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Abstract 
 

In recent years, there has been much interest in automatic character 
recognition. Between handwritten and printed forms, Handwritten 
Character Recognition (HCR) is more challenging. A handwritten 
character written by different persons is not identical but varies in both 
size and shape. Numerous variations in writing styles of individual 
character make the recognition task difficult. The similarities in distinct 
character shapes, the overlaps, and the inter-connections of the 
neighboring characters further complicate the problem. Recently, the 
Convolutional Neural Network (CNN) has been shown noticable success 
in the area of image-based recognition, video analytics, and natural 
language processing due to their unique characteristics of feature 
extraction and classification. This is mainly due to the fact that the design 
of a CNN is motivated by the close imitation of visual mechanism as 
compared to the conventional neural network. The convolution layer in a 
CNN performs the similar filtering function that is seen in the cells of 
visual cortex. As a result of replication of weight configuration of one 
layer to the local neighboring receptive field in the previous layer through 
the convolution operation, the features extracted by the CNN possess the 
invariance properties of scale, rotation, translation and other distortions of 
a pattern. A recently reported HCR technique that considers the Bangla 
characters uses shallow CNN by considering only two-level convolution 
layers and a fixed kernel size experimented on a small-size private 
dataset. In this thesis, a Deep CNN with three convolutional layers with 
different kernel sizes in different convolutional layers is used on a large 
dataset made of combining two datasets. Experimental result shows an 
accuracy in recognition that is 7% higher than that of previous work.  
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Chapter 1 
 

Introduction 

 

1.1. Introduction 

Optical character recognition (OCR) is the mechanical or electronic conversion of images 
of typed, handwritten or printed text into machine-encoded text, whether from a scanned 
document, a photo of a document, a scene-photo (for example the text on signs and 
billboards in a landscape photo) or from subtitle text superimposed on an image (for 
example from a television broadcast). It is widely used as a form of information entry 
from printed paper data records, whether passport documents, invoices, bank statements, 
computerized receipts, business cards, mail, printouts of static-data, or any suitable 
documentation. It is a common method of digitizing printed texts so that they can be 
electronically edited, searched, stored more compactly, displayed on-line, and used in 
machine processes such as cognitive computing, machine translation, (extracted) text-to-
speech, key data and text mining. OCR is a field of research in pattern 
recognition, artificial intelligence and computer vision. 

 

Character Recognition techniques associate a symbolic identity with the image of a 
character. Character recognition system is classified into two, based on data acquisition 
and text type: online and offline (Figure. 1.1). The online character recognition system 
utilizes the digitizer which directly capture writing with the order of the strokes, speed, 
pen up and pen down information. Offline character recognition captures the data from 
paper through optical scanner or cameras. Offline character recognition is also known as 
optical character recognition because the image of text is converted in to a bit pattern by 
optically digitizing devices. In case of online handwritten character recognition, the 
handwriting is captured and stored in digital form via different means. Usually, a special 
pen is used in conjunction with an electronic surface. As the pen moves across the surface, 
the two- dimensional coordinates of successive points are represented as a function of time  

https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Cognitive_computing
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/Text-to-speech
https://en.wikipedia.org/wiki/Text-to-speech
https://en.wikipedia.org/wiki/Text_mining
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computer_vision
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Figure 1.1 Categories of character recognition system 

and are stored in order. It is generally accepted that the on-line method of recognizing 
handwritten text has achieved better results than its offline counterpart. This may be 
attributed to the fact that more information may be captured in the on-line case such as the 
direction, speed and the order of strokes of the handwriting. 

 

The offline character recognition can be further grouped into two types:   

• Magnetic Ink Character Recognition (MICR)   

• Optical Character Recognition (OCR)   

 In MICR, the characters are printed with magnetic ink. The reading device can recognize 
the character according to the unique magnetic field of each character. MICR is mostly 
used in banks for check authentication. OCR deals with the recognition of characters 
acquired by optical means, typically a scanner or a camera. The characters are in the form 
of digital images and can be either printed or handwritten, of any size, shape or 
orientation. The OCR can be subdivided into handwritten character recognition and 
printed character recognition. Handwritten character recognition is more difficult to 
implement than printed character recognition due to diverse human handwriting styles and 
customs. In printed character recognition, the images to be processed are in the forms of 
standard fonts like Times New Roman, Arial and Courier etc. 
 

 

Character Recognition (CR)

Offline CR

Optical Character Recognition (OCR)

Printed Character Recognition
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Font

Multi Font
Omni 
Font

Hand-written Character 
Recognition (HCR)

Constraint Unconstraint

Magnetic 
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(MICR)
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Optical 
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1.2.  Handwritten Character Recognition 
 

1.2.1. Application of Offline Handwritten Character Recognition 

HCR has been successfully used in several applications. Some of the important 
applications of offline handwritten recognition are discussed in the following section:   

• Bank Automaion: Offline handwritten recognition is basically used for cheque 
reading in banks. Cheque reading is the very important commercial application of 
offline handwritten recognition. Handwritten recognition system plays very 
important role in banks for signature verification and for recognition of amount 
filled by user.   

• Postal office automation: Handwritten recognition system can be used for 
reading the handwritten postal address on letters. Offline handwritten recognition 
system used for recognition handwritten digits of postcode. HCR can be read this 
code and can sort mail automatically.   

• Form Processing: HCR can be also used for form processing. Forms are normally 
used for collecting the public information. Replies of public information can be 
handwritten in the space provided.  

• Signature Verification: HCR can also be used to identify the person by signature 
verification. Signature identification is the specific field of handwritten 
identification in which the writer is verified by some specific handwritten text. 
Handwritten recognition system can be used for identify the person by 
handwriting, because handwriting may be vary from person to person.  

 

1.2.2. Background of HCR Systems 

HCR system is developed with an objective to recognize handwritten characters from a 
digital image of handwritten documents. An HCR system includes steps such as image 
acquisition, character segmentation, pre-processing of character image, feature extraction 
and recognition of character class with the extracted features as well as post processing. 
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a) Image acquisition  
Gray-level scanning of handwritten paper documents, at an appropriate resolution 
typically 300-1000 dpi. 
 

b) Preprocessing  
– Binarization (two-level thresholding).  
– Segmentation to isolate individual character.    
– Conversion to another character representation like skeleton or contour.   

 
c) Feature Extraction  

– Extracting meaningful features.  
 

d) Classification  
– Recognition using one or more classifier.  

 
e) Contextual verification on post processing   

 
Block diagram of a general character recognition system is shown in Figure 1.2. Images 
for HCR system might be acquired by scanning hand-written document or by capturing 
photograph of document or by directly writing in computer using stylus. This is also 
known as digitization process. Preprocessing involves series of operations performed to 
enhance to make it suitable for segmentation. Preprocessing step involves noise removal 
generated during document generation. Proper filter like mean filter, min-max filter and 
Gaussian filter may be applied to remove noise from document. Binarization process 
converts gray scale or colored image to black and white image. Binary morphological 
operations like opening, closing, thinning, hole filling etc may be applied to enhance 
image.   

If document is scanned then it may not be perfectly horizontally aligned, so we need to 
align it by performing slant angle correction. Input document may be resized if it is too 
large in size to reduce dimensions to improve speed of processing. However reducing 
dimension below certain level may remove some useful features too. Generally document 
is processed in hierarchical way. At first level lines are segmented using row histogram. 
From each row, words are extracted using column histogram and finally characters are 
extracted from words. Accuracy of final result is highly depends on accuracy of 
segmentation.  
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Figure 1.2: Different steps in character recognition system 

 

Feature extraction is the heart of any character recognition system. Feature extraction 
techniques like Principle Component Analysis (PCA), Linear Discriminant Analysis 
(LDA), Independent Component Analysis (ICA), Chain Code, Scale Invariant Feature 
Extraction (SIFT), zoning, gradient based features and histogram are applied to extract the 
features of individual characters. These features are used to train classification system. 
When a new input image is presented to HCR system, its features are extracted and given 
as an input to the trained classifier like artificial neural network or support vector 
machine. Classifiers compare the input feature with stored pattern and find out the best 
matching class for input. A post processing, though not mandatory, improve the accuracy 
of recognition. Syntax and semantic analysis or similar higher level concepts might be 
applied to check the context of recognized character.   

 

Post Processing
Syntax Analysis Semantic Analysis NLP

Classification
Euclidian Distance ANN SVM

Feature Extraction
Binary Features PCA, LDA etc Chain Code SIFT, Gabor etc

Segmentation
Line Segmentation Word Segmentation Character Segmentation

Preprocessing
Noice Removal Binarization Slant Angle Correction Resize

Image Acqusition
Scanned Document Photograph
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1.2.3. Challenges 
Since this task of recognizing character from an image is relatively trivial for a human to 
perform, it is worth considering the challenges involved from the perspective of a 
Computer Vision algorithm. An in-exhaustive list of general challenges in image 
recognition task is given below: 
 

• Viewpoint variation: A single instance of an object can be oriented in many ways 
with respect to the camera. 

 

 
Figure 1.3: General challenges in image recognition problems   

 
• Scale variation: Visual classes often exhibit variation in their size (size in the real 

world, not only in terms of their extent in the image). 

• Deformation: Many objects of interest are not rigid bodies and can be deformed in 
extreme ways. 

• Occlusion: The objects of interest can be occluded. Sometimes only a small portion 
of an object (as little as few pixels) could be visible. 

• Illumination conditions: The effects of illumination are drastic on the pixel level. 

• Background clutter: The objects of interest may blend into their environment, 
making them hard to identify. 

• Intra-class variation: The classes of interest can often be relatively broad, such as 
chair. There are many different types of these objects, each with their own 
appearance. 

