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Abstract 
 

Epileptic seizure is often interpreted by the abnormalities in the brain activity and 
Electroencephalogram (EEG) is a promising tool for identi cation of Epilep-tic 
seizure. Signal processing methods try to model visual information into few 
paramters, thus decision making becomes more accurate compared to the meth-
ods based on visual observation of EEG where sometimes misinterpretation takes 
place in disease treatment. Researchers have used di erent signal processing 
and machine learning algorithms to extract features for seizure activity detection 
and classi cation. Since EEG is a non-stationary signal, Discrete Wavelet 
Transform (DWT) has the potential to perform better than conventional time-
frequency anal-ysis method. However, detection and classi cation of multiclass 
EEG signals of epileptic seizure activity originated from di erent parts and state of 
the brain in the stringent condition is still a challenging task. DWT of the EEG 
signals is performed and band-speci c gamma and theta DWT coe cients have 
been cho-sen. A statistical model has been employed to summarize information in 
Discrete Wavelet Transform (DWT) coe cients and thus form e ective feature set 
utiliz-ing the parameters of the proposed statistical probability density function 
(PDF). Rather than taking discrete parameter as feature like wavelet energy or 
entropy, it is found more rational to use statistical modeling parameters as 
features since they are being taken from the shape of the entire data class and 
representing the class in more consistent way. Gaussian statistical model has 
been found t for this purpose based on visual inspection of superimposed plots of 
empirical and Gaussian PDFs, cumulative distribution functions (CDFs) in 
probability-probability (p-p) plot and K-S test result. The goodness of features has 
been justi ed by one way ANOVA test, Geometrical Separability Index and 
Bhattacharyya Distance parameters. The feature set is found e ective and e cient 
for detecting and classifying multi-class EEG signals of epileptic seizure activity 
when fed to di erent state-of-the-art clas-si ers in stringent condition random 
selection of training and testing dataset. The performance parameters (accuracy, 
sensitivity and speci city) achieved using pro-posed scheme are found almost 
100% (maximum accuracy of 100% for 3-class and 93% for 5-class) for multi-
class classi cation problems and outperformed the stat-of-the-art strategies. 
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Chapter 1 
 

 

Introduction 
 
 
 

 

The present world has 1% of its population su ering from epilepsy [1]. Epilepsy, 
the neurological disorder, is characterized by the recurrence of seizures which is 
an abnormal but synchronized surge of electrical activity in the brain. Many di 
erent things can occur during a seizure. Seizures may cause dramatic symptoms 
such as uncontrollable muscle movement, frothing at the mouth and violent 
shaking, along with blackout and confusion. However, symptoms can also be 
mild, with few physical symptoms. Normally brain cells either excite or inhibit 
other brain cells from sending messages. Usually there is a balance of cells that 
excite and those that can stop these messages. However, when a seizure occurs, 
there may be too much or too little activity, causing the imbalance between 
exciting and stopping activity. These chemical changes can lead to surges of 
electrical activity that cause seizures. Seizures lead to symptoms of many di erent 
disorders that can a ect the brain. Some seizures can hardly be noticed while 
others are totally disabling. These symptoms of seizures are dramatic and 
alarming and frequently elicit fear and misunderstanding. These types of physical 
and mental limitations lead to profound social consequences for su erer and has 
greatly added to the burden of this disease. So, seizure detection and classi 
cation methods utilizing the signal processing technique can make the diagnosis 
process more accurate and faster. 

 

In this chapter, we describe about epilepsy and diagnosis methods, motivation 
and objective of the thesis to detect and classify epileptic seizures of 
Electroen-cephalography (EEG) signals. Finally, organization of the thesis is 
presented for a better clari cation. 
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1.1 Types of Seizure 
 

There are several types of seizure including non-epileptic seizures which may 
arise, for example, from a head injury or illness, as well as partial or focal and 
generalized seizures, which are associated with epilepsy [1]. 

 

Partial seizures arise from abnormal activity in one part of the brain. Symptoms 
may vary according to where exactly that abnormality is, but examples include a 
wave-like sensation, a sense of numbness, tingling and visual disturbances such 
as hallucination. The term focal is used instead of partial to be more accurate 
when talking about where seizures begin. Focal seizures can start in one area or 
group of cells in one side of the brain. When a person is awake and aware during 
a seizure, it's called a focal aware seizure. This used to be called a simple partial 
seizure. When a person is confused or their awareness is a ected in some way 
during a focal seizure, it's called a focal impaired awareness seizure. This used to 
be called a complex partial seizure. 

 

Abnormal electrical activity involving a larger portion or the whole of the brain are 
referred to as generalized seizures. Examples of generalized seizure include: 
Absence seizure where a person appears inattentive for a short period; Myoclonic 
seizure { which is Characterized by muscle twitching; Clonic seizure where the su 
erer experiences involuntary muscle spasms and Tonic-clonic seizure where the 
skeletal muscles sti en up causing the body to contract (tonic phase) followed by 
convulsions and vibration of the sti ened limbs (clonic phase). Another type of 
generalized seizure is atonic seizure, also called a drop seizure, which is usually 
noticeable as a drooping of the head as strength in the head and neck muscles is 
lost. Although the seizure itself is not damaging, the loss of muscle tone can cause a 
person to fall and hurt themselves. Warning signs that may precede a seizure include 
a sense of fear or anxiety, nausea, dizziness and visual disturbances. 

 

When the beginning of a seizure is not known, it's called an unknown onset 
seizure. A seizure could also be called an unknown onset if it's not witnessed 
or seen by anyone, for example when seizures happen at night or in a person 
who lives alone. As more information is learned, an unknown onset seizure 
may later be diagnosed as a focal or generalized seizure. 
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1.2 Epilepsy 
 

Epilepsy is the fourth most common neurological disorder and a ects people of all 
ages. Epilepsy is a chronic disorder, the hallmark of which is recurrent, 
unprovoked seizures. Although the symptoms of a seizure may a ect any part of 
the body, the electrical events that produce the symptoms occur in the brain. The 
location of that event, how it spreads and how much of the brain is a ected, and 
how long it lasts all have profound e ects. A person is diagnosed with epilepsy if 
they have two unprovoked seizures (or one unprovoked seizure with the 
likelihood of more) that were not caused by some known and reversible medical 
condition like alcohol withdrawal or extremely low blood sugar [2]. Seizures and 
epilepsy are not the same. An epileptic seizure is a transient occurrence of signs 
and/or symptoms due to abnormal excessive or synchronous neuronal activity in 
the brain. Epilepsy is a disease characterized by an enduring predisposition to 
generate epileptic seizures and by the neurobiological, cognitive, psychological, 
and social consequences of this condition. A seizure is an event and epilepsy is 
the disease involving recurrent unprovoked seizures [2]. 

 

Therefore, the de nition of epilepsy addresses each of the following points: 
 

At least two unprovoked (or re ex) seizures occurring greater than 24 
hours apart. 

 

One unprovoked (or re ex) seizure and a probability of further seizures 
simi-lar to the general recurrence risk (at least 60%) after two 
unprovoked seizures, occurring over the next 10 years. 

 

Diagnosis of an epilepsy syndrome. 
 

 

1.2.1 Prevalence of Epilepsy 
 

As mentioned earlier, epilepsy is the 4th most common neurological problem { 
only migraine, stroke, and Alzheimer's disease occur more frequently. The 
prevalence of epilepsy looks at the number of people with epilepsy at any 
given point in time. This includes people with new onset epilepsy as well as 
those who have had epilepsy for a number of years. 

 

Approximately 50 million people currently live with epilepsy worldwide. The es-
timated proportion of the general population with active epilepsy (i.e. continuing 
seizures or with the need for treatment) at a given time is between 4 and 10 per 1000 
people. However, some studies in low- and middle-income countries suggest 
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that the proportion is much higher, between 7 and 14 per 1000 people. Close to 80% 
of people with epilepsy live in low- and middle-income countries. Globally, an 
estimated 2.4 million people are diagnosed with epilepsy each year. In high-income 
countries, annual new cases are between 30 and 50 per 100,000 people in the 
general population. In low- and middle-income countries, this gure can be up to two 
times higher. Despite how common it is and major advances in di-agnosis and 
treatment, epilepsy is among the least understood of major chronic medical 
conditions, even though one in three adults knows someone with the disor-der [3]. 
The prevalence of epilepsy in poor regions of the world is shown in Fig. 1.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.1: Prevalence of Epilepsy in Poor Regions of the World 
 
 
 
 

1.2.2 Cause of Epilepsy 
 

Epilepsy is not contagious. The most common type of epilepsy, which a ects 6 out 
of 10 people with the disorder, is called idiopathic epilepsy and has no identi able 
cause. Epilepsy with a known cause is called secondary epilepsy, or symptomatic 
epilepsy. The causes of secondary (or symptomatic) epilepsy include [4]: 

 

Genetic in uence: Some types of epilepsy, which are categorized by the 
type of seizure one experiences or the part of the brain that is a ected, 
run in families. In these cases, it's likely that there's a genetic in uence. 
Researchers have linked some types of epilepsy to speci c genes, but 
for most people, genes are only part of the cause of epilepsy. Certain 
genes may make a person more sensitive to environmental conditions 
that trigger seizures. 

 

Head trauma: Head trauma as a result of a car accident or other 
traumatic injury can cause epilepsy. 

 

Brain conditions: Brain conditions that cause damage to the brain, such 
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as brain tumors or strokes, can cause epilepsy. Stroke is a leading 
cause of epilepsy in adults older than age 35. 

 

Infectious diseases: Infectious diseases, such as meningitis, AIDS and 
viral encephalitis, can cause epilepsy. 

 

Prenatal injury: Before birth, babies are sensitive to brain damage that 
could be caused by several factors, such as an infection in the mother, 
poor nutrition or oxygen de ciencies. This brain damage can result in 
epilepsy or cerebral palsy. 

 

Developmental disorders: Epilepsy can sometimes be associated with 
developmental disorders, such as autism and neuro bromatosis. 

 
 

1.2.3 Diagnosis of Epilepsy 
 

Epilepsy is usually di cult to diagnose quickly. To diagnose one's condition, the 
doctor reviews patient's symptoms and medical history. The doctor may order 
sev-eral tests to diagnose epilepsy and determine the cause of seizures. The 
evaluation may include a neurological exam where the doctor may test patient's 
behavior, motor abilities, mental function and other areas to diagnose the 
condition and determine the type of epilepsy one may have. Doctor may take a 
blood sample to check for signs of infections, genetic conditions or other 
conditions that may be associated with seizures. A CT scan uses X-rays to obtain 
cross-sectional images of the brain. CT scans can reveal abnormalities in the 
brain that might be causing seizures, such as tumors, bleeding and cysts. An MRI 
uses powerful magnets and radio waves to create a detailed view of the brain. 
PET scans use a small amount of low-dose radioactive material that's injected 
into a vein to help visualize active areas of the brain and detect abnormalities. 

 

EEG is the most common test used to diagnose epilepsy. In this test, doctors attach 
electrodes to patient's scalp with a paste-like substance. The electrodes record the 
electrical activity of the brain. If one has epilepsy, it's common to have changes in 
normal pattern of brain waves, even when one is not having a seizure. Doctor may 
monitor one on video while conducting an EEG while one is awake or asleep, to 
record any seizures one experience. Recording the seizures may help the doctor 
determine what kind of seizures one is having or rule out other conditions. Doctor 
may give one instructions to do something that will cause seizures, such as getting 
little sleep prior to the test. If they see changes in normal brain wave pattern, that's a 
symptom. Many people with epilepsy have abnormal EEGs. The 
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doctor may watch the patient on video to record how body reacts during a seizure. 
 

This usually requires an overnight stay or two at the hospital. 
 

 

1.3 Electroencephalography (EEG) 
 

Electroencephalography (encephalon = brain), or EEG, is the physiological 
method of choice to record all of the electrical activity generated by the brain from 
elec-trodes placed on the scalp surface. EEG measures electrical activity 
generated by the synchronized activity of thousands of neurons (in voltage); 
provides excellent time resolution, allowing ones to analyze which brain areas are 
active at a certain time { even at sub-second timescales [5]. Since the voltage 
uctuations measured at the electrodes are very small, the recorded data is 
digitized and sent to an am-pli er. The ampli ed data can then be displayed as a 
sequence of voltage values. EEG is one of the fastest imaging techniques 
available as it can take thousands of snapshots per second (256 Hz or higher). 
100 years ago the EEG time course was a plot on paper. Current systems display 
the data as continuous ow of voltages on a screen. Price di erences in EEG 
systems are typically due to the number of electrodes, the quality of the 
digitization, the quality of the ampli er, and the number of snapshots the device 
can take per second (this is the sampling rate in Hz). 

 

1.3.1 Source of EEG Signal 
 

The brain's electrical charge is maintained by billions of neurons. Neurons are 
electrically charged (or \polarized") by membrane transport proteins that pump 
ions across their membranes. Neurons are constantly exchanging ions with 
the extracellular milieu, for example to maintain resting potential and to 
propagate action potentials. Ions of similar charge repel each other, and when 
many ions are pushed out of many neurons at the same time, they can push 
their neighbours, who push their neighbours, and so on, in a wave. This 
process is known as volume conduction. When the wave of ions reaches the 
electrodes on the scalp, they can push or pull electrons on the metal in the 
electrodes. Since metal conducts the push and pull of electrons easily, the di 
erence in push or pull voltages between any two electrodes can be measured 
by a voltmeter. Recording these voltages over time gives us the EEG [6]. 

 

The electric potential generated by an individual neuron is far too small to be 
picked up by EEG or MEG. EEG activity therefore always re ects the summation 
of the synchronous activity of thousands or millions of neurons that have similar 
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spatial orientation. If the cells do not have similar spatial orientation, their ions do 
not line up and create waves to be detected. Pyramidal neurons of the cortex are 
thought to produce the most EEG signal because they are well-aligned and re 
together. Because voltage eld gradients fall o with the square of distance, activity 
from deep sources is more di cult to detect than currents near the skull. 

 

EEG activity shows oscillations at a variety of frequencies. Several of these oscilla-
tions have characteristic frequency ranges, spatial distributions and are associated 
with di erent states of brain functioning (e.g., waking and the various sleep stages). 
These oscillations represent synchronized activity over a network of neurons. 

 

1.3.2 EEG Signal Frequency Range 
 

The electroencephalogram (EEG) is the depiction of the electrical activity occur-
ring at the surface of the brain. This activity appears on the screen of the EEG 
machine as waveforms of varying frequency and amplitude measured in voltage 
(speci cally micro-voltages). EEG waveforms are generally classi ed according to 
their frequency, amplitude, and shape, as well as the sites on the scalp at which 
they are recorded. The most familiar classi cation uses EEG waveform frequency. 

