

HAND-WRITTEN BANGLA CHARACTER
RECOGNITION USING DEEP

CONVOLUTIONAL NEURAL NETWORK

by
Dipayan Bhadra

Master of Science in Electrical and Electronic Engineering

Department ofElectrical and Electronic Engineering

Bangladesh University of Engineering and Technology

January 2019

ACKNOWLEDGEMENTS

I would like to convey my sincerest appreciations and heartfelt gratitude to my thesis

supervisor, Professor Dr. S.M. Mahbubur Rahman, for his all-out support, help,

inspiration and able guidance throughout the tenure of his supervision. His plentiful

resources and pragmatic ideas in the field of computer vision have allowed me to

work with exhaustive datasets as well asstate-of-the-art theories and techniques in this

field. He has always been a great mentor for a novice like me, and his appreciation

and constructive criticism in every stage of this thesis have only bolstered and

instilled the confidence in me to successfully complete the dissertation. I am truly

owed to have the experience of doing research work under his supervision.

I am grateful to Professor Dr. Md. Shafiqul Islam, Head of the Department of

Electrical and Electronic Engineering, BUET for rendering me support and

departmental assistance during my M.Sc. study in BUET.

I would also like to thank all my teachers, colleagues and friends for their support and

encouragement during the work. I am indebted to my parents for their mental

supportand encouragement.

And finally, I would like to thank the Almighty, the Lord of the Worlds, for blessing

me with so many respected personalities around me and this auspicious achievement,

in particular.

Dipayan Bhadra

January, 2019

Contents

Articles Page number
Abstract i

List of Figures ii

List of Tables iv

List of Abbreviations v

1. Introduction 1

1.1.Introduction 1

1.2.Handwritten Character Recognition 3

1.2.1. Application of Offline Handwritten Recognition 3

1.2.2. Background of HCR Systems 4

1.2.3. Challenges 6

1.3.Problem Identification 7

1.4.Related Works 9

1.5.Motivation and Scope of Works 11

1.6.Objectives 11

1.7.Outline 12

2. Convolutional Neural Network: A Review 13

2.1.Introduction 13

2.2.Neural Networks 13

2.2.1. Activation Functions 17

2.2.2. Softmax 18

2.2.3. Loss Function 19

2.2.4. Back-propagation 19

2.2.5. Gradient Descent 20

2.2.6. Momentum 21

2.2.7. Nesterov’s Accelerated Gradient 21

2.2.8. Weight Decay 21

Contents

Articles Page number
2.2.9. Local Response Normalization 21

2.2.10. Xavier Initialization 22

2.3. Convolutional Neural Networks 22

2.3.1. Typical CNN Structure 26

2.3.2. Layers of CNNs 28

2.4.Advantage of CNN over NN 33

2.5.Conclusion 34

3. Proposed DCNN Architectures 35

3.1. Introduction 35

3.2. Proposed DCNN Architecture 35

3.2.1. Model 1 35

3.2.2. Model 2 37

3.2.3. Model 3 39

3.2.4. Model 4 (Proposed DCNN) 41

3.2.5. Model 5 44

3.3. Conclusion 49

4. Experimental Results 50

4.1. Introduction 50

4.2. Experimental Platform 50

4.3. Database 51

 4.3.1. Database CMATERdb 51

 4.3.2. Database BBCD 52

 4.3.3. Combined Database 53

4.4. Training of DCNN 54

4.5. Performance Evaluation 59

4.6. Conclusion 66

Contents

Articles Page number
5. Conclusion 67

5.1. Summary of The Work 67

5.2. Future Scope 68

References 69

Appendix A 73

i

Abstract

In recent years, there has been much interest in automatic character
recognition. Between handwritten and printed forms, Handwritten
Character Recognition (HCR) is more challenging. A handwritten
character written by different persons is not identical but varies in both
size and shape. Numerous variations in writing styles of individual
character make the recognition task difficult. The similarities in distinct
character shapes, the overlaps, and the inter-connections of the
neighboring characters further complicate the problem. Recently, the
Convolutional Neural Network (CNN) has been shown noticable success
in the area of image-based recognition, video analytics, and natural
language processing due to their unique characteristics of feature
extraction and classification. This is mainly due to the fact that the design
of a CNN is motivated by the close imitation of visual mechanism as
compared to the conventional neural network. The convolution layer in a
CNN performs the similar filtering function that is seen in the cells of
visual cortex. As a result of replication of weight configuration of one
layer to the local neighboring receptive field in the previous layer through
the convolution operation, the features extracted by the CNN possess the
invariance properties of scale, rotation, translation and other distortions of
a pattern. A recently reported HCR technique that considers the Bangla
characters uses shallow CNN by considering only two-level convolution
layers and a fixed kernel size experimented on a small-size private
dataset. In this thesis, a Deep CNN with three convolutional layers with
different kernel sizes in different convolutional layers is used on a large
dataset made of combining two datasets. Experimental result shows an
accuracy in recognition that is 7% higher than that of previous work.

ii

List of Figures

Figure No Name of Figure Page No

1.1 Categories of character recognition system 02
1.2 Different steps in character recognition system 06
1.3 General challenges in image recognition

problems
08

1.4 Different zones of Bangla characters 11
2.1 An artificial neural network 17
2.2 Training of neural networks 18
2.3 Illustration of a biological neuron and its

mathematical model
19

2.4 A neural network consisting of input, hidden
and output layer

20

2.5 Placement of the activation function in the
neural network model

21

2.6 Visual comparison of the three most relevant
DNNs’ activation functions: hyperbolic tangent,
sigmoid and rectifier

23

2.7 A schematic diagram of model LGN and cortex.
The model visual cortex is composed of 48×48
model cortical neurons, which have separate
dendritic fields. The model LGN is given as
four sheets of different cell types. Each sheet is
composed of 24×24 model LGN cells, whose
receptive field centers are arranged
retinotopically

29

2.8 Vision algorithm pipe line 32
2.9 Typical block diagram of a CNN

34

iii

Figure No Name of Figure Page No

2.10 A representation of convolution process 36
2.11 A representation of max pooling and average

pooling
38

2.12 A representation of ReLU functionality 39
2.13 The hyperbolic tangent function 40
2.14 Absolute of hyperbolic tangent function 40
2.15 The sigmoid function 40
2.16 Representation of tanh processing 40
2.17 Processing of a fully connected layer 41
3.1 Proposed deep CNN architecture for Bangla

HCR
47

4.1 Training and validation accuracy curves versus
number of epoch

54

4.2 Cost function versus number of epoch 54
4.3 Learning rate versus number of epoch 54
4.4 Input images in database and the same images

after normalization
55

4.5 Sample kernels of the first convolution layer 55
4.6 Feature maps after the first convolution layer 56
4.7 Sample kernels of the second convolution layer 56
4.8 Feature maps after the second convolution layer 57
4.9 Sample kernels of third convolution layer 57
4.10 Feature maps after third convolution layer 58

iv

List of Tables

Table No Name of Table Page No

1.1 Basic Bangla characters 10
3.1 Parameters setup for DCNN 46
4.1 Major library and packages used to implement

the algorithm
50

4.2 Sample images of database CMATERDB 3.1.2 51
4.3 Sample images of database BBCD 52
4.4 Accuracy of the DCNN for BHCR 58
4.5 Confusion matrix produced for test dataset

(15,859 samples) from DCNN of BHCR
60

4.6 Confusion matrix produced for training dataset
(28,529 samples) from DCNN of BHCR

61

4.7 Confusion matrix produced for validation
dataset (8,400 samples) from DCNN of BHCR

62

4.8 Experimental results showing comparison
between proposed DCNN with some state-of-art
methods of BHCR in terms of accuracy and
variance on the test dataset of combined
database

63

4.9 Comparison of reported test accuracies of some
state-of-art methods with proposed DCNN on
BHCR.

65

A.1 Sample images of database CMATERDB 3.1.2 69
A.2 Sample images of database BBCD 74
B.1 Comparison between deep-CNN models 90

v

List of Abbreviations

BBCD Bangla Basic Character Database
BHCR Bangla Hand-written Character Recognition
CDR Correct Detection Rate
CMATER Center for Microprocessor Applications for Training

Education and Research
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
DNN Deep Neural Network
GPU Graphic Processing Unit
HCR Hand-written Character Recognition
HMM Hidden Markov Model
ICA Independent Component Analysis
LDA Linear Discriminant Analysis
LGN Lateral Geniculate Nucleus
MICR Magnetic Ink Character Recognition
MLP Multilayer Perceptron
MQDF Modified Quadratic Discriminant Function
NAG Nesterov’s Accelerated Gradient
NN Neural Network
OCR Optical Character Recognition
PCA Principle Component Analysis
ReLU Rectified Linear Unit
ResNet Residual Network
ROI Region of Interest
SIFT Scale Invariant Feature Extraction
SVM Support Vector Machine

1

Chapter 1

Introduction

1.1. Introduction

Optical character recognition (OCR) is the mechanical or electronic conversion of images
of typed, handwritten or printed text into machine-encoded text, whether from a scanned
document, a photo of a document, a scene-photo (for example the text on signs and
billboards in a landscape photo) or from subtitle text superimposed on an image (for
example from a television broadcast). It is widely used as a form of information entry
from printed paper data records, whether passport documents, invoices, bank statements,
computerized receipts, business cards, mail, printouts of static-data, or any suitable
documentation. It is a common method of digitizing printed texts so that they can be
electronically edited, searched, stored more compactly, displayed on-line, and used in
machine processes such as cognitive computing, machine translation, (extracted) text-to-
speech, key data and text mining. OCR is a field of research in pattern
recognition, artificial intelligence and computer vision.

Character Recognition techniques associate a symbolic identity with the image of a
character. Character recognition system is classified into two, based on data acquisition
and text type: online and offline (Figure. 1.1). The online character recognition system
utilizes the digitizer which directly capture writing with the order of the strokes, speed,
pen up and pen down information. Offline character recognition captures the data from
paper through optical scanner or cameras. Offline character recognition is also known as
optical character recognition because the image of text is converted in to a bit pattern by
optically digitizing devices. In case of online handwritten character recognition, the
handwriting is captured and stored in digital form via different means. Usually, a special
pen is used in conjunction with an electronic surface. As the pen moves across the surface,
the two- dimensional coordinates of successive points are represented as a function of time

https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Cognitive_computing
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/Text-to-speech
https://en.wikipedia.org/wiki/Text-to-speech
https://en.wikipedia.org/wiki/Text_mining
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computer_vision

Chapter 1: Introduction

2

Figure 1.1 Categories of character recognition system

and are stored in order. It is generally accepted that the on-line method of recognizing
handwritten text has achieved better results than its offline counterpart. This may be
attributed to the fact that more information may be captured in the on-line case such as the
direction, speed and the order of strokes of the handwriting.

The offline character recognition can be further grouped into two types:

• Magnetic Ink Character Recognition (MICR)

• Optical Character Recognition (OCR)

 In MICR, the characters are printed with magnetic ink. The reading device can recognize
the character according to the unique magnetic field of each character. MICR is mostly
used in banks for check authentication. OCR deals with the recognition of characters
acquired by optical means, typically a scanner or a camera. The characters are in the form
of digital images and can be either printed or handwritten, of any size, shape or
orientation. The OCR can be subdivided into handwritten character recognition and
printed character recognition. Handwritten character recognition is more difficult to
implement than printed character recognition due to diverse human handwriting styles and
customs. In printed character recognition, the images to be processed are in the forms of
standard fonts like Times New Roman, Arial and Courier etc.

Character Recognition (CR)

Offline CR

Optical Character Recognition (OCR)

Printed Character Recognition

Fixed
Font

Multi Font
Omni
Font

Hand-written Character
Recognition (HCR)

Constraint Unconstraint

Magnetic
Ink CR
(MICR)

Online CR

Optical
CR

Chapter 1: Introduction

3

1.2. Handwritten Character Recognition

1.2.1. Application of Offline Handwritten Character Recognition

HCR has been successfully used in several applications. Some of the important
applications of offline handwritten recognition are discussed in the following section:

• Bank Automaion: Offline handwritten recognition is basically used for cheque
reading in banks. Cheque reading is the very important commercial application of
offline handwritten recognition. Handwritten recognition system plays very
important role in banks for signature verification and for recognition of amount
filled by user.

• Postal office automation: Handwritten recognition system can be used for
reading the handwritten postal address on letters. Offline handwritten recognition
system used for recognition handwritten digits of postcode. HCR can be read this
code and can sort mail automatically.

• Form Processing: HCR can be also used for form processing. Forms are normally
used for collecting the public information. Replies of public information can be
handwritten in the space provided.

• Signature Verification: HCR can also be used to identify the person by signature
verification. Signature identification is the specific field of handwritten
identification in which the writer is verified by some specific handwritten text.
Handwritten recognition system can be used for identify the person by
handwriting, because handwriting may be vary from person to person.

