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Abstract

The information of electrocardiograms (ECG) signal is the most important bio-

electrical message of human body, which reflects the basic law of heart activity.

To improve the efficiency and accuracy of the diagnosis of cardiovascular diseases,

it has a very important significance. For ECG beat classification, a wide range

of signal processing techniques extracting features from time, frequency and time

frequency domains have been reported in the literature. Since, ECG is a nonsta-

tionary signal, time frequency analysis can perform better than the conventional

time or frequency analysis methods. But, development of a multi-class beat classi-

fication method, which is simple yet effective in handling practical conditions such

as lack of enough training dataset and random selection of training and testing

dataset, is still a challenging task. In the empirical mode decomposition (EMD)

domain, the basic functions are directly derived from the original signal without the

knowledge of any previous value of the signal.In this thesis, first the intrinsic mode

functions (IMFs) are extracted by using the EMD and then the discrete wavelet

packet decomposition (WPD) is performed only on the selected dominant IMFs.

Both approximate and detail WPD coefficients of the dominant IMF are taken into

consideration. It is found that some higher order statistics of these EMD-WPD

coefficients corresponding to different beat classes exhibit distinguishing charac-

teristics and these statistical parameters are chosen as the desired features. It is

proposed and shown that smoothed three point central difference for an ECG sig-

nal namely dECG signal and modified dECG signal can further enhance the level

of discrimination as it also includes the effect of P and T waves apart from QRS

complex of an ECG beat. Each of the proposed sets of feature when fed to Eu-

clidean distance based k-Nearest Neighbor (k-NN) classifier can classify different

cardiac beats with randomly selected training and testing dataset. Simulations are

carried out to evaluate the performance of the proposed methods in terms of sensi-

tivity, specificity, selectivity and accuracy. It is shown that the proposed methods

outperform the state-of-the-art method with greater effectiveness.
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Chapter 1

Introduction

The information of electrocardiograms (ECG) signal is the most important bio-

electrical message of human body, which reflects the basic law of heart activity.

The properly analyzed ECG signal can provide the key information about the elec-

trical activity of the heart. To improve the efficiency and accuracy of the diagnosis

of cardiovascular diseases, it has a very important significance. However, ECG

signal is a non-linear, non-stationary weak signal with strong randomness, which

increases the difficulty of analyzing and processing data. As the irregularities are

not always periodic and often do not show up continuously, so continuous ECG

monitoring is required to observe the cardiac variations over an extended period

of time. It has now gone beyond the capacity of the expert cardiologist to take

care of large numbers of cardiac patients efficiently and effectively. Since cardiol-

ogists are unlikely to be available to monitor the ECGs of all the patients during

all 24 hours in a day, automated monitors programmed to detect abnormal heart

rhythms are needed.Therefore, computer-aided feature extraction and analysis of

ECG signal for disease diagnosis has become the necessity. Over the past several

years, the computerised ECG monitors that provide complete ECG recordings and

interpretations have become common. Computerized ECG monitoring and analy-

sis are now carried out with bed side monitors, mobile carts equipped with ECG

amplifiers and microcomputers, and portable ECG recorders hooked up via tele-

phone networks. The first step in computer aided diagnosis is the identification

and extraction of the features of the ECG signal. Over the years researchers have

developed a variety of relatively effective signal processing techniques in time or

frequency or time-frequency domain to classify cardiac beats accurately. Although

there has been a tremendous amount of improvement in technology and various

approaches to the problem, automatic cardiac beat detection and classification

with high reliability is still an open research area. Different types of morphological

changes occur in different sections of a normal ECG beat in a particular arrhyth-
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mia condition, and these changes may vary from beat to beat under the same

arrhythmia condition. Thus extracting these characteristics in detail under each

arrhythmia condition through signal processing techniques into a feature vector

that is capable of correctly classifying among different types of cardiac beat is a

difficult task. Thus, in real life applications complexity and ease of implementation

of the cardiac beats classification methods is a matter of concern. The overall goal

of cardiac beat classification technique is to find a simple and effective method ca-

pable of performing the classification with greater sensitivity, specificity, selectivity

and accuracy.

In this chapter, we describe about ECG signals and ECG signal interpretation

methods, motivation and objective of the thesis to classify cardiac beats. Finally,

organization of the thesis is presented for a better clarification.

1.1 The Anatomy of Heart

The heart has four chambers – the right and left atrium and the right and left

ventricle. The anatomy of heart is shown in Fig. 1.1. The right side of the heart

collects blood from the body and pumps it to the lungs while the left side of the

heart receives blood from the lungs and pumps it to the body [1].

Blood flows through the body in the following way [2]:

• Oxygen-rich blood from the lungs enters the left atrium through the pul-

monary veins.

• Blood then flows into the left ventricle where it is pumped into the aorta and

is distributed to the rest of the body. This blood supplies organs and cells

with oxygen and nutrients necessary for metabolism.

• Blood that returns to the heart is depleted of oxygen and carries carbon

dioxide, the waste product of metabolism. The blood enters the right atrium

though the vena cava, where it is collected and pumped to the right ventricle.

• The right ventricle then pumps blood through the pulmonary artery to the

lungs where carbon dioxide is stripped off, oxygen is replaced, and the cycle

begins again.
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Electrically, the heart can be divided into upper and lower chambers. An electrical

impulse is generated in the upper chambers of the heart that causes the atria to

squeeze and push blood into the ventricles. There is a short delay to allow the

ventricles to fill. The ventricles then contract to pump blood to the body and the

lungs.

Figure 1.1: Diagram of Human Heart

1.1.1 Heart Conduction System

The heart has its own automatic pacemaker called the sinaoatrial, or SA node,

located in the right atrium. The SA node acts independently of the brain to

generate electricity for the heart to beat[3].

• Normally, the impulse generated by the SA node runs through the heart’s

electrical grid and signals the muscle cells in the atria to beat simultaneously,

allowing for a coordinated squeeze of the heart. Contraction of the atria

pushes blood into the ventricles.

• The electrical signal that was generated in the SA node travels to a junction

box between the atria and ventricles (the AV node) where it is delayed for a

few milliseconds to allow the ventricles to fill.
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• The electrical signal then travels through the ventricles, stimulating those

heart muscle cells to contract. Ventricular contraction pumps blood to the

body (from the left ventricle) and the lungs (from the right ventricle).

• There is a short pause to allow blood to return to the heart and fill before

the electrical cycle repeats itself for the next heartbeat.

Figure 1.2: Electrical Conduction System of Heart

1.2 ECG Signal

Electrocardiogram (ECG) represents electrical activity of human heart. The heart

is a muscle that contracts in a rhythmical manner, pumping blood throughout

the body. A heart consists of two pumps (right and left) and each pump has two

chambers (upper and lower). The upper chamber is call atrium and the lower

chamber is called ventricle. The right pump circulates blood from other parts of

the body to the lung and the left pump circulates blood from the lung to the rest of

the body. This contraction has its beginning at the atrial sine node that acts as a

natural pacemaker, and propagates through the rest of the muscle. This electrical

signal propagation follows a pattern. As a result of this activity, electrical currents

are generated on the surface of the body, provoking variations in the electrical

potential of the skin surface. These signals can be captured or measured with the

aid of electrodes and appropriate equipment.
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The difference of electrical potential between the points marked by the electrodes

on the skin, usually is enhanced with the aid of an instrumentation (operational)

amplifier with optic isolation. In a conventional 12-lead ECG, ten electrodes are

placed on the patient’s limbs and on the surface of the chest. The overall mag-

nitude of the heart’s electrical potential is then measured from twelve different

angles (”leads”) and is recorded over a period of time (usually ten seconds) [4]. In

this way, the overall magnitude and direction of the heart’s electrical depolariza-

tion is captured at each moment throughout the cardiac cycle. Then, the signal is

submitted to a high-pass filter; and as a second stage, submitted to an antialiasing

low-pass filter. Finally, it appears in an analogical to digital converter. The graph-

ical registration of this acquisition process is called electrocardiogram (ECG). The

normal ECG signal and the ECG acquisition process are shown in Fig. 1.3 and

Fig. 1.4 respectively.

Figure 1.3: The Normal ECG

Figure 1.4: ECG Acquisition Process

1.2.1 Significance of Performing ECG

An electrocardiogram is a painless, noninvasive way to help diagnose many common

heart problems in people of all ages. Electrocardiogram is done to detect [5]:

• Heart rate: Nomally,heart rate can be measured by checking pulse. An

ECG may be helpful if pulse is difficult to feel or too fast or too irregular

to count accurately. An ECG can help the doctor identify an unusually fast

heart rate (tachycardia) or an unusually slow heart rate (bradycardia).
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• Heart Rythm: An ECG can show heart rhythm irregularities (arrhyth-

mias). These conditions may occur when any part of the heart’s electrical

system malfunctions. In other cases, medications, such as beta blockers,

cocaine, amphetamines, and over-the-counter cold and allergy drugs, can

trigger arrhythmias.

• Heart attack: An ECG can show evidence of a previous heart attack or

one that’s in progress. The patterns on the ECG may indicate which part of

the heart has been damaged, as well as the extent of the damage.

• Inadequate blood and oxygen supply to the heart: An ECG done

while anyone’s having symptoms that can help doctor determine whether

chest pain is caused by reduced blood flow to the heart muscle, such as with

the chest pain of unstable angina.

• Structural abnormalities: An ECG can provide clues about enlargement

of the chambers or walls of the heart, heart defects and other heart problems.

1.2.2 Measurement of ECG

Nowadays, there are many approaches to measurement/ record ECG. The majority

of devices used for ECG measurements are in the on-the-person category. Devices

on this category normally require the use of some electrodes attached to the skin

surface. Examples of such equipments are bed side monitors and holters. Nowa-

days the standard devices used for heart beat analysis come from this category.

Commonly, 10 electrodes attached to the body are used to form 12 ECG leads,

with each lead measuring a specific electrical potential difference. Leads are broken

down into three types: limb, augmented limb and precordial or chest. The 12-lead

ECG has a total of three limb leads and three augmented limb leads arranged like

spokes of a wheel in the coronal plane (vertical), and six precordial leads or chest

leads that lie on the perpendicular transverse plane (horizontal).The placements

of the electrodes are shown in Fig. 1.5. The electrodes are placed as per Table 1.1.
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Figure 1.5: Placement of Electrode

Table 1.1: Placement of 10 Electrode

Electrode
Name

Electrode Placement

RA On the right arm, avoiding thick muscle
LA In the same location where RA was placed, but on the left arm

RL
On the right leg, lower end of inner aspect of calf muscle. (Avoid

bony prominences)
LL In the same location where RL was placed, but on the left leg.

V1
In the fourth intercostal space (between ribs 4 and 5) just to the

right of the sternum (breastbone).

V2
In the fourth intercostal space (between ribs 4 and 5) just to the

left of the sternum
V3 Between leads V2 and V4.

V4
In the fifth intercostal space (between ribs 5 and 6) in the

mid-clavicular line.
V5 Horizontally even with V4, in the left anterior axillary line.
V6 Horizontally even with V4 and V5 in the mid-axillary line.

1.3 Leads in ECG

In a 12-lead ECG, all leads except the limb leads are unipolar (aVR, aVL, aVF, V1,

V2, V3, V4, V5, and V6). The measurement of a voltage requires two contacts and

so, electrically, the unipolar leads are measured from the common lead (negative)

and the unipolar lead (positive) [6].
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1.3.1 Limb Lead

Leads I, II and III are called the limb leads. The electrodes that form these signals

are located on the limbs i.e. one on each arm and one on the left leg.

• Lead I is the voltage between the (positive) left arm (LA) electrode and right

arm (RA) electrode: I= LA - RA

• Lead II is the voltage between the (positive) left leg (LL) electrode and the

right arm (RA) electrode: II= LL – RA

• Lead III is the voltage between the (positive) left leg (LL) electrode and the

left arm (LA) electrode: III = LL – LA

1.3.2 Augmented limb leads

Leads aVR, aVL, and aVF are the augmented limb leads. They are derived from

the same three electrodes as leads I, II, and III, but they use Goldberger’s central

terminal as their negative pole. Goldberger’s central terminal is a combination of

inputs from two limb electrodes, with a different combination for each augmented

lead. It is referred to immediately below as ”the negative pole”.

• Lead augmented vector right (aVR) has the positive electrode on the right

arm. The negative pole is a combination of the left arm electrode and the

left leg electrode

• Lead augmented vector left (aVL) has the positive electrode on the left arm.

The negative pole is a combination of the right arm electrode and the left

leg electrode: Equation

• Lead augmented vector foot (aVF) has the positive electrode on the left leg.

The negative pole is a combination of the right arm electrode and the left

arm electrode: Equation

• Together with leads I, II, and III, augmented limb leads aVR, aVL, and aVF

form the basis of the hexaxial reference system, which is used to calculate

the heart’s electrical axis in the frontal plane.

1.3.3 Precordial leads

The precordial leads lie in the transverse (horizontal) plane, perpendicular to the

other six leads. The six precordial electrodes act as the positive poles for the
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Figure 1.6: The limb leads and augmented limb leads

Figure 1.7: Detail View of Augmented Limb Leads

six corresponding precordial leads: (V1, V2, V3, V4, V5, and V6). Wilson’s central

terminal is used as the negative pole.

