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Abstract

Myocardial infarction (MI) is one of the leading causes of death around the world.

MI can be diagnosed from the Electrocardiography (ECG) of the patient. The ECG

is crucial for the patients survival in the early hours of MI as diagnosis from ele-

vated serum cardiac enzymes takes 5-7 hours. This thesis presents a Convolutional

Neural Network (CNN) architecture which takes raw Electrocardiography (ECG)

signal from three ECG leads (lead II, III, AVF) and differentiates between inferior

myocardial infarction (IMI) and healthy signals. A 5 layer deep network architec-

ture consisting of inception blocks is developed. The discriminating strength of the

features extracted by the convolutional layers by means of geometric separability

index and Euclidean distance is analyzed and compared with the benchmark model.

The performance of the CNN is also evaluated in terms of accuracy, sensitivity, and

specificity and compared with the benchmark. The proposed model achieves supe-

rior metrics scores when compared to the benchmark model using hand engineered

features. The detection models in the existing literature focused on ST segment

elevation. But, studies showed that there is significant information in the leads

containing ST segment depression. Hence, the IMI detection capability of different

combinations of these leads needs to be investigated which is a computationally

challenging task. We analyze the discriminating strength of the features extracted

by the convolutional layers by means of geometric separability index and Euclidean

distance and compare it with the benchmark model. Additionally, a comparison of

the predictive capability (in terms of accuracy, sensitivity, and specificity) of dif-

ferent lead combinations is carried out. Experiments show that the combinations

of leads that capture ST segment elevation and depression often outperforms the

combinations of leads that capture ST segment elevation only.
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Chapter 1

INTRODUCTION

1.1 Introduction

Myocardial Infarction (MI), commonly known as ‘heart attack’, is the death of heart

muscles (necrosis) due to prolonged lack of oxygen supply (ischemia). Myocardial

infarction is the leading cause of death in the United States and in most industri-

alized nations throughout the world. In 2014, on average, someone in USA died

every 4 minutes due to a stroke [1]. Survival rates improve after a heart attack if

treatment begins within 1 hour. This signifies the necessity of accurate and timely

diagnosis of MI.

1.1.1 Clinical Definition

A myocardial infarction is clinically defined as [2]:

• Elevated blood levels of cardiac enzymes (CKMB or Troponin T)

Additionally, one of the following criteria have to be met:

• The patient has typical complaints,

• The ECG shows ST elevation (Fig. 1.2) or depression.

• pathological Q waves develop on the ECG (Fig. 1.3)

• A coronary intervention had been performed (such as stent placement)
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Figure 1.1: Acute Myocardial Infarction. At 3 days, there is a zone of yellow necrosis
surrounded by darker hyperemic borders. The arrow points to a transmural infarct
in the posterior wall of the left ventricle, in this short axis slice through the left and
right ventricular chambers.

Figure 1.2: ST segment elevation due to MI.

Figure 1.3: Pathological Q waves
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1.1.2 Signs and symptoms

Patients with typical MI may have the following symptoms in the days or even

weeks preceding the event (although typical STEMI may occur suddenly, without

warning):

• Fatigue

• Chest discomfort

• Malaise

Typical chest pain in acute MI has the following characteristics:

• Intense and unremitting for 30-60 minutes

• Substernal, and often radiates up to the neck, shoulder, and jaw, and down

the left arm

• Usually described as a substernal pressure sensation that also may be charac-

terized as squeezing, aching, burning, or even sharp

• In some patients, the symptom is epigastric, with a feeling of indigestion or of

fullness and gas

The patient’s vital signs may demonstrate the following in MI:

• The patient’s heart rate is often increased (tachycardic) secondary to a high

sympathoadrenal discharge

• The pulse may be irregular because of ventricular ectopy, an accelerated id-

ioventricular rhythm, ventricular tachycardia, atrial fibrillation or flutter, or

other supraventricular arrhythmias; bradyarrhythmias may be present

• In general, the patient’s blood pressure is initially elevated because of periph-

eral arterial vasoconstriction resulting from an adrenergic response to pain and

ventricular dysfunction

• However, with right ventricular MI or severe left ventricular dysfunction, hy-

potension and cardiogenic shock can be seen
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Figure 1.4: Placement of chest electrodes.

• The respiratory rate may be increased in response to pulmonary congestion or

anxiety

• Coughing, wheezing, and the production of frothy sputum may occur

1.2 Use of ECG in MI detection

Although detection of elevated serum cardiac enzymes is more important than ECG

changes, the cardiac enzymes can only be detected in the serum 5-7 hours after

the onset of the myocardial infarction. Therefore, in the first few hours after the

myocardial infarction, the ECG can be crucial. MI can be diagnosed by cardiologists

based on the changes in the ECG, but the sensitivity and specificity of manual

detection of acute MI is 91% and 51% as reported in [3]. Developing a computer

aided system to automatically detect MI would help the cardiologists make better

decisions. Before going in to the details of the relation between ECG leads and the

location of MI, a detailed description of different electrodes and leads is given below.

1.2.1 Electrodes

In a 12-lead ECG, there are 12 leads calculated using 10 electrodes. The electrodes

are divided in two categories. Chest electrodes and Limb electrodes. As shown

in fig. 1.4, there are six chest electrodes.

1. V1 - Fourth intercostal space on the right sternum
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Figure 1.5: Placement of limb electrodes.

2. V2 - Fourth intercostal space at the left sternum

3. V3 - Midway between placement of V2 and V4

4. V4 - Fifth intercostal space at the midclavicular line

5. V5 - Anterior axillary line on the same horizontal level as V4

6. V6 - Mid-axillary line on the same horizontal level as V4 and V5

In addition to chest electrodes there are 4 limb electrodes (fig 1.5).