1.2.2. Background of HCR Systems

HCR system is developed with an objective to recognize handwritten characters from a
digital image of handwritten documents. An HCR system includes steps such as image
acquisition, character segmentation, pre-processing of character image, feature extraction
and recognition of character class with the extracted features as well as post processing.

Chapter 1: Introduction

4

a) Image acquisition
Gray-level scanning of handwritten paper documents, at an appropriate resolution
typically 300-1000 dpi.

b) Preprocessing
– Binarization (two-level thresholding).
– Segmentation to isolate individual character.
– Conversion to another character representation like skeleton or contour.

c) Feature Extraction

– Extracting meaningful features.

d) Classification
– Recognition using one or more classifier.

e) Contextual verification on post processing

Block diagram of a general character recognition system is shown in Figure 1.2. Images
for HCR system might be acquired by scanning hand-written document or by capturing
photograph of document or by directly writing in computer using stylus. This is also
known as digitization process. Preprocessing involves series of operations performed to
enhance to make it suitable for segmentation. Preprocessing step involves noise removal
generated during document generation. Proper filter like mean filter, min-max filter and
Gaussian filter may be applied to remove noise from document. Binarization process
converts gray scale or colored image to black and white image. Binary morphological
operations like opening, closing, thinning, hole filling etc may be applied to enhance
image.

If document is scanned then it may not be perfectly horizontally aligned, so we need to
align it by performing slant angle correction. Input document may be resized if it is too
large in size to reduce dimensions to improve speed of processing. However reducing
dimension below certain level may remove some useful features too. Generally document
is processed in hierarchical way. At first level lines are segmented using row histogram.
From each row, words are extracted using column histogram and finally characters are
extracted from words. Accuracy of final result is highly depends on accuracy of
segmentation.

Chapter 1: Introduction

5

Figure 1.2: Different steps in character recognition system

Feature extraction is the heart of any character recognition system. Feature extraction
techniques like Principle Component Analysis (PCA), Linear Discriminant Analysis
(LDA), Independent Component Analysis (ICA), Chain Code, Scale Invariant Feature
Extraction (SIFT), zoning, gradient based features and histogram are applied to extract the
features of individual characters. These features are used to train classification system.
When a new input image is presented to HCR system, its features are extracted and given
as an input to the trained classifier like artificial neural network or support vector
machine. Classifiers compare the input feature with stored pattern and find out the best
matching class for input. A post processing, though not mandatory, improve the accuracy
of recognition. Syntax and semantic analysis or similar higher level concepts might be
applied to check the context of recognized character.

Post Processing
Syntax Analysis Semantic Analysis NLP

Classification
Euclidian Distance ANN SVM

Feature Extraction
Binary Features PCA, LDA etc Chain Code SIFT, Gabor etc

Segmentation
Line Segmentation Word Segmentation Character Segmentation

Preprocessing
Noice Removal Binarization Slant Angle Correction Resize

Image Acqusition
Scanned Document Photograph

Chapter 1: Introduction

6

1.2.3. Challenges
Since this task of recognizing character from an image is relatively trivial for a human to
perform, it is worth considering the challenges involved from the perspective of a
Computer Vision algorithm. An in-exhaustive list of general challenges in image
recognition task is given below:

• Viewpoint variation: A single instance of an object can be oriented in many ways
with respect to the camera.

Figure 1.3: General challenges in image recognition problems

• Scale variation: Visual classes often exhibit variation in their size (size in the real

world, not only in terms of their extent in the image).

• Deformation: Many objects of interest are not rigid bodies and can be deformed in
extreme ways.

• Occlusion: The objects of interest can be occluded. Sometimes only a small portion
of an object (as little as few pixels) could be visible.

• Illumination conditions: The effects of illumination are drastic on the pixel level.

• Background clutter: The objects of interest may blend into their environment,
making them hard to identify.

• Intra-class variation: The classes of interest can often be relatively broad, such as
chair. There are many different types of these objects, each with their own
appearance.

Moreover, hand-written character recognition is more challenging than character
recognition from printed form. In this particular case of hand-written character recognition

Chapter 1: Introduction

7

task from images the complexity/challenges of recognition task extends because of
numerous variations in writing styles, character shapes & sizes of different persons and
similarities in character shapes, the overlaps, and interconnections of neighboring
characters. HCR complexity varies among different languages due to distinct shapes,
strokes and number of characters.
There are more characters in Bangla (50 characters) than in English (26 characters) and
some contains additional sign up and/or below. Also compound characters are also used in
Bangla frequently. Moreover, Bangla contains many similar shaped characters; in some
cases a character differ from its similar one with a single dot or mark. These
characteristics make difficult to achieve better performance with simple technique as well
as hinders to work with Bangla HCR than English HCR.

1.3. Problem Identification

Bangla character set is divided into two categories: basic and compound characters. Basic
characters are the collection of vowels and consonants. Bangla character set has 11 vowels
and 39 consonants (Table 3.1). In Bangla, there are a large number of compound
characters formed by combination of two or more basic characters. Most basic character
shapes have a horizontal line at their upper parts, called headline or matra and three zones
of such characters can be identified as shown in Fig. 3.1. Each of these characters
(excepting the character ‘BINDU’) has a part in the middle zone while only a few of them
have an additional part either in the upper or in the lower zones.

Chapter 1: Introduction

8

Table 1.1: Basic Bangla Characters. There are 11 vowels and 39 consonants
in Bangla script.

Vowels (11 nos.)

অ আ ই ঈ উ ঊ ঋ এ ঐ ও ঔ

A AA I II U UU R E AI O AU

Consonants (39 nos.)

ক খ গ ঘ ঙ চ ছ জ ঝ ঞ ট

KA KHA GA GHA NGA CA CHA JA JHA NYA TTA

ঠ ড ঢ ণ ত থ দ ধ ন প ফ

TTHA DDA DDH
A

NNA TA THA DA DH
A

NA PA PHA

ব ভ ম য র ল শ ষ স হ ড়

BA BHA MA YY RA LA SHA SSA SA HA RRA

ঢ় য় ৎ s t u

DHR
A

YYA
KHA
ND

ANU
S

VISA
RG

BIN
DU

Figure 1.4: Different zones of Bangla Characters

Chapter 1: Introduction

9

1.4. Related Works

Offline handwriting recognition has been studied extensively during the last three decades
[1–6]. Among these, recognition of isolated characters has the advantage that
segmentation is usually not needed and when written in boxes, size normalization is
accomplished to a large extent. So, experimental results on them provide a kind of upper
bound of performance of the character recognizer in a handwriting analysis task.

Numerous techniques have been proposed in the literature for recognition of isolated
handwritten characters. These include (a) template matching [7, 8], e.g., direct pixel
matching, deformable template matching, relaxation based matching, structural shape
matching, etc.; (b) statistical classifier, e.g., Bayes’ classifier [9], hidden Markov model
(HMM) [10, 11], etc.; (c) graph-based and automata-based syntactic classifier; (d)
machine learning-based techniques involving neural net [12, 13], rough set [14], fuzzy set
[15, 16], support vector machine (SVM) [17, 18], etc. Among these, the approaches based
on HMM and SVM are popular due to their potential in recognition of unconstrained
handwriting. Convolutional Neural Network [19] is also very efficient in document
recognition tasks. In the overall recognition scheme, preprocessing techniques such as size
normalization, smoothing, slant correction, etc., efficient feature selection and suitable
post-processing methods that make use of contextual information for error correction play
important roles to improve the final performance.
Most of the reported studies on handwriting recognition have been done on English [18,
20, 21] and oriental scripts like Chinese [22, 23], Korean [10, 24] and Japanese [25, 26].
The reports on Indian scripts are a few only. In the earliest such study [27], stroke-based
features and a tree classifier were used for classification of handwritten Devanagari
numerals. Parui et al. [28] proposed a syntactic scheme for handwritten Bangla numeral
recognition while Dutta and Chaudhuri [29] used a neural net classifier to recognize
isolated handwritten alphanumeric characters. Among others, Bhattacharya et al. [30] used
self-organizing neural net while Bhattacharya and Chaudhuri [31] used classifier
combination approach to recognition of handwritten Bangla numerals. A multistage
recognition scheme for mixed numerals is reported recently [32]. For Bangla alphabetic
characters, Rahman et al. [33] proposed a multistage scheme while Bhowmick et al. [34]
used a neural network-based approach. HMM-based recognition of Bangla basic
characters is reported in [35]. A major obstacle to effective research on off-line
handwritten character recognition of Bangla and other Indian scripts is the non-existence
of required benchmark databases. Previous studies were reported on the basis of small

Chapter 1: Introduction

10

databases collected in laboratory environments. However, several standard databases such
as NIST, MNIST [19], CEDAR [36], CENPARMI, etc., are available for Latin script.
Khosravi and Kabir [37] presented a large dataset of handwritten Farsi digits. An Arabic
handwritten database consisting of words and texts written by 100 writers was described in
[38]. Su et al. [39] presented a Chinese handwriting database HIT-MW collected in an
unconstrained manner. A few other databases of handwriting samples include [40, 41] and
[42].

A few notable works are available for Bengali handwritten character recognition.
Bhowmik et al. [52] proposed a fusion classifier using Multilayer Perceptron (MLP), RBF
network and SVM. They used wavelet transform for feature extraction from character
images. In classification, they considered some similar characters as a single pattern and
trained the classifier for 45 classes. Basu et al. [53] proposed a hierarchical approach to
segment characters from words and MLP is used for classification. In segmentation stage
they used three different feature extraction techniques but they reduced character patterns
into 36 classes merging similar characters in a single class. Recently, Battacharya et al.
[54] considered a two-stage recognition scheme for 50 basic character classes. Feature
vector for the first classifier is computed by overlaying a rectangular grid consisting of
regularly spaced horizontal and vertical lines over the character bounding box. The
response of this first classifier is analyzed to identify its confusion between a pair of
similar shaped characters. Second stage of classification is used to resolve the confusion
and feature vector is computed by overlaying another rectangular grid but consisting of
irregularly spaced horizontal and vertical lines over the character bounding box. They used
Modified Quadratic Discriminant Function (MQDF) classifier and MLP as classifiers in
first and second stages, respectively.

Recently, Md. Mahbubar Rahman et al. [55] applied CNN scheme to Bengali HCR and
reported 85.96% test accuracy. CNN with two convolution and sub-sample layers are used
in this work. Kernel size considered in this work is 5×5. 6 and 12 kernels were used in 1st
and 2nd convolution layer respectively to extract features. A database was created by
taking samples from 30 individuals of different ages and education levels. prepared dataset
size was 20000 having 400 samples for each character among which 17500 samples (350
samples for each character) were used as training set and 2500 samples (50 samples per
character) were used as test set.

Chapter 1: Introduction

11

1.5. Motivation and Scope of Works

Convolutional neural network (CNN) has ability to recognize visual patterns directly from
pixel images with minimal preprocessing. Deep CNN (DCNN) [5] has been being used
successfully for image classifications, handwritten digit and character recognition in recent
years. But there is no record of DCNN being used for Bangla HCR (BHCR) task. For this
reason, DCNN scheme will be investigated in BHCR task and performance will be
analyzed. It can be assumed easily that DCNN based BHCR will give satisfactory results
in terms of recognition accuracy, time requirement for recognition and storage
requirements since after training, the training data will not be needed to be stored. Only
the weights and biases of the network are stored which requires very negligible storage
size. Training requires much time, but testing requires very small amount of time, so it can
be applied in real-time recognition and analysis.

1.6. Objectives

The specific objectives of this thesis are:

• To develop an architecture of Deep CNN (DCNN) to recognize hand-written
Bangla characters

• To analyze the DCNN architecture and determine optimum number of
convolutional layers and kernel-size that would provide improved recognition
accuracy of fifty classes of hand-written Bangla characters.

• To evaluate the performance of the proposed DCNN based recognition scheme
with that of existing methods in terms of accuracy, storage requirement, and
computational complexity on publicly available dataset

The outcome of the thesis is a novel recognition scheme for hand-written Bangla
characters with low-level storage requirement and processing time that would provide
improved accuracy to facilitate automatic recognition.

Chapter 1: Introduction

12

1.7. Outline
The thesis is organized as follows:
In Chapter 2, a brief review of neural network and convolutional neural network is
introduced. Then the advantages of CNN over NN are explained.
In Chapter 3, proposed DCNN architecture is explained.
Chapter 4 describes the database used in the experiment, experimental results and analyses
by comparing the proposed method with the existing recognition methods.
Finally, Chapter 5 provides the conclusion along with the scopes for future work.

13

Chapter 2

Convolutional Neural Network:

A Review

2.1. Introduction

This chapter provides a review on convolutional neural network. Since CNN is a category
to neural network, hence at first a brief introduction of NN along with the structure and
training method are explained. After that the basic structure of a CNN is presented. But as
the training method of CNN is similar to the NN, so it is omitted. At the end of this
chapter, the advantages of CNN over NN are presented.