1.3.4 Specialized leads

Additional electrodes may rarely be placed to generate other leads for specific

diagnostic purposes. Right-sided precordial leads may be used to better study

pathology of the right ventricle or for dextrocardia (and are denoted with an R

(e.g., V5R). Posterior leads (V7 to V9) may be used to demonstrate the presence of

a posterior myocardial infarction.
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1.4 Interpretation of ECG Signal

Interpretation of the ECG is ultimately that of pattern recognition. In order to

understand the patterns found, it is helpful to understand the theory of what

ECGs represent. The theory is rooted in electromagnetic and boils down to the

four following points [7]:

• depolarization of the heart toward the positive electrode produces a positive

deflection

• depolarization of the heart away from the positive electrode produces a neg-

ative deflection

• repolarization of the heart toward the positive electrode produces a negative

deflection

• repolarization of the heart away from the positive electrode produces a pos-

itive deflection

Thus, the overall direction of depolarization and repolarization produces a vector

that produces positive or negative deflection on the ECG depending on which lead

it points to. For example, depolarizing from right to left would produce a positive

deflection in lead I because the two vectors point in the same direction. In contrast,

that same depolarization would produce minimal deflection in V1 and V2 because

the vectors are perpendicular and this phenomenon is called isoelectric. Normal

rhythm produces four entities a P wave, a QRS complex, a T wave, and a U wave

that each have a fairly unique pattern[8].

• The P wave represents atrial depolarization.

• The QRS complex represents ventricular depolarization.

• The T wave represents ventricular repolarization.

• The U wave represents papillary muscle repolarization.

1.5 Significance of Components of an ECG Beat

Normally, the frequency range of an ECG signal is of 0.05 100 Hz and its dynamic

range of 1 10 mV. The ECG signal is characterized by five peaks and valleys

labeled by the letters P, Q, R, S, T as shown in Fig.1.8. In some cases (especially

in infants) we may also find another peak called U. The performance of ECG
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Figure 1.8: Schematic representation of normal ECG waveform

analyzing system depends mainly on the accurate and reliable detection of the

QRS complex, as well as T and P waves.

The P-wave represents the activation of the upper chambers of the heart, the atria,

while the QRS complex and T-wave represent the excitation of the ventricles or

the lower chamber of the heart. The detection of the QRS complex is the most

important task in automatic ECG signal analysis. Once the QRS complex has

been identified a more detailed examination of ECG signal including the heart

rate, the ST segment etc. can be performed.

In the normal sinus rhythm (normal state of the heart) the P-R interval is in the

range of 0.12 to 0.2 seconds as shown in Fig.1.8. The QRS interval is from 0.04

to 0.12 seconds. The Q-T interval is less than 0.42 seconds and the normal rate

of the heart is from 60 to 100 beats per minute. So, from the recorded shape

of the ECG, we can say whether the heart activity is normal or abnormal. The

electrocardiogram is a graphic recording or display of the time variant voltages

produced by the myocardium during the cardiac cycle. The P-, QRS- and T-waves

reflect the rhythmic electrical depolarization and repolarization of the myocardium

associated with the contractions of the atria and ventricles. This ECG is used

clinically in diagnosing various abnormalities and conditions associated with the

heart.
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The normal value of heart beat lies in the range of 60 to 100 beats/minute. A slower

rate than this is called bradycardia (slow heart rate) and a higher rate is called

tachycardia (fast heart rate). If the cycles are not evenly spaced, an arrhythmia

may be indicated. If the P-R interval is greater than 0.2 seconds, it may suggest

blockage of the AV node. The horizontal segment of this waveform preceding the

P-wave is designated as the baseline or the isopotential line. The P-wave represents

depolarization of the atrial musculature. The QRS complex is the combined result

of the repolarization of the atria and depolarization of the ventricles, which occur

almost simultaneously. The T-wave is the wave of ventricular repolarization, where

as the U-wave, if present is generally believed to be the result of after potentials

in the ventricular muscle. So, the duration amplitude and morphology of the QRS

complex is useful in diagnosing cardiac arrhythmias, conduction abnormalities,

ventricular hypertrophy, myocardial infection and other disease states. Table 1.2

represents the components of individual ECG beats.

1.6 Signal Processing in ECG Data Interpreta-

tion and Beat Classification

Reliable classification of ECG beats based on digital processing of ECG signals is

vital in providing suitable and timely treatment to a cardiac patient. Computerized

ECG signal interpretation systems are very much needed as they aid a cardiologist

in taking crucial decisions while diagnosing abnormal heart rhythms. However,

due to corruption of ECG signals with multiple frequency noise and presence of

multiple arrhythmic events in a cardiac rhythm, computerized interpretation of

abnormal ECG rhythms is a challenging task. Computerized ECG interpretation

to classify ECG beats is a process of ECG data acquisition, waveform recognition,

measurement of wave parameters and rhythm classification. Substantial progress

has been made over the years in improvising techniques for signal conditioning,

extraction of relevant wave parameters and rhythm classification. However, many

problems and issues, especially those related to detection of long P and T peaks

and reliable analysis of multiple arrhythmic events etc., still need to be addressed in

a more comprehensive manner to brighten the prospect of commercial automated

analysis in mass health care centres.

Although the first attempt to automate ECG analysis by digital computer was

made as early as in 1956 by Pipberger and his group [9], but the first industrial

ECG processing system came in the market during seventies. Since then many

investigative and commercial minicomputer-based and microcomputer based sys-
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Table 1.2: Interpretation of ECG Signal Pattern

Feature Description Duration

P wave

The P wave represents depolarization of the atria.
Atrial depolarization spreads from the SA node

towards the AV node, and from the right atrium to the
left atrium.

<80 ms

PR
interval

The PR interval is measured from the beginning of the
P wave to the beginning of the QRS complex. This

interval reflects the time the electrical impulse takes to
travel from the sinus node through the AV node.

120 to 200
ms

QRS
complex

The QRS complex represents the rapid depolarization
of the right and left ventricles. The ventricles have a
large muscle mass compared to the atria, so the QRS
complex usually has a much larger amplitude than the

P wave.

80 to 100
ms

J-point
The J-point is the point at which the QRS complex

finishes and the ST segment begins.

ST
segment

The ST segment connects the QRS complex and the T
wave; it represents the period when the ventricles are

depolarized.

T wave
The T wave represents the repolarization of the

ventricles. It is generally upright in all leads except
aVR and lead V1.

160 ms

Corrected
QT

interval
(QTc)

The QT interval is measured from the beginning of the
QRS complex to the end of the T wave. Acceptable

ranges vary with heart rate, so it must be corrected to
the QTc by dividing by the square root of the RR

interval.

<440 ms

U wave

The U wave is hypothesized to be caused by the
repolarization of the interventricular septum. It

normally has a low amplitude, and even more often is
completely absent.

tem have become common in use. It took considerable time to develop operational

computer programs than originally anticipated. However, over last 20 years, re-

search groups have mainly developed the computer programs but in last decade,

the development has shifted to industry. Computers can assist a cardiologist in the

task of ECG monitoring and interpretation. For example, in a cardiac intensive

care unit (CICU), ECGs of several patients must be monitored continuously to de-

tect any life-threatening abnormality that may occur. Various algorithms for the

automatic detection of cardiac beats have been developed by different investigators

for accurate classification of various types of beats.
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Figure 1.9: Practical ECG Signal Pattern

Figure 1.10: Raw ECG Data

The QRS complex is the most prominent feature and its accurate detection forms

the basis of extraction of other features and parameters from the ECG signal.

There are a number of methods, some of which deal with detection of ECG wave

segments, namely P, QRS and T, while others deals with detection of QRS com-

plexes. Transformative Techniques, namely Fourier Transform, Cosine Transform,

Pole-zero Transform, Differentiator Transform, Hilbert Transform and Wavelet

Transform are being used for the QRS detection. The use of these transforms on

ECG signal helps to characterize the signal into energy, slope, or spike spectra,

and thereafter, the temporal locations are detected with the help of decision rules

like thresholds of amplitude, slope or duration. The real ECG signal is shown in

Fig. 1.10.
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1.7 Problem Definition

The information of electrocardiograms (ECG) signal is the most important bio-

electrical message of human body, which reflects the basic law of heart activity.

However, ECG signal is a non-linear, non-stationary weak signal with strong ran-

domness, which increases the difficulty of analyzing and processing data. As a

result, computer based automatic ECG beat detection and classification with high

reliability is still an open research area. For ECG beat classification, a variety of

features and a number of classification methods have been used. The features have

been based on higher order statistics [10], wavelet transform [11], Fourier trans-

form [12], principle component analysis [13], Helmit function coefficients [14] and

morphological features, such as RR-interval, QRS complex, QRS duration in time,

T wave duration in time, P wave flag, and T-wave segment [12]. Moreover, differ-

ent classifiers based on different systems such ANNs [10, 12], mixture of experts

approach [15], fuzzy logic [10], support vector machine [16], k-nearest neighbor

[17], and SOM [18, 19], are used. However, the methods used and the number of

beat types that are classified show a great deal of variance which makes it very

difficult to fairly compare the performances of different algorithms under strin-

gent conditions, such as reduction of training data set and random distribution of

training and testing dataset. Thus, development of a proficient method capable of

classifying different cardiac beat classes especially when multiclass beats are to be

handled is still a challenging task.

1.8 Motivation

In view of above discussions, it is evident that we need to propose and develop

an efficient cardiac beat classification method which will be capable of perform-

ing effectively in numerous stringent conditions. Due to the randomness of ECG

signals, we have moved to exploit discrete wavelet packet decomposition (WPD)

operation empirical mode decomposed ECG signals and choose approximate and

detail WPD coefficient of dominant IMF for reduced feature set which will make

the algorithm more efficient. For an effective feature extraction and classifica-

tion strategy, we have been motivated to build a statistical model of the discrete

wavelet packet decomposition (WPD) empirical mode decomposed ECG signals

and feed the modeling parameters to the classifiers for sorting purpose. It is found

more functional to make the features from the entire shape of the data class rather

than taking discrete parameters which is representing each class in more consistent

way and further make the classification procedure effective. Lastly, a classification
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problem involving several kinds of ECG data is found very limitedly reported

in literature. That is why; we have been motivated to propose a cardiac beat

classification exploiting higher order statistical features of discrete wavelet packet

decomposition (WPD) of empirical mode decomposed ECG signals

1.9 Objective of the Thesis

The objectives of this thesis are:

• To obtain a set of Intrinsic Mode Function (IMF) through empirical mode

decomposition (EMD) of ECG signals.

• To select the dominant IMF based on maximum temporal energy criterion.

• To decompose the dominant IMF of ECG signals into approximate and detail

wavelet packet decomposition (WPD) coefficients.

• To develop an effective method for ECG arrhythmia classification based on

higher order statistical measures of the of dominant IMF of ECG signals.

• To investigate the performance of the proposed feature sets with a simple

classifier such as KNN classifier for the detection and classification of five

AAMI (Advancement of Medical Instrumentation) cardiac beat classes.

The outcome of this thesis is the development of an ECG based method exploiting

higher order statistical measures of the approximate and detail WPD coefficients

of the dominant IMF, which is able to classify different cardiac beat classes with

greater sensitivity and specificity even in case of reduction of training dataset and

random distribution of training and testing dataset.

1.10 Organization of the Thesis

The thesis is organized as follows

• Chapter 1 provides the introduction of the overall thesis

• Chapter 2 presents popular ECG beat classification methods reported in

literature

• Chapter 3 describes the proposed method of cardiac beat classification based

on wavelet analysis of empirical mode decomposed ECG signals
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• Simulation results and quantitative performance analysis are described in

Chapter 4 for the proposed method described in chapter 3. Performance of

the proposed method is also compared with the state-of-the-art methods

• Finally, in chapter 5, concluding remarks highlighting the contribution of the

thesis and suggestions for further investigation are provided.



Chapter 2

Literature Review

2.1 Introduction

A Sudden Cardiac Death (SCD), which happens within one hour of onset of symp-

toms because of cardiac causes. The health data accumulated from more than 190

countries show heart disease remains the No. 1 global cause of death with 17.3

million deaths each year, according to “Heart Disease and Stroke Statistics from

the American Heart Association (AHA). That number is expected to rise to more

than 23.6 million by 2030, the report found [20]. As such cardiac beat classifi-

cation is very essential to the serious patients suffering from different dangerous

heart condition. If life threatening problems are detected in time, the patients can

be treated timely and saved from sudden death. However, to analyze long ECG

records of a patient is a very time consuming job. Therefore, computer aided signal

processing techniques have been utilized in order to extract features that are capa-

ble of classifying different cardiac beats. Such methods are based on the principle

of pattern recognition techniques. There are several methods based on various

signal processing techniques reported in the literature for cardiac beat classifica-

tion based on time or frequency or time-frequency domain. To extract features

from ECG, researchers have been reported to use behavioral modeling [21], cross

spectral density [22], empirical mode decomposition (EMD) [23], wavelet trans-

form [24- 30], fractal dimension [31-35], artificial neural networks (ANN) [36-38],

support vector machines (SVM) [39-40], cluster analysis (CA) method [41], prin-

cipal component analysis (PCA) [42] and independent component analysis (ICA)

[43]. The performance of these methods in classifying different types of cardiac

beats are evaluated in terms of different performance evaluation criteria e.g. sen-

sitivity, specificity, selectivity and accuracy. Most of the methods fall under three

broad categories: (1) time domain, (2) frequency domain, and (3) time-frequency

domain.
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The two primary considerations for this detection system are- the type of features

to be extracted from the ECG input signal (feature extraction techniques) and the

type of analysis techniques to be applied on these extracted features to detect the

class (classification techniques).

In the literature, methods that are capable of classifying multi-class cardiac beats

in practical conditions like random selection of training and testing dataset have

been reported limitedly. In this chapter, literature survey review of the different

cardiac beat classification methods used to date are presented.

2.2 Time-Domain Methods

To classify cardiac beats ECG morphology and RR intervals are used for feature

extraction in time domain methods. Some recently reported methods overview

exploiting time domain features of ECG signals are described here.

Chazal et al. developed a method to classify five different ECG groups: nor-

mal beats, VEBs, SVEBs, fusion of normal and VEBs and unknown beat types.