 
Moreover, hand-written character recognition is more challenging than character 
recognition from printed form. In this particular case of hand-written character recognition 
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task from images the complexity/challenges of recognition task extends because of 
numerous variations in writing styles, character shapes & sizes of different persons and 
similarities in character shapes, the overlaps, and interconnections of neighboring 
characters. HCR complexity varies among different languages due to distinct shapes, 
strokes and number of characters. 
There are more characters in Bangla (50 characters) than in English (26 characters) and 
some contains additional sign up and/or below. Also compound characters are also used in 
Bangla frequently. Moreover, Bangla contains many similar shaped characters; in some 
cases a character differ from its similar one with a single dot or mark. These 
characteristics make difficult to achieve better performance with simple technique as well 
as hinders to work with Bangla HCR than English HCR. 

 
 

1.3. Problem Identification 

Bangla character set is divided into two categories: basic and compound characters. Basic 
characters are the collection of vowels and consonants. Bangla character set has 11 vowels 
and 39 consonants (Table 3.1). In Bangla, there are a large number of compound 
characters formed by combination of two or more basic characters. Most basic character 
shapes have a horizontal line at their upper parts, called headline or matra and three zones 
of such characters can be identified as shown in Fig. 3.1. Each of these characters 
(excepting the character ‘BINDU’) has a part in the middle zone while only a few of them 
have an additional part either in the upper or in the lower zones. 
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Table 1.1: Basic Bangla Characters. There are 11 vowels and 39 consonants 
in Bangla script. 

Vowels (11 nos.) 

অ আ ই ঈ উ ঊ ঋ এ ঐ ও ঔ 

A  AA  I  II  U  UU  R  E  AI  O  AU  

Consonants (39 nos.) 

ক খ গ ঘ ঙ চ ছ জ ঝ ঞ ট 

KA  KHA  GA  GHA  NGA  CA  CHA  JA  JHA  NYA  TTA  

 

ঠ ড ঢ ণ ত থ দ ধ ন প ফ 

TTHA  DDA  DDH
A 

NNA  TA  THA  DA  DH
A  

NA  PA  PHA  

 

ব ভ ম য র ল শ ষ স হ ড় 

BA BHA  MA  YY  RA  LA  SHA  SSA  SA  HA  RRA 

 

ঢ় য় ৎ s t u      

DHR
A  

YYA  
KHA
ND 

ANU
S  

VISA
RG 

BIN
DU 

     

 

 

Figure 1.4: Different zones of Bangla Characters 
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1.4. Related Works 

Offline handwriting recognition has been studied extensively during the last three decades 
[1–6]. Among these, recognition of isolated characters has the advantage that 
segmentation is usually not needed and when written in boxes, size normalization is 
accomplished to a large extent. So, experimental results on them provide a kind of upper 
bound of performance of the character recognizer in a handwriting analysis task.  
 
Numerous techniques have been proposed in the literature for recognition of isolated 
handwritten characters. These include (a) template matching [7, 8], e.g., direct pixel 
matching, deformable template matching, relaxation based matching, structural shape 
matching, etc.; (b) statistical classifier, e.g., Bayes’ classifier [9], hidden Markov model 
(HMM) [10, 11], etc.; (c) graph-based and automata-based syntactic classifier; (d) 
machine learning-based techniques involving neural net [12, 13], rough set [14], fuzzy set 
[15, 16], support vector machine (SVM) [17, 18], etc. Among these, the approaches based 
on HMM and SVM are popular due to their potential in recognition of unconstrained 
handwriting. Convolutional Neural Network [19] is also very efficient in document 
recognition tasks. In the overall recognition scheme, preprocessing techniques such as size 
normalization, smoothing, slant correction, etc., efficient feature selection and suitable 
post-processing methods that make use of contextual information for error correction play 
important roles to improve the final performance.  
Most of the reported studies on handwriting recognition have been done on English [18, 
20, 21] and oriental scripts like Chinese [22, 23], Korean [10, 24] and Japanese [25, 26]. 
The reports on Indian scripts are a few only. In the earliest such study [27], stroke-based 
features and a tree classifier were used for classification of handwritten Devanagari 
numerals. Parui et al. [28] proposed a syntactic scheme for handwritten Bangla numeral 
recognition while Dutta and Chaudhuri [29] used a neural net classifier to recognize 
isolated handwritten alphanumeric characters. Among others, Bhattacharya et al. [30] used 
self-organizing neural net while Bhattacharya and Chaudhuri [31] used classifier 
combination approach to recognition of handwritten Bangla numerals. A multistage 
recognition scheme for mixed numerals is reported recently [32]. For Bangla alphabetic 
characters, Rahman et al. [33] proposed a multistage scheme while Bhowmick et al. [34] 
used a neural network-based approach. HMM-based recognition of Bangla basic 
characters is reported in [35]. A major obstacle to effective research on off-line 
handwritten character recognition of Bangla and other Indian scripts is the non-existence 
of required benchmark databases. Previous studies were reported on the basis of small 
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databases collected in laboratory environments. However, several standard databases such 
as NIST, MNIST [19], CEDAR [36], CENPARMI, etc., are available for Latin script. 
Khosravi and Kabir [37] presented a large dataset of handwritten Farsi digits. An Arabic 
handwritten database consisting of words and texts written by 100 writers was described in 
[38]. Su et al. [39] presented a Chinese handwriting database HIT-MW collected in an 
unconstrained manner. A few other databases of handwriting samples include [40, 41] and 
[42].  
 
A few notable works are available for Bengali handwritten character recognition. 
Bhowmik et al. [52] proposed a fusion classifier using Multilayer Perceptron (MLP), RBF 
network and SVM. They used wavelet transform for feature extraction from character 
images. In classification, they considered some similar characters as a single pattern and 
trained the classifier for 45 classes. Basu et al. [53] proposed a hierarchical approach to 
segment characters from words and MLP is used for classification. In segmentation stage 
they used three different feature extraction techniques but they reduced character patterns 
into 36 classes merging similar characters in a single class. Recently, Battacharya et al. 
[54] considered a two-stage recognition scheme for 50 basic character classes. Feature 
vector for the first classifier is computed by overlaying a rectangular grid consisting of 
regularly spaced horizontal and vertical lines over the character bounding box. The 
response of this first classifier is analyzed to identify its confusion between a pair of 
similar shaped characters. Second stage of classification is used to resolve the confusion 
and feature vector is computed by overlaying another rectangular grid but consisting of 
irregularly spaced horizontal and vertical lines over the character bounding box. They used 
Modified Quadratic Discriminant Function (MQDF) classifier and MLP as classifiers in 
first and second stages, respectively.  

 

Recently, Md. Mahbubar Rahman et al. [55] applied CNN scheme to Bengali HCR and 
reported 85.96% test accuracy. CNN with two convolution and sub-sample layers are used 
in this work. Kernel size considered in this work is 5×5. 6 and 12 kernels were used in 1st 
and 2nd convolution layer respectively to extract features. A database was created by 
taking samples from 30 individuals of different ages and education levels. prepared dataset 
size was 20000 having 400 samples for each character among which 17500 samples (350 
samples for each character) were used as training set and 2500 samples (50 samples per 
character) were used as test set. 
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1.5. Motivation and Scope of Works 

Convolutional neural network (CNN) has ability to recognize visual patterns directly from 
pixel images with minimal preprocessing. Deep CNN (DCNN) [5] has been being used 
successfully for image classifications, handwritten digit and character recognition in recent 
years. But there is no record of DCNN being used for Bangla HCR (BHCR) task. For this 
reason, DCNN scheme will be investigated in BHCR task and performance will be 
analyzed. It can be assumed easily that DCNN based BHCR will give satisfactory results 
in terms of recognition accuracy, time requirement for recognition and storage 
requirements since after training, the training data will not be needed to be stored. Only 
the weights and biases of the network are stored which requires very negligible storage 
size. Training requires much time, but testing requires very small amount of time, so it can 
be applied in real-time recognition and analysis. 
 

 

1.6. Objectives 

The specific objectives of this thesis are: 

• To develop an architecture of Deep CNN (DCNN) to recognize hand-written 
Bangla characters 

• To analyze the DCNN architecture and determine optimum number of 
convolutional layers and kernel-size that would provide improved recognition 
accuracy of fifty classes of hand-written Bangla characters.  

• To evaluate the performance of the proposed DCNN based recognition scheme 
with that of existing methods in terms of accuracy, storage requirement, and 
computational complexity on publicly available dataset 
 

The outcome of the thesis is a novel recognition scheme for hand-written Bangla 
characters with low-level storage requirement and processing time that would provide 
improved accuracy to facilitate automatic recognition. 
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1.7. Outline 
The thesis is organized as follows: 
In Chapter 2, a brief review of neural network and convolutional neural network is 
introduced. Then the advantages of CNN over NN are explained. 
In Chapter 3, proposed DCNN architecture is explained. 
Chapter 4 describes the database used in the experiment, experimental results and analyses 
by comparing the proposed method with the existing recognition methods. 
Finally, Chapter 5 provides the conclusion along with the scopes for future work. 
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Chapter 2 
 

Convolutional Neural Network:  

A Review 

 

 

2.1. Introduction 

This chapter provides a review on convolutional neural network. Since CNN is a category 
to neural network, hence at first a brief introduction of NN along with the structure and 
training method are explained. After that the basic structure of a CNN is presented. But as 
the training method of CNN is similar to the NN, so it is omitted. At the end of this 
chapter, the advantages of CNN over NN are presented. 

 

2.2. Neural Networks 

A neural network is a system of interconnected artificial “neurons” that exchange 
messages between each other. The connections have numeric weights that are tuned during 
the training process, so that a properly trained network will respond correctly when 
presented with an image or pattern to recognize. The network consists of multiple layers of 
feature-detecting “neurons”. Each layer has many neurons that respond to different 
combinations of inputs from the previous layers. As shown in Figure 2.1, the layers are 
built up so that the first layer detects a set of primitive patterns in the input, the second 
layer detects patterns of patterns, the third layer detects patterns of those patterns, and so 
on. Deep neural networks typically use 2 to 10 distinct layers for pattern recognition. 
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Figure 2.1: An artificial neural network 

 

Training of a NN is performed using a “labeled” dataset of inputs in a wide assortment of 
representative input patterns that are tagged with their intended output response. Training 
uses general-purpose methods to iteratively determine the weights for intermediate and 
final feature neurons. Figure 2.2 demonstrates the training process at a block level. 

