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ABSTRACT 

Mixed convection heat transfer in presence of magnetic field in a lid-driven wavy 

cavity having vertical fin has been studied numerically in this thesis. The horizontal 

bottom and top walls are kept at constant heated temperature Th while the vertical 

wavy walls are kept at constant cold temperature Tc maintaining Th > Tc. A heated fin 

of length (l) is attached to the hot bottom wall at a position (d) from the left wall 

having thickness (b). The top wall moves right to left with constant velocity. The 

gravitational force acts in vertically downward direction and a uniform magnetic 

field with a constant magnitude in the direction of the moving lid is applied. The 

physical problems are presented mathematically by different sets of governing 

equations along with the corresponding boundary conditions. Using a set of 

appropriate transformations, the governing equations along with the boundary 

conditions are transformed into non-dimensional form, which is then solved by 

employing a Finite-element method based on Galerkin weighted residuals.  

The investigations are conducted for different values of Richardson number (Ri), 

Hartmann number (Ha), fin lengths (L) but for fixed fin thickness, fin position, 

amplitude, number of oscillations with Re = 100 whereas Prandtl number is kept 

constant at 0.71. Various characteristics such as streamlines, isotherms, velocity 

profiles, local Nusselt number, fin effectiveness (εf) and heat transfer rate in terms of 

the average Nusselt number (Nuav) and average fluid temperature (θav) are presented 

for the aforementioned parameters.  

The results indicate that the mentioned parameters strongly affect the flow 

phenomenon and temperature field inside the wavy cavity whereas on the fin length 

these effects are more significant. Results of this study conformed very well with the 

published ones. 
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A amplitude 

b fin thickness 

B dimensionless fin thickness (b/W) 

B0 magnetic induction (Wb/m2) 

Cp specific heat at constant pressure (J/kg.K)  

d  fin position 

D dimensionless fin position (d/W) 

g  gravitational acceleration (ms-2) 

h* convective heat transfer coefficient (W/m2.K) 

Ha Hartmann number 

k thermal conductivity of fluid (Wm-1K-1) 

l  fin length 

L dimensionless fin length (l /W) 

n dimensional distance either along x or y direction (m) 

N dimensionless distance either along X or Y direction 

Nuav average Nusselt number 

NuL local Nusselt number 

p pressure 

P dimensionless pressure (pW2/ρα2) 

Pr Prandtl number  

Re Reynolds number 

Ri Richardson number 

T dimensional fluid temperature (K) 

∆T dimensional temperature difference (K) 

u velocity in x-direction (m/s) 

U dimensionless horizontal velocity 

v velocity in y-direction (m/s) 

V dimensionless vertical velocity 

W enclosure width and height 

x, y Cartesian coordinates (m) 

X, Y dimensionless Cartesian coordinates 
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CHAPTER 1 

INTRODUCTION 

Mixed convection or combined forced convection and free convection, occurs 

when free convection and forced convection mechanisms act together to transfer 

heat. This is also defined as situations where both pressure forces and buoyant forces 

interact. How much each form of convection contributes to the heat transfer is 

largely determined by the flow, temperature, geometry, and orientation.  

The phenomenon of heat transfer was known to a human being even in the primitive 

age when they used solar energy as a source of heat. Heat transfer in its initial stage 

was conceived with the invention of fire in the early age of human civilization. Since 

then its knowledge and use have been progressively increasing each day as it is 

directly related to the growth of human civilization. With the invention of the steam 

engine by James Watt in 1765 A. D., the phenomenon of heat transfer got its first 

industrial recognition and after that its use extended to a great extent and spread out 

in different spheres of engineering fields. In the past three decades, digital 

computers, numerical techniques and improvement of numerical models of heat 

transfer have made it possible to calculate heat transfer of considerable Maze and 

thereby create a new approach to the design of heat transfer equipment. More details 

are available in Hagen [1].  

The study of the universe has led to the realization that all physical phenomena are 

subject to natural laws. The term natural might well be used to describe the 

framework or system of fundamental and universal importance within this system is 

the mechanisms for the transfer of heat. Heat transfer is a branch of applied 

thermodynamics. It estimates the rate at which heat is transferred across the system 

boundaries subjected to specific temperature differences of the system during the 

process. Whereas classical thermodynamics deals with the amount of heat transferred 

during the process. Heat transfer processes have always been an integral part of our 

environment. To describe the heat transport phenomenon, a strong background of the 

hydrodynamics, the convective heat transfer mechanism, and the electromagnetic 

field are prerequisite as they have a symbiotic relationship. 
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The rest of this introductory chapter is as follows. Since the problem that we shall 

study in this thesis is MHD mixed convection heat transfer in presence of magnetic field 

in a lid-driven wavy cavity having vertical fin, we begin with a brief description on 

modes of heat transfer in section 1.1. Then reviews on relevant definitions and some 

effective parameters have been given in sections 1.2 and 1.3 respectively. In section 

1.4 mixed convection heat transfer in the cavity is discussed shortly. Literature 

related to this study has been presented briefly in section 1.5. Then the application 

and objective of the current study are described in sections 1.6 and 1.7. Finally, in 

section 1.8, a brief outline of the remainder of the thesis has been presented. 