 

The frequencies most brain waves range from are 0.5-500 Hz. However, the 
follow-ing categories of frequencies are the most clinically relevant [7]: 

 

Delta waves ( 4Hz or less): 
 

These slow waves have a frequency of 4 Hz or less. They normally are 
seen in deep sleep in adults as well as in infants and children. Delta 
waves are abnormal in the awake adult. Often, they have the largest 
amplitude of all waves. Delta waves can be focal (local pathology) or di 
use (generalized dysfunction). 

 

Theta waves ( 4-8 Hz): 
 

Theta waves normally are seen in sleep at any age. In awake adults, 
these waves are abnormal if they occur in excess. Theta and delta 
waves are known collectively as slow waves. 

 

Alpha waves ( 8-16 Hz): 
 

Alpha waves generally are seen in all age groups but are most common in 
adults. They occur rhythmically on both sides of the head but are often 
slightly higher in amplitude on the non-dominant side, especially in right-
handed individuals. A normal alpha variant is noted when a harmonic of al-
pha frequency occurs in the posterior head regions. They tend to be present 
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posteriorly more than anteriorly and are especially prominent with closed 
eyes and with relaxation. Alpha activity disappears normally with atten-
tion (eg, mental arithmetic, stress, opening eyes). In most instances, it is 
regarded as a normal waveform. An abnormal exception is alpha coma, 
most often caused by hypoxic-ischemic encephalopathy of destructive 
processes in the pons (eg, intracerebral hemorrhage). In alpha coma, 
alpha waves are distributed uniformly both anteriorly and posteriorly in 
patients who are unresponsive to stimuli. 

 

Beta waves ( 16-40 Hz): 
 

Beta waves are observed in all age groups. They tend to be small in 
ampli-tude and usually are symmetric and more evident anteriorly. 
Drugs, such as barbiturates and benzodiazepines, augment beta waves. 

 

Gamma waves ( 40-150 Hz): 
 

These are involved in higher processing tasks as well as cognitive functioning. 
Gamma waves are important for learning, memory and information process-ing. 
It is thought that the 40 Hz gamma wave is important for the binding of our 
senses in regards to perception and are involved in learning new ma-terial. It 
has been found that individuals who are mentally challenged and have learning 
disabilities tend to have lower gamma activity than average. 

 

1.3.3 EEG Recording System 
 

In conventional scalp EEG, the recording is obtained by placing electrodes on 
the scalp with a conductive gel or paste, usually after preparing the scalp area 
by light abrasion to reduce impedance due to dead skin cells. Many systems 
typically use electrodes, each of which is attached to an individual wire. Some 
systems use caps or nets into which electrodes are embedded; this is 
particularly common when high-density arrays of electrodes are needed. 

 

Electrode locations and names are speci ed by the International 10{20 system for 
most clinical and research applications [8]. This system ensures that the naming of 
electrodes is consistent across laboratories. The \10" and \20" refer to the fact that 
the actual distances between adjacent electrodes are either 10% or 20% of the total 
front{back or right{left distance of the skull. Each electrode placement site has a letter 
to identify the lobe, or area of the brain it is reading from : Pre-frontal (Fp), Frontal (F), 
Temporal (T), Parietal (P), Occipital (O), and Central (C). There are also (Z) sites: A 
\Z" (zero) refers to an electrode placed on the midline sagittal 
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plane of the skull, (Fpz, Fz, Cz, Oz)and is present mostly for reference/measure-ment 
points. Even numbered electrodes (2,4,6,8) refer to electrode placement on the right 
side of the head, whereas odd numbers (1,3,5,7) refer to those on the left. In most 
clinical applications, 19 recording electrodes (plus ground and sys-tem reference) are 
used. A smaller number of electrodes are typically used when recording EEG from 
neonates. Additional electrodes can be added to the standard set-up when a clinical 
or research application demands increased spatial resolution for a particular area of 
the brain. High-density arrays (typically via cap or net) can contain up to 256 
electrodes more-or-less evenly spaced around the scalp. The \A" (sometimes referred 
to as \M" for mastoid process) refers to the prominent bone process usually found just 
behind the outer ear (less prominent in children and some adults). In basic 
Polysomnography, F3, F4, Fz, Cz, C3, C4, O1, O2, A1, A2 (M1, M2), are used. Cz 
and Fz are `ground' or `common' reference points for all EEG and EOG electrodes, 
and A1-A2 are used for contralateral referencing of all EEG electrodes. This EEG 
montage may be extended to utilize T3-T4, P3-P4, as well as others, if an extended 
or \seizure montage" is called for. The position of the electrode of 10-20 system is 
shown in Fig. 1.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.2: EEG Electrodes Position on the Scalp in 10-20 EEG Recording system 
 
 

During the recording, a series of activation procedures may be used. These proce-
dures may induce normal or abnormal EEG activity that might not otherwise be seen. 
These procedures include hyperventilation, photic stimulation (with a strobe light), 
eye closure, mental activity, sleep and sleep deprivation. During (inpatient) epilepsy 
monitoring, a patient's typical seizure medications may be withdrawn. 

 

As part of an evaluation for epilepsy surgery, it may be necessary to insert elec-
trodes near the surface of the brain, under the surface of the dura mater. This is 
accomplished via burr hole or craniotomy. This is referred to variously as \electro- 
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corticography (ECoG)", \intracranial EEG (IEEG)" or \subdural EEG (SD-EEG)". 
Depth electrodes may also be placed into brain structures, such as the amygdala 
or hippocampus, structures, which are common epileptic foci and may not be 
\seen" clearly by scalp EEG. The electrocorticographic signal is processed in the 
same manner as digital scalp EEG, with a couple of caveats. IEEG is typically 
recorded at higher sampling rates than scalp EEG because of the requirements of 
Nyquist theorem|the subdural signal is composed of a higher predominance of 
higher fre-quency components. Also, many of the artifacts that a ect scalp EEG do 
not impact IEEG, and therefore display ltering is often not needed [9]. 

 

 

1.4 Epilepsy Detection and Classi cation Meth- 
 

ods 
 

EEG measures voltage uctuations resulting from ionic current ows within the 
neurons of the brain. In clinical contexts, EEG refers to the recording of the 
brains spontaneous electrical activity over a short period of time. Di erent 
techniques are exploited for detection and classi cation of the Epieptic 
seizures in the mul-tiple channel EEG recordings. Conventionally, physicians 
use visual inspection in decision making process which not only need superior 
expertise but also require a lot of time. With a view to easing the decision 
making process and time consum-ing problem, signal processing techniques 
introduce di erent processes to achieve expert like accuracy in both case of 
detection and classi cation process of such EEG signals. 

 

1.4.1 Conventional Methods of Seizure Detection and Clas- 
 

si cation 
 

Conventionally seizure is detected and classi ed by the visual inspection of EEG 
signals by experts. The EEG provides important information about background 
EEG and epileptiform discharges and is required for the diagnosis of speci c 
electro-clinical syndromes. Following a seizure (i.e, during the postictal period) 
the EEG background may be slow. However, interictal background EEG frequen-
cies that are slower than normal for age usually suggest a symptomatic epilepsy 
(i.e, epilepsy secondary to brain insult). Normal background suggests primary 
epilepsy (idiopathic or possibly genetic epilepsy). Thus EEG background o ers 
important prognostic and classi cation information [10]. 

 

Lennox-Gastaut syndrome (LGS) is a type of epilepsy that a ects a child's intel- 
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lectual functioning and may cause behavioral disturbances. Unfortunately, 
LGS usually persists through childhood and adolescence into adulthood. 
When diag-nosing LGS, doctors will look for di used slow spikes and slow 
waves of 2-2.5 cycles per second [10]. This is between seizures, and while the 
person is awake. An EEG during sleep is also necessary. Bursts of di use or 
bilateral fast rhythm patterns (10 cycles/second) or \polyspikes", also called 
generalized paroxysmal fast activity are recorded during sleep. These EEG 
patterns help di erentiate LGS from other epilepsy syndromes [11]. 

 

Generalized onset tonic seizures are epileptic seizures of mainly severe epilepsies of 
neonates, infants, and children with learning di culties who also su er from frequent 
seizures of other types [12]. Lennox-Gastaut syndrome is the prototype disorder of 
generalized onset tonic seizures. Generalized onset tonic seizures mani-fest with 
abrupt onset and termination of sustained increase in muscle contraction, usually 
lasting a few seconds to 1 minute. Severity varies from inconspicuous to marked 
clinical manifestations with falls depending on the extent and group of muscles 
involved and violence of the attack. The seizures predominantly occur in sleep. 
Interictal and ictal EEG are usually grossly abnormal. 

 

Atypical absences are generalized epileptic seizures of mainly severe epilepsies 
in children with learning di culties who also su er from frequent seizures of 
another type. Atypical absence seizures are characterized by a slow, insidious 
start and end with usually mild impairment of consciousness and signi cant atonic 
symptoms. Ictal EEG shows di use spike and slow wave discharges with a 
varying range of frequencies at less than 2.5 Hz. Interictal EEG is often abnormal. 

 

Visual seizure detection and classi cation from direct observation of EEG 
recording has not been proven very e ective as visual observation su ers from 
misinterpreta-tion frequently and needs highest level of expertise which is also 
time consuming. E cient automated seizure detection and classi cation 
systems aid the diagnosis of such epilepsy and improve the management of 
long term EEG recording. As a result, di erent signal processing based EEG 
signal detection and classi cation methods are exploited to ease expert 
decision with superior accuracy and fast decision making. 

 

1.4.2 Signal Processing Based Seizure Detection and Clas- 
 

si cation 
 

The literature shows numerous approaches to classify seizure and non-seizure ac- 
 

tivities with the intention to simplify the diagnosis procedure of epilepsy. Until 
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recently, only visual inspection by skilled neurologist was used to identify seizures. 
Yet, this procedure may constitute a lengthy tedious task for long-continuous EEG 
tracks. Therefore, computer aided programmed algorithms have progressed to make 
the procedure automated and shortened while several seizure detection ap-proaches 
are found in the international literature in this regard. 

 

A seizure detection system must be able to determine the presence or 
absence of ongoing seizures. A variety of algorithms of di erent biometric 
signals can do this even prior to clinical onset of a seizure. All seizure 
detection algorithms involve two main steps. 

 

First, appropriate quantitative values or features must be computed from the 
data. These feature sets precise all information and model the whole EEG 
recording into few parameters from where decision making is easier, more 
accurate and less time consuming than the conventional manual methods. 
Such facts are demonstrated in Fig. 1.3 where time domain plot of EEG 
signals obtained from di erent state and parts of the brain are shown. 

 

The classi cation of seizures from di erent state and parts of the brain from this 
time domain plot is ambiguous and erroneous. That is why; it is inevitable to 
look for feature set which can represent these EEG recordings as depicted in 
Fig 1.3 to di erentiate these seizures originated from di erent state and parts of 
the brain more precisely. 

 

Secondly, a threshold or model-based criteria must be applied to the features 
to determine the presence or absence of a seizure. This second step, called 
classi ca-tion, might be as simple as thresholding a value or might require 
models derived from modern machine learning algorithms. 

 

Several state-of-the-art methods have been exploited for detection and classi 
ca-tion of epilepsy. Di erent types of features such as mean-squared error of 
estimated auto-regressive models, relative power of di erent spectral band of 
EEG signals, spectral edge frequency, spectral edge power, statistical 
moment, long term energy are used to composite di erent feature vectors in 
order to analyze EEG signals [13]-[19]. 

 

Assuming the input EEG signal as stationary, some work derived features with the aid 
of conventional signal transformation techniques like Fourier transform [14]- 

 

[16]. But, due to change in frequency component over the time, EEG is 
always considered as a non-stationary process. 

 

As a result, minor variation in frequency domain may not be detected by adopt-ing 
techniques in [14]-[16]. Due to this non-stationarity, perfect decision making 
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Fig. 1.3: Time Domain Plot of Di erent Classes of EEG Signals 
 

 

for detection and classi cation of EEG signals is mostly dependent on accuracy of 
extracting feature in time and frequency domain. As distribution of energy at di 
erent frequency bands demonstrate the seizure activities, time-frequency distri-
bution performs better than conventional frequency analysis methods [20], [21]. 

 

However, despite good results have been obtained with these techniques, they 
only provide a limited amount of information about the electrical activity of the 
brain because they ignore the underlying nonlinear EEG dynamics. As it is widely 
accepted, the underlying subsystems of the nervous system that generates the 
EEG signals are considered nonlinear or with nonlinear counterparts [22]. Even in 
healthy subjects, the EEG signals show the chaotic behavior of the nervous 
system. Therefore, due to this nonlinear nature of EEGs, additional information 
provided by techniques from nonlinear dynamics has been progressively incorpo-
rated in order to reveal aspects that cannot be measured from linear methods 
[23]. Nonlinear dynamic measures of complexity (e.g., the correlation dimension) 
and stability (e.g., the Lyapunov exponent and Kolmogorov entropy) quantify 
critical aspects of the brain dynamics. 

 

The Correlation Dimension (CD) provides the degree of complexity in comparison 
with seizure and non-seizure EEG recordings [24]. The Fractal Dimension (FD) 
parameter depicts the complexity, irregularity and the chaotic nature of the EEG 
signals which is helpful for proper discrimination of Epileptic and normal EEG [25]. 
The Approximation Entropy (ApEn) is a statistical index for the overall 
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complexity and predictability of a given time series. The value of ApEn 
reduces signi cantly during seizure attack thus quite helpful for seizure event 
prediction and detection [26]. These feature sets are used to represent 
particular patterns for di erent types of EEG recording which are fed into di 
erent classi ers like di erent distance based classi er (QDA, LDA, Euclidean 
based, k-NN etc), neural network based classi er etc. to automatically detect 
and classify seizures originating from di erent states and parts of the brain. 

 

Many previous works used time-frequency analysis to detect pre-seizure 
chirps and multi-resolution analysis of EEG. E ectiveness of these works 
depends on frequency or time domain smoothing. Reduced Interference (RI) 
distribution and twelve kohen class kernels are used for smoothing purpose 
before feature extraction [27], [28]. But, due to selection of speci c kernels 
among a set of kernels and complex feature extraction process make time 
frequency analysis computationally expensive. To encounter this problem of 
kernel selection and cost complexity, recent method based on Empirical Mode 
Decomposition (EMD) and Dual-Tree Complex Wavelet Transform (DT-CWT) 
has been proposed in [29]-[31] for seizure detection and classi cation. 

 

 

1.5 Problem De nition 
 

The investigation, detection, and classi cation of seizure and epilepsy can be easily 
performed from the behavioral actions of brain recorded by Electroencephalogra-phy 
(EEG) signals. Conventional detection of epileptic seizure normally needs visual 
expertise and longer time which may be a source of misinterpretation and a problem 
in case of disease treatment. The objective of computer-aided digital signal 
processing of EEG signal is to reduce the time taken by the physicists in interpreting 
the results. The seizure detection algorithms found in literature in-volve extracting the 
features from EEG signals decomposed into time-frequency sub-bands to 
discriminate them between seizure (ictal) and seizure-free (non-ictal or inter-ictal) 
activity without mentioning any rationale behind choosing speci c time-frequency sub-
band. These exploited features include wavelet energy, higher order statistical 
moment, Shannon entropy, root mean square amplitude, total power and so on. 
However, most of the algorithms have the high dimensional fea-ture set considering 
all bands of EEG signals and not all of them have reported their performance in 
stringent conditions for detecting and classifying multiclass EEG signals. Thus, 
development of a pro cient method capable of detecting and classifying multiclass 
EEG epilepsy with a reduced feature set is still a challenging 
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task. 
 