1. RA (Right Arm) - Anywhere between the right shoulder and right elbow

2. RL (Right Leg) - Anywhere below the right torso and above the right ankle

3. LA(Left Arm) - Anywhere between the left shoulder and the left elbow

4. LL (Left Leg) - Anywhere below the left torso and above the left ankle

1.2.2 Leads

A lead is a glimpse of the electrical activity of the heart from a particular angle. In

12-lead ECG, there are 10 electrodes providing 12 perspectives of the heart’s activity

using different angles through two electrical planes - vertical and horizontal planes.
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Figure 1.6: Einthoven’s triangle.

Vertical plane (Frontal Leads)

By using 4 limb electrodes, we get 6 frontal leads that provide information about

the heart’s vertical plane:

1. Lead I

2. Lead II

3. Lead III

4. Augmented Vector Right (aVR)

5. Augmented Vector Left (aVL)

6. Augmented vector foot (aVF)

Leads I, II, and III require a negative and positive electrode (bipolarity) for moni-

toring. On the other hand, the augmented leads-aVR, aVL, and aVF-are unipolar

and requires only a positive electrode for monitoring. The Einthoven’s triangle (fig.

1.6) explains why there are 6 frontal leads when there are just 4 limb electrodes. The

principle behind Einthoven’s triangle describes how electrodes RA, LA and LL do
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Figure 1.7: 12 leads showing 12 perspective of heart’s electrical activity.

not only record the electrical activity of the heart in relation to themselves through

the aVR, aVL and aVF leads. They also correspond with each other to form leads I

(RA to LA), II (RA to LL) and III (LL to LA). As a result, they form an equilateral

triangle. Hence it’s called the Einthoven’s triangle, named after Willem Einthoven

who invented the first practical ECG.

Horizontal Plane (Transverse Leads)

By using 6 chest electrodes, we get 6 transverse leads that provide information about

the heart’s horizontal plane: V1, V2, V3, V4, V5, and V6.Like the augmented leads,

the transverse leads are unipolar and requires only a positive electrode. The negative

pole of all 6 leads is found at the center of the heart. This is calculated with the

ECG.

1.3 Inferior Myocardial Infarction

Myocardial infarction can be classified according to the location of the infarct. Ap-

proximately 40% of all MIs involve the inferior wall (IMI) (Fig. 1.8). Traditionally,

inferior MIs have a better prognosis than those in other regions, such as the ante-

rior wall of the heart. The mortality rate of an inferior wall MI is less than 10%.

However, a patient with inferior mycardial infarction should be sent for emergency

cardiac angiography to the catheterization lab with a goal door-to-vessel open time

of under 90 minutes [4]. Hence, fast and accurate detection of IMI is critical in a
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Figure 1.8: Inferior wall location of heart

patients survival.

1.4 Problem Definition

The ECG IMI detection task takes a set of ECG signal samples S, consisting of

simultaneous ECG signal segments of three different leads, as input, and outputs a

label y ∈ 0, 1 for each of the elements of the set. Here, S = {L1, ...Lk} where for

each sample i, Lk = {xpi , x
q
i , x

r
i}. L represents the sample consisting of three leads,

x represents the ECG segments, (p, q, r) are the three lead combinations where,

(p, q, r) ∈ {I, II, III, V 1, V 2, V 3, V 4, AV F,AV L}

1.5 Motivation of finding most effective lead com-

bination

In this thesis, we also focus on finding the three lead combination that performs

best in detecting IMI. While developing IMI detection algorithms, prior researches

have focused either on ECG leads II, III, and AVF (hereinafter, denoted as reference

lead combination) or all of the 12 leads. Leads II, III, and AVF correlates with the
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inferior wall of the heart. ST segment elevation in those leads indicates an inferior

wall ST elevation myocardial infarction (STEMI). However, if an electrocardiogram

is obtained early enough it will often show ST segment depression in leads facing non-

infarcting areas of the myocardium. Such ST depression has been called reciprocal

and occurs in any or all of leads I, AVL and V1 to V6. [4]. According to researchers

in [5] precordial ST segment depression during acute IMI is predictive of prognosis

during and after hospitalization. Hence, it is also important to investigate the effect

of the information included in the leads containing ST segment depression on IMI

detection algorithms and find out the most effective lead combination.

1.6 Motivation of using Deep Learning

In the mathematical theory of artificial neural networks, the universal approximation

theorem [6] states that a feed-forward network with a single hidden layer containing

a finite number of neurons can approximate continuous functions on compact subsets

of Rn, under mild assumptions on the activation function. The theorem thus states

that simple neural networks can represent a wide variety of interesting functions

when given appropriate parameters; however, it does not touch upon the algorithmic

learn ability of those parameters.

Keeping true to its property of being a universal function approximator, the neu-

ral networks and different variations of it have shown its effectiveness in different

domains such as computer vision, speech recognition, natural language process-

ing. Significant breakthroughs in complicated tasks like image classification, [7–10],

object recognition [11, 12], segmentation [13–15] have been possible due to the uti-

lization of neural networks.

In recent years, its application has quickly spread to many sectors including

ECG signal. Convolutional neural networks (CNN) have been utilized in arrhyth-

mia detection, coronary artery disease detection, beats classification, and biomet-

rics [16–21]. Deep belief network has been used to classify signal quality in ECG [22].

Recurrent neural networks (RNN) have also been used in beats classification, ob-

struction of sleep apnea detection, ECG-based biometrics [23–25].

Due to the success of deep learning techniques in ECG signals, its use in MI

detection is an interesting research direction. Earlier works in MI detection have



10

taken a hand-crafted feature extraction approach for the classification problem. It

would be convenient if the process of feature extraction/selection could also be

automated. With this intention in mind, researchers have tried to borrow elements

from deep learning and apply them to ECG signals. The key advantage of deep

learning is that the model itself learns the most discriminative features from raw

data and tries to match its output with the desired result.