2.2. Neural Networks

A neural network is a system of interconnected artificial “neurons” that exchange
messages between each other. The connections have numeric weights that are tuned during
the training process, so that a properly trained network will respond correctly when
presented with an image or pattern to recognize. The network consists of multiple layers of
feature-detecting “neurons”. Each layer has many neurons that respond to different
combinations of inputs from the previous layers. As shown in Figure 2.1, the layers are
built up so that the first layer detects a set of primitive patterns in the input, the second
layer detects patterns of patterns, the third layer detects patterns of those patterns, and so
on. Deep neural networks typically use 2 to 10 distinct layers for pattern recognition.

Chapter 2: Convolutional Neural Network: A Review

14

Figure 2.1: An artificial neural network

Training of a NN is performed using a “labeled” dataset of inputs in a wide assortment of
representative input patterns that are tagged with their intended output response. Training
uses general-purpose methods to iteratively determine the weights for intermediate and
final feature neurons. Figure 2.2 demonstrates the training process at a block level.

Neural networks are inspired by biological neural systems. The basic computational unit
of the brain is a neuron and they are connected with synapses. Figure 2.3 compares a
biological neuron with a basic mathematical model.

–

+

Adjust
Weights

Input
Output

Input
Error

Desired

Neural
Network Σ

Figure 2.2: Training of Neural Networks

Input

Hidden

Output

Chapter 2: Convolutional Neural Network: A Review

15

Figure 2.3: Illustration of a biological neuron (up) and its mathematical model (down).

In a real animal neural system, a neuron is perceived to be receiving input signals from its
dendrites and producing output signals along its axon. The axon branches out and connects
via synapses to dendrites of other neurons. When the combination of input signals reaches
some threshold condition among its input dendrites, the neuron is triggered and its
activation is communicated to successor neurons.

x0

w0

w1x1

i
∑wixi+b

f

Axon from a neuron

output axon

synapse

dendrite

Cell body

activation
function

w2x2

f(∑wixi+b)

i

Chapter 2: Convolutional Neural Network: A Review

16

Figure 2.4: A neural network consisting of input, hidden and output layer. A neural
network can contain an arbitrary number of hidden layers. Inputs of hidden layer and

output layer are weighted by weights wij,ujk respectively.

In the computational model of neural network, the signals that travel along the axons (e.g.,
x0) interact multiplicatively (e.g., w0x0) with the dendrites of the other neuron based on the
synaptic strength at that synapse (e.g., w0). Synaptic weights are learnable and control the
influence of one neuron or another. The dendrites carry the signal to the cell body, where
they all are summed. If the final sum is above a specified threshold, the neuron fires,
sending a spike along its axon. In the computational model, it is assumed that the precise
timings of the firing do not matter and only the frequency of the firing communicates
information. Based on the rate code interpretation, the firing rate of the neuron is modeled
with an activation function f that represents the frequency of the spikes along the axon. A
common choice of activation function is sigmoid. In summary, each neuron calculates the
dot product of inputs and weights, adds the bias, and applies non-linearity as a trigger
function (for example, following a sigmoid response function). The whole network still

Input Layer Hidden Layer Output Layer

Chapter 2: Convolutional Neural Network: A Review

17

Figure 2.5: Placement of the activation function in the neural network model.

expresses a single differentiable score function: from the raw image pixels on one end to
class scores at the other.

2.2.1. Activation Functions

Output of each node is produced by the node’s activation function φ that takes weighted
inputs of the node as parameters transformed by a transfer function (see Figure 2.5). The
transfer function creates a linear combination of weighted inputs in order to feed them to
the activation function. To approximate complicated functions, nonlinear activations are
often used. The following sections briefly describe different nonlinear activation functions
most commonly used in neural networks.

Hyperbolic tangent

One of the most popular activation functions is the hyperbolic tangent function (Equation
2.1). Input x is a weighted linear combination of the inputs of the node. This function
works most effectively on inputs in range (0,1), producing outputs in interval (−1,1).

 (2.1)

Chapter 2: Convolutional Neural Network: A Review

18

3 2 1 0 1 2 3
x

1

0

1

2

3

f(x

)

Hyperbolictangent

Sigmoid

ReLU

Sigmoid

Logistic sigmoid function (Equation 2.2) is widely used activation function biologically
more plausible than hyperbolic tangent. One of the reasons the sigmoid function is broadly
used is the fact, the sigmoid function is differentiable at every point.

 (2.2)

ReLU

Rectified linear unit’s function (Equation 2.3) is used with the purpose to increase non-
linearity of the network. Rectifying neurons are considered to be biologically more
plausible than logistic sigmoid or hyperbolic tangent neurons. They benefit from their
simplicity, resulting in faster training and performance improvements in particular cases,
and therefore often used in DNNs/CNNs. ReLU is given by the equation:

 f(x) = max(0,x) (2.3)

Figure 2.6 visualizes a comparison of rectifier function and activation functions introduced
in this section.

Figure 2.6: Visual comparison of the three most relevant DNNs’ activation functions:
hyperbolic tangent, sigmoid and rectifier.

2.2.2. Softmax

The softmax activation function (Equation 2.4) is usually used in the last network layer,
converting an arbitrary real value to posterior probability of the class ckin range (0,1):

Chapter 2: Convolutional Neural Network: A Review

19

 (2.4)

where m corresponds the number of output nodes (classes) and ak is the activation value of
k-th node:

given i-th node’s weights wij and the output of the previous layer hj(x).

2.2.3. Loss Function

To measure a precision of the network outcome, a loss (also cost or objective) function
[33] is used. It expresses how much the prediction differs from expected value. The output
of the loss function is a real value referred to as the cost or the penalty. An example of a
loss function that outputs probabilities, thus often used in visual classification problems is
the cross-entropy loss function (Equation 2.6):

 (2.6)

where m is the number of possible classes (nodes) in the output layer, y the target vector
and p the aposterior probability for each class predicted by the network. Evaluated
derivatives of a loss function are used in the training phase.

2.2.4. Backpropagation

Backpropagation is a neural network training algorithm. For supervised learning, target
classes are essential for error calculation. The error is afterwards backpropagated to every
node in previous layers. This error e (Equation 2.8) is obtained as a gradient of the loss
function L with respect to each layer’s weights wkjgiven input of the node x and activation
function

 (2.7)

(2.8)

 (2.5)

Chapter 2: Convolutional Neural Network: A Review

20

Gradient computation demands application of the chain rule in order to compute partial
derivative of the loss function L with respect to particular weight wkj. Using the error,
weights are updated by an optimization algorithm such as gradient descent.

2.2.5. Gradient Descent

The most common function optimization algorithm used for neural networks is the
gradient descent, a first order approximation algorithm that updates weights of the model.
The algorithm approaches a local minimum in the direction of the negative gradient of the
loss function with respect to the weights. The size of the step is called learning rate. It is a
scalar in the range (0,1), controlling magnitude of network’s parameters (weights) change.
To perform one update of the weights, the whole training set has to be used. For large
training sets, this method might be computationally expensive. A more time efficient
gradient descent based optimization method is the stochastic gradient descent or SGD
(Equation 2.9). SGD needs only one observation (or subset of the training set) to update
model parameters w. As the name suggests, at each weight update a random observation is
used. Furthermore, SGD does not tend to end up stuck in a local minima such as ordinary
gradient descent (also called batch gradient descent). A disadvantage of SGD is a slower
convergence rate than convergence rate of batch gradient descent. Due to its stochasticity,
a wrong choice of starting observations may cause algorithm to move further from global
minima and make converge problematic.

 w(t+1) = w(t) − η∇wL(w(t)) (2.9)

Weights w are being updated by the negative of the gradient of the loss function with
respect to the weights. This change is limited by the learning rate η. Root mean square
prop or RMSprop is using the same concept of the exponentially weighted average of the
gradients like gradient descent with momentum but the difference is the update of
parameters.

𝑀𝑆(𝜔(𝜂)) = 𝛾𝑀𝑆(𝜔(𝜂 − 1)) + (1 − 𝛾) (
𝜕𝐷(𝜂)

𝜕𝜔(𝜂)
)

2

𝜔(𝜂 + 1) = 𝜔(𝜂) −
𝜆

√𝑀𝑆(𝜔(𝜂))+∈

𝜕𝐷(𝜂)

𝜕𝜔(𝜂)

 (2.10)

https://engmrk.com/gradient-descent-with-momentum/

Chapter 2: Convolutional Neural Network: A Review

21

2.2.6. Momentum

Numerous improvements for gradient descent were proposed. One of the most frequently
used enhancements is the momentum. Momentum helps to prevent from convergence to a
local minima and also speeds up the convergence process by preserving a fraction of
previous weight adjustments. Previous weight adjustment is used in current update,
multiplied by factor µ, the momentum (Equation 2.11).

 w(t+1) = w(t) − η∇wL(w(t)) + µ∆w(t) (2.11)

2.2.7.Nesterov’s Accelerated Gradient

Nesterov’s accelerated gradient (NAG) is an optimal algorithm for smooth convex
optimization proposed by Nesterov, with convergence rate of O(1/t2) after t steps,
compared to the one of gradient descent O(1/t). However, for visual problems, optimized
functions are barely convex and smooth, thus assumptions under which convergence rate
holds are not preserved. Novelty of NAG is in the weight update using gradient on the
weights updated by momentum (Equation 2.12).

 ∆w(t+1) = µ∆w(t) − η∇wL(w(t) + µ∆w(t)) (2.12)

2.2.8. Weight Decay

In the training phase, without regularization, weights use to grow to large values slowing
down the convergence process. Weight decay (also called L2 regularization) is a way how
to prevent weights from growing unboundedly (Equation 2.13). The weight decay
parameter λ represents the portion of the weight to be subtracted.

 w(t+1) = w(t) − η∇wL(w(t)) − λw(t) (2.13)

2.2.9. Local Response Normalization

Efficiency of a training process is sometimes enhanced by local response
normalization(LRN). It is performed over local regions of an input image, centered around
point xk (Equation 2.14). Region has size n and consists of points xi.

 (2.14)

Chapter 2: Convolutional Neural Network: A Review

22

α and β are arbitrary values specified before the training starts.

2.2.10. Xavier Initialization

The background chapter has introduced issues with initialization of DNNs. If the initial
weights are either too large or too small, model is unable to converge to the global
minima. To face this problem, Xavier initialization is often used. Weights of the model are
randomly initialized, usually taken from the Gaussian distribution with variance
determined from (Equation 2.15):

 (2.15)

where W stands for the random distribution of the node to be initialized. Size of the
variance depends on number of input connections (nin) to the particular node. Alternative
versions of Xavier initialization also exist. They often include the number of outgoing
connections in the variance formula.

2.3. Convolutional Neural Networks (CNNs / ConvNets)

A CNN is a special case of the neural network described above. A CNN consists of one or
more convolutional layers, often with a subsampling layer, which are followed by one or
more fully connected layers as in a standard neural network. The design of a CNN is
motivated by the discovery of a visual mechanism, the visual cortex, in the brain (Figure
2.7). The visual cortex contains a lot of cells that are responsible for detecting light in
small, overlapping sub-regions of the visual field, which are called receptive fields. These
cells act as local filters over the input space, and the more complex cells have larger
receptive fields. The convolution layer in a CNN performs the function that is performed
by the cells in the visual cortex.

Chapter 2: Convolutional Neural Network: A Review

23

Figure 2.7: i) Visual Cortex of human brain

Chapter 2: Convolutional Neural Network: A Review

24

Figure 2.7: ii) A schematic diagram of model LGN and cortex. The model visual cortex is
composed of 48×48 model cortical neurons, which have separate dendritic fields. The
model LGN is given as four sheets of different cell types. Each sheet is composed of
24×24 model LGN cells, whose receptive field centers are arranged retinotopically.

A typical CNN is shown in Figure 2.9. Each feature of a layer receives inputs from a set of
features located in a small neighborhood in the previous layer called a local receptive
field. With local receptive fields, features can extract elementary visual features, such as
oriented edges, end-points, corners, etc., which are then combined by the higher layers.

In the traditional model of pattern/image recognition, a hand-designed feature extractor
gathers relevant information from the input and eliminates irrelevant variabilities. The
extractor is followed by a trainable classifier, a standard neural network that classifies
feature vectors into classes.

In a CNN, convolution layers play the role of feature extractor. But they are not hand
designed. Convolution filter kernel weights are decided on as part of the training process.
Convolutional layers are able to extract the local features because they restrict the
receptive fields of the hidden layers to be local. For image classification, it is common to

Chapter 2: Convolutional Neural Network: A Review

25

use convolutional neural networks (CNNs) as they were designed to extract information
from 2D and higher order input spaces. Convolutional neural networks, thanks to their
multiple levels of feature extracting layers, use a minimum of preprocessing, hence it is
not necessary to consider feature extraction issues. CNN’s weights are designed to form a
convolutional filter that is replicated over the whole visual field. All units of the
convolutional layer share the same weights within the layer, what decreases number of
free parameters to learn, thus simplifies training process. The filter is used to convolve an
image, each filter convolves pixels it covers. Outputs of all these filters form a feature
map. Convolutional layers usually contain several feature maps for richer representation of
the image content. Each feature map is produced by a different filter. Convolutional layer
is typically defined by number of feature maps, kernel size (size of the filter) and by stride
parameter (a size of the step over image pixels when applying filter).