 

1.6 Motivation 
 

In light of above discussions, it is evident that we need to propose and develop an 
e ective multiclass epileptic seizure activity classi cation scheme which will be 
capable of performing e ciently in numerous stringent conditions. Due to the non-
stationarity of EEG signals, we have moved to exploit discrete wavelet transform 
(DWT) operation and choose band-speci c DWT coe cients for reduced feature 
set which will make the algorithm more e cient. For an e ective feature extraction 
and classi cation strategy, we have been motivated to build a statistical model of 
the band-speci c DWT coe cients and feed the modeling parameters to the classi 
ers for sorting purpose. It is found more functional to make the features from the 
entire shape of the data class rather than taking discrete parameters which is 
representing each class in more consistent way and further make the classi cation 
procedure e ective. Lastly, a classi cation problem involving several kinds of EEG 
data from numerous brain location and state is found very limitedly reported in 
literature. That is why; we have been motivated to propose a multiclass epileptic 
seizure activity classi cation exploiting statistical modeling of band-speci c DWT 
coe cients of EEG signals. 

 

 

1.7 Objective of the Thesis 
 

The objectives of this thesis are: 
 

1. To analyze the given EEG signals through band-speci c Discrete 
Wavelet Transform (DWT) coe cients . 

 
2. To nd out the appropriate statistical probability density function (PDF) for 

modeling the band-speci c DWT coe cients through visual inspection of 
PDFs and goodness of t tests. 

 
3. To develop an e ective and reduced feature set to detect and classify 

epileptic seizure activities based on the statistical modeling parameters 
of the band-speci c DWT coe cients. 

 
4. To investigate the performance of the proposed method with di erent 

state-of-the art comparison methods for the detection and classi cation 
of epileptic seizure activities using the same dataset. 
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The outcome of this thesis is the development of EEG based multiclass 
seizure activity classi cation method with e ective and reduced feature sets 
exploiting band-speci c DWT coe cients and its statistical modeling with 
greater accuracy, sensitivity and speci city. 

 

 

1.8 Organization of the Thesis 
 

The thesis is organized as follows 
 

Chapter 1 provides the introduction of the overall thesis 
 

Chapter 2 presents popular seizure detection and classi cation methods 
re-ported in literature 

 

Chapter 3 describes the proposed method of epileptic seizure detection 
and classi cation from EEG signals based on statistical modeling of 
band-speci c DWT coe cients 

 

Simulation results and quantitative performance analysis are described in 
Chapter 4 for the proposed method described in chapter 3. Performance of 
the proposed method is also compared with the state-of-the-art methods 

 

Finally, in chaper 5, concluding remarks highlighting the contribution of 
the thesis and suggstions for further investigation are provided. 



 
 
 
 
 
 
 
 

 

Chapter 2 
 

 

Literature Review 
 
 
 

 

A plentiful of researches is available in the literature concerned with 
automated detection and classi cation of epileptic seizure using EEG signals. 
During the seventies, EEG analysis implied interpreting the EEG waveform 
using descrip-tive and heuristic methods. In time, various methods have been 
used to analyze several subtle changes in the EEG signal. Most of the 
methods fall under three broad categories: (1) time domain, (2) frequency 
domain, and (3) time{frequency domain. 

 

The two primary considerations for this detection system are- the type of 
features to be extracted from the EEG input signal (feature extraction 
techniques) and the type of analysis techniques to be applied on these 
extracted features to detect the stage (classi cation techniques). 

 

 

2.1 Time Domain Methods 
 

To detect EEG seizures in time domain, there is a need to analyze discrete time 
sequences of EEG epochs. This analysis can be accomplished through 
histograms of the epochs. Runarsson and Sigurdsson presented a simple time-
domain seizure detection method that is based on tracing consecutive peaks and 
minima in the signal segment at hand and estimating the histograms for two 
variables: the am-plitude di erence and time separation between peak values as 
well as minima [32]. The features used for classi cation of an epoch as a seizure 
or non-seizure is the estimated values of the histogram bins. The authors used a 
support vector ma-chine (SVM) classi er for this task and achieved an average 
sensitivity of about 90% on self-recorded data. 

 

Another approach to deal with the EEG seizure detection method in time domain 
is to compute the signal energy during seizure and non-seizure periods. A better 
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treatment to the energy estimation approach is to estimate the energies of the 
signal sub-bands, not the signal as a whole in order to build a more discriminative 
feature vector. Yoo et al. adopted this approach and presented an eight-channel 
EEG acquisition system-on-chip (SoC) that can detect and record patient-speci c 
epileptic seizures [33]. The authors used an SVM as a classi er with a gain and 
bandwidth (GBW) controller to perform real-time gain and bandwidth adaptation 
to analog front end (AFE) in order to keep a high accuracy. 

 

Another approach to deal with time-domain seizure detection is to exploit 
some dis-criminating statistics between seizure and non-seizure epochs. 
Dalton et al., 2012 developed a body sensor network (BSN) that can monitor 
and detect epileptic seizures based on statistics extracted from time-domain 
signals [34]. These statis-tics include the mean, variance, zero-crossing rate, 
entropy, and autocorrelation with template signals. For auto-correlation 
estimation, they adopted a Dynamic Time Warping (DTW) approach for best 
alignment between the signal segment to be tested and the template signal. 

 

Zandi et al., 2013 used the zero-crossing rate of EEG signal segments to 
develop a patient-speci c seizure prediction method [35], [36]. A moving 
window analysis is used in this method. The histograms of the di erent window 
intervals are es-timated, and selected histogram bins are used for classi cation 
into pre-ictal and inter-ictal states based on comparison with reference 
histograms. A variational Bayesian Gaussian mixture model has been used for 
classi cation. In this method, a combined index for the decisions taken on 
selected bins is computed and com-pared with a pre-de ned patient-speci c 
threshold to raise an alarm for coming seizures. 

 

Aarabi [37] developed a time-domain rule-based patient-speci c seizure prediction 
method which consists of three stages: pre-processing, feature extraction, and 
rule-based decision making. In the pre-processing stage, the IEEG data is ltered 
using a 0.5- to 100-Hz pass lter in addition to a 50-Hz notch lter. Then, the ltered 
signal is segmented into non-overlapping 10-s segments. Five univariate features 
(correlation entropy, correlation dimension, Lempel-Ziv complexity, noise level, 
and largest Lyapunov exponent) and one bivariate feature (non-linear inde-
pendence) were extracted from each segment in the second stage. 

 

Based on the theory of chaos, the correlation dimension (denoted by v) represents a 
dimensionality measure of the space having a set of random points; in our case, EEG 
signals. For an m-dimensional space containing a set of N points, it can be 



   19 

written:    

x(i) = [x1(i); x2(i); ::::::; xm(i)]; i = 1; 2::::::N (2.1) 

The correlation integral C( ) can be estimated as [38]:  

C( ) = lim g (2.2) 
  

N!1 N2 
 

 

where g represents the total number of pairs of signals or points having a 
distance less than . As the number of points increases and tends to in nity and 
the distance tends to be shorter or close to zero, the correlation integral, in 
turn, for small values of becomes: 

 

C( ) = y (2.3) 
 

If a large number of evenly distributed points exists, a log-log graph of the correla-
tion integral versus can be used to estimate . For objects with higher dimensions, 
several ways exist for points to be close to each other, and hence, the number of 
pairs which are close to each other jumps rapidly for higher dimensions [38]. 

 

Correlation entropy is a Kolmogorov entropy variant, which is similar to the 
mutual information between two sequences of data. Large mutual information 
between an available data segment and stored segments with speci c patterns 
is an indication that the segment at hand belongs to a dataset with similar 
characteristics to the stored pattern [39]. 

 

The Lempel-Ziv complexity is a measure of randomness of data sequences 
[40]. It counts the number of data patterns with certain characteristics in data 
segments. For example, if we nd enough short patterns with speci c mean, 
variance, or higher-order statistics are found in an EEG segment, we can 
classify this segment as a seizure segment. 

 

The Lyapunov exponent of a dynamical system determines the separation rate of 
very closely related trajectories. Hence, two signal vectors in the phase space 
with an initial separation of Z0 will eventually diverge at a rate given by [40] 

 

j Z(t)j =  tj Z0j (2.4) 
 

where is the Lyapunov exponent. This can be achieved if the divergence can be 
dealt with within the linearized approximation. The separation rate di ers based on 
the initial separation vector orientation. The maximal Lyapunov exponent can 
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be estimated as [41]: 
= lim  lim 1 ln j Z(t)j (2.5) 

 

j Z0j t!1  Z0!1 t    

The limit  Z0 ! 0 ensures the validity of the linear approximation at any time. 
 

Wang et al., 2010 proposed an adaptive learning system that interactively 
learns from the patient and improves its seizure predictability over time [42]. It 
is based on reinforcement learning and online monitoring, in addition to 
adaptive control theory. In this system, a sliding window size of 10 min is used 
to read continuous multichannel EEG data with a 50% overlap at each move. 
Then, k-nearest neighbor (KNN) method is adopted for the classi cation of the 
windowed epochs to normal or preseizure states. 

 

Bedeeuzzaman et al., 2014 have presented a seizure prediction algorithm with 
a statistical feature set consisting of mean absolute deviation (MAD) and inter-
quartile range (IQR) to predict epileptic seizures [43]. A linear classi er has 
been used to nd the seizure prediction time in pre-ictal IEEGs. The envelope 
of the EEG signal can be exploited to distinguish between di erent activities. 

 

Li et al., 2013 presented a time-domain method for seizure prediction that is 
based on spike rate estimation [44]. Morphological operations and averaging lters 
are applied to transform each signal segment to a train of spikes in a way similar 
to the process of envelope detection. Based on the spike rate, ictal, inter-ictal, 
and pre-ictal states can be identi ed through comparison with a certain threshold. 

 

Another approach to process EEG signals in the time domain in order to detect or 
predict seizure is to create models from the EEG signal segments corresponding 
to di erent activities. One of such models is the autoregressive (AR) model, which 
can be thought of as a data reduction model that transforms the EEG signal 
segment into few coe cients. Chisci et al., 2010 studied the implantation of 
monitoring and control units on drug-resistant epilepsy patients with AR modeling 
[45]. They adopted AR modeling with a least-squares parameter estimator for 
EEG feature extraction in addition to a binary SVM classi er to distinguish 
between pre-ictal, ictal, and inter-ictal states. 

 

 

2.2 Frequency Domain Methods 
 

Frequency-domain techniques have been used for EEG seizure detection. Both of 
the Fourier transform magnitude and phase can be exploited for this purpose. Rana 
et al., 2012 presented a frequency-domain epileptic seizure detection approach 
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depending on the phase-slope index (PSI) of multi-channel EEG signals [46]. 
If we consider signals zi[n] and zj[n], their cross spectrum is given by: 

 

Sij(f) = E[Zi(f)Zj (f)]: (2.6) 
 

where Zi(f) and Zj(f) are the Fourier transforms of zi[n] and zj[n]. Hence, the 
complex coherence is given by: 

 

Sij(f)  

Cij(f) = 
p

Sii(f)Sjj(f) (2.7)  
An un-normalized PSI metric can be de ned using complex coherence as follows: 

 

! 
X 

ij
` = Im Cij(f)Cij(f + f) (2.8) 

 
f 2F 

 

where f is the frequency resolution and F is the frequency band of interest. We 
can deduce that ij measures a weighted sum of the slopes of the phase 
between zi[n] and zj[n] over the selected band F [46]. Normalization with the 
standard deviation is used to determine whether causal in uence from zi[n] to 
zj[n] is of signi cant extent or not. 

 

The PSI computes the measure of interaction between two channels. The 
authors used the PSI metric to distinguish between seizure and normal 
activities. The detection performance has been evaluated over ve patients 
having di erent types of epilepsy with 47 seizures in 258h of recorded data. 
The simulation results showed that this algorithm succeeded in the detection 
of all seizures for four out of ve patients, and it achieved a lower false 
detection rate than two per hour. The results also showed that the channels 
with strong activity can be determined for each patient. 

 

Khamis et al., 2013 used frequency-moment signatures for building a patient-speci c 
seizure detection method [47]. Firstly, experienced electroencephalographs have 
marked the collected scalp EEG data with seizure events. After that, a ltering process 
has been performed on the windowed EEG data from electrode di erences T6-P4 for 
the right hemisphere and T5-P3 for the left hemisphere. Power spectral densities of 
the signals on both hemispheres have been computed and a background removal 
technique has been used. Moments of these spectra have been used as features for 
signal classi cation as seizure or non-seizure. 

 

EEG signals are in general non-linear and non-stationary. So, there is a di culty to 
characterize di erent activities of EEG signals with certain mathematical models. 
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To tackle this problem, Acharya et al. 2012 presented a modi ed method for 
the detection of normal, pre-ictal, and ictal conditions from recorded EEG 
signals [48]. This method is based on four entropy features for classi cation: 
phase entropy 1 (S1), phase entropy 2 (S2), approximate entropy (ApEn), and 
sample entropy (SampEn). The phase entropies are estimated from the 
higher-order spectra of EEG signal epochs as discriminating features for ictal, 
pre-ictal, and inter-ictal activities. The approximate and sample entropies are 
logarithmic metrics that determine the closeness and matching between the 
incoming EEG signal pattern and the recorded templates. These features are 
extracted from EEG signals and fed to di erent classi ers for comparison: 
SVM, KNN, naive Bayes classi er (NBC), Arti cial Neural Network (ANN). 

 

 

2.3 Time-Frequency Domain Methods 
 

Even though time and frequency analyses are widely used in signal processing, 
they have well known disadvantages when applied to signals such as EEG. Time-
domain analysis can be used to assess the exact location of events but it cannot 
distin-guish which frequencies are involved in those events. Frequency-domain 
analysis di erentiates the frequencies present in a signal but not the time moment 
of their occurrence. Due to these limitations, time-frequency analysis techniques 
have been developed. Time-frequency approaches include Wigner-Ville 
distribution (WVD) , Empirical Mode Decomposition (EMD) and Discrete Wavelet 
Transform (DWT), which are the most widely used techniques for EEG. 