 

Neural networks are inspired by biological neural systems. The basic computational unit 
of the brain is a neuron and they are connected with synapses. Figure 2.3 compares a 
biological neuron with a basic mathematical model. 
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Figure 2.3: Illustration of a biological neuron (up) and its mathematical model (down). 

 

In a real animal neural system, a neuron is perceived to be receiving input signals from its 
dendrites and producing output signals along its axon. The axon branches out and connects 
via synapses to dendrites of other neurons. When the combination of input signals reaches 
some threshold condition among its input dendrites, the neuron is triggered and its 
activation is communicated to successor neurons. 
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Figure 2.4: A neural network consisting of input, hidden and output layer. A neural 
network can contain an arbitrary number of hidden layers. Inputs of hidden layer and 

output layer are weighted by weights wij,ujk respectively. 

 

In the computational model of neural network, the signals that travel along the axons (e.g., 
x0) interact multiplicatively (e.g., w0x0) with the dendrites of the other neuron based on the 
synaptic strength at that synapse (e.g., w0). Synaptic weights are learnable and control the 
influence of one neuron or another. The dendrites carry the signal to the cell body, where 
they all are summed. If the final sum is above a specified threshold, the neuron fires, 
sending a spike along its axon. In the computational model, it is assumed that the precise 
timings of the firing do not matter and only the frequency of the firing communicates 
information. Based on the rate code interpretation, the firing rate of the neuron is modeled 
with an activation function f that represents the frequency of the spikes along the axon. A 
common choice of activation function is sigmoid. In summary, each neuron calculates the 
dot product of inputs and weights, adds the bias, and applies non-linearity as a trigger 
function (for example, following a sigmoid response function). The whole network still  

 

Input Layer           Hidden Layer            Output Layer 
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Figure 2.5: Placement of the activation function in the neural network model. 

 

expresses a single differentiable score function: from the raw image pixels on one end to 
class scores at the other. 

 

2.2.1. Activation Functions 

Output of each node is produced by the node’s activation function φ that takes weighted 
inputs of the node as parameters transformed by a transfer function (see Figure 2.5). The 
transfer function creates a linear combination of weighted inputs in order to feed them to 
the activation function. To approximate complicated functions, nonlinear activations are 
often used. The following sections briefly describe different nonlinear activation functions 
most commonly used in neural networks. 

 
Hyperbolic tangent 

One of the most popular activation functions is the hyperbolic tangent function (Equation 
2.1). Input x is a weighted linear combination of the inputs of the node. This function 
works most effectively on inputs in range (0,1), producing outputs in interval (−1,1). 

  (2.1) 
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Logistic sigmoid function (Equation 2.2) is widely used activation function biologically 
more plausible than hyperbolic tangent. One of the reasons the sigmoid function is broadly 
used is the fact, the sigmoid function is differentiable at every point. 

  (2.2) 

ReLU 

Rectified linear unit’s function (Equation 2.3) is used with the purpose to increase non-
linearity of the network. Rectifying neurons are considered to be biologically more 
plausible than logistic sigmoid or hyperbolic tangent neurons. They benefit from their 
simplicity, resulting in faster training and performance improvements in particular cases, 
and therefore often used in DNNs/CNNs. ReLU is given by the equation: 

 f(x) = max(0,x) (2.3) 

Figure 2.6 visualizes a comparison of rectifier function and activation functions introduced 
in this section. 

 

 

 

 

 

 

 

 

Figure 2.6: Visual comparison of the three most relevant DNNs’ activation functions: 
hyperbolic tangent, sigmoid and rectifier. 

2.2.2. Softmax 

The softmax activation function (Equation 2.4) is usually used in the last network layer, 
converting an arbitrary real value to posterior probability of the class ckin range (0,1): 
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  (2.4) 

where m corresponds the number of output nodes (classes) and ak is the activation value of 
k-th node: 

                     

     

                                                                                       

given i-th node’s weights wij and the output of the previous layer hj(x). 

 

2.2.3. Loss Function 

To measure a precision of the network outcome, a loss (also cost or objective) function 
[33] is used. It expresses how much the prediction differs from expected value. The output 
of the loss function is a real value referred to as the cost or the penalty. An example of a 
loss function that outputs probabilities, thus often used in visual classification problems is 
the cross-entropy loss function (Equation 2.6): 

  (2.6) 

where m is the number of possible classes (nodes) in the output layer, y the target vector 
and p the aposterior probability for each class predicted by the network. Evaluated 
derivatives of a loss function are used in the training phase. 

 

2.2.4. Backpropagation 

Backpropagation is a neural network training algorithm. For supervised learning, target 
classes are essential for error calculation. The error is afterwards backpropagated to every 
node in previous layers. This error e (Equation 2.8) is obtained as a gradient of the loss 
function L with respect to each layer’s weights wkjgiven input of the node x and activation 
function 

     (2.7) 

(2.8) 

                                 (2.5) 
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Gradient computation demands application of the chain rule in order to compute partial 
derivative of the loss function L with respect to particular weight wkj. Using the error, 
weights are updated by an optimization algorithm such as gradient descent. 

 

2.2.5. Gradient Descent 

The most common function optimization algorithm used for neural networks is the 
gradient descent, a first order approximation algorithm that updates weights of the model. 
The algorithm approaches a local minimum in the direction of the negative gradient of the 
loss function with respect to the weights. The size of the step is called learning rate. It is a 
scalar in the range (0,1), controlling magnitude of network’s parameters (weights) change. 
To perform one update of the weights, the whole training set has to be used. For large 
training sets, this method might be computationally expensive. A more time efficient 
gradient descent based optimization method is the stochastic gradient descent or SGD 
(Equation 2.9). SGD needs only one observation (or subset of the training set) to update 
model parameters w. As the name suggests, at each weight update a random observation is 
used. Furthermore, SGD does not tend to end up stuck in a local minima such as ordinary 
gradient descent (also called batch gradient descent). A disadvantage of SGD is a slower 
convergence rate than convergence rate of batch gradient descent. Due to its stochasticity, 
a wrong choice of starting observations may cause algorithm to move further from global 
minima and make converge problematic. 

 w(t+1) = w(t) − η∇wL(w(t)) (2.9) 

Weights w are being updated by the negative of the gradient of the loss function with 
respect to the weights. This change is limited by the learning rate η. Root mean square 
prop or RMSprop is using the same concept of the exponentially weighted average of the 
gradients like gradient descent with momentum but the difference is the update of 
parameters. 

𝑀𝑆(𝜔(𝜂)) =  𝛾𝑀𝑆(𝜔(𝜂 − 1)) + (1 − 𝛾) (
𝜕𝐷(𝜂)

𝜕𝜔(𝜂)
)

2

 

𝜔(𝜂 + 1) =  𝜔(𝜂) −
𝜆

√𝑀𝑆(𝜔(𝜂))+∈

𝜕𝐷(𝜂)

𝜕𝜔(𝜂)
 

  (2.10) 

https://engmrk.com/gradient-descent-with-momentum/
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2.2.6. Momentum 

Numerous improvements for gradient descent were proposed. One of the most frequently 
used enhancements is the momentum. Momentum helps to prevent from convergence to a 
local minima and also speeds up the convergence process by preserving a fraction of 
previous weight adjustments. Previous weight adjustment is used in current update, 
multiplied by factor µ, the momentum (Equation 2.11). 

 w(t+1) = w(t) − η∇wL(w(t)) + µ∆w(t) (2.11) 

 

2.2.7.Nesterov’s Accelerated Gradient 

Nesterov’s accelerated gradient (NAG) is an optimal algorithm for smooth convex 
optimization proposed by Nesterov, with convergence rate of O(1/t2) after t steps, 
compared to the one of gradient descent O(1/t). However, for visual problems, optimized 
functions are barely convex and smooth, thus assumptions under which convergence rate 
holds are not preserved. Novelty of NAG is in the weight update using gradient on the 
weights updated by momentum (Equation 2.12). 

 ∆w(t+1) = µ∆w(t) − η∇wL(w(t) + µ∆w(t)) (2.12) 

 

2.2.8. Weight Decay 

In the training phase, without regularization, weights use to grow to large values slowing 
down the convergence process. Weight decay (also called L2 regularization) is a way how 
to prevent weights from growing unboundedly (Equation 2.13). The weight decay 
parameter λ represents the portion of the weight to be subtracted. 

 w(t+1) = w(t) − η∇wL(w(t)) − λw(t) (2.13) 

 

2.2.9. Local Response Normalization 

Efficiency of a training process is sometimes enhanced by local response 
normalization(LRN). It is performed over local regions of an input image, centered around 
point xk (Equation 2.14). Region has size n and consists of points xi. 

  (2.14) 
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α and β are arbitrary values specified before the training starts. 

 

2.2.10. Xavier Initialization 

The background chapter has introduced issues with initialization of DNNs. If the initial 
weights are either too large or too small, model is unable to converge to the global 
minima. To face this problem, Xavier initialization is often used. Weights of the model are 
randomly initialized, usually taken from the Gaussian distribution with variance 
determined from (Equation 2.15): 

  (2.15) 

where W stands for the random distribution of the node to be initialized. Size of the 
variance depends on number of input connections (nin) to the particular node. Alternative 
versions of Xavier initialization also exist. They often include the number of outgoing 
connections in the variance formula. 

 

2.3. Convolutional Neural Networks (CNNs / ConvNets) 

A CNN is a special case of the neural network described above. A CNN consists of one or 
more convolutional layers, often with a subsampling layer, which are followed by one or 
more fully connected layers as in a standard neural network. The design of a CNN is 
motivated by the discovery of a visual mechanism, the visual cortex, in the brain (Figure 
2.7). The visual cortex contains a lot of cells that are responsible for detecting light in 
small, overlapping sub-regions of the visual field, which are called receptive fields. These 
cells act as local filters over the input space, and the more complex cells have larger 
receptive fields. The convolution layer in a CNN performs the function that is performed 
by the cells in the visual cortex. 