CNNs are used in variety of areas, including image and pattern recognition, speech
recognition, natural language processing, and video analysis. There are several reasons
that convolutional neural networks are becoming important:

• In traditional models for pattern recognition, feature extractors are hand designed.
In CNNs, the weights of the convolutional layer being used for feature extraction
as well as the fully connected layer being used for classification are determined
during the training process.

• The improved network structures of CNNs lead to savings in memory requirements
and computation complexity requirements and, at the same time, give better
performance for applications where the input has local correlation (e.g., image and
speech).

• Large requirements of computational resources for training and evaluation of
CNNs are sometimes met by graphic processing units (GPUs), DSPs, or other
silicon architectures optimized for high throughput and low energy when executing
the idiosyncratic patterns of CNN computation. In fact, advanced processors such
as the Tensilica Vision P5 DSP for Imaging and Computer Vision from Cadence
have an almost ideal set of computation and memory resources required for
running CNNs at high efficiency.

• In pattern and image recognition applications, the best possible correct detection
rates (CDRs) have been achieved using CNNs. For example, CNNs have achieved
a CDR of 99.77% using the MNIST database of handwritten digits [59], a CDR of
97.47% with the NORB dataset of 3D objects [60], and a CDR of 97.6% on ~5600
images of more than 10 objects. CNNs not only give the best performance

Chapter 2: Convolutional Neural Network: A Review

26

Image Processing Vision and Control Processing Image Processing and CNN

Pre-Processing ROI Selection
Precise

Modeling of ROI

Decision

Making

•Noise reduction

•Color space
conversion

•Image scaling

•Gaussian pyramid

•Object detection

•Background
subtraction

•Feature extraction

•Image segmentation

•Connected component
labeling

•Object recognition

•Tracking

•Feature matching

•Gesture recognition

•Motion analysis

•Match/no match

•Flag events

Figure 2.8: Vision algorithm
pipeline

compared to other detection algorithms, they even outperform humans in cases
such as classifying objects into fine-grained categories such as the particular breed
of dog or species of bird [61].

• Figure 2.8 shows a typical vision algorithm pipeline, which consists of four stages:
pre-processing the image, detecting regions of interest (ROI) that contain likely
objects, object recognition, and vision decision making. The pre-processing step is
usually dependent on the details of the input, especially the camera system, and is
often implemented in a hardwired unit outside the vision subsystem. The decision
making at the end of pipeline typically operates on recognized objects—It may
make complex decisions, but it operates on much less data, so these decisions are
not usually computationally hard or memory-intensive problems. The big challenge
is in the object detection and recognition stages, where CNNs are now having a
wide impact.

2.3.1 Typical CNN Structure

CNN’s structure is inspired by Neocognitron, composed of alternating two types of layers.
Layers typically used in convolutional neural networks are listed below:

Chapter 2: Convolutional Neural Network: A Review

27

• Input – This layer will hold the raw pixel values of the image, in this case an image
of same height and width, and with three color channels R,G,B.

• Convolutional - Nodes of a convolutional layer perform convolution on a different
parts of the image. This layer serves as a feature extractor. This layer will compute
the output of neurons that are connected to local regions in the input, each
computing a dot product between their weights and a small region they are
connected to in the input volume. This may result in volume as output instead of an
image.

• ReLU (Rectified Linear Unit)-layer will apply an elementwise activation function,
such as the max(0, x) thresholding at zero. This leaves the size of the volume
unchanged. This layer introduces non-linearity in the system.

• Pooling/Subsampling - This layer subsamples feature maps to reduce variance
within local regions of the image. Pool layer will perform a down-sampling
operation along the spatial dimensions (width, height), resulting in volume of
reduced size. It splits the image into rectangular regions and takes out value
determined by the type of pooling layer. The most popular type of pooling layer in
CNNs is the max-pooling layer, which extracts maximum value of the sub-regions
of the feature map.

• Fully connected - As with ordinary Neural Networks and as the name implies, each
neuron in this layer will be connected to all the numbers in the previous volume and
each neuron in this layer takes an input from all the previous layer’s neurons. This
layer will compute the class scores, resulting in volume of size 1×1×N. The
reasoning of the network is performed by its fully connected layers.

• Classifier - Outputs posterior probabilities for each class.

Standard convolutional neural network consists of one or more pairs of convolutional layer
and subsequent max-pooling layer followed by one or more fully connected layers using
rectifying activation function. The output layer is often constructed as a combination of the
softmax activation function and the cross entropy loss function (Equation 2.6).

Chapter 2: Convolutional Neural Network: A Review

28

2.3.2. Layers of CNNs

By stacking multiple and different layers in a CNN, complex architectures are built for
classification problems. Four types of layers are most common: convolution layers,
pooling/sub-sampling layers, non-linear layers, and fully connected layers.

Convolution Layers

The convolution operation extracts different features of the input. The first convolution
layer extracts low-level features like edges, lines, and corners. Higher-level layers extract
higher-level features. Figure 2.10 illustrates the process of 3D convolution used in CNNs.
The input is of size N × N × D and is convolved with H kernels, each of size k × k × D
separately. Convolution of an input with one kernel produces one output feature, and with
H kernels independently produces H features. Starting from top-left corner of the input,
each kernel is moved from left to right, one element at a time. Once the top-right corner is
reached, the kernel is moved one element in a downward direction, and again the kernel is
moved from left to right, one element at a time. This process is repeated until the kernel
reaches the bottom-right corner. For example, when N = 32 and k = 5, there are 28 unique
positions from left to right and 28 unique positions from top to bottom that the kernel can
take. Corresponding to these positions, each feature in the output will contain 28×28 (i.e.,
(N-k+1) × (N-k+1)) elements. For each position of the kernel in a sliding window process,
k × k × D elements of input and k × k × D elements of kernel are element-by-element

STSTAGE 1 NDSTAGE 2 CLASSIFIER

…

…

32 x 32 28x108 28 x
x5 Filter 5

x5Filter 5

2 x 2

2 x 2

Stage FC 2-

convolutions

convolutions

convolutions

Fullconnection

subsampling

subsampling

14 x 14x108 10 x 10x200

5x200 x 5

7 x 7x108 43 neurons

INPUT

…

…

OUTPUT
…

100
neurons

Figure 2.9: Typical block diagram of a CNN

Chapter 2: Convolutional Neural Network: A Review

29

multiplied and accumulated. So to create one element of one output feature, k × k × D
multiply-accumulate operations are required.

Figure 2.10: A representation of convolution process

Let Wi be a filter set with dimension Ci × Ci−1 × Ni × Ni, where Ci and Ci−1 is the number of
channels of the output and input of this layer respectively, and Ni be the square-size
parameter of the filters. The parameter, Ci represents the number of filters in the set Wi.
Each of the filters has a corresponding bias term, resulting a bias vector bi with Ci number
of elements. Hence, the output of this layer is obtained from the output of the previous
layer, bias term and corresponding filter set as

Xi = Wi ∗Xi−1 +bi (2.16)

where ∗represents the linear convolution operation. This operation results in the dimension
of output Xi to be Ci×Mvi×Mhi from input Xi−1 with shape Ci−1 ×Mv(i−1) ×Mh(i−1). There is a
positive parameter called ’stride’ which can be set to a value that will cause the spatial
dimensions to change resulting in up-sampling or down-sampling. The spatial dimensions
remain the same when the parameter is set to 1. If it is set to value greater than unity then
the dimensions decrease. And, if it is set to a value less than unity, the spatial dimensions
increase. A general tendency is to set the parameter to 1 and the dimensionality reduction,
when required, is obtained using a pooling layer. In model description, convolution layer
is referred to as CN (Ci,Ni).

N
k

k

N

D

H

N = input height and width
k = kernel height and width
D = input depth

H=#feature maps
S=kernel stride

Convolution between kxkxD kernel
And region of input feature map

Input Feature Map Convolution Output

Chapter 2: Convolutional Neural Network: A Review

30

Figure 2.11: A representation of max pooling and average pooling

Pooling/Subsampling Layers

The pooling/subsampling layer reduces the resolution of the features. It makes the features
robust against noise and distortion. Its function is to progressively reduce the spatial size
of there presentation to reduce the amount of parameters and computation in the network,
and hence to also control overfitting. There are two ways to do pooling: max pooling and
average pooling. In both cases, the input is divided into non-overlapping two-dimensional
spaces. For example, in Figure 2.9, layer 2 is the pooling layer. Each input feature is
28×28 and is divided into 14×14 regions of size 2×2. For average pooling, the average of
the four values in the region are calculated. For max pooling, the maximum value of the
four values is selected.

Figure 2.11 elaborates the pooling process further. The input is of size 4×4. For 2×2
subsampling, a 4×4 image is divided into four non-overlapping matrices of size 2×2. In the
case of max pooling, the maximum value of the four values in the 2×2 matrix is the output.
In case of average pooling, the average of the four values is the output. Please note that for
the output with index (2,2), the result of averaging is a fraction that has been rounded to
nearest integer.

Average Pooling

with stride 2

Max Pooling with

stride 2

Chapter 2: Convolutional Neural Network: A Review

31

Non-linear Layers

Neural networks in general and CNNs in particular rely on a non-linear “trigger” function
to signal distinct identification of likely features on each hidden layer. CNNs may use a
variety of specific functions —such as rectified linear units (ReLUs) and continuous
trigger (non-linear) functions—to efficiently implement this non-linear triggering.

ReLU

A ReLU implements the function

Xi = max (0, Xi−1) (2.17)

In other words, only non-negative values are kept as is and the other values are set to zero.
So the input and output sizes of this layer are the same. It increases the nonlinear
properties of the decision function and of the overall

Figure 2.12: A representation of ReLU functionality

network without affecting the receptive fields of the convolution layer. In comparison to
the other non-linear functions used in CNNs (e.g., hyperbolic tangent, absolute of
hyperbolic tangent, and sigmoid), the advantage of a ReLU is that the network trains many
times faster. In addition, the ReLU unit helps the neural network to attain a better sparse
representation ([52]). It is customary for convolution layer to be followed by ReLU

Chapter 2: Convolutional Neural Network: A Review

32

activation. ReLU functionality is illustrated in Figure 2.12, with its transfer function
plotted above the arrow.

Continuous Trigger (Non-Linear) Function

The non-linear layer operates element by element in each feature. A continuous trigger
function can be hyperbolic tangent (Figure 2.13), absolute of hyperbolic tangent (Figure
2.14), or sigmoid (Figure 2.15). Figure 2.16 demonstrates how non-linearity gets applied
element by element.

Figure 2.13: The hyperbolic tangent Figure 2.14: Absolute of function
 hyperbolic tangent function

Figure 2.15: The sigmoid function Figure 2.16: A representation of tanh processing

Fully Connected layers

Fully connected layers are often used as the final layers of a CNN. These layers
mathematically sum a weighting of the previous layer of features, indicating the precise

-0.761 0.999

1 1

-1 4

110 80

tanh

Chapter 2: Convolutional Neural Network: A Review

33

mix of “ingredients” to determine a specific target output result. In case of a fully
connected layer, all the elements of all the features of the previous layer get used in the
calculation of each element of each output feature.

Figure 2.17: Processing of a fully connected layer

Figure 2.17 explains the fully connected layer L. Layer L-1 has two features, each of
which is 2×2, i.e., has four elements. Layer L has two features, each having a single
element.

2.4. Advantage of CNN over NN:

While neural networks and other pattern detection methods have been around for the past
50 years, there has been significant development in the area of convolutional neural
networks in the recent past. This section covers the advantages of using CNN for image
recognition.

Chapter 2: Convolutional Neural Network: A Review

34

• Ruggedness to shifts and distortion in the image

Detection using CNN is rugged to distortions such as change in shape due to camera lens,
different lighting conditions, different poses, presence of partial occlusions, horizontal and
vertical shifts, etc. However, CNNs are shift invariant since the same weight configuration
is used across space. In theory, we also can achieve shift invariantness using fully
connected layers. But the outcome of training in this case is multiple units with identical
weight patterns at different locations of the input. To learn these weight configurations, a
large number of training instances would be required to cover the space of possible
variations.

• Fewer memory requirements

In this same hypothetical case where we use a fully connected layer to extract the features,
the input image of size 32×32 and a hidden layer having 1000 features will require an
order of 106 coefficients, a huge memory requirement. In the convolutional layer, the same
coefficients are used across different locations in the space, so the memory requirement is
drastically reduced.