In this approach, MIT-BIH arrhythmia database were used. Heart beat fudicial

points were manually calculated in this work. This paper derived 4 features on RR

intervals, 3 features on heart beat intervals and 8 representations on ECG mor-

phology. This showed that multiple lead configurations can perform better than

single lead configurations processing the same feature sets. Beat by beat perfor-

mance of this study showed the result that 1904 normal beats and 3509 normal

beats were misclassified as SVEB and fusion beats respectively. Since fusion beats

are the combination of ventricular and normal beats, differentiating normal beats

from fusion beats is crucial task [44].

Another approach is to classify the heart beat using the morphological wavelet

transform features. Ince et al. proposed an automated patient-specific ECG heart

beat classification system based on morphological wavelet transform features and

temporal features from the ECG data. In this work, principal component analy-

sis (PCA) were used to reduce the morphological features to a lower-dimensional

feature space. Multi-dimensional particle swarm optimization (MD PSO) tech-

nique has been proposed to classify. To construct an artificial neural networks

(ANNs) optimally, MLPs were designed. In this work, relatively small common

and patient-specific training data are used.This classification method can with-

stand significant inter-patient variations in ECG morphology by deriving the opti-

mal network structure. As such, it can be applicable to any ECG database without
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any modifications[45].

Another approach to analyze ECG signal is exploiting cluster analysis method.

Yeh et al. proposed a method of analyzing ECG signal to classify 5 different

types of cardiac beats based on the cluster analysis (CA) method. In analyzing

ECG signal for classification, QRS waveform are detected at first and after that

qualitative features are selected. In this method no complex computational burden

is needed [41].

Time domain methods that are reported in literature can only capture detail in-

formation from different aspects of time resolution representation of ECG signals.

But, it does not consider any frequency resolution characteristics of an ECG. Since

ECG is a non-stationary signal, it has both time and frequency resolution charac-

teristics. To represent ECG signal as a whole, time and frequency characteristics

must be considered simultaneously. Only time domain features are not sufficient in

order to represent detail characteristics regarding different types of cardiac beats.

As a result time domain methods have the the limitations in classifying cardiac

beats with different conditions.

2.3 Frequency-Domain Methods

Different frequency domain methods such as fast Fourier transform (FFT), short-

time Fourier transform (STFT), auto regressive (AR) models and power spectral

density (PSD) are used and reported in literature to classify different cardiac beats.

Lin et al. proposed a method for ECG heartbeat discrimination using grey rela-

tional analysis (GRA). Each QRS complexes was converted to a Fourier spectrum

from ECG signals. The variations of power spectrum were observed in the range of

0–20 Hz in the frequency domain. To quantify the frequency components among

the various ECG beats, GRA is performed to classify the cardiac arrhythmias [46].

Dutta et al. proposed a heartbeat detection method based on Artificial Neural

Network (ANN) classifier. In this work all the preprocessed ECG beats are cross-

correlated with the normal heartbeats. Thus a cross correlation sequences for

every beat is formed. These cross-correlation sequences are then transformed into

frequency domain by using Fourier transform to extract final feature vectors from

the magnitude and phase cross-spectral density curves. In this study, the Learning

Vector Quantization (LVQ) methods based classifiers are employed. Here three

different types of beats: normal, Premature Ventricular Contraction (PVC) and
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other beats are classified.To demonstrate the efficiency of the proposed method,

a large testing dataset is validated by classifying them against a small training

dataset [47].

Dutta et al. proposed a scheme that utilizes a cross-correlation based approach

where the cross-spectral density information in frequency domain is used to extract

suitable features. A least square support vector machine (LS-SVM) classifier was

developed utilizing the features and ECG beats were classified into three categories:

normal beats, PVC beats and other beats. This three-class classification scheme

utilized a small training dataset and tested with an large testing dataset[48].

In frequency analysis methods, only frequency domain characteristics of an ECG

is considered ignoring time domain features. Thus, it is not sufficient to classify

cardiac beats and complete feature extraction.

2.4 Time-Frequency-Domain Methods

As a result of the infinite extent of the Fourier integral, analysis is time averaged.

Thus it contains only globally averaged information and so has the potential to ob-

scure transient or location specific features within the signal. This limitation can

be partly overcome by introducing a sliding time window of fixed length to localize

the analysis in time. This local or short time Fourier transform (STFT) provides a

degree of temporal resolution by highlighting changes in spectral response with re-

spect to time. A number of alternative time–frequency methods are now available

for signal analysis. Of these, the wavelet transform has emerged over recent years

as the most favoured tool by researchers for analysing problematic signals across

a wide variety of areas in science, engineering and medicine. It is especially valu-

able because of its ability to elucidate simultaneously local spectral and temporal

information from a signal in a more flexible way than the STFT by employing

a window of variable width. Thus wavelet transforms produce a time–frequency

decomposition of the signal which separates individual signal components more

effectively than the traditional short time Fourier transform (STFT). This flexible

temporal–spectral aspect of the transform allows a local scale-dependent spec-

tral analysis of individual signal features. In this way both short duration, high

frequency and longer duration, lower frequency information can be captured simul-

taneously. Hence the method is particularly useful for the analysis of transients,

aperiodicity and other non-stationary signal features where, through the interro-

gation of the transform, subtle changes in signal morphology may be highlighted

over the scales of interest. Another key advantage of wavelet techniques is the
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variety of wavelet functions available, thus allowing the most appropriate to be

chosen for the signal under investigation. This is in contrast to Fourier analysis

which is restricted to one feature morphology: the sinusoid. In its discrete form

using orthogonal wavelet bases, the wavelet transform is particularly useful in sig-

nal coding, allowing information within the signal to be localized within a number

of pertinent coefficients for compression purposes [49].

Chen et al. has developed feature selectors based on nonlinear correlations in or-

der to select the most effective and least redundant features from an ECG beat

classification system based on higher order statistics of subband components and a

feed-forward back-propagation neural network, denoted as HOS-DWT-FFBNN. In

order to select the most effective and less redundant features, two nonlinear corre-

lation based filters (NCBFs), which apply feature-feature correlation, are employed

in this study. The application of NCBFs with prior redundancy reduction further

improves the efficiency of the methods with a little reduction in classification rates

[50].

Homaeinezhad et al. proposed method that consists of structurally diverse classi-

fiers with a new QRS complex geometrical feature extraction technique. First, the

events of the electrocardiogram (ECG) signal are detected and delineated using a

robust wavelet-based algorithm. Then, each QRS region and also its correspond-

ing discrete wavelet transform (DWT) are supposed as virtual images and each of

them is divided into eight polar sectors. Next, the curve length of each excerpted

segment is calculated and is used as the element of the feature space. In this

approach six different classifiers namely as SVM, KNN and four MLP-BP neural

networks with different topologies were designed and applied. Proposed learning

machine was employed to classify 7 arrhythmias belonging to 15 different records

[39].

Dewangan et al. developed an artificial neural network (ANN) based classifier.

In this work discrete wavelet transform (DWT) is used for preprocessing and fea-

ture extraction purposes and neural network designed is used to classify five types

of arrhythmias namely Left Bundle Branch Block (LBBB), Right Bundle Branch

Block (RBBB), Paced Beat (PB), Atrial Premature Beat (APB) and First de-

gree AV Block (AVB) beats apart from normal (N) beats. Here optimum feature

set is developed and number of hidden layer neurons is utilized to increase the

classification performance of the neural network based classifier[51].

Shen et al. proposed a system for cardiac arrhythmia detection in ECGs with

adaptive feature selection and modified support vector machines (SVMs). Wavelet
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transform-based coefficients and signal amplitude/interval parameters are first enu-

merated as candidates, but only a few specific ones are adaptively selected for the

classification of each class pair. A new classifier, which integrates k-means cluster-

ing, one-against-one SVMs, and a modified majority voting mechanism, is proposed

to further improve the recognition rate for extremely similar classes[40].

Yu et al. proposed an electrocardiogram (ECG) beat classification system based on

wavelet transformation and probabilistic neural network (PNN) to discriminate six

ECG beat types. The ECG beat signals are first decomposed into components in

different subbands using discrete wavelet transformation. Three sets of statistical

features of the decomposed signals as well as the AC power and the instantaneous

RR interval of the original signal are exploited to characterize the ECG signals. A

PNN follows to classify the feature vectors. Only 11 features are required to attain

this high accuracy, which is substantially smaller in quantity than that in other

methods. These observations prove the effectiveness and efficiency of the proposed

method for computer-aided diagnosis of heart diseases based on ECG signals [29].

Mahesh et al. presents a diagnostic system for classification of cardiac arrhythmia

from ECG data, using Logistic Model Tree (LMT) classifier. Clinically useful in-

formation in the ECG is found in the intervals and amplitudes of the characteristic

waves. The amplitude and duration of the characteristic waves of the ECG can

be more accurately obtained using Discrete Wavelet Transform (DWT) analysis.

Fur27 ther, the non-linear behavior of the cardiac system is well characterized

by Heart Rate Variability (HRV). Hence, DWT and HRV techniques have been

employed to extract a set of linear (time and frequency domain) and nonlinear

characteristic features from the ECG signals. These features are used as input to

the LMT classifier to classify 11 different arrhythmias. The system can be deployed

for practical use after validation by experts [52].

Wavelet packet decomposition method is an extension of wavelet transform. WPD

can divide the whole time-frequency plane whereas classical WT can provide anal-

ysis only for low-band frequencies. This multi-resolution capability of WPD allows

the decomposition of a signal into a number of scales, each scale representing a

particular feature of the signal under study. The top level of the WPD is the time

representation of the signal whereas bottom level has better frequency resolution.

Thus using WPD, a better frequency resolution can be achieved over WT for the

decomposed ECG signal. The advantage of wavelet packet analysis is that it is

possible to combine the different levels of decomposition in order to construct the

original signal.
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Kutla et al. proposed an automatic heart beat recognition system exploiting fea-

tures extracted from higher order statistics (HOS) of wavelet packet decomposition

(WPD) coefficients. First of three stages involves the calculation of wavelet packet

coefficients (WPC) for each different ECG beat. Then, feature vectors are ex-

tracted by calculating higher order statistics, namely second, third and fourth

cumulants of each level of WPC. After applying normalization to all extracted fea-

tures, final feature set is formed, which is applied as input to the k-NN algorithm

based classifier. The proposed method has its ability to handle Gaussian noise

which is ineffective since the system is based on cumulants [30].

Chouakri et al. proposed wavelet packet based QRS complex detection algorithm.

It consists of a particular combination of two vectors obtained by applying a de-

signed routine of QRS detection process using ‘haar’ and ‘db10’ wavelet functions

respectively. The QRS complex detection routine is based on the histogram ap-

proach where the node with highest number of histogram coefficients are found at

center. The remaining least number coefficients reflect the R waves peaks. Follow-

ing a classical approach based of a calculated fixed threshold, the possible QRS

complexes are be determined. The QRS detection complex algorithm has been

applied to the whole MIT-BIH arrhythmia Database [53].

Li et al. proposed a method to classify ECG signals using wavelet packet entropy

(WPE) and random forests (RF) following the Association for the Advancement of

Medical Instrumentation (AAMI) recommendations and the inter-patient scheme.

First the ECG signals are decomposed by wavelet packet decomposition (WPD),

and then the entropy is calculated from the decomposed coefficients as represen-

tative features. After that RF is used to build an ECG classification model [54].

2.5 Other Methods

Yu et al. proposed a novel independent components (ICs) arrangement approach

to collaborate with the independent component analysis (ICA) method used for

classifying different ECG beat. The ICs extracted by fast ICA algorithm are rear-

ranged according to the L2 norms of the rows of the de-mixing matrix. The efficacy

and efficiency of the proposed method and three other general ICs arrangement

strategies are studied. Two kinds of classifiers, including probabilistic neural net-

work and support vector machines, are employed to calculate the performance of

the proposed method in classifying eight different ECG beat types. The classifi-

cation results reveal that the proposed ICs arrangement strategy outperforms the
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other strategies in eliminating the number of features required for the classifiers

[55].

Moavenian et al. proposed a novel use of Kernel-Adatron (K-A) training algorithm

collaborating with SVM (Support Vector Machine) for classifying six types of ECG

arrhythmia plus normal ECG. The proposed pattern classifier is compared with

MLP (multi-layered perceptron) using back propagation (BP) learning algorithm.

The MLP and SVM training and testing stages were carried out twice. They were

first trained only with one ECG lead signal and then a second ECG lead signal

was added to the training and testing datasets in order to investigate its influence

on training and testing performance and training time for both classifiers. The

results designate that SVM in comparison to MLP is much faster in training stage

and nearly seven times higher in performance, but MLP generalization ability in

terms of mean square error is more than three times less [37].

Castillo et al. described a hybrid intelligent system for classification of cardiac

arrhythmias exploiting three methods of classification: Fuzzy KNN, Multi-Layer

Perceptron (MLP) Gradient Descent with momentum Back propagation, and MLP

Scaled Conjugate Gradient Back propagation. Since the mentioned classifiers cap-

ture different knowledge about classification, all of them produced good classifica-

tion results individually. Finally, a Mamdani type fuzzy inference system was used

to aggregate the outputs of the individual classifiers, and a very high classification

rate was achieved [38].

2.6 Conclusion

In this chapter, literature survey of the recent state-of-the-art ECG beat classifi-

cation methods is presented in brief. All the proposed methods have some merits

and demerits. In order to handle the practical situations of real life applications

such as random selection of training and testing feature set, design of a multi-class

cardiac beat classification method is needed that can provide superior performance

with greater sensitivity, specificity, selectivity and accuracy. Thus, development

of a multi-class cardiac beat classification method, which is simple yet effective in

handling practical conditions as mentioned above, is still a challenging task.