1.7 Motivation of the thesis

The success of CNN’s (e.g., in beat classification, rhythm classification etc.) in

building an end to end model which takes raw ECG and produces the desired out-

put without the help of any human intervention (feature engineering), has motivated

us to investigate a CNN system which detects IMI from raw ECG signal and com-

pare its performance with the state of the art feature based method. Since the ECGs

signals are not complex in structure, performance of a shallow but wide CNN should

be evaluated in IMI detection. Since the ST segment depression carries significant

information of myocardial infarction it is necessary to investigate the predictive ca-

pability of different lead combinations which not only considers ST segment elevation

but also ST segment depression.

1.8 Objective

In this work, we have investigated the performance of shallow CNN on the detection

of IMI in a subject oriented approach along with the comparative analysis of the

predictive capability of different lead combinations. The main contributions of this

paper is listed below.

• To develop an end to end system to detect IMI from raw ECG signal and

compare its performance with the state of the art feature based method.

• To design a shallow but wide CNN with less number of parameters compared

to traditional deep CNNs.

• To evaluate the performance of the shallow CNN in a leave-one-patient-out

(patient-oriented) approach and to make a qualitative comparison between



11

features extracted by the shallow CNN and the hand engineered features used

in the current state of the art method.

• To investigate the predictive capability of different lead combinations which

considers not only ST segment elevation but also ST segment depression.

The outcome of this thesis is the development of a shallow convolutional neural

network based classifier which would automatically extract the relevant features

from the raw ECG signal and detect IMI with greater accuracy, sensitivity, and

specificity than the current state of the art methods. Additionally, the identification

of the most effective lead combination to detect IMI is another significant outcome

of this thesis.

1.9 Organization of the Thesis

This thesis is organized in the following way: Chapter 1 gives the introduction

of the overall thesis. The problem statement and motivation behind the thesis in

describe in this Chapter. In Chapter 2, literature review in MI detection is presented.

Additionally the problems in the current approaches are discussed. In Chapter 3, the

methodology is described in details. In Chapter 4, details regarding the simulations

and the result analysis is presented. The conclusion is drawn in Chapter 5. Some

interesting future research direction is also discussed in this section.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

A vast number of research regarding MI detection from ECG has been done so far. A

large portion of the research is been based on hand crafted features while there only

a handful of research which involves deep learning. Hence, the previous works in

ECG based MI detection can be primarily divided into two classes, hand engineered

feature based approach and deep learning based approach.

2.2 Feature Extraction Based Approach

The feature extraction based approaches can be further classified into time-frequency

domain based approach and only time domain based approach.

2.2.1 Time-Frequency domain based approach

The researchers in [26] have focused on a wavelet transform-based method. ECG

signal obtained from 12 ECG leads were subjected to discrete wavelet transform

(DWT) up to four levels of decomposition. Then, 12 nonlinear features namely,

approximate entropy, signal energy, fuzzy entropy, Kolmogorov–Sinai entropy, per-

mutation entropy, Renyi entropy, Shannon entropy, Tsallis entropy, wavelet entropy,

fractal dimension, Kolmogorov complexity, and largest Lyapunov exponent were ex-

tracted from these DWT coefficients. The extracted features are then ranked based

on the t-value. Then these features were fed into the k-nearest neighbor (KNN)

classifier one by one to get the highest classification performance by using minimum

number of features.

In [27], Stationary wavelet transform has been used to decompose the segmented
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multilead electrocardiogram (ECG) signal into different sub-bands. Sample entropy,

normalized sub-band energy, log energy entropy, and median slope calculated over

selected bands of multilead ECG are used as features. Support vector machine

(SVM) and K-nearest neighbor (KNN) have been used to classify between subjects

admitted for health control (HC) and patients suffering from IMI, using attributes

selected on the basis of gain ratio.

In [28], researchers proposed a new deep feature learning based MI detection and

classification approach. The model seeks to learn a representation of the extracted

features (extracted from wavelet transforms) that optimize the classification perfor-

mance. It incorporates multi-scale discrete wavelet transformation into the feature

learning process to facilitate the extraction of MI features at specific frequency res-

olutions/scales.

2.2.2 Time domain based approach

In [29], time domain features of each beat in the ECG signal such as T wave am-

plitude, Q wave and ST level deviation, which are indicative of MI, were extracted

from 12 leads ECG and used to detect MI.

Researchers in [30] proposed a novel ECG feature by fitting a given ECG sig-

nal with a 20th order polynomial function, defined as PolyECG-S. The PolyECG-S

feature was almost identical to the fitted ECG curve, measured by the Akaike in-

formation criterion (AIC).

In contrast to the traditional approaches, [31] proposed a hybrid system with

HMMs and GMMs which was employed for data classification. A hybrid approach

using multi-leads, i.e., lead-V1, V2, V3 and V4 for myocardial infarction were de-

veloped and HMMs were used not only to find the ECG segmentations but also

to calculate the log-likelihood value which was treated as statistical feature data of

each heartbeat’s ECG complex. The 4-dimension feature vector extracted by HMMs

was clustered by GMMs with different numbers of distribution (disease and normal

data). SVMs classifier was also examined for comparison with the proposed system.

In [32], MI pathology was detected using 12-lead ECG and vectorcardiogram

(VCG). VCG is a method of recording the magnitude and direction of the electrical

forces that are generated by the heart by means of a continuous series of vectors
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that form curving lines around a central point.VCG has the advantage to record the

heart electrical activities in three orthogonal planes (frontal, sagittal and transverse).

