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Abstract

Quantitative ultrasound (QUS) based parameters, estimated from backscattered radio-
frequency (RF) data, allows the parametrization of tissue micro-structures. These pa-
rameters, which include mean scatterer spacing (MSS) and effective scatterer diameter
(ESD), often reveal more information about the interrogated tissue than conventional
B-mode imaging, as well as being less subjective to operator settings and interpreter
variability than conventional ultrasound. MSS and ESD are important QUS micro-
parameters for detecting pathological changes in breast tissue. In this thesis, two
novel techniques are proposed for estimation of MSS and ESD from breast tissues.
Both these techniques rely on the separation of the coherent and diffuse component
of backscattered data using ensemble empirical mode decomposition (EEMD) of the
data into their intrinsic mode functions (IMFs). An automatic IMF selection scheme is
employed, which utilizes a non-parametric Kolmogorov-Smirnov (K-S) test to automat-
ically select the IMFs responsible for coherent scattering in case of MSS estimation,
and diffuse scattering in case of ESD estimation. Before EEMD can be performed,
filtering and deconvolution of the backscattered data is carried out to reduce the im-
pacts of diffraction and the system point spread function (PSF). The MSS is estimated
from the spacing between the peaks of the power spectrum estimated from the coher-
ent component of RF data. The power spectrum is estimated using an autoregressive
(AR) model, whose order is chosen by minimization of a novel mean absolute per-
centage error (MAPE) criterion. The ESD is estimated from the diffuse component of
RF data utilizing a theoretical tissue scattering model in the frequency domain. MSS
estimation is carried out on simulation RF data generated by FIELD II and n vivo
breast tissues while ESD estimation is carried out on experimental tissue-mimicking
phantoms (TMPs) and in vivo tissues. The average MSS for normal tissues, inflam-
matory tissues, fibroadenoma, and malignant tissues are found to be 0.689 (£0.032)
mm, 0.729 (£0.040) mm, 0.750 (+0.035) mm, and 0.793 (£0.040) mm, respectively.
The corresponding average ESD values are 75.12 (£4.01) pm, 75.72 (£4.09) pm, 98.71

x1



ABSTRACT xii

(£9.55) pm, and 123.05 (+8.85) um, respectively. The estimated average MSS and
ESD values correspond well to those previously reported in literature. When MSS and
ESD are combined with 27 previously reported QUS bi-modal (ultrasound B-mode
(UB) and ultrasound elastography (UE)) macro-parameters, to form a unique hybrid
micro-macro feature set, consisting of 29 parameters, for binary (benign-malignant)
classification of breast lesions, we obtain sensitivity, specificity, and accuracy, values as
high as 98.21%, 98.06%, and 98.11%, respectively, using machine learning algorithms.
This highlights the potential of this hybrid feature set as a computer-aided diagnosis

(CAD) tool for breast lesion classification.



Chapter 1

Introduction

In this Chapter, we discuss the motivation behind the development of novel techniques
for mean scatterer spacing (MSS) and effective scatterer diameter (ESD) estimation,
and developing a hybrid feature set based breast lesion classification system. A de-
tailed review of the relevant techniques for MSS and ESD estimation and QUS based
breast lesion classification results reported in the literature is also presented. Next, the
primary objectives of this thesis are highlighted. Finally, the organization of the thesis

is described.

1.1 Motivation of the Thesis

Breast cancer is one of the leading causes of death in women all over the world [1]. The
only way to improve the chances of survival is through early detection |2]. Breast can-
cer diagnosis, prognosis, and treatment require identification of breast lesion pathologic
characteristics. For a long time, only biopsy, an invasive method, had been used for
such characterization [3]. Recently, noninvasive quantitative ultrasound (QUS) meth-
ods have become increasingly popular for the characterization of breast lesions [4], [5].
QUS has been employed for the parametrization of tissue micro-structures with a view
to developing a diagnostic modality which is less subjective to operator settings and
interpreter variability compared to conventional ultrasound imaging [6]. The tissue

characterization methods based on QUS parameters mainly rely on the concept that
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disease processes alter the physical properties of tissues and hence, their acoustic scat-
tering properties [7]. QUS parameters are being used in computer-aided diagnosis
(CAD) tools for classifying between benign and malignant lesions [8]. MSS and ESD are
important QUS based micro-parameters for breast lesion classification [5]. Although,
quite a few techniques have been developed for MSS and ESD estimation [4], [9], [10],
very few algorithms have been developed for MSS and ESD estimation of breast tis-
sues, due to the complexity of the breast structure [11]. Ultrasound scattering from the
female breast has two principal components. One component, which is highly coherent,
is due to scatterers that are spaced at relatively regular intervals and the other one is
due to random or diffuse scatterers [4], [12]. Micro-parameters like MSS are estimated
from the coherent component from backscattered data while others, such as ESD, are
estimated from the diffuse component [4], [13]. Hence, successful separation of these
two components is essential in any algorithm for micro-parameter estimation [14], [15].
Although some techniques have been developed to separate the diffuse component from
the coherent component of backscattered data [13], [14], these techniques are highly
sensitive to noise and remain untested on breast tissue. Therefore, in this work, we have
attempted to develop an ensemble empirical mode decomposition (EEMD) based signal
decomposition technique for MSS and ESD estimation of female breast tissues. The
inherent advantages of EEMD in that it requires no pre-selection of basis function [16],
is completely data-driven [16], and that it works equally well on both stationary and
non-stationary signals [17], making it suitable for separating the coherent component
and the diffuse component of backscattered data. Furthermore, to the best of our
knowledge, no previous work has been reported on a broad dataset for classifying be-
tween benign and malignant breast lesions using ultrasonic micro-parameters like MSS
and ESD, either individually or combined. Additionally, another class of QUS pa-
rameters, usually extracted from the ultrasound B-mode (UB) images and ultrasound
elastography (UE), referred to as macro-parameters have also been successfully em-
ployed for breast lesion classification [18]. However, no previously reported technique
has attempted to combine the micro— and macro-parameters for ultrasonic tissue char-

acterization. Thus, we have looked to combine the 2 micro-paramters, MSS and ESD,
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and 27 previously reported ultrasonic bi-modal (UB and UE) macro-parameters [18],
to form a hybrid feature set for binary (benign-malignant) classification of breast le-
sions. The motivation behind combining these two unique feature sets is that the
micro-parameters encompass the information relating to tissue histopathology while
the macro-parameters capture the information relating to radiological imaging and
hence, combining these features to train a machine learning network should allow for

better classification of breast lesions.

1.2 MSS and ESD Estimation Techniques and Ultra-
sonic Tissue Characterization: Literature Review

Fellingham first proposed the use of MSS in 1979 [19] for the classification of tissues,
and later, Fellingham and Sommer [20] used this parameter to differentiate between
normal and cirrhotic liver. They used a periodogram approach to compute the fast
Fourier transform (FFT) which, depending on the window selected, can lead to a
degradation of the resolution. To overcome this problem, an AR model-based spectral
estimation scheme is often used [21]. But this method does not take into consideration
the effect of the transducer response embedded in the RF data [4]. Hence, Kuc et
al. [22] suggested the use of the magnitude of the cepstrum instead of the AR spec-
trum to estimate the MSS. Pereira et al. [14] used singular spectrum analysis (SSA)
to estimate MSS values for experimental phantom and bovine liver which uses some
heuristic criteria for the proper selection of eigenvectors. Georgiou et al. [11] used a
wavelet-based decomposition method to decompose a backscattered RF signal into its
coherent and diffuse components and used this to extract features from breast RF data
for classification. Rosado-Mendez et al. [23] used an empirical method to estimate the
MSS from tissue mimicking phantoms and cervix tissues. The method, however, is
highly dependent on the size of the resolution cell. Although the literature is laden
with studies on estimating the MSS of tissue mimicking phantoms and liver tissues,
work on estimating the MSS of breast tissues is very limited. The estimation of MSS

from breast tissues is challenging because of the irregularity of the breast structure
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compared to the liver [24]. Donohue et al. [25] introduced the generalized spectrum
(GS) to analyze the scatterer spacing of breast tissues and was later successful in clas-
sifying breast tissues by extracting parameters from the collapsed average (CA) of the
GS using a linear discriminant analysis (LDA) [26]. Rubert et al. |27] expanded the
use of the GS for estimating the MSS of liver tissues using a multi-taper spectral es-
timation method. Bige et al. [4] used an AR cepstrum method to estimate the MSS
of breast tissues. However, this method is not immune to interference from diffuse
scatterers since it makes no attempt to recover the fundamental harmonic from the
backscattered signal or improve its periodicity. Varghese et al. [15] suggested the use
of a spectral autocorrelation (SAC) function to estimate the MSS of liver tissues which
was later modified by Taddayon et al. [5] for identification and classification of patho-
logical changes in breast tissues. In computing the SAC, the position of the diffuse
and the coherent scatterers are assumed to be uncorrelated while the diffuse scatterer
process is assumed to be wide-sense stationary over the region of interest. However,
any significant deviation from these assumptions may lead to incorrect MSS estimates
for in vivo data.