Chapter 3

Cardiac Beat Classification

Exploiting Wavelet Packet

Decomposition of Empirical Mode

Decomposed ECG Signals

3.1 Introduction

Designing a feature set, which is capable of extracting distinguishable information

to detect and classify cardiac beat class is a difficult task. In the literature, many

researchers used a variety of features to represent the ECG signal and a number

of classification methods. The features have been based on higher order statistics

[10], wavelet transform, Fourier transform, principle component analysis, Helmit

function coefficients, morphological features such as RR-interval, QRS complex,

QRS duration in time, T wave duration in time, P wave flag, and T-wave segment.

Moreover, different classifiers based on different systems such ANNs, mixture of

experts approach, fuzzy logic, support vector machine, k-nearest neighbor, and

SOM, are used. However, the methods used and the number of arrhythmia types

that are classified show a great deal of variance which makes it very difficult to

fairly compare the performances of different algorithms. To overcome this diffi-

culty, some standards are recommended for reporting performance results by the

Association for the Advancement of Medical Instrumentation (AAMI) [44]. Ac-

cording to AAMI standards, all ECG beats in MIT-BIH database are grouped into

five beat classes.

In this chapter, EMD analysis of the ECG signals is performed at first where a set

of IMFs is obtained. Instead of using all IMFs resulting from an ECG signal, only
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dominant IMF is selected based on maximum temporal energy criterion. Next

to extract features, discrete wavelet packet decomposition (WPD) is employed on

the dominant IMF and both approximate and detail WPD coefficients are utilized.

Some higher order statistical measures of the WPD coefficients are used as desired

features which are found very efficient in discriminating different types of cardiac

beats.

3.2 Proposed Method

The proposed ECG beat classification method consist of some major steps, namely-

pre-processing, ECG signal using EMD, dominant IMF Selection, that is obtained

from EMD, wavelet packet decomposition of the dominant IMF, feature extraction

from WPD coefficient and classification. Firstly, a set of IMFs is obtained through

EMD of ECG signals, because EMD is intencontuitive and adaptive, with basic

functions directly derived from the signal under test and its computation does

not require any previously known value of the signal. Then, the dominant IMF

has been selected via analyzing the temporal contents of the resultant IMFs from

EMD analysis. To obtain further discriminatory behavior, discrete wavelet packet

decomposition (WPD) is employed on the dominant IMF. After considering the

temporal energy pattern, the 4th Level detail and approximate WPD coefficients of

the selected IMFs are found suitable for feature computation. For further reduction

of the dimension of the feature vector, higher order statistics of these coefficients

are employed to form the feature vector. Euclidian distance based kNN classifier is

found effective for distinguishing and classifying the multiclass cardiac beat classes

even in case of reduction of training dataset and random distribution of training

and testing dataset. It is shown that the proposed method is capable of producing

greater sensitivity, specificity and accuracy in comparison to that obtained by

few state-of-the-art methods using the same ECG dataset and classifiers. The

simplified block diagram of the proposed method is shown in Fig. 3.1.

3.3 Pre-processing

The ECG consists of three basic waves, P, QRS and T. These waves correspond

to the far field induced by specific electrical phenomena on the cardiac surface,

namely the atrial depolarization (P wave), the ventricular depolarization (QRS

complex), and the ventricular repolarization (T wave). The ECG does not look

the same in all the leads of the standard 12 lead system used in clinical practice.

The polarity and the shape of the ECG constituent waves are different depending
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Figure 3.1: Simplified Block Diagram of the Proposed Method

on the lead that is used.

In a normal cardiac cycle, the P wave occurs first, followed by the QRS complex

and the T wave. The sections of the ECG between the waves and complexes are

called segments. The ECG is characterized by three segments namely the PR

segment, the ST segment and the TP segment. The characteristic time periods in

the ECG wave are the PR interval, the RT interval, and the R-R interval. Usually

ECG signals are contaminated by various kinds of noise.

3.3.1 Noises in ECG Signal

• Power Line Interference:Power line interference consists of 60/50 Hz

pickup and harmonics that can be modeled as sinusoids and combination

of sinusoids. The frequency content of this kind of noise is 60/50 Hz with

harmonics and the amplitude is 50% of peak-to-peak ECG amplitude[56].

Figure 3.2: Power Line Noise
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• Electrode Contact Noise: Electrode contact noise is transient interference

caused by loss of contact between the electrode and the skin, which can be

permanent or intermittent. The switching action can result in large artifacts

since the ECG signal is usually capacitively coupled to the system. This type

of noise can be modeled as a randomly occurring rapid baseline transition

that decays exponentially to the base line and has a superimposed 60 Hz

component. The duration of the noise signal is 1 sec and the amplitude is

the maximum-recorded output with the frequency of 60 Hz[56].

• Motion Artifact: Motion artifacts are transient base line changes in the

electrode skin impedance with electrode motion. The shape of the base line

disturbance caused by the motion artifacts can be assumed to be a biphasic

signal resembling one cycle of a sine wave. The peak amplitude and duration

of the artifacts are variables. The duration of this kind of noise signal is

100–500 ms with amplitude of 500% peak-to-peak ECG amplitude[56].

Figure 3.3: Motion Artifacts

• Muscle Contraction: Muscle contraction causes generation of artifactual

millivolt level potentials. It can be assumed to be transient burst of zero

mean band limited Gaussian noise. The variance of the distribution may be

estimated from the variation and duration of the bursts. Standard deviation

of this kind of noise is 10% of peak-to-peak ECG amplitude with duration

of 50 ms and the frequency content being dc to 10 kHz[56].

Figure 3.4: Muscle Noise
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• Base Line Wander: The baseline wander of the ECG signals causes prob-

lems in the detection of peaks. For example, due to the wander, the T peak

could be higher than R peak, and it is detected as an R peak instead. Low

frequency wander of the ECG signal can be caused by respiration or patient

movement. The drift of the baseline with respiration can be represented as

a sinusoidal component and the frequency of respiration added to the ECG

signal. The variation could be reproduced by amplitude modulation of the

ECG by the sinusoidal component that is added to the base line. The am-

plitude variation is 15% of peak-to-peak ECG amplitude and the base line

variation is 15% of ECG amplitude at 0.15 to 0.3 Hz[56].

Figure 3.5: Baseline Shift Noise

3.3.2 Filtering

These noise must be removed from ECG before extracting the characteristic fea-

tures. Noise removal is accomplished by passing the cardiovascular signals through

filter whose cutoff frequency is a function of the noise frequency [57].

To eliminate baseline wander, two median filters have been used in this work. First,

the first 200 ms of samples were extracted and sorted out in ascending order, then

its median was calculated. Then for every 200 ms of samples till the end of the

ECG signal, the same procedure was carried out. Now, these samples are fed as

input to the 600 ms window median filtering. Later, the median value is evaluated

for every 600 ms of samples. Then these median values were subtracted from the

original waveform to remove the baseline wander of the ECG signal. Fig. 3.7

shows the result of the baseline wander filter.

3.4 Feature Extraction

3.4.1 Empirical Mode Decomposition of ECG signal

EMD is intuitive and adaptive signal processing technique used for nonlinear, non-

stationary time series data, such as ECG. EMD has been reported to behave well
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Figure 3.6: Block Diagram for removing baeline wander

(a) ECG Signal with Baseline wander (b) Corrected ECG Signal

Figure 3.7: Results of Filtering Algorithm to Remove the noise

for speech and some other biomedical signal[58]. The basic functions in EMD are

derived only from the data signal under consideration. As such, to compute the

EMD previously known value of the signal is not required [25]. In EMD process the

objective here is to identify the intrinsic oscillatory modes by their characteristic

time scales in the signal empirically. Thus the signal is decomposed into intrinsic

mode functions (IMFs) [59, 60]. A complex signal is decomposed into a series of

stationary and linear IMFs using EMD. Each IMF must satisfy two requirements:

• In the whole data set, the number of local extrema and the number of zero

are either equal or differ at most by one.

• At any point, the mean value of the upper envelope defined by the local

maxima and the lower envelop that defined by the local minima is zero.

The systematic way to decompose the data into IMFs, known as the ”sifting”

process, is described as follows

1. All the local maxima of the ECG data are determined and joined by cubic

spline line thus constructing an upper envelope.

2. All the local minima of the ECG data are found and connected by cubic

spline line to obtain the lower envelope.

3. The mean m1 of both the envelopes are calculated and the difference between

the input signal x[n] and m1 is computed as h1[n]
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h1[n] = x1[n]−m1 (3.1)

4. If h1[n] satisfies the conditions of IMF, then it is the first frequency and

amplitude modulated oscillatory mode (IMF) of x[n].

5. If h1[n] dissatisfies the conditions to be an IMF, it is treated as the data in

the second sifting process, where steps 1, 2 and 3 are repeated on h1[n] to

derive the second component h2[n] as

h2[n] = h1[n]−m2 (3.2)

where m2 is the mean of upper and lower envelopes of h1[n]

6. Let after ω cycles of operation, if hω[n], given by

hω[n] = hω−1[n]−mω (3.3)

becomes an IMF, it is designated as c1[n]=hω[n] the first IMF component of

the original ECG signal.

7. Subtracting c1[n] from x[n], r1[n] is calculated as

r1[n] = x[n]− c1[n] (3.4)

which is treated as the original data for the next cycle for calculating the

next IMF.

8. Repeating the above process for L times, L no. of IMFs is obtained along

with the final residue rL[n]. A popular stopping criteria for the sifting process

is to have the value of standard difference (SD) within a predefined threshold

as

SD =
N∑

n=−1

hω[n]− hω−1[n]2

hω[n]2
(3.5)

here, ω and ω−1 are index terms indicating two consecutive sifting processes.

Thus the decomposition process is stopped since rL[n] becomes a monotonic

function from which no more IMF can be extracted. To this end, for L level

of decomposition, the original signal can be reconstructed by the following

formula,

x[n] =
L∑

k=1

ck[n] + rL[n] (3.6)

A typical ECG signal and the resulting IMFs are shown in Fig. 3.8.
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Figure 3.8: Empirical Mode Decomposition of ECG Signal

In IMF based ECG beat classification methods, generally all of the extracted IMFs

are equally treated, although it is well known that not all of them can uniquely

characterize the class they belong to. Moreover, it is obvious that considering all

IMFs would increase the size of the feature vector and also would require extensive

computations for the purpose of comparison with the training database. Therefore,

in the proposed method, we propose to use only the dominant IMF among all the

extracted IMFs.

3.4.2 Dominant IMF Selection

For a particular ECG signal, the selection criteria for the dominant IMF is proposed

as to consider the temporal energy content of all the IMFs. Among the IMFs

extracted from a particular ECG signal, the IMF with the highest energy content

is selected as the dominant IMF. The temporal energy of the dominant IMF is

given by

Ed =
N∑
t=1

Cd[t]
2 (3.7)

Here N is the length of the IMF and Ed represents the temporal energy of the

dominant IMF Cd[n]. Temporal energy patterns of all the IMFs for different ECG

beat classes are shown in Fig.3.9. It is observed from Fig. 3.9 that the second IMF

contains the highest temporal energy for the N class of ECG beat and hence it is

identified as the dominant IMF. It is also seen from Fig. 3.9 that since the fourth

IMF contains the highest temporal energy, it is identified as the dominant IMF for
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the S class of ECG beat. Similarly for F class ECG beat third IMF, for Q class

ECG beat fourth IMF and for V class ECG beat second IMF with highest temporal

energy has been chosen as shown in the figure. Since using only dominant IMF,

it may not be possible to discriminate the cardiac beat classes of ECG effectively,

once the dominant IMFs for different ECG data are obtained, these are then used

for the further analysis via WPD.

(a) Energy Pattern of IMFs of N Class (b) Energy Pattern of IMFs of S Class

(c) Energy Pattern of IMFs of F Class (d) Energy Pattern of IMFs of Q Class

(e) Energy Pattern of IMFs of V Class

Figure 3.9: Temporal Energy Pattern of IMFs of Five AAMI Cardiac Beat Class

3.4.3 Wavelet Packet Decomposition of the Dominant IMF

3.4.3.1 Wavelet Transform

Discrete wavelet Transform (DWT) is a multi-resolution transform with a very

fast implementation. DWT is a lost less linear transformation of a signal or data
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into coefficients on a basis of mother wavelet functions [16,17]. A family of mother

wavelet is available having the energy spectrum concentrated around the low fre-

quencies like the ECG signal as well as better resembling the QRS complex of the

ECG signal [61]. Therefore, for the analysis of an ECG signal x[n] at different

scales, wavelet transform (DWT) is used in practice. A general equation for the

DWT transformed signal is written as [62]

Z(a, b) =
∞∑

n=−∞

x[n]φa,b[n] (3.8)

where, x[n] is the given ECG signal to be transformed and

φ(a, b)[n] =
1√
2
× φn− b

a
(3.9)

In DWT, the function represents a window of finite length, where b is a real

number known as window translation parameter and a is a positive real number

named as dilation or contraction parameter. In discrete wavelet transform (DWT),

for analyzing both the low and high frequency components in x[n], it is passed

through a series of low-pass and high-pass filter with different cut-off frequencies.

This process results in a set of approximate and detail DWT coefficients, respec-

tively. The filtering operations in DWT result in a change in the signal resolution

[57]. Thus, DWT decomposes the signal into approximate and detail information

thereby helping in analyzing it at different frequency bands with different resolu-

tions. In wavelet analysis, only scale space is decomposed, but wavelet space is not

decomposed. This results in a logarithmic frequency resolution, which does not

work well for all the signals. By the restriction of Heisenberg’s uncertainty princi-

ple, the spatial resolution and spectral resolution of high frequency band become

poor thus limiting the application of wavelet transform.Fig.3.10 shows the wavelet

decomposition tree of wavelet transform.

3.4.3.2 Wavelet Packet Decomposition

In order to overcome the drawback as mentioned above, it is desirable to iter-

ate the high pass wavelet branch as well as the low pass scaling function branch.