• Easier and better training

Again using the standard neural network that would be equivalent to a CNN, because the
number of parameters would be much higher, the training time would also increase
proportionately. In a CNN, since the number of parameters is drastically reduced, training
time is proportionately reduced. Also, assuming perfect training, we can design a standard
neural network whose performance would be same as a CNN. But in practical training, a
standard neural network equivalent to CNN would have more parameters, which would
lead to more noise addition during the training process. Hence, the performance of a
standard neural network equivalent to a CNN will always be poorer.

2.5. Conclusion

In this chapter a brief description of NN and CNN are presented. The reason for applying
CNN in CR task is also explained. In the next chapter different models of CNN used in
this experiment of Bangla CR task will be presented along with the comparison of their
performances in terms of recognition accuracy rates.

35

Chapter 3

Proposed DCNN Architecture

3.1. Introduction

This chapter presents the structure of DCNN models used in this experiment. The
performances of the different DCNN structures have been used for experiment in this
thesis are shown. Number of kernels in different convolution layers, sizes of the kernels,
depth of the network and number of neurons in the classifier layers have their effects on
the performance of the recognizer. The architecture that gives the best output (Model no.
4) in terms of the recognition accuracy rates are presented in this chapter.

3.2. DCNN Architectures

In this work five different architectures of DCNN are used for recognition task and their
performances are compared to determine the most optimized network size for better
recognition accuracy. Among these five architectures, model 4 gives the best result. The
descriptions of the five architectures are given below:

3.2.1. Model 1

Architecture

Model 1 consists of 3 convolutional layers and 1 affine (fully connected) layer. It takes
32×32 RGB images as input. 1st, 2nd and 3rd convolution layers contain 32, 64 and 128
numbers of receptive fields (kernels) respectively. The kernels in all the convolutional
layers are of equal size: 3×3.

After 1st convolution layer ReLU is used as activation function, but no sub-sampling
layer is used. So, after the 1st convolution between 32×32 input image size for each
channel (RGB) and 32 nos of 3×3 kernels for each channel, the size of the feature maps
become 32×32×32. Padding 1and stride 1 are used for the convolution operation.

Appendix

36

Application of ReLU activation does not change the number of parameters. Pooling is not
used in the first layer.

After each of 2nd and 3rd convolution layers, ReLU function and MaxPooling (sub-
sampling) with stride 2 are used in Model 1. Padding 1 and stride 1 are used for the
convolution operation. Both pooling height and width are 2. So, after the 2nd convolution
between 32×32×32 feature map size and 64 nos of 3×3 kernels, the size of the feature
maps becomes 32×32×64. After first pooling, the feature map size reduced to 16×16×64.
After 3rd convolution layer with 128 nos of kernel, the feature size becomes 16×16×128.
After second pooling, the feature map size reduced to 8×8×128. And at the end one fully-
connected layer with 50 neurons are used.

Figure

Figure 3.1 : Model 1 DCNN architecture for BHCR

Input Image

3×32×32

Feature Maps
32×32×32

Feature

Maps
16×16×64

Feature Maps
32×32×64

Max Pooling,
stride=2

Feature Maps

16×16×128

Feature

Maps
8×8×128

Convolution by 3x3
kernels: 128 nos,
followed by ReLu

activation function

Fully
Connected

Layer

Affine
layer

with 50
neurons

Convolution by 3x3
kernels: 32 nos,

followed by ReLu
activation function

Max

Pooling,
stride=2

Convolution by 3x3
kernels: 64 nos,

followed by ReLu
activation function

Appendix

37

Function

Let, the input image be X (3×32×32),
Layer 1 (Conv) : L1≡W1*X+B1
Layer 2 (ReLU) : L2≡max(0, L1)
Layer 3 (Conv) : L3≡W2*L2+B2
Layer 4 (ReLU) : L4≡max(0, L3)
Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2)
Layer 6 (Conv) : L6≡W3*L5+B3
Layer 7 (ReLU) : L7≡max(0, L6)
Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7,Size: 2×2, Stride = 2)
Layer 9 (Affine) : L9≡W4L8+B4
Layer 10 (Softmax) : L10≡ SoftMax(L9)

3.2.2. Model 2

Architecture

Similar to Model 1, Model 2 consists of 3 convolutional layers and 1 affine (fully
connected) layer. It takes 32×32 RGB images as input. 1st, 2nd and 3rd convolution layers
contain 32, 64 and 128 numbers of receptive fields (kernels) respectively. The difference
between model 1 and Model 2 is: unlike model 1, the kernel size in the first convolutional
layer in model 2 is 5×5, the kernel size in the 2nd and 3rdconvolutional layers are of equal
size: 3×3.

After 1st convolution layer ReLU is used as activation function, but no sub-sampling
layer is used. So, after the 1st convolution between 32×32 input image size for each
channel (RGB) and 32 nos of 3×3 kernels for each channel, the size of the feature maps
become 32×32×32. Padding 2 and stride 1 are used for the convolution operation.
Application of ReLU activation does not change the number of parameters. Pooling is not
used in the first layer.

After each of 2nd and 3rd convolution layers, ReLU function and MaxPooling (sub-
sampling) with stride 2 are used in Model 2. Padding 1 and stride 1 are used for the
convolution operation. Both pooling height and width are 2. So, after the 2nd convolution
between 32×32×32 feature map size and 64 nos of 3×3 kernels, the size of the feature
maps becomes 32×32×64. After first pooling, the feature map size reduced to 16×16×64.
After 3rd convolution layer with 128 nos of kernel, the feature size becomes 16×16×128.
After second pooling, the feature map size reduced to 8×8×128. And at the end one fully-
connected layer with 50 neurons are used.

Appendix

38

Figure

Figure 3.2 : Model 2 DCNN architecture for BHCR

Function

Let, the input image be X (3×32×32),
Layer 1 (Conv) : L1≡ W1*X+B1
Layer 2 (ReLU) : L2≡max(0, L1)
Layer 3 (Conv) : L3≡ W2*L2+B2
Layer 4 (ReLU) : L4≡max(0, L3)
Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2)
Layer 6 (Conv) : L6≡ W3*L5+B3
Layer 7 (ReLU) : L7≡max(0, L6)
Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7, Size: 2×2, Stride = 2)
Layer 9 (Affine) : L9≡ W4L8+B4
Layer 10 (Softmax) : L10≡ SoftMax(L9)

Input Image

3×32×32

Feature Maps
32×32×32

Feature

Maps
16×16×64

Feature Maps
32×32×64

Max Pooling,
stride=2

Feature Maps

16×16×128

Feature

Maps
8×8×128

Convolution by 3×3
kernels: 128 nos,
followed by ReLU

activation function

Fully
Connected

Layer

Affine
layer

with 50
neurons

Convolution by 5×5
kernels: 32 nos,

followed by ReLU
activation function

Max

Pooling,
stride=2

Convolution by 3×3
kernels: 64 nos,

followed by ReLU
activation function

Appendix

39

3.2.3. Model 3

Architecture

Model 3 is similar to model 2, but unlike model 2, it has 2 affine layers at the end. Model
3 consists of 3 convolutional layers and 2 affine (fully connected) layers. It takes 32×32
RGB images as input. 1st, 2nd and 3rd convolution layers contain 32, 64 and 128 numbers
of receptive fields (kernels) respectively. The kernel size in the first convolutional layer
in model 3 is 5×5, the kernel size in the 2nd and 3rd convolutional layers are of equal size:
3×3.

After 1st convolution layer ReLU is used as activation function, but no sub-sampling
layer is used. So, after the 1st convolution between 32×32 input image size for each
channel (RGB) and 32 nos of 3×3 kernels for each channel, the size of the feature maps
become 32×32×32. Padding 2 and stride 1 are used for the convolution operation.
Application of ReLU activation does not change the number of parameters. Pooling is not
used in the first layer.

After each of 2nd and 3rd convolution layers, ReLU function and MaxPooling (sub-
sampling) with stride 2 are used in Model 3. Padding 1 and stride 1 are used for the
convolution operation. Both pooling height and width are 2. So, after the 2nd convolution
between 32×32×32 feature map size and 64 nos of 3×3 kernels, the size of the feature
maps becomes 32×32×64. After first pooling, the feature map size reduced to 16×16×64.
After 3rd convolution layer with 128 nos of kernel, the feature size becomes 16×16×128.
After second pooling, the feature map size reduced to 8×8×128. And at the end two fully-
connected layers with 3000 and 50 neurons respectively are used as classifier.

Appendix

40

Figure

Figure 3.3 : Model 3 DCNN architecture for BHCR

Function
Let, the input image be X (3×32×32),
Layer 1 (Conv) : L1≡ W1*X+B1
Layer 2 (ReLU) : L2≡max(0, L1)
Layer 3 (Conv) : L3≡ W2*L2+B2
Layer 4 (ReLU) : L4≡max(0, L3)
Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2)
Layer 6 (Conv) : L6≡ W3*L5+B3
Layer 7 (ReLU) : L7≡max(0, L6)
Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7, Size: 2×2, Stride = 2)
Layer 9 (Affine) : L9≡ W4L8+B4
Layer 10 (Affine) : L10≡ W5L9+B5
Layer 11 (Softmax) : L11≡ SoftMax(L10)

Input Image

3×32×32

Feature Maps
32×32×32

Feature

Maps
16×16×64

Feature Maps
32×32×64

Max Pooling,
stride=2

Feature Maps

16×16×128

Feature

Maps
8×8×128

Convolution by 3×3
kernels: 128 nos,
followed by ReLU

activation function

Fully
Connected

Layer

Affine
layer with

3000
neurons

Convolution by 5×5
kernels: 32 nos,

followed by ReLU
activation function

Max

Pooling,
stride=2

Convolution by 3×3
kernels: 64 nos,

followed by ReLU
activation function

Affine
layer

with 50
neurons

Appendix

41

3.2.4. Model 4 (Proposed DCNN)

Architecture

Among the different models used in this experiment, the best DCNN architecture is
model 4. Model 4 is almost same to model 3, the only difference is in the number of
neurons used in the first affine layer.

Proposed DCNN architecture consists of 3 convolutional layers and 2 affine (fully
connected) layers. It takes 32×32 RGB images as input. 1st, 2nd and 3rd convolution layers
contain 32, 64 and 128 numbers of receptive fields (kernels) respectively. The kernel size
in the first convolutional layer in model 4 is 5×5, the kernel sizes in the 2nd and 3rd
convolutional layers are of equal size: 3×3. After 1st convolution layer ReLU is used as
activation function, but no sub-sampling layer is used. So, after the 1st convolution
between 32×32 input image size for each channel (RGB) and 32 nos of 5×5 kernels for
each channel, the size of the feature maps become 32×32×32. Padding 2 and stride 1 are
used for the convolution operation. Application of ReLU activation does not change the
number of parameters. Pooling is not used in the first layer.

After each of 2nd and 3rd convolution layers, ReLU function and MaxPooling (sub-
sampling) with stride 2 are used in Model 4. Padding 1 and stride 1 are used for the
convolution operation. Both pooling height and width are 2. So, after the 2nd convolution
between 32×32×32 feature map size and 64 nos of 3×3 kernels, the size of the feature
maps becomes 32×32×64. After first pooling, the feature map size reduced to 16×16×64.
After 3rd convolution layer with 128 nos of kernel, the feature size becomes 16×16×128.
After second pooling, the feature map size reduced to 7×7×128. And at the end two fully-
connected layers with 3500 and 50 neurons respectively are used as classifier.

There are 2,400 parameters (for each of 3 channels of inputs, 32 numbers of 5×5 sized
kernels) as weights and 32 parameters as bias in the first layer of CNN. Layer 2 contains
18,432 weights and 64 bias parameters. There are 73728 no weight parameters and 128
bias parameters in layer 3. Layer four has 21,952,000 weight parameters and 3,500 bias
parameters. And final layer (layer 5) contains 175,000 weight and 50 bias parameters. The
network contains a total of 22,225,334 no of parameters for weights and biases.