The researchers proposed a new method for automated detection or grading of MI

pathology from vectorcardiogram (VCG) signals. The method used relevance vector

machine (RVM) classifier and the multiscale features of VCG signal for MI detec-

tion. The multiscale analysis of VCG signal was performed using dual-tree complex

wavelet transform. The diagnostic features such as the complex wavelet sub-band

(CWS), L1 -Norm (CWS L1-norm) and the complex wavelet entropy (CWE) were

evaluated from the sub-band complex wavelet coefficients of each orthogonal lead of

VCG. The RVM classifier was considered to evaluate the performance of the combi-

nation of the CWS L1 -norm and the CWE features of VCG. Three different kernel

functions such as Gaussian, bubble, and Cauchy were used for RVM.

In [33], artificial neural networks were trained to detect acute myocardial infarc-

tion by use of measurements from the 12 ST-T segments of each ECG, together

with the correct diagnosis. After this training process, the performance of the neu-

ral networks was compared with that of a widely used ECG interpretation program

and the classification of an experienced cardiologist. The neural networks showed

higher sensitivities and discriminant power than both the interpretation program

and cardiologist. However, this method needs accurate detection of some fiducial

markers to extract the ST-T segment.

Researchers in [34] used artificial neural networks (ANNs) to detect signs of

acute myocardial infarction (AMI) in ECGs. The 12-lead ECG was decomposed

into Hermite basis functions, and the resulting coefficients were used as inputs to

the ANNs. Furthermore, they presented a case-based method that qualitatively

explains the operation of the ANNs, by showing regions of each ECG critical for

ANN response. Key ingredients in this method are: (i) a cost function used to find

local ECG perturbations leading to the largest possible change in ANN output and

(ii) a minimization scheme for this cost function using mean field annealing.

However, all of these works reviewed thus far employ a hand crafted feature

selection based approach. And there’s always a chance that these hand crafted

features may not the optimal set of features in IMI disease detection.
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2.3 Deep Learning Based Approaches

At the time of writing this thesis there was only one research which used deep

learning to produce a model that detected myocardial infarction from raw ECG

data [35].

Although the model achieved satisfactory results on the experimental setup pro-

posed in the paper, there are a few questions that remain to be asked. The re-

searchers has implemented a deep network, however, it was shown that deep learners

are not necessary for ECG signal analysis [18]. By downsampling the ECG signal,

the researchers were able to train a shallow CNN and achieve superior results in

beat classification. A shallow network requires fewer parameters and reduces train-

ing complexity. Hence, the performance of shallow CNN on MI detection needs to be

evaluated. Hence, rather than creating a deep network a shallow but wide network

might be more suitable for this sort of signals. The network layers in [35] have fixed

kernel size in each layer. This might limit the networks scope for feature extraction

because the optimal kernel size required for each of these layer ar not known. To

compensate for that, an interesting approach is to create parallel layers of differ-

ent sizes in at the same depth and take the aggregation of the activation/feature

calculate by each parallel layer and propagate that forward. In essence, we are ad-

vocating a shallow but wide network in place of the deep but narrow network used

in [35]. Another important aspect to take care is the partitioning of the data when

conducting these experiments. The experiment in [35] was based on a class-oriented

approach, i.e., heartbeats extracted from ECG signals were randomly sampled to

form test and train set. As a result samples from the same patient contained in both

test and train set. Therefore, it is not clear how the model will perform on patients it

has never seen before. Hence, it is necessary to evaluate the performance of shallow

convolutional neural networks on IMI detection using a subject-oriented approach.

In this approach, the heartbeats are grouped according to the patients. The model

is tested on heartbeats from one patient while it is trained on heartbeats from the

rest of the patients. This procedure is repeated for the remaining the subjects.
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2.4 Conclusion

In this Chapter, literature review on past researches on MI detection is performed.

Some frequecny and time domain feature extraction based algorithms and their

shortcomings have been discussed. Additionally, the only end to end deep learning

based solution is discussed here. A few issues has been found in the deep learning

based work which is addressed in this research. As discussed above, the presented

deep learning model does not allow proper evaluation of its true potential due to

data leakage in the train set. Hence, to test our model’s generalization capability

subject-oriented approach [27] is taken.



Chapter 3

DEVELOPMENT OF A
SHALLOW CONVOLUTIONAL
NEURAL NETWORK FOR THE
DETECTION OF INFERIOR
MYOCARDIAL INFARCTION
FROM ECG SIGNALS

3.1 Introduction

Deep convolutional neural networks were originally designed to work on images.

Each layer of a CNN extracts complicated features from images and each subse-

quent layer represents a complicated representation of the previous layer. Since an

image is a two dimensional data and rich with complex characteristics, a deep net-

work seems logical and works well in application. On the other hand, ECG is a one

dimensional signal and not as characteristically rich as an image. Hence, a shallow

CNN might be better off when analyzing ECG. This phenomenon has been shown

by the researchers in [18] while performing beat classification. By downsampling the

ECG signal, the researchers were able to train a shallow CNN and achieve superior

results in beat classification. Shallow networks require fewer parameters which re-

duces training complexity. Inspired by their findings, we have developed a shallow

CNN for IMI detection. In this Chapter, we describe the network architecture and

our methodology.

17
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3.2 Methodology

3.2.1 Overview

The signals from ECG leads are denoised using median filters and Savitzky-Golay

(SG) smoothing filters (Fig. 3.1) and segmented into samples. Next, the samples

are fed into the neural network architecture (Fig. 3.3b, Fig. 3.3a) and features are

extracted to measure and compare their quality with the benchmark method. Ad-

ditionally, the proposed model is trained and tested in a subject oriented approach

and its performance is compared with the benchmark method. Finally, experiments

on different combinations of leads are performed to find out the most effective lead

for IMI detection. The details of the procedure are described in the following sub-

sections.