The use of ESD, as a micro-parameter for characterizing pathological tissues, has
also been reported extensively in the literature. These include the ESD of ocular le-
sions [28], liver [29], renal tissues [30], glomerular tissues [31], kidney [32], prostate [33],
human aortae [34], and the uveal melanomas [35]. In addition, ESD has been success-
fully employed to distinguish between benign and malignant lesions in the eyes [36] and
in the lymph nodes [37]. Ultrasonic characterization of human breast tissues have been
reported in [5] in [38]. However, in the method discussed in [38], no specific micro-
parameters have been used while [5] used micro-parameters for tumor grading rather
than breast lesion classification. As stated previously, no previous work has been re-
ported on a large dataset, for classifying between benign and malignant breast lesions
using ultrasonic micro-parameters like MSS and ESD. In [39], it has been reported
that, for the estimation of ESD, the coherent component behaves as an interference
and hence, needs to be suppressed. The generalized spectrum and Rayleigh envelop

statistics [40] and Hanning tapers [41] have been used to separate the diffuse echoes
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from the backscattered data but these algorithms remain untested on human tissue.
Furthermore, the existing techniques use large 2-D spatial signal blocks to generate
a stable block power spectra [10], [42] which is often an unrealistic approach because
the tissue pathology inside a large spatial region must be considered uniform, a re-
quirement that is too idealistic for a heterogeneous tissue medium. Additionally, most
ESD estimation techniques use a form factor to model the backscattering from tissue
structures [10]. A mean average squared devitation (MASD) minimization technique
has been proposed in [10] while a frequency domain technique has been proposed in |9],
which employ a Gaussian form factor to model tissue scattering. It has been previously
established that the Gaussian form factor most accurately models ultrasonic scattering
from human tissues [10], [43]. What is more, as discussed before, macro-parameters
derived from the UB image and UE have been successfully employed for classification of
breast lesions [18], [44]. However, no previous method exists that has tried to combine

the micro— and macro-parameters for ultrasonic tissue characterization.

1.3 Objectives of the Thesis

The objectives of this work are:

1. To propose new techniques for MSS and ESD estimation of breast tissues based

on the decomposition of ultrasound RF echo signals.

2. To combine MSS and ESD with other QUS based macro-parameters to develop a
robust computer-aided diagnosis (CAD) tool for breast lesion classification using

machine learning.

3. To design an ultrasound RF simulator, using FIELD II, that can generate RF

data corresponding to different scattering conditions.

4. To make a comparative performance study of the proposed method with other
reported MSS and ESD estimation techniques using known ESD experimental

phantom data, known MSS simulation RF data, and in vivo breast data.
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1.4 Organization of the Thesis

This thesis consists of five chapters. Chapter 1 is composed of the motivation and
objectives of the thesis and the limitations of the existing techniques. In Chapter 2,
the techniques for MSS estimation, the FIELD II simulator setup for MSS estima-
tion from simulation data, the results of MSS estimation from in wvivo breast tissues,
and comparisons with some existing techniques are discussed under relevant sections.
Chapter 3 has the detailed description of the theoretical aspects of the ESD estima-
tion technique, presentation of the results obtained from experimental tissue-mimicking
phantoms (TMPs)and in vivo breast tissues with relevant discussion, and comparisons
with some existing techniques. In Chapter 4, we elaborate on the techniques employed
for binary (benign-malignant) classification of breast lesions, and also present and dis-
cuss the obtained classification results. Finally, in Chapter 5, concluding remarks and
suggestions for future research are provided based on the outcomes and limitations of

this thesis work.



Chapter 2

Mean Scatterer Spacing Estimation

In this Chapter, we discuss the basic signal model and the rationale behind a signal
decomposition based technique. We give the details of the patient data and the sim-
ulation data, with known MSS values, generated by the FIELD II software. We also
discuss how the FIELD II software is used to simulate different scattering conditions.
Next, we focus on the theoretical aspects of the MSS estimation technique and show
that the simulation data can be used to verify the reliability of the technique under
different scattering conditions and compare with some existing techniques, namely the
conventional AR spectrum [45], the conventional AR cepstrum [4], singular spectrum
analysis (SSA) [14], spectral autocorrelation (SAC) [15], modified SAC [5], and the
GS [25]. In addition, we report the estimated average MSS values of different types of

female breast tissues.

2.1 The Signal Model

The backscattered RF data are known to consist of two principal components. The
component that is important for MSS estimation is the one due to the presence of
regular or periodic scatterers along the ultrasound scan line. An interfering component
is present due to the diffuse or random scatterers. The coherent scatterers of the
breast can be considered as ducts or lobules, and diffuse scatterers as breast tissue

cells [46]. Moreover, the echo signal produced by the system scatterers is convolved
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with the system PSF to produce the measured RF signal. If z;(n) is taken to be the

backscattered RF signal of the i-th scan line, it can be modeled as

zi(n) = {i ag;(n — Tpi) + Z Ui (n — Gki)} x h(n) (2.1)

k=1 k=1

where n, Np, vi;, Ori, Ng, a;, and Ty; represent the time index, the total number of
diffuse scatterers, reflectivity of the k-th diffuse scatterer, the delay associated with the
k-th diffuse scatterer, the total number of regular scatterers, the reflectivity of the k-th
regular scatterer, and the delay associated with the k-th regular scatterer, respectively
[15]. Here, h(n) represents the system PSF. The scan lines of each 2D frame of the
backscattered RF data acquired by the ultrasound imaging scanner (transducer) can be
modeled, using Born approximation [47], [48], as outputs from a single-input multiple-
output (SIMO) system with the ultrasound pulse transmitted by the transducer as the
single input [49]. Hence, an 1D PSF, h(n), as shown in (2.1), is usually used to model
the system effects along each scan line [47], [48]. The resulting 1D PSF can be assumed
to be proportional to a 1D Gaussian given by

h(zn) o ;Sexp[ - w] (2.2)

w,(2m)?2 w?

where w, and k represent the standard deviation (SD) width in the z (axial) direction
of the resolution cell and the wave number, respectively [50].

The signal model provides the motivation for our proposed method. If the system PSF
is removed by deconvolution, then the regular component and the diffuse component
become additive. This allows better separation of the regular component and the

diffuse component by ensemble empirical mode decomposition (EEMD).

2.2 Patient Data

The in vivo data used in this thesis have been obtained at the Bangladesh University of
Engineering and Technology (BUET) Medical Center with the help of a Sonix TOUCH

Research (Ultrasonix Medical Corporation, Richmond BC, Canada) scanner integrated
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with a 1.14-5/38 linear probe. The probe was operating at 10 MHz with 65% bandwidth
(-6-dB bandwidth) at a sampling rate of 40 MHz. The pulse length was approximately
0.4 mm and the beam width was approximately 2.2 mm. The pulse length has been
estimated from the emitted pulse using the multiple input-output inverse theorem [51].
The study has been conducted on 179 patients, with their prior written consent, and
approved by the institutional review board (IRB) of BUET. From the 179 patients, 245
RF data files have been recorded. Out of the 245 data records, 56 are malignant lesions,
79 are fibroadenomas, 24 are inflammatory growths, 42 are cystic lesions and 44 data
records do not show any growths. The age range of all patients was 13-75 years (mean:
35.27 years). The patients having masses underwent fine-needle aspiration cytology
(FNAC) and/or excision biopsy according to the suggestion of their physicians. All
patients having FNAC diagnosis positive for malignancy underwent surgery. Therefore,
diagnoses of malignant and some benign lesions were confirmed by histopathology, and

diagnoses of the remaining lesions, by cytopathology.

2.3 FIELD II Simulator Setup

Numerical phantoms are generated using the FIELD II software [52] where the MSS
is varied from 0.6 mm to 1.4 mm (with increment in steps of 0.1 mm). In the simu-
lation, we have used a transducer center frequency of 10 MHz and a bandwidth of 7
MHz. The transmit focus is placed 60 mm from the transducer face. The pulse length
and the beam width are arbitrarily chosen to be approximately 0.50 mm and 2.5 mm,
respectively. The size of the ROI is chosen such that it is approximately 20 pulse
widths axially and 4 beam widths laterally. The phantom consisted of both randomly
generated scatterers (i.e., diffuse scatterers) and regular scatterers. The spacing be-
tween the regular scatterers are obtained from a gamma distribution with a standard
deviation (SD) of 3% of mean spacing. The diffuse scatterers are uniformly distributed
throughout the beam field with the number of scatterers generated using the Poisson
distribution so that each resolution cell contains 15 diffuse scatterers. The FIELD II

software performed the task of generating the backscattered RF data from the simula-
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tion phantom. The RF data is generated by the convolution of the echo signal produced
by the system scatterers with the system PSFE. Table 2.1 provides a brief summary of
the simulation parameters. A typical phantom generated using the Field II software
is shown in Fig. 2.1(a). The scatterers are marked with black dots in the figure. A
B-mode image of a plane of the same phantom generated using Field II is shown in
Fig. 2.1(b). The B-mode imaging plane is sagittal with the transducer face placed at
the bottom surface of the phantom shown in Fig. 2.1(a). The distance between the
transducer face and the surface of the numerical phantom is 30 mm.

Moreover, analyses are performed on simulation data to observe the effect of varying

Lateral Distance (mm)
(b)

Figure 2.1: (a) A 40 x 10 x 6 mm? phantom generated using the Field 1T software and

(b) a B-mode image of the same phantom.

the relative reflectivity of the regular and diffuse scatterers, varying the SD of the mean

spacing of the regular scatterers and varying the axial size of the simulation phantom.



