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ABSTRACT

With the growing demand of high-rise buildings mat foundation is now frequently

used. To study in-depth the analysis and design of mat foundation, first the

foundation model depicting soil is examined. Performance of Winkler model is

being checked with two parameter models. It has been found that in spite of failure

to represent any continuity among springs, Winkler foundation gives very good

idealisation of soil proving it to be a recommended model for design of foundations.

Critical review has been done on the performances of Conventional method, ACI

method and finite element method. Finite element method being the best one in

terms of all aspects has exposed the short comings of other methods. From the

present study the extent of the use of other methods has been unveiled. It reveals that

in ACI method the thickness governed by flexural shear will be high with respect to

FE method. Also in Conventional method the steel required by negative moment will

be more compared to FE method. So FE method results in substantial economy than

both ACI and Conventional method. It also implies that this economy will increase

with high column loads. Sensitivity analysis on material and geometric parameters of

mat foundation has been done. This in fact paved the way to explore reshaping of

mat foundation for a better economy.

Mat foundation is a relatively heavy and costly structure. Economy in mat has been

an engineers dream for many years. However, this was not possible for lack of

appropriate design method and guideline. With the availability of the most powerful

tool Finite Element Analysis method it is now possible to attain economy by

changing the configuration of mat geometry. In this study a well verified guideline

for design of non-uniform mat foundation has been presented. Sensitivity analysis of

all relevant parameters have been performed. By using this guideline it has been

revealed that thickness away from column can be reduced up to 35%. And economy

achievable in terms of volume of concrete and reinforcement is about 20 to 30 %

with respect to uniform thickness mats. To facilitate the design of the non-uniform

mat foundation, a full pledged windows based software MATFEA has been

developed.
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CHAPTER!

INTRODUCTION

1.1 GENERAL

tMat foundations are commonly used under structures wherever the column loads or

soil conditions result in conventional footings or piles occupying most of the site. For

many multi-storied buildings a single mat foundation is more economical than

constructing a multitude of isolated foundation elements: Mat foundations due to their

continuous nature. provide resistance to independent differential column movements,

thus enhancing the structure's performance.JMats can bridge across weak pockets in

the non-uniform substratums, thus equalizing foundation movements. Mat foundations

are predominantly used in regions where the underlying stratum consists of clayey

materials with low bearing capacity. This is also used as a load distributing element

placed on piles or directly on high bearing capacity soil or rock. The various

advantages of mat foundations are :

(a) use of the raft as a basement floor,

(b) use of the flexural stiffness to reduce differential settlements due to

swelling and shrinking of active soils,

(c) use of the flexural stiffuess to reduce contact pressures in regions of

higher soil compressibility, and

(d) . use of the raft in combination with piles to reduce total settlement.

Mat foundations are also popular for deep basements both to spread the column loads

to a more uniform pressure distribution and to provide the floor slab for the basement.

A particular advantage for basements at or below the ground water table is to provide a

water barrier. For all these advantages, mat foundations are becoming increasingly

popular.



There are several categories of mat foundation problems which by their nature require

sophisticated computer analysis, since long hand methods would not be directly

applicable. These are :

i) mats of unusual or complex shapes

ii) mats where it is deemed necessary that a varying subgrade modulus must be used.

iii) mats with non-uniform thickness

iv) mats where large moments or axial forces are transmitted to the mat from

laterally loaded shear walls, trusses, or frames; and

v) mats where rigidity of superstructure significantly affects mat behavior and stress

distribution.

There are several types of mat foundation i.e.,

i) flat plate,

ii) plate thickened under column,

iii) waffle slab,

iv) plate with pedestal, and

v) plates with stiffeners as basement walls.

Fig. 1.1 illustrates several mat. foundation configurations as might be used for

buildings. The most common mat foundation configuration is the flat plate type. This

type of foundation tends to be heavily overdesigned due to additional cost of and

uncertainty in analysis.

1.2 BACKGROUND OFTHE STUDY

There are several methods for the analysis of mat, but none is accurate and

convenient enough. There are some approximate methods which are considerably

crude and are in use for a long time. Recently, there are some computer based

methods available. However, these computer based methods idealize mat

unrealistically. The modeling of soil also has got its own limitations.

2
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In the most common and simplified method, known as Conventional method,

column loads are distributed under the mat; then the mat is divided into strips

midway between the column lines and the force system acting on each strip is

adjusted to establish equilibrium. Finally each strip is designed as a combined

footing. This is repeated for the other direction. This method is recommended by

ACI when adjacent spans and column loads do not vary by more than 20%.

However, in this method mat is considered to be fully rigid in determining the soil

pressure and also the divided strips lose their plate characteristics i.e. two way

bending.

One of the most popular methods of mat analysis is the ACI Approximate Flexible

method (Committee 336) which is essentially based on the analysis of Schleicher

(1926). In this method, as the name implies, the mat is considered to be a flexible

plate acted upon by concentrated column loads and resting on a Winkler medium.

Effect of each load is calculated as if the plate were infinite. Forces for each

individual column are summed up. To have the edges free from forces, the mat is

divided into strips and the forces obtained by this approach on the edges are applied

in opposite direction on the respective edges considering each strip to be supported

on semi-infinite elastic foundation [Hetenyi (1946)]. Finally this new set of forces

are added to the previous ones. Shukla (1984) presented design aids for using this

method. Later, this method was further modified by Mician (1985). However, this

complicated and lengthy approximate method fails to take into account the boundary

conditions and moments from columns.

Baker (1948) proposed a method of mat foundation analysis where the mat is

divided into column strips resting on Winkler medium and each strip is analyzed

separately. A particular soil pressure distribution of unknown magnitude is assumed

and applied on both the column strip and the supporting soil. The magnitude of soil

pressure is determined by taking the maximum differential displacements of the

column strip and the supporting soil as the matching criteria. However, the detailed

deflected shapes of the column strip and the supporting soil do not match in this

3



method. Also, this method can not take into account column base moments and fails

to represent the plate characteristics of mat.

Bowles (1974) has proposed Finite Grid method in which the mat is reduced into a

grid system consisting of beam-column elements resting on Winkler medium.

Solution to the problem is obtained following the stiffness matrix approach.

According to Bowles, there is a little computational improvement if the soil is

modeled using its modulus of elasticity and Poison's ratio instead of its modulus of

subgrade reaction. However, the plate characteristics of mat is lost in this method.

Also, the program requires extensive data in generating the grid geometry, sectional

and material properties.

There is also Finite Difference method [Bowles (1974), Deryck and Severn (1960,

1961)] where the mat is modeled as large flat plate on elastic medium. The fourth

order differential equation as given by plate theory is then numerically solved using

finite difference technique. Handling column moments is beyond the scope of this

method. Also, interpretation of the boundary points is cumbersome in this method.

At BUET, Hossain (1993) conducted a comparative study of the available analysis

methods of mat foundation and felt the need for a rigorous finite element study of

the problem. Later, Molla (1995) tested the performance of Mindlin plate element

in finite element analysis of mat foundation and also compared the results with those

from other available methods. The study of Molla opened a wide horizon for a

rigorous finite element study of the problem with more appropriate and versatile

element in search of a more economic design of mat. Sutradhar (1995) compared the

analysis of mat foundation by Finite Element method using Ahmad's thick shell

element with those by Finite Grid method and Finite Difference method.

Lefas, Georgiannou and Sheppard (1996) presented an iterative procedure for

analysis and design of mat foundation based on a soil-structure interaction procedure

developed using well-marketed programs VDISP by OASYS, STAAD-IlJ/ISDS by

4



Research Engineers and Supercalc by Computer Associates. VDrSp is a

geotechnical program for calculating vertical displacements at specified points due

to any pattern of loading on an elastic half-space representing the ground. From

VDISP the spring constant Ks is entered into the STAAD-III grillage and the raft is

analysed.

Liou and Lai (1996) presented a simplified structural analysis model for mat

foundation with grid floor beams as stiffeners. The model becomes grid floor beams

on an elastic foundation with loadings applied at the intersections of floor beams.

The yield line theory (Johansen 1962) for bottom slabs is employed to lump the

subgrade reaction springs to the location under grid floor beams.

Morshed (1997) conducted comparative analysis between finite element method

using Ahmad thick shell element with Acr method and Conventional method. He

also suggested a non-uniform mat foundation. His findings paved the way for

developing a design rationale for mat foundation.

1.3 OBJECTIVE OF THE PRESENT RESEARCH

The present research has been aimed at the following objectives:

(i) To analyse mat foundation with a two parameter foundation model and

compare with Winkler foundation model.

(ii) To establish an economic design guideline for rectangular mat

foundation.

(iii) To conduct significant parametric study of both uniform and non-uniform

thickness mat foundations

(iv) To epitomize the basis of suitability of varIOus methods of mat

foundation.

(v) To develop a Windows 95/98 based software for analysis and design. of

mat foundation using finite element method of analysis, which will also

5



give graphs for deflection, shear and moment diagram of any prescribed

line in the mat.

1.4 METHODOLOGY

For analyzing mat foundation by finite element technique soil has been modeled as

Winkler medium and Ahmad's general thick shell finite element (1969,1970) has

been used.

In an attempt to make a two parameter foundation model a thorough survey of the

related literatures has been made. Limitations and assumptions of such models has

been thoroughly studied to choose the closest reasonable model. Comparative

assessments has been carried out between two parameter and Winkler foundation

model.

Efforts have been made to substantiate the findings from the sensitivity study of the

parameters which are critical in mat foundation design.

A simple design method for non-uniform mat foundation has been proposed and

critical aspects of the guide lines of this method has been verified. A number of

cases has been tested.

A Windows 95/98 based complete software has been developed which can analyse

both uniform and non-uniform mat foundations. Finally, a suggestion for future

study has been offered.

6
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CHAPTER 2

LITERATURE REVIEW

2.1 GENERAL

Analysis of mat foundation requires study of two aspects, the soil- structure interaction

and the various methods of analyzing the mat.

The mechanical response of naturally occurring soils can be influenced by a variety of

factors. These include shape, size and mechanical properties of the individual soil

particles, the configuration of the soil structure, the intergranular stress history and the

presence of soil moisture, the degree of saturation and the soil permeability. These factors

generally contribute to stress-strain phenomena which display markedly non-linear,

irreversible and time dependent characteristics. Thus an attempt to solve a soil-foundation

interaction problem taking into account of all such material aspects is clearly an onerous

task. In order to obtain meaningful and reliable information for practical problems it

becomes necessary to idealize the behavior of soil by depicting soil models.

There are several methods to analyse mat foundation. These are a) Conventional

method, b) ACI approximate flexible method, c) Baker's method, d) Finite difference

method and e) Finite grid method.

Conventional method is the crudest one. Here mat is treated as a rigid slab. All the other

methods are based on Winkler spring model. ACI method is based on Schleicher's

solution of infinite flexible slab on continuous spring support and Baker's method is

designed to emulate that solution. Finite grid and Finite difference methods are

numerical analysis methods and require extensive computer support though they do not

offer any substantial improvement in results over ScWeicher's solution. The first two

7



methods are generally used.

2.2 FOUNDATION MODEL

Generally the analysis of bending of beams on an elastic foundation is developed on the

asswnption that the reaction forces of the foundation are proportional at every point to the

deflection of the beam at that point. This asswnption was first introduced by Winkler

(1867) and formed the basis of Zimmermann's classical work (1930) on the analysis of

railroad track. It has been shown by Fbppl's classical experiment (1922) and Hetenyi's

analytical work (1946) that Winkler's asswnption in spite of its simplicity leads to

satisfactory results in stress analysis of beams on an elastic foundation.

On the other hand, by means of the hypothesis of isotropic, linearly elastic semi-infinite

space, the physical properties of a natural foundation can be correctly described. To bridge

the gap between theses two extreme cases, interactions between Winkler's springs were

considered by several authors. Hetenyi (1950) treated the problems of beams or plates on

an elastic foundation by asswning a continuous beam or plate embedded in the material of

foundation, which is itself without any continuity. Pasternak (1954) assumed that the shear

interactions exist between the springs. Vlasov and Leont'ev (1966) also considered the

shear interactions in the foundation and formulated their problems by using a variational

method. They solved a large nwnber of problems involving beams, plates and shells on

two parameter model elastic foundation.

2.2.1 WINKLER MODEL

The idealised model of soil media proposed by Winkler (1867) assumes that deflection

w, of the soil medium at any point on the surface is directly proportional to the stress, q

applied at that point and independent of stresses applied at other locations, i.e.

8



q(x,y) = kw(x,y) (2.1)

where k is termed the modulus of subgrade reaction with units of stress per unit length.

There are indications that this assumption is already to be found in the works of Euler,

Fuss, Bubnov and Zimmermann ( Korenov, 1960; Hetenyi, 1966 ). The equation is

usually the response function or the kernel function of Winkler model. Physically

Winkler's idealisation of the soil medium consists of a system of mutually independent

spring elements with spring constant k (Fig. 2.1). One important feature of this soil

model is that the displacement occurs immediately under the loaded area and outside

this region the displacements are zero. Also for this model the displacements of a loaded

region will be constant whether subjected to an infinitely rigid load or a uniform flexible

load.

2.3 TWO PARAMETER ELASTIC MODELS

The inherent deficiency of the Winkler model in depicting the continuous behaviour of

real soil masses and the mathematical complexities of the elastic continuum has led to

the development of many other simple soil response models. These models possess

some of the characteristic features of continuous elastics solids (Kerr, 1964; Hetenyi,

1966).

The term 'two parameter' signifies the fact that the model is defined by two independent

elastic constants. The development of these two-parameter soil models has been

approached along two distinct lines. The first type proceeds from the discontinuous

Winkler model and eliminates its discontinuous behaviour by providing mechanical

interaction between the individual spring elements. Such physical models of soil

behaviour has been proposed by Filonenko-Borodich ( 1940, 1945), Hetenyi (1946),

Pasternak (1954) and Kerr (1964) where interaction between the spring elements is

provided by either elastic membranes, elastic beams or elastic layers capable of purely

shearing deformation. The second approach starts from the elastic continuum model and

9



x x

x x .

(c) Z (d) Z

Fig. 2.1. Surface displacements of the Winkler model due to (a) a non-uniform load,
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Fig. 2.2 Surface displacements of the Filonenko-Borodich model. (a) Basic modeJ,
(b) concentrated load, (e) rigid load, (d) uniform flexible load.



introduces constraints or simplifYing assumptions with respect to the distribution of

displacements and stresses. The soil models proposed by Reissner ( 1958) and Vlazov

and Leontiev ( 1966) take into consideration such simplifications.

2.3.1 FILONENKO- BORODICH MODEL

The model proposed by Filonenko-Borodich model (1940,1945) acqUIres continuity

between the individual spring elements in the Winkler model by connecting them to a

thin elastic membrane under a constant tension T (Fig.2.2). By considering the

equilibrium of the membrane-spring system, it can be shown that for three-dimensional

problems (e.g. rectangular or circular foundations) the surface deflection of the soil

medium due to a pressure q is given by

where

q(x,y) = kro(x,y) - TV2ro(x,y)

2 (}' (}2
V =--+-ax' cry'

(2.2)

is Laplace's differential operator in rectangular cartesian coordinates. In the case of two-

dimensional problems this equation reduces to

q(x) = kw(x) _ T d'w(x)
dx'

(2.3)

The two elastic constants necessary to characterise the soil model are K and T. Typical

examples of surface deflection profiles of this particular model due to concentrated,

flexible and rigid extemalloads are shown in Fig.2.2

10



2.3.2 HETENYI MODEL

In the model proposed by Hetenyi (1946), interaction between the independent spring

elements is accomplished by incorporating an elastic plate in three-dimensional

problems, or an elastic beam in two-dimensional problems. The response function for

this model is given by

q(x,y) = km(x,y) - DV4m(x,y) (2.4)

where D ( = Eph3 !l2(1-v/ ) is flexural rigidity of the plate. Here agam, for two-

dimensional problems.

Eqn.2.4 reduces to

q(x) = kw(x) - Dd~~X)

2.3.3 PASTERNAK MODEL

(2.5)

The model for soil behaviour proposed by Pasternak (1954) assumes the existence of

shear interaction between the spring elements. This can be accomplished by connecting

the spring elements to a layer of incompressible vertical elements which deform in

traverse shear only (Fig.2.3). The deformations and forces maintaining equilibrium in

the shear layer are shown in Fig.2.3. By assuming that the shear layer is isotropic in the

x, y plane with shear modulii Gx = Gy = Gp, we have

(2.6)

The total shear forces per unit length of the shear layer are

11
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OwGp-;

Ox

I

Ny = f 1:yzdz
o

(2.7)

For the force equilibrium in the z-direction

q - ro o (2.8)

Using the condition ro = kw and Eqn.(2.6) in (2.8) we get

q(x,y) = kOl(X,y)- GpV20l(X,y)

2.3.4 REISSNER MODEL

(2.9)

The model proposed by Reissner (1958) is also derived by introducing displacement and

stress constraints that simplifY the basic equations for a linear elastic isotropic

continuum. By assuming that the in-plane stresses ( in the x, y plane) throughout a soil

layer of thickness H are negligibly small (crxx = cryy= 1:xy = 0 ) and that the displacement

components u, v and w in the rectangular cartesian coordinate directions x, y, z

respectively, satisfY conditions

u=v=w=Oonz=H; u=v=w=Oon z=O (2.1 0)

it can be shown that response function for the soil model is given by

2 C2 2cw-c V w= q--V q
I 2 4c1

12
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where w is the vertical displacement of the surface of the elastic layer, z = 0, and q is the

external load. The constants Cl and C2 characterising the soil response eqn. are related to

Es and Vs by Cl =EslH, and C2= HGs/3, where Es and Gs are the elastic modulus and

shear modulus, respectively, of the soil layer. Also it is noted that for a constant or

linearly varying stress after redefining Cl= k and C2 = Gp . Eqn.(2.11) is identical to

eqn.(2.2) or (2.9).