1.1 MODES OF HEAT TRANSFER  

Heat transfer is the process of transportation of thermal energy from one region to 

another region as a result of temperature difference. The heat transfer always takes 

place from higher temperature medium to lower temperature one and heat transfer 

stops when the two mediums reach the same temperature. More details are available 

in Hagen [1]. The heat transfer takes places by the distinct mechanisms or modes are:  

   Conduction 

   Convection and  

   Radiation 

Conduction is the transfer of energy from the higher energetic particle of a substance 

to adjacent lower energetic ones as a result of interactions between the particles. 

Conduction can take place in solids, liquids, or gases. In gases and liquids, 

conduction is due to the collisions and diffusion of the molecules during their 

random motion in solids it is due to the combination of vibrations of the molecules in 

a lattice and the energy transport by free electrons. The rate of heat conduction 

through a medium depends on the geometry of the medium, its thickness and the 

material of the medium, as well as the temperature difference across the medium. 

Convection is the mechanism of heat transfer through a fluid in the presence of bulk 

fluid motion resulting from the temperature difference. The convection of heat 

transfer is of two types: natural convection and forced convection. If the fluid flow 
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via convection occurs naturally, the convection is called natural (or free) convection. 

In this case, the fluid motion is set up by buoyancy effects resulting from the density 

variation caused by the temperature difference in the fluid and gravitational force. On 

the other hand, if the fluid motion is artificially created by means of external source 

like a blower or fan, the heat transfer mode is called forced convection. 

Radiation is the energy emitted by matter in the form of electromagnetic waves (or 

photons) as a result of the changes in the electronic configuration of the atom or 

molecules. Unlike conduction and convection, the transfer of heat by radiation does 

not require the presence of an intervening medium. In fact, heat transfer by radiation 

is faster and suffers no reduction in a vacuum. This is how the energy of the sun 

reaches the earth. Radiation is a volumetric phenomenon, and all solids, liquids, and 

gases emit, absorb, or transmit radiation to varying degrees. However, radiation is 

usually considered to be a surface phenomenon for solids that are opaque to thermal 

radiation such as metals, wood and rocks 

1.2 RELEVANT DEFINITIONS  

1.2.1 Viscosity 

The viscosity of a fluid which is a strong function of temperature is a measure of its 

resistance to deformation. A friction force develops between two adjacent fluid 

layers while they move relative to each other and the slower layer tries to slow down 

the faster layer. This type of internal resistance to flow is quantified by the fluid 

property viscosity. All fluid flows involve viscous effects to some degree and 

therefore no fluid is of zero viscosity. As temperature increases, the viscosity of 

liquids decreases whereas the viscosity of gases increases with temperature by 

Çengel and Cimbala [2]. 

1.2.2 Viscous Flow 

Such flows are called viscous whose flow patterns are dominated by the viscous 

properties of the fluid. This arises in fluids where the velocity gradients are 

comparatively large. The flow close to the walls of the pipes can be treated as 

viscous flows by Çengel and Cimbala [2]. 
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1.2.3 Newton’s Law of Viscosity 

If the shearing stress, τ, increases by increasing the force P, the rate of shearing 

strain also increases in direct proportion to that;   i.e.,  du du
dy dyα µτ τ = , where µ is the 

dynamic viscosity of the fluid. This principle is known as Newton’s law of viscosity 

by Çengel and Cimbala [2]. 

1.2.4 Newtonian Fluid 

Newtonian fluids are those fluids for which the constant of proportionality i.e. the 

coefficient of viscosity (µ) does not change with the rate of deformation. In other 

words, fluids that follow Newton’s law of viscosity are known as Newtonian fluids. 

Water, air and mercury are some examples of Newtonian fluids by Çengel and 

Cimbala [2]. 

1.2.5 Compressibility 

Compressibility is a property of a fluid that measures the change in density and 

consequently, the change in the volume of fluid during motion under the action of 

external forces by Çengel and Cimbala [2]. The compressibility is expressed in terms 

of Mach number (M) which is defined by 
0

speed of fluid
 speed of sound 

uM
α

= =  

1.2.6 Incompressible Flow 

A flow is said to be incompressible if the density remains nearly constant throughout. 