Such a wavelet decomposition produced by these arbitrary subband trees is known

as wavelet packet (WP) decomposition. A method based on the Wavelet Packet

Transform is a generalization of the Wavelet Transform based decomposition pro-

cess that offers a richer range of probabilities for the analysis of signals, namely

ECG. In wavelet packet analysis, the wavelet space is also decomposed thus making

the higher frequency band decomposition possible. Since, both the approximation
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Figure 3.10: Wavelet Transform Decomposition Tree

and the detail coeffecients are decomposed into two parts at each level of decompo-

sition, a complete binary tree with superior frequency localization can be achieved

as shown in Fig. 3.11. Thus the wavelet packet transform provides a closer ap-

proximation of the dataset, compared to the wavelet transform. Features extracted

from these wavelet packet decomposition (WPD) coefficients can efficiently repre-

sent the characteristics of the original ECG signal in different details. Therefore,

recently WPD has drawn attention of the researchers in ECG pattern recognition

[30].

Figure 3.11: Wavelet Packet Decomposition Tree

3.4.3.3 Selection of Mother Wavelet

Selection the mother wavelet in the WPD procedure is very important task. As

there is no universal rule that is suggested to select a particular mother wavelet,

the selection depends upon the characteristics of the signal to be analyzed. The

mother wavelet having similarity or resemblance to the signal being analyzed is

usually chosen [63]. There are several wavelet families, namely Harr, Daubechies,
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Biorthogonal, Coi ets, Symlets, Morlet, Mexican Hat, Meyer etc. and several other

real and complex wavelets.

In Fig. 3.12, plots representing the shapes of some mother wavelets are shown.

An ECG beat is superimposed on each plot in Fig. 3.12 in order to compare it

with the mother wavelet. It is seen from this figure that Symlets (sym11) provides

better resemblance to the ECG beat than others. Detail analysis demonstrates

that since, for the sym11 wavelet, energy spectrum is mainly concentrated around

low frequencies as that in ECG, it is chosen for extracting features in the proposed

method of cardiac beat classification[63].

(a) Meyer wavelet (b) Daubechies (db4) wavelet

(c) Daubechies (db6) wavelet (d) Symlets (sym11) wavelet

Figure 3.12: Different mother wavelets along with ECG beat: a) Meyer wavelet
b) Daubechies (db4) wavelet c) Daubechies (db6) wavelet and d) Symlets (sym11)
wavelet.

3.4.3.4 Rationale behind Selection of 4-Level Detail and Approxima-

tion coefficients

Since, both the approximation and the detail coefficients are decomposed into two

parts at each level of decomposition, a complete binary tree with superior frequency

localization can be achieved. Thus the wavelet packet transform provides a closer

approximation of the ECG data set. For an ECG signal x(n) of length N , the

normalized energy can be found as

E =
1

N

N∑
n=1

x2[n] (3.10)
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The WPD approximate and detail coefficients are shown in Fig.3.13 and Fig. 3.14.

From the figure it is shown that the normalized energy of the sum of detail and

approximate WPD coefficients at the 4th level is the highest among that of the

WPD coefficients at the other levels. Since, the 4th level WPD coefficients carry

the dominant information of ECG signal in terms of normalized energy, so the 4th

level detail and approximate WPD coefficients are considered for feature extrac-

tion.

Figure 3.13: WPD Approximate coefficients of the dominant IMFs for AAMI
cardiac beat classes

Figure 3.14: WPD Detail coefficients of the dominant IMFs for AAMI cardiac beat
classes
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3.4.4 Higher Order Statistics of the WPD Coefficients

Features extracted from these WPD coefficients can efficiently represent the char-

acteristics of the original ECG signal in different details. A main difficulty of ECG

cardiac beat classification is the search of reliable features which represents ECG

beats the best.In recent years the field of HOS has continued its expansion, and

applications have been found in fields as diverse as economics, speech, seismic data

processing, plasma physics and optics. Higher order statistics (HOS) have been

applied successfully to extract features for good classification [64].

HOS measures are extensions of second-order measures (such as the autocorrela-

tion function and power spectrum) to higher orders. The second-order measures

work fine if the signal has a Gaussian (Normal) probability density function, but

as mentioned above, many real-life signals are non-Gaussian. Higher-order spectra

are not sensitive to a Gaussian signal, which can be used to restrain noise, and

it can be used to detect a nonlinear signal. The conventional power spectrum

density provides information on the second-order properties (i.e., energy) of a sig-

nal, whereas the bispectrum can provide information on the signal’s third-order

properties. In a physical sense, the bispectrum provides insight into the nonlin-

ear coupling between frequencies (as it involves both amplitudes and phases) of

a signal compared to the traditional power spectrum density, which gives only

the content of different frequencies and their amplitudes in a signal. Traditional

correlation and power spectral analysis based on a Fourier transform could not

extract useful information from the nonstationary and nonlinear signals, because

in principle, a Fourier transform is based on the assumption that the signals are

stationary. Higher-order spectra have been proven to be effective in handling

nonstationary and nonlinear signals, which are able to capture the characteristic

frequencies, identify phase information, and quantify nonlinear properties. When

various frequency components in the signal interact with each other due to nonlin-

ear physical phenomena, new combinations of frequencies are generated in the form

of the sum, difference, or fraction of the interacting frequencies. Those frequency

components are phase-coupled to the primary interacted frequencies. Higher-order

spectra use this phase-coupling signature between frequency components to detect

nonlinearities.

By using HOS of sub-band signals, it becomes possible to define hidden features

embedded in the QRS complex.

Let X[n] is real, discrete time random process. The moments of X[n] are defined
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as the coefficients in Taylor series expansion of the moment generating function

φx(ω) = E[exp(jωx)] (3.11)

For zero mean discrete time signal, moments and cumulants are defined as:

m2[i] = E[X[n], X[n+ i]] (3.12)

m3[i, j] = E[X[n], X[n+ i].X[n+ j]] (3.13)

m4[i, j, k] = E[X[n], X[n+ i].X[n+ j].X[n+ k]] (3.14)

where E[.] is defined as the expectation operation, X[.] is the random process.

The second characteristic function of X[n], defined as:

X[ω] = lnφx[ω] = lnE[exp(jωx)] (3.15)

is called the cumulant generating function, and the coefficients in its Taylor ex-

pansion are the nth-order cumulants of X[n]. The cumulants are defined as

c2[i] = m2[i] (3.16)

c3[i, j] = m3[i, j] (3.17)

c4[i, j, k] = m4[i, j, k]− A−B − C (3.18)

where A = m2[i]m2[j−k],B = m2[j]m2[k− i]) and C = m2[k]m2[i−j] The second,

third and fourth order cumulants are calculated for each beat taking lag 0. The

zero-lag cumulants have special names: c2(0) is the variance and is denoted by σ2 ;

c3(0, 0) and c4(0, 0, 0) are denoted by γ3x and γ4x known as skewness and kurtosis,

respectively.

Finally, the proposed feature vector is formed as follows

F =
(
Va Sa Ka Vd Sd Kd

)
(3.19)

where V , S, and K represent the variance, skewness and kurtosis for WPD coeffi-

cients of the dominant IMFs of ECG beats. Here subscript a is used for indicating

approximate and d for detail WPD coefficients.
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3.5 Classification

Once a set of features has been obtained to classify AAMI cardiac beat classes ,

it is necessary to apply a classification method in order to classify the ECG beat

classes. Just as a wide variety of features has been used, an equally varied set of

classification methods can be found in the literature. In this work, the k nearest

neighbor (KNN) classifier has been used as the classifier.

3.5.1 k-NN Classifier

k-NN classifier was adopted in some literatures for its simplicity fact and wide

ranging use in patterns categorization. k-NN classifier is based on learning by

analogy[17].It considers a distance function which is computed between the test

set and train set of ECG beat classes. The ECG pattern from the test set is

classified based on the class labels of k closer ECG patterns. In the proposed

method, the Euclidean distance is used. To calculate the distance between A and

B, the normalized Euclidean metric is generally used by

dist(A,B) =

√∑m
i=1(xi − yi)2

m
(3.20)

In the KNN classifier, it is required to find a suitable value of k for achieving the

best classification performance.In the proposed method, the value of k is varied

within a large range and it is found that because of the better feature quality,

consistent performance is achieved.

3.6 Conclusion

The Electrocardiogram (ECG) is the most important bio-signal which is analyzed

for the diagnosis of any heart-related diseases. Conventional time or frequency do-

main analysis is found inadequate to describe the characteristics of a non-stationary

signal such as ECG. Moreover, conventional time-frequency analysis has the limita-

tion of being computationally expensive. In this chapter, we propose to transform

the ECG data by wavelet packet decomposition (WPD) in order to get the domi-

nant IMF. The transformed data thus obtained is exploited to formulate a feature

vector consisting of higher order statistics of only the 4th level WPD detail and

approximation coefficients that can better model the characteristics of the ECG

data. The feature vector is fed to Euclidean distance classifier in order to classify

the AAMI cardiac beat classes. A number of simulations are carried out using
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selected number of ECG beats from records of the MIT-BIH (Massachusetts In-

stitute of Technology - Boston’s Beth Israel Hospital) arrhythmia database. It is

shown that the proposed method based on higher order statistics of WPD detail

and approximate coefficient is capable of producing greater accuracy in compar-

ison to that obtained by using a state-of-the-art method of ECG cardiac beat

classification using the same classifier and ECG beats.



Chapter 4

Cardiac Beat Classification

Exploiting Wavelet Packet

Decomposition of dECG and

Modified dECG Signals

4.1 Introduction

Modern era of medical science is supported by computer aided feature extraction

and disease diagnostics in which various signal processing techniques have been

utilized in extracting features from the biomedical signals and analyzes these fea-

tures. The objective of computer aided digital signal processing of ECG signal is

to reduce the time taken by the cardiologists in interpreting the results. A typical

ECG wave of a normal heartbeat consists of a P wave, a QRS complex, and a T

wave. The P wave represents the se-quential depolarization of the right and left

atria. A normal P wave is usually considered to be of low frequency, below 10–15

Hz. The QRS complex corresponds to depolarization of the right and left ventri-

cles. The frequency content of the QRS complex is considerably higher than that

of the other ECG waves, and is mostly concentrated in the interval of 10–40 Hz.

The T wave reflects ventricular repolarization and extends about 300 milliseconds

after the QRS complex. In this chapter, the derivative of electrocardiogram (ECG)

signal, which we refer to as dECG, instead of the ECG signal has been used. It is

shown that the derivative of the ECG signal (dECG) provides a better estimation

for the QRS complex modeling [65]. In view of obtaining robust features, unlike

conventional methods that mostly utilize directly the ECG signal, a dECG signal

is first modified and then time and wavelet domain features are extracted.
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4.2 Proposed dECG Based Method

In this chapter, first, the preprocessing of the ECG signal is done, then, the modi-

fied dECG from the ECG signal is derived. Derivative of the ECG signal, namely

dECG, has various definitions that are in practice, such as two point first deriva-

tive, three point first derivative, smoothed three point central difference and seven

point first derivative. Smoothed three point central difference has the advanta-

geous property of providing a more accurate estimation of the QRS complex of the

ECG signal [66]. The smoothed three point central difference for an ECG signal

x(n) , namely dECG signal, can be obtained as

y(n) = x(n+ 1)− x(n− 1) (4.1)

A dECG signal calculated from equation 4.1 is presented on Fig. 4.1.From the

derived ECG Signal (dECG) the features are obtained to classify the AAMI cardiac

beat classes.

(a) One Bit of ECG Signal (b) dECG Signal

Figure 4.1: (a) One bit of ECG signal, (b) dECG signal obtained from the ECG
beat from (a)

Firstly, a set of IMFs is obtained through EMD of dECG signals.Then, the dom-

inant IMF has been selected via analyzing the temporal contents of the resultant

IMFs from EMD analysis. To obtain further discriminatory behavior, discrete

wavelet packet decomposition (WPD) is employed on the dominant IMF. After

that the 4th Level detail and approximate WPD coefficients of the selected IMFs

are obtained for feature computation. For further reduction of the dimension of

the feature vector, higher order statistics of these coefficients are employed to form

the feature vector. kNN classifier is used for distinguishing and classifying the mul-

ticlass cardiac beat classes.The simplified block diagram of the proposed method

is shown in Fig. 4.2.
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Figure 4.2: Simplified Block Diagram of the Proposed Method using dECG

4.2.1 Feature Extraction

The pre-processed dECG signal y[n], obtained using equation 4.1 is decomposed

into a series of stationary and linear IMFs using EMD. A typical dECG signal and

the resulting IMFs are shown in Fig. 4.3.

After the selection of the dominant IMF, it is decomposed in the wavelet packet

domain. Since, both the approximation and the detail coefficients are decomposed

into two parts at each level of decomposition, a complete binary tree with superior

frequency localization can be achieved. In this work a 4-level WPD decomposition

using Haar wavelet for detail and approximate coefficient extraction have been

used.

From the WPD coefficients the characteristics of the dECG signal can be rep-

resented in different details. In Fig.4.4 and Fig. 4.5, WPD coefficients of the

dominant IMFs for AAMI cardiac beat classes are plotted.

In Higher order statistics (HOS) have been applied successfully to extract features

for good classification of dECG beats y[n] obtained from equation 4.1. Among

different HOS features, in the proposed method, variance, skewness and kurtusis

are used for feature extraction. From equation 4.1 the proposed feature vector is

formed as

F =
(
Vad Sad Kad Vdd Sdd Kdd

)
(4.2)

where, V , S, and K represent the variance, skewness and kurtosis for WPD

coefficients of the dominant IMFs of dECG beats. Here subscript ad is used for
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(a) Energy Pattern of IMFs of N Class
dECG

(b) Energy Pattern of IMFs of S Class dECG

(c) Energy Pattern of IMFs of F Class dECG
(d) Energy Pattern of IMFs of Q Class
dECG

(e) Energy Pattern of IMFs of V Class
dECG

Figure 4.3: Temporal energy pattern of IMFs obtained from dECG

indicating approximate and dd for detail WPD coefficients.