CHAPTER 2. MEAN SCATTERER SPACING ESTIMATION 11

The relative reflectivity is varied by setting the scattering amplitude of the regular scat-
ters at 0.01, 0.1, 0.5, 1.0, 10, 50, and 100 times the scattering amplitude of the diffuse
scatterers using Field II. The simulated MSS value is kept constant at 1 mm and the
simulation parameters defined in Table 2.1 are used. Furthermore, the inconsistency of
the spacing is varied by changing the SD of the mean of the gamma distributed spacing
from 0% to 10% (in steps of 1%). The simulated MSS value is again set at 1 mm and
the other simulation parameters are kept the same as those defined in Table 2.1. In
order to investigate the effect of phantom size, and hence, attenuation on the accuracy
of the different methods, the height of the simulation phantom is varied from 0.5 ¢cm
to 4 cm. A frequency dependent attenuation coefficient value of 0.5 dB/MHz/cm is set
on Field II. This attenuation coefficient value is typical for soft tissues [53], [54]. As
before, the simulated MSS value is set at 1 mm and the simulation parameters defined

in Table 2.1 are used.

Table 2.1: Simulation Parameters

Number of diffuse scatterers per resolution cell 15 using a Poisson Distribution

Diffuse scatterer spatial distribution Uniform

Regular scatterer spatial distribution Gamma (SD of mean spacing of 3%)
Transducer Center Frequency 10 MHz

Bandwidth 7 MHz

Transmit Focus 60 mm from transducer face

2.4 The MSS Estimation Technique

2.4.1 Preprocessing

A block diagram of our proposed MSS estimation algorithm is shown in Fig. 2.2.
The backscattered RF signal is stored in the form of a 3D video file, where the third
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dimension is time. A 2D ROI is selected from a suitable frame of the acquired RF data.
For selecting the ROI from a patient with a breast lesion, the B-mode image is observed,
and a suitable 2D region within the border of the lesion is selected. Additionally,
a second ROI is selected outside the lesion to compare the MSS values inside and
outside the lesion. For a normal breast, a well-defined 2D region is selected, away
from the edges of the imaging plane. The dimension of each ROI is taken to be
approximately (10 — 12) x (6.25 — 9.40) mm?. The beam width is approximately 2.2
mm. Therefore, each ROI contains approximately 100 resolution cells. The size of the

ROI is approximately 25 pulse lengths axially and 4 beam widths laterally. Before

Preprocessing
________________ -
) Bandpass |
Deconvolution =———p L |
Filtering |
| |
L ROISelection _ _ _ _ _ _ _ _ _ _1_ _ a
EEMD &
MSS AR Power .
Estimate Spectrum Estimation .
Selection

Figure 2.2: A block diagram illustrating our proposed algorithm.

EEMD domain analysis for MSS estimation, it is necessary that the effects of the
system PSF are removed through a process called deconvolution and the impacts of
diffraction are reduced. Applying a simple high-pass filter on the raw RF data to remove
the low frequency system effects will not be effective since it will also significantly
reduce the number of harmonics in the AR spectrum due to the regular scatterers
in the low frequency region. In this work, a block-based damped variable step-size
multichannel least mean square (bMCLMS) algorithm is used for blind deconvolution
of the RF data [55]. Tt requires no prior knowledge of the PSF. Moreover, a modified
block-based cross-correlation technique is used to overcome the non-stationarity of
PSF and incomplete acquisition of the ultrasound data. Furthermore, an [;-norm
based cost function is used along with a damped variable step-size. The damped

variable step-size helps mitigate the effects of noise and results in a high convergence
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speed. Finally, the PSF is estimated from lateral blocks of data using a regularized
multiple-input /multiple-output algorithm, which works equally well for minimum and
non minimum phase signals. This deconvolution method has been shown to outperform
most conventional deconvolution techniques [55] and is, therefore, well suited for our
work. After that, an ideal bandpass filter of frequency range 2 — 13 MHz is applied
on the deconvolved data. The rationale behind choosing this frequency range is to
reduce the impact of diffraction prominent below 2 MHz and eliminate other acquisition
noises present at higher frequencies |56]. It is to be noted that deconvolution shifts
the backscattered signal from being centered at the pulse frequency (10 MHz) to lower

frequencies.

2.4.2 EEMD Domain AR Spectrum Estimation

The regular component of the backscattered signal is often masked by interference from
the diffuse scatterers. Therefore, decomposition of the deconvolved data is required to
separate the signal components due to regular scatterers and diffuse scatterers. Empir-
ical mode decomposition (EMD), developed by Huang et al. [16] decomposes a signal
into a sum of its IMFs. These IMFs are known to contain information about the
different frequency components present in the signal. EMD is a plausible option for ex-
tracting the periodic component from the backscattered RF data as it does not require
any pre-selection of the basis function, and rather, is a data-driven approach which
is particularly suitable for non-stationary signals [16]. Using EMD, the deconvolved
signal, z;4(n), would be decomposed into the sum of its IMFs, ¢;(n), j = 1, ..., K, where

K is the number of IMFs and a residue r(n) given by

Tig(n) = Z cj(n) +r(n). (2.3)

However, in EMD, even a small perturbation can lead to a completely different set
of IMFs, which may lead to a large variance in the MSS estimates [57]. In order to
produce stable IMF estimates, EEMD is performed [17], [58], [59]. In EEMD [58], an
ensemble of Np random Gaussian noise, w;,(n) (p = 1, ..., Ng), maintaining a signal-

to-noise ratio (SNR) of 30 dB with the deconvolved signal, is added to the deconvolved
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backscattered signal for the i-th scan line. That is, the ensemble is given by
:rz-dp(n) = aztd(n) + wip(n),p = 1, ceny NE (24)

The EMD algorithm is applied to each of the signals to extract the IMFs ¢,;(n) (j =
1,..., K) so that

zdp Zcp] +TpK )7p: 17"'7NE (25)

where r,x(n) is the residual function of z;4,(n). Finally, the IMFs using EEMD are

obtained from the ensemble average

G (n) = o D eyn),j=1,.. K (2.6)

Note that, EEMD retains the effectiveness of EMD for the analysis of non-stationary
signals |58]. As stated before, EEMD allows separation of the diffuse and the regular
components from the deconvolved data and thereby, helps in reducing the effect of the
diffuse scatterers on the regular scatterer components.

Selection of IMFs is a crucial issue in any algorithm involving EEMD [60], [61]. This
is because, a few of the IMFs will contain information about the coherent scatterers
while the others will contain information about the diffuse scatterers [60]. In order
to identify the IMFs exhibiting coherent scattering, a non-parametric Kolomogorv-
Smirnov (K-S) test is performed on the IMFs estimated using EEMD. The method
used is described in [62]. The K-S classifier assumes that diffuse scatterers generate
Gaussian statistics and any deviation is a result of coherent scattering. Those IMFs that
do not show deviation from Gaussian statistics (at 5% significance level) are excluded

and the remaining IMFs are summed up and used for further processing.

2.4.3 Order Selection Criterion for the EEMD Domain AR
Model

The appropriate selection of the AR model order, p, is very important for accurate

estimation of the MSS [63]. Bige et al. [4] suggested an AR model of order 90 that,
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in their work, yielded the best results. However, using such a high AR model order is
susceptible to erroneous results [63]. Too low an order does not show sufficient peaks
in the spectrum. In order to choose the appropriate model order, a simulation was
carried out using the FIELD II software |52] for synthetic values of MSS between 0.6
mm to 1.4 mm. The AR model order was varied from 30 to 100 and the AR spectrum
and MSS were estimated using our proposed algorithm. The mean absolute percentage
error (MAPE) was calculated for each model order. Fig. 2.3 shows a graph for MAPE
against AR model order in the EEMD domain. We see from the figure that MAPE is
lower around an AR model order of 6043. Therefore, we chose an AR model order of
60 in our work. The AR model coefficients are estimated using the Burg’s algorithm
since it is a high resolution spectral estimation technique and results in a stable AR

model [45]. Tt is also computationally efficient [45].

8.5

30 40 50 60 70 80 90 100
Order of AR Model in EEMD Domain

Figure 2.3: Plot of MAPE against AR model order in EEMD domain for the decon-
volved synthetic backscattered RF data generated using FIELD II.
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2.4.4 MSS Estimation from the EEMD Domain AR Spectrum

The MSS, d;, for the i-th scan line, can be estimated from the separation between
adjacent harmonics, Af, present in the calculated EEMD domain AR spectrum for

that scan line as
c

where ¢ is the speed of ultrasound waves in biological tissues [64]. If we estimate

(2.7)

MSS from the separation between adjacent peaks, we obtain L; MSS values d;,,, (m =
1,2,...L;) where L; is the number of peaks due to the regular scatterers in the i-th scan
line and d;,,, are the L; MSS values estimated from the separation between adjacent
peaks. These L; MSS values are averaged to obtain an estimate for the i-th scan line

as
1 &
di:— di'm- 2
-5 29

After observing the EEMD domain spectra of several frames, it was found that peaks
having amplitude less than 10% of the amplitude of the highest peak in the spectra
can be treated as non-harmonic peaks. This procedure is repeated for each of the scan
lines in the ROI and an estimate of the MSS, d, is taken to be the average of the MSS

estimated from each of the scan lines given by

1 N
d=—3"d, 2.9
NZ; (2.9)

where N refers to the number of scan lines in the ROI. However, the MSS can be also
estimated from the position of the fundamental harmonic obtained from the EEMD
domain AR spectra of the i-th scan line, f!, alone. In that case, the MSS for the i-th
scan line is given by

di = —. (2.10)

An estimate of the MSS, d, is taken to be the average of the MSS estimated from each
of the scan lines given by (2.9). While estimating the MSS from a particular scan line,

a check is performed to ensure that the L; MSS values obtained from that scan line
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have a standard deviation (SD) of less than 0.02 mm and there are at least five values
of L;, that is the AR spectrum of the frame must contain at least five harmonics due
to the regular scatterers. If these criteria are not satisfied, that particular scan line
is not included in the calculation of the overall MSS in (2.9). This helps to eliminate

scan lines which may produce sporadic peaks in the AR spectrum.