 

2.3.1 Wigner-Ville Distribution 
 

The Wigner-Ville distribution (WVD) function used in signal processing as a trans-
form in time-frequency analysis is one of the most studied and best understood 
time-frequency distributions [49]. This particular distribution has very good res-
olution in both the time and frequency domains, and has interesting time and 
frequency support properties [50]. Tzallas et al. 2008 [28] applied the WVD to 
selected segments of EEG signals and extracted several features for each 
segment that represent the energy distribution in the time-frequency plane. The 
calculated features are fed into a feed-forward ANN. To reduce the dimensionality 
of the input patterns, principal component analysis (PCA) is also employed. 
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2.3.2 Empirical Mode Decomposition (EMD) 
 

The EMD is a signal decomposition process which transforms a signal into a group of 
intrinsic mode functions (IMFs). For EEG seizure detection, these IMFs show di erent 
behavior with normal and abnormal activities in the signals. Features can also be 
extracted from the IMFs and tested for seizure detection and prediction. 

 

Eftekhar et al., 2008 used the EMD approach for seizure detection [51]. They 
adopted features such as the frequency rise at the seizure onset with the EMD in 
a patient-speci c manner. Their simulation results have shown that the Hilbert 
transform can be used to decompose EEG signals into components, from which 
features can be extracted for seizure onset detection. Tafreshi et al., 2008 
evaluated the performance of the EMD in discriminating epileptic seizure data 
from normal data using means of the absolute of the IMFs as features [52]. They 
compared this approach for feature extraction with wavelet features using both 
multi-layer perception (MLP) and self-organizing map (SOM) neural networks. 

 

Orosco et al., 2009 presented a seizure detection approach based on the energies of 
IMFs as discriminating features between seizure and non-seizure activities in 

 
[53]. In this approach, the IMF energies are compared with certain thresholds for 
decision making. It was tested on nine patient records from Freiburg database with 
invasive nature. Guarnizo and Delgado presented a modi ed EMD approach, in which 
mutual information is used for feature selection in the EMD domain [54]. These 
features include the average or instantaneous frequency and amplitude for all EMD 
components. Higher-order statistics such as the skewness and kurtosis in addition to 
Shannon's entropy have been selected as features extracted from the en-ergy 
estimated with the Teager energy operator (TEO) over all EMD components. This 
approach adopts a linear Bayes classi er. Bajaj and Pachori presented an EMD-
based seizure detection method to detect focal temporal lobe epilepsy [18]. In this 
method, they used Hilbert transformation of IMFs which were obtained by an EMD 
process. Epileptic seizures are then detected based on the instantaneous area 
estimated from the trace of analytic IMFs of EEG signals. The performance of this 
epileptic detection method was evaluated on Freiburg. Alam and Bhuiyan presented 
a seizure detection method depending on extracting kurtosis, skewness, largest 
Lyapunov exponent, variance, approximate entropy, and correlation di-mension from 
the IMFs of EEG signals with arti cial neural network classi ers [31], [55]. This method 
achieved a 100% sensitivity in seizure detection and has shown a superiority as 
compared to time-frequency techniques and band-limited techniques in the 
computational complexity. However, in the features reported in 
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[18], [31], [55] from the set of extracted IMFs; no automatic selection of IMF is 
proposed and classi cation performance is reported with respect to each 
individual IMF. Recently in [56], rst four IMFs have been taken into account 
considering the strength of IMFs in power spectral density estimation and 
bimodal Gaussian statistical modeling parameters have been extracted from 
the IMFs for multiclass epileptic seizure activity classi cation. 

 

2.3.3 Wavelet Transform 
 

Wavelets have been widely used in the eld of EEG signal analysis, especially for 
seizure detection and prediction. The wavelet transform in itself can be regarded 
as some sort of sub-band decomposition, but with downsampling. The main 
challenge in wavelet-based EEG seizure detection is the determination of the 
appropriate wavelet decomposition level and the selection of the features from 
certain sub-bands for discrimination between seizure and non-seizure periods. 

 

A ve-level wavelet decomposition method for seizure detection was developed 
by Liu et al.. 2014 [57]. This method works on multi-channel IEEG signals. 
Three wavelet sub-bands are selected for further processing. The extracted 
features from these sub-bands are the relative amplitude, relative energy, coe 
cient of variation (ratio between the standard deviation of a decomposed sub-
band and the square of its mean), and uctuation index (a measure of the 
intensity of a decomposed sub-band ) from the selected frequency bands. An 
SVM classi er is used in this approach, and some sort of post-processing is 
implemented to enhance the detection performance with smoothing. 

 

Khan et al., 2012 proposed a similar approach for seizure detection, but with 
rel-ative energy and a normalized coe cient of variation (NCOV) as features 
[58]. Wang et al. used Neyman Pearson rules and an SVM classi er for 
seizure de-tection [59]. This method depends on the wavelet coe cients in 
addition to the approximate entropy in the wavelet domain as extracted 
features, and the detec-tion is performed using Neyman Pearson rules with an 
SVM. The approximate entropy is an entropy metric that takes into 
consideration the ordering of the points of the discrete time sequence at hand, 
and hence, it is a good measure for the regularity of the data sequence. 

 

Zainuddin et al. 2013 investigated the use of Wavelet Neural Networks (WNNs) 
based on wavelet basis functions for seizure detection [60]. Firstly, the wavelet 
transform of EEG signals is estimated, and maximum, minimum, and standard 
deviation of the absolute values of the wavelet coe cients in each sub-band are 
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extracted as features. These features are then fed to trained WNNs. The 
Gaus-sian, Mexican Hat, and Morlet wavelet activation functions have been 
investigated for classi cation. A cross-validation approach have been adopted 
in the simu-lation experiments. Simulation results revealed that the best 
performance was obtained with WNNs employing a Morlet wavelet activation 
function with order 4 Daubechies wavelet for feature extraction. 

 

Niknazar et al. 2009 presented a wavelet-based method for epileptic seizure 
detec-tion that adopts recurrence quanti cation analysis (RQA) on EEG 
recordings and their delta, theta, alpha, beta, and gamma sub-bands extracted 
through a four-level Daubechies wavelet transform [61]. The RQA is well-
suited for non-linear data analysis. It quanti es the number and duration of 
recurrences of the EEG signals based on phase space trajectories. The phase 
space is built on estimating a time delay and an embedding dimension, which 
are the features corresponding to each EEG signal state. The authors adopted 
an error-correcting output coding (ECOC) classi er for discriminating between 
three states: healthy, inter-ictal, and ictal. 

 

In [62], EEG signals were summarized by a statistical generalized Gaussian 
model and only onset of seizure detector was proposed on a multi-resolution 
wavelet scheme. Recently, a method based on Dual-Tree Complex Wavelet 
Transform (DT-CWT) has been applied in [30] to detect epilepsy. In this 
method, seizure detection is acquired after applying DT-CWT to each EEG 
signals to obtain sub-bands for di erent classes of EEG signals. Then, 
modeling of these sub-bands of EEG signals is done via using Normal Inverse 
Gaussian (NIG) Probability Density Function (PDF). Then the modeling 
parameters are used as feature with SVM classi er to detect epilepsy. 

 

However, in all methods described in [30], [56]-[62], no band-speci c term or 
cause to select particular time-frequency sub-band is declared in DT-CWT or 
DWT for classi cation of seizure and non-seizure activities originated from di 
erent parts and state of the brain . Therefore, classifying multiclass EEG 
signals in stringent conditions is still remain challenging. 

 
 
 
 

2.4 Conclusion 
 

In this chapter, a brief literature survey of the recent state-of-the-art seizure de-
tection and classi cation methods are provided. All the methods have their ad- 
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vantages and limitations. In order to handle the practical situations of real life 
applications, a seizure detection and classi cation method is needed to be capable of 
producing greater accuracy, sensitivity, speci city and lesser processing time even in 
case of stringent conditions such as speci c time-frequency band, reduced feature set 
as well as random selection of training and testing dataset for multiclass problem 
where EEG signals from di erent part and state of the brain are involved. 



 
 
 
 
 
 
 
 

 

Chapter 3 
 
 

 

Multiclass Seizure Activity Classi 
cation Exploiting Statistical 
Modeling of the Band-Speci c DWT 
Coe cients of EEG Signals 

 
 
 
 
 
 

 

3.1 Introduction 
 

Designing a feature set, which is capable of extracting distinguishable information to 
detect and classify seizure data from mixture of normal and seizure EEG signals is a 
di cult task. Since, EEG is a non-stationary signal, discrete wavelet transform (DWT) 
has the potential to perform better than the conventional time-frequency analysis 
method. But, selection of speci c time-frequency band resulting from DWT is also 
crucial in this case. In this chapter, DWT analysis of the EEG signals is performed at 
rst and the band-speci c DWT coe cients are taken into account. For the reduction of 
the dimension of the feature vector, a statistical model of the band-speci c DWT coe 
cients has been built and the modeling parameters are employed to form the feature 
vector. Rather than taking discrete parameters like total power, wavelet energy, root 
mean square amplitude, Hjorth parameter, higher order statistical moment, Shannon 
entropy and so on as feature; it is found rational to propose feature set by taking 
parameters attained from the statistical model since they are achieved from the 
shape of the entire data distribution and make the feature set more consistent for 
each class. The reduced feature set thus formed is found e ective for detecting and 
classifying multiclass EEG signals for epilepsy 
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investigation when fed to di erent state-of-art classi ers in stringent conditions 
although preliminary results for 3 classes and 5 classes have been reported in 
[63], [64]. 

 

 

3.2 Proposed Method 
 

The proposed EEG based epileptic seizure activity detection and classi cation 
method consist of some major steps, namely- pre-processing, discrete wavelet 
transform (DWT), statistical modeling of band speci c DWT coe cients, fea-ture 
extraction and classi cation. In the classi cation, we consider three di erent classi 
cation problems, namely two class, three class and ve class problem. Pre-
processing manipulates the signal to be ready for DWT analysis. An appropriate 
statistical model of the band-speci c DWT coe cients is constructed and feature 
set is built with the statistical model parameters. For the purpose of detecting 
epileptic seizure and to classify epileptic seizure originated from di erent parts and 
state of the brain, a training database is needed to be prepared consisting of 
template EEG signals of di erent classes as well as di erent persons. The detec-
tion and classi cation task is based on comparing a test EEG signal with training 
dataset. It is obvious that considering EEG signals themselves would require ex-
tensive computations for the purpose of comparison. Thus, instead of utilizing the 
EEG signals, some characteristic features are extracted from the parameters of 
probability density function (PDF) of proposed statistical model of DWT coef-
cients for preparing the training dataset. It is to be noted that the detection and 
classi cation accuracy strongly depends upon the quality of the extracted 
features. Therefore, the main focus of this work is to develop an e ective feature 
extraction algorithm from appropriate statistical model. The simpli ed block 
diagram of the proposed method is shown in Fig. 3.1. 

 

3.2.1 Pre-processing 
 

All the activities of an EEG signal can be divided into ve popular time-
frequency bands namely gamma, beta, alpha, theta and delta. These bands 
altogether cover their signi cant energies for the frequency range up to 80 Hz. 
As a result, fre-quencies above 80 Hz are considered as noise. To eliminate 
the noise, 6th-ordder butterworth lter having a cut-o frequency to 80Hz has 
been used in this work. The plots of original and proposed seizure and non-
seizure EEG signals are shown in Fig. 3.2 

 
From this gure, it is quite di  cult to identify any particular pattern for seizure 
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Fig. 3.1: Simpli ed Block Diagram of the Proposed Method 
 

 

and non-seizure activities from time domain EEG signals. As a result, we need 
to transform EEG signals in another domain and capture suitable feature in 
that domain for seizure activity detection and classi cation. 

 

3.2.2 Discrete Wavelet Transform (DWT) 
 

Discrete Wavelet Transforms (DWTs) are widely applied in many engineering elds for 
solving various real-life problems. The Fourier transform of a signal contains the 
frequency content of the signal over the analysis window and, as such, lacks any time 
domain localization information. In order to achieve time localization information, it is 
necessary for the time window to be short, therefore compro-mising frequency 
localization. On the contrary, achieving frequency localization requires a large time 
analysis window and time localization is compromised. The short-time fourier 
transform (STFT) represents a sort of compromise between the time and frequency 
based views of a signal and contains both time and frequency information. STFT has 
a limited frequency resolution determined by the size of the analysis window. This 
frequency resolution is xed for the entire frequency band. Contrary to STFT, Wavelet 
Transform (WT) provides a more exible way of time-frequency representation of a 
signal by allowing the use of variable sized windows. In WT, long time windows are 
used to get a ner low frequency reso-lution and short time windows are used to get 
high frequency information. Thus, 
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(a)  
 
 
 
 
 
 
 
 

 

(b)  
 
 
 
 
 
 

 

(c)  
 
 
 
 
 
 

 

(d)  
 
 
 
 
 
 

 

(e) 
 

Fig. 3.2: Non-seizure [(a) to (d)] and Seizure [(e)] EEG Signals [Original(left) 
and Proposed (Right)] 

 

 

WT gives precise frequency information at low frequencies and precise time 
in-formation at high frequencies. This makes the WT suitable for the analysis 
of irregular data patterns, such as impulses occurring at various time 
instances. The continuous wavelet transform (CWT) of a signal, x(t), is the 
integral of the signal multiplied by scaled and shifted versions of a wavelet 
function w and is de ned by [65], 

 

CW T (a; b) = 1 x(t) 1    ( t  b )dt (3.1) 
       

Z  1  

pj 

a 

j 

 a  
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where a and b are so called the scaling (reciprocal of frequency) and time 
localiza-tion or shifting parameters, respectively. Calculating wavelet coe 
cients at every possible scale is computationally a very expensive task. 
Instead, if the scales and shifts are selected based on powers of two, so-
called dyadic scales and positions, then the wavelet analysis will be much 
more e cient. Such analysis is obtained from the DWT which is de ned as, 

 
  

1 
1  j  

DW T (j; k) =   
Z

 1 x(t) ( t  2 k )dt (3.2) 

p 

2j 
 2j 

 j j      

where a and b are replaced by 2j  and 2jk, respectively.  Mallat Mallat (1989) 
 

[65] developed an e cient way for implementing this scheme by passing the 
sig-nal through a series of low-pass (LP) and high-pass (HP) lter pairs named 
as quadrature mirror lters. 