Chapter 2: Convolutional Neural Network: A Review  

23 
 

 

Figure 2.7: i) Visual Cortex of human brain 
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Figure 2.7: ii) A schematic diagram of model LGN and cortex. The model visual cortex is 
composed of 48×48 model cortical neurons, which have separate dendritic fields. The 
model LGN is given as four sheets of different cell types. Each sheet is composed of 
24×24 model LGN cells, whose receptive field centers are arranged retinotopically. 

 

A typical CNN is shown in Figure 2.9. Each feature of a layer receives inputs from a set of 
features located in a small neighborhood in the previous layer called a local receptive 
field. With local receptive fields, features can extract elementary visual features, such as 
oriented edges, end-points, corners, etc., which are then combined by the higher layers. 

In the traditional model of pattern/image recognition, a hand-designed feature extractor 
gathers relevant information from the input and eliminates irrelevant variabilities. The 
extractor is followed by a trainable classifier, a standard neural network that classifies 
feature vectors into classes. 

In a CNN, convolution layers play the role of feature extractor. But they are not hand 
designed. Convolution filter kernel weights are decided on as part of the training process. 
Convolutional layers are able to extract the local features because they restrict the 
receptive fields of the hidden layers to be local. For image classification, it is common to 
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use convolutional neural networks (CNNs) as they were designed to extract information 
from 2D and higher order input spaces. Convolutional neural networks, thanks to their 
multiple levels of feature extracting layers, use a minimum of preprocessing, hence it is 
not necessary to consider feature extraction issues. CNN’s weights are designed to form a 
convolutional filter that is replicated over the whole visual field. All units of the 
convolutional layer share the same weights within the layer, what decreases number of 
free parameters to learn, thus simplifies training process. The filter is used to convolve an 
image, each filter convolves pixels it covers. Outputs of all these filters form a feature 
map. Convolutional layers usually contain several feature maps for richer representation of 
the image content. Each feature map is produced by a different filter. Convolutional layer 
is typically defined by number of feature maps, kernel size (size of the filter) and by stride 
parameter (a size of the step over image pixels when applying filter). 

CNNs are used in variety of areas, including image and pattern recognition, speech 
recognition, natural language processing, and video analysis. There are several reasons 
that convolutional neural networks are becoming important: 

• In traditional models for pattern recognition, feature extractors are hand designed. 
In CNNs, the weights of the convolutional layer being used for feature extraction 
as well as the fully connected layer being used for classification are determined 
during the training process. 

• The improved network structures of CNNs lead to savings in memory requirements 
and computation complexity requirements and, at the same time, give better 
performance for applications where the input has local correlation (e.g., image and 
speech).  

• Large requirements of computational resources for training and evaluation of 
CNNs are sometimes met by graphic processing units (GPUs), DSPs, or other 
silicon architectures optimized for high throughput and low energy when executing 
the idiosyncratic patterns of CNN computation. In fact, advanced processors such 
as the Tensilica Vision P5 DSP for Imaging and Computer Vision from Cadence 
have an almost ideal set of computation and memory resources required for 
running CNNs at high efficiency. 

• In pattern and image recognition applications, the best possible correct detection 
rates (CDRs) have been achieved using CNNs. For example, CNNs have achieved 
a CDR of 99.77% using the MNIST database of handwritten digits [59], a CDR of 
97.47% with the NORB dataset of 3D objects [60], and a CDR of 97.6% on ~5600 
images of more than 10 objects. CNNs not only give the best performance  
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compared to other detection algorithms, they even outperform humans in cases 
such as classifying objects into fine-grained categories such as the particular breed 
of dog or species of bird [61]. 
 

• Figure 2.8 shows a typical vision algorithm pipeline, which consists of four stages: 
pre-processing the image, detecting regions of interest (ROI) that contain likely 
objects, object recognition, and vision decision making. The pre-processing step is 
usually dependent on the details of the input, especially the camera system, and is 
often implemented in a hardwired unit outside the vision subsystem. The decision 
making at the end of pipeline typically operates on recognized objects—It may 
make complex decisions, but it operates on much less data, so these decisions are 
not usually computationally hard or memory-intensive problems. The big challenge 
is in the object detection and recognition stages, where CNNs are now having a 
wide impact.  

 

2.3.1 Typical CNN Structure 

CNN’s structure is inspired by Neocognitron, composed of alternating two types of layers. 
Layers typically used in convolutional neural networks are listed below: 
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• Input – This layer will hold the raw pixel values of the image, in this case an image 
of same height and width, and with three color channels R,G,B. 

• Convolutional - Nodes of a convolutional layer perform convolution on a different 
parts of the image. This layer serves as a feature extractor. This layer will compute 
the output of neurons that are connected to local regions in the input, each 
computing a dot product between their weights and a small region they are 
connected to in the input volume. This may result in volume as output instead of an 
image. 

• ReLU (Rectified Linear Unit)-layer will apply an elementwise activation function, 
such as the max(0, x) thresholding at zero. This leaves the size of the volume 
unchanged. This layer introduces non-linearity in the system.  

• Pooling/Subsampling - This layer subsamples feature maps to reduce variance 
within local regions of the image. Pool layer will perform a down-sampling 
operation along the spatial dimensions (width, height), resulting in volume of 
reduced size. It splits the image into rectangular regions and takes out value 
determined by the type of pooling layer. The most popular type of pooling layer in 
CNNs is the max-pooling layer, which extracts maximum value of the sub-regions 
of the feature map. 

• Fully connected - As with ordinary Neural Networks and as the name implies, each 
neuron in this layer will be connected to all the numbers in the previous volume and 
each neuron in this layer takes an input from all the previous layer’s neurons. This 
layer will compute the class scores, resulting in volume of size 1×1×N. The 
reasoning of the network is performed by its fully connected layers. 

• Classifier - Outputs posterior probabilities for each class. 

 

Standard convolutional neural network consists of one or more pairs of convolutional layer 
and subsequent max-pooling layer followed by one or more fully connected layers using 
rectifying activation function. The output layer is often constructed as a combination of the 
softmax activation function and the cross entropy loss function (Equation 2.6). 
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2.3.2. Layers of CNNs 

By stacking multiple and different layers in a CNN, complex architectures are built for 
classification problems. Four types of layers are most common: convolution layers, 
pooling/sub-sampling layers, non-linear layers, and fully connected layers. 

 

Convolution Layers 

The convolution operation extracts different features of the input. The first convolution 
layer extracts low-level features like edges, lines, and corners. Higher-level layers extract 
higher-level features. Figure 2.10 illustrates the process of 3D convolution used in CNNs. 
The input is of size N × N × D and is convolved with H kernels, each of size k × k × D 
separately. Convolution of an input with one kernel produces one output feature, and with 
H kernels independently produces H features. Starting from top-left corner of the input, 
each kernel is moved from left to right, one element at a time. Once the top-right corner is 
reached, the kernel is moved one element in a downward direction, and again the kernel is 
moved from left to right, one element at a time. This process is repeated until the kernel 
reaches the bottom-right corner. For example, when N = 32 and k = 5, there are 28 unique 
positions from left to right and 28 unique positions from top to bottom that the kernel can 
take. Corresponding to these positions, each feature in the output will contain 28×28 (i.e., 
(N-k+1) × (N-k+1)) elements. For each position of the kernel in a sliding window process, 
k × k × D elements of input and k × k × D elements of kernel are element-by-element 
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Figure 2.9: Typical block diagram of a CNN 
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multiplied and accumulated. So to create one element of one output feature, k × k × D 
multiply-accumulate operations are required. 

 

Figure 2.10: A representation of convolution process 

Let Wi be a filter set with dimension Ci × Ci−1 × Ni × Ni, where Ci and Ci−1 is the number of 
channels of the output and input of this layer respectively, and Ni be the square-size 
parameter of the filters. The parameter, Ci represents the number of filters in the set Wi. 
Each of the filters has a corresponding bias term, resulting a bias vector bi with Ci number 
of elements. Hence, the output of this layer is obtained from the output of the previous 
layer, bias term and corresponding filter set as 

 

Xi = Wi ∗Xi−1 +bi (2.16) 

where ∗represents the linear convolution operation. This operation results in the dimension 
of output Xi to be Ci×Mvi×Mhi from input Xi−1 with shape Ci−1 ×Mv(i−1) ×Mh(i−1). There is a 
positive parameter called ’stride’ which can be set to a value that will cause the spatial 
dimensions to change resulting in up-sampling or down-sampling. The spatial dimensions 
remain the same when the parameter is set to 1. If it is set to value greater than unity then 
the dimensions decrease. And, if it is set to a value less than unity, the spatial dimensions 
increase. A general tendency is to set the parameter to 1 and the dimensionality reduction, 
when required, is obtained using a pooling layer. In model description, convolution layer 
is referred to as CN (Ci,Ni). 
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Figure 2.11: A representation of max pooling and average pooling 

 

Pooling/Subsampling Layers 

The pooling/subsampling layer reduces the resolution of the features. It makes the features 
robust against noise and distortion. Its function is to progressively reduce the spatial size 
of there presentation to reduce the amount of parameters and computation in the network, 
and hence to also control overfitting. There are two ways to do pooling: max pooling and 
average pooling. In both cases, the input is divided into non-overlapping two-dimensional 
spaces. For example, in Figure 2.9, layer 2 is the pooling layer. Each input feature is 
28×28 and is divided into 14×14 regions of size 2×2. For average pooling, the average of 
the four values in the region are calculated. For max pooling, the maximum value of the 
four values is selected. 

 

Figure 2.11 elaborates the pooling process further. The input is of size 4×4. For 2×2 
subsampling, a 4×4 image is divided into four non-overlapping matrices of size 2×2. In the 
case of max pooling, the maximum value of the four values in the 2×2 matrix is the output. 
In case of average pooling, the average of the four values is the output. Please note that for 
the output with index (2,2), the result of averaging is a fraction that has been rounded to 
nearest integer. 