Therefore, for incompressible flow, the volume of every portion of fluid remains 

unchanged over the course of its motion. The density of liquids is basically constant 

and accordingly the flow of liquids is naturally referred to as incompressible by 

Çengel and Cimbala [2]. 

1.2.7 Thermal Diffusivity 

Thermal diffusivity represents how fast heat diffuses through a material and is 

defined as α = Heat conducted /Heat stored =
pc

k
ρ
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Here the thermal conductivity k represents how well a material conducts heat and the 

heat capacity ρCp represents how much energy a material stores per unit volume. 

Therefore, the thermal diffusivity of material can be viewed as the ratio of the heat 

conducted through the material to the heat stored per unit volume. A material that has 

a high thermal conductivity or a low heat capacity will obviously have a large 

thermal diffusivity. The large thermal diffusivity means that the propagation of heat 

into the medium is faster. A small value of thermal diffusivity means the heat is 

mostly absorbed by the material and a small amount of heat is conducted further by 

Çengel and Cimbala [2]. 

1.2.8 Thermal Conductivity 

Thermal conductivity is defined as the quantity of heat (Q) transmitted through a unit 

thickness (L) in a direction normal to a surface of unit area (A) due to a unit 

temperature gradient (∆T) under steady state conditions and when the heat transfer is 

dependent only on the temperature gradient by Çengel and Cimbala [2]. In equation 

form this becomes the following:  

Thermal Conductivity = heat × distance / (area × temperature gradient) 

λ = Q × L / (A × ∆T)  

1.2.9 Magnetohydrodynamics 

Magnetohydrodynamics (MHD) is that branch of science, which deals with the flow 

of electrically conducting fluids in electric and magnetic fields. The motion of the 

conducting fluid across the magnetic field generates electric currents which change 

the magnetic field and the action of the magnetic field on these currents give rise to 

mechanical forces, which modify the fluid. However, MHD is usually regarded as a 

very contemporary subject. Probably the largest advance towards an understanding 

of such phenomena comes from the fields of astrophysics and geophysics. It has long 

been assumed that most of the matter in the universe is in the plasma or highly 

ionized state and much of the basic knowledge in the area of electromagnetic fluid 

dynamics evolved from these studies. Moreover, MHD explains certain natural 

phenomena. The motions of the sea induce a magnetic field that perturbs the earth’s 
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magnetic field. Alternatively, the electromagnetic force due to the interaction of 

currents and the earth’s magnetic field propels ocean movements. The MHD was 

originally applied to astrophysical and geophysical problems, where it is still very 

important. Engineers employ MHD principles in the design of heat exchanger, 

pumps and flow meters, in space vehicle propulsion, control and re-entry in creating 

novel power generating systems and developing confinement schemes for controlled 

fusion. Other potential applications for MHD include electromagnets with fluid 

conductors, various energy conversion or storage devices, and magnetically 

controlled lubrication by conducting fluids etc. A detailed discussion of the 

Magnetohydrodynamics (MHD) can be found in Shercliff [3]. 

1.2.10 Fin Effectiveness 

Fin effectiveness is the parameter that quantifies the heat transfer enhancement inside 

the cavity with a fin compared to the case with no fin and is defined as follows 

heat transfer with fin=
heat transfer without finfε  

         fin

withou  t fin

Q=
Qfε∴  

Effectiveness of =1fε  indicates that the addition of fins to the surface does not affect 

heat transfer at all. That is, heat conducted to the fin through the base area Ab is equal 

to the heat transferred from the same area Ab to the surrounding medium 

Effectiveness of fε  < 1 indicates that the fin actually acts as insulation, slowing 

down the heat transfer from the surface. This situation can occur when fins made of 

low thermal conductivity materials are used. 

Effectiveness of fε  > 1 indicates that the fins are enhancing heat transfer from the 

surface, as they should. However, the use of fins cannot be justified unless fε  is 

sufficiently larger than 1. Finned surfaces are designed on the basis of maximizing 

the effectiveness of a specified cost or minimizing cost for the desired effectiveness. 

More details are available in Hagen [1].  
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1.3 DIMENSIONLESS PARAMETERS 

The dimensionless parameters can be considered as measures of the relative 

importance of certain aspects of the flow. Some dimensionless parameters related to 

the present study are discussed below: 

1.3.1 Prandtl Number 

The relative thickness of the velocity and the thermal boundary layers are best 

described by the dimensionless parameter Prandtl number, defined as  

Viscous diffusion rate
Thermaldiffusion rate

pc
Pr

k
µν

α
= = =  

Where ν  is the kinematic viscosity, µν
ρ

= , α  is the thermal diffusivity and 

)( pc
k
ρ

α = , µ  is the dynamic viscosity, k  is the thermal conductivity, pc  is the 

specific heat and ρ  is the density. It is named after Ludwig Prandtl, who introduced 

the concept of the boundary layer in 1904 and made significant contributions to 

boundary layer theory. The Prandtl number of fluids ranges from less than 0.01 for 

liquid metals to more than 100,000 for heavy oils by Çengel and Cimbala [2]. 