Here again as a consequence of assuming that in-plane stresses axx ,ayy and 'rxyare

zero, the shear stresses 'rxz and 'ryzare independent of z. These stresses are constant

throughout the depth of the elastic layer for a given location x, y. Such an assumption

would prove to be particularly umealistic for a thick soil layer.

2.3.5 VLAZOV MODEL

The model of soil response proposed by Vlazov ( 1949) presents an example of the

second type of two-parameter elastic model which is derived by introducing

displacement constraints that simplify the basic equations for a linear elastic isotropic

continuum. Vlazov's approach to the formulation of the soil model is based on the

application of a variational method. By imposing certain restrictions upon the possible

distribution of displacements in an elastic layer, he was able to obtain a soil response

furiction similar in character to eqn.(2.3) and (2.9).

The state of plane strain in the elastic layer (Fig.2.4) in x-z plane is considered first.

The state of strain in the foundation layer is assumed to be such that the displacement

components are

u(x, z) = ° ,w(x, z) = w(x)h(z)

13
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The function h(z) describes the variation of displacements w(x,z) in the z direction.

Several such variations have been proposed by Vlazov and Leontiev (1966 ) including

the linear and exponential variations

h(z) = (1- ). h(z) = sinh[y(H-z)/L]
11 , sinh[yH / L ]

where 11 = zIH and y and L are constants.

(2.13)

Using the stress strain relations for plain strain conditions ( Timoshenko and Goodier,

1970 ) we obtain

[ axx ; azz] = Eo w(x) dh(z) [vo;l]
(I-v;) dz

'xz = Eo dw(x) h(z)
2(1 + vo) dx

(2.14 )

where Eo = E,I(I-vs2) and Vo= Vs ( 1- vs) and Es, Vs respectively the elastic modulus and

Poisson's ratio for the elastic material. The equation of equilibrium in the z- direction is

obtained by Lagrange's principle of virtual work; i.e. by equating to zero the total work

of all internal and external forces on an element over any arbitrary virtual displacement.

The virtual work contribution from the external forces

Ha
Ue = bq(x)h(O)dx + b f T." h(z)dzdx

oax

And the virtual work contribution from internal forces is

Uj = - bfCT= dhd(z)dzdx
o z

14
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Using the conditions Ue + Ui = 0 and the eqn.(2.l4)-(2.l6), we obtain the response

function as

() kw() 2 d'w(x)
qx= x-t 2

dx

where

(2.17)

(2.18)

2.3.6 COMMENTS ON VARIOUS MODELS

It can be seen that eqn.2.9 is identical with eqn. 2.2 if T is replaced by Gp, Thus the

surface deflection profiles for Pasterak model are very similar to those obtained for the

Filonenko-Borodich model. With the two-parameter models considered so far, the

Winkler case can be recovered as a limiting case, as T, D and Gp tend to zero.

By comparing (2.17) with (2.3) and (2.9) it is apparent that the shear modulus Gp, the

membrane tension T and the spring constant k are directly related to the elastic constant

Es and Vs of the soil layer. Here therefore is a physical interpretation of the modulus of

subgrade reaction, k.

15



2.3.7 DETERMINATION OF ELASTIC CONSTANTS FOR TWO

PARAMETER MODEL

The effectiveness of these soil models is dependent on the following factors:

i) the ease and accuracy with which material parameters encountered in the idealized

soil models could be determined from either laboratory or field tests.

ii) the reliability and accuracy of the theoretical predictions, as verified by experimental

or field studies of foundation behaviour.

(a) Poisson's ratio

Poisson's ratio for a soil may be evaluated from the ratio of the radial strain to axial

strain during a tri-axial compression test. It is found that in general the test procedure

influences the value of Poisson's ratio. For example although relatively constant values

of Poisson's ratio are obtained from zero radial strain tests, the Poisson's ratio as

determined by tri-axial compression tests vary with magnitude and range of the

deviatoric stress m( Jacob, 1957; Barkan, 1962; Bishop and Henkel, 1962; Wade, 1963 )

Some typical values for the Poisson's ration Vs are shown in table 2.1 and table 2.2. In

general values of 0.30 - 0.35 for sands and 0.40 - 0.50 for clays have been observed.

Terzaghi (1943) calculated a value of 0.30 for sand and values 0.40-0.43 for clays based

on elastic considerations. That is, by considering the at rest value of earth pressure and

the linear elastic stress- strain relations, it can be shown that

Vs = Ka/(1+Ka)

where Ka = tan2( 45 - ~/2), and ~ is the angle of internal friction.

Barkan (1962) indicates a range of 0.3-0.35 for sands. Tsytovich(1963) recommends

Poisson's ratio values of 0.15-0.25 for sands and 0.35-0.40 for clays.

16



Table 2.1 Typical ranges for Poisson's ratio after Bowles (1977)

Type of Soil vs

Clay, saturated 0.4-0.5

Clay, unsaturated 0.1-0.3

Sandy clay 0.2-0.3

Silt 0.3-0.35

Sand (dense) 0.2-0.4

Coarse (void ratio - 0.4-0.7) 0.15 .

Fine grained (void ratio - 0.4 - 0.7) 0.25

Rock 0.1-0.4 (depends somewhat on

type of rocks)

Table 2.2 Typical ranges for Poisson's ratio after Zeevaert (1972)

Type of soil Compressibility vs

Lacustrine clays and silts Very high 0.43-0.35

Clays and silts; lacustrine sandy silts; residual High 0.35-0.30

soils; loose volcanic dust

Compact clays and silts; fine aeolian sediments; Medium 0.30-0.25

residual soils and volcanic semi compact

sediments; fine alluvium

Sans, compact gravels, alluvial soils; compact Low 0.25

and well-graded sediments

Sands, gravelly soils; compact, cemented and Very low < 0.25

well-graded alluvial sediments

17



(b) Modulus Of Elasticity

The modulus of elasticity is often determined from unconfined, triaxial, or oedometer

compression tests. Plate loading tests and pressometer tests may also be used to

determine the in situ modulus of elasticity of the soil. Some typical values of the

modulus of elasticity are shown in table 2.3.

The modulus of elasticity is found to vary with the void ratio and also depends on the

moisture content ( Barkan, 1962 ) . The variation of Es with the moisture content, m,

may be expressed as

where E'G is the modulus of elasticity at m=O and rna is the moisture content at Es = O.

Limiting value for m are approximately from 15 to 29% depending upon the type of soil

constituent.

Barkan (1962) and Konovalov and Rudnitskii(l964) have observed that the modulus of

elasticity for granular soils can also be affected by its porosity which in turn is

influenced by the size and shape of the soil particles.

Bjerrum (1964) suggested the following relationship based on expenences with

normally consolidated clays

Es = [ 250 to 500 ] cu

m which Cu represents the undrained shear strength obtained from unconfined

compressive tests or from field vane tests.

18



Table 2.3 Range of values ofEs for selected soils (after Bowles 1977)

Type of soil Es (kN/m2
)

Very soft clay 300-3000

Soft clay 2000-4000

Medium clay 4500-9000

Hard clay 7000-20000

Sandy clay 30000-42500

Glacial till 10000-16000

Loess 15000-16000

Silt 2000-20000

Silty sand 5000-20000

Loose sand 10000-25000

Dense sand 50000-100000

Dense sand and gravel 80000-200000

Loose sand and gravel 50000-140000 .

Shale 140000-1400000

Table 2.4 Some typical values for Vs and I) (after Litvinov, 1951 )

Type and consistency of Vs I)

soil

Dense sand 0.25 0.84

Loose sand 0.30 0.74

Clayey sand and silt 0.30 0.74

Firm and stiff sand-clays
.

or silt-clays 0.35 0.63

Firm and stiff clays
.
0.40 0.47

Very stiff clays 0.20 0.90

here I) = (1+vs)(1-2vs)/(l-vs)
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2.4 ANALYSIS METHODS

2.4.1 CONVENTIONAL METHOD OF ANALYSIS

In this method mat is treated as infinitely rigid giving planer soil pressure distribution.

The mat is divided in both directions into strips centered on the column lines and having

widths equal to half the spacing of column lines on each side of the column lines. Each

strip is loaded by column loads and supported by soil pressure. This method can be used

where the mat is very thick and column spacing and loading are fairly uniform. Though

quite suitable for hand calculation, this method simply fails to represent the reality with

mat foundation such as shear concentration near the loads.

The procedure for the conventional analysis consists of the following steps:

(1) The resultant of all loads acting on the mat and its location is determined from:

where

"R = L P,
i",l

"IF,X,
e = _;,=_1 L

;c n XmIF,

R = resultant of all column loads,

X's = x coordinates of the columns w.r.t. the comer of the mat,

V's = y coordinates of the columns w.r.t. the comer of the mat,

20
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P's = column loads,

n = total number of columns,

Lxm = x dimension of mat,

B
Ym

= y dimension of mat,

ex = x eccentricity ofR W.r.t. the center of the mat,

ey = y eccentricity ofR W.r.t. the center of the mat.

(2) The slab is divided into strips in x and y directions, one direction at a time, half way

in-between the column lines. Each strip is assumed to act as an independent beam

supported by soil pressure and acted upon by column loads. Steps 3 to 6 will be

applicable to each of these strips.

(3) The soil pressure distribution is calculated using the equation:

where

q

A

Ix, Iy

= soil pressure at any point under the mat,

= plan area of mat,

= moment of inertia of A W.r.t. x and y axes,

(2.22)

x,y = co-ordinates of locations where soil pressures are desired W.r.t.

the center of the mat.

Soil pressure is calculated at the four comers of the strip and their average is obtained

from

where
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qa = average soil pressure under the strip,

q, = soil pressure at the corners of the strip.

This time a check is made that the maximum soil pressure is less than the allowable

bearing capacity.

(4) qa and the strip column loads are modified to enforce static force equilibrium. First,

the average load on the strip is calculated by

I Os
Qa = - ( IBLqaI + II Pis I ) (2.24)

2 i=!

where

Qa = average load on the strip,

B = width of the strip,

L = length of the strip,

ns = no of columns in the strip,

ps = strip column loads.,

The modified average soil pressure is calculated by

(2.25)

The modified column loads Fi are determined from

(2.26)
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(5) To ensure moment equilibrium q a is then shaped as a trapezoid so that the

resultants of soil pressure and column loads meet at the same point. The end magnitudes

of the soil pressure trapezoid is calculated as follows:

IF,r,

where

er =....!..=l.-IF,
1=1

3er=2qa(~-I)
L

(2.27)

(2.28)

(2.29)

er

r's

= eccentricity of the resultant of the strip column loads W.r.t.

the left end of the strip,

= distance of the strip column loads from the left end ofthe strip,

= soil pressure intensity at the left and the right end of the strip

respectively.

(6) The shear force and bending moment are calculated at the various points of the strip

for the modified column loads and soil pressure.

Arora (1992) proposes that as the analysis is approximate, the actual reinforcement

provided should be twice the computed values.

Applicability And Limitations

According to the ACI Committee 336 (1966), the design of mats may be accomplished

using the conventional method if :
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i) The average of the two adjacent spans in a continuous strip is less than 1.75/" (A is

defined later) and adjacent column loads and column spacing do not vary by more than

20 percent of the greater value.

ii) The relative stiffness factor Kr is found to be greater than 0.5, where

K _ EIB
r - E B3

s

where

E = modulus of elasticity of materials used in structure,

IB = moment of inertia of structure per unit length,

Es = Modulus of elasticity of soil and

B = Width offooting.

(2.30)

An approximate value of EIB per unit length of building can be found by summing

flexural rigidity of footing (ElF), the flexural rigidity of each framed member (EIb) and

the flexural rigidity of any shear walls (Eah3/l2) where a and h are the thickness and

height of the walls respectively; EIB is given by:

(2.31 )

where

IF = Moment of inertia of footing.

2.4.2 ACI APPROXIMATE FLEXIBLE METHOD

ACI Committee 336 (1966) suggested this method for the general case of a flexible mat

supporting columns at random locations with varying intensities of load. This procedure

24



is essentially based on Schleicher's solution of circular plate on Winkler medium.

Shukla (1984) provided charts for easy calculation of moments and shear following this

method.

The effect of a concentrated load on a flexible infinite slab resting on continuous spring

support has been found to damp out quickly away from the load. It is, therefore, possible

to consider mat as a plate of infinite dimension and determine the effect of a colwnn

load in a specific region, called the zone of influence, surrounding the load. This zone of

influence is generally not large and beyond this zone moments and shears in mat is

insignificant. The total effect of all the column loads at any point can thus be

determined by superimposing the effect of all the column loads within whose zones of

influence the point lies. If moments and shears are found along the edges then these are

later applied in opposite direction at the same location and with a semi-infinite beam

analysis their effects inside the mat is calculated and superimposed on the previous

solution to have the final moments and shears. The later part of the analysis is called

end correction and is a way of getting rid of the errors acquired by treating the mat

infinite. Mat deflections, though unrealistic, can be calculated in the same manner.

This method can not take care of column base moments, does not model boundary

conditions realistically and gives unsatisfactory result near the edges.

A problem can be systematically solved through the following steps.

(I) The flexural rigidity of the mat, D is calculated.

EtlD=----
12(1- v2

)

where

E = modulus of elasticity,

= 57000~fcpsi for concrete (AeI 318-83, Section 8.5.1),
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f c = ultimate concrete strength in psi,

t = thickness of mat in inch,

v = Poisson's ratio of concrete ( 0.15 to 0.25).

(2) The radius of effective stiffness L is then calculated as follows:

(2.33)

where

k =modulus of subgrade reaction.

Radius of influence for any column load is 4L and calculation of deflections, bending

moments, and shear forces due any column load will be limited within this zone around

that column.

(3) Since the effect of each load is transmitted through the mat in a radial direction,

polar co-ordinate system was used in the original solution. The radial and tangential

moments, the shear and deflection at a point are calculated using the following

formulae:

-: [Z4(i-) - (1- v) Z3~i-)]
L

Z' ()
= _![vZ4(!-)+(l-v) 3 L]

4 L ~
L

Q = - :L Z4(~)

w = PL
2
Z (~)

4D 3 L
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r I r 7 r r r
23 (-) = - 2 I (-) - ~[R I (-) + 22 (-) log e {1.781 -}]

L 2 L II L L L

r I r 7 r r r
24(-) = -22(-) + ~[R2(-) + 2J(-)loge{1.7S1-}]

L 2 L II L L L

(_1),+1 (!.-)4(i-J)
r"' L

21 (L) = I~J24(i-I)[{2(i -1)}l]2

(_I)'(~)4(i-J)+2
r"' L

Z2(L)= i~J24(i-J)+2[{2(i_I)+I}!]2

(_l)i+11jI {2(i - 1) + 1}(~)4(i-I)+2
r "' L

R
, (L) = ~I 24(i-I)+2[{2(i _ I) + I} !]2

n 1
ljI(n) = 2: ~

i=;}

where

(2.38)

(239)

(2.40)

(2.41 )

(2.42)

(2.43)

(2.44)

p

r

Q
w

'II, R'sand 2's

= concentrated load,

= radial distance of the point under investigation from P,

= radial and tangential moments for a unit width of mat,

= shear force per unit width of mat,

= mat displacement,

= functions first introduced by Schleicher(l926).

The 2 and R functions have the characteristic features of exponential waves and it is

accurate enough to calculate only 4 or 5 terms of those.
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4) The radial and tangential moments are then converted into bending moments in

cariesian co-ordinate system (Fig. 2.5) using the following formulae, whereas shear and

displacements in the caIiesian coordinate system remains the same.

where

Mx = M,COS2~ + Mtsin2~

My = M,sin2~ +Mtcos2~

(2.45)

(2.46)

= bending moment about y and x axes respectively,

= angle of the radial line passing through the point under

consideration w.r.t. the positive x axis in a counter clockwise

direction.

(5) For the resultant effect of all the column loads, radii of influence of whose overlap at

points of interest, the moments, shears and displacements due to individual columns are

superimposed.

(6) If the edge of the mat is within the influence zone of some of the columns, at the end

of the afore mentioned procedure there will be bending moments and shear forces along

the edges. Since in a real life problem the edges should be free of forces, a correction

should be applied. This is done as follows:

The mat is divided into strips of unit width in both directions. Assuming the strips as

semi-infinite beams; shears and moments equal and opposite to those obtained in the

previous analysis is applied and their effects at various points are superimposed on the
..

respective values obtained earlier.

For moment, shear and deflection in a semi infinite beam, the following relationships

are used:
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VeMe = MeA Af - S x - B Af
Ie

(2.47)

(2.48)

2M 102W =_ e
e k

Ie=V kB
4Elb

2 YeA
CAe + s x k DAr (2.49)

(2.50)

where

A lof = e -lof (casAr + sin lor)

B -lor.,
'Af = e SIn /\,[

DAr = e -Ar cos lor

(2.51 )

(2.52)

(2.53)

(2.54)

Me, Ve & We = end correction to moment, shear and displacement respectively,

s

r

= end moment and shear respectively,

=width of mat strip = I,

=moment of inertia of mat strip,

= I for left side end forces,

= -1 for right side end forces,

= distance of the point under consideration from the end

conditioning force Me or Ve.

Variation of AAr , BAf , CAf and DAf with r and variation of Cmf and Cmt with x is shown

in Fig.2.5 and Fig 2.6 respectively.
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CHAPTER 3

FINITE ELEMENT ANALYSIS OF MAT FOUNDATION

3.1 GENERAL

Finite element technique is the most powerful arid versatile of all the available

numerical analysis techniques. In this method, the structure to be analyzed is

modeled as an assemblage of a finite number of discrete interconnected elements and

the displacements of the connecting points, called the nodal points, of these elements

are taken as the basic unknowns. The applied loads are transformed into equivalent

nodal loads and for each element, the relationship between the nodal loads and nodal

displacements is established. Then with a suitable assembling of the element load-

displacement relationship, sufficient number of load-displacement relations for the

whole structure can be found which, upon solution, give the nodal displacements.

