256E+01 

XX(21) =       -.28598239E+01 

XX(22) =       -.15041360E+01 

XX(23) =       -.36658537E+01 

XX(24) =       -.85757223E+01 

XX(25) =       -.10593743E+02 

XX(26) =       -.14913684E+02 

XX(27) =       -.13994308E+02 

XX(28) =       -.14200353E+02 

XX(29) =       -.29470536E+01 

XX(30) =       -.71646409E+01 

XX(31) =       -.69501662E+01 

XX(32) =       -.16537192E+01 

XX(38) =        .91364319E+04 

XX(39) =        .38575891E+04 

XX(40) =        .23000000E+03 

XX(41) =        .15055625E+03 

XX(42) =        .66089805E+07 

XX(43) =        .27552083E+05 

XX(44) =        .13905571E+00 

XX(45) =        .18554627E+01 

XX(46) =       -.93922106E+01 

XX(47) =       -.15481798E+02 

XX(48) =       -.11272259E+02 

XX(49) =       -.18917406E+02 

XX(50) =       -.13616007E+02 

XX(51) =       -.18917406E+02 

XX(52) =        .38575891E+04 

XX(53) =        .23000000E+03 

XX(54) =        .15055625E+03 

XX(55) =        .66089805E+07 

XX(56) =        .27552083E+05 

XX(57) =        .13905571E+00 

XX(58) =        .18554627E+01 

XX(59) =       -.93922106E+01 

XX(60) =       -.15481798E+02 

XX(61) =       -.11272259E+02 

XX(62) =       -.18917406E+02 

XX(63) =       -.13616007E+02 

XX(64) =       -.18917406E+02 

XX(65) =        .13905571E+00 

XX(66) =        .18554627E+01 

XX(67) =       -.93922106E+01 

XX(68) =       -.15481798E+02 

XX(69) =       -.11272259E+02 
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XX(33) =       -.54253256E+01 

XX(34) =       -.28598239E+01 

XX(35) =       -.15041360E+01 

XX(36) =       -.36658537E+01 

XX(37) =       -.36658537E+01 

XX(70) =       -.18917406E+02 

XX(71) =       -.13616007E+02 

XX(72) =       -.18917406E+02 

XX(73) =       -.18917406E+02 

 

 

FINAL COMPLEX CONFIGURATION 

The co ordinates o f t he v ertices o f t he f inal co mplex af ter co nvergence ar e sh own 

below. 

VERTEX NUMBER  1 

FUNCTION VALUE  = .42824304E+07 

COORDINATES     

XT( 1) =    .389000000E+04 

XT( 2) =    .4450000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  2 

FUNCTION VALUE  = .42834434E+07 

COORDINATES 

XT( 1) =    .39900000E+04 

XT( 2) =    .4520000E+03 

VERTEX NUMBER  9 

FUNCTION VALUE =  .42826755E+07 

COORDINATES           

XT( 1) =    .387500000E+04 

XT( 2) =    .4320000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .25000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  10 

FUNCTION VALUE  = .42812646E+07 

COORDINATES             

XT( 1) =    .389000000E+04 

XT( 2) =    .4450000E+03 
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XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .16500000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  3 

FUNCTION VALUE  = .42809856E+07 

COORDINATES                

 XT( 1) =    .387500000E+04 

XT( 2) =    .4320000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .25000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  4 

FUNCTION VALUE  = .42824698E+07 

COORDINATES 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  11 

FUNCTION VALUE  = .42828413E+07 

COORDINATES               

XT( 1) =    .39900000E+04 

XT( 2) =    .4520000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .16500000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  12 

FUNCTION VALUE  = .42819999E+07 

COORDINATES 

XT( 1) =    .387500000E+04 
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XT( 1) =    .39900000E+04 

XT( 2) =    .4520000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .16500000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER 5 

FUNCTION VALUE  =  .42830152E+07 

COORDINATES              

XT( 1) =    .389000000E+04 

XT( 2) =    .4450000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  6 

FUNCTION VALUE  = .42826158E+07 

XT( 2) =    .4320000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .25000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  13 

FUNCTION VALUE  = .42820959E+07 

COORDINATES         

XT( 1) =    .39900000E+04 

XT( 2) =    .4520000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .16500000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

 

VERTEX NUMBER  14 
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COORDINATES 

XT( 1) =    .387500000E+04 

XT( 2) =    .4320000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .25000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  7 

FUNCTION VALUE  = .42815025E+07 

COORDINATES            

XT( 1) =    .389000000E+04 

XT( 2) =    .4450000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

FUNCTION VALUE  = .42837932E+07 

COORDINATES          

XT( 1) =    .389000000E+04 

XT( 2) =    .4450000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  15 

FUNCTION VALUE  = .42828669E+07 

COORDINATES             

XT( 1) =    .387500000E+04 

XT( 2) =    .4320000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .25000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .80000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 
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VERTEX NUMBER  8 

FUNCTION VALUE  = .42824856E+07 

COORDINATES 

XT( 1) =    .39900000E+04 

XT( 2) =    .4520000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .16500000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

 

 

FIRST RESTART OF "EVOP" TO CHECK THE MINIMUM 

Automatic r estart o f E VOP t akes p lace t o check w hether t he p reviously o btained 

minimum i s t he g lobal minimum. The initial complex a s shown be low i s generated 

taking t he coordinates of  t he pr evious m inimum ( values obt ained from pr evious 

execution of EVOP) as the starting point of the complex. 