3.2.2 Data Processing

As shown in Fig. 3.1, each signal is downsampled from 1kHz to 250Hz. A two

stage median filter is used to remove baseline wandering. Next, Savitzky-Golay

(SG) smoothing filter is used to remove noise. Up to this point the preprocessing

steps are identical to [27]. The denoised signal is further downsampled to 64Hz to

decrease computational burden on the convolutional network and speed up training

time. Finally, the signals are partitioned into short segments of 3.072 seconds (196

signal samples per segment). The segments generated simultaneously from three

different leads are grouped together to create a sample.

Figure 3.1: Data preprocessing
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Figure 3.2: Data segmentation

3.2.3 Network Architecture

We implement a shallow but wide CNN whose architecture is inspired by the incep-

tion module in GoogleNet [36]. The high-level architecture of the model is illustrated

in fig. 3.3a. The network takes raw ECG sample at the input layer. Each sample

consists of signal segments from three leads, leads e.g., II, III and AVF. Each lead is

fed into an inception block (fig. 3.3b). In the inception block, the input goes through

seven parallel paths. In each parallel path, there is a convolutional layer followed

by a batch normalization layer, a rectified linear unit (ReLU) activation layer and a

max pooling layer. Feature maps extracted by the inception blocks are concatenated

and passed on to a global average pooling layer. Finally, there is a 2 unit dense layer

with a softmax activation layer which gives the categorical probability. The weight

of the dense layer is L2 regularized to prevent it from overfitting. The motivation

behind the structure of the key layers are described below.

Convolutional Layer

The function of the convolutional layer is to extract features from the input. In

traditional CNNs, the filters of a particular layer have the same window length

which is gradually reduced in the subsequent layers [37]. However, there are no

hard and fast rules to select the window length and it is selected experimentally.
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(a) The model architecture. Here GAP stands for Global Average Pooling and
SM stands for Softmax.

(b) The inception block. Each ‘Conv n’ layer has 4 filters with window length
n, (n ∈ {3, 5, 7, 9, 16, 32, 64}). BN and MP stands for Batch Normalization and
Max Pooling, respectively.

Figure 3.3: Proposed network architecture
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Figure 3.4: Inception module used in GoogleNet

In the popular neural network architecture GoogleNet [36], researchers have used

varying window size in the same layer allowing it to look at image patches of different

size. As shown in fig. 3.4, filters of varying kernel size is utilized at the same depth.

A concatenation of different filter outputs are propagated to the next layer. This

allows the network to learn the features from different filter size while training on

the data. Inspired by this architecture we have used different window length for each

of the convolution layers in the seven parallel paths. There are 4 filters in each path

and the filter size vary from 3 to 64 as shown in fig 3.3b. This enables the inception

block to look at the ECG signal at multiple spatial resolutions and extract multi-

level features from the same input. The convolutional filters are gradually shifted by

one sample and the input signal is zero padded to keep the output length unaltered

(196 samples).

Batch Normalization Layer

The distribution of the output of the convolutional layer changes as the training

parameters changes. The following layers have to continuously adapt to new distri-

butions which requires it to have a slow learning rate. This phenomenon is referred

to as internal covariate shift [38]. To tackle this issue a batch normalization layer

is included after the convolutional layer. This layer includes a normalization step

that fixes the means and variances of the following layer inputs (Algorithm 1).
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Algorithm 1: Algorithm for batch normalization layer.

Input : Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µβ ← 1
m

∑m
i=1 xi // mini-batch mean

σ2
β ← 1

m

∑m
i=1 (xi − µβ)2 // mini-batch variance

x̂i ← xi−µβ√
σ2
β+ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

As a result, a higher learning rate can be used resulting in faster training time.

Batch normalization layer also works as a regularizer [38].

ReLU layer

The rectified linear [39] layer induces a nonlinearity in the values of the incoming

layer. The function of ReLU can be summarized mathematically as

f(x) =

{
x if x > 0

0 if x ≤ 0
(3.1)

i.e. it only passes the values x which are greater than zero. Other functions are

also used to increase non-linearity, for example the saturating hyperbolic tangent

f(x) = tanh(x), f(x) = |tanh(x)|, and the sigmoid function f(x) = 1
1+e−x

. ReLU is

often preferred to other functions, because it trains the neural network several times

faster without a significant penalty to generalization accuracy.

Max Pooling Layer

Max-pooling is useful in vision for two reasons:

• By eliminating non-maximal values, it reduces computation for upper layers.

• It provides a form of translation invariance.
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The max pooling layer downsamples the input. This reduces computational cost due

to the decrease in dimension and provides translational invariance to the internal

representation. In our model, both the size of the pooling window and its stride was

chosen to be two samples.

Global Average Pooling Layer

In traditional CNN’s, convolutional layers are followed by dense layers which trans-

form the feature maps into the desired output. However, the dense layers act as

black-boxes which make it difficult to interpret the connection between filters and

categorical outputs. Additionally, dense layers are prone to overfitting and com-

putationally expensive due to its large number of parameters [40]. Hence, global

average pooling layer is used which calculates the spatial average of each feature

map. It summarizes the feature map extracted by each filter into a single value

without the need of learning any parameters. As a result, we get 84 features from

84 filters which are passed on to the dense layer for classification.