Once known, these displacements are used to calculate stresses at the nodes or at

points within the elements.

3.2 IDEALIZATION OF MAT FOUNDATION ON WINKLER MODEL

3.2.1 Selection of Element

Mat foundation is a three dimensional thick plate structure. In case of mat, transverse

flexural shears and bending moments are the most important internal forces produced

in response to the loads it usually encounters e.g. axial column forces and column

base moments. Thick shell element [Ref. 3] is one of the most suitable elements

which matches all of these above mentioned criteria. It can represent the thickoess of

the mat by its very own geometry. Also, in thick shell elements the nodal variables

are taken to be the displacements of nodal normals which, though approximately

normal to the undeformed middle surfaces of the elements, are not necessarily
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normal to the deformed middle surface, leaving scope for transverse shear stress and

shear strain calculation.

The program that is used is as the core computer program was written by Ahmad

(1969) who also devised the element. There are two types of Ahmad's element,

namely 8 noded element and 12 noded element. For the present study the first one is

used since it gives results accurate enough.

3.2.2 Element Mesh Configuration

The simplest element division scheme is adopted for mat. It makes both data

generation and result interpretation straight forward. The mesh used here IS a

rectangular grid with the option of finer elements near column loads. The mesh is

characterized by the number of X and Y directional divisions of the grid and at

present, each of these can be increased upto fifty. Details of the mesh are shown in

Fig 3.1.

3.2.3 Element and Node Numbering and Determination of the Front Width
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Fig. 3.1. Typical finite element mesh for mat foundation.
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Fig. 3.2. A typical finite element mesh for mat with element and node numbering.
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Local X

t Local Y

• • • • • • •52 51 56 55 60 59 64 63
• • • • • • • •49 50 53 54 57 58 61 62
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• • • • • • • •4 3 8 7 12 11 16 15
• • • • • • • •1 2 5 6 9 10 13 14

Global Y

--Global X
Fig. 3.3. A typical finite element mesh for mat with Gauss point numbering and

global and local axes (Z axes are perpendicular to the XY plane at the

intersection of X and Y axes of the corresponding system).

I YGlobal

Mat
ZGlobal

t

YLocal

iL
XLocal

Fig. 3.4. Global and local coordinate systems for mat foundation.
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Under the scheme adopted, total number of elements Ne , total number of nodes Nn ,

total number of Gauss points Ng and the front width Fw can be calculated as

follows:

Ne =Hd x Hv

Nn = Hv x ( 3 x Hd + 2 ) + 2 x Hd + 1

Ng=4xNe

Fw = 40 + 16 x ( Hd -1 )

where

Hd = number of X directional divisions,

Vd = number of Y directional divisions.

3.2.4 Selection of the Global and the Local Axes

(3.1 )

(3.2)

(3.3)

(3.4)

As the mat is a flat block type structure, selection of the global and local axes is very

straight forward. The global axis system is so selected that the bottom face of the

mat away from the columns is the XY plane ( i.e. in case of greater thickness of mat

under the columns, the extra thickness goes below the XY plane ), the leftmost face

of the mat is the YZ plane and the front face is the ZX plane. Details are shown in

Fig. 3.4.

The program takes data and gives output with respect to the global axes but to

calculate shears and moments, stresses in local coordinate system are needed. The

advantage of the simple shape of mats under consideration is taken by choosing a

local axis system parallel to the global one having its origin at the node of interest.

3.2.5 Modeling of Soil and Boundary Conditions

Supporting soil is modeled as Winkler medium. Soil springs may be uniform or may

be zoned to incorporate the coupling effect of soil springs.
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Uniformly distributed soil springs are first concentrated at the nodes. This is done

element wise and by lumping the total spring stiffness under an element at its nodes.

There are two approaches to accomplish this purpose. These are :

(a) Equivalence between the nodal spnng stiffnesses and the distributed

spring stiffness under the concerned element is made by adopting a

model which assumes that middle nodes takes twice as much stiffness as

the corner nodes.

(b) Middle nodes takes thrice as much stiffness as the corner nodes

according to the contributing area concept as shown in Fig. 3.5.

3.2.6 Application of Column Loads

Both column axial loads and column base moments can be applied. Column axial

load may be applied as concentrated load or it may be distributed over an area equal

to the cross-section of the column by taking an element, designated as column

element, there and applying the load as a uniform surface pressure (Fig. 3.6).

Similarly, column base moments may be concentrated or distributed. The later is

accomplished by resolving column base moment into nodal loads acting at the nodes

of the column element along the sides parallel to the axis of the moment (Fig. 3.6).1n

this case, middle nodes take four times load than comer nodes as justified by the

shape functions.

To simulate the higher rigidity of column elements with respect to other portions of

the mat, modulus of elasticity of column elements is increased.

3.2.7 Transformation of Stresses and Calculation of Shear Forces and

Bending Moments

For calculating bending moments and shear forces, global stresses are transformed

into local stresses first. This is done as follows:
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Fig. 3.5. Distribution of nodal springs by contributing area (Ae = area of the

element).
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Fig. 3.6. Different modes of application of load: (a) Concentrated axial column

load; (b) Concentrated column base moment; (c) Distributed a"Xialcolumn

load and (d) Distributed column base moment (?1tc = column base moment

and P = column axial load).
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where

[0"'] local stress matrix,

(35)

[0"] global stress matrix,

[8eJ = direction cosine matrix of the local axes W.r.t. the global axes.

Here

, , T'0" xx Txy zx

[0" ,] = Txy cr' , (3.6)yy Tyz

T' Tyz cr'zx zz

crxx Txy TZX

[cr]= Txy cryy Tyz (3.7)

TZX Tyz crzz

where

cosBx'. Y

cosBy'y
cosB"x

cos Bx',]
cosBy'_

cos Bz'x
(3.8)

a's and cr"s

'tIS and 1'"5

8's

global and local normal stresses respectively,

global and local shear stresses respectively,

angles between the global and local axes.

In Equation 3.6 and Equation 3.7, the first subscript of any stress term denotes the

normal to the surface on which the stress acts and the second one stands for its own

direction. In Equation 3.8, the first subscript of any angle term represents the local

axis and the second one denotes the global axis.
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Now, as the selected local and global axis systems are parallel, [ee ] is a unit matrix.

So local stresses are the same as the global stresses. Sign of any stress is obtained by

multiplying the sign of the normal of the plane on which it acts by that of the

direction of the stress itself.

G, M t " V

J. b\ c) I· IL - I
G. (b)

(a)

Fig. 3.7. Calculation of (a) bending moment and (b) shear force from normal and

shear stresses respectively.

Having found the local stresses, bending moments and shear forces per unit width

can be calculated at the Gauss or nodal points, using Gauss point or nodal stresses

respectively, according to the following formulae for any desired direction (Fig. 3.7)

where

M = ( ab - a,) x r -;-12
V = ( 1:b+ 1:,) x t -;-2

ab , a, = bottom and top normal stresses respectively,

1:b ,1:, = bottom and top shear stresses respectively,

M = bending moment per unit width,

V = shear force per unit width,

t = thickness of the mat at the location of the stresses.

(3.9)

(3.10)

Bending moments are positive if they cause compression at the top fibers. Shear

forces are positive if they act downward on the right faces of z directional sections

through the mat at the corresponding locations.
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Fig, 3,8, Adjustment of element dimensions around columns for punching shear

calculation,

3.2.8 Calculation of Punching Shear

Punching shear around a column is calculated by taking elements of width Ep/n

around the column and integrating the flexural shear forces per unit width at the

nodes or Gauss points along or near the outer periphery of these elements (Fig. 3.8).

Here

Epi n = d/ 2 for nodal stress analysis,

O.634d for Gauss point stress analysis,

where

d = t - Cc .

(3.11)

(3.12)

Cc distance of the reinforcement centroid from the nearest mat surface.

To perform the numerical integration of the nodal or Gauss point she1ar forces in

order to obtain punching shear, Gauss integration scheme is used in case of Gauss

point stress analysis. For nodal stress Simpson's method is followed on Gauss stress.
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3.3 SOME CRITICAL ASPECTS OF FINITE ELEMENT ANALYSIS OF

MAT FOUNDATION

3.3.1 Selection of Finite Element Mesh

Since FE is a numerical approach, accuracy of solution increases with the number of

elements to which the mat is divided. However, solution is by its very nature

converging and a point comes when further refinement of finite element mesh adds

nothing significant to the accuracy. Taking the maximum deflection as the deciding

criterion, a plot of maximum deflection versus the number of elements in the finite

element mesh of the example mat (Fig.3.9) shows that number of elements in excess

of300 takes more computational time. So a final mesh of361 elements (19 rows and

19 columns of elements) is selected which appears to be more than sufficient for the

present study. (Fig. 3.10)

3.3.2 Effect of Column Rigidity

Columns are monolithically built with mat and they act integrally with it. Height of

columns highly increases the rigidity of mat at these locations. This effect is realized

by increasing the value of modulus of elasticity of the portions of mat under the

columns. To quantifY this effect, column deflections, column face moments and

shears are plotted against the ratio of the modulus of elasticity of the under-column

portions and that of the rest of the mat in Fig.3.!1 through Fig.3.12. It appears that

effect of column rigidity dies out with the increase of this modulus of elasticity ratio.

Examining these, a modulus of elasticity ratio of 8 is found to be justified.
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3.4 FINITE ELEMENT ANALYSIS ON TWO PARAMETER

FOUNDATION MODEL

3.4.1 Two Parameter Foundation Model

A single layer elastic foundation of finite thickness H is considered. The subject

matter will be restricted to the problems where the horizontal displacement is

negligible. With this assumption, the distribution of displacements and the normal

stresses in the vertical z direction over the height H is determined by a function 'P(z).

In addition, it is assumed that the shear stress at the interface between the

compressible layer and the rigid base equals to zero. The vertical displacement could

therefore be expressed as

W(x, y, z) =W(x, y) 'P(z) (3.13)

in which W(x, y) = the vertical deflection of the foundation surface and '¥(z) = the

function of transverse distribution of the displacements, chosen in accordance with

the nature of the foundation.

For a relatively thin compressible layer of foundation, the variation of the normal

stresses with depth may be small and therefore could be considered as constant with

depth. Under these conditions, the form of the 'P(z) function could be

()
H-z

If/ Z =--
H

(3.14)

In a thick layer of foundation, the normal stresses vary considerably with depth and

therefore the form of 'P(z) function must take a different form. In order to account

for the decrease of the displacements and the normal stresses with depth, the 'P(z)

function could be selected as

sinhy(H-z)lm
sinhyH 1m
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where m is one of the dimensions of the subsequently considered plate (Fig.3 .14) and

y is a constant determining the rate of decrease of the displacements with depth

(Fig.3.15). With this form of'f'(z), it is seen that the normal stresses vary with depth

as the hyperbolic cosine. This form of 'f'(z) can also be used for the semi-infinite

layer where H becomes infinity.

Depending on the nature of the particular problem many analytical expressions in

addition to equation (3.14) and (3.15) can be selected. In fact, the expression could

be based on experimental data of normal stress distribution.

Based on the conventional stress-strain and strain-displacement relationships,

together with the displacement of all points expressed by equation (3.13), the

condition of equilibrium of the foundation model to an externally distributed load

q(x, y) on the surface (FigJ.14) is given by the differential equation

-2tV2w(x, y) + kw(x, y) = q(x, y) 'f'(O)

in which

8' 8'V' =_. -+-
ax' 8y2

is the Laplace operator, and

(3.16)

E H
k = _0_, fV(z)'dz;

1- vo 0

E H
t- 0 fV(Z)2dz

4(I+vo)0
(3.17)

are the two elastic parameters of the single-layer foundation; in which

E -~ ando - I 2-vs

v,vo =--I-v .,
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where Es and Vs are respectively the modulus of elasticity and Poisson's ratio of the

foundation.

For the transverse displacement function as described by equation (3.14), the two

parameters k and t become

(3.18)

For the transverse displacement function as described by equation (3.15), the two

parameters k and t become

k = Eay . sinb(yH I m)cosh(yH 1m) + yH 1m
2m(l- vg) sinb' yH I m

Eam sinh(yH 1m) cosh(yH 1m) - yH I m
t=----

8y(l+va) sinb'(yHlm)
(3.19)

3.4.2 Plates On An Elastic Single-Layer Foundation Model With Two

Parameters

Consider a plate on an elastic single-layer foundation whose properties are as

described previously. Friction and adhesion between the plate and the surface of the

foundation will be neglected.

V'V'w(x,y) = p * ~,y)

in which, p*(x, y) is the distributed load on the plate and

Eh3

D=----
12(1- ,u')
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is the flexural rigidity of the plate.

Since the plate lies on an elastic foundation, the distributed load consists of the given

surface loads p(x, y) and the foundation bearing pressure q(x, y),

p * (x,y) = p(x,y) - q(x,y) (3.21 )

Substitution of equation (3.17) and (3.21) into equation (3.20), with the assumption

that

'P(O) = 1, yields:

D 17 17w(x, y) - 2t 17w(x, y) + kw(x, y) ~ p(x, y) (3.22)

An examination of equation (3.22) shows that the first term depends on the internal

bending stresses in the plate, while the second and third terms depend on the

reactions of the elastic foundation, distributed over the surface supporting the plate

and caused by the compressive and shearing strains in the elastic foundation.

In addition to these forces and the distributed load p(x, y), the fictitious reactions Q

which act along the plate edges must be considered. These fictitious reactions are

introduced to make allowance for the three dimensional deformation of the elastic

foundation beyond plate edges. For the case of rectangular or polygonal plates,

fictitious concentrated reactions R arise at the plate corners.

3.4.3 Determining the Edge and Corner Reactions

In order to determine the fictitious edge reactions Q and comer reactions R, one must

know the distribution of vertical displacements of the elastic foundation surface

beyond the plate edges.
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Depending on the nature of the particular foundation property, many complex

analytical or experimental expressions can be selected for the three dimensional

displacements of the elastic foundation beyond the plate edges. In the present

analysis, the vertical displacements Wf are assumed to obey the following

approximate exponential law (Fig.3.l6)

In the positive direction ofthe x axis

wi\x, y) = wI(y)e -a(x -m)

in the positive direction of the yaxis

wi\x, y) = wm(x)e -a(y - I)

(3.23)

(3.24)

where a = -.J(k/2t) ; wI(y) and wm(x) are respectively the vertical pressure along the

long plate and short plate edges. The following law is also assumed for the vertical

displacements of the foundation in the region I x I >m, I y I >1

wi\x, y) =Wee-a(x -m)e-a(y -I)

where Weis the vertical displacement of the plate corner.

(3.25)

Employing the deflection functions of equations (3.23-3.25) the generalized

equilibrium conditions of a differential plate element can be set through the principle

of virtual work and the fictitious edge and corner reactions can be obtained

(3.26)

where the derivation ofw(x, y) are taken at x = o!o m,
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[ [Ow) I [a2w) ]o - 21 aw + - ---
......-nJ - m cry m 2a ax2 m '

where the derivation of w(x, y) are taken at y ="' I, and

R = 1.5twc

Where We is the corner deflection.

3.4.4 Finite Element Stiffness Formulation

(3.27)

The formulations described above are valid for an arbitrary plate finite element, i.e.

arbitrary shape and displacement patterns.

The equilibrium equation of a plate lying on an elastic foundation has been shown in

previous section [equation (3.22)]. This equation may also be written in a stiffness

matrix form for any appropriate developed plate finite element,

or

in which,

[kd{o}-2t[k2]{o} +k[k3]{o} = {p}

[k*]{o} = {p}

(3.28)

(3.29)

{p} = vector of nodal loads on the plate element;

{o} = vector of element flexural nodal displacements;

[k,] = conventional element stiffness matrix for plate flexure, corresponding

to term DV4w in equation (3.22);

2t[k2] = friction stiffness matrix offoundation beneath the plate element

corresponding to term 2tV2w of equation (3.22); and

k[k3] = compressive stiffness matrix of foundation beneath the plate element

corresponding to term kw in equation (3.22).
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It is of interest to point out that equation (3.28) can be visualized as an equilibrium

equation of motion of a freely vibrating plate with a harmonic frequency equal to

unity and the plate mass density equal to k, while the plate is subjected to a pair of

orthogonal in-plane compressive stresses equal to 2t (no in-plane shear). With this

analogy in mind, it is clear that 'friction stiffness' matrix 2t[k2J of the foundation

beneath the plate element is similar to the 'initial stress' matrix for the buckling and

large deflection analysis of plate, in which the two orthogonal in-plane stresses equal

to 2t and in-plane shearing stresses vanishes. It is also clear that the 'compressive

stiffness' matrix k[k3J of the foundation beneath the plate element is identical to the

'consistent mass' matrix of a freely vibrating plate element where the mass density is

replaced by compressive spring constant k and the natural frequency is set to unity.

After assemblage, the overall stiffness matrix for the total system is symbolized by

capital-letters as below:

[Kd{tl} - 2t[K2]{tl} + k[K3]{tl} = {P}

[K*]{tl} ={P}

3.4.5 Analysis Of Plates With Free Edges

(3.30)

(3.31 )

The determine of edge and corner fictitious reactions of a loaded plate on an elastic

foundation requires the knowledge of the deflection shape of the plate while the

deflection shape cannot be found until the fictitious reactions of the plate edges and

corners are known. To analyze such a problem requires the solution of equation

(3.26) to (3.31) simultaneously. An iterative approach seems desirable at this point

and is proposed below:

(I) neglect the fictitious edge and corner reactions as given by equations (326) to

(3.27), then apply the boundary conditions and external loads to solve

equation (3.30) for nodal deflections {tl},
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(2) based on the nodal deflections, the fictitious edge and corner reactions can be

obtained from equations (3.26) to (3.27) by the use of standard forward finite

difference technique. For simplicity of computer programming, the same

finite element gridwork may be used as the gridwork for finite difference,

(3) apply the external load and the fictitious reactions obtained in previous step

simultaneously to obtain solutions for a revised vector of nodal deflections

{L'.} from equation (3.3 I), and

(4) employ the revised nodal deflections {L'.} to seek revised fictitious reactions

and repeat processes (2) and (3) until the desired convergence of iteration is

achieved.