Appendix

42

Table 3.1: Parameters setup for DCNN

Layer Operation
of Layer

Number of
Feature maps

Size of feature
maps

Size of
kernel

Number of
parameters

X Input Layer 3 32×32 - -
C1 Convolution 32 32×32 5×5 3×32×5×5+32

=2,432
RL1 ReLU 32 32×32 - -
C2 Convolution 64 32×32 3×3 32×64×3×3+64

=18,496
RL2 ReLu 64 32×32 - -
S2 Max-pooling 64 16×16 2×2 -
C3 Convolution 128 16×16 3×3 64×128×3×3+128

=73,856
RL3 ReLU 128 16×16 - -
S3 Max-pooling 128 8×8 2×2 -

FC1 Affine 3500 1×1 - 128×7×7×3500
+3500=21955500

FC2 Affine 50 1×1 - 3500×50+50
=175050

 Total: 22,225,334

Let, the input image be X (3×32×32),

Layer 1 (Conv) : L1≡ W1*X+B1

Layer 2 (ReLU) : L2≡max(0, L1)

Layer 3 (Conv) : L3≡ W2*L2+B2

Layer 4 (ReLU) : L4≡max(0, L3)

Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2)

Layer 6 (Conv) : L6≡ W3*L5+B3

Layer 7 (ReLU) : L7≡max(0, L6)

Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7, Size: 2×2, Stride = 2)

Layer 9 (Affine) : L9≡ W4L8+B4

Layer 10 (Affine) : L10≡ W5L9+B5

Layer 11 (Softmax) : L11≡SoftMax(L10)

Appendix

43

Figure

Figure 3.4 : Proposed DCNN architecture (Model 4) for BHCR

Function
Let, the input image be X (3×32×32),
Layer 1 (Conv) : L1≡ W1*X+B1
Layer 2 (ReLU) : L2≡max(0, L1)
Layer 3 (Conv) : L3≡ W2*L2+B2
Layer 4 (ReLU) : L4≡max(0, L3)
Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2)
Layer 6 (Conv) : L6≡ W3*L5+B3
Layer 7 (ReLU) : L7≡max(0, L6)
Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7, Size: 2×2, Stride = 2)
Layer 9 (Affine) : L9≡ W4L8+B4
Layer 10 (Affine) : L10≡ W5L9+B5
Layer 11 (Softmax) : L11≡SoftMax(L10)

Input Image

3×32×32

Feature Maps
32×32×32

Feature

Maps
16×16×64

Feature Maps
32×32×64

Max Pooling,
stride=2

Feature Maps

16×16×128

Feature

Maps
8×8×128

Convolution by 3×3
kernels: 128 nos,
followed by ReLU

activation function

Fully
Connected

Layer

Affine
layer with

3500
neurons

Convolution by 5×5
kernels: 32 nos,

followed by ReLU
activation function

Max

Pooling,
stride=2

Convolution by 3×3
kernels: 64 nos,

followed by ReLU
activation function

Affine
layer

with 50
neurons

Appendix

44

3.2.5. Model 5

Architecture

Model 5 is the most deep network in this study. Model 5 consists of 4 convolutional
layers and 2 affine (fully connected) layers. It takes 68×68 RGB images as input. 1st, 2nd,
3rd and 4th convolution layers contain 32, 48, 64 and 96 numbers of receptive fields
(kernels) respectively. The kernel sizes in the convolutional layers in model 5are7×7,
5×5, 3×3and 3×3 respectively.

After 1st convolution layer ReLU is used as activation function, but no sub-sampling
layer is used. So, after the 1st convolution between 68×68 input image size for each
channel (RGB) and 32 nos of 7×7 kernels for each channel, the size of the feature maps
become 68×68×32. Padding 3 and stride 1 are used for the convolution operation.
Application of ReLU activation does not change the number of parameters. Pooling is not
used in the first layer.

After each of 2nd convolution layer, ReLU function and MaxPooling (sub-sampling) with
stride 2 are used in Model 5. Padding 2 and stride 1 are used for the convolution
operation. Both pooling height and width are 2. So, after the 2nd convolution between
68×68×32 feature map size and 48nos of 5×5 kernels, the size of the feature maps
becomes 68×68×48. After first pooling operation, the feature map size reduced to
34×34×46.

After each of 3rd and 4th convolution layers, ReLU function and MaxPooling (sub-
sampling) with stride 2 are used in Model 5. After 3rdconvolution layer with 64nos of
kernel, the feature size becomes 34×34×64. After second pooling with2×2 size and 2
stride, the feature map size reduced to 17×17×64. After 4th convolution layer with 96 nos
of kernel, the feature size becomes 17×17×96. After third pooling with 2×2 size and 2
stride, the feature map size reduced to 9×9×96.And at the end two fully-connected layers
with 3000 and 50 neurons respectively are used as classifier.

Appendix

45

Figure

Input Image

3×68×68

Feature Maps
68×68×32

Feature

Maps
17×17×64

Feature Maps
68×68×48

Max Pooling,
stride=2

Feature Maps

17×17×96

Feature

Maps
9×9×96

Convolution by 3×3
kernels: 96 nos,

followed by ReLU
activation function

Fully
Connected

Layer

Affine
layer with

3000
neurons

Affine
layer

with 50
neurons

Convolution by 7×7
kernels: 32 nos,

followed by ReLU
activation function

Convolution by 5×5
kernels: 48 nos,

followed by ReLU
activation function

Feature Maps
34×34×48

Feature Maps
34×34×64

Max Pooling,
stride=2

Convolution by 3×3
kernels: 64 nos,

followed by ReLU
activation function

Max

Pooling,
stride=2

Appendix

46

Function

Let, the input image be X (3×32×32),

Layer 1 (Conv) : L1≡ W1*X+B1
Layer 2 (ReLU) : L2≡max(0, L1)
Layer 3 (Conv) : L3≡ W2*L2+B2
Layer 4 (ReLU) : L4≡max(0, L3)
Layer 5 (Pooling) : L5≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L4, Size:2×2, Stride = 2)
Layer 6 (Conv) : L6≡ W3*L5+B3
Layer 7 (ReLU) : L7≡max(0, L6)
Layer 8 (Pooling) : L8≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L7, Size: 2×2, Stride = 2)
Layer 9 (Conv) : L9≡ W4*L8+B4
Layer 10 (ReLU) : L10≡max(0, L9)
Layer 11 (Pooling) : L11≡ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(L10, Size: 2×2, Stride = 2)
Layer 12 (Affine) : L12≡ W5L11+B5
Layer 13 (Affine) : L13≡ W6L12+B6
Layer 14 (Softmax) : L14≡ SoftMax(L13)

Appendix

47

Table 3.2: Comparison between deep-CNN models

Database

Network Architecture
Input
Size

Training Parameters
Validation
Accuracy
rate Conv.

Layers Kernel Size Activation function &
Pool size, Stride

Affine
Layers

Regulari
zation
factor

Learni
ng
Rate

Learning
rate
decay

Batch
size

No. of
Epochs

Model 1 CMATERdb
3.1.2

3 nos.
1st Layer:
32 Kernels

1st Layer:
Kernel size 3×3

1st Layer:
Conv-ReLU

1 layer:
50
neurons

32×32 0.001 0.0001 0.95 50 50 86.79%

2nd Layer:
64 Kernels

2nd Layer:
Kernel size: 3×3

2nd Layer:
Conv-ReLU-Pool, 2×2, 2

3rd Layer:
128 Kernels

3rd Layer:
Kernel size: 3×3

3rd Layer:
Conv-ReLU-Pool, 2×2, 2

Model 2 CMATERdb
3.1.2

3 nos.
1st Layer:
32 Kernels

1st Layer:
Kernel size 5×5

1st Layer:
Conv-ReLU

1 layer:
50
neurons

32×32 0.001 0.0001 0.95 50 75 88.42%

2nd Layer:
64 Kernels

2nd Layer:
Kernel size: 3×3

2nd Layer:
Conv-ReLU-Pool, 2×2, 2

3rd Layer:
128 Kernels

3rd Layer:
Kernel size: 3×3

3rd Layer:
Conv-ReLU-Pool, 2×2, 2

Model 3 Combined
Dataset

3 nos.
1st Layer:
32 Kernels

1st Layer:
Kernel size 5×5

1st Layer:
Conv-ReLU

2 layers
1st
Layer:
3000

32×32 0.001 0.0001 0.95 100 50 89.96%

2nd Layer:
64 Kernels

2nd Layer:
Kernel size: 3×3

2nd Layer:
Conv-ReLU-Pool, 2×2, 2 2nd

Layer:
50

3rd Layer:
128 Kernels

3rd Layer:
Kernel size: 3×3

3rd Layer:
Conv-ReLU-Pool, 2×2, 2

Model 3 Combined
Dataset

3 nos.
1st Layer:
32 Kernels

1st Layer:
Kernel size 5×5

1st Layer:
Conv-ReLU

2 layers
1st
Layer:
3000

32×32 0.001 0.0001 0.95 100 150 92.19%

2nd Layer:
64 Kernels

2nd Layer:
Kernel size: 3×3

2nd Layer:
Conv-ReLU-Pool, 2×2, 2 2nd

Layer:
50 3rd Layer: 3rd Layer: 3rd Layer:

Chapter 3: Proposed Convolutional Neural Network Architectures

48

Database

Network Architecture
Input
Size

Training Parameters
Validation
Accuracy
rate Conv.

Layers Kernel Size Activation function &
Pool size, Stride

Affine
Layers

Regulari
zation
factor

Learni
ng
Rate

Learning
rate
decay

Batch
size

No. of
Epochs

128 Kernels Kernel size: 3×3 Conv-ReLU-Pool, 2×2, 2
Model
4
(propos
ed
model)

Combined
Dataset

3 nos.
1st Layer:
32 Kernels

1st Layer:
Kernel size 5×5

1st Layer:
Conv-ReLU

2 layers
1st
Layer:
3500

32×32 0.001 0.0001 0.95 100 150 92.20%

2nd Layer:
64 Kernels

2nd Layer:
Kernel size: 3×3

2nd Layer:
Conv-ReLU-Pool, 2×2, 2 2nd

Layer:
50

3rd Layer:
128 Kernels

3rd Layer:
Kernel size: 3×3

3rd Layer:
Conv-ReLU-Pool, 2×2, 2

Model 5 Combined
Dataset

4 nos.
1st Layer:
32 Kernels

1st Layer:
Kernel size 7×7

1st Layer:
Conv-ReLU

2 layers
1st
Layer:
3000

68×68 0.001 0.0001 0.95 100 150 85.26%

2nd Layer:
48 Kernels

2nd Layer:
Kernel size: 5×5

2nd Layer:
Conv-ReLU-Pool, 2×2, 2

3rd Layer:
64 Kernels

3rd Layer:
Kernel size: 3×3

3rd Layer:
Conv-ReLU-Pool, 2×2, 2

2nd
Layer:
50 4th Layer:

96 Kernels
4th Layer:
Kernel size: 3×3

4th Layer:
Conv-ReLU-Pool, 2×2, 2

Chapter 3: Proposed Convolutional Neural Network Architectures

49

3.3. Conclusion

In this chapter a brief description of proposed DCNN model are presented. We can
see that there is a significant change in accuracy level for different model
architectures. So, number of kernels in different convolution layers, sizes of the
kernels, depth of the network and number of neurons in the classifier layers have their
effects on the performance of the recognizer. Among the different models used in this
experiment, the best DCNN architecture is model 4, which has 3 convolutional layers
and 2 affine (fully connected) layers. 1st, 2nd and 3rd convolution layers contain 32, 64
and 128 numbers of receptive fields (kernels) respectively. The kernel size in the first
convolutional layer in model 4 is 5×5, the kernel sizes in the 2nd and 3rd convolutional
layers are of equal size: 3×3.

In the next chapter, description of the database and the experimental platform will be
presented. After that, the characteristics of the learning process and performance of
the proposed model with respect to the other techniques of BHCR will be analyzed.

50

Chapter 4

Experimental Results

4.1. Introduction

This chapter describes the database and experimental results of this study. At first the
problem is defined. After that experimental platform in terms of hardware and software
are mentioned. Then the database information, source and sample data are presented. At
the end of the chapter, the performance of the proposed models are analyzed and
evaluated.

4.2. Experimental Platform

The experiment has been conducted on desktop machine (CPU: Intel Core i7-6700K @ 4
GHz, RAM: 16.00 GB, GPU: GeForce GTX 970, Hard Disk Drive: Transcend 128 GB
Solid State Drive) in Ubuntu 16.04LTS 64-bit OS (Linux) environment.

The algorithm ran on Anaconda 4.2.0 64-bit platform with Jupyter Notebook version
4.2.3. The DCNN algorithm is implemented in Python 2.7.12. List of major library and
packages used in the implementation of the algorithm are given in table 4.1.

Chapter 4: Experimental Results

51

Table 4.1: Major library and packages used to implement the algorithm

Package/ Library Name Version number

numpy 1.11.1

nose 1.3.7

cython 0.24.1

matplotlib 1.5.3

pandas 0.18.1

scipy 0.18.1

six 1.10.0

sympy 1.0

4.3. Database

4.3.1. Database CMATERdb 3.1.2

There are two databases used in this experiment. One is CMATERdb 3.1.2 [56]
containing 12000 train and 3000 test samples equally distributed among 50 classes of
hand-written Bangla characters. CMATERdb is the pattern recognition database
repository created at the ‘Center for Microprocessor Applications for Training Education
and Research’ (CMATER) research laboratory, Jadavpur University, Kolkata 700032,
India. Sample images are given in table 4.2.

Chapter 4: Experimental Results

52

Table 4.2: Sample images of CMATERdb 3.1.2 database. More sample images are given
in Appendix A.