3.2.4 IMI Detection

The two neurons of the output layer represents the probability of the input sample

belonging to the IMI class and the HC class. The training progress of the CNN can

be measured by different types of loss functions. Various loss functions appropriate

for different tasks can be used in this layer. Softmax loss is used for predicting a

single class of K mutually exclusive classes. Sigmoid cross-entropy loss is used for

predicting K independent probability values in [0, 1]. Euclidean loss is used for

regressing to real-valued labels (− inf, inf). In this network we are using a softmax

function applied to a categorical crossentropy loss function. For a 2 class problem

the crossentropy is given by

L(p, y) = −ylog(p)− (1− y)log(1− p) (3.2)

Here, y ∈ {0, 1} represents the true labels of each sample and p is the probability

given by the model. The softmax output for each of the category is given by

σj =
eLj∑2
k=1 e

Lk
, j ∈ {1, 2} (3.3)
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3.2.5 Prediction of Effective Lead combination for IMI De-
tection

To find the most effective lead combination in detecting IMI, nine leads, lead I, II,

III, AVL, AVF, V1, V2, V3, and V4 are considered. Groups of three leads are chosen

from these set of leads which resulted in 84 combinations. These groups include lead

combinations capturing ST segment elevations only (1.19%), combinations capturing

ST segment depressions only (11.90%) and combinations capturing both elevation

and depression (86.91%). Features from these lead combinations are extracted using

both the CNN and the SWT based method and its quality (defined in Chapter 4)

is measured to make a comparison. Each lead combination is also used to train and

test the model using a subject oriented approach.

3.3 Conclusion

In this Chapter we have described the filters used to preprocess the ECG signals.

We have described the details of the network architecture, the motivations behind

choosing a shallow but wide network and the procedure of measuring the network’s

performance. Also we have described the methodology to predict the most effective

lead combination.



Chapter 4

Simulation Results

4.1 Introduction

In this chapter, the data description and the simulation parameters are presented.

The training method of the proposed CNN is also explained in details. As mentioned

before in subsection 3.2.3, the global average pooling layer compresses each incoming

filter map into a single feature. Therefore, the output of the global average pooling

layer can be considered as the final feature vector upon which the dense output

layer makes its classification decision. We define two indices, Geometric Separability

Index and Euclidean Distance in this section which are used to measure the quality

of these features. To evaluate the model’s performance a few metrics have been

defined and compared with the benchmark model. Additionally, the result analysis

is performed in this Chapter.

4.2 Data

The Physikalisch-Technische Bundesanstalt (PTB) dataset [41] collected from Phy-

sioNet [42] were used in this work. The ECGs in this collection were obtained using

a non-commercial, PTB prototype recorder with the following specifications:

• 16 input channels, (14 for ECGs, 1 for respiration, 1 for line voltage)

• Input voltage: ±16 mV, compensated offset voltage up to ±300 mV

• Input resistance: 100Ω (DC)

• Resolution: 16 bit with 0.5 µV/LSB (2000 A/D units per mV)

• Bandwidth: 0 - 1 kHz (synchronous sampling of all channels)
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• Noise voltage: max. 10 µV (pp), respectively 3 µV (RMS) with input short

circuit

• Online recording of skin resistance

• Noise level recording during signal collection

The database contains 549 records from 290 subjects (aged 17 to 87, mean 57.2;

209 men, mean age 55.5, and 81 women, mean age 61.6; ages were not recorded for

1 female and 14 male subjects). Each subject is represented by one to five records.

There are no subjects numbered 124, 132, 134, or 161. Each record includes 15

simultaneously measured signals: the conventional 12 leads (i, ii, iii, avr, avl, avf,

v1, v2, v3, v4, v5, v6) together with the 3 Frank lead ECGs (vx, vy, vz). Each

signal is digitized at 1000 samples per second, with 16 bit resolution over a range

of ±16.384 mV. On special request to the contributors of the database, recordings

may be available at sampling rates up to 10 KHz.

Within the header (.hea) file of most of these ECG records is a detailed clinical

summary, including age, gender, diagnosis, and where applicable, data on medical

history, medication and interventions, coronary artery pathology, ventriculography,

echocardiography, and hemodynamics. The clinical summary is not available for

22 subjects. The diagnostic classes of the remaining 268 subjects are summarized

below: There are 148 MI subjects and 52 healthy controls (HC). Thirty of the 148

Diagnostic class Number of subjects
Myocardial infarction 148

Cardiomyopathy/Heart failure 18
Bundle branch block 15

Dysrhythmia 14
Myocardial hypertrophy 7
Valvular heart disease 6

Myocarditis 4
Miscellaneous 4

Healthy controls 52

Table 4.1: Number of diagnostic classes in the database.

MI patients have IMI; they are included in the experiment along with the healthy

controls, resulting in a total of 82 subjects. Each subject is represented by one to

five records.
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4.3 Train-Test Split

Splitting of the train and test set is performed in a subject-oriented approach. In

this approach the segments are grouped according to patients. Testing is done on

one patient and training is done on the remaining 81 patients. The same procedure

is followed for each of the 82 patients. Average accuracy, sensitivity and specificity

of all the folds is reported in this thesis.

4.4 Data Preprocessing Parameters

The local window size of the median filters for the first and second stage is chosen to

be 125 and 249 respectively. The SG filter had order 3 and frame size 15. After the

segmentation of ECG signals 3222 IMI samples and 3055 HC samples are created.

4.5 Network Parameters

The CNN is implemented using Keras [43] neural network library which is a wrap-

per for the tensorflow machine learning framework [44]. The weights of the dense

hidden layer are regularized using l2 regularization with regularization parameter

λ = 0.001 to prevent the model from overfitting. The network is trained using the

backpropagation algorithm [45]. The adam [46] optimizer is used to update the

weights. The network is trained with an initial learning rate of 1e-3 and varied in

the range [1e-3, 1e-5]. The exponential decay rate for the first moment estimates

β1 and the exponential decay rate for the second-moment estimates β2 is chosen to

be 0.9 and 0.999, respectively. The learning rate is scheduled to be decreased by a

factor of 10 if there are no improvements in training loss for 5 consecutive epochs.