During the iterative process, the total stiffness matrix [K*] has to be inverted only

once since it is always constant for a given problem. The repetitive calculations of

plate deflections and fictitious reactions need relatively short computing time when

comparing with the time needed for inverting system stiffness matrix [K*].

A general finite element computer program for analyzing plates on a two parameter

elastic foundation model, coded in FORTRAN IV has been collected [Ref. 41] The

program is capable of handling plates with complex loading and edge conditions,

particularly when the edges are partly supported and partly free.
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CHAPTER 4

COMPARATIVE STUDY AND SENSITIVITY ANALYSIS

4.1 GENERAL

A comparative study on the performance of Winkler soil model to two parameter

soil model is performed. Efforts are made to epitomize the various findings from the

comparative studies of analysing methods. This is done from both analysis and

design aspect. Sensitivity analysis of important parameters related to mat foundation

on various items are done.

4.2 COMPARlSON BETWEEN WINKLER AND TWO PARAMETER

MODEL

To make a comparative study two sample problems are selected based on two kinds

of loading, ie. uniformly loaded plate and centrally loaded plate.

(1) Uniformly loaded plate

Consider a rectangular plate with free edges resting on an elastic foundation acted

upon by a uniformly distributed load of intensity p. Vlazov model is taken as two

parameter model because it is the most versatile.

It is assumed that

I = 2m,

The parameter determining the rate of decrease of the displacement

foundation depth y= 1.5, which appears in eqn. 3.15

with the

Flexibility index of plate r
JrEo/'m

- --~~,- =1.0 ,
D(l-vo )

It is further assumed that the plate lies on an elastic foundation of infinite depth,
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H = 00. Because of the symmetrical nature of the problem only one quadrant of the

plate will be considered. The quadrant is idealized by 16 finite elements as shown in

Fig 4.1.

I

2

m

(

Fig. 4.1 Finite Element Gridwork of the rectangular plate

)

For comparison non-dimensional parameters are taken which are;

nondimensionalized deflection wEo/pm, bending moments Mx/pm2 and Mylpf .

The same problem is now done taking Winkler's model as representation of soil.

The actual values of the two solutions are tabulated numerically in Table 4.1 and 4.2.

Table: 4.1 Comparison of Dimensionless deflection between models

Location Two parameter Winkler Difference w.r.t.
model model Two parameter model

a 0.6898 0.7301 5.84 %
b 0.7080 0.7498 5.91%
c 0.7165 0.7592 6.04%

Dimensionless d 0.6859 0.7290 6.28%
Deflection e 0.7060 0.7484 6.01%
wEoIpm f 0.7151 0.7578 5.97%

g 0.6850 0.7364 7.50%
h 0.7050 0.7471 5.97%
I 0.7151 0.7568 5.83%
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Table 4.2 Comparison of Dimensionless moment between models

Location Two parameter Winkler Difference w.r.t.

model model Two parameter model

Dimensionless Line I-I 0.06270 0.0702 11.96%
Moment From 0.05433 0.0619 13.93%
Mylpl2 centre 0.03729 0.0425 13.97%

0.01024 0.0114 11.33%

Line 2-2 0.11601 0.1346 16.01%
Dimensionless From 0.09992 0.1131 13.181%

Moment centre 0.06902 0.0773 12.05%
Mx/pm2 0.02290 0.0250 9.17%

The variation of nondimensionalised deflection and moments are plotted against

distance from the centre of plate in Fig. 4.2 to Fig. 4.4.

From this graph it is evident that using two parameter model reduces deflection and

also bending moment. But the variation is not so significant in terms of design or

analysis view point. A variation of 5-6% is seen. in deflection while 9-15% in

moment. So it reveals that Winkler model gives reasonably close results compared to

two parameter model.

(2) Centrally loaded plate

The same problem as the previous one is considered with the exception that the plate

is acted upon by a central load P instead of uniform load. The same finite element

grid is used. This time for comparison, non-dimensional parameter for deflection

IOwEornlP, moments Mx/P and My/P for sections 2-2 and 1-1 respectively are taken.

The results are tabulated in Table 4.3 and 4.4.
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Table: 4.3 Comparison of Dimensionless deflection between models

Location Two parameter Winkler Difference \V.r.t.

model model Two parameter model

a 0.7882 0.8435 7.02%

b 0.9195 0.9794 6.51%

c 0.9919 1.0534 6.20%

Dimensionless d 0.7865 0.8456 7.52%
Deflection e 0.9162 0.9740 6.31%
10wEomIP f 0.9825 1.0608 7.97%

g 0.7795 0.8380 7.50%

h 0.9062 0.9694 6.97%

i 0.9662 1.0322 6.83%

Table 4.4 Comparison of Dimensionless moment between models

Location Two Winkler Difference w.r.t.

parameter model Two parameter model

Dimensionless model
.

Moment Line 1-1 0.1103 0.1202 8.98%

MylP From. 0.04363 0.0482 10.05%

centre 0.01128 0.0124 9.5%

-0.00045 0.0003 -
.

Line 2-2 0.2345 0.2626 12.01%

Dimensionless From 0.1137 0.1262 11.00%

Moment centre 0.0484 0.0532 10.05%

MxlP 0.0099 0.0110 11.15%

The variation of nondimensionalised deflection and moments are plotted against

distance from the centre of plate in Fig. 4.5 to Fig. 4.7
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The results of deflection, bending moment, shear are shown in table 4.5 to 4.9,

In parenthesis (% w.r.t. FEM is shown). The relevant graph are plotted in Fig. (4.9-

4.12)

Table 4.5 Results of Column Deflections (in inches) by various methods:

Location FEM ACI Conventional

CI 0.299 (100%) 0.593 (198%) Cannot calculate

C2 0.248 (100%) 0.534 (216%) Cannot calculate

C3 0.244 (100%) 0.527 (216%) Cannot calculate

C4 0.192 (100%) 0.147 (76%) Cannot calculate

Table 4.6 Results of Bending Moment (k-ft/ft) by various methods:

Location FEM ACI Conventional

Line 1 Column face 95.76 (100%) 22.02 (23%) Does not show

+ve moment

In between -73.09 (100%) -102.32 (140%) -80.40 (110%)

Column -ve

Line 2 Column face 107.97 (100%) 32.39 (30%) Does not show

+ve moment

In between -65.08 (100%) -162.7 (250%) -81.35 (125%)

Column -ve

For design purpose ACI code is followed. Readily solvable formulae are derived.

For fe' = 4 ksi and fy = 60 ksi, pmax = 0.0214, pmin = 0.0033

Thickness as required by various shears are tabulated in Table 4.10

Capacities

Punching shear capacity per unit length of perimeter,

Vp/eap = vpux d = 30.965 x d kip, d in inches
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Flexural shear capacity per unit width,

Vf/cap 15.483 x d kip, d in inches

d t - 3.5 , all in inches

Moment Capacity, Mmaxlcap

Steel

Effective Depths:

Mmin/cap =

As/max

As/min

0.93674 x d2 k-ft/ft, d in inches

0.17469 x d2 k-ft/ft, d in inches

3.08160 x d in2 / ft, d in ft

0.48000 x d in2 / ft , d in ft

vp in klft and c in inches

Effective depth from punching shear requirement,

dpunch= ~(-c + ~c2 + 4.65 x Vp) in,

c

Steel ratio p

M

Punching shear

Column dimension for a square column

I ~ 0.6556 x M. . .--(1- 1- 2 ) ,Mmk-ftanddmmches
17.7 . d

Flexural moment

Effective Depth required for bending moment

drequired/flexural moment = M
54p x (1- 8.85 x p)

, M in k-ft and d in inches

dp/min

dp/max

2.3926 x -JM
1.0332 x -JM

, M in k-ft and d in inches

, M in k-ft and d in inches

Effective Depth required for flexural Shear

drequired/flexural shear 0.775 x V , V in klft and d in inches, V=Flexural shear
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Table 4.7 Results of Punching Shears by various methods (kip/ft) :

Location FEM ACI Conventional

CI 243.0 (100%) 203.0 (83.5%) 244.1 (100.5%)

C2 & C3 407.4 (100%) 380.7 (93.5%) 408.4 (100.3%)

C4 665.6 (100%) 682.0 (102.5%) 666.2 (100.1%)

Table 4.8 Results of Flexural shear in most highly stressed strip of unit width

(kip/ft.) by various methods:

Location FEM ACI Conventional

At column face C4 29.10 (100%) 37.30 (128.2%) !l.40 (39.18%)

Table 4.9 Results of Average Column Strip Flexural Shear (kip/ft.) by variuos

methods:

Location FEM ACI Conventional

Column Strip 14.50 (100%) 27.10 (187%) 13.10 (90.34%)

Table 4.1 0 Design Thickness inches by Different Shears:

Kind of shear FEM ACI Conventional

t required from Punching 23.76(100%) 24.06(101.26%) 23.75 (100%)

Shear

t required from Flexural 26.05(100%) 32.41(124.41%) 12.34(47.37%)

shear in most highly

stressed strip of unit width

t required from Average 14.74(100%) 24.50(102.5%) 13.65(100.1%)

column strip flexural shear

Design thickness t 24(100%) 24.50(102%) 24(100%)
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It is unlikely that the most highly stressed strip of unit width will act individually to

tackle the flexural shear. As a matter of fact, for the 3.00 ft thick mat (Fig. 4.8), a

plot of lateral distribution of flexural shear along the column faces (Fig. 4.13)

shows that distribution of shear is remarkably uneven for mat. High concentration of

flexural shear occurs near the colwnns and the rate of decay of shear force

magnitude away from the columns is very high. It is expected that a redistribution of

shear will occur when material will be stressed beyond the elastic limit. Even within

the elastic limit, a wide portion of any column strip will carry the total shear acting

on it as a whole. While there is no experimental data available to quantify the width

of this portion, case studies performed by [Morshed 1997]has made it clear that the

shear force averaging width which gives design flexural shear equals to the flexural

shear capacity of the thickness calculated from punching shear requirement.

However, computer modeling, especially elastic analysis, is not sufficient to find

which portion of a colwnn strip actually acts integrally in resisting shear. But

conventional practice of treating individual colunm strips as a whole has not been

reported to result in any functional discrepancy so far. So, a reasonable solution

seems to be that the entire colunm strip works together. As has been found by

[Morshed 1997] even if 50% width of any column strip acts integrally, this approach

of mat design will be on the safe side.

Average Bending Moment Across the Widths of Colnmn Strips

If average colunm strip flexural shears are taken to be the design criteria, the same

reasoning applies to bending moments. Magnitudes of moments decrease

considerably due to the averaging (Fig. 4.14). When averaging is done across the

widths of colwnn strips, mat thickness is governed by punching shear in

Conventional and FE method. For the ACI method, flexural shear still may control

the design in this regard. However, in any method when mat thickness is reduced the

bending moment capacity also reduces. For the present example (Fig. 4.8) 2 ft

thickness seems adequate under the changed course of design (24.50 inches for ACI

analysis) and calculations shows that average colunm strip moments still stay below
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the minimum-steel moment capacity of the mat for FE and ACI methods. The

situation is different for Conventional method.

Economic Evaluation

Economy of various methods are evaluated by parameter such as concrete volume

and steel requirements. From the preceding study it can be revealed that in ACI

methods the thickness governed by flexural shear will be high w.r.t. FE method.

Also in Conventional method the steel required by negative moment will be more

w.r.t. FE method. So FE method will result in substantial economy than both ACI

and Conventional Method. It is also be implied that this economy will increase with

high column loads.

This is done by selecting another mat for a 12 storied building. Displacement,

bending moment and shear will be based on column strips. In calculating steel

average steel volume per unit plan area of mat is. used. The column dimensions

24"x24", thickness 2.5 ft and CI, C2, C3 and C4 column (Fig. 4.8) loads 460 k, 735

k, 735 k and 1176 k respectively. The mat is analyzed and designed by the three

methods. Displacement, bending moment and shear force diagrams of column strip 1

and 2 of this mat is shown in Fig. 4.15 through Fig. 4.17. In calculating total steel

requirement weighted average steel area per unit width (A ~vg), is used.

where.

As = calculated steel area per unit width,

plan area of mat covered by As .
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Design values and their comparison for different methods for the test mat.

Table 4.11

Method t t Selected Aavg A avg Relative Relative
s s

required required t Cost costfor for
from from (in) of of

+ve -ve
punching flexural concrete steel

Moment Moment
shear shear

(in2/ft) (in2/ft)
W.r.t. W.r.t.

(in) (in) FE FE
Conventional 29.6 21.4 30 1.06 1.20 100% 107%

ACI 30.0 39.0 40 1.44 1.44 133% 136%

FE 29.7 23.3 30 1.06 1.06 Not Applicable

It is evident from table 4.11 that higher cost associated with Conventional method is

due to the over estimation of negative moments and that of ACI method arises from

the overestimation of flexural shears. ACI approximate flexible method, in spite of

its rigorous nature of analysis, gives overdesign compared to FE method, particularly

for heavily loaded mats. It appears that it is always better and more economic to use

FE method.

The summary of the comparison between various are tabulated in Table 4.12
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Table 4.12 Summary Of Comparison Between Various Methods

Parameter Location Conventional ACI Method FiniteElement

Method Method

Deflection At Col. Edge Cannot Calculate Overestimates Basis

In between. Cannot Calculate Underestimate Basis

Column.

Moment Column Face Fails to predict any Underestimate Basis

+ve moment moment

-ve moment Moderately Overestimates Basis

between cols. Overestimate * less at edges

Shear Away from Compatible Compatible Basis

Colunm.

Near Underestimates too Overestimates Basis

Colunm. much

Punching At d/2 from Compatible Underestimate Basis

Shear colunm face * Compatible

in central cols.

Flexural At d from Underestimates Overestimates Basis

Shear colunm face

Thickness Whole Mat Compatible Moderately Basis

* Governed by overestimates *Governed by

Punching Shear * Governed by Punching

Flexural Shear Shear

+ve Steel +ve moment Governed by Governed by Governed by

areas mlmmum steel minimum steel minimum steel

requirements requirements requirements

-ve steel -ve moment Moderately Largely Basis

areas Overestimates Overestimates

Economic In terms of Overestimates Largely Basis

Evaluation concrete & Moderately due Overestimates

steel Neg. Moment Thickness
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4.4 SENSITIVITY ANALYSIS OF MAT FOUNDATION

Various parameters relevant to mat foundations are selected for sensitivity analysis

which is performed on some selected items at selected locations.

The selected parameters are

a) Mat thickness

b) Modulus of subgrade reaction

c) Ultimate strength of concrete

d) Column spacing

e) Column size

f) Width of overhanging portion

The selected items for parametric study are :

Items Location

Displacement Under the columns
.

Positive moment At column faces

Negative moment In between the columns

Flexural Shear At column faces

For the study the same mat problem is selected. (Fig 4.8)

a) Effect of mat thickness:

The thickness of mat has been increased from 2 ft. to 4 ft.

The results of various items are tabulated in Table 4.13 and the variations are plotted

in Fig 4.18- 4.20.
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Table 4.13. Variation of displacement, moment and shear W.r.t. mat thickness t,

when t is increased from 2.00 ft to 4.00 ft.

Location Displace- Positive Negative Flexural

ment moment moment* shear

CI {Cl-C2*} -25.9% -6.8% +20.9% -0.08%

C2 {LINEI CL*} -20.4% -22.1 % +50.2% -11.9%

C3 {C3-C4*} -18.5% +2.9% +27.9% +14.8%

C4 {LINE2 CL*} -7.2% -20.2% +74.7% -0.18%

* Locations for negative moments are given within curly brackets

As thickness increases

• Displacements decreases at a very good rate. Sensitive at corner columns.

• Positive moment decreases slightly. Sensitive to central columns

• Negative moment increases tremendously. Sensitive to in between central cols.

• Flexural shear has very little change at all.

• Punching shear remains almost constant.

So in reverse as thickness of mat decreases.

• Displacements increases with a very good rate. Sensitive at corner columns.

• Positive moment increases slightly. Sensitive to central columns

• Negative moment decreases tremendously. Sensitive to in between central cols.

• Flexural shear has very little change at all.

• Punching shear remains almost constant.

b) Effect of modulus of subgrade reaction:

Modulus of subgrade reaction ranges from 100 kef to 500 kef. The results of various

items are tabulated in Table 4.14 and the variations are plotted in Fig. 4.21-4.23
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Table 4.14 Variation of displacement, moment and shear W.r.t. modulus of

subgrade reaction k, when k is increased from 100 kcfto 500 kef.

Location Displace- Positive Negative Flexural

(Table 4.2) ment moment moment* shear

Cl {CI-C2*} -73.4% +3.4% -17.3% -2.8%

C2 {LINEI CL*} -73.7% +10.2% -17.6% -0.03%

C3 {C3-C4*} -74.4% +0.3% -20.5% -3.6%

C4 {LINE2 CL*} -75.2% +10.5% -25.6% +0.1%

* Locations for negative moments are given within curly brackets

As modulus of subgrade reaction increases

• Displacements decreases considerably at a very faster rate. Sensitive at central

columns.

• Positive moment increases slightly. Sensitive to corner columns

• Negative moment decreases moderately. Sensitive to in between corner

columns.

• Flexural shear has very little change at all.

• Punching shear remains almost constant.

c) Effect of concrete strength

The parameter is tested in the following range fe' = 2 ksi to 4 ksi. The results of

various items are shown in table 4.15 and the variations are plotted in Fig.4.24- 4.26.