 

In the rst step of the DWT, the signal is simultaneously passed through a LP and 
HP lters with the cut-o frequency being the one fourth of the sampling frequency. 
The outputs from the low and high pass lters are referred to as approximation 
(A1) and detail (D1) coe cients of the rst level, respectively. The output signals 
having half the frequency bandwidth of the original signal can be downsampled by 
two according to Nyquist rule. The same procedure can be repeated for the rst 
level approximation and the detail coe cients to get the second level coe cients. At 
each step of this decomposition process, the frequency resolution is doubled 
through ltering and the time resolution is halved through down sampling. Fig. 3.3 
illustrates the four level wavelet decomposition of a signal. In this representation, 
the coe cients A1, D1, A2, D2, A3, D3, A4 and D4 represent the frequency 
content of the original signal within the bands 0{fs/4, fs/4{fs/2, 0{fs/8, fs/8{fs/4, 
0{fs/16, fs/16{fs/8, 0{fs/32, and fs/32{fs/16, respectively where fs is the sampling 
frequency of the original signal r[n]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3.3: DWT Decomposition of a Signal r[n] 
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3.2.2.1 Band-Speci c DWT Coe  cients 
 

Basically, extracted all band of DWT coe cients do not uniquely deceive whether 
the corresponding EEG signal is seizure or non-seizure. However, recent stud-ies 
indicate that pathologic high-frequency oscillations (HFOs) are signatures of 
epileptogenic brain [66]. Recent studies using presurgical intracranial EEG (IEEG) 
recordings report gamma ( ) oscillations (40{80 Hz) (Buzsaki, 1996, 1998; Bragin 
et al., 1999a; Grenier et al., 2003a) [67]-[69], and high-gamma/ripple oscillations 
(80{200 Hz) that may be important for learning and memory consolidation (Llinas, 
1988; Lisman and Idiart, 1995; Buzsaki, 1996, 1998; Bragin et al., 1999a; Grenier 
et al., 2003a) [66]-[71]. In addition to their role in normal brain function, high-
frequency activity has been described at seizure onset (Allen et al., 1992; Fisher 
et al., 1992; Alarcon et al., 1995; Bragin et al., 1999b; Grenier et al., 2003a; 
Worrell et al., 2004; Jirsch et al., 2006) ][66], [69], [72]-[76] and in human 
epileptogenic foci at times temporally remote from seizure onset (Fisher et al., 
1992; Bragin et al., 1999a; Worrell et al., 2004) [66], [74], [76]. 

 

Moreover, Canolty et. al. [77] observed robust coupling between the high- and 
low-frequency bands of ongoing electrical activity in the human brain. In partic-
ular, the phase of the low-frequency theta (4-8 Hz) rhythm modulates power in 
the high-gamma/ripple (80-150 Hz) band of the electrocorticogram, with 
stronger modulation occurring at higher theta amplitudes. 

 

Inspired from the above mentioned ndings of [66]-[77], we selected and speci 
ed the e ective time-frequency band gamma (40-80 Hz) and theta (4-8 Hz) for 
taking DWT coe cients for classi cation purpose. The ranges of di erent 
frequency bands are shown in Table 3.1. Therefore, the rst level and fourth 
level detail Haar wavelet coe cients are taken here for capturing the parts of 
the signal which are associated with the high-frequency oscillation in gamma 
and theta band required for EEG signals classi cation. 
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Table 3.1: Frequency Range Corresponding to Di erent Levels of DWT Analysis 
 

Decomposed Frequency 
signal range (Hz) 

  

D1 43 - 86 
  

D2 21.5 - 43 
  

D3 10.75 - 21.5 
  

D4 5.375 - 10.75 
  

A4 0 - 5.375 
  

 
 
 
 
 

3.2.3 Statistical Modeling 
 

It is found that EEG data usually follow a normal distribution [78]. Therefore, to 
choose an appropriate statistical distributional model for DWT coe cients, we 
compared visually tting of some statistical models: Normal Inverse Gaus-sian 
(NIG), T-Location Scale, Cauchy and Gaussian PDFs with empirical PDF of 
DWT coe cients in gamma and theta band for every single-channel EEG 
signal of complete dataset. 

 

3.2.3.1 T-location Scale 
 

The t location-scale distribution is useful for modeling data distributions with 
heavier tails (more prone to outliers) than the normal distribution. The 
probability density function (PDF) of the t location-scale distribution is 

 

   v + 1    
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where ( ) is the gamma function, is the location parameter, is the scale 
parameter, and v is the shape parameter. The PDF approaches the normal 
distri-bution as v approaches in nity, and smaller values of v yield heavier tails. 

 

The mean of the t location-scale distribution, is the location parameter. The 
mean is only de ned for shape parameter values v >1. For other values of v, 
the mean is unde ned. 

 

The variance of the t location-scale distribution is  

var =  2 v  (3.4) 
 

v  2  
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The variance is only de ned for values of v >2. For other values of v, the 
variance is unde ned. 

 

3.2.3.2 Cauchy 
 

The Cauchy distribution has the probability density function (PDF) [83], [84] 
 

1    
2 

  
f(x; x0;  ) =     =   (3.5)  

x  x0 
  

[(x  x0)2  

 [1 + ( )2 ]  +  2] 
         

 

where x0 is the location parameter, specifying the location of the peak of the 
distribution, and is the scale parameter which speci es the half-width at half-
maximum (HWHM), alternatively 2 is full width at half maximum (FWHM). is 
also equal to half the interquartile range and is sometimes called the probable 
error. Augustin-Louis Cauchy exploited such a density function in 1827 with an 
in nitesimal scale parameter, de ning what would now be called a Dirac delta 
function. 

 

The maximum value or amplitude of the Cauchy PDF is 
1

 , located at x = x0. It is 
sometimes convenient to express the PDF in terms of the complex parameter  

= x0 + i 
 

f(x;  ) = 

1 

Im( 

1 

) = 

1 

Re( 

i 

) (3.6)  x  x  

The special case when x0 = 0 and = 1 is called the standard Cauchy 
distribution with the probability density function [85], [86] 

 

f(x; 0; 1) = 
1 

(3.7) (1 + x2)  

 

3.2.3.3 Normal Inverse Gaussian (NIG) 
 

The normal inverse Gaussian distribution is a variance-mean mixture of a Gaussian 
distribution with an inverse Gaussian. A stochastic variable X is said to be normal 
inverse Gaussian if it has a probability density function of the form [79]-[81] 

 

exp [p(x)] 

K1[ q(x)] (3.8) f(x) =q(x)   

where K1(x) is the modi ed Bessel function of the second kind with index 1, 
p  

p(x) = 
2 2 +  (x ), q(x) = ((x )2 + 2)1=2. Furthermore, 0  j j<  ,  

> 0,  1  1 
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As seen from the de nition in Eq. 3.8 , the shape of the NIG density is speci ed 
by a four dimensional parameter vector ( ;  ;  ; ). This parameterization is very 
exible indeed, making it possible to model a large variety of shapes and with 
various decay rates of the tail. 

 

The four parameters of the NIG-distribution have natural interpretations 
relating to the overall shape of the density as follows: 

 

The -parameter controls the steepness of the density, in the sense that the 
steep-ness of the density increases monotonically with increasing . This has 
implications also for the tail behavior, by the fact that large values of implies 
light tails, while smaller values of implies heavier tails [82]. 

 
The parameter is a skewness parameter, in the sense that < 0 implies a density 

skew to the left, > 0 implies a density skew to the right, and = 0 implies a density 

that is symmetric around , which is obviously a centrality or translation parameter. 

Last, the parameter is a scale parameter in the sense that the rescaled 

parameters ! and ! are invariant under location-scale changes of x. 
 

3.2.3.4 Gaussian 
 

The Gaussian distribution is suitable for making statistical model of one 
dimen-sional data which has numerous uses in biomedical signal processing 
for its adapt-ability nature [88]. The probability density function (PDF) of this 
parametric distribution having 2 parameters ( , ) is estimated at x values by: 

 

f(xj ;  ) = p 
1  

e 
(x   )

2 

(3.9) 
  

2 
2 2  

 

Here, mean or expectation (also its median and mode), 2 R of the distribution 
is a location parameter and standard deviation, 2 R+ is a scale parameter. 
They are established from the corresponding N number of x DWT coe cients 
of EEG signals utilizing: 

 

= x1 + x2 + x3 +   + xn (3.10) 
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The PDF has a few properties for exact demonstrating the insights of DWT 
coef-cients. A portion of these are: i) Eq. 3.9 is symmetric with respect to ii) 
the estimation of Eq. 3.9 tends to zero as x grades to positive and negative in 
nity [88]. 
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3.2.4 Goodness of Fit to a Statistical Model  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) 
(b) 

 

Fig. 3.4: Plots of the Empirical PDFs and Numerous Statistical Model PDFs in 
(a) Gamma Band and (b) Theta Band for the Five Subsets 
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Fig. 3.4 illustrates the graphical t of above mentioned PDFs for gamma and theta 
band DWT coe cients of arbitrarily selected single-channel EEG signal from each 
set Z, O, F, N and S with their empirical PDFs which are also valid for almost the 
complete dataset. It is evident from Fig. 3.4 that only the Gaussian distribution 
delivers the best match with empirical PDF for displaying the DWT coe cients. 
Therefore, Gaussian distribution has been adopted for further investigation. 

 

Fig. 3.5 shows the empirical PDF and adopted Gaussian PDF only for DWT 
coe cients of Set Z, O, F, N and S. It is seen from Fig. 3.5 that the ve groups 
of the classi cation problem have ve di erent Gaussian frameworks with 
respect to its spread. The inter-ictal group (Set F or N) has more enfolded 
PDF and PDF of ictal group (Set S) is more dispersed with respect to PDF of 
normal group (Set Z or O). The location parameter mean and scale parameter 
standard deviation convey these distinctions to be included in feature set for 
classi cation of EEG signals. In case of ve class classi cation problem when 
distinguishing between Set F and N or Set Z and O are required, accurate 
range of the PDF location is necessary where PDF is constructed. 

 

In statistics, a P{P plot (probability{probability plot or percent{percent plot or P 
value plot) is a probability plot for assessing how closely two data sets agree, 
which plots the two cumulative distribution functions (CDF) against each other. 
From Fig. 3.6 to Fig. 3.9, the probability-probability (P-P) plots of T-location, 
Cauchy, NIG and Gaussian distributions are included which show the 
cumulative distribution functions (CDFs) of the randomly chosen prior PDFs 
against the empirical CDFs used to model the corresponding DWT coe cients 
of gamma and theta band from Sets Z, O, F, N and S. It is seen from the plots 
that Gaussian P-P plot is best matched with the reference line. This is also 
applicable for each single EEG signal in the entire dataset which further testi 
es the goodness of t for proposed Gaussian statistical model. 

 
 
 

 

For a Gaussian distribution with mean and standard deviation , the cumulative 
distribution function is: 

 
   2  p 2  
F (x) = x  = 1  1 + erf x  (3.12)        

         

 

Here, (x) represents the standard Gaussian CDF and error function erf(x) 
shows the probability of a arbitrary variable with normal distribution of mean 0 
and variance 1=2 dropping in the range [-x; x]; that is: 
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(a) (b) 
 

Fig. 3.5: Plots of the Empirical PDFs and Gaussian Statistical Model PDFs in 
(a) Gamma Band and (b) Theta Band for the Five Subsets 

 

erf(x) = p 
Z 

0 x dt (3.13) 
e t  

1   2   
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(a)  
 
 
 
 
 
 
 
 
 

 

(b) 
 

Fig. 3.6: P P Plots of the Empirical and T-location CDFs in (a) Gamma Band 
and (b) Theta Band for the Five Subsets  

 
 
 
 
 
 
 
 
 
 
 
 

(a)  
 
 
 
 
 
 
 
 
 

 

(b) 
 

Fig. 3.7: P P Plots of the Empirical and Cauchy CDFs in (a) Gamma Band and 
(b) Theta Band for the Five Subsets 

 

 

Table 3.2 to Table 3.5 represents the average result of two-sample Kolmogorov-
Smirnov test (K-S test) for each set Z, O, F, N and S in gamma and theta band for 
T-location, Cauchy, NIG and Gaussian PDF. This test result yields a trial 
assessment for the null hypothesis that the data in modeled and empirical PDF 
are from the same statistical distribution. The result `1' in the test for each sample 



40  
 
 
 
 
 
 
 
 
 
 
 

 

(a)  
 
 
 
 
 
 
 
 
 

 

(b) 
 

Fig. 3.8: P P Plots of the Empirical and NIG CDFs in (a) Gamma Band and (b) 
Theta Band for the Five Subsets  

 
 
 
 
 
 
 
 
 
 

 

(a)  
 
 
 
 
 
 
 
 
 

 

(b) 
 

Fig. 3.9: P P Plots of the Empirical and Gaussian CDFs in (a) Gamma Band 
and (b) Theta Band for the Five Subsets 

 

 

rejects the null hypothesis whereas the `0' result accepts the hypothesis that the data 
in modeled and empirical PDF are from the same statistical distribution [89]. The 
average result of K-S test for each set having 100 EEG signals in Table 3.5 for only 
Gassian PDF is found very small which reveals that individual test result for majority 
EEG signals is `0' and justi es the goodness of Gaussian distribution t. 
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Table 3.2: K-S Test Result for Empirical and T-location Statistical Model 
 

Sets Gamma Theta 
   

Z 0.70 0.72 
   

O 0.75 0.81 
   

F 0.73 0.80 
   

N 0.79 0.76 
   

S 0.83 0.86 
   

 

 

Table 3.3: K-S Test Result for Empirical and Cauchy Statistical Model 
 

Sets Gamma Theta 
   

Z 0.82 0.80 
   

O 0.80 0.81 
   

F 0.81 0.80 
   

N 0.70 0.76 
   

S 0.75 0.79 
   

 

 

Table 3.4: K-S Test Result for Empirical and NIG Statistical Model 
 

Sets Gamma Theta 
   

Z 0.71 0.78 
   

O 0.82 0.81 
   

F 0.71 0.80 
   

N 0.76 0.76 
   

S 0.73 0.82 
   

 

 

Table 3.5: K-S Test Result for Empirical and Gaussian Statistical Model 
 

Sets Gamma Theta 
   

Z 0 0 
   

O 0 0.01 
   

F 0.01 0 
   

N 0 0.06 
   

S 0.03 0.06 
   

 
 

 

3.2.5 Proposed Feature Extraction 
 

The statistical modeling parameters- location parameter (mean- ) and scale pa-
rameter (standard deviation- ) of the distribution have been extracted from 
gamma band and theta band coe cients of each EEG signals from ve groups (Set 
Z, O, F, N and S). As each model provides 2 features according to Eq. 3.9 for 
Gaussian statistical distribution, DWT coe cients from two time-frequency band 
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(gamma and theta band) create a feature set consisting of total 4 (2*2) 
features (shown in Eq. 3.14) obtained from modeling parameters. 

 

F eatureSet = [ g;  g;  t;  t; ] (3.14) 
 

In case of ve class classi cation problem, to include the upper and lower limit 
of the values at where PDF was constructed; maximum and minimum value of 
the gamma band and theta band coe cients of each EEG signal have been 
inserted in the feature set. Now, as each model provides 4 features according 
to Eq. 3.9 for Gaussian statistical distribution, DWT coe cients from two time-
frequency band (gamma and theta band) create a feature set consisting of 
total 8 (4*2) features (shown in Eq. 3.15) obtained from modeling parameters. 

 
 

 

F eatureSet = [ g;  g; min-valueg; max-valueg; 
 

t;  t; min-valuet; max-valuet]  (3.15) 
 
 

Here, and represent mean and standard deviation. Max-value and min-value 
indicate the upper and lower limit of the values where PDF was constructed. 
Subscript g and t represent gamma and theta band. The feature set thus 
obtained are now fed to classi er to classify numerous sets (Z, O, F, N and S) 
of EEG signals. 