2.5 Results on Simulation Phantom Data

For each MSS value, 10 data sets, each having a different spatial configuration, are
generated. The MSS is estimated for all the 10 data sets using a particular method.
The calculated MSS estimates are then averaged to obtain the estimate for a particular
MSS value for a particular method. The MAPE and SD are also obtained for each of
the simulated MSS values for a particular method. This procedure is repeated for all
the simulated MSS values (from 0.6 mm to 1.4 mm) and the obtained SD values are
averaged to obtain the mean SD. The MAPE is calculated in a similar manner. The

results are summarized in Table 2.2.

Table 2.2: Mean SD and MAPE obtained for different methods for MSS estimation
from simulated backscattered RF data

Method MAPE (%) Mean SD
AR spectrum [45] 27.76 + 0.18
AR cepstrum [4] 11.09 + 0.08
SSA [14] 6.03 +£0.07
SAC [15] 5.97 £0.07
Modified SAC [5] 5.99 +£0.05
GS [25] 6.02 +0.06
Proposed Method 5.78 +0.06

Our proposed method results in a MAPE value of 5.78% which is significantly lower

than the conventional AR spectrum and AR cepstrum methods and slightly lower than
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SAC, modified SAC, GS, and SSA. The lowest mean SD of 0.05 is produced by the
modified SAC method. However, it is to be noted that the MAPE of our proposed
method is 0.21% lower than the modified SAC method. The estimated results are also
illustrated graphically in Figs. 2.4(a)-(g). Each simulated MSS value (referred to as
expected MSS in the horizontal axis) is generated for 10 different spatial configurations
of coherent and diffuse scatterers. The corresponding values on the vertical axis refers
to the MSS estimated by different methods for the simulated MSS values. It is clear
from Figs. 2.4(a)-(g) that our proposed method has the lowest MAPE values overall
for the entire MSS range of the simulation. The SAC, GS, SSA, and modified SAC
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Figure 2.4: Comparison between different methods in estimating MSS values for sim-
ulated backscattered RF data. The methods are (a) conventional AR spectrum, (b)
conventional AR cepstrum, (c¢) SSA, (d) SAC, (e) Modified SAC, (f) GS, and (g) pro-
posed method.

have MAPE values close to our proposed method for the nearly deterministic scatterer
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spacing. In order to better understand how the precision of these methods vary when
the simulated MSS values are increased, plots have been shown in Figs. 2.5(a) and
2.5(b) to illustrate the change in SD as the expected MSS values are increased in sim-
ulation for a perfectly deterministic spacing (SD of 0%) and a highly irregular spacing
(SD of 10%), respectively. It is observed from Fig. 2.5(a) that the proposed method
has a slight advantage in precision over the entire range of simulated MSS values for
a deterministic spacing. However, it is evident from Fig. 2.5(b) that as the spacing
becomes irregular, our proposed method clearly outperforms the other methods since
it shows a lower SD over the range of simulated MSS values and the variation of SD

over the experimental range is also lower compared to the other methods.

0.12F =—©— Proposed Method
K SSA
SAC

01+ ~ P> = Modified SAC
—h—GS

Mean SD (mm)

0.6 0.7 0.8 0.9 1 1.1 1.2 13 1.4
Expect?d) MSS (mm)
a

0.1

—6— Proposed Method
o SSA
SAC
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Mean SD (mm)
o
o
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Expected MSS (mm)
(b)
Figure 2.5: Variation of mean SD of the estimated MSS for different methods as the

simulated MSS values are gradually increased for SD of regular scatterer spacing of (a)
0 % and (b) 10%.
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The simulation results presented in Table 2.2 suggest that the conventional AR spectrum—
and AR cepstrum-based techniques become less accurate as MSS values increase. It
can be deduced from (2.10) that a higher MSS value results from peaks due to regular
scatterers in the low frequency region of the spectrum. This points to the inability of
the conventional AR spectrum— and AR cepstrum— based techniques in accurately de-
tecting harmonics in the low frequency region of the spectrum, which can be attributed
to the low frequency system effects. The conventional AR spectrum method makes no
attempt to reduce the low frequency system effects. The conventional cepstrum-based
technique, on the other hand, is known to reduce the low frequency system effects [4].
However, this method is based on oversimplifying assumptions which include an as-
sumption that the PSFs and the tissue reflectivity functions (TRFs) reside in separate
spectral bands and an assumption of minimum phase to reconstruct the PSF [65]. The
cepstrum method also suffers from phase unwrapping problems [66]. The employed
block based deconvolution technique, developed in our previous work [55], has been
shown to solve many of these problems and hence, serves as a more effective deconvo-
lution technique.

The results obtained from studying different simulation conditions as discussed in the
FIELD II simulation setup ssection for the SSA, SAC, modified SAC, GS, and our
proposed method are presented in Figs. 2.6(a), 2.6(b), and 2.6(c).

It is evident from Fig. 6(a) that although all methods perform well when the scat-
tering amplitude of the regular scatterers is about half of that of the diffuse scatterers,
the proposed method clearly outperforms the other methods when the relative reflec-
tivity of the regular scatterers is much lower compared to the relative reflectivity of
the diffuse scatterers. This can be attributed to the ability of EEMD in recovering the
regular component even when it is corrupted by intense noise [16], [17].

Another important point to consider is the consistency of the spacing of the regular
scatterers. In the results presented in Table 2.2, the MAPE values are calculated for
regular scatterers with almost perfectly deterministic spacing. As can be seen from
Fig. 2.6(b), the performance of all the methods along with our proposed method de-

teriorates as the scatterer spacing becomes more inconsistent. But the rise in MAPE
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from 5.8% to about 6.16% for our proposed method is much lower compared to SSA,
SAC, modified SAC, and GS. This can again be attributed to the ability of EEMD
of recovering the regular component even when the periodicity of the component is
weak [67].

Additionally, the axial size of the simulation phantom may effect the accuracy of the
proposed method because of attenuation. As lesions may be located at different depths
from the surface of the breasts, the attenuation effect may become significant with
depth. The results, illustrated in Fig. 2.6(c), reveal that none of the proposed method,
SSA, SAC, modified SAC or GS are adversely impacted by attenuation. However, the
proposed method provides a clear advantage over the other methods. This can be

attributed to the ability of EEMD in separating damped sinusoids [68].

2.6 Results on 2n vivo Breast Tissues

The MSS of in vivo breast data was estimated by our proposed algorithm as well as all
the other techniques used in the preceding section for the simulated data. The results
are summarized in Table 2.3.

The proposed method produces the MSS estimates with the lowest standard devia-
tions for all types of tissue. Moreover, our proposed method, on our dataset, produces
the maximum separation between the mean values of benign and malignant tissues.
The range of MSS values obtained from in vivo data for normal, fibroadenoma and
benign lesions, as shown in Table 2.3, is comparable to those reported by Bige et
al. |[4]and Taddayon et al. [5]. According to the best of our knowledge, the MSS values
of inflammatory tissues and cyst have not been previously reported. The estimated
MSS values for inflammatory tissues are slightly higher than those for normal tissues.
The estimated MSS values of cysts are rather erratic (that is, the proposed technique
often fails to produce any ESD estimates) and show a high standard deviation (SD)
and hence, are not presented. This is true for all the techniques used to obtain the
MSS estimates in Table 2.3. Therefore, it can be concluded that ESD estimates of

cyst are of no diagnostic importance. This is in good concordance with the anatomy
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Table 2.3: Estimated values of MSS with SD (in bracket) using different methods for
different tissue types

MSS (£SD) (mm)
Method Malignant Fibroadenoma Normal Inflammatory
AR Spectrum [45] | 0.97 (£0.08) 1.00 (£0.09) 1.03 (£0.08)  1.01 (£0.09)
AR Cepstrum [4] 0.87 (+0.05) 0.91 (+0.06) 0.93 (£0.05)  0.92 (£0.07)
SSA [14] 0.87 (+0.05) 0.83 (£0.05) 0.80 (£0.05)  0.82 (£0.06)
SAC [15] 0.65 (£0.05) 0.67 (£0.06) 0.70 (£0.08)  0.69 (£0.06)
Modified SAC [5] 0.75 (£0.05) 0.77 (£0.05) 0.80 (£0.07)  0.78 (£0.07)
GS [25] 0.70 (£0.05) 0.72 (£0.05) 0.74 (£0.07)  0.74 (£0.06)
Proposed Method | 0.79 (40.04) 0.75 (£0.03) 0.69 (£0.03) 0.73 (£0.04)

of the cysts as they are fluid-filled sacs and thus, scattering from cysts will largely be
absent and some inconsistent scattering may occur due to debris (such as those present
in complex cysts) [69]. The average MSS value for ROIs taken outside the lesions is
estimated to be 0.70 (£0.04) mm, corresponding to that of normal pathology.



Chapter 3

Effective Scatterer Diameter

Estimation

The main focus of this Chapter is to discuss the formulation and theoretical aspects of
the proposed effective scatterer diameter (ESD) estimation algorithm. The experiments
performed on the tissue-mimicking phantoms (TMPs) and in vivo female breast data
to estimate the ESD values using the proposed algorithm are discussed in detail here.
The performance of this new estimator is analyzed by comparing its results with those
obtained by the mean average squared deviation (MASD) based technique [10] and the
conventional frequency domain method [9], as these methods also employ a Gaussian

form factor to model tissue scattering like our proposed method.