4.2.2 Classification

Once a set of features has been obtained to classify AAMI cardiac beat classes ,

it is necessary to apply a classification method in order to classify the dECG beat

classes. Just as a wide variety of features has been used, an equally varied set of

classification methods can be found in the literature. In this work, the k nearest

neighborhood (KNN) classifier has been used as the classifier.
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Figure 4.4: WPD Detail coefficients of the dominant IMFs for AAMI cardiac beat
classes for dECG signals

Figure 4.5: WPD Approximate coefficients of the dominant IMFs for AAMI cardiac
beat classes for dECG signals

4.3 Proposed Modified dECG Based Method

The purpose of smoothed three point central difference for an ECG signal x(n)

named dECG signal is the relative suppression of P and T peaks with respect to

the QRS peak, which becomes prominent after the operation. From Fig. 4.6 it

is found that the prominent zero crossing in dECG corresponds to the R peak in

ECG. As mentioned before, the dECG operation helps in better detection of the

QRS complex. A modification in the dECG calculation is proposed as follows[67]

y(n) = x(n+ 1) + x(n)− x(n− 1) (4.3)
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This modified dECG approach offers a good compromise between retaining charac-

teristics of P and T peaks and obtaining a better QRS complex. A modified dECG

signal calculated using equation 4.2 is presented on Fig. 4.6. From the modified

Figure 4.6: (a) One bit of ECG signal, (b) dECG signal obtained from the ECG
beat from (a), (c) Modified dECG signal for the ECG beat from Fig. (a) and (b)

dECG the features are obtained to classify the AAMI cardiac beat classes. The

simplified block diagram of the proposed method is shown in Fig.4.7.

Figure 4.7: Simplified Block Diagram of the Proposed Method using modified
dECG

4.3.1 Feature Extraction

The modified dECG signal y[n], obtained using equation 4.2 is decomposed into

IMFs. The resulting IMFs are shown in Fig. 4.8

After the selection of the dominant IMF, it is decomposed in the wavelet packet

domain. Since, both the approximation and the detail coefficients are decomposed

into two parts at each level of decomposition, a complete binary tree with superior

frequency localization can be achieved. In this work a 4-level WPD decomposition

using Haar wavelet for detail and approximate coefficient extraction have been
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(a) Energy Pattern of IMFs of N Class Mod-
ified dECG

(b) Energy Pattern of IMFs of S Class Mod-
ified dECG

(c) Energy Pattern of IMFs of F Class Mod-
ified dECG

(d) Energy Pattern of IMFs of Q Class Mod-
ified dECG

(e) Energy Pattern of IMFs of V Class Mod-
ified dECG

Figure 4.8: Temporal energy pattern of IMFs obtained from Modified dECG

used. In Fig.4.9 and Fig. 4.10, WPD coefficients of the dominant IMFs for AAMI

cardiac beat classes are plotted.

From the WPD coefficients the characteristics of the modified dECG signal can

be represented in different details. In Higher order statistics (HOS) have been

applied successfully to extract features for good classification of modified dECG

beats y[n] obtained from equation 4.2.Among different HOS features, in the pro-

posed method, variance, skewness and kurtusis are used for feature extraction.The

proposed feature vectors are formed as follows:

F =
(
Vam Sam Kam Vdm Sdm Kdm

)
(4.4)



50

Figure 4.9: WPD Detail coefficients of the dominant IMFs for AAMI cardiac beat
classes for Modified dECG signals

Figure 4.10: WPD Approximate coefficients of the dominant IMFs for AAMI
cardiac beat classes for Modified dECG signals

where, V , S, and K represent the variance, skewness and kurtosis for WPD

coefficients of the dominant IMFs of modified dECG beats. Here subscript am is

used for indicating approximate and dm for detail WPD coefficients.

4.3.2 Classification

Once a set of features has been obtained to classify AAMI cardiac beat classes ,

it is necessary to apply a classification method in order to classify the dECG and

modified dECG beat classes. Just as a wide variety of features has been used, an

equally varied set of classification methods can be found in the literature. In this

work, the k nearest neighborhood (KNN) classifier has been used as the classifier.
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4.4 Conclusion

The Electrocardiogram (ECG) is the most important bio-signal which is analyzed

for the diagnosis of any heart-related diseases. Since conventional time or fre-

quency domain analysis is found inadequate to describe the characteristics of a

non-stationary signal, such as ECG, in this chapter, we propose to obtain the data

from the smoothed three point central difference for an ECG signal named dECG

signal and modified dECG signal. In this chapter, the dECG and modified dECG

data is transformed by wavelet packet decomposition (WPD) in order to get the

dominant IMF. The transformed data thus obtained is exploited to formulate a

feature vector consisting of higher order statistics of only the 4th level WPD de-

tail and approximation coefficients that can better model the characteristics of the

dECG and modified dECG data. The feature vector is fed to Euclidean distance

classifier in order to classify the AAMI cardiac beat classes. A number of simu-

lations are carried out using selected number of ECG beats from records of the

MIT-BIH (Massachusetts Institute of Technology - Boston’s Beth Israel Hospital)

arrhythmia database. It is shown that the proposed method based on higher or-

der statistics of WPD detail and approximate coefficient is capable of producing

greater accuracy in comparison to that obtained by using a state-of-the-art method

of ECG cardiac beat classification using the same classifier and ECG beats.
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Simulation Results

Performance evaluation of the proposed methods for classifying AAMI cardiac beat

classes is an important task. A number of simulations are carried out to evalu-

ate the performance of the proposed methods. Performance of proposed method

is compared with a state-of-the-art method for the evaluation purpose.The popu-

lar MIT-BIH arrhythmia database is used for extracting different ECG beats for

simulation.

5.1 Data Acquisition

In the proposed method, we have employed MIT-BIH (Massachusetts Institute

of Technology-Boston’s Beth Israel Hospital) arrhythmia database [68]. All ECG

data are obtained from this database. The MIT-BIH Arrhythmia Database con-

tains 48 half-hour excerpts of two-channel ambulatory ECG recordings, obtained

from 47 subjects studied by the BIH Arrhythmia Laboratory between 1975 and

1979. Twenty-three recordings are chosen at random from a set of 4000 24-hour

ambulatory ECG recordings collected from a mixed population of inpatients (about

60%) and outpatients (about 40%) at Boston’s Beth Israel Hospital; the remaining

25 recordings are selected from the same set to include less common but clinically

significant arrhythmias that would not be well-represented in a small random sam-

ple. The recordings are digitized at 360 samples per second per channel with 11-bit

resolution over a 10 mV range.

The Association for the Advancement of Medical Instrumentation (AAMI) rec-

ommended practice is used to combine the MIT-BIH cardiac beat types into five

cardiac beat classes, which are used in all subsequent processing. The AAMI con-

vention is used to combine the beats into five classes of interest: normal beat,

left bundle branch block (LBBB), right bundle branch block (RBBB), and atrial
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escape and nodal junction escape beats belong to class N category; class V con-

tains premature ventricular contraction (PVC) and ventricular escape beats, class

S contains atrial premature (AP), aberrated premature (aAP), nodal junction pre-

mature (NP), and supraventricular premature (SP) beats, class F contains only

fusion of ventricular and normal (fVN) beats, and class Q which is known as un-

known beat contains paced beat (P), fusion of paced and normal (fPN) beats, and

unclassified beats. Five AAMI cardiac beat classes are shown in Fig. 5.1

Figure 5.1: Five classes of ECG beat (a) Non-ectopic (N), (b) supraventricular
ectopic (S), (c) fusion (F), (d) unknown (Q), and (e) ventricular ectopic (V)

For the purpose of comparison, we have implemented the state-of-the-art methods

of [30] and compared those with the proposed method.In Table 5.2, the number of

the ECG file that is used from the MIT-BIH database is shown. It is seen from

this table that we have employed ECG signals from patients. Here, in every case,

50% of feature data are selected randomly for the purpose of training and testing.
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Table 5.1: Mapping of MIT-BIH arrhythmia database heartbeat types to the
AAMI heartbeat classes

AAMI heartbeat classes MIT-BIH heartbeat classes

Non-ectopic beats (N)

Normal beat
Left bundle branch block beat

Right bundle branch block beat
Nodal(junctional)escape beat

Atrial escape beat

Supraventricular ectopic beats(S)

Aberrated atrial premature beat
Premature or ectopic supraventricular beat

Atrial premature contraction
Nodal (junctional) premature beat

Fusion beats (F) Fusion of ventricular and normal beat

Ventricular ectopic beats (V)
Ventricular flutter wave
Ventricular escape beat

Premature ventricular contractione

Unknown beats (Q)
Paced beat

Unclassified beat
Fusion of paced and normal beat

Table 5.2: AAMI Cardiac beat class and MIT-BIH database file number

AAMI cardiac
beat class

MIT-BIH file

N
100, 112, 122, 123,
109, 111, 207, 214,
118, 124, 212, 231

S 101, 102, 103, 108

F
108, 200, 205, 208,
210, 213, 215, 219

V

100, 105, 108, 116,
123, 200, 203, 205,
208, 209, 210, 213,
215, 217, 219, 221,

231, 234
Q 102, 104, 107, 217

5.2 Performance Evaluation Criteria

For the performance evaluation of the proposed methods, criteria considered in

our simulation study are: 1) Clustering analysis and 2) Confusion matrix. For the

purpose of comparison, we use state-of-the-art method [30].
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5.2.1 Clustering Analysis

The effectiveness of the proposed feature sets in classifying the AAMI five classes

cardiac beat in terms of clusters is justified by the inter-class separability and

intraclass compactness of the feature. Among different statistical measures, we

employ Geometrical Separability Index (GSI) and Bhattacharya distance (BD) to

quantitatively show the cluster-to-cluster distance and cluster dispersion in case

of AAMI five class cardiac beats.

5.2.1.1 Geometrical Separability Index

Geometrical Separability Index (GSI) shows the numerical demonstration of inter

class distance. Based on the nearest neighbor aptitude measurement, it reports a

clue to which degree two classes can be considered as separable or inseparable.

GSI, also known as Thornton’s separability index s is defined as the fraction of a

set of data points whose classification labels are the same as those of their nearest

neighbours. Thus, it is a measure of the degree to which inputs associated with

the same output tend to cluster together [69]. It may be written

s =
n∑

i=1

(f(xi) + f(x‘i) + 1)mod2

n
(5.1)

Where, x′ is the nearest neighbour of x and n is the number of points.

It is intuitively obvious that s will be close to ‘1’ for a set of points in which those

with opposite labels exist in tight, well-separated clusters. As the clusters move

closer together and points from opposing classes begin to overlap, the index will

begin to fall. If the centroids of the clusters coincide, or the points are uniformly

distributed in the space without clustering, the nearest neighbour of a point will

have no more than a 50% probability of having the same class label as its neighbour,

and the separability index will be close to 0.5. A regular intermeshed grid of

alternately-labelled points (as would be generated by the exclusive-OR or parity

problems) would have s = 0.

5.2.1.2 Bhattachariyya Distance

In statistics, the Bhattacharyya distance measures the similarity of two probability

distributions. It is closely related to the Bhattacharyya coefficient which is a

measure of the amount of overlap between two statistical samples or populations.

The coefficient can be used to determine the relative closeness of the two samples

being considered. It is used to measure the separability of classes in classification.
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The class with smaller BD value shows strong compactness of its features.

In its simplest formulation, the Bhattacharyya distance between two classes under

the normal distribution can be calculated [70] by extracting the mean and variances

of two separate distributions or classes:

DB(p, q) =
1

4
ln

(
1

4
+

(
σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2

))
+

1

4

(
(µp − µq)

2

σ2
p + σ2

q

)
(5.2)

where: DB(p, q) is the Bhattacharyya distance between p and q distributions or

classes,

σ2
p is the variance of the p-th distribution,

µp is the mean of the p-th distribution, and

p, q are two different distributions.

5.2.2 Confusion Matrix

For the performance evaluation of the proposed method, criteria considered in our

simulation study are: 1) Sensitivity 2) Specificity 3) Selectivity and 4) Accuracy.

These indices have been calculated from confusion matrix which is a way of showing

the assessment result from a classification test.

The columns in the matrix stand for the actual classes to be tested and rows provide

the class classified by a method. In particular, any [row, column] entry in the

confusion matrix indicates the number of cases from the test database that belongs

to the class corresponding to the column but classified as the class corresponding

to the row. In Fig. 5.2, a general confusion matrix for five class problem is shown,

where TP , FP , FN and TN are represented for class i.

In general, TPi, true positive for any class i, denotes the number of testing cases,

which are correctly classified as class i.

FPi, false positive for any class i, measures the number of testing cases, which are

incorrectly classified as class i.

FNi, false negative for any class i, measures the number of testing cases, which

are incorrectly classified as other than class i.

TNi, true negative for any class i, denotes the number of testing cases, which are

correctly classified as other than class i.