 

3.2.6 Classi cation 
 

Once a set of features has been obtained to characterize a section of EEG, it is 
necessary to apply a classi cation method in order to decide whether this section 
of EEG is taken from an epileptic seizure or not. Just as a wide variety of features 
has been used, an equally varied set of classi cation methods can be found in the 
literature. Three di erent classi ers have been used in this work in classifying 
epileptic seizures originating from di erent parts and states of the brain. 

 

3.2.6.1 k-NN Classi er 
 

k-NN classi er was adopted in some literatures for its simplicity fact and wide 
ranging use in patterns categorization. k-NN classi er is based on learning by 
analogy. This algorithm calculates the distance function between feature set of 
EEG signal from test set and neighboring feature set of EEG signals from all 
groups of training set for this classi cation problem. The testing EEG signal is 
labeled as the class tag k-closer group of EEG signals [90]. 
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Euclidean distance has been followed in this exertion and k-value has been 
var-ied within a large range to nd the proper value of it for consistent and 
better performance. 

 

3.2.6.2 Support Vector Machine (SVM) classi er 
 

SVM is a highly rated machine learning algorithm widely used in the eld of pattern 
recognition. For the binary pattern recognition problem (case k = 2), the support 
vector approach has been well developed [91]. The classical approach to solve k-
class pattern recognition problems is to consider the problem as a collection of 
binary classi cation problems. In the one-versus-rest (also named as One-vs.-All) 
method, one constructs k classi ers, one for each class. The nth classier 
constructs a hyperplane between class n and the k-1 other classes. One-vs.-All 
(OVA) scheme has been followed in this work due to its better conceptual and 
computational simplicity while maintaining similar performance like One-vs.-One 
or other approaches [92]. For ve class classi cation problem consisting of set Z, 
O, F, N and S; the 1st SVM di erentiates set Z from set O, F, N, S. The 2nd SVM 
di ers set O from set Z, F, N and S. The 3rd SVM separates set F from set Z, O, 
N, S whereas set N is distinguished from set Z, O, F and S by 4th classi er. Lastly 
the 5th classi er classi es set S from set Z, O, F and N. 

 
Following [30], kernel- radial basis function (RBF) and method- least square (LS) 
have been used for better performance in this exertion. Other hyper parameters of 
LS-RBF SVM were selected after su cient search and iterations. Each classi er 
generates a class label and a real-valued con dence score for its decision of each 
test sample as just a single class label may create ambiguities when multiple class 
labels are anticipated from multiple binary classi ers for a single test sample. The 
decision of class prediction is made upon the report of the highest con dence score. 

 

3.2.6.3 ANN Classi er 
 

Arti cial Neural Network (ANN) is one of the state-of-the-art machine learning 
algorithms used in pattern recognition. Arti cial neural networks are computing 
systems made up of large number of simple, highly interconnected processing 
ele-ments (called nodes or arti cial neurons) that abstractly emulate the structure 
and operation of the biological nervous system [93]. Learning in ANNs is 
accomplished through special training algorithms developed based on learning 
rules presumed to mimic the learning mechanisms of biological systems. 

 
There are many di erent types and architectures of neural net-works varying fun-
damentally in the way they learn. The architecture of back-propagation network 
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(BPN) may contain two or more layers. A simple two-layer ANN consists only of 
an input layer containing the input variables to the problem, and output layer 
containing the solution of the problem. This type of network is a satisfactory ap-
proximate for linear problems. However, for approximating nonlinear systems, 
additional intermediate (hidden) processing layers are employed to handle the 
problem's nonlinearity and complexity. The determination of appropriate num-ber 
of hidden layers is one of the most critical tasks in neural network design. A 
network with too few hidden nodes would be incapable of di erentiating between 
complex patterns leading to only a linear estimate of the actual trend. ANNs' 
success depends on both the quality and quantity of the data. 

 

In this thesis work, feature vectors have been fed to a feed-forward neural network 
with one hidden layer to perform the classi cation. The number of neurons in the 
output and hidden layers is equal to the number of classes and 20, respectively. The 
network is trained using a standard backpropagation algorithm with the hyperbolic 
tangent sigmoid transfer function used both in the hidden and output layers. 

 
For ve class classi cation work, the ANN architecture contains two hidden layer 
with 8 and 16 neurons and output layer with 5 neurons equal to the number of 
classes. The feed-forward network is trained using a standard backpropagation 
algorithm with the hyperbolic tangent sigmoid and log sigmoid transfer function 

 

[94] used in the rst and second hidden layers; respectively. Softmax transfer 
function is used in output layer. The hyper parameters such as number of 
hidden layers and their neurons and transfer function were set after su cient 
search and iterations. 

 

 

3.3 Conclusion 
 

Conventional time or frequency domain analysis is found inadequate to describe the 
characteristics of a non-stationary signal such as EEG. Moreover, conventional time-
frequency analysis has the limitation of being computationally expensive. In this 
chapter, we described the multiclass classi cation of EEG signals for seizure activity 
investigation holding gamma and theta frequency oscillations only. At rst, discrete 
wavelet transform (DWT) was executed for acquiring the wavelet coe cients 
demonstrating the gamma and theta band. In the next step, a statis-tical model has 
been inspected for summarizing DWT coe cients of EEG signals in gamma and theta 
band to categorize epileptic seizure activities. Gaussian dis-tribution model has been 
chosen while contending with NIG of [30] or other distri-butional models for 
summarizing signal statistics because of the better match of 
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its PDF with empirical PDF in visual inspection and justi cation in p-p plot and 
K-S test in order to classify multiclass seizure activities, a task where very 
limited work is reported in the literature. 



 
 
 
 
 
 
 
 

 

Chapter 4 
 

 

Simulation Results 
 
 
 

 

A number of simulations are carried out to evaluate the performance of the 
pro-posed method. Performance is analyzed for both seizure detection and 
classi ca-tion cases. Performance of proposed method is compared with the 
few state-of-the-art methods for the evaluation purpose. A popular well-
established database is utilized for simulation purpose for both detection and 
classi cation of multiclass epileptic seizures. 

 

 

4.1 EEG Dataset 
 

EEG segments used in this research are those collected by Andrzejak et al. [95] 
at Bonn University, Germany. The segments were selected from continuous mul-
tichannel EEG recordings with artifacts removed via visual examination due to 
muscle activity and eye movements. The dataset includes ve subsets (denoted as 
Z, O, N, F, and S) each containing 100 single-channel EEG segments, each one 
having 23.6-second duration. The subsets Z and O have been acquired using 
surface EEG recordings of ve healthy volunteers with eyes open and closed, re-
spectively. Signals in two sets have been measured in seizure-free intervals from 
ve patients in the epileptogenic zone (set F) and from the hippocampal formation 
of the opposite hemisphere of the brain (set N). Finally, subset S contains seizure 
activity, selected from all recording sites exhibiting ictal activity. 

 

Subsets Z and O have been recorded extracranially, using standard electrode posi-
tioning (according to the international 10{20 system), whereas subsets N, F, and S 
have been recorded intracranially. More speci cally, depth electrodes are im-planted 
symmetrically into the hippocampal formation. EEG segments of subsets N and F 
were taken from all contacts of the relevant depth electrode. In addition, strip 
electrodes are implanted onto the lateral and basal regions (middle and bot- 
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tom) of the neocortex. EEG segments of the subsets S were taken from contacts of 
all electrodes (depth and strip). All EEG signals were recorded with the same 128-
channel ampli er system, using an average common reference. The data were 
digitized at 173.61 samples per second using 12 bit resolution and they have the 
spectral bandwidth of the acquisition system varies from 0.5 Hz to 85 Hz. Typical 
EEG segments (one from each category of the dataset) are shown in Fig. 4.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.1: Time Domain Plot of Di erent Classes of EEG Signals 
 
 
 

For the evaluation of proposed method; training, testing and cross-validation as-
signment of data are done on two ways. Firstly 50% of feature data is used for 
training and the rest 50% is used for testing. Both training and testing division 
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are selected randomly. For random data distribution, average result is 
presented after 10 set of performance. 

 

Secondly, 10 fold cross validation is performed on the entire dataset for 
training and testing purpose. 

 

Since pre-surgical intracranial EEG (IEEG) recordings report the substantial 
role of high frequency oscillations (HFO) of gamma band (40-80 Hz) in human 
epilepto-genic foci at seizure onset and inter-ictally at times temporally remote 
from seizure onset; frequencies after 80 Hz are considered here as noise and 
eliminated by using 6th-order butterworth lter having a cut-o frequency 80 Hz. 

 

For accessing EEG signals at particular frequency band, Haar wavelet is used be-
cause of its simplest structure in multilevel DWT decomposition. For a particular 
DWT band and proposed Gaussian statistical modeling parameter, the size of 
fea-ture vector would be 2*1; thus, to represent a particular EEG class, the 
proposed feature vector would be 2*2 because we are considering two time-
frequency sub-band gamma and theta for each EEG recording. Theta sub-band is 
considered in this work as literature shows that the segment of the low-frequency 
theta (4-8 Hz) band modulates power of the high gamma (80-150 Hz) band of the 
IEEG with strong modulation happening at higher theta amplitudes. 

 

The feature set thus obtained are now fed to di erent state-of-the-art classi ers 
to evaluate the e ectiveness of the proposed method in di erent simulation 
condi-tions. Six di erent state-of-the-art cases of classi cation problems and a 
ve class classi cation problem are handled to evaluate the performance of our 
method. The cases are chosen based on their clinical relevance and use in 
various papers in the literature to facilitate comparison. 

 

Case I: In the rst problem, two classes are examined: normal and 
seizure. The normal class includes only the Z-type EEG segments while 
the seizure class includes the S type. Thus, the dataset used for the rst 
classi cation problem consists of 200 EEG segments. 

 

Case II: This case deals with F and S type of EEG data which is another two 
class classi cation problem. Case II corresponds to the detection of the onset of 

seizure.  Due to recording spot of epileptic zone, Set F is vastly connected to 
early-ictal activities and considered for seizure onset detection. 

 

Case III: Case III is another two class classi cation problem with N and S 
class of EEG data. Case II corresponds to the detection of the onset of 

seizure, since the signals in Set F are obtained from epileptic zone.  Like 
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Case II, Case III is related to discriminate the seizure recordings from 
the non-seizure activity of seizure ones. 

 

Case IV: In this case, all the EEG segments from the dataset were used 
and they were classi ed into two di erent classes: Z, O, N, and F types 
are included in the rst class altogether as non-seizure class and type S 
in the second class as seizure class. This is also close to real medical 
applications for discriminating seizure and seizure-free EEG signals. 

 

Case V: In this case, again all the EEG segments from the dataset were 
used and they were classi ed into three di erent classes: Z and O types 
of EEG segments were combined to a single class, N and F types were 
also combined to a single class, and type S was the third class. This set 
is the one closest to real medical applications including three categories; 
EEG segments from Sets Z and O are grouped together as normal 
healthy class. Sets F and N are grouped into the seizure free interval 
(inter-ictal) class of seizure patient and Set S is the seizure (ictal) class. 
For clinical relevancy, this case is used for discriminating healthy 
individuals from the epilepsy along with detection of seizures. 

 

Case VI: The sixth case has similar classes with the previous case V, 
that is, normal, seizure-free and seizure, but not all the EEG segments 
from the dataset were employed. The normal class includes only the Z-
type EEG segments, the seizure-free class includes the F-type EEG 
segments, and the seizure class is the S-type. 

 

Five Class Classi cation Problem: In this case, all  ve classes are used, 
including all EEG segments from the previously described dataset (thus 500 

EEG segments).  EEG segments from Set Z is denoted as normal healthy class 
recorded at awakening state with eyes open where Set O is noted as normal 

healthy class recorded at relaxed state with eyes closed. Sets F and N are 
assembled as seizure free classes of seizure patient (inter-ictal) recorded from 
an epileptogenic zone of the brain and from the hippocampal forma-tion of the 

opposite hemisphere of the brain; respectively. Set F is vastly connected to 
early-ictal activities and considered for seizure onset detection. Set S has been 

recorded from those seizure patients when exhibiting seizure activity and 
denoted as the seizure (ictal) class. This case is used in a clinical requirement 

for discriminating healthy individuals from the epilepsy patients as well as 
detection of seizures onset recorded at di erent relaxed or awaken states and 

brain locations altogether. As a result, this  ve class classi cation 
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problem holds importance because it can detect and classify seizure 
activi-ties by considering only a single case of classi cation problem to 
distinguish di erent activities inside the brain. 

 

For the purpose of comparison, we have implemented the state-of-the-art 
methods of [28], [29], [30], [31] and compared those with the proposed 
method.In case of two class problem, 200 EEG signals are used while in case 
of three class problem, 300 EEG signals are utilized. We have also evaluated 
the performance of the proposed method for a 5 class classi cation problem. 
In case of 5 class EEG classi cation problem; total 500 EEG signals are used. 

 

 

4.2 Goodness of Proposed Features 
 

The proposed Gaussian modeling parameters along with the features of 
comparison methods were subjected to one way ANOVA test for the evaluation of 
statistical implication. Probability (p) and the Fishers discrimination index (F) 
accomplished from the test were used to rank the features. 

 
Furthermore, justi cation of the goodness of features extracted from this proposed 
statistical Gaussian model over the other mentioned features has been performed 
by two statistical indices: Geometrical Separability Index and Bhattacharyya Dis-
tance. These two measures show the numerical demonstration of inter class dis-
tance and intra-class compactness; respectively. 

 

4.2.1 ANOVA Test 
 

The one-way analysis of variance (ANOVA) is used to determine whether there 
are any statistically signi cant di erences between the means of two or more in-
dependent (unrelated) groups. The null hypothesis for ANOVA is that the mean 
(average value of the dependent variable) is the same for all groups [96]. A high F 
value means that the data does not well support the null hypothesis. 
Low p-valuesare indications of strong evidence against the null hypothesis. 
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Table 4.1: Results of ANOVA Test for Features of Proposed and Comparison 
Methods 

 

 

 

No of 
Fisher's  

Features Discrimination Index, Probability, p Features  F  

   
    

Autoregressive 
42 3.85 0.0039 Weights [29]    

    

HOS Moments [31] 6 57.3 4.4219e-47 
    

Normal Inverse    

GaussianParame- 
8 74.74 3.4906e-61 ters    

[30]    
    

Spectral Energy 
6 74.93 4.7186e-59 [28]    

    

Proposed    

Gaussian 4 86.79 4.7008e-68 
Parameters    

    

 
 
 

 

The Gaussian modeling parameters along with the features of comparison methods-
Energy on speci c time-frequency window [28], Weights of autoregressive model with 
approximate entropy [29], Normal Inverse Gaussian (NIG) modeling parame-ters [30], 
and Higher Order Statistical (HOS) moments [31] were subjected to one way ANOVA 
test for the evaluation of statistical implication. Probability (p) and the Fishers 
discrimination index (F) accomplished from the test were used to rank the features. 
The feature with maximum F index and lowermost p value revealed in Table 4.1 can 
be graded as rst to categorize input signals [97]. 