Character Sample Images

অ

আ

ই

ঈ

ক

খ

গ

ঘ

ঙ

4.3.2. Database BBCD

Another database is referred to as the “Bangla Basic Character Database (BBCD)” [54],
the database of 37,858 samples were randomly subdivided into training and test sets.
Samples of this database were collected using three different types of form documents,
viz., railway reservation form, job application form, and a tabular form specially designed
for data collection. Handwritten samples of various basic characters collected from the
name and address parts of the first two types of forms vary widely in number with only a
few samples for rarely occurring Bangla basic characters. Some sample images are given
in table 4.3.

Chapter 4: Experimental Results

53

Table 4.3: Sample images of BBCD database. More sample images are given in
Appendix A.

Character Sample Images

অ

আ

ই

ঈ

উ

ক

খ

গ

ঘ

ঙ

4.3.3. Combined Database

The both datasets (Database CMATERdb 3.1.2 and BBCD) are combined to form larger
dataset containing a total of 52,788 samples subdivided into 28,529 (54.04%) training
images, 8,400 (15.91%) validation samples and 15,859 (30.04%) test samples of similar

Chapter 4: Experimental Results

54

sizes. The dataset contains wide variation of distinct characters because of different
peoples’ writing styles. Some of these character images are very complex shaped and
closely correlated with others. This is the largest dataset among all reported BHCR
works.

4.4. Training of the DCNN

There is no significant preprocessing of the input database. Since the input images are of

different sizes, hence to feed the images as the inputs of the DCNN, all the input images

are resized into 32×32 images. The images of letters are black in white background, so to

reduce computational overhead, images are converted through foreground character black

to white and background changed to black. The input images are considered as RGB

images containing 3 channels and 8 bit depth per pixel. The images are then normalized

to get a zero mean over the complete dataset. For the training of DCNN following factors

are used:

• Regularization factor : 0.001

• Learning rate : 0.0001

• Learning rate decay factor : 0.95

• Batch size : 100

• No of epochs : 150

• Back-propagation method : RMS propagation with SGD and decay rate

 = 0.99

• Cost Function : SoftMax Loss function.

All weights and bias parameters are initialized randomly using zero mean and unit
variance gaussian distribution.

Chapter 4: Experimental Results

55

Figure 4.1: Training and Validation accuracy curves versus number of Epoch

Figure 4.2: Cost function versus number of Epoch

Figure 4.3: Learning rate versus number of Epoch

Chapter 4: Experimental Results

56

Figure 4.4: Input images in database (above) and the same images after normalization
(below)

Figure 4.5 : Sample Kernels of the first convolution layer

Chapter 4: Experimental Results

57

Figure 4.6: Feature Maps after the first convolution layer

Figure 4.7 : Sample Kernels of the second convolution layer

Chapter 4: Experimental Results

58

Figure 4.8: Feature Maps after the second convolution layer

Figure 4.9: Sample kernels of 3rd convolution layer

Chapter 4: Experimental Results

59

Figure 4.10: Feature Maps after 3rd convolution layer

4.5. Performance Evaluation

After 150 epochs of training, the accuracy of the DCNN for BHCR is presented in table
4.4. After 150 epochs proposed DCNN achieves 99.43% recognition accuracy on training
dataset, 92.10% recognition accuracy on validation dataset and 91.25% recognition
accuracy on test dataset. The confusion matrix of the test samples is given in Table 4.5.
From the table number of samples and recognition accuracy for each class can be seen.
From the table, it can be seen that the proposed method performs worst to recognize the
character “খ (KHA)”. Among 240 samples, it truly recognizes 187 cases (77.92%). In 26

cases (10.83%) the character has been classified as “ঘ (GHA)” and in 7 cases (2.92%) it

has been classified as “থ (THA)” that looks similar even printed form and more difficult

in handwritten form.

60

Table 4.4: Accuracy of the DCNN for BHCR

No of Epoch Training Accuracy Validation
Accuracy Test Accuracy

150 99.43% 92.10% 91.25%

Similarly among 316 samples of “ঘ (GHA)” the model truly recognizes 254 cases

(80.38%) and in 33 cases (10.44%) it is classified as “খ (KHA)”, in 7 cases (2.22%) it is

classified as “ম (MA)” and in 6 cases (1.90%) it is classified as “য (YY)”. The proposed

method has shown best performance for “s (ANUS)”. Among 157 samples of “s

(ANUS)” the model truly recognizes 156 cases (99.36%) and in 1 case (0.64%) it is
classified as “V (TTHA)”. Due to large variation in writing styles, such character images

are difficult to classify even by human. Finally, the proposed DCNN misclassifies 1,388
cases out of 15,859 test cases and achieves accuracy 91.25% on test dataset.

Table 4.6 and 4.7 present the confusion matrix of the training and validation datasets
respectively. It shows 99.43% recognition accuracy on training dataset of 28,529 samples
and 92.10% recognition accuracy on validation dataset of 8,400 samples.

61

Table 4.5: Confusion Matrix produced for test dataset (15,859 samples) from DCNN of BHCR

Chapter 4: Experimental Results

62

Table 4.6: Confusion Matrix produced for training dataset (28,529 samples) from DCNN of BHCR

Chapter 4: Experimental Results

63

Table 4.7: Confusion Matrix produced for validation dataset (8,400 samples) from DCNN of BHCR

64

Table 4.8: Experimental results showing comparison between proposed DCNN with some
state-of-art methods of BHCR in terms of Accuracy and Variance on the same test Dataset
of Combined Database and same experimental setup in terms of hardware and software.

Serial
no

Classification Methods Test Accuracy Variance

1 kNN 64.878% 0.011354
2 Wavelet (Daubechies) based feature

extraction [52] and then kNN classifier
65.439% 0.010489

3 Shallow CNN [55] 78.315% 0.003316
4 AlexNet [59] with last customized layer 80.04% 0.003234
5 DCNN (proposed method) 91.248% 0.001042

Experiments have been carried out on the combined dataset mentioned in article 4.4.3.
Experimental results showing comparison between proposed DCNN with some state-of-art
methods of BHCR in terms of test accuracy and variance on the same test Dataset of
15,859 samples of Combined Database are presented in table 4.8. The table shows that
proposed DCNN method for BHCR outperforms other techniques in terms of both
accuracy and variance. Moreover, since no feature extraction or significant preprocessing
are needed, computational time required to get result for test dataset is very low compared
to some other techniques of the table. It is to be noted that in proposed DCNN method, test
accuracy (91.25%) is very close to the validation accuracy (92.10%) during training. It
represents good generalization of learning of the network.

Table 4.9 represents a comparison of reported results of some prominent works with
proposed DCNN on BHCR. Here, we can see that proposed method has been tested over
the largest dataset to get result among the state-of-art methods.

In this experiment two separate databases are merged together to form a large dataset and
many samples of this combined dataset are challenging to detect. It is notable that
proposed method does not employ any feature selection technique whereas many existing
methods use single or two stages feature selections. Though, the methods in Refs. [52] and
[53] consider 45 and 36 classes respectively by merging or excluding some confusing
character, still the table shows proposed method outperforms all other techniques except
methods of Ref. [54].

Chapter 4: Experimental Results

65

The recognition techniques that uses Ref. [54] is much complex than others; it uses two
recognition stages each one consists of individual feature selection and classification
techniques. Besides this, the proposed method without feature selection is very simple.
Also, in Ref. [54], significant preprocessing was done database used. As a result, once
training is completed, proposed method recognizes the test samples very quickly
compared to those which use computationally expensive feature selection stage.
Moreover, the dataset used for training, validation and test in the work of Ref. [54] are a
portion (database BBCD) of the combined database prepared for the experiment under this
work.

Table 4.9: Comparison of reported test accuracies of some state-of-art methods with
proposed DCNN on BHCR.

The work
reference

Total
Classes

Database Size of
test set

Feature
Selection Classification Recog.

Accuracy

Basu et al.
[53] 36 - -

Longest run,
Modified
Shadow,

Octant-centroid

MLP 80.58 %

Bhowmick
et

al. [52]
45

Total: 27,000
samples, training
samples: 18,000,

Validation
Samples: 4,500

4,500 Wavelet
Transformation MLP 84.33 %

Rahman et
al. [33] 49 - Not

available
Multi-stage
framework

Multiple
Experts 88.38%

Bhattacharya
et al. [43] 50

Total: 20,187
samples, training
samples: 10,000 10,187

Chain code
histogram

feature
MLP classifier 88.95%

Bhattacharya
et al. [35] 50

Total: 24,481
samples, training
samples: 15,000.

9,481
Two-stage
framework

HMM
MLP classifier 90.42%

Bhattacharya
et al. [54] 50

BBCD database
containing 37,858
samples. Training
samples: 20,000
and Validation
Samples: 5000.

12,858
Regular and

Irregular Grid
based Selection

MQDF, MLP 95.84 %

Chapter 4: Experimental Results

66

The work
reference

Total
Classes

Database Size of
test set

Feature
Selection Classification Recog.

Accuracy

BHCR-CNN
[55] 50

Prepared dataset
of 20,000

samples. Training
samples: 17,500

2,500 No Shallow CNN 85.96 %

Proposed
BHCR-
DCNN

50

Combined dataset
of CMATERdb

3.1.2 and BBCD.
Total samples:

52,788.
Training samples:

28,529.
Validation

samples: 8,400.

15,859 No Deep CNN 91.25 %

4.6. Conclusion

The chapter touched several achievements of the proposed DCNN architecture by
highlighting the results from different aspects. Different state-of-the-art performance
metrics are used for evaluating its effectiveness. The proposed DCNN has been trained on
the largest database among all reported works on BHCR so far. From all the results and
illustrations, it is clearly seen that the proposed methodology has the capacity to
outperform many of the existing BHCR recognition approaches for Bangla Characters.

67

Chapter 5

Conclusion

5.1. Summary of the work

Inspired by human visual cortex (visual cognition functions of human brain)
CNN has the ability to recognize visual patterns directly from pixel images
with minimal preprocessing. Therefore, in this thesis CNN structure is
investigated without any feature selection for Bangla handwritten pattern
classification. Proposed CNN structure has more depth compared to
previous studies for Bangla Hand-written character recognition task. In this
work, two large databases are merged together to form one larger database
for the recognition task. The outcome has been compared with existing state-
of-art methods for Bangla HCR. The proposed method has shown
outstanding performance with respect to the exiting methods on the basis of
generalized recognition capacity, test set accuracy and robustness in
recognition. Since Bangla character set has 50 characters and many of them
are similar and the CNN architecture proposed in this thesis is not dependent
on specific features linked to character shapes of Bangla language, hence it
has more generalized capacity of recognition and robustness in recognition
task. So the proposed CNN architecture can also be used for HCR in other
languages. Some other state-of-art techniques show good recognition
accuracy but they use features that can be applicable to Bangla character set.

Chapter 5: Conclusion

68

So, the proposed deep CNN architecture is efficient as well as robust in
Bangla HCR.

5.2. Future Scope:

There are tremendous scopes of future extension of this work. Some of the
scopes are listed out below:

• Multiple CNN channels (CNN ensemble) may be used to get majority
based decision. Expected error from ensemble is always smaller than
the expected error from a single predictor.

• Dropout layer may be introduced in the deep CNN model used in this
work. Dropout is a regularization technique for reducing over-fitting
in neural networks by preventing complex co-adaptations on training
data.

• Inception module (i.e. different kernel sizes operating in parallel) may
be introduced. The idea of the inception layer is to cover a bigger
area, but also keep a fine resolution for small information on the
images. The idea is that a series of gabor filters with different sizes,
will handle better multiple objects scales. With the advantage that all
filters on the inception layer are learnable. The most straightforward
way to improve performance on deep learning is to use more layers
and more data. Study shows that incorporating Inception module
increases the accuracy rate. GoogleNet uses 9 Inception modules.

https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Neural_networks

Chapter 5: Conclusion

69

• Residual Network (ResNet) layers may be introduced by feeding the
output of two successive convolutional layer AND also bypass the
input to the next layers. The idea of the residual network is use blocks
that re-route the input, and add to the concept learned from the
previous layer. The idea is that during learning the next layer will
learn the concepts of the previous layer plus the input of that previous
layer. This would work better than just learn a concept without a
reference that was used to learn that concept.

• Performance of proposed CNN could be analyzed for Bangla
compound characters and digits.