In Fig. 5.2, a general confusion matrix with respect to set N for a five class problem

is shown.
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Figure 5.2: Confusion Matrix for Five Class AAMI beat Class with respect to N
Class

5.2.2.1 Sensitivity

Sensitivity refers to the test’s ability to correctly detect ill patients who do have

the condition. In the example of a medical test used to identify a disease, the

sensitivity of the test is the proportion of people who test positive for the disease

among those who have the disease. Mathematically, this can be expressed as:

Sensitivity =
number of true positives

numer of true positives+ number of false negatives

=
TP

TP + FN
= probability of positive test result given that the patient has the disease

(5.3)

5.2.2.2 Specificity

Specificity relates to the test’s ability to correctly reject healthy patients without

a condition. In the example of a medical test used to identify a disease, Specificity

of a test is the proportion of healthy patients known not to have the disease, who
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will test negative for it. Mathematically, this can also be written as:

Specificity =
number of true negatives

numer of true negatives+ number of false positives

=
TN

TN + FP
= probability of negative test result given that the patient is well

(5.4)

5.2.2.3 Selectivity

Selectivity relates to the test’s ability to correctly reject healthy patients without

a condition. In the example of a medical test used to identify a disease, Specificity

of a test is the proportion of healthy patients known not to have the disease, who

will test negative for it. Mathematically, this can also be written as:

Selectivity =
number of true positive

numer of true positive+ number of false positives

=
TP

TP + FP
= probability of positive test result given that the patient is well

(5.5)

5.2.2.4 Accuracy

Accuracy is one metric for evaluating classification models. Informally, accuracy

is the fraction of predictions our model got right. Formally, accuracy has the

following definition:

Accurracy =
Number of Correct Predictions

Number of Total Predictions
(5.6)

Accuracy can also be calculated in terms of positives and negatives as follows:

Accurracy =
TP + TN

TP + TN + FP + FN
(5.7)
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5.3 Performance Comparison of the Proposed Method

Using ECG Data

This section presents the results of the proposed method based on HOS obtained

from detail and approximate coefficient of WPD using ECG data. All ECG beats

mentioned in Table 5.2 are processed for extracting HOS feature vectors. The

performance of the proposed method is compared with the method [30] on the

basis of the following performance evaluation criteria as described before.

5.3.1 Performance Comparison Using Clustering Analysis

Two statistical measures are utilized in order to show the clustering analysis, where

inter-class separability and intra-class compactness of the proposed feature are

highlighted. Thornton’s separability index or geometric separability index (GSI)

is a term that signifies the ability of a particular classification method in separat-

ing the clusters of any two classes as well as in reflecting the compactness between

the clusters of the same class. The higher GSI value indicates the more separabil-

ity between two classes under consideration, whereas lower GSI value stands for

declaring the two classes as the same class[69].

GSI value of the features of comparison methods and proposed feature set using

ECG data are shown in Table 5.3−5.4. In Table 5.4 the GSI index obtained using

the proposed method using ECG data for each AAMI beat classes is shown. It

is seen from Table 5.4 that each diagonal entry representing the same class has a

value zero, whereas each entry other than the diagonal representing two different

classes has a value close to one. Such GSI values indicate that the proposed HOS

feature extracted from the WPD detail and approximate coefficient is capable of

providing high separability between any two different classes as well as yielding

high compactness for the same class.

From the Table 5.3−5.4 it is shown that the proposed three approaches show

greater separability between any two classes.Thus, the proficiency of projected

schemes to offer high separability among five classes in this work is established.

Bhattacharya distance (BD) is another term that signifies the ability of a particular

classification method in reflecting the intra-class compactness of clusters of the

same class [70]. Among different methods, the method yielding lower BD value

indicates more compactness of its feature employed in the inter-patient analysis.

BD value of comparison methods and the proposed feature set are shown in Table

5.5.
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Table 5.3: Geometrical Separability Index(GSI) of the method in [30]

Classes N S F Q V
N 0 0.98 0.9825 0.95 0.9825
S 0.98 0 0.9950 0.9675 1
F 0.9825 0.9950 0 0.9650 0.9950
Q 0.95 0.9675 0.9650 0 0.9475
V 0.9825 1 0.9950 0.9475 0

Table 5.4: Geometrical Separability Index(GSI) of the proposed method using
ECG Data

Classes N S F Q V
N 0 0.9950 1 1 1
S 0.9950 0 0.9975 1 1
F 1 0.9975 0 1 1
Q 1 1 1 0 1
V 1 1 1 1 0

It is found from the BD values of stated all features in Table 5.5, each entree

corresponding to AAMI cardiac beat classes are having a value closing to ‘0’ which

further shows the goodness of proposed feature set.

5.3.2 Performance Comparison Using Confusion Matrix

Among 10 iterations of random selection of training and testing datasets, for each

iteration, confusion matrix representing the test classes along with the classified

classes is obtained and sensitivity, specificity, selectivity and accuracy of each class

are determined for the performance comparison. Table 5.6 and 5.7 represent the

confusion matrices derived for method in [30] and the proposed method using ECG

data respectively. In each table, the diagonal entries stand for the number of cases

Table 5.5: Bhattacharyya Distance(BD) values for method in [30] and the proposed
method using ECG data

Class
BD Values (Method in

[30])
BD Values (Proposed

Method)
N 0.0085 0.0019
S 0.0159 0.0191
F 0.0104 0.0090
Q 0.0118 0.0141
V 0.0204 0.0473
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when a particular AAMI cardiac beat class is correctly classified. From Table 5.7,

it is found that, the proposed method based on using ECG data is capable of re-

ducing the mis-classification while providing the similar correct classification rate

for other classes of beats. For the proposed method and the method in [30], the

average sensitivity, specificity, selectivity and accuracy of all AAMI beat classes

are summarized in Tables5.8−5.9.

It is evident from Table 5.8 that the method in [30] produce relatively lower val-

ues of sensitivity for all five classes, whereas the proposed method using the ECG

data yields higher sensitivity even in case of five AAMI beat classes for which the

comparison method [30] produces the least sensitivity. Such high values of sensi-

tivity attest the capability of the proposed method using ECG data in successfully

classifying five AAMI cardiac beat classes. It can also be seen from Table 5.8 that

for all beat classes, the comparison method [30] show lower values of specificity

but the specificity is higher, as expected, for the proposed method using ECG

data. It is observable that the specificity is much lower in case of Q class while

employing the method in [30]. Since for a particular method, a higher specificity

indicates a better classification, the proposed method based using ECG data is

indeed better in performance. From Table 5.9 that for all beat classes, the com-

parison method [30] show lower values of selectivity but the selectivity is higher,

for the proposed method using ECG data. Since for a particular method, a higher

selectivity indicates a better classification, the proposed method based using ECG

data is indeed better in performance. As demonstrated from Table 5.9 that the

accuracy resulting from the other methods are comparatively lower for all AAMI

cardiac beat clases, whereas the proposed method using ECG data is able to result

in better classification performance as it gives higher accuracy for different classes

considered.

Table 5.6: Confusion Matrix of Method in [30] Over 10 Iteration

N S F Q V
N 95 5 3 13 1
S 2 93 3 3 0
F 2 1 91 5 0
Q 2 1 1 71 0
V 4 1 1 8 96
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Table 5.7: Confusion Matrix of Proposed Method Using ECG data Over 10 Itera-
tion

N S F Q V
N 103 0 1 0 0
S 1 99 1 0 0
F 0 0 97 0 0
Q 0 0 1 100 0
V 0 0 0 0 98

Table 5.8: Comparison Between Proposed Method Using ECG Data and the
Method in [30] in terms of Average Sensitivity(in %) and Average Specificity(in
%)

ECG
beat
Class

Sensitivity of
Method in

[30]

Sensitivity of
Proposed
Method

Using ECG
Data

Specificity of
Method in

[30]

Specificity of
Proposed
Method

Using ECG
Data

N 81.2 99.0 97.4 99.8
S 92.1 98.0 98.0 100.0
F 91.9 100.0 98.0 99.3
Q 94.7 99.0 93.2 100.0
V 87.3 100.0 99.7 100.0

Avg 89.4 99.2 97.2 99.8

Table 5.9: Comparison Between Proposed Method Using ECG Data and the
Method in [30] in terms of Average Selectivity(in %) and Average Accuracy (in
%)

ECG
beat
Class

Selectivity of
Method in

[30]

Selectivity of
Proposed
Method

Using ECG
Data

Accuracy of
Method in

[30]

Accuracy of
Proposed
Method

Using ECG
Data

N 90.5 99.0 93.63 99.6
S 92.1 100.0 96.81 99.6
F 91.9 97.0 96.81 99.4
Q 71.0 100.0 93.43 99.8
V 98.9 100.0 97.01 100.0

Avg 88.9 99.2 95.6 99.7
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5.4 Performance Comparison of the Proposed Method

Using dECG Data Approach

This section presents the results of the proposed method based on HOS obtained

from detail and approximate coefficient of WPD using modified dECG data y(n).

The performance of the proposed method is compared with the method [30] on

the basis of the following performance evaluation criteria as described before.

5.4.1 Performance Comparison Using Clustering Analysis

GSI value of features of comparison methods and the proposed feature set using

dECG data are shown in Table 5.10−5.11. In Table 5.11 the GSI index obtained

using the proposed method using modified dECG data for each AAMI beat classes

is shown. It is seen from Table 5.11 that each diagonal entry representing the same

class has a value zero, whereas each entry other than the diagonal representing

two different classes has a value close to one. Such GSI values indicate that the

proposed HOS feature extracted from the WPD detail and approximate coefficient

is capable of providing high separability between any two different classes as well

as yielding high compactness for the same class.

From the Table 5.10−5.11 it is shown that the proposed approaches show greater

separability between any two classes.Thus, the proficiency of projected schemes to

offer high separability among five classes in this work is established.

BD value of features of comparison methods and the proposed feature set are

shown in Table 5.12. It is found from the BD values of stated all features in Table

5.12, each entree corresponding to AAMI cardiac beat classes are having a value

closing to ‘0’ which further shows the goodness of proposed feature set.

Table 5.10: Geometrical Separability Index(GSI) of the method in [30]

Classes N S F Q V
N 0 0.98 0.9825 0.95 0.9825
S 0.98 0 0.9950 0.9675 1
F 0.9825 0.9950 0 0.9650 0.9950
Q 0.95 0.9675 0.9650 0 0.9475
V 0.9825 1 0.9950 0.9475 0
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Table 5.11: Geometrical Separability Index(GSI) of the proposed method using
dECG Data

Classes N S F Q V
N 0 1 1 1 1
S 1 0 1 1 1
F 1 1 0 1 1
Q 1 1 1 0 1
V 1 1 1 1 0

Table 5.12: Bhattacharyya Distance(BD) values for the method in [30] and Pro-
posed Method Using dECG

Class
BD Values(Method in

[30])
BD Values(Proposed

Method Using dECG)
N 0.0085 0.0023
S 0.0159 0.0282
F 0.0104 0.0050
Q 0.0118 0.0248
V 0.0204 0.0443

5.4.2 Performance Comparison Using Confusion Matrix

Among 10 iterations of random selection of training and testing datasets, for each

iteration, confusion matrix representing the test classes along with the classified

classes is obtained and sensitivity, specificity, selectivity and accuracy of each class

are determined for the performance comparison. Table 5.13 and 5.14 represent

the confusion matrices derived for method in [30] and the proposed method using

dECG data respectively. In each table, the diagonal entries stand for the number of

cases when a particular AAMI cardiac beat class is correctly classified. From Table

5.14, it is found that, the proposed method based on using dECG data is capable

of reducing the mis-classification while providing the similar correct classification

rate for other classes of beats.

Table 5.13: Confusion Matrix of Method in [30] Over 10 Iteration

N S F Q V
N 95 5 3 13 1
S 2 93 3 3 0
F 2 1 91 5 0
Q 2 1 1 71 0
V 4 1 1 8 96
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Table 5.14: Confusion Matrix of Proposed Method Using dECG data Over 10
Iteration

N S F Q V
N 99 0 0 0 0
S 0 101 0 0 0
F 0 0 99 0 0
Q 0 0 0 102 0
V 0 0 0 0 98

For the proposed method and the method in [30], the average sensitivity, specificity,

selectivity and accuracy of all AAMI beat classes are summarized in Tables5.15−5.16.

It is evident from Table 5.15 that the method in [30] produce relatively lower val-

ues of sensitivity for all five classes, whereas the proposed method using the dECG

data yields higher sensitivity even in case of five AAMI beat classes for which the

comparison method [30] produces the least sensitivity. Such high values of sensitiv-

ity attest the capability of the proposed method using dECG data in successfully

classifying five AAMI cardiac beat classes. It can be seen from Table 5.15 that for

all beat classes, the comparison method [30] show lower values of specificity but

the specificity is higher, as expected, for the proposed method using ECG data.

Since for a particular method, a higher specificity indicates a better classification,

the proposed method based using dECG data is indeed better in performance.

From Table 5.16 that for all beat classes, the comparison method [30] show lower

values of selectivity but the selectivity is higher, for the proposed method using

dECG data. Since for a particular method, a higher selectivity indicates a better

classification, the proposed method based using dECG data is indeed better in per-

formance. As demonstrated from Table 5.16 that the accuracy resulting from the

other methods are comparatively lower for all AAMI cardiac beat clases, whereas

the proposed method using dECG data is able to result in better classification

performance as it gives higher accuracy for different classes considered.

5.5 Performance Comparison of the Proposed Method

Using Modified dECG Data Approach

This section presents the results of the proposed method based on HOS obtained

from detail and approximate coefficient of WPD using modified dECG data y(n).

The performance of the proposed method is compared with the method [30] on

the basis of the following performance evaluation criteria as described before.
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Table 5.15: Comparison Between Proposed Method Using dECG Data and the
Method in [30] in terms of Average Sensitivity(in %) and Average Specificity(in
%)

ECG
beat
Class

Sensitivity of
Method in

[30]

Sensitivity of
Proposed
Method

Using dECG
Data

Specificity of
Method in

[30]

Specificity of
Proposed
Method

Using dECG
Data

N 81.2 100.0 97.4 100.0
S 92.1 100.0 98.0 100.0
F 91.9 100.0 98.0 100.0
Q 94.7 100.0 93.2 100.0
V 87.3 100.0 99.7 100.0

Avg 89.4 100.0 97.2 100.0

Table 5.16: Comparison Between Proposed Method Using dECG Data and the
Method in [30] in terms of Average Selectivity(in %) and Average Accuracy (in
%)

ECG
beat
Class

Selectivity of
Method in

[30]

Selectivity of
Proposed
Method

Using dECG
Data

Accuracy of
Method in

[30]

Accuracy of
Proposed
Method

Using dECG
Data

N 90.5 100.0 93.63 100.0
S 92.1 100.0 96.81 100.0
F 91.9 100.0 96.81 100.0
Q 71.0 100.0 93.43 100.0
V 98.9 100.0 97.01 100.0

Avg 88.9 100.0 95.6 100.0



67

5.5.1 Performance Comparison Using Clustering Analysis

GSI value of features of comparison methods and the proposed feature set us-

ing modified dECG data are shown in Table 5.17−5.18. In Table 5.18 the GSI

index obtained using the proposed method using modified dECG data for each

AAMI beat classes is shown. It is seen from Table 5.18 that each diagonal entry

representing the same class has a value zero, whereas each entry other than the

diagonal representing two different classes has a value close to one. Such GSI val-

ues indicate that the proposed HOS feature extracted from the WPD detail and

approximate coefficient is capable of providing high separability between any two

different classes as well as yielding high compactness for the same class.