 

4.2.2 Geometrical Separability Index 
 

Geometrical Separability Index (GSI) shows the numerical demonstration of inter 
class distance. Based on the nearest neighbor aptitude measurement, it reports a 
clue to which degree two classes can be considered as separable or inseparable. 

 

GSI, also known as Thornton's separability index s is de ned as the fraction of 
a set of data points whose classi cation labels are the same as those of their 
nearest neighbours. Thus, it is a measure of the degree to which inputs 
associated with the same output tend to cluster together [98]. It may be written 

 
n x` mod  

s = 
X  

(f(xi) + f( i) + 1) 2 

(4.1) n   
i=1 
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Where, x0 is the nearest neighbour of x and n is the number of points. 
 

It is intuitively obvious that s will be close to `1' for a set of points in which 
those with opposite labels exist in tight, well-separated clusters. As the 
clusters move closer together and points from opposing classes begin to 
overlap, the index will begin to fall. If the centroids of the clusters coincide, or 
the points are uniformly distributed in the space without clustering, the nearest 
neighbour of a point will have no more than a 50% probability of having the 
same class label as its neighbour, and the separability index will be close to 
0.5. A regular intermeshed grid of alternately-labelled points (as would be 
generated by the exclusive-OR or parity problems) would have s = 0. 

 

GSI value of the proposed feature set and features of comparison methods 
are shown in Table 4.2 4.6. It is found from GSI values of stated all features in 
Table 4.2 4.6, each entree for same classes corresponding to Gaussian 
statistical modeling parameters are having a value `0', while the quantity for 
two di erent classes corresponding to Gaussian statistical modeling 
parameters are having a value closest to `1'. Thus, the pro ciency of projected 
scheme to o er high sepa-rability among ve classes in this work is established. 
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4.2.3 Bhattachariyya Distance 
 

In statistics, the Bhattacharyya distance measures the similarity of two probability 
distributions. It is closely related to the Bhattacharyya coe cient which is a 
measure of the amount of overlap between two statistical samples or populations. 
The coe cient can be used to determine the relative closeness of the two samples 
being considered. It is used to measure the separability of classes in classi cation. 
The class with smaller BD value shows strong compactness of its features. 

 

In its simplest formulation, the Bhattacharyya distance between two classes 
under the normal distribution can be calculated [99] by extracting the mean 
and variances of two separate distributions or classes: 

4  4 q
2 
 p

2 
 !! 4 p

2 +  q
2 ! 

DB(p; q) = 1 ln 1 + p
2 

+ q
2 

+ 2  + 1 
 

( p q)2 
(4.2)           

 
 

 

where: DB(p; q) is the Bhattacharyya distance between p and q distributions or 
classes, 
2 is the variance of the p-th distribution, 

p 

p is the mean of the p-th distribution, and 
 
 

 

BD value of the proposed feature set and features of comparison methods are 
shown in Table 4.7 4.11. It is found from the BD values of stated all features in 
Table 4.7 4.11, each entree corresponding to Gaussian statistical modeling 
parameters are having a value closing to `0' which further shows the 
goodness of proposed feature set. 

 

Table 4.2: GSI Values of Energy on Time  Frequency Band [28] 
 

Classes Z O F N S 
      

Z 0 0.9 0.955 0.965 0.995 
      

O 0.9 0 0.84 0.87 0.93 
      

F 0.955 0.84 0 0.62 0.93 
      

N 0.965 0.87 0.62 0 0.97 
      

S 0.995 0.93 0.93 0.97 0 
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Table 4.3: GSI Values of Autoregressive Model Weights [29] 
 

Classes Z O F N S 
      

Z 0 0.875 0.95 0.97 0.995 
      

O 0.875 0 0.835 0.835 0.925 
      

F 0.95 0.835 0 0.6 0.92 
      

N 0.97 0.835 0.6 0 0.975 
      

S 0.995 0.925 0.92 0.975 0 
      

 
 
 
 

 

Table 4.4: GSI Values of NIG Parameters [30] 
 

Classes Z O F N S 
      

Z 0 0.875 0.975 0.95 0.995 
      

O 0.875 0 0.845 0.835 0.925 
      

F 0.975 0.845 0 0.59 0.92 
      

N 0.95 0.835 0.59 0 0.975 
      

S 0.995 0.925 0.92 0.975 0 
      

 
 
 
 

 

Table 4.5: GSI Values of HOS Moments [31] 
 

Classes Z O F N S 
      

Z 0 0.86 0.85 0.865 0.995 
      

O 0.86 0 0.725 0.82 0.94 
      

F 0.85 0.725 0 0.63 0.92 
      

N 0.865 0.82 0.63 0 0.97 
      

S 0.995 0.94 0.92 0.97 0 
      

 
 
 
 

 

Table 4.6: GSI Values of the Proposed Method 
 

Classes Z O F N S 
      

Z 0 0.94 0.975 0.985 0.995 
      

O 0.94 0 1 1 0.99 
      

F 0.975 1 0 0.88 0.965 
      

N 0.985 1 0.88 0 0.98 
      

S 0.995 0.99 0.965 0.98 0 
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4.3 Performance Parameters 
 

For the performance evaluation of the proposed method, criteria considered in 
our simulation study are: 1) Sensitivity 2) Speci city 3) Accuracy. These 
indices have been calculated from confusion matrix which is a way of showing 
the assessment result from a classi cation test. 

 
The columns in the matrix stand for the actual classes to be tested and rows provide 
the class classi ed by a method. In particular, any [row, column] entry in the confusion 
matrix indicates the number of cases from the test database that belongs to the class 
corresponding to the column but classi ed as the class corresponding to the row. In 
Fig. 4.2, a general confusion matrix for a two, three and ve class problem is shown, 
where TP , FP , FN and TN are represented for class i. 

 

In general, T Pi, true positive for any class i, denotes the number of testing 
cases, which are correctly classi ed as class i. 

 

F Pi, false positive for any class i, measures the number of testing cases, 
which are incorrectly classi ed as class i. 

 

F Ni, false negative for any class i, measures the number of testing cases, 
which are incorrectly classi ed as other than class i. 

 

T Ni, true negative for any class i, denotes the number of testing cases, which 
are correctly classi ed as other than class i. 

 

In Fig. 4.2, a general confusion matrix with respect to set Z for a two, three 
and ve class problem is shown. 

 
 

4.3.1 Sensitivity 
 

Sensitivity refers to the test's ability to correctly detect ill patients who do have the 
condition. In the example of a medical test used to identify a disease, the 
sensitivity of the test is the proportion of people who test positive for the disease 

 

Table 4.7: BD Values of Energy on Time  Frequency Band [28] 
 

Z O F N S 
     

0.0769 0.1786 0.5532 0.1824 0.4196 
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Table 4.8: BD Values of Autoregressive Model Weights [29] 
 

Z O F N S 
     

0.1160 0.1132 0.1380 0.1411 02450 
     

Table 4.9: BD Values of NIG Parameters [30] 
     

Z O F N S 
     

0.0148 0.0454 0.1778 0.0501 0.1295 
     

Table 4.10: BD Values of HOS Moments [31] 
     

Z O F N S 
     

0.049 0.1383 0.4873 0.1575 0.3569 
     

Table 4.11: BD Values of the Proposed Method 
     

Z O F N S 
     

0.0134 0.0421 0.1683 0.0472 0.1227 
     

 
 

 

among those who have the disease. Mathematically, this can be expressed as: 
 

Sensitivity  = 
 number of true positives 
  

numer of true positives + number of f alse negatives  
T P 

= T P + F N
  

= probability of positive test result given that the patient has the disease  
 

(4.3) 
 

 

4.3.2 Speci city 
 

Speci city relates to the test's ability to correctly reject healthy patients without a 
condition. In the example of a medical test used to identify a disease, Speci city of 
a test is the proportion of healthy patients known not to have the disease, who will 
test negative for it. Mathematically, this can also be written as: 

 

Specif icity  = 
 number of true negatives 
  

numer of true negatives + number of f alse positives  
T N 

= T N + F P
  

= probability of negative test result given that the patient is well  
 

(4.4) 
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(a) Two class with respect to Z
 (b) Three class with respect to Z 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Five class with respect to Z 
 

Fig. 4.2: Confusion Matrix for Two, Three and Five Class Classi cation Cases 
 

 

4.3.3 Accuracy 
 

Accuracy is one metric for evaluating classi cation models. Informally, 
accuracy is the fraction of predictions our model got right. Formally, accuracy 
has the following de nition: 

 

Accurracy  =  N umber of Correct P redictions (4.5)  N umber of T otal P redictions     

 

Accuracy can also be calculated in terms of positives and negatives as follows: 
 

Accurracy = 
T P + T N 

(4.6) T P + T N + F P + F N  
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4.4 Simulation Results 
 

Performance of the multiclass seizure and non-seizure activity detection and 
clas-si cation method based on statistical modeling of gamma and theta band 
DWT coe cients of EEG signals, described in chapter 3, are analyzed and 
compared with the state-of-the-art methods. 

 

The methods in [30], [31] have not reported classi cation performance involving all 
ve classes of EEG recordings. Whereas methods in [28], [29] reported ve class 
classi cation result in case of seizure activity detection. Therefore, for further 
investigation of the e ectiveness of proposed method; we opt to report the result 
of ve class classi cation problem in terms of performance parameters and 
compare the results with state-of-the-art comparison methods of [30], [31] by 
implementing them for a ve class problem. 

 

The simulation results of proposed method for six di erent cases and ve class 
classi cation problem as mentioned before are reported with accuracy, sensitivity 
and speci city from Table 4.12 to 4.25. Each simulation result is obtained in two 
ways. Firstly, 50% data is randomly used for training and rest 50% data is used 
for testing. Due to random selection of training and testing data, average result is 
taken resulting from ten sets of performance. Secondly, the average sensitivity, 
speci city and accuracy for the classi cation exercise of proposed method were 
taken after ten-fold cross validation evaluation approach used on the entire 
dataset. The comparisons of di erent cases of proposed method with some state-
of-the-art methods in literature are shown in Table 4.26 4.32. 
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From the classi cation result in the di erent tables, it is vivid that in all seven 
cases with di erent classi ers, the proposed method acceptably outperformed 
the comparison methods with superior performance. Selection of speci ed and 
e ec-tive time-frequency band with reference to [65]-[77] lessens the number 
of features and computational burden in classi cation exercise. Though the 
sensitivity, speci-city and accuracy are quite high and leave behind the state-
of-art methods; it is understood from sensitivity and speci city report that due 
to misclassi cation of inter-ictal classes set F and set N, 100% accuracy is not 
achieved in ve class classi cation problems. Nevertheless, almost 100% 
sensitivity is accomplished for seizure group- ictal (S) class which con rms the 
particular discernment of seizure activity from other non-seizure activities of 
normal and inter-ictal classes. More-over, largely misclassi ed set F and N are 
both taken from seizure-free interval of seizure patients at two di erent brain 
locations which will not create any investi-gation or treatment error. 

 

In Table 4.33, the time required for the classi cation of the feature of a testing 
sample of the proposed method and that of the state-of-the-art comparison meth-
ods [30], [31] are provided along with the size of the feature vector to evaluate the 
computational complexity of the methods. For comparison, methods of [30], [31] 
have been chosen as mentioned all VII cases of classi cation problems in this 
thesis work are shown to be solved with these methods. The whole process from 
feature extraction to the performance analysis is run on the MATLAB R2015 
software with a core i3 processor at the speed 2.10 GHz. It is found from Table 
4.33 that the comparison methods in [30], [31] require more computation time 
since it used windowing of EEG recordings prior to feature extraction by dividing 
the given EEG recordings into 16 non-overlapping blocks. Less computational 
requirement is another attractive potential of the proposed method. 

 

Table 4.12: Case I [(Z, S)] (Using 50% Data Division for Training and Testing) 
 

Method Sensitivity Speci city Accuracy     

Z S Z S   
      

Proposed Method 
100% 100% 100% 100% 100% Using K-NN Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using SVM Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using ANN Classi er      
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Table 4.13: Case I [(Z, S)] (Using 10-fold Cross Validation) 
 

Method Sensitivity Speci city Accuracy     

Z S Z S   
      

Proposed Method 
100% 100% 100% 100% 100% Using K-NN Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using SVM Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using ANN Classi er      

      

 
 
 

Table 4.14: Case II [(F, S)] (Using 50% Data Division for Training and Testing) 
 

Method Sensitivity Speci city Accuracy     

F S F S   
      

Proposed Method 
100% 100% 100% 100% 100% Using K-NN Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using SVM Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using ANN Classi er      

      

 
 
 

Table 4.15: Case II [(F, S)] (Using 10-fold Cross Validation) 
 

Method Sensitivity Speci city Accuracy     

F S F S   
      

Proposed Method 
100% 100% 100% 100% 100% Using K-NN Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using SVM Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using ANN Classi er      

      

 
 
 

Table 4.16: Case III [(N, S)] (Using 50% Data Division for Training and Testing) 
 

Method Sensitivity Speci city Accuracy     

N S N S   
      

Proposed Method 
100% 100% 100% 100% 100% Using K-NN Classi er      

      

Proposed Method 100% 100% 100% 100% 100% 



Using SVM Classi er      
      

Proposed Method 
100% 100% 100% 100% 100% Using ANN Classi er      
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Table 4.17: Case III [(N, S)] (Using 10-fold Cross Validation) 
 

Method Sensitivity Speci city Accuracy     

N S N S   
      

Proposed Method 
100% 100% 100% 100% 100% Using K-NN Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using SVM Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using ANN Classi er      

      

 
 
 
 
 
 
 

 

Table 4.18: Case IV [(Z,O,F,N),S] (Using 50% Data Division for Training and 
Testing) 

 

Method Sensitivity Speci city Accuracy     

ZOFN S ZOFN S   
      

Proposed Method 
99% 98% 98% 99% 98.8% Using K-NN Classi er      

      

Proposed Method 
99.5% 100% 100% 99.5% 100% Using SVM Classi er      

      

Proposed Method 
100% 100% 100% 100% 100% Using ANN Classi er      

      

 
 
 
 
 
 
 

 

Table 4.19: Case IV [(Z,O,F,N),S] (Using 10-fold Cross Validation) 
 

Method Sensitivity Speci city Accuracy     

ZOFN S ZOFN S   
      

Proposed Method 
97.75% 99% 99% 97.75% 98% Using K-NN Classi er      

      

Proposed Method 
98.75% 100% 100% 98.75% 99% Using SVM Classi er      

      

Proposed Method 100% 100% 100% 100% 100% 



Using ANN Classi er      
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Table 4.20: Case V [(Z,O),(F,N),S] (Using 50% Data Division for Training and 
Testing) 

 

 