Average Pooling 

with stride 2 

Max Pooling with 
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Non-linear Layers 

Neural networks in general and CNNs in particular rely on a non-linear “trigger” function 
to signal distinct identification of likely features on each hidden layer. CNNs may use a 
variety of specific functions —such as rectified linear units (ReLUs) and continuous 
trigger (non-linear) functions—to efficiently implement this non-linear triggering.  

 

ReLU 

A ReLU implements the function 

Xi = max (0, Xi−1) (2.17) 

 

In other words, only non-negative values are kept as is and the other values are set to zero. 
So the input and output sizes of this layer are the same. It increases the nonlinear 
properties of the decision function and of the overall  

 

Figure 2.12: A representation of ReLU functionality 

 

network without affecting the receptive fields of the convolution layer. In comparison to 
the other non-linear functions used in CNNs (e.g., hyperbolic tangent, absolute of 
hyperbolic tangent, and sigmoid), the advantage of a ReLU is that the network trains many 
times faster. In addition, the ReLU unit helps the neural network to attain a better sparse 
representation ([52]). It is customary for convolution layer to be followed by ReLU 
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activation. ReLU functionality is illustrated in Figure 2.12, with its transfer function 
plotted above the arrow. 

 

Continuous Trigger (Non-Linear) Function  

The non-linear layer operates element by element in each feature. A continuous trigger 
function can be hyperbolic tangent (Figure 2.13), absolute of hyperbolic tangent (Figure 
2.14), or sigmoid (Figure 2.15). Figure 2.16 demonstrates how non-linearity gets applied 
element by element. 

Figure 2.13: The hyperbolic tangent   Figure 2.14: Absolute of    function 
         hyperbolic tangent function 

 

 

 

 

 

 

 

Figure 2.15: The sigmoid function          Figure 2.16: A representation of tanh processing 

 

Fully Connected layers 

Fully connected layers are often used as the final layers of a CNN. These layers 
mathematically sum a weighting of the previous layer of features, indicating the precise 
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mix of “ingredients” to determine a specific target output result. In case of a fully 
connected layer, all the elements of all the features of the previous layer get used in the 
calculation of each element of each output feature.  

 

 

 

 

Figure 2.17: Processing of a fully connected layer 

 

Figure 2.17 explains the fully connected layer L. Layer L-1 has two features, each of 
which is 2×2, i.e., has four elements. Layer L has two features, each having a single 
element. 

 

2.4. Advantage of CNN over NN: 

While neural networks and other pattern detection methods have been around for the past 
50 years, there has been significant development in the area of convolutional neural 
networks in the recent past. This section covers the advantages of using CNN for image 
recognition. 
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• Ruggedness to shifts and distortion in the image 

Detection using CNN is rugged to distortions such as change in shape due to camera lens, 
different lighting conditions, different poses, presence of partial occlusions, horizontal and 
vertical shifts, etc. However, CNNs are shift invariant since the same weight configuration 
is used across space. In theory, we also can achieve shift invariantness using fully 
connected layers. But the outcome of training in this case is multiple units with identical 
weight patterns at different locations of the input. To learn these weight configurations, a 
large number of training instances would be required to cover the space of possible 
variations. 

• Fewer memory requirements 

In this same hypothetical case where we use a fully connected layer to extract the features, 
the input image of size 32×32 and a hidden layer having 1000 features will require an 
order of 106 coefficients, a huge memory requirement. In the convolutional layer, the same 
coefficients are used across different locations in the space, so the memory requirement is 
drastically reduced. 

• Easier and better training 

Again using the standard neural network that would be equivalent to a CNN, because the 
number of parameters would be much higher, the training time would also increase 
proportionately. In a CNN, since the number of parameters is drastically reduced, training 
time is proportionately reduced. Also, assuming perfect training, we can design a standard 
neural network whose performance would be same as a CNN. But in practical training, a 
standard neural network equivalent to CNN would have more parameters, which would 
lead to more noise addition during the training process. Hence, the performance of a 
standard neural network equivalent to a CNN will always be poorer. 

 

2.5. Conclusion 

In this chapter a brief description of NN and CNN are presented. The reason for applying 
CNN in CR task is also explained. In the next chapter different models of CNN used in 
this experiment of Bangla CR task will be presented along with the comparison of their 
performances in terms of recognition accuracy rates. 
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Chapter 3 

 

Proposed DCNN Architecture 

 

3.1. Introduction 

This chapter presents the structure of DCNN models used in this experiment. The 
performances of the different DCNN structures have been used for experiment in this 
thesis are shown. Number of kernels in different convolution layers, sizes of the kernels, 
depth of the network and number of neurons in the classifier layers have their effects on 
the performance of the recognizer. The architecture that gives the best output (Model no. 
4) in terms of the recognition accuracy rates are presented in this chapter. 

 

3.2. DCNN Architectures 

In this work five different architectures of DCNN are used for recognition task and their 
performances are compared to determine the most optimized network size for better 
recognition accuracy. Among these five architectures, model 4 gives the best result. The 
descriptions of the five architectures are given below: 

 

3.2.1. Model 1 

Architecture 

Model 1 consists of 3 convolutional layers and 1 affine (fully connected) layer. It takes 
32×32 RGB images as input. 1st, 2nd and 3rd convolution layers contain 32, 64 and 128 
numbers of receptive fields (kernels) respectively. The kernels in all the convolutional 
layers are of equal size: 3×3.  

After 1st convolution layer ReLU is used as activation function, but no sub-sampling 
layer is used. So, after the 1st convolution between 32×32 input image size for each 
channel (RGB) and 32 nos of 3×3 kernels for each channel, the size of the feature maps 
become 32×32×32. Padding 1and stride 1 are used for the convolution operation. 
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Application of ReLU activation does not change the number of parameters. Pooling is not 
used in the first layer. 

After each of 2nd and 3rd convolution layers, ReLU function and MaxPooling (sub-
sampling) with stride 2 are used in Model 1. Padding 1 and stride 1 are used for the 
convolution operation. Both pooling height and width are 2. So, after the 2nd convolution 
between 32×32×32 feature map size and 64 nos of 3×3 kernels, the size of the feature 
maps becomes 32×32×64. After first pooling, the feature map size reduced to 16×16×64. 
After 3rd convolution layer with 128 nos of kernel, the feature size becomes 16×16×128. 
After second pooling, the feature map size reduced to 8×8×128. And at the end one fully-
connected layer with 50 neurons are used. 

Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 : Model 1 DCNN architecture for BHCR 
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Function 

Let, the input image be X (3×32×32), 
Layer 1 (Conv) : L1≡W1*X+B1 
Layer 2 (ReLU) : L2≡max(0, L1) 
Layer 3 (Conv) : L3≡W2*L2+B2 
Layer 4 (ReLU) : L4≡max(0, L3) 
Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2 ) 
Layer 6 (Conv) : L6≡W3*L5+B3 
Layer 7 (ReLU) : L7≡max(0, L6) 
Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7,Size: 2×2, Stride = 2 ) 
Layer 9 (Affine) : L9≡W4L8+B4 
Layer 10 (Softmax) : L10≡ SoftMax(L9) 
 

3.2.2. Model 2 

Architecture 

Similar to Model 1, Model 2 consists of 3 convolutional layers and 1 affine (fully 
connected) layer. It takes 32×32 RGB images as input. 1st, 2nd and 3rd convolution layers 
contain 32, 64 and 128 numbers of receptive fields (kernels) respectively. The difference 
between model 1 and Model 2 is: unlike model 1, the kernel size in the first convolutional 
layer in model 2 is 5×5, the kernel size in the 2nd and 3rdconvolutional layers are of equal 
size: 3×3.  

After 1st convolution layer ReLU is used as activation function, but no sub-sampling 
layer is used. So, after the 1st convolution between 32×32 input image size for each 
channel (RGB) and 32 nos of 3×3 kernels for each channel, the size of the feature maps 
become 32×32×32. Padding 2 and stride 1 are used for the convolution operation. 
Application of ReLU activation does not change the number of parameters. Pooling is not 
used in the first layer. 

After each of 2nd and 3rd convolution layers, ReLU function and MaxPooling (sub-
sampling) with stride 2 are used in Model 2. Padding 1 and stride 1 are used for the 
convolution operation. Both pooling height and width are 2. So, after the 2nd convolution 
between 32×32×32 feature map size and 64 nos of 3×3 kernels, the size of the feature 
maps becomes 32×32×64. After first pooling, the feature map size reduced to 16×16×64. 
After 3rd convolution layer with 128 nos of kernel, the feature size becomes 16×16×128. 
After second pooling, the feature map size reduced to 8×8×128. And at the end one fully-
connected layer with 50 neurons are used. 
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Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 : Model 2 DCNN architecture for BHCR 
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Let, the input image be X (3×32×32), 
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Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7, Size: 2×2, Stride = 2 ) 
Layer 9 (Affine) : L9≡ W4L8+B4 
Layer 10 (Softmax) : L10≡ SoftMax(L9) 
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3.2.3. Model 3 

Architecture 

Model 3 is similar to model 2, but unlike model 2, it has 2 affine layers at the end. Model 
3 consists of 3 convolutional layers and 2 affine (fully connected) layers. It takes 32×32 
RGB images as input. 1st, 2nd and 3rd convolution layers contain 32, 64 and 128 numbers 
of receptive fields (kernels) respectively. The kernel size in the first convolutional layer 
in model 3 is 5×5, the kernel size in the 2nd and 3rd  convolutional layers are of equal size: 
3×3.  

After 1st convolution layer ReLU is used as activation function, but no sub-sampling 
layer is used. So, after the 1st convolution between 32×32 input image size for each 
channel (RGB) and 32 nos of 3×3 kernels for each channel, the size of the feature maps 
become 32×32×32. Padding 2 and stride 1 are used for the convolution operation. 
Application of ReLU activation does not change the number of parameters. Pooling is not 
used in the first layer. 