Table 4.15. Variation of displacement, moment and shear W.r.t. concrete strength

fe', when fo' is increased from 2.00 ksi to 4.00 ksi.

Location Displace- Positive Negative Flexural

(Table 4.2) ment moment moment* shear

CI {CI-C2*} -7.6% -0.7% +4.7% +0.7%

C2 {LINEI CL*} -5.8% -6.4% +6.3% -0.8%

C3 {C3-C4*} -5.3% +0.3% +13.0% +1.3%

C4 {LINE2 CL*} -1.9% -6.2% +18.4% 0.0%

* Locations for negative moments are given within curly brackets
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As ultimate strength of concrete increases

• Displacements decreases slightly. Little sensitive at corner columns.

• Positive moment decreases very slightly. Sensitive to corner columns

• Negative moment increases moderately. Sensitive to in between central cols.

• Flexural shear has very little change at all.

• Punching shear remains almost constant.

(d) Effect of column size

Since column loads are distributed over the respective column cross sectional areas,

smaller cross sections of columns mean greater intensity of column loads. This

increase in force concentration is expected to increase deflection, bending moment

and shear force magnitudes in the vicinity of the columns. The columns are square in

cross-section and ranging in dimension from 1.00 ft to 2.00 ft. Results are presented

in Fig. 4.27 through Fig. 4.29. The moment and shear diagrams for columns with

larger sizes remain aligned with those for narrower column cross-sections, except for

a reduction in the peak values of moments and shears at the faces the columns. This

indicates that analysis with one size of columns may well be applicable if column

sizes are slightly increased or changed later for any reason.

(e) Effect of Column spacing

Reduction in column spacing means more columns to transfer the same load means a

more uniform load distribution, which in turn means a reduction in deflections,

bending moments and shear forces. To do this a 20' x 20' grid, a IS' x 20' grid and a

12' x 20' grid is taken. Total load carried by these mats are kept the same. Results

are presented in Fig. 4.30 through Fig. 4.32.

(f) Effect of width of overhanging portion

Overhanging portion is the part of any mat projected outside the exterior most

column line on any side of the mat. For the present study, its width is defined as the
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distance between the center of the exterior most column line and the nearest edge of

the mat (Fig. 4.8). Effect of the width of overhanging portion on mat behavior is

depicted in Fig. 4.33 through Fig. 4.35. The graphs are obtained by analyzing the

example mat of Fig. 4.8 by varying its width of overhanging portion from 0.00 ft to

7.50 ft.

As the width of overhanging portion is increased

• Deflection pattern changes with the maximum deflection of any column line

being shifted from the end towards the center of the column line. Deflection

pattern becomes more uniform with a reduction in magnitude.

• An increase in the magnitude of positive moment is observed.

• A decrease in the magnitude of negative moment is observed.

• Shear force is not much affected by this parameter.

The summary of the sensitivity analysis of mat IS shown m Table 4.16
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Table 4.16 Summary of Sensitivity Analysis of Mat

Parameter Displacement Positive Negative Flexural Punching
moment moment Shear shear

Mat Decreases Decreases Increases Flexural Punching shear
thickness with a very slightly. tremendously shear has remains almost
Increases good rate. Sensitive to . Sensitive to very little constant

Sensitive at central columns in between change
comer central
columns columns.

Modulus of Displacement Positive Negative Flexural Punching shear
subgrade decreases moment moment shear has remains almost
reaction tremendously lDcreases decreases very little constant
increases at a very slightly. moderately. change.

faster rate. Sensitive to Sensitive to
corner columns in between

comer
columns.

Ultimate Displacement Positive Negative Flexural Punching shear
strength of decreases moment moment shear has remains almost
concrete slightly. decreases very mcreases very little constant.
increases slightly. moderately. change

Sensitive to Sensitive to
comer columns in between

central
columns.

Column Decreases Decreases Decreases Decreases Decreases
spacing
increases
Column size Very slight Reduction in Reduction in Reduction Reduction in
increases reduction in the peak values the peak in the the peak values

.

the values values peak
values

Width of Pattern Increase Increase Not Not affected
overhangin becomes more affected
g portion uniform with
increases a reduction in

magnitude
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CHAPTERS

MAT FOUNDATION WITH NON-UNIFORM THICKNESS

5.1 GENERAL

Normally mat foundations with uniform thickness all over are designed. This kind of

mats are always heavily overdesigned which is also the result of uncertainty in

analysis procedure. Since Finite element technique is the most powerful and versatile

of all the available numerical analysis techniques, so it is possible now to look at

other economic configurations of mat. In Fig. 1.1 several mat foundation

configurations were shown. There is no method or guideline for analysis or design of

these kinds of mat. In the present study mat foundation with the plate thickened

under columns termed non-uniform mat hereafter is analysed, designed and all

parameters related to it are critically reviewed. Ultimately a design guideline is

proposed after doing several mat problems.

5.2 JUSTIFICATION OF MATWITH NON-UNIFORMTHICKNESS

From the sensitivity analysis of mat thickness on various items of mat it has been

found that as the thickness of mat decreases

• Displacements increases with a good rate. Sensitive at comer columns.

• Positive moment increases slightly. Sensitive to central columns

• Negative moment decreases considerably. Sensitive to in between central

columns.

• Flexural shear has very little change at all.

• Punching shear remains almost constant.
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The increase of displacement will not pose any problem since mat is capable of

taking high differential settlements. As already seen in the last chapter that positive

moment steel is always governed by minimum steel requirements so the slight

Increase in positive moment will not be of much significance. Punching shear

remains almost constant so the thickness provided under column will not change.

Due to change in thickness flexural shear does not change much. The flexural shear

decreases rapidly away from the column face, it is therefore possible to reduce mat

thickness in those areas. Finally considerable decrease in negative moment occurs in

the central region of mat due to thickness reduction. This will save cost and

substantial economy can be achieved. The reduction of thickness of mat away from

columns will also result in savings of steel in the negative moment areas.

5.3 PERFORMANCE OF MAT WITH NON-UNIFORM THICKNESS

To examine the performance of mat with non-uniform thickness, the previous mat of

Fig. 4.8 is modified to design a new problem with non-uniform thickness. Greater

thickness is maintained around column peripheries. Typical cross-sections along

LINE I and 2 (Fig. 4.8) of mats with uniform and non-uniform thickness are shown

in Fig. 5.1. Every other aspect of the previous mat is kept the same. Results of the

analysis are plotted in Fig. 5.2 through Fig. 5.4.

It is important to note that when checking flexural shear, in addition to the usual

locations (d distance away from column faces) sections A, B and C, which will be

referred to as neck sections later on, must be given due attention for mats with non-

uniform thickness.

Important design data are presented in Table 5.1 through Table 5.5. Based on these

data, MATI and II are designed separately. In the comparison of the design of MAT

I and II, weighted average thickness of mat (tavg,), is used which is calculated as

follows:
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where

t = mat thickness,

At = plan area of mat having thickness t.

2 ft thick throughout

20'
MAT I

(5.1)

2' thick 1.25' thick

JL0C: ~
C 'CL

.1' ;j' ;j'

2~..c-~-'t_hi_Ck__ /,/__ L2_5_'th_i-i-C~~

.A B
H ;j' ,r ;j' +
0.5' 4.25' 1.25' 12S IS

MAT II
5' IS 6'

Center line -

10'

20

C3 ( IS xl' )
o 435.5 k

C4 ( IS x IS)
o 697,0 k

LINE

Width of overhanging portion

iC1(l,Ll') C2(1.5'xl')
268.0 k 435.5 kLINE 1

2.5
o o

~l'-/_-----x
2S 20' 10'

Fig. 5.1. Mats with uniform and non-uniform thickness (CL = center line).

71



--- MATI
....•... MAT II

-0.02

is -003
co:g
<U
~o

-0.04

l
,~

!

:'~'

•

•

......."- •.,.,' -"',
:~'

-0.05
o

--- MATI
._...... MAT II

10
X (It)

(a)

20 30

-0.01

is -0.02
co
U
<U

'"<Uo

-0.03

/.
f

,;

/
,..'
•

..--•..•...•.
'.',

...- ._e.

-0.04
o 10

X (It)
20 30

(b)

Fig, 5.2 : Comparison of deflection diagrams of (a) column strip 1
and (b) column strip 2 for MAT I and MAT II



60

o

40

20

it?

'"is
E
w
E
~ -20

-40

__ MATI

---.-- MATII

CF CF

,r"
Ii,.,'

a _.
-•...-...-

CF CF
~

:.
,fi'

.',./.. II.-.-a__a,a

-60

0 5 10 15 20 25 30
X (It)

(a)

60
__ MATI

---.-- MATII CF

40

-40

20

it? CF CF
<:'
"'- 0
E
w
E
0:;,

-20

-60
o 5 10 15 20

X (It)
25 30

(b)

Fig. 5.3 : Comparison of bending moment diagrams of (a) column strip 1 and
(b) column strip 2 for MAT I and MAT II



20
--- MATI
---4--- MAT II CF

~
rn
Q)
.cen

10

o

-10

CF
•

•.-
,~.•,i

t

CF CF
-20

0 5 10 15 20 25 30
X (It)

(a)

20
--- MATI CF
-- .•-- MAT II

CF•
~ :f
~ 0
rn •
Q) .-
.c •en

,~...,
:,"•.-

CF
CF

.20
0 5 10 15 20 25 30 35

X (It)

(b)

Fig_ 5.4 : Comparison of shear force diagrams of (a) column
strip 1and (b) column strip 2 for MAT I and MAT II



Table 5.1. Column displacements of MAT I and II (Fig. 5.1).

Mat Type Column CI Column C2 Column C3 Column C4
I 0.36" 0.29" 0.28" 0.21"
II 0.46" 0.34" 0.35" 0.24"

Table 5.2. Punching shears of MAT I and II (Fig. 5.1).

Mat Type ColumnCI Column C2 Column C3 Column C4
I 240.2 k 405.8 k 405.8 k 666.3 k
II 233.9 k 401.4 k 401.4 k 665.5 k

Table 5.3. Column face positive moments of MAT I and II (Fig. 5.1).

Mat Type Column CI Column C2 Column C3 Column C4
I 3.6 k-ftlft 36.0 k-ft/ft 4.2 k-ft/ft 37.7 k-ft/ft
II 4.6 k-ftlft 46.0 k-ftlft 4.9 k-ftlft 44.5 k-ftlft

Table 5.4. Maximum column strip negative moments of MAT I and II (Fig. 5.1).

Mat Type Between Center of Between Center of
CI-C2 strip I C3-C4 Strip 2

I 54.5 k-ftlft 27.9 k-ftlft 49.3 k-ftlft 22.7 k-ftlft
II 36.9 k-ftlft 19.0 k-ftlft 32.5 k-ftlft 15.1 k-ftlft

Table 5.5. Critical flexural shears of MAT I and II (Fig. 5.1).

Mat Type d distance away from column C2 At section B of strip I

(Vez) (VB)

I 16.0 klft 12.2 klft

II 14.8 klft 12.3 klft
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Table 5.1 shows that column deflections found by FE analysis are below the

allowable limits by a substantial margin for the two mats considered even though

weak clayey soil has been used in these examples. It can be concluded that

differential settlement will not cause any problem when thickness is non-uniform.

Punching shear does not change significantly (Table 5.2) due to the reduction of mat

thickness away from the columns. This implies that thickness requirement in the

vicinity of columns will not change significantly and the same thicknesses at those

locations, as obtained from uniform thickness solution, can be maintained without

further revision.

Flexural shears change mainly near the columns. At the neck sections A, B or C (Fig.

5.1 and Table 5.5), practically there is no change in flexural shear which means that

the magnitude of thickness reduction can be estimated from the uniform thickness

solution. This is because at the locations where change of thickness occurs, punching

shear will be of no concern for thickness design. Rather flexural shear will control

thickness requirement at the neck sections. And as neck flexural shear can be

estimated from the uniform thickness solution, thickness requirement at the neck

sections can be calculated directly. So the magnitude of thickness reduction may be

estimated.

In regions where transition from higher to lower thickness takes place ( these regions

will be referred to as transition zones subsequently), shear magnification is

observed in the central regions of the column strips (Fig. 5.4). This phenomenon

should be given due attention since this magnification occurs in contrast to the

flexural shear capacity reduction of mat associated with thickness reduction at those

locations.

Reduction of negative moments due to lower thickness in-between the columns is

noteworthy (Fig. 5.3 and Table 5.4). It is observed to be as high as 32% for MAT II.

This reduction increases with the lowering of thickness, a very positive advantage. In
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the USD method of reinforced concrete design, maximum moment capacity of a

section is very high and this substantial reduction in negative moment implies that if

flexural shear permits, quite a thin section may be used in the negative moment

regions with lower reinforcement cost.

Increase in positive moment due to the reduction of mat thickness away from the

columns is also significant (Fig. 5.3 and Table 5.3) and is found to be up to 31%.

However, thickness is high at the locations where positive moments occur. As a

result, positive moments remain below the minimum moment capacity despite

amplification. Evidently, making thickness non-uniform allows a more efficient and

economic use of material strength near the columns since minimum steel must

always be provided there.

MAT II comes out to be an acceptable design in terms of both concrete and steel

requirements. A comparative evaluation of the design of MATI and II is made in

Table 5.6 to Table 5.8.

Table 5.6. Design values of MAT I and II (Fig. 5.1).

Mat trequired trequired 4equired A, A, A, A, A,
Type for for for for for for for for

punching flexural neck column negative negative negative negative

shear shear flexural face moment moment moment moment

(in) VC2 shear positive Cl-C2 LlNEl C3-C4 LINE 2

(in) VB moment (in2/ft) center (in2/ft) center

(in) (in2/ft) (in2/ft) (in2/ft)
I 23.8 15.9 13.0 0.821 0.821 0.821 0.821 0.821
II 23.7 15.0 13.1 0.821 0.748 0.460 0.655 0.460
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Table 5.7. Economic evaluation and comparison of the design of MAT I and II.

Mat tavg Positive Negative Economy in Economy in

Type (in) A avg Aavg concrete cost reinforcement
5 5

(inl/ft) (inl/ft) w.r.t. MAT I cost

w.r.t. MAT I

I 24.0 0.821 0.821 Not Applicable

II 16.2 0.616 0.614 32.5% 25.0%

Table 5.8. Comparison of acting moments and shears with respective moment

and shear capacities for MAT II with non-uniform thickness.

Maximum column Maximum shear at a Maximum kink shear

face positive moment distance d away form (k1ft)

Column (k-ft) coIumn face (k)

Strip Acting Capacity Acting Capacity Acting Capacity

I 563.4 663.5 183.90 241.30 15.40 18.! 0

2 900.60 1031.20 299.70 376.10 15.50 17.30

* d = Effective depth.
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5.4 SENSITIVITY ANALYSIS OF MAT WITH NON-UNIFORl'VITHICKNESS

It has been established in the previous article, mat with different thicknesses at

different locations has been found to be a better design than mat with uniform

thickness.

For the non-uniform thickness solution, to formulate a general guideline certain

geometrical parameter of the new mat is considered. Effects of these parameters on

the mat is studied i.e. the distance over which the change in thickness should be

implemented (ds ), the lateral extent of greater thickness around the columns (dg )

and the amount of reduction in mat thickness away from the columns (~t) (Fig. 5.5).

Of the above items, ~t can be realized in terms of tg and ts • For the convenience of

further discussion these items are named as follows:

ds = Slope width,

dg Width of greater thickness,

t. Greater thickness,
0

ts Smaller thickness,

~t Change in thickness.

5.4.1 Effect of Slope Width (ds )

To examine the effect of slope width, MAT II of Fig. 5.1 is analyzed by varying its

ds from 0.75 ft to 2.00 ft. Variation of column displacements, column face positive

bending moments, maximum negative bending moments, column face flexural

shears and kink shears (those in the transition zones) are shown in Fig. 5.6 through

Fig. 5.8 and tabulated in Table 5.9.
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As slope width increases

• Deflection of column decreases by very small amount (5% at C4)

• Column face moment increases by very small amount (6.7% at C4)

• Negative moment decreases slightly (14.3% at centre of strip 2)

• Punching shear does not change at all.

• High flexural shear concentration occurs in the transition zone near the centre of

the column strip.

Effect of slope width on flexural shear is noticeable. Fig 5.7 shows that high shear

concentration occurs in the transition zones (Fig. 5.5) near the center of the column

strips. Near the ends of the column strips, flexural shears decrease in the transition

zones. A plot of the ratio of the magnified shear to the shear at the corresponding

points in case of uniform thickness, against slope width (Fig. 5.8) shows that the

ratio, which will be designated as kink shear magnification later on, tends to unity as

slope width is increased. When considered in terms of the angle of the slope (Fig.

5.8), the ratio comes close to unity as the slope flattens out.

Final selection of the slope depends on the optimization between the flexural shear

capacity of the transition zone and the degree of kink shear magnification. But sharp

change in thickness should be avoided when possible.

5.4.2 Effect of Change in Thickness (ilt)

For the same problem (MAT II of Fig. 5.1) change in thickness (ilt) is varied from

0.00 to 1.00 ft, keeping the greater thickness tg (Fig. 5.5) fixed at 2 ft. Variation of

different items thus observed is depicted in Fig. 5.9 through Fig. 5.12.

As the smaller thickness is decreased or Llt is increased,

• Deflection increases rapidly but differential settlement is within tolerable limits.

• Reduction of negative moments occurs in regions away from the columns.

• Column face moment is increased moderately.
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• Kink shear increases as the slope of the transition zones gets steeper (with

greater change in thickness, slope of the transition zones gets steeper).

Table 5.9. Variation of mat response with the change of L'.tfrom 0.00 ft to 1.00 ft.