Training is stopped if there is no improvement in training loss for 10 consecutive

epochs. Training is allowed to run for a maximum of 200 epochs. The network is

trained in mini-batches with batch size 32.
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4.6 Geometric Separability Index

We use Thornton’s geometric separability index (GSI) [47] to measure the degree to

which samples associated with the same output cluster together. It is given by

GSI(f) =

∑N
i=1 f(xi) + f(x

′
i) + 1 mod 2

N
(4.1)

Here, xi = {x1i , x2i , ..., xLi } is the feature vector with dimension L, x
′
i is the nearest

neighbor of xi, f is a binary target function, and N is the total number of samples.

In this work, the nearest neighbor function utilizes Euclidean distance between a

pair of feature vectors.

4.7 Euclidean Distance

To find out the similarity between features of the same class, we calculate the average

of the euclidean distance (Dk
E) between each pair of samples within the same class.

Dk
E =

(|Nk| − 2)!2!

|Nk|!
∑

xi,xj∈Nk
i6=j

√√√√ L∑
l=1

(xli − xlj)2 (4.2)

Here, Nk is the set of feature vectors belonging to class k, k ∈ {HC, IMI}.

4.8 Comparison Metrics and Comparison Meth-

ods

The performance of the model was evaluated in terms of accuracy (Ac), sensitivity

(Se), and specificity (Sp) of the test predictions. The metrics are defined as

Ac% =
tp+ tn

tp+ tn+ fp+ fn
∗ 100 (4.3)

Se% =
tp

tp+ fn
∗ 100 (4.4)

Sp% =
tn

tn+ fp
∗ 100 (4.5)

Here, tp is true positive prediction, fp is false positive prediction, tn is true negative

prediction and fp is false negative prediction.

We compare the performance of our proposed method with the benchmark

method [27]. In this method, the stationary wavelet transform is applied to the
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ECG signals and the transform coefficients are used to calculate different features

(e.g., sample entropy, energy etc.). These features are fed to a support vector ma-

chine (SVM) and K-nearest neighbour (KNN) classifier to perform IMI detection.

4.9 Result Analysis

4.9.1 Quality of Features Extracted from Reference Lead
Combination

First, we compare the quality of features extracted from the reference lead combi-

nation using CNN and SWT method. Euclidean distance of features and GSI are

calculated for both the proposed model and benchmark model. We implement the

stationary wavelet transform based model [27] and compute the features for each

sample. To extract the feature using CNN, we train our network on all of the avail-

able samples. For each of the samples, the output of the global average pooling

layer is extracted and treated as the feature vector. The confusion matrix for the

training performance of the model is shown in Table 4.2.

Table 4.2: Confusion matrix for the CNN’s prediction when trained on all the pa-
tients

Predicted Class
HC IMI

Actual Class
HC 2833 222
IMI 10 3212

The GSI and Dk
E of the proposed and benchmark model is compared in Table

4.3. The GSI is high for both models, signifying that the feature vectors of the same

class are located in a close cluster. The GSI of the proposed model is greater than

the GSI of the benchmark. For the healthy samples, the DHC
E of the proposed model

is slightly greater than the benchmark model. For the IMI samples, the DIMI
E of the

proposed model is lower than the benchmark model. Overall, the features extracted

from the proposed model shows good discriminating strength.

Table 4.3: Comparison of Dk
E between benchmark and proposed model

Method GSI DHC
E DIMI

E

SWT 0.9852 3.10 3.71
CNN 0.9986 3.54 2.94
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4.9.2 Metrics Results on Reference Combination

Next, we compare the performance of the benchmark and the proposed model on

the reference lead combination in terms of the metrics defined earlier. The proposed

model is trained and tested according to the subject-oriented method described

in 4.3. The metrics scores for the proposed CNN and the benchmark method is

summarized in Table 4.4. The proposed method outscores the benchmark method

in all the metrics.

Table 4.4: Comparison of the proposed technique with existing method in subject-
oriented approach

Method Ac% Se% Sp%
SWT + KNN [27] 75.80 75.62 73.66
SWT + SVM [27] 81.71 79.01 79.26
CNN on raw ECG 85.45 85.79 85.25

4.9.3 Quality of Feature of Different Lead Combinations

Next, to predict the most effective lead combination in detecting IMI, the quality of

feature was measured for each of the lead groups defined in subsection 3.2.5. Each of

the lead combinations is assigned a number for brevity which is listed in Table 4.5.

Variation of average Euclidean distance, GSI, along with different leads is shown in

Fig. 4.1 to 4.3. These figures also show the performance of the benchmark SWT

based methods performance along with the CNN’s performance.

It can be seen that the Euclidean distances are better in case of the lead combina-

tions which has a mixture of leads capturing ST segment elevation and depression.

In Fig. 4.1, the variation of average Euclidean distance DHC
E of the features ex-

tracted from the healthy samples for different lead combinations is shown. Here,

DHC
E of lead I, II, V4 is lowest. In Fig. 4.2, the variation of average Euclidean

distance DIMI
E of the features extracted from the healthy samples for different lead

combinations is shown and lead II, AVF, V2 has the lowest DIMI
E . In the case of

the GSI (Fig. 4.3), lead AVL, V1, and V3 scores the highest value. Although these

leads capture only the ST segment depression, all other lead combinations show a

good performance remaining close to the highest value and performs much better

than the SWT method.
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Table 4.5: Assigned numbers to the lead combinations

Leads No. Leads No. Leads No.
(I, II, III) 0 (II, III, AVL) 28 (III, AVF, V3) 56

(I, II, AVL) 1 (II, III, AVF) 29 (III, AVF, V4) 57
(I, II, AVF) 2 (II, III, V1) 30 (III, V1, V2) 58
(I, II, V1) 3 (II, III, V2) 31 (III, V1, V3) 59
(I, II, V2) 4 (II, III, V3) 32 (III, V1, V4) 60
(I, II, V3) 5 (II, III, V4) 33 (III, V2, V3) 61
(I, II, V4) 6 (II, AVL, AVF) 34 (III, V2, V4) 62