3.1 Patient Data

The same data as used in the case of mean scatterer spacing (MSS) estimation, de-

scribed in Chapter 2, has been used for ESD estimation as well.

3.2 TMP Data

A homogenous TMP, namely A, of Computerized Imaging Reference Systems Inc.

(CIRS) of dimension 3 x 4 ¢m? is used as the reference phantom. The TMP contains

24
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glass beads as scatterers. The speed of sound in the TMP is around 1530 m/s. The
TMP data was acquired using the same transducer settings as the in vivo data. For
the estimation of average ESD we have used two homogeneous CIRS TMPs, namely
A and B, which are inclusion-free, of dimensions 3 x 4 cm? and one heterogeneous
TMP, namely C, of dimensions 4.5 x 4 cm?, having an inclusion of diameter 1.4 cm.
The actual average ESD, as supplied by the manufacturer, i.e, CIRS, are used as gold
standards for performance evaluation of the ESD estimators. The ESD description of

the experimental phantom datasets are presented in Table 3.1.

Table 3.1: Description of Experimental TMPs

Average
TMP Dataset | Description ESD (pm)
Inclusion | Background
A Homogeneous - 45
B Homogeneous - 45
C Heterogenous 70 45

3.3 The ESD Estimation Technique

3.3.1 Preprocessing

A block diagram of our proposed ESD estimation algorithm is shown in Fig. 3.1. At
first, 2-D regions of interest (ROI) are selected from suitable frames of the recorded
RF data, in the same manner as discussed in the previous chapter for MSS estimation.
For estimating the average ESD from TMP datasets A and B, 25 ROIs are selected,
each of dimension 1 x 1 cm?, while for TMP dataset C, 10 ROIs are selected from
outside the inclusion and 5 ROIs are selected within the inclusion. In TMP dataset
C, we have also selected 5 heterogenous ROIs across the border of the inclusion such

that the ROIs encompass both the inclusion and the background. As illustrated in
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Fig. 3.1, deconvolution and filtering of the raw RF data serve as preprocessing steps.
In this work, a multi-step system effect minimization scheme has been proposed with
deconvolution and filtering serving as the first two steps. The last step of system effect
minimization is normalization using a reference TMP as shown in the block diagram
of Fig. 3.1. The RF data is deconvolved using the algorithm in [70] which removes the
effect of the system PSF. After that, an ideal bandpass filter of frequency range 2 — 13
MHz is applied on the deconvolved data.

Preprocessing
________________ -
Bandpass |
Deconvolution ——p o |
Filtering |
|
________________ -4
ESD EEMD &
Estimate Reference TMP
4= NNARLF ¢— L. — IMF
Normalization .
Selection

Figure 3.1: A block diagram illustrating our proposed algorithm. NNARLF refers to

nearest neighborhood average regression line fitting

3.3.2 Proposed ESD Estimation Technique

The gated backscattered RF signal intensity, W (f, z), at the transducer face can be

expressed in the frequency domain as [71]

W(v):T(f)'D(fvz)'A(fvz)'s(vaeffvnz>v (31)

where T'(f) represents the combined effect of the transmit pulse and the transducer
sensitivity (electro-acoustic and acousto-electric transfer functions); D(f, z) is the ef-
fect of diffraction; A(f, ) is the cumulative attenuation in the soft tissue; S(f, Deyy, 1)
represents the scattering properties of the tissue, including the effective scatterer di-
ameter (D.syr), and acoustic concentration (n,); z is the depth of the gated segment
from the transducer face; and v = {f, Dess, z,n,} is the set of variables on which the

backscattered RE signal depends [13|, [71]. We acquire RF signals from the tissue
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sample and the reference TMP. The backscattered RF signal is then deconvolved and
filtered. The resulting signal, in the frequency domain, is given by W' (v). The cumu-
lative attenuation, A(f, z), in soft tissues is a function of frequency f and depth z, and

can be expressed as |72]
A(f,2) = e—4r(f)z — 10—2p(f)2/107 (3.2)

where p(f) denotes the AC in unit Nepers/cm. It is reported in [72] that p(f) demon-
strates a linear frequency dependence. Therefore, it can be written as p(f) = 5 - f,
where 8 denotes the AC in Nepers/cm/MHz. By compensating for the effect of fre-
quency dependent attenuation we get the compensated backscattered RF signal in the

frequency domain as

!/ !

Weomp(v) = W (v)Ac(f, 2)

comp

/

= T(f) D'(f.2) S(f Degp), (3.3)
where A.(f,z) is the frequency dependent attenuation compensation function defined
as

Ac(f,z) = AN (f, 2); (3.4)
and T'(f) and D'(f, z) are residual effects of the system PSF and diffraction, respec-
tively, remaining after deconvolution and filtering. The AC and the average ESD of the
TMP are known from the manufacturer’s specifications. The method for estimating
the AC of the tissues is described in [73]. To perform EEMD of the attenuation-
compensated RF data, an ensemble of N random Gaussian noise, g,(n) (p=1,- -,
Ng) maintaining a signal-to-noise ratio of 30 dB with the attenuation-compensated

signal in the time domain, wcomp(n), is added to w n). That is, the ensemble is

comp
given by [67]

w/pcomp(n) = w/comp(n) +g,(n),p=1,--- ,Ng. (3.5)
After that, the EMD algorithm [16] is applied to each of the signals in the ensemble to
decompose them into a sum of their IMF5, ¢,;(n), j=—1,---, K, where K is the number

of IMFs and a residue, r,(n), given by [67]

W Peomp(T Z )+ rpy(n),p=1,---, Ng. (3.6)

Jj=1
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Finally, the IMFs using EEMD are obtained from the ensemble average [67]

q(n)zN_EZCPJ(n%j:lv , K (37)

The IMFs responsible for diffuse scattering, c¢4(n), d=1,-- -, M, where M is the number
of IMFs (normalized) responsible for diffuse scattering, are then identified by the K-S
test |62]. The IMFs are normalized using their amplitude. Normalization of the IMFs is
done to ensure that no undue weight is given to any one of the IMFs. The attenuation-
compensated RF data, for both the sample and the TMP, are then replaced by the

summation of the IMFs responsible for diffuse scattering as

w,icomp(n) = Za(n)v d= ]-7 ) ]\47 (38)

where, w'icomp(n) is the IMF-replaced signal.
Now, the attenuation compensated intensity spectra for the IMF replaced signals

for the reference and sample tissues, in the frequency domain, can be rewritten as

W;?,comp(v> = Tl(f) ’ D;%(fv Z) ’ SR(f? Dé’ff:R7 nZ,R>7
(3.9)

Wé,comp(v) = T/(f) : D:?(f: Z) ’ SS(f) Deff,SanZ,S)a
(3.10)

where the subscripts R and S denote the reference and sample, respectively. For the
same average sound speed in the reference and sample tissues, the diffraction terms can
be considered as D (f, z) = Dg(f, z). Finally, dividing (3.10) by (3.9), the normalized

spectra, W,(v), is obtained as

- Wé’,comp(u) . SS(f7 Deff,S7nZ,S)

W, (v) = — — . 3.11

( ) WR,comp(v) SR(f7 ‘Deff,R7 nz7R) ( )
Taking the logarithm on both sides of (3.11), we get
D

101og W, (v) = 101og S5/, Deyrs s) (3.12)

Sr(f, Defs.r,nsR)
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A model for tissue scattering, S(f, D.f f,n.),in the frequency domain was developed
in [74] for clinical array systems given by
185L¢? (5L )on, f*

[142.66(fq(25£)2)]
i (3.13)

S(f7D6ff7nZ) =

with L the gate length (mm), ¢ the ratio of aperture radius to distance from the
region of interest, f the frequency in MHz, and D.s; the ESD in mm. The model was
derived using a Gaussian form factor model and it has been previously established that
a Gaussian form factor best models the scattering from human tissues [10], [43]. The
quantity, n., is termed the acoustic concentration as defined in [10]. For sample and
reference, the tissue scattering is then represented as
185Lq2(&ﬁ)6n2 gft y
[1+2.66(fq(74-2)?)]