Location* Column Maximum Punching Column Kink Shear Column Face
face +ve Negative Shear Deflection Shear

Moment Moment*

CI +49.5% -48.3% -6.1% +50.0%. +74.4% -25.1 %

C2 +26.4% -40.8% -2.6% +39.0% +19.8% -9.5%

C3 +26.5% -51.1% -2.6% +35.4% -63.0% -24.0%

C4 +11.9% -40.0% -0.4% +26.5% +22.0% -9.9%

* respective locations for negative moments are in-between columns C1 & C2, center of LINE 1, in-

between columns C3 & C4 and center of LINE 2.

A plot of kink shear W.r.t. to the zero slope angle (Fig. 5.5) solution verses slope

angle (Fig. 5.12) shows as before that kink shear magnification becomes less

prominent as the slope flattens out.

5.4.3 Effect of Width of Greater Thickness (dg )

MAT 11 (Fig. 5.1) is analysed by varying only dg in the range of 15.00 inches to

27.00 inches. Final results are graphically compared to investigate the effect of dg on

mat behavior. The graphs are shown in Fig. 5.13 through Fig. 5.16.

As the width of greater thickness is increased

• Column deflection decreases by a very small amount (5.5% at C4)."

• Column face positive moment does not change appreciably.

• Negative moment at centreof strips decreases moderately (13%).

• Flexural shear is lowered. Column face shear decreases slightly ( by 3-8%).
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With the widening of thicker regions, transition zones move away from the faces of

the columns towards lower flexural shear regions. Consequently kink shear

reduction is observed which, due to the change in their locations, are not

comparable. But since flexural shears do not govern the thickness design near the

columns, this reduction in the magnitude of column face shear forces do not offer

any additional advantage.

5.5 FINDINGS FROM THE SENSITIVITY ANALYSIS

Mat with non-uniform thickness offers a way of attaining substantial economy.

• Greater thickness under the columns will be designed from maximum punching

shear .

• The smaller thickness will be designed from flexural shear at the neck sections.

Then this thickness should be reinforced for negative moments.

• With the reduction of thickness in the low shear and high negative moment

regions, column face positive moments increases. But since greater thickness is

provided in the positive moment and high shear regions, this amplification does

not pose any threat. Column face positive moments, after being averaged across

column strip widths, come out to be much lower than the moment capacities of

mat at those sections. Reinforced throughout with the minimum steel is required

for the greater thickness.

• Reduction of thickness is associated with the reduction of moment capacity. As

negative moments decrease with the decrease of thickness, reduction of moment

capacity of mat at the corresponding locations does not change to that extent.

• Width over which change of thickness should be made .i.e. slope width is not

very critical as long as the slope of the transition zones is kept as flat as

practicable.

• But since greater thickness is required for punching shear purpose and since in

the calculation of the punching shear capacity, flexural shear cracks are assumed

to propagate doWnward from the column face at an angle of 45°, a width equal to

the effective depth corresponding to the greater thickness seems to be rational.
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5.6 .DESIGN GUIDELINE FOR MAT WITH NON-UNIFORM THICKNESS

The sensitivity analysis reveals that the design of regular shaped mats with

non-uniform thickness follow some well defined trends. Based on these

findings, a design approach for mat with non-uniform thickness is

recommended as follows:

PDL+LL (max) = Maximum column axial load due to live load and dead load

t, Ig ~ Ig = thickness required to encounter 0.95 PDL+LL (max) as

TT punching shear,

1 oj. : r t.~ ~ 21g /3,

+ "- ./ dg = effective depth corresponding to tg,
~~~ Ig/J].~ I I • .:1

d, d.

Fig. 5. I7. Guideline for selecting cross-sectional geometry for the first trial solution

of mat with non-uniform thickness.

(i) The problem should be solved first with a non-uniform thickness geometry

selected from the guideline shown in Fig. 5.17. Column punching shear

should be estimated as 0.95 x column axial force.

tg Greater thickness, calculate from this punching shear

ts Smaller thickness, = 66% of tg

dg Width of greater thickness, = effective depth corresponding to tg
ds = Slope width, = tgl J]

Slope angle =: 30°

(ii) A mat analysis is performed regarding this geometry. Now the Greater

thickness (tg) under the columns should be designed from the column

punching shear found from analysis.
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(iii) The greater thickness (tg) should be provided around the column peripheries

over a distance equal to the effective depth corresponding to the greater

thickness itself.

(iv) Smaller thickness should be calculated from the maximum flexural shear,

found from the solution, at the neck sections.

(v) Width of the transition zones (for gradual reduction of thickness) should be

such that slope angle of the underside of mat in these zones be between 30°

to 35°.

(vi) The problem should be analyzed again with the new geometry just selected in

order to calculate reinforcements. Finally a check on the adopted geometry

using the shear forces diagrams and punching shears found from the new

solution.

(vii) Minimum reinforcement required for the zone of greater thickness should be

provided as bottom reinforcement under the columns across the entire widths

of column strips. Again, the new solution may be used to check the adequacy

of these reinforcements.

(viii) Reinforcements for negative moments in-between the columns should be

designed using the new solution.

(ix) Bottom reinforcements in-between the columns (negative moment zones)

and top reinforcements under the columns (positive moment zones) should

be calculated as per minimum requirements specified by ACI code.

Case studies reveals that mat thickness away from the column faces can be reduced

by about 40%. But to be in the safe side here 34% reduction is suggested.

5.7 DESIGN EXAMPLE I

To evaluate the performance of mat with non-uniform thickness compared to mat

with uniform thickness. This mat is a 81.50 ft square one with 3.25 ft overhanging

portion. There are 16 columns arranged in a 4x4 grid, each 30 inches square in

cross-section and spaced 25.00 ft apart. Due to the symmetry of the problem, only
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~alf of the mat is analyzed. Material properties are kept fe' = 4 ksi and fy = 60 ksi,

modulus of subgrade reaction 100 pcf. Plan of the mat is drawn in Fig. 5.18. Loads

are calculated for a IS story building and the analysis for column loads is made using

a frame analysis software. Two loading cases are considered. These are :

DL = ISOpcf, LL = 60 psf, Floor finish = 30 psf., Partition wall = 30 psf.

LOADlNGl

LOADlNGII

1.4 x Dead Load + I. 7 x Live Load

0.75 x (1.4 x Dead Load + 1.7 x Live Load +

1.7 x Wind Load)

Column loads obtained from the analysis are listed in Table 5.10.

Table 5.10. Column loads for LOADlNG I and II.

LOADlNGI LOADlNGII

Column Axial Force Base Moment Axial Force Base Moment

No (k) (k-ft) (k) (k-ft)

CI 742.05 -40.87 383.14 586.55

C2 1288.6 -2.33 . 964.77 642.01

C3 1288.6 2.33 968.13 644.11

C4 742.05 40.87 729.87 643.67
.

C5 1295.2 -78.21 624.64 1175.7

C6 2341.1 -4.46 1752.5 1284.2
.

C7 2341.1 4.46 1759.3 1288.1

C8 1295.2 78.21 1318.1 1284.7

Estimated Punching shear = 0.95 x 2341.1 = 2224 kips

dpunch= ~ (-c + ~c2 + 4.65 x Vp) in, Vp in klft and c in inches, Vp

= punching shear = 2224, c =Column dimension = 30

dpunch= 36 in. Greater thickness tg = 36 + 5.5 = 41.5 in. take = 3.5 '

So the geometry is selected shown in Fig. 5.18 by following guideline of Fig. 5.17.
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LOADING I gives higher column axial forces and lower column. base moments

whereas LOADING II gives lower axial forces and much higher base moments. So

analysis is performed using both the loading cases. Results of column strips C I-C4,

C5-C8 in Fig 5.19. through Fig. 5.21. Design values of column deflections, punching

shears, flexural shears, column face positive moments and negative moments are

listed in Table 5.11 through Table 5.19. Design thicknesses, reinforcements and

relative economic evaluation of CASE I and II are presented in Table 5.20 and Table

5.21.

Table 5.11. Column deflections of CASE I and II for LOADING I and II.
CASE I CASE II

Column LOADING I LOADING II LOADING I LOADING II
C1 0.58 in 0.24 in 0.68 in 0.32 in
C2 0.46 in 0.34 in 0.52 in 0.41 in
C3 0.46 in 0.35 in 0.52 in 0.38 in
C4 0.53 in 0.55 in 0.68 in 0.72 in
C5 0.48 in 0.19 in 0.56 in 0.22 in
C6 0.42 in 0.30 in 0.42 in 0.32 in
C7 0.42 in 0.32 in 0.42 in 0.31 in
C8 0.48 in 0.52 in 0.56 in 0.62 in

Table 5.12. Column punching shears of CASE I and II for LOADING I and II.

CASE I CASE II
Column LOADING I LOADING II LOADING I (k) LOADING II

(k) (k) (k)
CI 620 325 581 308
C2 1170 878 1151 861
C3 1170 877 1151 866
C4 620 605 581 564
C5 1175 585 1156 589
C6 2210 1656 2212 1654
C7 2210 1658 2212 1664
C8 1175 1191 1156 1167
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Table 5.13. Column face positive moments of CASE I and II for LOADING I

and II.

CASE I (k-ft/ft) CASE II (k-ft/ft)

Column LOADING I LOADING II LOADING I LOADING II

Mx My Mx My Mx My Mx My

1 4.6 4.6 16.6 5.1 6.3 6.5 17.5 7.0

2 100.1 101.3 126.2 102.4 145.6 147.6 137.4 149.8

3 100.1 101.3 42.3 102.4 145.6 147.6 107.9 149.8

4 4.6 4.6 4.7 5.1 6.4 6.5 7.1 7.0

5 6.7 6.6 25.3 5.6 8.4 8.4 26.2 6.7

6 125.1 125.8 149.4 99.2 160.1 162.0 152.4 122.0

7 125.1 125.8 64.9 99.2 160.1 162.0 124.6 122.0

8 6.7 6.6 7.8 5.6 8.4 8.4 10.2 6.7

Table 5.14. Design positive moments for CASE I and II.

CASE C1 (k-ftIft) C2 (k-ftIft) C5 (k-ftIft) C6 (k-ft/ft)

I 16.6 126.2 25.3 149.4

II 19.5 149.8 26.2 162.0

Table 5.15. In-between-column maximum negative moments of CASE I and II

for LOADING I and II.

Locatio CASE I (k-ftIft) CASE II (k-ft/ft)

n

(In bet" LOADING I LOADING II LOADING I LOADING II

column Mx My Mx My Mx My Mx My

s)

C1-C2 166.6 164.9 59.6 158.7 116.9 116.7 47.1 111.7

C2-C3 80.1 80.3 65.4 84.3 34.3 35.7 27.9 38.5

C3-C4 166.6 164.9 190.1 158.7 117.9 116.7 131.4 111.7

C5-C6 161.4 158.9 52.6 127.3 112.2 110.4 39.7 86.7

C6-C7 72.4 72.1 59.8 60.7 28.6 28.7 23.1 23.4

C7-C8 161.4 158.1 189.3 127.3 112.2 110.4 131.1 86.7
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Table 5.16. Design negative moments for CASE I and II .

CASE CI-C2 C2-C3 C5-C6 C6-C7

I 190.1 k-ftlft 84.3 k-ftlft 189.3 k-ftlft 72.4 k-ft/ft

II 116.9 k-ftlft 38.5 k-ftlft 131.1 k-ftlft 28.7 k-ftlft

Table 5.17. Column strip flexural shears of CASE I and II for LOADING I and II

CASE I (k/ft) CASE II (k/ft)
Column LOADING I LOADING II LOADING I LOADING II

Vx Vy Vx Vy Vx Vy Vx Vy

I 19.9 20.0 11.9 19.8 15.0 15.2 10.5 15.0

2 31.0 31.1 23.4 31.2 30.3 30.4 22.4 30.5

3 31.0 31.1 27.4 31.2 30.3 30.4 26.1 30.5

4 19.9 20.0 18.0 19.8 15.0 15.2 12.0 15.0

5 20.5 20.5 11.9 15.8 15.1 15.2 10.6 11.5

6 34.3 34.0 26.0 25.7 32.6 25.7 24.6 24.5

7 34.3 34.0 30.2 25.7 32.6 25.7 28.4 24.5

8 20.5 20.5 18.8 15.8 15.1 15.2 12.0 11.5

Table 5.18. Design flexural shears of CASE I and II .

CASE Cl (k) C2 (k) C5 (k) C6 (k)

I 20.0 31.2 20.5 34.3

II 15.2
I

30.5 15.2 32.6
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Table 5.19. Neck flexural shears for CASE] and Il .

CASE] (klft) CASE Il (klft)

Column LOADING] LOADINGIl LOADING] LOADING II

Vx Vy Vx Vy Vx Vy Vx Vy

2 20.2 20.2 15.2 20.2 20.3 20.3 13.7 20.6

" 20.2 20.2 18.6 20.2 20.3 20.3 18.9 20.6.J

6 22.3 20.2 16.9 16.7 21.4 21.5 14.9 16.4

7 22.3 20.2 20.6 16.7 213 21.5 20.3 16.4

Design 22.3 klft 21.5 klft

Table 5.20. Design requirements for CASE] and Il .

CASE tpunchmg tflexural tneck As+
ve A

s
-ve A

s
-ve As-

ve A
s

-ve

(in) (in) (in) col. C1-C2 C2-C3 C5-C6 C6-C7

face (in2/ft) (in2/ft) (in2/ft) (in2/ft)

(in2/ft)

] 41.9 30.6 1.52 1.52 1.52 1.52 1.52

II 41.9 29.2 20.8 1.52 1.38 0.80 1.54 0.80

Table 5.21. Relative economic evaluation of CASE I and II .

CASE tavg +ve A avg Concrete Saving Steel Saving-ve s

(in) Asavg (in2/ft) W.r.t. CASE] W.r.t. CASE]

(in2/ft)

] 42 1.52 1.52 Not applicable.

Il 29 1.23 1.24 30% 19%
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Now column strip flexural shear and neck shear is checked to see whether the

thickness there is adequate or not. It is found quite adequate.

Once again, economy of mat with non-uniform thickness is significant (Table 5.21).

It is of interest to note that despite application of heavy loads, differential deflections

are well below the allowable limits, even when wind load is considered (Table 5.11).

One other important thing to be noted is the column punching shear. Presence of

column base moments does not affect column punching shears much. Mainly axial

column loads determine punching shears. In this regard, a list of punching shears

w.r.t. respective column axial loads is presented in Table 5.22 for both LOADING I

and II. Table 5.22 shows that the percent column axial load encountered as punching

shear remarkably matches for both LOADING I and LOADING II. Also it reveals

that guideline of estimated punching shear of 95% is very good.

Table 5.22. Punching shears as a percentage of respective column axial loads for

CASE I and CASE II .

CASE I CASE II

Columns LOADING I LOADING II LOADING I LOADING II

CI 83.5% 84.9% 78.3% 80.4%

C2 90.8% 90.9% 89.3% 89.2%
.

C3 90.8% 90.6% 89.3% 89.4%

C4 83.5% 82.9% 78.3% 77.2%

C5 90.7% 93.6% 89.3% 94.3%

C6 94.4% 94.5% 94.4% 94.4%

C7 94.4% 94.3% 94.4% 94.6%

C8 90.7% 90.4% 89.3% 88.6%

LOADING I governs all shear criteria while moment criteria are mainly governed by

LOADING II. Once again, whether thickness is lowered away from the columns or

not, positive moments are found to be low enough to be covered by minimum

89

t



reinforcement. Near the column faces, 1.52 in2/ft steel (minimum requirement for

3.50 ft thickness) is provided across the entire column strip widths. This gives total

moment capacities of 3173.00 k-ft and 4706.00 k-ft for strips CI-C4 and C5-C8

respectively, against acting maximwn moments of 2360.00 k-ft and 4053.00 k-ft

respectively. Flexural shear capacity of strip CI-C2 and C5-C6 at a distance d, for

3.50 ft thickness, away from the faces of column C2 and C6 respectively are 621.20

k and 923.80 k respectively, against a maximum acting total shear of 480.40 k and

815.00 k respectively, which are considerably higher than requirements. In the

transition zones, average mat thickness of column strip I and 2 are 30.90 inches and

29.70 inches respectively, giving flexural shear capacities equal to 35.30 klft and

33.80 klft respectively thereby. The respective maximum acting kink shears are

28.40 klft and 33.90 klft respectively and it is clear that no further reduction of slope

width can be performed.

Reduction of the thickness of mat away from the columns produces shear

magnification in the transition zones in the central region of mat as before. For MAT

II kink shear magnification has been found to be dependent on slope of the

transition zone. So a study is made by varying the slope width of CASE II from 1.00

ft to 3.00 ft. A plot of kink shear magnification versus slope angle is presented in

Fig. 5.22.

However in the transition zones, average thickness, and hence average shear

capacity, of mat will be higher than the acting shears if slope angle is not too high

there. As a matter of fact, slope angle much higher than 20° will be acceptable

because of this excess shear capacity in the transition zones, which will take care of

the resulting shear magnification. In the previous examples, namely MAT II of Fig.

5.1 and CASE II of Fig. 5.18, slope angle equal to 26.6° and 30.32° respectively has

been used without any possibility of shear failure in the transition zones.
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5.8 DESIGN EXAMPLE II

A second design example is done using the guide line. A 10 storied building with 5

bay each of 18 ft. and story height of 10 ft. (Fig. 5.23 ) is selected for the study. A

100 ft. square mat is selected with 5.00 ft overhanging portion. There are 36 columns

arranged in a 6x6 grid, each 2.5 ft. square in cross-section and spaced 18.00 ft apart.

Due to the symmetry of the problem, only quarter of the mat is analyzed. Material

properties are fc' = 4 ksi and fy = 60 ksi, modulus of subgrade reaction 100 pcf. Plan

of the mat is drawn in Fig. 5.23. Loads are calculated for a 10 story building The
loads considered are:

DL = 150 pcf, LL = 80 psf, Floor finish = 30 psf., Partition wall = 30 psf.

LOADING = 1.4 x Dead Load + 1.7 x Live Load

The frame is analysed for the loads considered. The column loads obtained from the

analysis are listed in Table 5.23.

Table 5.23. Column loads for the loading

Column No. Axial Load ( kips) Base Moment (kip-ft)
CI 335.8 -23.51
C2 585.16 -3.26
C3 592.16 -0.88
C4 671.59 -47.02
C5 1170.33 -6.51
C6 1184.33 -1.75
C7 671.59 -47.02
C8 1170.33 -6.51
C9 1184.33 -1.75

Estimated Punching shear = 0.95 x 1184.33 = 1125 kips
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If uniform mat is designed then

dpunch= f(-C + JC2 + 4.65 x Vp) in, Vp in klft and c in inches,

vp = punching shear = 1125 k ,

:. dpunch= 24.2 in.

c = Column dimension = 30"

Thickness tg = 24.2 + 3.5 = 27.7" Take 28"

So the geometry is selected shown in Fig. 5.24 by following guideline of Fig. 5.17.

For mat with non-uniform thickness

tg Greater thickness = 28"

ts Smaller thickness, = 66% oftg = 18.5"

dg = Width of greater thickness, = 24.5" '" 2'

ds = Slope width, = tgj.J3 = 16.2" '" 1.35'

c-- 2/"
n= =rr

-+'1, 'K 'j-,
5' 18' 18' 9'

CASEl

(a)

Transition zone
'k 'k'k 'k Neck section2' 1.35' 8.72'

f)t/ ;lRS'
~

"=lTN...•• ...•• /~, ~,
5' 18' 18' 9'

CASE II

(b)

Fig. 5.24. (a) Cross sections of the mat of CASE I (uniform thickness) and

(b) Cross sections of the mat of CASE II (non-uniform thickness)
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Now selecting this geometry, the mat is analysed.

Punching Shear

Punching shear in columns from the are as tabulated in Table 5.24

Table 5.24 Punching shear around columns

Column Axial Load Punching %of Punching %of
shear column shear column
Case I load Case I load

CI . 335.8 279.88 83 275.96 82
C2 585 513.81 88 512.66 88
C3 592 515.02 87 513.34 87
C4 671 590.24 88 588.08 88
C5 1170 1066.11 91 1066.3 91
C6 1184 1072.65 91 1072.4 91
C7 671 583.87 87 581.71 87
C8 1170 1058.26 90 1059 91
C9 1184 1064.05 90 1064.35 90

Maximum punching shear is 1072 kip. Already thickness has been calculated using
1125 kip. So thickness is adequate.

Flexural shear

Flexural shear in columns from the are as tabulated in Table 5.25

Table 5.25 Flexural shear in columns.

Column No. Flexural shear (kift) Case I Flexural shear (kift)Case II
Cl 10.87 4.5
C2 18.5 15.8
C3 18.3 15.02
C4 12.5 11.32
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C5 22 23
C6 21.14 22.75
C7 13.1 11.42
C8 22.2 23.9
C9 21.41 23.04

Maximum Flexural shear is at C8 = 23.9 klft

:. Effective Depth required = 0.775 x 23.9 = 18.52" (See Art. 4.3)

Thickness = 18.52 + 3.5 = 22.2" < 28" :. Adequate.

Neck Flexural shear

Neck Flexural shear for Case II are tabulated in Table 5.26

Table 5.26 Neck Flexural shear for Case II (Mat with non-uniform thickness)

Column No. Neck Flexural Shear (kip/ft)
CI 6.8
C2 12.5
C3 11.78
C4 10.03
C5 18.5
C6 17.39
C7 10.3
C8 18.97
C9

. 17.71

Maximum Neck Flexural shear is at C8 = 18.97 kip/ft.

:. Effective Depth required = 0.775 x 18.97 = 14.7" (See Art. 4.3)

Thickness = 14.7 + 3.5 = 18.2" < 18.5" :. Adequate.
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Designfor Column face positive moment

As per guideline reinforcement for positive moment in the column region will be
governed by minimum reinforcement

As (+ve) = 0.48 x d = 0.48 x 24.5" = 0.98 in2 / ft

To verifY it Column face positive moment are checked. The results are tabulated in
Table 5.27.

Table 5.27 Column face positive moment ( k-ftlft)

Column no. Case I Case II
(Uniform thickness) (Non-uniform thickness)

CI 10.10 11.23
C2 41.20 48.09
C3 37.56 43.79
C4 18.18 19.47
C5 63.64 69.04
C6 59.63 63.79
C7 17.27 18.91
C8 64.02 70.22
C9 59.68 64.61

Maximum positive moment for case II 70.22 k-ftlft

Steel ratio p = _1_ (1- 1
17.7

0.6556 x 70.22)
24.5' 0.0022 < Pmin (= 0.0033)

:. Minimum reinforcement governs.

Design for Negative moment in region in between columns

Reinforcement for negative moment in between column region will have to be
calculated. The results are tabulate in Table 5.28
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Table 5.28. In-between-column maximum negative moments of CASE I and II

Location(In between columns) CASE I (kip-ft/ft) CASE II (kip-ft/ft)
CI-C2 36.47 26.05
C2-C3 25.25 16.09
C4-C5 43.6 31.75
C5-C6 29.37 20.66
C7-C8 47.25 34.63
C8-C9 31.41 22.52

Maximum Negative Moment = 34.63 kip-ft/ft

Steel ratio p =

:. As(-ve) =

_1_(1-)1
17.7

0.60 in2 /ft

0.6556 x 34.63) = 0.0029 < Pm;n (= 0.0033)
IS'

Design thicknesses, reinforcements and relative economic evaluation of CASE I and

II are presented in Table 5.29 and Table 5.30.

Table 5.29. Design requirements for CASE I and II .

CASE tpunching tt1exural tneck As+
ve A

s
-ve

(in) (in) (in) col. face In between columns

(in2/ft) (in2/ft)
I 26.85 20.7 0.98 0.98
II 26.85 22 18.2 0.98 0.60

Table 5.30. Relative economic evaluation of CASE I and II .

CASE tavg +ve -ve Concrete Saving Steel Saving
(in) Asavg Asavg W.r.t. CASE I W.r.t. CASE I

(in2/ft) (in2/ft)

I 28 0.98 0.98 Not applicable
II 20 0.66 0.60 29% 38%

97



It may be mentioned that thickness was calculated from 1125 k instead of 1072 k.

For 1072 kip the calculated thickness is 27", means that economy would be more if

greater thickness was 27" was selected.

From the results it is seen that the column strip C7 -C9 is the controlling strip. So

variation of deflection, shear force and bending moment are plotted in Fig. 5.25 to
5.27.

The example problems demonstrates the effectiveness of the proposed guideline.
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Fig 5.25 Deflection diagram of X directional column strip C7-C9
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Fig. 5.26 Shear Force diagram of X directional column strip C7-C9

-- Uniform mat
........ Mat with non-uniform thickness

'0

60

40

'" CF CF120
)Cw 0

Ea~ -20

-40

-60
0 10 20

F F

30

CF CF

40 50
X (ft)

Fig. 5.27 Bending Moment Diagram of X directional strip C7-C9



CHAPTER 6

DEVELOPMENT OF SOFTWARE MATFEA

6.1 GENERAL

For general use for the civil engineering community a windows based user friendly

computer software has been developed. This software can analyse uniform and non-

uniform mat foundation, The data input procedure is very simple and clear. After

execution of the program, graphs for deflection, shear force and bending moment are

generated automatically.

6.2 FEATURESOF THE CORE COMPUTERPROGRAM

The core program was in FORTRAN77 written by Ahmad [1969]. It can analyze any

plate or shell type structure using 8 noded or 12 noded Ahmad's thick shell element.

The shell elements may be curved or plane on both or anyone of its faces and may

be of uniform or variable thickness. Later Morshed [1997J modified the program to
analyse mat foundation.

6.3 MODIFICATION OF THE CORE PROGRAM

The core program, with the desired modifications and development of supporting

programs for data generation and result interpretation, has been turned into a

versatile mat analysis software. Attributes of the software are as follows.

(i) The program takes mat dimensions, material properties, element mesh

features, information about loads, items of output and location and type of

result interpretation etc. as its input.
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(ii) It gives nodal displacements, stresses, moments and shears as output.

Displacements will always be at nodes but moments and shears may be at the

nodal points or at the Gauss points upon request.

(iii) The program can analyze a full mat or, in case of symmetric problems, half

or quarter of a mat.

(iv) Column axial loads and column base moments can be applied as

concentrated or distributed loads.

(v) In case of distributed column axial loads and column base moments, an

element is taken under the concerned column and that element can be made

more rigid than the other portion of the mat.

(vi) Elements near the loads can be taken of smaller dimensions than the other

elements away from the columns.

(vii) Thickness of mat under the columns may be higher than that elsewhere.

(viii) Strips of thickness greater than the thickness of mat elsewhere can be

incorporated along the column lines.

(ix) Punching shear for each column can be calculated.

(x) As for boundary condition, the program can attach horizontal soil springs

along the edges, can fix the edges horizontally or can fix only the corner

nodes horizontally.

(xi) Self weight of mat may be neglected or considered.

(xii) Detailed or specified output items may be obtained upon request.

(xiii) Modulus of subgrade reaction may be uniform or zoned.

(xiv) Element dimensions may be generated by the program itself or may be given

by the user.

(xv) Due to the limitation of the operating system, only sixty output files can be

opened by a program. So the program has the option of being specifically

instructed about the locations for which graph data are required. The graph

files for displacements, moments and shears are automatically generated for

those locations.
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(xvi) Bending moments and shear forces along the column lines may be given for a

strip of width equal to unity, the widths of the column strips or any specified

width after averaging over the width requested.

(xvii) Besides these, the software has many other features for fine-tuning.

A limitation of the software is that it can handle only mats with rectangular plan

area.

6.4 FORMS OF THE SOFTWARE

The present sofware is named MATFEA. It is a windows based software. It takes

datas through some forms. Few radiobuttons has to be checked by mouse in order to

specify the type of modeling and various data. The forms in order are presented

below.

MATFEA
VEl< 1.0

"'--'
Finite Element SJrtrtural A.llalvsisSnfuvare "

: for Utriformani Non-unifonnl\'1atfOlmdatioll

'""."',,,;
"fT ',\ ,.".~

~.-Tt=;:;=~----:--~-=--;
•

Dr. Sohnlmddin Ahtnoid. Dr. Abdullduqudir
A.S.M. Mon:roru.l Morrhed, Abk Sutn.dhar

Speo:iu ThM"u.:~to: Nd.B::l.dre Eh;un

W'illLID.;:::,''~~.E~~~_if--E~~~tlcopyr~11.w md irteD"IAtiorl::l.ltre;'J.ilis. U.n;'J.l.nhoru:~d
r~pT(. UCLL'.OJ,' 'llLU ~U.W".1l..W.n ]!; nncLJ.:f prOhibited. -
C')P:fI"i?d iII 1999
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....--~---_.-:--'.'~..~.~~------~.

,MATFIA
"-~""'----------'J
r Input new data I

I.,
'j r Edit existing data

. VER 1.0
------------~ ....•Ir

.~~,..:. •.•...- ~... :
Execute Program

, .

'-.,'-..-...-. ~---..'_':- .- - .-~"--.;

r, :View Results

Design Rationale.r,

i"

IGi Plot and Viel'! G'mph'; I
I,
I
I
1
I

h,jatfeals a finite element analysis based
software for design and analysis of mat
foundations. This soltare can analyse
both uniform and non-unnorm thickness

c.1 rnat foundations. A design rationale bas'ed' ..:,
..on research '.~orks at BUETis presented. . '"
Using this 30% savings in cost can be
done in terms of concrete volume and
reinforcement

---_._-----------.-=:,...

--_._-_..'---_.~--.--,_.-==._--=--==---=---------------------
Analyse' part ~f the mal? {In case of bisymelric mat}

Hall portion analysis? r., No

Hall allhe mal wiDbe analysed con8idering one way 8ymmetry. I.
---,,--.-..-,-.-..-.---.-._-..-.-._-.-.-.-.----===-------- ------!

X dimension (leel): .~. Y climensian (Ieet): ~. Mal depth [Ieet): ~;

.Finite-Elemenl--Me$i}-- -: .'Y . c..- __ ,--~ __ ~-~-

.X diieclianal divisian. : {Should nal be grealer than 45}

Y direclianal divisions: {Should not be greater than llZ}

.,
I
i.,

~_L """" ,

.- ---_.~_ .... _ ..

::Cut baunda'Yal f. Tap [I Douam . C; Left
.; {Specify which boundary i. the centre' line of the mal} .1" . .

.. -..-_ .. -_ ... ~.

-'=-'~-~~=--I
r, Righi ,

i,
j

, .._-~._.

iM~~~.~"'>--'='I'. .-.......
': !!.ext . hancel
, . ------



Modulus 01 Elaslicity directlY ? r.Yes
.;

Value of E of mat material wiD be calculated using ultimate concrete strength.

------------------------~-_._._-----_.-- '-
Ultimate Concrete Strength {Ksi]

_._------------------------_. __ ._---_ ... ,.-

;
.i Poiswn's ratio:

Unil Weight (KCF]

,!!,ack 1 ti_ex~t__ T £ancel. !
-~---- I-----------------------------------_.~

Modulus 01 Subgrade Reaction (~CF] :

----I

,

-------~-----------------_._---
.._--_._-------~----~----"-_.--_._-------~--

Deflection, Moment and Shear Calculation. war be based on :

r., Distribution by 16th part

C Nodal Point Stressesq; Gauss: Point Stresses

]. Element s.pring' to be.lumpedat nodes

r: Distribution by 12th part

. Sign Conventions:" : Column load::: Downward ~ +ve
MX',; Moment about x,axis ::: Counter clock wise ~ we
MY = Moment about }I-axis ::: Counter clock wise "'ve I

----_ ..._~---------~----------------------
i No. 01 Column loads in the portion 01 mal 10 be analysed

,BOllom DiviSiOn'. Verriedl Load

_.~
Y-YMomel1r

II;.ancel

o
~._.-------- - .
o :.:.1

.ll

X.X~fomenl

_._-----!----_ ..
'0
o10

!
'0

o
2

Column No,