After each of 2nd and 3rd convolution layers, ReLU function and MaxPooling (sub-
sampling) with stride 2 are used in Model 3. Padding 1 and stride 1 are used for the 
convolution operation. Both pooling height and width are 2. So, after the 2nd convolution 
between 32×32×32 feature map size and 64 nos of 3×3 kernels, the size of the feature 
maps becomes 32×32×64. After first pooling, the feature map size reduced to 16×16×64. 
After 3rd convolution layer with 128 nos of kernel, the feature size becomes 16×16×128. 
After second pooling, the feature map size reduced to 8×8×128. And at the end two fully-
connected layers with 3000 and 50 neurons respectively are used as classifier. 
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Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 : Model 3 DCNN architecture for BHCR 

 

Function 
Let, the input image be X (3×32×32), 
Layer 1 (Conv) : L1≡ W1*X+B1 
Layer 2 (ReLU) : L2≡max(0, L1) 
Layer 3 (Conv) : L3≡ W2*L2+B2 
Layer 4 (ReLU) : L4≡max(0, L3) 
Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2 ) 
Layer 6 (Conv) : L6≡ W3*L5+B3 
Layer 7 (ReLU) : L7≡max(0, L6) 
Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7, Size: 2×2, Stride = 2 ) 
Layer 9 (Affine) : L9≡ W4L8+B4 
Layer 10 (Affine) : L10≡ W5L9+B5 
Layer 11 (Softmax) : L11≡ SoftMax(L10) 
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3.2.4. Model 4 (Proposed DCNN) 

Architecture 

Among the different models used in this experiment, the best DCNN architecture is 
model 4. Model 4 is almost same to model 3, the only difference is in the number of 
neurons used in the first affine layer.  

 

Proposed DCNN architecture consists of 3 convolutional layers and 2 affine (fully 
connected) layers. It takes 32×32 RGB images as input. 1st, 2nd and 3rd convolution layers 
contain 32, 64 and 128 numbers of receptive fields (kernels) respectively. The kernel size 
in the first convolutional layer in model 4 is 5×5, the kernel sizes in the 2nd and 3rd 
convolutional layers are of equal size: 3×3. After 1st convolution layer ReLU is used as 
activation function, but no sub-sampling layer is used. So, after the 1st convolution 
between 32×32 input image size for each channel (RGB) and 32 nos of 5×5 kernels for 
each channel, the size of the feature maps become 32×32×32. Padding 2 and stride 1 are 
used for the convolution operation. Application of ReLU activation does not change the 
number of parameters. Pooling is not used in the first layer. 

 

After each of 2nd and 3rd convolution layers, ReLU function and MaxPooling (sub-
sampling) with stride 2 are used in Model 4. Padding 1 and stride 1 are used for the 
convolution operation. Both pooling height and width are 2. So, after the 2nd convolution 
between 32×32×32 feature map size and 64 nos of 3×3 kernels, the size of the feature 
maps becomes 32×32×64. After first pooling, the feature map size reduced to 16×16×64. 
After 3rd convolution layer with 128 nos of kernel, the feature size becomes 16×16×128. 
After second pooling, the feature map size reduced to 7×7×128. And at the end two fully-
connected layers with 3500 and 50 neurons respectively are used as classifier.  

 

There are 2,400 parameters (for each of 3 channels of inputs, 32 numbers of 5×5 sized 
kernels) as weights and 32 parameters as bias in the first layer of CNN. Layer 2 contains 
18,432 weights and 64 bias parameters. There are 73728 no weight parameters and 128 
bias parameters in layer 3. Layer four has 21,952,000 weight parameters and 3,500 bias 
parameters. And final layer (layer 5) contains 175,000 weight and 50 bias parameters. The 
network contains a total of 22,225,334 no of parameters for weights and biases. 
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Table 3.1: Parameters setup for DCNN 

Layer Operation 
of Layer 

Number of 
Feature maps 

Size of feature 
maps 

Size of 
kernel 

Number of 
parameters 

X Input Layer 3 32×32 - - 
C1 Convolution 32 32×32 5×5 3×32×5×5+32 

=2,432 
RL1 ReLU 32 32×32 - - 
C2 Convolution 64 32×32 3×3 32×64×3×3+64 

=18,496 
RL2 ReLu 64 32×32 - - 
S2 Max-pooling 64 16×16 2×2 - 
C3 Convolution 128 16×16 3×3 64×128×3×3+128 

=73,856 
RL3 ReLU 128 16×16 - - 
S3 Max-pooling 128 8×8 2×2 - 

FC1 Affine 3500 1×1 - 128×7×7×3500 
+3500=21955500 

FC2 Affine 50 1×1 - 3500×50+50 
=175050 

 Total: 22,225,334 
 

Let, the input image be X (3×32×32), 

Layer 1 (Conv) : L1≡ W1*X+B1 

Layer 2 (ReLU) : L2≡max(0, L1) 

Layer 3 (Conv) : L3≡ W2*L2+B2 

Layer 4 (ReLU) : L4≡max(0, L3) 

Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2 ) 

Layer 6 (Conv) : L6≡ W3*L5+B3 

Layer 7 (ReLU) : L7≡max(0, L6) 

Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7, Size: 2×2, Stride = 2 ) 

Layer 9 (Affine) : L9≡ W4L8+B4 

Layer 10 (Affine) : L10≡ W5L9+B5 

Layer 11 (Softmax) : L11≡SoftMax(L10) 
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Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 : Proposed DCNN architecture (Model 4) for BHCR 

Function 
Let, the input image be X (3×32×32), 
Layer 1 (Conv) : L1≡ W1*X+B1 
Layer 2 (ReLU) : L2≡max(0, L1) 
Layer 3 (Conv) : L3≡ W2*L2+B2 
Layer 4 (ReLU) : L4≡max(0, L3) 
Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2 ) 
Layer 6 (Conv) : L6≡ W3*L5+B3 
Layer 7 (ReLU) : L7≡max(0, L6) 
Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7, Size: 2×2, Stride = 2 ) 
Layer 9 (Affine) : L9≡ W4L8+B4 
Layer 10 (Affine) : L10≡ W5L9+B5 
Layer 11 (Softmax) : L11≡SoftMax(L10) 
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3.2.5. Model 5 

Architecture 

Model 5 is the most deep network in this study. Model 5 consists of 4 convolutional 
layers and 2 affine (fully connected) layers. It takes 68×68 RGB images as input. 1st, 2nd, 
3rd and 4th convolution layers contain 32, 48, 64 and 96 numbers of receptive fields 
(kernels) respectively. The kernel sizes in the convolutional layers in model 5are7×7, 
5×5, 3×3and  3×3 respectively.  

After 1st convolution layer ReLU is used as activation function, but no sub-sampling 
layer is used. So, after the 1st convolution between 68×68 input image size for each 
channel (RGB) and 32 nos of 7×7 kernels for each channel, the size of the feature maps 
become 68×68×32. Padding 3 and stride 1 are used for the convolution operation. 
Application of ReLU activation does not change the number of parameters. Pooling is not 
used in the first layer. 

After each of 2nd convolution layer, ReLU function and MaxPooling (sub-sampling) with 
stride 2 are used in Model 5. Padding 2 and stride 1 are used for the convolution 
operation. Both pooling height and width are 2. So, after the 2nd convolution between 
68×68×32 feature map size and 48nos of 5×5 kernels, the size of the feature maps 
becomes 68×68×48. After first pooling operation, the feature map size reduced to 
34×34×46. 

After each of 3rd and 4th convolution layers, ReLU function and MaxPooling (sub-
sampling) with stride 2 are used in Model 5. After 3rdconvolution layer with 64nos of 
kernel, the feature size becomes 34×34×64. After second pooling with2×2 size and 2 
stride, the feature map size reduced to 17×17×64. After 4th convolution layer with 96 nos 
of kernel, the feature size becomes 17×17×96. After third pooling with 2×2 size and 2 
stride, the feature map size reduced to 9×9×96.And at the end two fully-connected layers 
with 3000 and 50 neurons respectively are used as classifier.  
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Figure 
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Function 
 
Let, the input image be X (3×32×32), 
 
Layer 1 (Conv) : L1≡ W1*X+B1 
Layer 2 (ReLU) : L2≡max(0, L1) 
Layer 3 (Conv) : L3≡ W2*L2+B2 
Layer 4 (ReLU) : L4≡max(0, L3) 
Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2 ) 
Layer 6 (Conv) : L6≡ W3*L5+B3 
Layer 7 (ReLU) : L7≡max(0, L6) 
Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7, Size: 2×2, Stride = 2 ) 
Layer 9 (Conv) : L9≡ W4*L8+B4 
Layer 10 (ReLU) : L10≡max(0, L9) 
Layer 11 (Pooling) : L11≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L10, Size: 2×2, Stride = 2 ) 
Layer 12 (Affine) : L12≡ W5L11+B5 
Layer 13 (Affine) : L13≡ W6L12+B6 
Layer 14 (Softmax) : L14≡ SoftMax(L13) 
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Table 3.2: Comparison between deep-CNN models 

 

Database 

Network Architecture 
Input 
Size 

Training Parameters 
Validation 
Accuracy 
rate Conv. 