 

INITIAL COMPLEX CONFIGURATION 

VERTEX NUMBER  1 

FUNCTION VALUE  = .42805835E+07 

COORDINATES                   

XT( 1) =    .39900000E+04 

XT( 2) =    .4520000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

VERTEX NUMBER  9 

FUNCTION VALUE =  .43559536E+07 

COORDINATES           

XT( 1) =    .36900000E+04 

XT( 2) =    .3200000E+03 

XT( 3) =    .42900000E+03 

XT( 4) =    .32000000E+03 
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XT( 5) =    .16500000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  2 

FUNCTION VALUE  = .42278859E+07 

COORDINATES 

XT( 1) =    .36900000E+04 

XT( 2) =    .3200000E+03 

XT( 3) =    .42900000E+03 

XT( 4) =    .32000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .39000000E+03 

XT( 9) =    .34170000E+00 

XT(10) =    .32500000E+03 

XT(11) =    .54989000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  3 

FUNCTION VALUE  = .44438093E+07 

COORDINATES                            

XT( 1) =    .389000000E+04 

XT( 2) =    .4450000E+03 

XT( 3) =    .32000000E+03 

XT( 5) =    .19000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .39000000E+03 

XT( 9) =    .34170000E+00 

XT(10) =    .32500000E+03 

XT(11) =    .54989000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  10 

FUNCTION VALUE  = .44066776E+07 

COORDINATES                   

XT( 1) =    .39900000E+04 

XT( 2) =    .4520000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .16500000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  11 

FUNCTION VALUE  = .47584549E+07 

COORDINATES               

XT( 1) =    .389000000E+04 

XT( 2) =    .4450000E+03 
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XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  4 

FUNCTION VALUE  = .45273709E+07 

COORDINATES              

XT( 1) =    .389000000E+04 

XT( 2) =    .4450000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER 5 

FUNCTION VALUE  = .52749319E+07 

COORDINATES              

XT( 1) =    .389000000E+04 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  12 

FUNCTION VALUE  = .43274612E+07 

COORDINATES 

XT( 1) =    .39900000E+04 

XT( 2) =    .4520000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .16500000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

 

VERTEX NUMBER  13 



237 
 

XT( 2) =    .4450000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  6 

FUNCTION VALUE  = .46799539E+07 

COORDINATES       

XT( 1) =    .389000000E+04 

XT( 2) =    .4450000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  7 

FUNCTION VALUE  = .57948675E+07 

COORDINATES                           

XT( 1) =    .389000000E+04 

XT( 2) =    .4450000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .18000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .42500000E+03 

XT( 9) =    .26370000E+00 

XT(10) =    .26500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  14 

FUNCTION VALUE  = .47675648E+07 

COORDINATES                

XT( 1) =    .39900000E+04 

XT( 2) =    .4520000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .25500000E+03 

XT( 5) =    .16500000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 



238 
 

FUNCTION VALUE  = .42092963E+07 

COORDINATES                      

XT( 1) =    .40000000E+04 

XT( 2) =    .4500000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .26000000E+03 

XT( 5) =    .17000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

VERTEX NUMBER  8 

FUNCTION VALUE  = .49540199E+07 

COORDINATES           

XT( 1) =    .40000000E+04 

XT( 2) =    .4500000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .26000000E+03 

XT( 5) =    .17000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

VERTEX NUMBER  15 

FUNCTION VALUE  = .45442755E+07 

COORDINATES                     

XT( 1) =    .40000000E+04 

XT( 2) =    .4500000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .26000000E+03 

XT( 5) =    .17000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 
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OUTPUT SUMMARY FROM SUBROUTINE EVOP 

MINIMUM OF THE OBJECTIVE FUNCTION HAS BEEN LOCATED TO THE 

DESIRED DEGREE OF ACCURACY FOR CONVERGENCE.  IER = 8 

TOTAL NUMBER OF OBJECTIVE FUNCTION EVALUATION.  

NFUNC =      371 

NUMBER OF TIMES THE SUBROUTINE FUNCTION IS CALLED DURING 

THE PRESENT CONVERGENCE TESTS. KUT =        6 

NUMBER OF TIMES THE EXPLICIT CONSTRAINTS WERE EVALUATED                                 

KKT =     3514 

NUMBER OF TIMES THE IMPLICIT CONSTRAINTS WERE EVALUATED                                   

M =     2186 

 

 

COORDINATES OF THE MINIMUM 

XT( 1) =    .40000000E+04 

XT( 2) =    .4500000E+03 

XT( 3) =    .32000000E+03 

XT( 4) =    .26000000E+03 

XT( 5) =    .17500000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .29170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62549000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 

OBJECTIVE FUNCTION VALUE AT THE MINIMUM     F =        .41296593E+07 

 