69

References

[1] Suen, CY, Berthod, M. and Mori, S., Automatic recognition of handprinted

characters—the state of the art., Proc IEEE 68(4):469–487, 1980.
[2] Govindan, VK. and Shivaprasad, AP., Character recognition: a review. Pattern

Recognit, 7:671–683, 1990.
[3] Trier, OD, Jain, AK. and Taxt, T., Feature extraction methods for character

recognition—a survey,. Pattern Recognit 29(4):641–662, 1996.
[4] Plamondon, R. and Srihari, SN., On-line and off-line handwriting recognition: a

comprehensive survey,. IEEE Trans Pattern Anal Mach Intell 22(1):63–84, 2000.
[5] Arica, N. and Yarman-Vural, F., An overview of character recognition focused on off-

line handwriting,. IEEE Trans Syst Man Cybern Part C Appl Rev 31(2):216–232, 2001.
[6] Cheriet, M., Kharma, N., Liu, C-L. and Suen, CY., Character recognition systems: a

guide for students and practitioner, Wiley, New York, 2007.
[7] Mori, S., Suen, CY. and Yamamoto, K., Historical review of OCR research and

development, Proc IEEE 80(7):1029–1058, 1992.
[8] Uchida, S. and Sakoe, H., A survey of elastic matching techniques for handwritten

character recognition, IEICE Transactions on Information and Systems E88-D(8):
1781–1790, 2005.

[9] Liu, C-L., Sako, H. and Fujisawa, H., Performance evaluation of pattern classifiers for
handwritten character recognition, Int J Doc Anal Recognit 4(3):191–204, 2002.

[10] Park, H-S, Sin, B-K, Moon, J. and Lee, S-W, A 2-D HMM method for offline
handwritten character recognition, Int J Pattern Recognit Artif Intell 15(1):91–105,
2001.

[11] Vinciarelli, A. and Bengio, S., Writer adaptation techniques in HMM based off-line
cursive script recognition, Pattern Recognit Lett 23:905–916, 2002.

[12] Al-Omari, FA and Al-Jarrah, O., Handwritten Indian numerals recognition system
using probabilistic neural networks, Adv Eng Inform 18(1): 9–16, 2004.

[13] Liu, C-L and Fujisawa, H., Classification and learning methods for character
recognition: advances and remaining problems, Stud Comput Intell (SCI) 90:139–161,
2008.

[14] Kim, D. and Bang, S-Y, A handwritten numeral character classification using tolerant
rough set, IEEE Trans Pattern Anal Mach Intell 22(9):923–937, 2000.

[15] Parizeau, M. and Plamondon, R., A fuzzy-syntactic approach to allograph modeling for
cursive script recognition, IEEE Trans Pattern Anal Mach Intell 17:702–712, 1995.

[16] Hanmandlu, M., Ramana and Murthy, OV, Fuzzy model based recognition of
handwritten numerals, Pattern Recognit 40(6):1840–1854, 2007.

[17] Dong, J-X, Krzyak, A. and Suen, CY, An improved handwritten Chinese character
recognition system using support vector machine, Pattern Recognit Lett 26:1849–1856,
2007.

[18] Camastra, F., SVM-based cursive character recognizer, Pattern Recognit 40:3721–
3727, 2007.

[19] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., Gradient-based learning applied to
document recognition, Proc IEEE 86(11): 2278–2324, 1998.

References

70

[20] Srihari, SN, Cohen, E., Hull, JJ. and Kuan, L., A system to locate and recognize ZIP
codes in handwritten addresses, Int J Res Eng Post Appl 1(1):37–56, 1989.

[21] Marti, U-V and Bunke, H., The IAM-database: an English sentence database for offline
handwriting recognition, Int J Doc Anal Recognit 5:39–46, 2002.

[22] Tang, Y., Off-line recognition of Chinese handwriting by multifeature and multilevel
classification, IEEE Trans Pattern Anal Mach Intell 20:556–561, 1998.

[23] Shi, D., Damper, RI and GUNN, SR, Offline handwritten Chinese character
recognition by radical decomposition, ACM Trans Asian Lang Inf Process 2(1):2748,
2003.

[24] Lee, SW and Park, JS, Nonlinear shape normalization methods for the recognition of
large-set handwritten characters, Pattern Recognit 27(7):895–902, 1994.

[25] Yamada, H., Yamamoto, K. and Saito, T., A non-linear normalization method for
handprinted Kanji character recognition—line density equalization, Pattern Recognit
23(9):1023–1029, 1990.

[26] Miyao, H., Maruyama, M., Nakano, Y. and Hananoi, T., Off-line handwritten character
recognition by SVM on the virtual examples synthesized from on-line characters. In:
Proceedings of the eighth international conference on document analysis and
recognition, pp 494–498, 2005.

[27] Sethi, IK and Chatterjee, B., Machine recognition of constrained handprinted
Devanagari, Pattern Recognit 9(2):69–75, 1977.

[28] Parui, SK, Chaudhuri, BB, Dutta and Majumder, D., A procedure for recognition of
connected hand written numerals, Int J Syst Sci 13:1019–1029, 1982.

[29] Dutta, AK and Chaudhuri, S., Bengali alpha-numeric character recognition using
curvature features, Pattern Recognit 26:1757– 1770, 1993.

[30] Bhattacharya, U., Das, TK, Datta, A., Parui, SK and Chaudhuri, BB, A hybrid scheme
for handprinted numeral recognition based on a self-organizing network and MLP
classifiers, Int J Patt Recog Artif Intell 16:845–864, 2002.

[31] Bhattacharya, U. and Chaudhuri, BB, Fusion of combination rules of an ensemble of
MLP classifiers for improved recognition accuracy of handprinted Bangla numerals,
In: Proceedings of the eighth international conference on document analysis and
recognition, pp 322–326, 2005.

[32] Bhattacharya, U. and Chaudhuri, BB, Handwritten numeral databases of Indian scripts
and multistage recognition of mixed numerals, IEEE Trans Pattern Anal Mach Intell
31(3):444–457, 2009.

[33] Rahman, AFR, Rahman, R. and Fairhurst, MC, Recognition of handwritten Bengali
characters: a novel multistage approach, Pattern Recognit 35:997–1006, 2002.

[34] Bhowmick, TK, Bhattacharya, U. and Parui, SK, Recognition of Bangla handwritten
characters using an MLP classifier based on stroke features, In: Proceedings of 11th
international conference on neural information processing, pp 814–819, 2004.

[35] Bhattacharya, U., Parui, SK. and Shaw, B., A hybrid scheme for recognition of
handwritten Bangla basic characters based on HMM and MLP classifiers, In:
Proceedings of 6th international conference on advances in pattern recognition, pp
101–106, 2007.

[36] Hull, JJ, A database for handwritten text recognition research, IEEE Trans Patt Anal
Mach Intell 16:550–554, 1994.

[37] Khosravi, H. and Kabir, E., Introducing a very large dataset of handwritten Farsi digits

References

71

and a study on their varieties, Pattern Recognit Lett 28:1133–1141, 2007.
[38] Al-Maadeed, S., Elliman and D., Higgins, CA, A database for Arabic handwritten text

recognition research, In: Proceedings of the eighth international workshop on frontiers
in handwriting recognition, p 485, 2002.

[39] Su, T., Zhang, T. and Guan, D., Corpus-based HIT-MW database for offline
recognition of general-purpose Chinese handwritten text, Int J Doc Anal Recognit
10:27–38, 2007.

[40] Saito, T., Yamada, H. and Yamamoto, K., On the database ELT9 of handprinted
characters in JIS Chinese characters and its analysis (in Japanese), Trans IECEJ 68-
D(4):757–764, 1985.

[41] Al-Ohali, Y., Cheriet, M. and Suen, C., Databases for recognition of handwritten
Arabic cheques, Pattern Recognit 36:111–121 , 2003.

[42] Noumi, T., Matsui, T., Yamashita, I., Wakahara, T. and Tsutsumida, T., Tegaki Suji
database ‘IPTP CD-ROM1’ no ichi bunseki (in Japanese). In: 1994 autumn meeting of
IEICE, vol D-309, September 1994, 1994.

[43] Bhattacharya, U., Shridhar, M. and Parui, SK, On recognition of handwritten Bangla
characters, In: Proceedings of 5th Indian conference on computer vision, graphics and
image processing, pp 817–828, 2006.

[44] George, A. and Gafoor, F., Contourlet Transform Based Feature Extraction For
Handwritten Malayalam Character Recognition Using Neural Network, IRF Int. Conf.
Chennai, pp: 107-110, 2014.

[45] Nemmour, H. and Chibani, Y., Handwritten Arabic Word Recognition based on
Ridgelet Transform and support Vector Machines, IEEE, pp: 357-361, 2011.

[46] Moni, B. S., and Raju, G, Modified Quadratic Classifier and Directional Features for
Handwritten Malayalam Character Recognition, IJCA Special Issue on Computer
Science-New Dimensions and Perspectives, pp: 30-34, 2011.

[47] Nusaibath, C. and Ameera, M. P. M., Off-line Handwritten Malayalam Character
Recognition using Gabor Filters, Int. J. of Computer Trends and Technology, pp:
2476-2479, 2013.

[48] Lecun,Y. and Bengio, Y., Pattern Recognition and Neural Networks, in Arbib, M. A.
(Eds), The Handbook of BrainTheory and Neural Networks, MIT Press 1995.

[49] Singh, P. and Budhiraja, S., Offline Handwritten Gurmukhi Numeral Recognition using
Wavelet Transforms, I. J Modern Education and Computer Science, pp: 34-39, 2012.

[50] Chen, G. Y. and Kegl, B., Invarient Pattern Recognition using Contourlets and
Adaboost, Pattern Recognition Society Elsevier, pp: 1-13, 2012.

[51] Gonzalez, A., Bergasa, L. M., Yebes, J. J., and Bronte, S, A Character Recognition
Method in Natural Scene Images, Pattern Recognition (ICPR), pp: 621-624, 2012.

[52] T. K. Bhowmik, P. Ghanty, A. Roy and S. K. Parui, SVM-based hierarchical architec-
tures for handwritten Bangla character recognition, International Journal on Document
Analysis and Recognition, vol. 12, no. 2, pp. 97-108, 2009.

[53] S. Basu, N. Das, R. Sarkar, M. Kundu, M. Nasipuri and D. K. Basu, A
hierarchicalapproach to recognition of handwritten Bangla characters, Pattern
Recognition, vol. 42, pp. 1467–1484, 2009.

[54] Bhattacharya, U., Shridhar, M., Parui, S. K., Sen,P. K. and Chaudhuri, B. B., Offline
recognition of handwritten Bangla characters: An efficient two-stage approach, Pattern
Analysis and Applications, vol. 15, no. 4 , pp. 445-458, 2012.

References

72

[55] Rahman, Md. M., Akhand, M. A. H., Islam, S., Shill, P. C. and Rahman, M. M.
H.,Bangla Handwritten Character Recognition using Convolutional Neural Network,
Int.J. Image, Graphics and Signal Processing, vol. 08, pp. 42-29, 2015.

[56] Center for Microprocessor Application for Training Education and Research Retrived
July 10, 2017 from
https://code.google.com/archive/p/cmaterdb/

[57] Kaur, K., and Garg, N. K., Use of 40-point Feature Extraction for Recognition of
Handwritten Numerals and English Characters, IJCTA, pp: 1409-1414, 2014.

[58] Aggarwal, A., Rani, R. and RenuDhir, Handwritten Devanagari Character Recognition
Using Gradient Features, Pattern Recognition (ICPR), pp: 621-624, 2012.

[59] Ciresan, Dan, Meier, U., and Schmidhuber, J., Multi-column deep neural networks for
image classification, IEEE Conference on Computer Vision and Pattern Recognition
(New York, NY: Institute of Electrical and Electronics Engineers (IEEE)), 2012.

[60] Ciresan, Dan, Meier, U., Masci, J., Gambardella, L.M., and Schmidhuber, J., Flexible,
High Performance Convolutional Neural Networks for Image Classification,
Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence-Volume Two: 1237–1242, 2013.

[61] Russakovsky, O., ImageNet Large Scale Visual Recognition Challenge, International
Journal of Computer Vision, 2014.

https://code.google.com/archive/p/cmaterdb/

Appendix A

Table A.1: Samples of Database CMATERdb 3.1.2:

Character Sample Images

অ

আ

ই

ঈ

উ

ঊ

ঋ

এ

Character Sample Images

ঐ

ও

ঔ

ক

খ

গ

ঘ

ঙ

চ

Character Sample Images

ছ

জ

ঝ

ঞ

ট

ঠ

ড

ঢ

ণ

ত

থ

Character Sample Images

দ

ধ

ন

প

ফ

ব

ভ

ম

য

র

ল

Character Sample Images

শ

ষ

স

হ

ড়

ঢ়

য়

ৎ

s

:

u

Table A.2: Samples of Database BBCD:

Character Sample Images

অ

আ

ই

ঈ

উ

ঊ

ঋ

এ

ঐ

Character Sample Images

ও

ঔ

ক

খ

গ

ঘ

ঙ

চ

ছ

জ

ঝ

Character Sample Images

ঞ

ট

ঠ

ড

ঢ

ণ

ত

থ

দ

ধ

ন

Character Sample Images

প

ফ

ব

ভ

ম

য

র

ল

শ

ষ

স

হ

Character Sample Images

ড়

ঢ়

য়

ৎ

s

:

u