Layers Kernel Size Activation function & 
Pool size, Stride 

Affine 
Layers 

Regulari
zation 
factor 

Learni
ng 
Rate 

Learning 
rate 
decay 

Batch 
size 

No. of 
Epochs 

Model 1 CMATERdb 
3.1.2 

3 nos. 
1st Layer: 
32 Kernels 

 
1st Layer: 
Kernel size 3×3 

 
1st Layer: 
Conv-ReLU 

1 layer: 
50 
neurons 

32×32 0.001 0.0001 0.95 50 50 86.79% 

2nd Layer: 
64 Kernels 

2nd Layer: 
Kernel size: 3×3 

2nd Layer: 
Conv-ReLU-Pool, 2×2, 2 

3rd Layer: 
128 Kernels 

3rd Layer: 
Kernel size: 3×3 

3rd Layer: 
Conv-ReLU-Pool, 2×2, 2 

Model 2 CMATERdb 
3.1.2 

3 nos. 
1st Layer: 
32 Kernels 

 
1st Layer: 
Kernel size 5×5 

 
1st Layer: 
Conv-ReLU 

1 layer: 
50 
neurons 

32×32 0.001 0.0001 0.95 50 75 88.42% 

2nd Layer: 
64 Kernels 

2nd Layer: 
Kernel size: 3×3 

2nd Layer: 
Conv-ReLU-Pool, 2×2, 2 

3rd Layer: 
128 Kernels 

3rd Layer: 
Kernel size: 3×3 

3rd Layer: 
Conv-ReLU-Pool, 2×2, 2 

Model 3 Combined 
Dataset 

3 nos. 
1st Layer: 
32 Kernels 

 
1st Layer: 
Kernel size 5×5 

 
1st Layer: 
Conv-ReLU 

2 layers 
1st 
Layer: 
3000  

32×32 0.001 0.0001 0.95 100 50 89.96% 

2nd Layer: 
64 Kernels 

2nd Layer: 
Kernel size: 3×3 

2nd Layer: 
Conv-ReLU-Pool, 2×2, 2 2nd 

Layer: 
50 

3rd Layer: 
128 Kernels 

3rd Layer: 
Kernel size: 3×3 

3rd Layer: 
Conv-ReLU-Pool, 2×2, 2 

Model 3 Combined 
Dataset 

3 nos. 
1st Layer: 
32 Kernels 

 
1st Layer: 
Kernel size 5×5 

 
1st Layer: 
Conv-ReLU 

2 layers 
1st 
Layer: 
3000  

32×32 0.001 0.0001 0.95 100 150 92.19% 

2nd Layer: 
64 Kernels 

2nd Layer: 
Kernel size: 3×3 

2nd Layer: 
Conv-ReLU-Pool, 2×2, 2 2nd 

Layer: 
50 3rd Layer: 3rd Layer: 3rd Layer: 
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Database 

Network Architecture 
Input 
Size 

Training Parameters 
Validation 
Accuracy 
rate Conv. 

Layers Kernel Size Activation function & 
Pool size, Stride 

Affine 
Layers 

Regulari
zation 
factor 

Learni
ng 
Rate 

Learning 
rate 
decay 

Batch 
size 

No. of 
Epochs 

128 Kernels Kernel size: 3×3 Conv-ReLU-Pool, 2×2, 2  
Model 
4 
(propos
ed 
model) 

Combined 
Dataset 

3 nos. 
1st Layer: 
32 Kernels 

 
1st Layer: 
Kernel size  5×5 

 
1st Layer: 
Conv-ReLU 

2 layers 
1st 
Layer: 
3500  

32×32 0.001 0.0001 0.95 100 150 92.20% 

2nd Layer: 
64 Kernels 

2nd Layer: 
Kernel size: 3×3 

2nd Layer: 
Conv-ReLU-Pool, 2×2, 2 2nd 

Layer: 
50 

3rd Layer: 
128 Kernels 

3rd Layer: 
Kernel size: 3×3 

3rd Layer: 
Conv-ReLU-Pool, 2×2, 2 

Model 5 Combined 
Dataset 

4 nos. 
1st Layer: 
32 Kernels 

 
1st Layer: 
Kernel size 7×7 

 
1st Layer: 
Conv-ReLU 

2 layers 
1st 
Layer: 
3000  

68×68 0.001 0.0001 0.95 100 150 85.26% 

2nd Layer: 
48 Kernels 

2nd Layer: 
Kernel size: 5×5 

2nd Layer: 
Conv-ReLU-Pool, 2×2, 2 

3rd Layer: 
64 Kernels 

3rd Layer: 
Kernel size: 3×3 

3rd Layer: 
Conv-ReLU-Pool, 2×2, 2 

2nd 
Layer: 
50 4th Layer: 

96 Kernels 
4th Layer: 
Kernel size: 3×3 

4th Layer: 
Conv-ReLU-Pool, 2×2, 2 
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3.3. Conclusion 

In this chapter a brief description of proposed DCNN model are presented. We can 
see that there is a significant change in accuracy level for different model 
architectures. So, number of kernels in different convolution layers, sizes of the 
kernels, depth of the network and number of neurons in the classifier layers have their 
effects on the performance of the recognizer. Among the different models used in this 
experiment, the best DCNN architecture is model 4, which has 3 convolutional layers 
and 2 affine (fully connected) layers. 1st, 2nd and 3rd convolution layers contain 32, 64 
and 128 numbers of receptive fields (kernels) respectively. The kernel size in the first 
convolutional layer in model 4 is 5×5, the kernel sizes in the 2nd and 3rd convolutional 
layers are of equal size: 3×3. 

 

In the next chapter, description of the database and the experimental platform will be 
presented. After that, the characteristics of the learning process and performance of 
the proposed model with respect to the other techniques of BHCR will be analyzed.   
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Chapter 4 

 

Experimental Results 

 

4.1. Introduction 

This chapter describes the database and experimental results of this study. At first the 
problem is defined. After that experimental platform in terms of hardware and software 
are mentioned. Then the database information, source and sample data are presented. At 
the end of the chapter, the performance of the proposed models are analyzed and 
evaluated.  

 

4.2. Experimental Platform 

The experiment has been conducted on desktop machine (CPU: Intel Core i7-6700K @ 4 
GHz, RAM: 16.00 GB, GPU: GeForce GTX 970, Hard Disk Drive: Transcend 128 GB 
Solid State Drive) in Ubuntu 16.04LTS 64-bit OS (Linux) environment. 

 

The algorithm ran on Anaconda 4.2.0 64-bit platform with Jupyter Notebook version 
4.2.3. The DCNN algorithm is implemented in Python 2.7.12. List of major library and 
packages used in the implementation of the algorithm are given in table 4.1. 
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Table 4.1: Major library and packages used to implement the algorithm 

Package/ Library Name Version number 

numpy 1.11.1 

nose 1.3.7 

cython 0.24.1 

matplotlib 1.5.3 

pandas 0.18.1 

scipy 0.18.1 

six 1.10.0 

sympy 1.0 

 

 

4.3. Database 

4.3.1. Database CMATERdb 3.1.2 

There are two databases used in this experiment. One is CMATERdb 3.1.2 [56] 
containing 12000 train and 3000 test samples equally distributed among 50 classes of 
hand-written Bangla characters. CMATERdb is the pattern recognition database 
repository created at the ‘Center for Microprocessor Applications for Training Education 
and Research’ (CMATER) research laboratory, Jadavpur University, Kolkata 700032, 
India. Sample images are given in table 4.2.  
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Table 4.2: Sample images of CMATERdb 3.1.2 database. More sample images are given 
in Appendix A. 

Character Sample Images 

অ  
    

আ      

ই      

ঈ      

ক  
 

   

খ  

 

 
   

গ    
  

ঘ  
    

ঙ      

 

4.3.2. Database BBCD 

Another database is referred to as the “Bangla Basic Character Database (BBCD)” [54], 
the database of 37,858 samples were randomly subdivided into training and test sets. 
Samples of this database were collected using three different types of form documents, 
viz., railway reservation form, job application form, and a tabular form specially designed 
for data collection. Handwritten samples of various basic characters collected from the 
name and address parts of the first two types of forms vary widely in number with only a 
few samples for rarely occurring Bangla basic characters. Some sample images are given 
in table 4.3.  
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Table 4.3: Sample images of BBCD database. More sample images are given in 
Appendix A. 

Character Sample Images 

অ    
  

আ  
 

 
   

ই   
   

ঈ  
    

উ      

ক 
   

 
 

খ     
  

গ     
 

ঘ 
    

 

ঙ 
  

 
   

 

 

4.3.3. Combined Database 

The both datasets (Database CMATERdb 3.1.2 and BBCD) are combined to form larger 
dataset containing a total of 52,788 samples subdivided into 28,529 (54.04%) training 
images, 8,400 (15.91%) validation samples and 15,859 (30.04%) test samples of similar 
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sizes. The dataset contains wide variation of distinct characters because of different 
peoples’ writing styles. Some of these character images are very complex shaped and 
closely correlated with others. This is the largest dataset among all reported BHCR 
works. 

 

4.4. Training of the DCNN 

There is no significant preprocessing of the input database. Since the input images are of 

different sizes, hence to feed the images as the inputs of the DCNN, all the input images 

are resized into 32×32 images. The images of letters are black in white background, so to 

reduce computational overhead, images are converted through foreground character black 

to white and background changed to black. The input images are considered as RGB 

images containing 3 channels and 8 bit depth per pixel. The images are then normalized 

to get a zero mean over the complete dataset. For the training of DCNN following factors 

are used: 

• Regularization factor   : 0.001 

• Learning rate   : 0.0001 

• Learning rate decay factor : 0.95 

• Batch size   : 100     

• No of epochs   : 150 

• Back-propagation method : RMS propagation with SGD and decay rate  

 = 0.99 

• Cost Function   : SoftMax Loss function. 