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Columns idealized by element ? ~ Yes: r No

Column load will be distributed through elemenl.

Calculate punching shear ?

Elements under columns. more rigid ?

~' Yes: r No

r No

----------=------------.,.- ---_....--~,--
---=--------------- -----_.-

Column element thickness directly ? r, Yes r. No

Ratio of Column element stiffness to mat stiffness :

This effect is realized by increasing the value of the modulus: of elasticitv of the portions
of mat under the columns.

--~~----------_."_.,- ---- _ .._"--
- -- - _. - .-.

!!'ack

i Nonuniform thicknes~mat €) Yes r~No
-------------------------------------- --_._ .•.
Element mid sutface plane r_ No
--------------------------------- -'

Thickness under all columns wiDbe same ? r_ Yes

-------=---=======-=-------- -----.'------_..-:
Column No.- --Thickness under column (in fl.)

1

2

: 3,
-,
ht,

II

II
. "._--, -- _ .....

..- -----,- ----------- -- _. -----,-

,

I
!

!!'ack Hext -.',I. {;.ancel



Same range'of dif/erenlialthickn"". under all column ? (:. Yes

~.-.-.-.-.-..-..-...-.---.-.-.-..-.-.-.----.===-.-.--- ..--.-.-.-.---.-.-~-.-----_.

Column No. !
.

LiiftDiv," I 'Rlght Div. r Div. 1 Top Div".Bottom
;

1 • - 0 10 0 0
.. I

2 0
10.. -- .. - .0 0

- ""-'--" ...---.-i...-.------.-..-.....•. . ...
3 0

1
0 0 0

.. 0. __ • -.--.------- rO-.~----,""""-''-"-- ~--- .
-4 0 ,0 :0,

--- """- ..... . ..- .~y-~,...--.-_._.- .,--,. " ,-"_. 0 __ • < _

! fI ange. of division of d~fferential thickness aw~y from. columns :
! I

I

j
1

'f hancel

!~_..

" 1 S trips of greater thickne~s
:t .... _,". "., ..._ ~

~._.---'------.--._-~--.-..-.---.-.-...-----=-=--==~--~..'-~--
Thidi.ness of strips (in ft. ) : J~~_.",..::; :..'

;
I.,,

i- VertlCal'siri';--

'1
I

12 ":.~~ ... _wl.
12 ;:
- -'".::..-.:=:-:--••

i

2
;~..

'- -'---- ..-.-._-.-.-._-_-_-__-.-_-.-=f-==_~-__ ~_="'=__._._~._..""'.-~.---=------

i,No. of. Horizontal.Strips'

.1". No. of VertiCal .Strips' :

hancel



f

:~!;.,;;t@ ~
Herizental Springs at Egde Nedes in each elements (:' Yes r No.

Horizental Medulus 0.1Subgr"de Reactien (in kef- J

Effective Depth span~over how m~nvdivisions around cOlum~~rl.' __
r"-' .
! No. of Strip averaging width divis-iane on any side of column

" ,
! Self Weight : G." No

'I
!--- __~-_-- __--- __-__-_~_-_,,=_----__--____1

Output aU details in Iile Maleut.? ~JYes

i So.ilSpring Zening ": r; Yes ~: No

Coerdinates

'-_'_=_' _!!.__a~_k_-_-_'_'~I,_..!i.ext I
--.~ ~--_.•• '-- --~~ -,.. •••~_~ __ .~ __ --- c _

. ... ..- ~_.__ .~--_ . ~-~_.
Horizental Diyis:io~ X. 'coord~nate. .
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" .

0 "1
. " ..

01
.~-- . ... . ., -- . . "' ... _ .
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i. I

. . --'-'"'.~'- -"_ .
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I

I
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! Generate data files to draw all moment shear, deHeetion graphs: \-, rf.~] r No~-------=---------~--==--------------
Due to stoTage fim~ation graph faes for anX and Y lin_~scannot be generated. So select nodal lines for glaph.
In case of.Gauss analysis, g~uts-fines w~1be -around these seleCted nodal lines.

.- -_ .... ,_.- _. - -
: Graph for how many X lines? {Should be < 8J,

r------------------~-.==~.-.-.-.-,-_-_-..---------. ~'----.----.-.-
Graph for how many Y fines? (Should be < (16.X line No.s.ll

- -,---- ..----- .- ..-~-

IY line n~•._==="'. ==_=_===~.~,,~~.,_,_~__,.

J: i:
.. J

'---"~ -'~'. --~-"'--
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: .

,
I

J
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CHAPTER 7

CONCLUSIONS

7.1 GENERAL

A thorough study on mat foundation has been performed in this thesis. Comparison

between Winkler foundation model and two parameter foundation model has been

done. Critical review of the analysis methods has been performed. Parametric studies

has been done on sensitive parameters of mat. To achieve economy, mat thickened

under column, designated as non-uniform mat in this study, has been analysed and

designed. The new parameters related to the non-uniform mat has been studied and

their response on the mat has been investigated. Depending on this study and some

example problems an economic design guideline for mat with non-unifoml thickness

has been established. For general use for the civil engineering community a windows

based user friendly computer software has been developed.

7.2 COMPARISON BETWEEN WINKLER AND TWO PARAMETER

MODEL

From the study it is evident that using two parameter model reduces deflection and

also bending moment. A variation of 6-8 % is seen in deflection while 9- I2 % in

moment. So it proves that Winkler model with its simplicity can depict soil response

as good as two parameter model. Thus Winkler model establishes itself as very good

idealization for soil.
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7.3 COMPARISON BETWEEN VARIOUS METHODS

Critical review has been done on the performances of Conventional method, ACI

method and finite element method. Finite element method being the best one in

terms of all aspects has exposed the short comings of other methods. From the

present study the extent of the use of other methods has been depicted. In order to

use a method the various limitations of it must be known. FE method has revealed it.

From the study it has been verified that conventional method is a crude method. It

does not depict the actual behaviour of mat at all. It fails to predict any positive

moment at the column face of the column. Deflection can not be calculated by this

method. Apparently it may seem that since mat can take substantial differential

settlement so deflection will not pose any problem. But if it requires any review after

construction then it will pose an uncertainty. The same applies in case of flexural

shear also. Conventional method gives very low flexural shear. For most cases

punching shear governs the thickness determination but in some cases flexural shear

governs the thickness determination. In such problems use of this method will be

fatal.

ACI method involves extensive calculation but it causes overestimation of thickness

due to overestimation of flexural shear as well as reinforcements due to

overestimation of negative moments.

Economy of various methods are evaluated by parameter such as concrete volume

and steel requirements. From the preceding study it reveals that in ACI method the

thickness governed by flexural shear will be high W.r.t. FE method. Also in

Conventional method the steel required by negative moment will be more W.r.t. FE

method. So FE method will result in substantial economy than both ACI and

Conventional Method. It is also implied that this economy .will increase with high

column loads. The summary of different methods are given in Table 4.12 which will

be very useful for designers during design.
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7.4 FINDINGS OF THE PARAMETRIC STUDY

The material parameters associated with mat foundation are modulus of subgrade

reaction and concrete strength. The main geometric parameter of mat is its thickness.

However, other geometric parameters include column spacing, column dimension

and width of overhanging portion.

Mat deflection has been found to be the most sensitive item of all to its parameters.

However, mat deflection has also been found to be the least significant item of all

from design point of view.

Mat shear has been found to be insensitive to most of its parameters. The only

noticeable variation of flexural shear is that near mat edges with respect to mat

thickness. However, since critical flexural shears usually occur near central columns,

this variation will seldom be of any practical significance.

Positive moments are less sensitive to mat parameters than negative moments and

this sensitivity is confined in the central portion of mat. Since positive moments are

small enough to be usually covered by minimum steel, its variation with mat

parameters is expected to be of no practical significance. Modulus of subgrade

reaction and mat thickness have the most significant effects on negative moments.

Closer column spacing produces more uniformity in load application resulting in

lower deflections, moments and shears. Reduction of positive and negative moments

is particularly significant. Bending moment and shear force diagrams for different

column sizes remain more or less aligned with some reduction in the peak values

with the increase of column sizes. Width of overhanging portion has significant

effect on mat deflections and negative moments. With wider overhang, deflection

pattern becomes concave and negative moments reduce sharply. An increase in

central positive moments also occurs. The summary of parametric study is depicted

in Table 4.16 which is expected to be very useful to designers during design.
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7.5 DESIGN OF NON-UNIFORM MAT FOUNDATION

Mat foundation is a relatively heavy and costly structure. Economy in mat is an

engineers dream for many years. This was not possible for lack of appropriate design

method and guideline. Possibility of economy has been hinted by several authors in

the form of changing the configuration of mat geometry. In fig 1.1 such

configurations are shown. Since we have the most powerful tool FE in our hand so it

is our privilege to discover economy in such configurations.

In this study successfully a well verified guideline for design of mat with non-

uniform thickness has been presented. Such type of mat foundation offers a way of

attaining substantial economy. Sensitivity analysis of all relevant parameters have

been performed. It has been found that

• Greater thickness under the columns has to be designed from maximum

punching shear .

• The smaller thickness has to be designed from flexural shear at the neck sections.

Then this thickness should be reinforced for negative moments.

• With the reduction of thickness in the low shear and high negative moment

regions, column face positive moments increases. But since greater thickness is

provided in the positive moment and high shear regions, this amplification does

not pose any threat. Column face positive moments, after being averaged across

column strip widths, come out to be much lower than the moment capacities of

mat at those sections. Reinforced throughout with the minimum steel is required

for the greater thickness.

• Reduction of thickness is associated with the reduction of moment capacity. As

negative moments decrease with the decrease of thickness, reduction of moment

capacity of mat at the corresponding locations does not change to that extent.

• Width over which change of thickness should be made i.e. slope width is not

very critical as long as the slope of the transition zones is kept as flat as

practicable.
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• Greater thickness is required for punching shear purpose and smce m the

calculation of the punching shear capacity, flexural shear cracks are assumed to

propagate downward from the column face at an angle of 45°, a width equal to

the effective depth corresponding to the greater thickness seems to be reasonable.

After critical reView and in-depth verification the following guideline has been

established.

PDL+LL(m,,) ~ Maximum column axial load due io live load and dead load

i, tg ~ Ig = thickness required to encounter 0.95 PDf. U (max) as

TT punching shear,

~ t : r I., = 21g /3,
"- /' dg = effective depth corresponding to tg ,

t I I" t I d, =Ig/.J].
d, dg

Fig. 7.1 Guideline for selecting cross-sectional geometry for the first trial solution

of mat with non-uniform thickness.

(i) The problem should be solved first with a non-uniform thickness geometry

selected from the guideline shown in Fig. 7. I. Column punching shear

should be estimated as 0.95 x colunm axial force.

tg Greater thickness, calculate from this punching shear

ts Smaller thickness, = 66 % of tg

dg Width of greater thickness, = effective depth corresponding to tg
ds = Slope width, = tg/.J]

Slope angle == 30°

(ii) A mat analysis is performed regarding this geometry. Now the Greater

thickness (tg) under the colunms should be designed from the colunm

punching shear found from analysis.
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(iii) The greater thickness (tg) should be provided around the column peripheries

over a distance equal to the effective depth corresponding to the greater

thickness itself.

(iv) Smaller thickness should be calculated from the maximum flexural shear,

found from the solution, at the neck sections.

(v) Width of the transition zones (for gradual reduction of thickness) should be

such that slope angle of the underside of mat in these zones be between 300

to 35°. A simple trial will be sufficient to finalise steps (iii) and (iv).

(vi) The problem should be analyzed again with the new geometry just selected in

order to calculate reinforcements. Finally a check on the adopted geometry

using the shear forces diagrams and punching shears found from the new

solution.

(vii) Minimum reinforcement required for the zone of greater thickness should be

provided as bottom reinforcement under the columns across the entire widths

of column strips. Again, the new solution may be used to check the adequacy

of these reinforcements.

(viii) Reinforcements for negative moments in-between the columns should be

designed using the new solution.

(ix) Bottom reinforcements in-between the columns (negative moment zones)

and top reinforcements under the columns (positive moment zones) should

be calculated as per minimum requirements specified by ACI code.

Using this guideline it has been revealed that thickness away from column can be

reduced up to 35%. And economy achievable in terms of volume of concrete and

reinforcement is about 20 to 30 % with respect to uniform thickness mats.

For facilitation of designing the non-uniform mat foundation a full pledged windows

based software MATFEA has been developed. Working with this software is very

friendly regarding data input and result interpretation. Graphs of displacements,

flexural shears and bending moments are generated instantly and shown in screen.
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7.6 RECOMMENDA nONS FOR FUTURE STUDY

The following recommendations are made for future investigation on mat

foundation.

(i) Behavior of irregularly shaped mat, mat with punches, mat with irregular

column arrangements and mat with shear walls may be investigated.

(ii) Both mat and supporting soil have been modeled as linearly elastic material

in the current study. A non-linear analysis may be performed.

(iii) Dynamic mat-soil interaction can be analyzed using FE method ..

(iv) The integrated structure consisting of mat monolithically built with the

building frame with and without shear walls may be analyzed for both static

and dynamic response.

(v) Rectangular and circular mats subject to peripheral line lodes, as are found

under silos and oil tanks, may be analyzed.
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APPENDIX A

THICK SHELL ELEMENT

A.l BRIEF DESCRIPTION OF THICK SHELL ELEMENT

The general thick shell finite element was developed by Ahmad (1969). Typical thick

shell elements are shown in Fig. Al. In thick shells, bending effect can be expected

to be significant. The transverse shear deformation is also significant. In the element

formulation, two assumptions were made. Firstly, the original normal to the middle

surface are assumed to remain straight. Secondly, the distance of a point along the

normal from the middle surface remains unaffected.

A.I.l Geometric Definition of the Element

The external faces of the elements are curved, while the sections across the thickness

are generated by straight lines. Pairs of points i10p and ibotlom, each with given Cartesian

coordinates, describe the shape of the element.

If ~ and 11 be the two curvilinear coordinates in the middle plane of the shell element

(Fig. A.2) and C; be a linear coordinate in the thickness direction and further, if it is

assumed that ~, 11 and C; vary between + I and -Ion the respective faces of the

element, then a relationship can be written between Cartesian coordinates of any

point of the shell and the curvilinear coordinates in the form :

•

(AI)

A-I
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Fig. A. I. Thick shell elements: (a) parabolic c1cllIcnt and (b) clIbie clcllIent



Here, Ni (~ , TI) are shape functions taking a value of unity at the nodes i and zero at

all other nodes. If the basic functions, Ni are derived as shape functions of a parent

two dimensional element, square or even triangular in plan and are so designed that

compatibility is achieved at interfaces, then the curved spape elements will fit into

each other. Arbitrarily curved shapes of the element can be achieved by using shape

functions of different orders. Only parabolic and cubic types are shown in Fig. AI.

For the purpose of present analysis, a parabolic element has been used. By placing a

larger number of nodes on the surfaces of the element, more elaborate shapes can be

achieved if so desired. It should be noted that the i;, direction is only approximately

normal to the middle surface of the element. The relationship between the Cartesian

coordinates and the curvilinear coordinates can be written conveniently in a form

specified by the vector connecting the upper and lower points (i.e. a vector of length

equal to the shell thickness, t) and mid surface coordinates (Fig. A3) as follows

x x.
I

Y = LNi Yi +LN.SY3 (A2)
1 2 I

Z z.
mid1

x. x.
I I

and Y3i Yi Yi
(A3)

z. z.
bottom1 top 1

Here v 3i is a vector whose length is equal to the shell thickness.

A.1.2 Displacement Field

Since strains in the direction normal to the mid surface is assumed to be negligible,

the displacement throughout the element will be taken to be uniquely defined by the

three mid surface nodal displacements in the directions of the three Cartesian
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Fig. A2, Geometry of thick shell element.
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Fig A3. Local and global coordinate systems and nodal degrees of freedom for

thick shell element.



coordinates and two rotations of the nodal vector V 3i about orthogonal directions

normal to it. If two such orthogonal directions are given by vector V2i and V1i of

unit magnitude with corresponding scalar rotations Ui and j3i respectively, the

displacement field can be expressed as follows:

U ui

= LNi t . ti} (A.4)
y y. + LNii:;j-[V1i ~v2i] ~iI

w w.
I

/

A.2 GENERAL FEATURES OF THE PROGRAM

The thick shell program is a FORTRAN code to implement the general thick shell

element [AJunad (1969)]. The geometry of a structure is defined in a global system

which is a rectangular Cartesian coordinate system. The loading and boundary

conditions must be given in the same unit as the nodal displacements of an element.

The stresses are usually calculated at the nodal points in the global system.

The top and bottom coordinates of each node with respect to Cartesian coordinate

system are fed into the program. Coordinates for non-comer nodes lying on straight

edges are not required to be given. If these coordinates of the nodes are fed into the

program, then the shape of the element is automatically defined in the program.

Therefore the thickness of the element can vary from node to node and the edges may

be curved parabolically and cubically depending on the type of element used. The

program as at present can handle isotropic elastic material. The material properties

are defined for every element, thus allowing the program to deal with materials

varying from element to element. Temperature and pressure can be varied from node

to node.
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A.2.t Output from the Program

Displacements are calculated and printed against each node in the ascending order for

every loading case. Stresses are first calculated in the local orthogonal system and

then transformed into the global Cartesian system. For every node, the top surface

stresses are followed by the bottom surface stresses

Global stresses are also stored separately for top and bottom surfaces against node

numbers and in the end, a simple averaging is performed on them. The average

stresses are then printed out in the ascending order of the node numbers. The top

surface stresses for all the loading cases are followed by the bottom surface' stresses.

A.2.2 Division of Structure into Elements

First of all, the structure is divided into suitable elements and the nodes are numbered

in any suitable manner as shown in the example of Fig. A.4. The elements are also

suitably numbered in some sequence on which they are fed into the computer. Two

probable sequences are shown in Fig. A.4 (a) and A.4 (b). Each element is

topographically defined by its nodal numbers in a consistent right hand screw system

as shown in Fig. A.5 (a) and A.5 (b).

A.2.3 Front Width and Selection of Order of Elimination

The thick shell program uses the frontal solution technique. Here the assembly of an

element stiffuess and the corresponding right hand side is immediately followed by

the process of elimination of the variables corresponding to nodes which occur for

the last time. This is indicated to the program by inserting a negative sign before

these nodes. This can easily be put in the shell structures once the element sequence

has been selected.
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To carry out the analysis of a structure using minimum possible computer storage,

the elements are selected in such a sequence that the maximum number of variables to

be handled at any particular time i.e. the front width, is minimum. For example, the

prescribed order of elements in Fig. A4 (a) will give the smallest front width for the

particular structure. This is evident even from inspection for simple structures.

A.3 EVALUA nON OF STRESSES AT GA USS POINTS

Formulation of the element stiffuess matrix involves integration of complex

polynomial shape functions of the elements and their derivatives. Exact integration of

such functions is very troublesome and numerical integration becomes essential.

Numerical integration of any function involves evaluation of the function at some

representative points within the range of the function for shape functions which is the

respective element. The number of representative points required for a certain degree

of accuracy depends on the technique of integration employed. It is found that

number of sampling points is minimum when Gauss' quadrature is applied. For this

reason, virtually all finite element programs use Gauss' quadrature. The Gauss

quadrature formula is

r+I
L1

n
f(~)d~= L:HJ(ai)

i= I
(AS)

In the above formula, integration is performed in .the range of - I to +I, a; is the

abscissa of the Gauss points, f(a;) is the ordinate i.e. the function value at ai, H; is the

weight coefficient and n is the number of sampling points. Values of a; and Hi depend

on the value of n. Table A I lists these values for n ranging upto 3.

In Ahmad's program, 2-point and 3-point Gauss' quadratures are applied for the 8-

noded and 12-noded elements respectively. Integration is performed in the local

element coordinate system (I'" 11, (). Coordinates of the points within the element
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Fig. A4. Division of structure with parabolic elements.

top surface
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Fig. AS Definition of element topology.



varies between + J and -1. If 2-point (n=2) integration is performed on the middle

surface, there are four Gauss points since integration is carried out in both ~ and TJ

directions. The coordinates of these four points with respect to (~ , TJ) system will be

(:to.577350269, :to.577350269). These points are shown in Fig. A.6.

Table A. I. Values of G; and H; for Gauss integration.

n eta H

1 0.0 2.0

2 0577350269 1.0.
3 0774596692 0.5555555555

00 08888888888

In finite element analysis using displacement methods, the stresses are discontinuous

between elements because of the nature of the assumed displacement variation. For

this reason, stress at a node is calculated by averaging the stresses obtained at that

node from the elements common to that node. Experience has shown that in case of

isoparametric elements the Gauss' integration points are the best stress sampling

points because shape function derivatives, and hence stresses, evaluated at the

interior of the elements are more accurate than those calculated at the element

boundary. The element nodes, which are the most useful points for output and

interpretation of stresses, appear to be not so good as stress sampling points.

The thick shell element developed by Ahmad (1969) is excellent for analyzing singly

or doubly curved shell structures where load is carried by bending as well as inplane

forces. In most shell structures, transverse shear is not a very important quantity. It

has been found from experience that out of plane shears in such ordinary structures

are small in magnitude and they can safely be ignored in design. Consequently, while

formulating element characteristics, less importance was given to the evaluation of
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transverse shear stresses. However, stresses at Gauss points are predicted with good

accuracy in shell or plate structures like mat, where transverse shear is important. For.

this reason, evaluation of stresses at Gauss points becomes essential with Ahmad's

element for such structures.
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Fig. A.6. Gauss points in an 8-noded element
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