SECOND RESTART OF "EVOP" TO CHECK THE MINIMUM 

OUTPUT SUMMARY FROM SUBROUTINE EVOP 

MINIMUM OF THE OBJECTIVE FUNCTION HAS BEEN LOCATED TO THE 

DESIRED DEGREE OF ACCURACY FOR CONVERGENCE.  IER = 8 

TOTAL NUMBER OF OBJECTIVE FUNCTION EVALUATION.                                                

NFUNC =      342 

NUMBER OF TIMES THE SUBROUTINE FUNCTION IS CALLED DURING 

THE PRESENT CONVERGENCE TESTS. KUT =        6 
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NUMBER OF TIMES THE EXPLICIT CONSTRAINTS WERE EVALUATED                                 

KKT =     4592 

NUMBER OF TIMES THE IMPLICIT CONSTRAINTS WERE EVALUATED                                   

M =     2810 

COORDINATES OF THE MINIMUM 

XT( 1) =    .40000000E+04 

XT( 2) =    .4500000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .26000000E+03 

XT( 5) =    .17000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

                                             

OBJECTIVE FUNCTION VALUE AT THE MINIMUM    F =        .41137607E+07 

 

THIRD RESTART OF "EVOP" TO CHECK THE MINIMUM 

OUTPUT SUMMARY FROM SUBROUTINE EVOP 

MINIMUM OF THE OBJECTIVE FUNCTION HAS BEEN LOCATED TO THE 

DESIRED DEGREE OF ACCURACY FOR CONVERGENCE.  IER = 8 

TOTAL NUMBER OF OBJECTIVE FUNCTION EVALUATION.                                                

NFUNC =      122 

NUMBER OF TIMES THE SUBROUTINE FUNCTION IS CALLED DURING 

THE PRESENT CONVERGENCE TESTS. KUT =        6 

NUMBER OF TIMES THE EXPLICIT CONSTRAINTS WERE EVALUATED                                 

KKT =    2122 

NUMBER OF TIMES THE IMPLICIT CONSTRAINTS WERE EVALUATED                                   

M =     1209 

COORDINATES OF THE MINIMUM 

XT( 1) =    .40000000E+04 

XT( 2) =    .4500000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .26000000E+03 

XT( 5) =    .17000000E+04 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 
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XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

                                                  

OBJECTIVE FUNCTION VALUE AT THE MINIMUM      F =        .41883095E+07 

 

FOURTH RESTART OF "EVOP" TO CHECK THE MINIMUM 

OUTPUT SUMMARY FROM SUBROUTINE EVOP 

MINIMUM OF THE OBJECTIVE FUNCTION HAS BEEN LOCATED TO THE 

DESIRED DEGREE OF ACCURACY FOR CONVERGENCE.  IER = 8 

TOTAL NUMBER OF OBJECTIVE FUNCTION EVALUATION.                                                

NFUNC =       32 

NUMBER OF TIMES THE SUBROUTINE FUNCTION IS CALLED DURING 

THE PRESENT CONVERGENCE TESTS. KUT =        7 

 NUMBER OF TIMES THE EXPLICIT CONSTRAINTS WERE EVALUATED                                 

KKT =      256 

NUMBER OF TIMES THE IMPLICIT CONSTRAINTS WERE EVALUATED                                   

M =      171     

COORDINATES OF THE MINIMUM 

XT( 1) =    .40000000E+04 

XT( 2) =    .4500000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .26000000E+03 

XT( 5) =    .17000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

                                                  

OBJECTIVE FUNCTION VALUE AT THE MINIMUM      F =        .41413647E+07 

 

Further restart of EVOP gives the same coordinates of the minimum as obtained in the 

fourth r estart. S o t hese coordinates of t he minimum obt ained i n t his r estart a re t he 

optimum s olutions a nd obj ective f unction value a t t he m inimum i s, F =   

.46413647E+07. The p rogram i s r erun us ing t hese opt imum de sign variables a s 

starting point with same values of control parameters and the minimum remains same.    
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So t he gl obal minimum i s F =    .41137607E+07 and optimum va lue of t he de sign 

variables are as follows: 

 

Serial No. Design variables Design variables 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

S = 4000; 

TFw = 450; 

BFw = 325; 

BFt = 260; 

Gd = 1700; 

NS = 9.0; 

NT = 4.0; 

y1 = 430; 

η = 0.27; 

t = 255; 

ρ = 0.006284; 

TFt = 75; 

TFTt = 50; 

Ww  = 150; 

XT( 1) =    .40000000E+04 

XT( 2) =    .4500000E+03 

XT( 3) =    .32500000E+03 

XT( 4) =    .26000000E+03 

XT( 5) =    .17000000E+04 

XT( 6) =    .90000000E+01 

XT( 7) =    .40000000E+01 

XT( 8) =    .43000000E+03 

XT( 9) =    .27170000E+00 

XT(10) =    .25500000E+03 

XT(11) =    .62849000E-02 

XT(12) =    .75000000E+02 

XT(13) =    .50000000E+02 

XT(14) =    .15000000E+03 

 