 

All weights and bias parameters are initialized randomly using zero mean and unit 
variance gaussian distribution. 
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Figure 4.1: Training and Validation accuracy curves versus number of Epoch 

 

 

Figure 4.2: Cost function versus number of Epoch 

 

 
Figure 4.3: Learning rate versus number of Epoch 
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Figure 4.4: Input images in database (above) and the same images after normalization 
(below) 

 

 

Figure 4.5 : Sample Kernels of the first convolution layer 
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Figure 4.6: Feature Maps after the first convolution layer 

 

Figure 4.7 : Sample Kernels of the second convolution layer 
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Figure 4.8: Feature Maps after the second convolution layer 

 

Figure 4.9: Sample kernels of 3rd convolution layer 
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Figure 4.10: Feature Maps after 3rd convolution layer 

4.5. Performance Evaluation 

After 150 epochs of training, the accuracy of the DCNN for BHCR is presented in table 
4.4. After 150 epochs proposed DCNN achieves 99.43% recognition accuracy on training 
dataset, 92.10% recognition accuracy on validation dataset and 91.25% recognition 
accuracy on test dataset. The confusion matrix of the test samples is given in Table 4.5. 
From the table number of samples and recognition accuracy for each class can be seen. 
From the table, it can be seen that the proposed method performs worst to recognize the 
character “খ (KHA)”. Among 240 samples, it truly recognizes 187 cases (77.92%). In 26 

cases (10.83%) the character has been classified as “ঘ (GHA)” and in 7 cases (2.92%) it 

has been classified as “থ (THA)”  that looks similar even printed form and more difficult 

in handwritten form. 
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Table 4.4: Accuracy of the DCNN for BHCR 

No of Epoch Training Accuracy Validation 
Accuracy Test Accuracy 

150 99.43% 92.10% 91.25% 
 

Similarly among 316 samples of “ঘ (GHA)” the model truly recognizes 254 cases 

(80.38%) and in 33 cases (10.44%) it is classified as “খ (KHA)”, in 7 cases (2.22%) it is 

classified as “ম (MA)” and in 6 cases (1.90%) it is classified as “য (YY)”. The proposed 

method has shown best performance for “s (ANUS)”. Among 157 samples of “s 

(ANUS)” the model truly recognizes 156 cases (99.36%) and in 1 case (0.64%) it is 
classified as “V (TTHA)”. Due to large variation in writing styles, such character images 

are difficult to classify even by human. Finally, the proposed DCNN misclassifies 1,388 
cases out of 15,859 test cases and achieves accuracy 91.25% on test dataset.  
 

Table 4.6 and 4.7 present the confusion matrix of the training  and validation datasets 
respectively. It shows 99.43% recognition accuracy on training dataset of 28,529 samples 
and 92.10% recognition accuracy on validation dataset of 8,400 samples.  
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Table 4.5: Confusion Matrix produced for test dataset (15,859 samples) from DCNN of BHCR
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Table 4.6: Confusion Matrix produced for training dataset (28,529 samples) from DCNN of BHCR

 



Chapter 4: Experimental Results    

63 
 

Table 4.7: Confusion Matrix produced for validation dataset (8,400 samples) from DCNN of BHCR
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Table 4.8: Experimental results showing comparison between proposed DCNN with some 
state-of-art methods of BHCR in terms of Accuracy and Variance on the same test Dataset 
of Combined Database and same experimental setup in terms of hardware and software.  

Serial 
no 

Classification Methods Test Accuracy Variance 

1 kNN 64.878% 0.011354 
2 Wavelet (Daubechies) based feature 

extraction [52] and then kNN classifier 
65.439% 0.010489 

3 Shallow CNN [55] 78.315% 0.003316 
4 AlexNet [59] with last customized layer 80.04% 0.003234 
5 DCNN (proposed method) 91.248% 0.001042 

 

Experiments have been carried out on the combined dataset mentioned in article 4.4.3. 
Experimental results showing comparison between proposed DCNN with some state-of-art 
methods of BHCR in terms of test accuracy and variance on the same test Dataset of 
15,859 samples of Combined Database are presented in table 4.8. The table shows that 
proposed DCNN method for BHCR outperforms other techniques in terms of both 
accuracy and variance. Moreover, since no feature extraction or significant preprocessing 
are needed, computational time required to get result for test dataset is very low compared 
to some other techniques of the table. It is to be noted that in proposed DCNN method, test 
accuracy (91.25%) is very close to the validation accuracy (92.10%) during training. It 
represents good generalization of learning of the network.  

 

Table 4.9 represents a comparison of reported results of some prominent works with 
proposed DCNN on BHCR. Here, we can see that proposed method has been tested over 
the largest dataset to get result among the state-of-art methods.  

 

In this experiment two separate databases are merged together to form a large dataset and 
many samples of this combined dataset are challenging to detect. It is notable that 
proposed method does not employ any feature selection technique whereas many existing 
methods use single or two stages feature selections. Though, the methods in Refs. [52] and 
[53] consider 45 and 36 classes respectively by merging or excluding some confusing 
character, still the table shows proposed method outperforms all other techniques except 
methods of Ref. [54].  
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The recognition techniques that uses Ref. [54] is much complex than others; it uses two 
recognition stages each one consists of individual feature selection and classification 
techniques. Besides this, the proposed method without feature selection is very simple. 
Also, in Ref. [54], significant preprocessing was done database used. As a result, once 
training is completed, proposed method recognizes the test samples very quickly 
compared to those which use computationally expensive feature selection stage. 
Moreover, the dataset used for training, validation and test in the work of Ref. [54] are a 
portion (database BBCD) of the combined database prepared for the experiment under this 
work.  

 

 

Table 4.9: Comparison of reported test accuracies of some state-of-art methods with 
proposed DCNN on BHCR.  

The work 
reference 

Total 
Classes 

Database Size of 
test set 

Feature 
Selection Classification Recog. 

Accuracy 

Basu et al. 
[53] 36 - - 

Longest run, 
Modified 
Shadow, 

Octant-centroid 

MLP 80.58 % 

Bhowmick 
et 

al. [52] 
45 

Total: 27,000 
samples, training 
samples: 18,000, 

Validation 
Samples: 4,500 

4,500 Wavelet 
Transformation MLP 84.33 % 

Rahman et 
al. [33] 49 - Not 

available 
Multi-stage 
framework 

Multiple 
Experts 88.38% 

Bhattacharya 
et al. [43] 50 

Total: 20,187 
samples, training 
samples: 10,000 10,187 

Chain code 
histogram 

feature 
MLP classifier 88.95% 

Bhattacharya 
et al. [35] 50 

Total: 24,481 
samples, training 
samples: 15,000.  

9,481 
Two-stage 
framework 

HMM 
MLP classifier 90.42% 

Bhattacharya 
et al. [54] 50 

BBCD database 
containing 37,858 
samples. Training 
samples: 20,000 
and Validation 
Samples: 5000. 

12,858 
Regular and 

Irregular Grid 
based Selection 

MQDF, MLP 95.84 % 
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The work 
reference 

Total 
Classes 

Database Size of 
test set 

Feature 
Selection Classification Recog. 

Accuracy 

BHCR-CNN 
[55] 50 

Prepared dataset 
of 20,000 

samples. Training 
samples: 17,500 

2,500 No Shallow CNN 85.96 % 

Proposed 
BHCR-
DCNN 

50 

Combined dataset 
of CMATERdb 

3.1.2 and BBCD. 
Total samples: 

52,788. 
Training samples: 

28,529. 
Validation 

samples: 8,400. 
 

15,859 No Deep CNN 91.25 % 

 

 

4.6. Conclusion 

The chapter touched several achievements of the proposed DCNN architecture by 
highlighting the results from different aspects. Different state-of-the-art performance 
metrics are used for evaluating its effectiveness. The proposed DCNN has been trained on 
the largest database among all reported works on BHCR so far. From all the results and 
illustrations, it is clearly seen that the proposed methodology has the capacity to 
outperform many of the existing BHCR recognition approaches for Bangla Characters. 
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Chapter 5 

 

Conclusion 
 

5.1. Summary of the work 

Inspired by human visual cortex (visual cognition functions of human brain) 
CNN has the ability to recognize visual patterns directly from pixel images 
with minimal preprocessing. Therefore, in this thesis CNN structure is 
investigated without any feature selection for Bangla handwritten pattern 
classification. Proposed CNN structure has more depth compared to 
previous studies for Bangla Hand-written character recognition task. In this 
work, two large databases are merged together to form one larger database 
for the recognition task. The outcome has been compared with existing state-
of-art methods for Bangla HCR. The proposed method has shown 
outstanding performance with respect to the exiting methods on the basis of 
generalized recognition capacity, test set accuracy and robustness in 
recognition. Since Bangla character set has 50 characters and many of them 
are similar and the CNN architecture proposed in this thesis is not dependent 
on specific features linked to character shapes of Bangla language, hence it 
has more generalized capacity of recognition and robustness in recognition 
task. So the proposed CNN architecture can also be used for HCR in other 
languages. Some other state-of-art techniques show good recognition 
accuracy but they use features that can be applicable to Bangla character set. 
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So, the proposed deep CNN architecture is efficient as well as robust in 
Bangla HCR. 

 

5.2. Future Scope: 

There are tremendous scopes of future extension of this work. Some of the 
scopes are listed out below: 
 

• Multiple CNN channels (CNN ensemble) may be used to get majority 
based decision. Expected error from ensemble is always smaller than 
the expected error from a single predictor.  
 

• Dropout layer may be introduced in the deep CNN model used in this 
work. Dropout is a regularization technique for reducing over-fitting 
in neural networks by preventing complex co-adaptations on training 
data.  
 

• Inception module (i.e. different kernel sizes operating in parallel) may 
be introduced. The idea of the inception layer is to cover a bigger 
area, but also keep a fine resolution for small information on the 
images. The idea is that a series of gabor filters with different sizes, 
will handle better multiple objects scales. With the advantage that all 
filters on the inception layer are learnable. The most straightforward 
way to improve performance on deep learning is to use more layers 
and more data. Study shows that incorporating Inception module 
increases the accuracy rate. GoogleNet uses 9 Inception modules. 

 

 

https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Neural_networks
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• Residual Network (ResNet) layers may be introduced by feeding the 
output of two successive convolutional layer AND also bypass the 
input to the next layers. The idea of the residual network is use blocks 
that re-route the input, and add to the concept learned from the 
previous layer. The idea is that during learning the next layer will 
learn the concepts of the previous layer plus the input of that previous 
layer. This would work better than just learn a concept without a 
reference that was used to learn that concept. 
 

• Performance of proposed CNN could be analyzed for Bangla 
compound characters and digits. 
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Appendix A 
 
Table A.1: Samples of Database CMATERdb 3.1.2: 
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Table A.2: Samples of Database BBCD: 
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