From the Table 5.17−5.18 it is shown that the proposed approach show greater

separability between any two classes.Thus, the proficiency of projected schemes to

offer high separability among five classes in this work is established.

BD value of features of comparison methods and the proposed feature set are

shown in Table 5.19. It is found from the BD values of stated all features in Table

5.19, each entree corresponding to AAMI cardiac beat classes are having a value

closing to ‘0’ which further shows the goodness of proposed feature set.

5.5.2 Performance Comparison Using Confusion Matrix

Among 10 iterations of random selection of training and testing datasets, for each

iteration, confusion matrix representing the test classes along with the classified

classes is obtained and sensitivity, specificity, selectivity and accuracy of each class

are determined for the performance comparison. Table 5.20 and 5.21 represent

the confusion matrices derived for method in [30] and the proposed method using

modified dECG data respectively. In each table, the diagonal entries stand for the

number of cases when a particular AAMI cardiac beat class is correctly classified.

From Table 5.21, it is found that, the proposed method based on using modified

dECG data is capable of reducing the mis-classification while providing the similar

correct classification rate for other classes of beats.

Table 5.17: Geometrical Separability Index(GSI) of the method in [30]

Classes N S F Q V
N 0 0.98 0.9825 0.95 0.9825
S 0.98 0 0.9950 0.9675 1
F 0.9825 0.9950 0 0.9650 0.9950
Q 0.95 0.9675 0.9650 0 0.9475
V 0.9825 1 0.9950 0.9475 0
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Table 5.18: Geometrical Separability Index(GSI) of the proposed method using
modified dECG Data

Classes N S F Q V
N 0 1 1 1 1
S 1 0 1 1 1
F 1 1 0 1 1
Q 1 1 1 0 1
V 1 1 1 1 0

Table 5.19: Bhattacharyya Distance(BD) values for the method in [30] and Pro-
posed Method Using Modified dECG

Class
BD Values(Method in

[30])

BD Values(Proposed
Method Using Modified

dECG)
N 0.0085 0.0139
S 0.0159 0.0073
F 0.0104 0.0162
Q 0.0118 0.0607
V 0.0204 0.0221

Table 5.20: Confusion Matrix of Method in [30] Over 10 Iteration

N S F Q V
N 95 5 3 13 1
S 2 93 3 3 0
F 2 1 91 5 0
Q 2 1 1 71 0
V 4 1 1 8 96

Table 5.21: Confusion Matrix of Proposed Method Using Modified dECG data
Over 10 Iteration

N S F Q V
N 104 0 0 0 0
S 0 100 0 0 0
F 0 0 100 0 0
Q 0 0 0 98 0
V 0 0 0 0 98
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For the proposed method and the method in [30], the average sensitivity, specificity,

selectivity and accuracy of all AAMI beat classes are summarized in Tables5.22−5.23.

It is evident from Table 5.22 that the method in [30] produce relatively lower values

of sensitivity for all five classes, whereas the proposed method using the modified

dECG data yields higher sensitivity even in case of five AAMI beat classes for

which the comparison method [30] produces the least sensitivity. Such high values

of sensitivity attest the capability of the proposed method using modified dECG

data in successfully classifying five AAMI cardiac beat classes. It can be seen from

Table 5.22 that for all beat classes, the comparison method [30] show lower values

of specificity but the specificity is higher, as expected, for the proposed method

using modified ECG data. Since for a particular method, a higher specificity indi-

cates a better classification, the proposed method based using dECG data is indeed

better in performance. From Table 5.23 that for all beat classes, the comparison

method [30] show lower values of selectivity but the selectivity is higher, for the

proposed method using dECG data. Since for a particular method, a higher selec-

tivity indicates a better classification, the proposed method based using modified

dECG data is indeed better in performance. As demonstrated from Table 5.23

that the accuracy resulting from the other methods are comparatively lower for

all AAMI cardiac beat clases, whereas the proposed method using modified dECG

data is able to result in better classification performance as it gives higher accuracy

for different classes considered.

5.6 Performance Analysis Among The Proposed

Three Approaches

Comparing the GSI values in Tables 5.24,5.25, 5.26, 5.27 we observe that the

proposed HOS feature extracted from the EMD-WPD domain using ECG, dECG

and modified dECG data is more capable of providing high separability between

any two different AAMI cardiac beat classesa as well as yielding high compactness

for the same class in comparison to the comparison method in [30].

It is seen from Table5.28 and Figure 5.3, that the proposed three approaches yields

lower BD values for some of the cardiac beat classes in comparison to method in

[30].

For the confusion matrix derived for each approach, sensitivity, specificity, selec-

tivity and accuracy is determined for all the five AAMI cardiac beat classes. In

the Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 the comparative sensitivity,

specificity, selectivity and average accuracy of all the approached are illustrated
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Table 5.22: Comparison Between Proposed Method Using Modified dECG Data
and the Method in [30] in terms of Average Sensitivity(in %) and Average Speci-
ficity(in %)

ECG
beat
Class

Sensitivity of
Method in

[30]

Sensitivity of
Proposed
Method
Using

Modified
dECG Data

Specificity of
Method in

[30]

Specificity of
Proposed
Method
Using

Modified
dECG Data

N 81.2 100.0 97.4 100.0
S 92.1 100.0 98.0 100.0
F 91.9 100.0 98.0 100.0
Q 94.7 100.0 93.2 100.0
V 87.3 100.0 99.7 100.0

Avg 89.4 100.0 97.2 100.0

Table 5.23: Comparison Between Proposed Method Using Modified dECG Data
and the Method in [30] in terms of Average Selectivity(in %) and Average Accuracy
(in %)

ECG
beat
Class

Selectivity of
Method in

[30]

Selectivity of
Proposed
Method
Using

Modified
dECG Data

Accuracy of
Method in

[30]

Accuracy of
Proposed
Method
Using

Modified
dECG Data

N 90.5 100.0 93.63 100.0
S 92.1 100.0 96.81 100.0
F 91.9 100.0 96.81 100.0
Q 71.0 100.0 93.43 100.0
V 98.9 100.0 97.01 100.0

Avg 88.9 100.0 95.6 100.0

Table 5.24: Geometrical Separability Index(GSI) of the method in [30]

Classes N S F Q V
N 0 0.98 0.9825 0.95 0.9825
S 0.98 0 0.9950 0.9675 1
F 0.9825 0.9950 0 0.9650 0.9950
Q 0.95 0.9675 0.9650 0 0.9475
V 0.9825 1 0.9950 0.9475 0
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Table 5.25: Geometrical Separability Index(GSI) of the proposed method using
ECG Data

Classes N S F Q V
N 0 0.9950 1 1 1
S 0.9950 0 0.9975 1 1
F 1 0.9975 0 1 1
Q 1 1 1 0 1
V 1 1 1 1 0

Table 5.26: Geometrical Separability Index(GSI) of the proposed method using
dECG Data

Classes N S F Q V
N 0 1 1 1 1
S 1 0 1 1 1
F 1 1 0 1 1
Q 1 1 1 0 1
V 1 1 1 1 0

Table 5.27: Geometrical Separability Index(GSI) of the proposed method using
modified dECG Data

Classes N S F Q V
N 0 1 1 1 1
S 1 0 1 1 1
F 1 1 0 1 1
Q 1 1 1 0 1
V 1 1 1 1 0

Table 5.28: Bhattacharyya Distance(BD) values

Class

BD
Values of
Method
in [30]

BD
Values of
Proposed
Method
Using
ECG

BD
Values of
Proposed
Method
Using
dECG

BD
Values of
Proposed
Method
Using

Modofied
dECG

N 0.0085 0.0019 0.0023 0.0139
S 0.0159 0.0191 0.0282 0.0073
F 0.0104 0.0090 0.0050 0.0162
Q 0.0118 0.0141 0.0248 0.0607
V 0.0204 0.0473 0.0443 0.0221
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Figure 5.3: Bhattacharyya Distance (BD)Values

respectively.

The total average accuracy of the method in [10] is 98.61% and the total average

accuracy of method in [30] is 88.8%. The performance of the proposed method

based on HOS features extracted from EMD-WPD domain came quite high with

average accuracy of 99.6% for class N, 99.6% for class S and 99.4%, 99.8% and

100% for classes F, Q and class V beat respectively resulting in total average ac-

curacy of 99.2%.

The performance of another proposed method using dECG data came high with

average accuracy of 100% for class N, 100% for class S and 100%, 100% and 100%

for classes F, Q and class V beat respectively resulting in total average accuracy

of 100%.

Finally The performance of another proposed method using modified dECG data

came high with average accuracy of 100% for class N, 100% for class S and 100%,

100% and 100% for classes F, Q and class V beat respectively resulting in total

average accuracy of 100%. From the Table 5.29 it is shown that the total average

accuracy of the proposed three methods is higher than the comparison method of

[10] and [30].

5.7 Conclusion

Firstly an empirical mode decomposition based is employed along with Euclidean

distance classifier in order to classify five AAMI cardiac beats.In this approach the

dominant IMFs obtained from EMD are subjected to WPD analysis. HOS fea-

tures are selected as feature vectors. Secondly instead of ECG data, The smoothed

three point central difference for an ECG signal namely dECG data are used to

obtain HOS feature extracted from the EMD-WPD domain in order to classify
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Table 5.29: Comparison of Total Average Accuracy(in %) of the Proposed three
Methods

Method Total Average Accuracy
Method in [30] 88.8
Method in [10] 98.61

Proposed Method using
ECG data

99.2

Proposed Method using
dECG data

100.0

Proposed Method using
Modified dECG data

100.0

Figure 5.4: Performance Comparison in Terms of Average Sensitivity for the Pro-
posed methods

Figure 5.5: Performance Comparison in Terms of Average Specificity for the Pro-
posed methods

the AAMI five beat classes. Finally, a modification in dECG analysis is performed

to obtain the signal and classify five AAMI beat classes.Two statistical measures
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Figure 5.6: Performance Comparison in Terms of Average Selectivity for the Pro-
posed methods

Figure 5.7: Performance Comparison in Terms of Average Accuracy for the Pro-
posed methods

e.g. GSI and BD are utilized in justifying inter-class separability and intra-class

compactness of the proposed feature. Average sensitivity, specificity, selectivity

and accuracy are calculated from classification performance of 10 iterations, con-

sidering random selected training and testing datasets at each stage.



Chapter 6

Conclusion

6.1 Concluding Remarks

It is shown that the use of EMD based decomposed ECG signal for extracting

wavelet packet features can provide significantly distinguishable characteristics for

different types of cardiac beats. For feature extraction, instead of using all IMFs,

use of only dominant IMF not only reduces the computational burden but also

avoids inclusion of redundant or less informative data. It is found that the proposed

energy based simple selection criterion can consistently identify the dominant IMF.

In order to extract discriminative characteristics related to different cardiac beat

classes, both approximate and detail coefficients are utilized for feature extraction.

Instead of using all WPD coefficients, some statistical parameters are employed on

those extracted coefficients which efficiently represent the unique characteristics.

It is observed from extensive simulation that the proposed higher order statistical

features extracted from EMD-WPD data not only shows better compactness and

separability but also provides higher sensitivity, specificity, selectivity and accuracy

in distinguishing different cardiac beats even using simple distance based KNN

classifier compared to a state-of-the-art method.

6.2 Contribution of this Thesis

The major contributions of this thesis are,

• A set of HOS features is developed exploiting dominant IMFs obtained via

empirical mode decomposition (EMD) of ECG signals.

• Another set of HOS features is developed from smoothed three point central

difference for an ECG signal namely dECG signal.
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• Another set of features is obtained from modification of dECG signal, namely

modified dECG.

• Detail simulations have been carried out in order to investigate the perfor-

mance of the proposed feature sets for the classification of five AAMI car-

diac beat class using ECG signals available from the MIT-BIH arrhythmia

database, dECG and modified dECG.

• The performance of our proposed method is compared with state-of-the-art

method [30]. This is why the comparison method is implemented indepen-

dently and classification performance has been carried out using the same

dataset and the same Euclidian distance classifier.

• Simulation results show that the proposed method is able to classify different

types of cardiac beats with greater sensitivity, specificity, selectivity and

accuracy even in case of random selection of training and testing dataset.

6.3 Scopes for Future Work

In this thesis, effective and efficient classification methods using ECG, dECG and

modified dECG signals exploiting HOS of dominant IMFs in EMD-WPD domain

has been built for AAMI five class beat classification. However, there are some

scopes for future research as mentioned below:

• In practical cases, where the unknown ECG comes from a different patient

whose data is not present in the training dataset, the classification problem

is termed as patient independent performance analysis. So, our proposed

methods are needed to be fed into patient independent analysis for further

justification in handling various practical situations.

• In practical cases, ECG signals are subject to various noises. So, noise anal-

ysis can be performed for all the proposed methods in order to verify their

performance in noisy environment.

• Available databases other than MIT-BIH arrhythmia database need to be

utilized for validating efficacy of our proposed methods.
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