6—12.159f2(%f’5)2’ (3.14)
18502 (P4 ot
[1+2.66(fq( 2462 )2)]

¢ 1215972 (PRI (3.15)

Ss(f, Defrssnzsg) =

Sr(f, Defrr,nzr) =

Dividing (3.14) by (3.15), and considering the fact that 2.66(fq eff) < 1[9], we get
the normalized tissue scattering as
Ss(f, Degpsnzs) _ Deppsnas o—3.03975(D2
Sr(f, Degrrinzr) DS pnzr
It is to be noted that for TMP datasets B and C, TMP dataset A has been used as
reference while for TMP dataset A, TMP dataset B has been used as reference. Next,
taking logarithm on both sides of (3.16) yields

15,5~ Dlppr)f? (3.16)

Ss(f, D. . DS gn.
10log 5U, Degr5:z5) = 101log —6”’5 1320 x
SR(f: Deff,R7nz,R) Defﬂanﬁ
(Dgff,s - Dgff,R)fQ- (3.17)

To estimate ESD, we fit a regression line through the usable (i.e., 6 dB) bandwidth of

the normalized log scattering power spectrum. From (3.12), this is equivalent to fitting
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a line through the usable bandwidth of the normalized log power spectrum. Assuming

f? = x, the regression line can be expressed as

y=mz+c (3.18)
with
Ss(f, Defr.5:m2,8)
— 10lo 5 28) 3.19
v & Sr(f, Desrr,n2R) (3.19)
DS, .n,
¢ = 10log L= (3.21)
Deys phtzr

Using average block power spectra generated from spatial signal blocks of suffi-
ciently large size, ESD can be estimated from (3.20). On the other hand, probability
that a single gated RF block includes regions of heterogenous tissues increases with the
block size. Hence to trade-off between homogeneity in the spatial blocks and consis-
tency of the estimated power spectrum, we use a weighted nearest neighbors algorithm.
We assume that the ESD of the neighboring tissues of the scattering particles in the
neighboring blocks are almost the same for their physical proximity. This is a more
accurate representation of tissue structure and it is later established by generating the
ESD map for a representative tissue. Therefore, to improve the reliability of the esti-
mate, we calculate an average regression line as the weighted average of the regression

lines of the neighboring blocks as

e, SR e Jo)w ' o, jo)
Y(is js) = istLa Gt Li (is-35) (i, j (3.22)
Ziuzis—La jo=js—L; W ol (ZO"]O)

where Y (i, j,) denotes the weighted average value of y (i, j,), and w=J%)(iy, jo) is the
exponential weight function for an interrogated point (ig,js) on the 2-D ESD map,

defined as
w(i”’js)@'o,jo) — e—lx\a(io—is)l—lx\z(jo—js)l7 (3.23)

where A\, and \; denote the weighting factors in the axial and lateral directions, respec-

tively, and iy, — L, < igp < is+ L, and j, — L; < jo < js+ L;. L, and L; are the nearest
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neighbors (NN) factors in the axial and lateral directions, respectively. From (3.23) it
is evident that w(=7s) (g, jo) has the maximum value (unity) at (io, jo) = (is,js). We
define wCs7+) in a way such that in the averaging process, the logarithm of measured
power spectrum of a neighboring window is properly weighted to have less contribu-
tion with increasing distance from the interrogated block. A 2-D weighted exponential
neighborhood having L, = L; = 5 is illustrated in Fig. 3.2. The values on the weight
axis are arbitrary but show an exponential decay as we move away from the interrogated

window both axially and laterally.

(i0,jo)

Figure 3.2: An illustration of the exponentially weighted neighborhood.

Substituting the value of y from (3.18) into (3.22), we get

A

Y (is, js) = il (3.24)

where
is+La Js+Li
A= m(ig, Jo)x
DU (3.25)

+ c(io, jo))w'™ 7 iy, jo),

and

is +La. js +Ll

B= Y > w9, jp). (3.26)

i90=is—Lqa jo=Jjs—Li
If we define weighted average value of the slope as

. Zzo;ia—La ?;IJL:_LI m(i07j0)w(is‘j3)(i0,j0)
M(Zm]s) = is+Lg js+L; (is-js) (5 K 5 (327)
Zio:is—La Jo=js—Ly W°° (207]0)
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and weighted average value of the intercept as

Clio i) — Zioif;‘_La ?S:J;sLiLl c(io, jo)w'"9*) (i, jo) 398
(st]s) - is+Lg Je+L; (isjs) (7 i ) < . )
D iomin Ly 2 mjerr, W (0, Jo)
then (3.24) can be written in the form of a regression line given by
Y(Z.sujs) = M(i&js)x +C(25,]5) <329)

Now, from the slope, M, of the regression line that fits (3.29) we can estimate the ESD
(mm) at the point (i, js) using (3.20) as

M (is, js)
Desys = T 13920 + szf,R' (3.30)

In order to estimate the block power spectra of an interrogated block with higher
resolution, the block is divided into 1-D segments with consecutive window segments
in a block having 50% axial overlapping. The windowed segments are gated by the
Hamming window. The block power spectra are calculated using the Welch method
[75]. We select L, — L;— 5 as the NN factors to estimate the local ESD for a particular
interrogated block. The impact of varying the NN factors on the ESD estimation is
discussed later in this Chapter.

3.4 Experimental Phantom Results

To check the accuracy of our proposed ESD estimation technique, we use three CIRS
experimental TMPs for which the average ESD values in the inclusion and back-
ground are available from the manufacturer. The average ESD of these phantoms are
also estimated using the mean average square deviation (MASD) minimization based
method [10], and the frequency domain method [9]. Tt is to be noted that a Faran
form factor better models the scattering from glass beads present in the TMP [76].
But, since tissue scattering is more accurately modeled by a Gaussian form factor, to

apply (3.11), a Gaussian form factor model has been applied for the TMPs as well.
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Moreover, Gaussian form factor models have also been previously used to model the
scattering from TMPs [77]. Table 3.2 presents the actual average ESD and the average
ESD estimated using our proposed algorithm as well as the other techniques for the
experimental phantoms. The average ESD represents the average of the ESD values es-
timated from each of the ROIs within a particular TMP. It is evident that our proposed
algorithm estimates the ESD for all three TMP data with a higher degree of accuracy
compared to the other methods as reflected by a lower mean absolute percentage error
(MAPE) value. Moreover, our method also shows a lower standard deviation (SD) of

estimates compared to the other methods.

Table 3.2: Estimated ESD values (in pm) with SD (in bracket) from experimental
TMPs

Methnd TP Average FST MADPE | Average FSD MADPR
Nataset | of Rackgraimd (pum) (£SN) | (%) inside Inclnsion (um) (£SN) | (%)
A 54.82(+8.88) 21.82 |- -

\IAS Rasad Methad [10] R 52.18(£8.09) 15.96 |- -
" 50.91(£7.99) 13.13 74.91(£7.87) 7.01
A 53.84(£7.11) 19.64

Freguency Namain Methad [9] | R 50.10(£7.07) 11.33 | - -
" 48.97(£7.39) 8.82 73.61(£7.09) 6.71
A A47.02(+5.89) 449

Prapnsed Methad R 47.76(+6.01) 6.13 - -
F 47.78(£5.85) 6.18 73.02(£6.33) 5.15

We have also estimated the ESD from the heterogenous ROIs of TMP C using our
proposed method. A scatter plot showing how the ESD varies as we move laterally from
a region just outside the inclusion across the border of the inclusion to a region within
the inclusion is shown in Fig. 3.3. It is evident from the figure that our proposed
method is able to reliably estimate the ESD in the homogenous regions inside and
outside the inclusion with a mean value of approximately 48 pum outside the inclusion
(represented by a red line) and a mean value of approximately 74 pm within the
inclusion (represented by a green line). There is a sharp change in the average ESD

values across the border of the inclusion, as expected. Now, in order to study how the
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Figure 3.3: Scatter plot showing the variation of ESD across different windows on
moving laterally from the edge of the ROI in the TMP background to the edge of the
ROI within the inclusion.

different steps in the proposed algorithm impacts the accuracy of the ESD estimates,
the ESD was estimated for several ROIs of TMP datasets A, B, and C by removing the
different steps shown in the flow chart of Fig. 3.1 one by one while retaining the others.
The results are presented in Fig. 3.4 in the form of a bar plot. It can be seen that the
overall estimation accuracy is most adversely impacted on removing the EEMD step.
There is also a slight rise in the SD of estimates on removing the EEMD step. Removal
of the any one of the system effect minimization steps, i.e, deconvolution, filtering, and
normalization using a reference TMP, also noticeably impacts the ESD estimation
accuracy, with a slight increase in the SD of ESD estimates in each case. The weighted
neighborhood step seems to have the least impact on the overall accuracy. However,
the SD of the estimates is seen to rise more significantly from the proposed method.
The first column of the bar plot presents the performance of the proposed algorithm
on the same datasets for comparison. It can be inferred from the plot that the EEMD
step has the most impact on the accuracy of the ESD estimation. Moreover, it also
justifies the use of a multi-step system effect minimization technique since removal of

any one of these steps has detrimental effect on the overall ESD estimation accuracy.
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Figure 3.4: Bar plot showing the impact on the percentage error and SD of the ESD es-
timates from the experimental TMPs on removing the different steps from our proposed

algorithm.

3.5 Results on 2n viwo Breast Tissues

The results of estimating the ESD of in vivo breast tissues using various techniques
are presented in Table 3.3. The ESD values estimated using our proposed algorithm
for fibroadenoma and malignant breast tissues fall within the range of ESD values pre-
viously reported in the literature [5]. Similar to MSS, the ESD values of inflammatory
lesions and cystic lesions have not been previously reported. The ESD values in the
region outside the lesions are consistent in the range between 70 — 80 um, which is
similar to normal tissues. The ESD estimates for inflammatory tissues show little or
no deviation from this range. The estimated ESD values of cysts are again erratic, as
is the case for MSS, and hence, are not presented. This is true for all the techniques
used to obtain the ESD estimates in Table 3.3.