(I, III, AVL) 7 (II, AVL, V1) 35 (III, V3, V4) 63
(I, III, AVF) 8 (II, AVL, V2) 36 (AVL, AVF, V1) 64
(I, III, V1) 9 (II, AVL, V3) 37 (AVL, AVF, V2) 65
(I, III, V2) 10 (II, AVL, V4) 38 (AVL, AVF, V3) 66
(I, III, V3) 11 (II, AVF, V1) 39 (AVL, AVF, V4) 67
(I, III, V4) 12 (II, AVF, V2) 40 (AVL, V1, V2) 68

(I, AVL, AVF) 13 (II, AVF, V3) 41 (AVL, V1, V3) 69
(I, AVL, V1) 14 (II, AVF, V4) 42 (AVL, V1, V4) 70
(I, AVL, V2) 15 (II, V1, V2) 43 (AVL, V2, V3) 71
(I, AVL, V3) 16 (II, V1, V3) 44 (AVL, V2, V4) 72
(I, AVL, V4) 17 (II, V1, V4) 45 (AVL, V3, V4) 73
(I, AVF, V1) 18 (II, V2, V3) 46 (AVF, V1, V2) 74
(I, AVF, V2) 19 (II, V2, V4) 47 (AVF, V1, V3) 75
(I, AVF, V3) 20 (II, V3, V4) 48 (AVF, V1, V4) 76
(I, AVF, V4) 21 (III, AVL, AVF) 49 (AVF, V2, V3) 77
(I, V1, V2) 22 (III, AVL, V1) 50 (AVF, V2, V4) 78
(I, V1, V3) 23 (III, AVL, V2) 51 (AVF, V3, V4) 79
(I, V1, V4) 24 (III, AVL, V3) 52 (V1, V2, V3) 80
(I, V2, V3) 25 (III, AVL, V4) 53 (V1, V2, V4) 81
(I, V2, V4) 26 (III, AVF, V1) 54 (V1, V3, V4) 82
(I, V3, V4) 27 (III, AVF, V2) 55 (V2, V3, V4) 83

4.9.4 Metrics Scores for Different Lead Combinations

Finally, each of the lead combinations is used to train and test the proposed model

in a subject oriented approach and its performance metrics are calculated. Variation

of accuracy, sensitivity, and specificity along with different leads are shown in Fig.

4.4 to 4.6. Also, the metrics scores in SWT method is included for comparison. In

Fig. 4.4 accuracy of the different lead combination is shown where lead II, III, V1

shows the highest accuracy. In case of sensitivity, Fig. 4.5, lead II, III, V3 scores

the highest value. In Fig. 4.6, lead II, III, V3 shows the highest specificity. Each

of these combinations contains leads which capture both ST segment elevation and

depression and outperforms combination of lead II, III, and AVF.
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4.9.5 Finding Most Effective Lead Combination

Overall, the features extracted from lead combination II, III, V3 have better quality

in terms of the Euclidean distances (DHC
E =2.99, DIMI

E = 3.02) which is lower than

the distances of the reference lead combination. Additionally, GSI of both the

combinations are equal (0.9986). However, the better euclidean distances results in

a better metrics score for the former combination as it outperforms the reference lead

combination in every metric with an accuracy, sensitivity, and specificity of 86.22%,

86.05%, and 100% respectively (Table 4.6). Since lead II, III captures ST segment

elevation and V3 captures ST segment depression, this shows the importance of

focusing on both ST segment elevation and depression while detecting IMI.

Table 4.6: Comparison of the quality of features and metrics scores between reference
lead combination and combination of lead II, III, and V3

Leads
Quality of features Comparison Metrics
DHC
E DIMI

E GSI Ac% Se% Sp%
II, III, AVF 3.54 2.94 0.9986 85.45 85.79 85.25
II, III, V3 2.99 3.02 0.9986 86.22 86.05 100

4.10 Conclusion

In this Chapter, we have presented the simulation details and result analysis. The

proposed method based on shallow CNN outperforms the benchmark model. The

lead II, III, and V3 is the most effective lead combination in detecting IMI. Addi-

tionally, the quality of features extracted using the CNN and SWT based method

concur with the observed performance in metrics score.



Chapter 5

CONCLUSION

5.1 Concluding Remarks

In this thesis, we have demonstrated the use of a shallow convolutional neural net-

work in the detection of inferior myocardial infarction. This network benefits from

the use of varying filter size in the same convolution layer which allows it to learn

features from signal regions of varying length. The model outperforms the previous

state of the art model in terms of accuracy, sensitivity, and specificity. We have

also made a comparison among different lead combinations and found out that the

combination of leads that capture ST segment elevation and ST segment depression

is more effective in distinguishing IMI from healthy patients.

5.2 Contribution

• We developed an end to end system to detect IMI from raw ECG signal and

compare its performance with the state of the art feature based method which

uses a stationary wavelet based method (SWT).

• We designed a shallow but wide CNN with less number of parameters com-

pared to traditional deep CNNs

• We evaluated the performance of the shallow CNN in a leave-one-patient-out

(subject-oriented) approach and to make a qualitative comparison between

features extracted by the shallow CNN and the hand engineered features based

model.

• We investigated the predictive capability of different lead combinations which

considers not only ST segment elevation but also ST segment depression.
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5.3 Future Research

There are a wide range of areas yet to be explored.

• Future research should focus on the effect of varying the filter length as well

as increasing the number of inception layers.

• Another important research direction is the study of the relationship between

the extracted features and the actual ECG segments. Finding out which por-

tions of the ECG signal activate the filters would lead to a better understanding

of the disease itself.

• And lastly this research only focuses on the detection of inferior myocardial

infarction. Classification of different infarctions based on their positions should

be investigated in future works.
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