Method Sensitivity Speci city   Accuracy          

ZO FN S ZO  FN  S  

     
           

Proposed Method 91% 89% 98% 92.61%  93.33% 100%  91.6% Using K-NN Classi er   

          
           

Proposed Method 97% 96.5% 98% 98.64%  97.64% 98.97%  97% Using SVM Classi er   

          
           

Proposed Method 97.5% 98% 100% 99.32%  98.33% 99.49%  98.2% Using ANN Classi er   

          
           

 
 
 
 
 

 

Table 4.21: Case V [(Z,O),(F,N),S] (Using 10-fold Cross Validation) 
 

 

Method Sensitivity Speci city  Accuracy         

ZO FN  S ZO FN S  

    
          

Proposed Method 
87.5% 92.85% 

 

95% 95.16% 93.1% 96.55% 
 

91% Using K-NN Classi er   
          

Proposed Method 97.5% 95.45% 95.83% 96.67% 96.87% 100%  98% Using SVM Classi er  

         
          

Proposed Method 100% 95%  100% 95% 100% 100%  98% Using ANN Classi er   

         
          

 
 
 
 
 

 

Table 4.22: Case VI [(Z,F,S)] (Using 50% Data Division for Training and Testing) 
 

 

Method Sensitivity Speci city  Accuracy         

Z F S Z  F S  

    
          

Proposed Method 98% 96% 98% 98.97%  98% 98.97%  97.33% Using K-NN Classi er   

         
          

Proposed Method 100% 100% 100% 100%  100% 100%  100% Using SVM Classi er   

         
          

Proposed Method 100% 100% 100% 100%  100% 100%  100% Using ANN Classi er   
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Table 4.23: Case VI [(Z,F,S)] (Using 10-fold Cross Validation) 
 

 

Method Sensitivity Speci city Accuracy       

Z F S Z F S   
        

Proposed Method 
96% 96% 99% 97.985%97.5% 100% 97% Using K-NN Classi er        

        

Proposed Method 
100% 100% 100% 100% 100% 100% 100% Using SVM Classi er        

        

Proposed Method 
100% 100% 100% 100% 100% 100% 100% Using ANN Classi er        

         
 
 
 
 
 
 
 
 
 
 

Table 4.24: Five Class Classi cation [(Z,O,F,N,S)] (Using 50% Data Division 
for Training and Testing) 

 

Method   Sensitivity     Speci city   Accuracy 
 Z O  F  N S Z O  F  N S  

Proposed                

Method Using 86.7% 76.9%  69.8%  80.6% 93.2% 94.9% 93.7%  94.6%  91.9% 98.7% 81.2% 
K-NN Classi er                

Proposed                

Method Using 94.3% 89.5%  77.2%  73.2% 97.9% 100% 96.6%  90.5%  96.2% 98.8% 86.4% 
SVM Classi er                

Proposed                

Method Using 98% 92%  90%  88% 97% 97.9% 97.6%  97.9%  98.2% 99.2% 93% 
ANN Classi er                

 
 
 
 
 
 
 
 
 
 

Table 4.25: Five Class Classi cation [(Z,O,F,N,S)] (Using 10-fold Cross Validation) 
 

Method   Sensitivity     Speci city   Accuracy 
 Z O  F  N S Z O  F  N S  

Proposed                

Method Using 86.9% 73.6%  68.9%  80.7% 93.2% 94.7% 93.6%  93.5%  91.7% 98.6% 80.4% 
K-NN Classi er                

Proposed                

Method Using 91.7% 77.3%  95%  63.3% 100% 95.6% 97.3%  88.1%  98.6% 100% 85% 
SVM Classi er                

Proposed                

Method Using 94.5% 95%  95%  75.3% 100% 98.6% 97.3%  94.8%  98.7% 100% 92% 
ANN Classi er                
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Table 4.26: Comparison of Accuracy Performance of Various Methods from 
Liter-ature and Proposed Method for Case I 

 

Authors Method Data- Accuracy Class    
    

Alam et al. [31] EMD operation, Higher   

order statistical Z,S 100% (2013) moments, ANN classi er   

   
    

Das et al. [30] DT-CWT, NIG   

parameters, SVM Z,S 100% (2016) multiclass classi er   

   
    

Tzallas et al. [28] Time-frequency analysis, 
Z,S 100% (2009) ANN Classi er   

    

 Gamma & theta band   

Proposed Method WT coe  cients, Z,S 100% Gaussian parameters,    

 ANN classi er   
    

 
 
 
 
 
 
 

 

Table 4.27: Comparison of Accuracy Performance of Various Methods from 
Liter-ature and Proposed Method for Case II 

 

Authors Method Data- Accuracy Class    
    

Alam et al. [31] EMD operation, Higher   

order statistical F,S 100% (2013) moments, ANN classi er   

   
    

Das et al. [30] DT-CWT, NIG   

parameters, SVM F,S 100% (2016) multiclass classi er   

   
    

 Time frequency &   

Liang et al. [29] Autoregressive model   

and approximate F,S 97.75% (2010) entropy analysis,   

   

 RBF-SVM Classi er   
    

 Gamma & theta band   

Proposed Method WT coe  cients, F,S 100% Gaussian parameters,    

 ANN classi er   
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Table 4.28: Comparison of Accuracy Performance of Various Methods from 
Liter-ature and Proposed Method for Case III 

 

Authors Method Data- Accuracy Class    
    

Alam et al. [31] EMD operation, Higher   

order statistical N,S 100% (2013) moments, ANN classi er   

   
    

Das et al. [30] DT-CWT, NIG   

parameters, SVM N,S 100% (2016) multiclass classi er   

   
    

 Gamma & theta band   

Proposed Method WT coe  cients, N,S 100% Gaussian parameters,    

 ANN classi er   
    

 
 
 
 
 
 
 

 

Table 4.29: Comparison of Accuracy Performance of Various Methods from 
Liter-ature and Proposed Method for Case IV 

 

Authors Method Data- Accuracy Class    
    

Alam et al. [31] EMD operation, Higher   

order statistical ZOFN,S 100% (2013) moments, ANN classi er   

   
    

Das et al. [30] DT-CWT, NIG   

parameters, SVM ZOFN,S 100% (2016) multiclass classi er   

   
    

 Time frequency &   

Liang et al. [29] Autoregressive model   

and approximate ZOFN,S 98.58% (2010) entropy analysis,   

   

 RBF-SVM Classi er   
    

Tzallas et al. [28] Time-frequency analysis, 
ZOFN,S 97.73% (2009) ANN Classi er   

    

 Gamma & theta band   

Proposed Method WT coe  cients, ZOFN,S 100% Gaussian parameters,    

 ANN classi er   
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Table 4.30: Comparison of Accuracy Performance of Various Methods from 
Liter-ature and Proposed Method for Case V 

 

Authors Method Data- Accuracy Class    
    

Alam et al. [31] EMD operation, Higher   

order statistical ZO,FN,S 80% (2013) moments, ANN classi er   

   
    

Das et al. [30] DT-CWT, NIG   

parameters, SVM ZO,FN,S 96.28% (2016) multiclass classi er   

   
    

Tzallas et al. [28] Time-frequency analysis, 
ZO,FN,S 97.72% (2009) ANN Classi er   

    

 Gamma & theta band   

Proposed Method WT coe  cients, ZO,FN,S 98.2% Gaussian parameters,    

 ANN classi er   
    

 
 
 
 
 

 

Table 4.31: Comparison of Accuracy Performance of Various Methods from 
Liter-ature and Proposed Method for Case VI 

 

Authors Method Data- Accuracy Class    
    

Alam et al. [31] EMD operation, Higher   

order statistical Z,F,S 100% (2013) moments, ANN classi er   

   
    

Das et al. [30] DT-CWT, NIG   

parameters, SVM Z,F,S 100% (2016) multiclass classi er   

   
    

 Time frequency &   

Liang et al. [29] Autoregressive model   

and approximate Z,F,S 98.67% (2010) entropy analysis,   

   

 RBF-SVM Classi er   
    

Tzallas et al. [28] Time-frequency analysis, 
Z,F,S 100% (2009) ANN Classi er   

    

 Gamma & theta band   

Proposed Method WT coe  cients, Z,F,S 100% Gaussian parameters,    



 ANN classi er   
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Table 4.32: Comparison of Accuracy Performance of Various Methods from 
Liter-ature and Proposed Method for Five Class Classi cation Problem 

 

Authors Method Data- Accuracy Class    
    

Alam et al. [31] EMD operation, Higher   

order statistical Z,O,F,N,S 61% (2013) moments, ANN classi er   

   
    

Das et al. [30] DT-CWT, NIG   

parameters, SVM Z,O,F,N,S 72% (2016) multiclass classi er   

   
    

 Time frequency &   

Liang et al. [29] Autoregressive model   

and approximate Z,O,F,N,S 85.9% (2010) entropy analysis,   

   

 RBF-SVM Classi er   
    

Tzallas et al. [28] Time-frequency analysis, 
Z,O,F,N,S 89% (2009) ANN Classi er   

    

 Gamma & theta band   

Proposed Method WT coe  cients, Z,O,F,N,S 93% Gaussian parameters,    

 ANN classi er   
    

 
 
 

Table 4.33: Time Requirements for the Proposed and Comparison Methods 
 

 Size of Feature 
Required Time Methods Vector to test an (in sec)  EEG Data   

   

Method in [30] 16  4 1.5470 
Method in [31] 16  3 1.3956 

Proposed Method 4 0.89 
   

 
 
 
 

 

4.5 Conclusion 
 

The Gaussian modeling parameters based feature set derived from gamma and theta 
band DWT coe cients of EEG signals is found most e ective for seizure activity 
detection and classi cation from the standard EEG dataset. Selection of speci ed and 
e ective time-frequency band lessens the number of features and computational 
burden in classi cation exercise. Such feature set is more compact in intra-class and 
separable in inter-class than the feature sets used for the com-parison methods. As a 



result, proposed feature set is superior in terms of accuracy, speci city and sensitivity 
in seizure activity detection and classi cation in strin- 
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gent conditions such as speci c time-frequency band, reduced feature set, 
random selection of training and testing data than the state-of-the-art 
methods. Apart from classifying di erent state-of-the-art clinical cases which 
are used for detec-tion of epileptic seizures, the proposed feature set also 
exhibits its e ectiveness in handling ve class classi cation problem which is 
limitedly reported. Due to re-duced dimension of the proposed feature set, the 
proposed feature set works faster to detect and classify multiclass EEG 
signals than the state-of-the-art comparison methods. 



 
 
 
 
 
 
 
 

 

Chapter 5 
 

 

Conclusion 
 
 
 

 

5.1 Concluding Remarks 
 

In this thesis, investigation of epilepsy has been performed with respect to seizure 
activity, seizure onset and brain signal recording location exploiting time-
frequency domain operation wavelet analysis on the gamma (40-80 Hz) and theta 
(4-8 Hz) band oscillations of EEG signals. Gaussian statistical model has been 
employed from several normal distributions to summarize information in Discrete 
Wavelet Transform (DWT) coe cients and propose feature set utilizing the 
modeling pa-rameters of Gaussian probability density function (PDF). This model 
has been pro-posed after visual inspection of plotting together empirical and 
Gaussian PDF in addition to their cumulative distribution function (CDF) in 
probability-probability (p-p) plot and goodness of t K-S test result and found most 
e ective to feed modeling parameters of Gaussian PDF to numerous classi ers as 
feature set. The goodness of features has been justi ed by one way ANOVA test, 
Geometrical Separability Index and Bhattacharyya Distance parameter. Extensive 
varieties of simulations are completed using an established dataset. The 
proposed strategy is found competent for making higher values of sensitivity, 
speci city and accu-racy compared to that made by some front line techniques 
utilizing the same EEG dataset in stringent conditions, such as band-speci c DWT 
coe cients, reduced feature set, random selection of training and testing data with 
less computation time. 

 

 

5.2 Contribution of this Thesis 
 

The major contributions of this thesis are, 
 

Introducing band-speci c (gamma and theta) DWT coe  cients of EEG sig- 
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nals for detecting and classifying multiclass seizure activity. It is found in 
literature that pre-surgical intracranial EEG (IEEG) recordings show the 
substantial role of high frequency oscillations (HFO) of gamma band (40-80 
Hz) and high gamma/ripple band (80-150 Hz) in human epileptogenic foci at 
seizure onset and inter-ictally at times temporally remote from seizure on-
set. Moreover, it is also found in literature that there is a strong connection 
regarding the high and low-frequency bands of frequent electrical action in 
the human brain. More speci cally, the segment of the low-frequency theta 
(4-8 Hz) band modulates power of the high gamma (80-150 Hz) band of the 
IEEG with strong modulation happening at higher theta amplitudes. Such 
band speci c time-frequency representations of signals are helpful and less 
computationally expensive than conventional time-frequency analysis using 
di erent kernels for seizure activity detection and classi cation. 

 

The detailed information of DWT coe cients has been summarized to a sta-
tistical model and modeling parameters of that statistical distribution PDF have 
been evaluated to minimize the dimensions of gathered feature vectors. Use of 
statistical modeling parameters as feature set is more rational as shape of the 
entire dataset is included here with less number of features. Moreover, 
statistical model is able of give a more consistent class representation. 

 

The proposed feature vector is used in seven state-of-the-art classi cation 
problems. These classi cation problems include two, three and ve classes. 
The performance of the proposed method on such classi cation problem 
has been investigated based on two simulation condition for training, cross-
validation and testing data of EEG signals and compared with the state-of-
the-art comparison methods. In all classi cation cases, proposed method 
has the superior accuracy, sensitivity and speci city than the state-of-the-art 
comparison methods. Such performance show the e ectiveness of the pro-
posed method in detection and classi cation of multiclass epileptic seizures 
in stringent conditions as mentioned before. 

 

This thesis work has developed an EEG based multiclass seizure activity 
clas-si cation method with e ective and reduced feature sets exploiting 
gamma and theta band DWT coe cients and its statistical modeling with 
greater accuracy, sensitivity and speci city. 
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5.3 Scopes for Future Work 
 

In this thesis, e ective and e cient statistical model of band-speci c DWT co-e 
cients of EEG signal has been built for multiclass epileptic seizure activity 
classi cation. However, there are some scopes for future research as 
mentioned below: 

 

In this thesis, we use a popular EEG database which consists of ve class 
EEG data. The proposed method can classify those with superior 
accuracy using statistical modeling of band-speci c DWT coe cients. In 
future, ef-fectiveness of the proposed method using di erent EEG 
databases can be veri ed. 

 

Since the proposed method uses only time-frequency domain DWT approach 
to extract gamma and theta frequency, other time-frequency domain ap-
proaches can be investigated to extract gamma and theta frequencies. 

 

A statistical model has been built with the band-speci c DWT coe cients 
for e ective and e cient feature set. Instead of manual formation of 
feature set, extracted gamma and theta band EEG signal can be sent to 
convolu-tional neural network architecture for automated feature set 
selection and classi cation. 
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