Furthermore, it is seen that the average ESD value of malignant lesions is greater
than that of benign lesions which also conform with the previously reported results [5].
The estimated average ESD values using the MASD-based method [10] and the orig-
inal frequency domain method proposed in [9] are presented in the first and second
rows of Table 3.3. We see that the SD of ESD estimates are significantly higher than

that of our proposed method and the separation between the average ESD values for



CHAPTER 3. EFFECTIVE SCATTERER DIAMETER ESTIMATION 36

Table 3.3: Estimated values of ESD with SD (in bracket) using different methods for
different tissue types

RSN (£SN) (pm)

Malignant Rihrnadennma A\ harecg Narmal

Mothnd in it in nnt in ant

ATASTY haead mathnd [10] 100.67 (£21.13)|86.12 (£8.41)[94.09 (£18.17) [82.10 (£7.24)|88.31 (+11.34)|90.35 (+10.01)|76.13 (£7.01)

Troquency damain mathad [9][109.21 (£17.34)[80.04 (£8.21)|101.41 (£13.12)|79.31 (£8.54)|81.24 (£9.81) 8245 (£11.01)[75.88 (£ 6.74)

Drannead Mathnd 123.05 (£8.85) |74.90 (£4.19)[98.71 (£9.55) |74.89 (£A.11)|75.72 (£4.09) |75.77 (£A.07) |75.12 (£A.01)

malignant lesions and fibroadenomas are also smaller.
In order to show the correlation between the ESD estimates and the histology images,
the representative hematoxylin and eosin (H & E) histology sections of fibroadenomas,
malignant tissues and inflammatory tissues are presented in Figs. 3.5(a)—(c), respec-
tively. In the histology images, the microlobules are purple stained while the stroma
are pink stained and the fat is white. It is evident that the size of the micro-lobules in
the malignant tissue section are larger. The sizes of the lobules in the malignant tissue
section also vary more widely than in the fibroadenoma section. The section for in-
flammatory tissues is typical of what is expected for normal tissues. On measuring the
average sizes of the glandular structures in the fibroadenoma and malignant sections,
with the help of a microscope, they are found to be 95+17 um and 149424 pm, respec-
tively. In comparison, using our proposed method, the average ESDs corresponding to
fibroadenomas and malignant tissues are found to be 98.714+9.55 pum and 123.05+8.85
pm, respectively. Hence, the values obtained from the sole histology image of each type
are in fairly good concordance with the values estimated from our proposed method.
An important factor that has to be taken into consideration while estimating ESD

from in vivo tissues is the impact of the kernel size of the weighted exponential neigh-
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Figure 3.5: Histology images of (a) fibroadenoma, (b) malignant and (c) inflammatory
breast tissue. Scale bar: 100 ym in (a) and 200 pm in (b) and (c).

borhood. The algorithm involves the use of a 5 x 5 weighted exponential neighborhood.
The use of such a neighborhood allows the modeling of tissue homogeneity over a small
region rather than a large spatial block where the tissue becomes more heterogenous.
To investigate the impact of the size of the neighborhood on the ESD estimates, the
ESD is estimated using our proposed algorithm for normal tissues for no neighborhood,
a neighborhood of size 3 x 3, and a neighborhood of size 8 x 8. It has already been
stated that the original results are produced for a neighborhood of size 5 x 5. The

results are shown in Table 3.4.

Table 3.4: Estimated values of ESD with SD (in bracket) for normal tissues with

different neighborhood sizes.

Size of Neighborhood ESD (+ SD) (pm)
No Neighborhood 76.89 (+ 8.56)
3% 3 74.99 (£ 4.09)
5% 5 75.12 (% 4.01)
8 x 8 76.46 (£ 7.56)

It is clear from the table that the choice of neighborhood size does not greatly effect
the average value of the ESD estimates. However, the SD of estimates seem to decrease

significantly for a neighborhood size close to our selected one. A large neighborhood
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Figure 3.6: ESD map for four ROIs for a representative fibroadenoma tissue. A deeper

shade of blue indicates higher ESD values. The values on the axes are arbitrary.

size or no neighborhood increases the SD of estimates and this could be attributed
to the increased heterogeneity for a large spatial block of tissue. This observation
is consistent to that obtained for experimental TMPs where removal of the weighted
neighborhood step adversely impacted the SD of estimates. To further substantiate our
argument for choosing an exponentially weighted neighborhood, we produce, in Fig.
3.6, an ESD map for a representative fibroadenoma tissue for 2 ROIs taken within the
border of the lesion and 2 ROIs taken outside the lesion. It is clear that the ESD values
are consistent (having a low SD) across the ROIs (both inside and outside the lesion)

and hence, a weighted exponential neighborhood is a good model of tissue structure.



Chapter 4

Breast Lesion Classification

In this Chapter, we discuss the binary (benign-malignant) classification performance of
our proposed ultrasonic micro-parameters, mean scatterer spacing (MSS) and effective
scatterer diameter (ESD). We then combine it with 27 previously reported ultrasound
bi-modal macro-parameters, estimated from the ultrasound B-mode (UB) images and
ultrasound elastography (UE), to form a unique hybrid micro-macro feature set, and
obtain the classification results. The classification performance is evaluated using a
wrapper based scheme, a genetic algorithm (GA) based optimization and also, an

empirical mode decomposition-discrete wavelet transform (EMD-DWT) based scheme.

4.1 Classification Dataset

Out of the 245 RF data records, 44 normal patients and 42 cystic lesions are excluded
since normal data can be classified directly from the UB image from the absence of
a growth and micro-parameters cannot be reliably estimated for cystic lesions. The
total dataset for classification, therefore, consists of 159 RF data, which include 56

malignant lesions, 79 fibroadenomas, and 24 inflammatory lesions.

39
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4.2 Micro- and Macro-Parameter Based Classifica-

tion of Breast Lesions

In [18], bi-modal (UB and UE) macro-parameters have been successfully used for classi-
fication of breast lesions. In this thesis, we attempt to further improve the classification
accuracy achieved in [18] by extending the feature space with the micro-parameters ex-
tracted here to produce a unique hybrid feature set of micro— and macro-parameters.
Bi-modal QUS based macro-parameters have been previously reported in the litera-
ture [78]-{91]. The macro-parameters are mainly composed of shape, strain, boundary,
margin, contrast, and echo-pattern based features and are estimated from the UB
images and from UE. Out of the full-set of macro-parameters, 27 features that have
shown promise in breast lesion classification are listed in Table 4.1. In this thesis, these

features are combined with MSS and ESD for binary classification of breast lesions.

4.3 Classification Techniques

The classification performances of MSS and ESD alone, and the combination of MSS
and ESD (both normalized) are evaluated with the help of support vector machine
(SVM), K-nearest neighbor (KNN), linear discriminant analysis (LDA), multinomial
logistic regression (MNR), and Naive Bayes (NB) classifiers. The best classification
performance obtained has been reported in this work. Here, we used the commonly
employed “one-versus-all” or OVA based classification technique [92]. The total dataset
of MSS/ESD values are subdivided into 5 groups, each group containing a mixture of
benign and malignant data. One of the 5 groups is used to train a statistical classifier
and this classifier is used to test (classify) the other 4 groups. In this way, the classifier
is trained by each of the 5 groups in turn while the other 4 groups are tested.

The normalized hybrid feature set is first passed through a wrapper-based feature re-
duction scheme and classified by using a K-fold cross-validation technique described
in [92], with the help of SVM, KNN, LDA, MNR, and NB classifiers. Again, the best

classification performance obtained has been reported.
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Table 4.1: List of bi-modal QUS macro-paramters

Featnre Type

Real-valued feature

Ronndary eontrast

Neseriptar

Fdge diffusivity (FD) 78]

Tesion banndary featnre (LBy) [79]
Narmalized Radial (radient (NR(?) |80]
Margin definition (Myes,) [81]

T esion eontrast

Paosterinr acnnstic feature

Co-contrast (Conerst) [82]
Pasterior acomstic feature (PSy) [79]

Tevture deseriptor
Ranghness descriptor
Tissne heterngeneity

Tissne echogeneity

Fonr neighbarhnnd pivel algarithm (FNPA) [83]
Hurst coefficient (Heoery) [84]
(Iray-level nan-zern heterngeneity (ogrqy,.) [85]

(iray-level non-7ern echogeneity (tgray,.) [89]

Marphometrie features

Shape

Neseriptor

(ontonr

Nescriptar

Shape asymmetry factor (SAF) [78]

Aspect ratin (ASR) [86]

SN af narmalized radial length (o) [87]
Ronndness (Ryanss) [88]

Compactness (Crper) [81]

Clonvexity (C..) [89]

Salidity (Si) [88]

Farm factor (Fracror) [88]

Shape factor (Spgr) [79)]

Margin feature (My4) [79)]

Cirenlarity (() [90]

Mean of narmalized radial length (dynean) [87]
Mitside area ratin (A,.) [87]

Semi-minnr avis length of fitted ellipse(S,) [79]
Nrientation of fitted ellipse(Og) [79]

TTtrasnind Rlastngraphy

Feature

Strain ratin (SR) [91]
Area Ratin (AR) [91]

Moreover, a GA based optimization has also been employed for classification. The tech-

nique was previously proposed in [78]. Here, 11 out of the 29 parameters that demon-

strate the best classification performance independently and also combined are chosen.

The individual and combined performances of the micro— and macro-parameters are

evaluated using the linear classifiers mentioned previously. The 11 parameters include
10 macro-parameters, namely, SR, ED, SAF, ASR, Cypyy, Mya, AR, My sy, and Sig,

Spr, and 1 micro-parameter, namely, ESD. A modified hybrid bimodal multiparameter
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characterization index, C', is defined as
1
i=1 i

—|—’U}4.ASR+U)5.C,LU1-+’ZUG.]\C[UA (41)
+ w7 AR + wg. Mepn + wo.S14r + w19.Spr + wi1. ES D],

0<w; <1.foralli

The weight (W= [wy, wa, - -, w,|T) values are selected using a GA based optimization
algorithm. The weights are selected based on the maximization of the cost function,

J1, defined as

J1 = sensitivity + speci ficity + accuracy, (4.2)
with the help of the GA as

Wga = arg max(Jq). (4.3)
0<w; <1

For all indices employing the GA, a mutation rate of 0.02 and a crossover rate of 0.8 are
used. The classification is carried out again with the help of an OVA based technique
as described in [92].
In addition, an EMD-DWT based scheme has also been used to evaluate the classifica-
tion performance. This technique has been previously proposed in [18], which utilizes
an EMD and DWT based feature transform method followed by a wrapper-based sub-
set selection scheme. However, [18] used only the macro-parameters for classification
of breast lesions. We ameliorate this technique using our hybrid feature set. It has
been established in [18] that the transformed feature set using EMD and DWT is de-
pendent on the order of the original features. Hence, at first, in order to select the
best transform domain features, 2000 random sequences of the original features are
produced and the performance of the reduced transform domain feature set (reduced
using wrapper) are measured in terms of Sums (the sum of sensitivity, specificity, ac-
curacy, positive predictive value (PPV), and negative predictive value (NPV)). This
single quality metric, Sums, is calculated with a 10-fold cross validation. The order of

the original feature set at which the transform domain feature set attains the maximum
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Sumgs, is selected.

The classification is evaluated using a number of performance metrics for each of the
above mentioned techniques. The classification results include true positive (TP), true
negative (TN), false positive (FP), false negative (FN), sensitivity (Sens.), specificity
(Spec.), accuracy (Acc.), positive predictive value (PPV), negative predictive value
(NPV), the sum of the last five parameters, Sums, and Matthew’s correlation coeffi-
cient (MCC) as quality metrics. TP refers to a diagnostic modality correctly identifying
a malignant lesion, TN refers to a diagnostic modality correctly identifying a benign
lesion, FP refers to a diagnostic modality incorrectly characterizing a benign lesion as a
malignant lesion, while FN refers to a diagnostic modality incorrectly characterizing a
malignant lesion as a benign lesion. From TP, TN, FP, and FN, sensitivity, specificity,
accuracy, PPV, NPV and MCC can be computed as [93], [94], [95],

Sensitivity = T]Djjk—PR/V (4.4)
Speci ficity = TNT_iVFP (4.5)
Aceuracy = 75 ?;t—TT]]\i Y FP (4.6)
TP
PPV = ro s (4.7)
NPV = % (4.8)
o (TP x TN — FP x FN) | (49

(TP + FP)(TP+ FN)(TN + FP)(TN + FN)]2
Higher values of sensitivity, specificity, accuracy, PPV, and NPV indicate better classi-
fication performance. For MCC, 41 indicates a perfect prediction, 0 indicates a uniform

random prediction, and —1 indicates an inverse prediction [94].

4.4 Classification Results

The classification results are presented in Table 4.2. The first three rows show the clas-

sification results obtained using only MSS, only ESD, and the combination of MSS and
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Table 4.2: Breast lesion classification results obtained for the different micro— and

macro—parameters

Toatnrac TD | TN | D | BN | Qenc. (0Z) | Qpee. (02) | Aee. (02) | DDV (02) | NDV (02) | Sums | MOM

MSS 12 72 | 31 1 5 69.90 71.70 57.53 83.72 357.86 | 0.4304

msn 51 99 A 5 91.07 96.12 91.34 92.73 95.19 169.44 | 0.8755

MSS and TSN 51 98 5 2 96.43 95.15 95.60 91.53 98.00 476.69 | 0.9054
Hyhrid (wrapper) by 101 2 2 96.43 98.06 97.18 96.13 98.05 186.46 | 0.9419
Hyhrid (MA) 55 100 3 1 98.21 97.08 97.18 91.83 99.01 186.62 | 0.9157
Hyhrid (FMN-NWT) 55 101 2 1 98.21 98.06 98.11 96.19 99.02 489.90 | 0.9589

ESD, respectively. The next three rows show the classification results on the proposed
hybrid feature set using the three techniques discussed previously. A classification
scheme based on ESD alone produces sensitivity, specificity, and accuracy values of
91.07%, 96.12%, and 94.34%, respectively. The classification performance of MSS on
this dataset is not entirely satisfactory. But, on combining ESD with MSS, we obtain
improved sensitivity, specificity, accuracy, and MCC values of 96.43%, 95.15%, and
95.60%, and 0.9054, respectively. As discussed before, the classification performance of
the micro-parameters (ESD and MSS) have been evaluated directly using SVM, LDA,
MNR, KNN, and NB classifiers. In Table 4.2, the reported Sums value of 476.69 is
obtained for a LDA classifier and represents the best Sums value obtained out of all
the above mentioned classifiers. The average Sums value (+SD), found by averaging
the Sums values obtained from each of the mentioned classifiers, is 473.02 (£3.47).
This indicates that the classification performance obtained using the micro-parameters
is fairly stable. It is evidently clear from the fourth row of the table that using a hybrid
feature set significantly improves the obtained result. The wrapper based scheme in-
creases the sensitivity, specificity, and accuracy values to 98.06%, 97.48%, and 96.43%,
respectively. This result is obtained using a 9-fold backward elimination feature re-
duction scheme using a LDA classifier with an average of 13 features selected. This
represents the best result obtained over different folds, different classifiers, and the two
schemes for wrapper based feature reduction (forward/backward). Tt is seen from the
fifth row of the table that the results improve slightly on using the GA optimization

scheme. Furthermore, on using the EMD-DWT scheme, the Sumjs value increases to
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489.90. The obtained classification result, using the EMD-DWT scheme, is the best
reported result, till date, for any QUS micro/macro parameter based breast lesion clas-
sification scheme. The use of Sums to indicate the classification performance has been
previously established in |18], |60], and |78]. In this work, we have also used MCC to
evaluate the classification performance which is shown to have a high degree of corre-
lation with the Sums values. That is, a higher Sums value generally leads to a MCC

value closer to +1.



Chapter 5

Conclusion, Limitation and Future

Scope

5.1 Conclusion

This thesis has presented novel methods for estimating the mean scatterer spacing
(MSS) and effective scatterer diameter (ESD) by separation of the coherent and dif-
fuse component of backscattered data using ensemble empirical mode decomposition
(EEMD). Breast lesion classification using a novel hybrid of micro— and macro-parameters
feature set has also been proposed. The proposed MSS and ESD estimation techniques
have produced reliable MSS and ESD estimates as exhibited by accurate estimation of
MSS from simulation phantoms and ESD from experimental TMPs. These methods
are shown to be more superior compared to the existing techniques for MSS and ESD
estimation, as reflected by lower values of mean absolute percentage error (MAPE) on
estimating MSS values from simulation phantoms and ESD values from experimental
phantoms. Furthermore, when the MSS is fused and 27 other macro-parameters esti-
mated from the ultrasound bi-modal (UB) images and ultrasound elastography (UE)
for binary classification of 159 breast lesions, very high values of sensitivity, specificity,
accuracy, and MCC are obtained. Therefore, our proposed MSS and ESD estima-

tion technique, along with the classification based on our hybrid micro— and macro-

46
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parameter based feature set, show promises to be used as computer-aided diagnosis

(CAD) tools for breast lesion classification.

5.2 Limitation and Future Scope

The main concentration of this research work is set on the accurate determination of
MSS and ESD as clinical diagnostic parameters. However, other micro-parameters like
the effective acoustic concentration (EAC), and the attenuation coefficient (AC), need
to be explored, to further extend the feature space. Additionally, the theoretical power
spectrum used for ESD estimation employs a Gaussian form factor to model tissue
backscattering. While the Gaussian form factor is a fair representation of scattering
from tissue structure, other adequate models like the Faran form factor and the fluid-
filled spheres exist, and theoretical power spectrums need to be developed from these
models to adequately compare the performance of different models for ESD estimation.
In addition, preliminary histopathology studies have been carried out in this work to
correlate the ESD estimates with those obtained from microscopy. However, the true
gold standard for micro-parameter estimation must be based on extensive microscopy
analysis, which could not be carried out in this work because of labeled histopatholog-
ical slides not being available for the patients in the dataset. Furthermore, a drawback
of the micro-parameters used in this paper is that they produce erratic values for cysts.
This erratic behaviour has already been explained through the idea that cysts are fluid-
filled sacs which do not have a consistent scattering signature. Thus, cysts have been
excluded while obtaining the classification results in this work. As cysts are classified as
benign lesions, a micro-parameter based classification scheme will be, therefore, unable
to characterize cysts correctly. It is to be noted, however, that the macro-parameters
can be accurately estimated for cysts since the macro-parameters are morphological
features derived from the UB images and UE. In fact, macro-parameters produce a
better classification performance if cysts are included. A macro-parameter based clas-
sification scheme on the same dataset (with cysts included) produced a Sum; value

of 476.50 [78]. Also, some strain imaging techniques have been developed which can
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successfully characterize cysts [63], [96], [97] and hence, may be used in conjunction
with the micro-parameters for breast lesion classification. Moreover, the classification
results obtained using the wrapper based schemes employ a number of parameters. The
presented results represent the best results obtained over different folds, different clas-
sifiers, and the two schemes for wrapper based feature reduction (forward/backward).
The results are seen to deteriorate on changing these conditions. Future works should,
therefore, look to reduce the sensitivity of the classification performance to these pa-
rameters. Lastly, current trends point to a deep learning based approach for ultrasonic
breast lesion classification [98]. While the dataset used in this work is still too limited
for adopting such an approach, the proposed hybrid feature set may have potential to
be used in conjunction with deep neural networks to develop a more robust CAD tool

for breast lesion classification, if a larger dataset becomes available.
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