1.3.2 Richardson Number 

Richardson number represents the importance of natural convection relative to the forced 

convection. The Richardson number in this context is defined as 

( )
2

hot refg T T
Ri

V

β −
=  

Where g is the gravitational acceleration, β is the thermal expansion coefficient, Thot is the 

hot wall temperature, Tref is the reference temperature, L is the characteristic length, 

and V is the characteristic velocity. The Richardson number can also be expressed by using 

a combination of the Grashof number and Reynolds number, 

                       2  GrRi
Re

=                                
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Typically, the natural convection is negligible when Ri < 0.1, forced convection is 

negligible when Ri > 10, and neither is negligible when 0.1 < Ri < 10. It may be 

noted that usually, the forced convection is large relative to natural convection except 

in the case of extremely low forced flow velocities. However, buoyancy often plays a 

significant role in defining the laminar-turbulent transition of a mixed 

convection flow. In the design of water filled thermal energy storage tanks, the 

Richardson number can be useful by Çengel and Cimbala [2]. 

1.3.3 Reynolds Number 

The transition from laminar to turbulent flow depends on the surface geometry, 

surface roughness, flow velocity, surface temperature and type of fluid, among other 

things. In 1883 Osborn Reynolds discovered that the flow regime depends mainly on 

the ratio of the inertia forces to friction forces in the fluid. This ratio is called the 

Reynolds number, which is a dimensionless quantity, and is defined as  

 

3

2
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Here V, L, ρ and µ. are characteristic values of reference velocity, characteristic 

length; density and coefficient of viscosity of the fluid flow respectively and 
µν
ρ

=  

is the kinematic viscosity by Çengel and Cimbala [2]. 



Chapter 1 

 9

1.3.4 Hartmann Number 

Hartmann number is the ratio of electromagnetic force to the viscous force first 

introduced by Hartmann. It is defined by 0Ha B L σ
µ

=  

Where B0 is the magnetic field, L is the characteristic length scale, σ  is the electric 

conductivity and µ  is the viscosity. In addition, it is a dimensionless quantity 

characterizing the flow of conducting fluid in a transverse magnetic field, being the 

product of the magnetic flux density, a representative length and the square root of 

the ratio of electric conductivity to viscosity by Çengel and Cimbala [2]. 

 

1.4 MIXED CONVECTION HEAT TRANSFER IN CAVITIES 

Mixed convection in cavities is a topic of contemporary importance because cavities 

filled with fluid are central components in a long list of engineering and geophysical 

systems. The flow and heat transfer induced in a cavity differs fundamentally from 

the external mixed convection boundary layer. Mixed convection in a cavity unlike 

the external mixed convection boundary layer that is caused by the heat transfer 

interaction between a single wall and a very large fluid reservoir is the result of the 

complex interaction between finite size fluid systems in thermal communication with 

all the walls that confine it. The complexity of this internal interaction is responsible 

for the diversity of flows that can exist inside the cavity. The phenomenon of mixed 

convection in cavities is varied by the geometry and the orientation of the cavity, 

judging by the potential engineering applications in Hagen [1]. The cavity 

phenomena can loosely be organized into two classes. 

   Vented cavity and  

   Lid-driven cavity  

In a vented cavity, where the interaction between the externally forced stream 

provided by the inlet and the buoyancy-driven flows induced by the heat source leads 

to the possibility of complex flows. Therefore it is important to understand the fluid 

flow and heat transfer characteristics of mixed convection in a vented cavity.          
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On the other hand, the fluid flow and heat transfer in a lid-driven cavity where the 

flow is induced by a shear force resulting from the motion of a lid combined with the 

buoyancy force due to non-homogeneous temperature of the cavity wall, provides 

another problem, studied extensively by researchers to understand the interaction 

between buoyancy and shearing forces in such flow situation. The interaction 

between buoyancy driven and shear driven flows inside a closed cavity in a mixed 

convection regime is quite complex. Therefore it is also important to understand the 

fluid flow and heat transfer characteristics of mixed convection in a lid-driven cavity. 

1.5 LITERATURE REVIEW 

Convection heat transfer in a lid-driven cavity has drawn the interest by the 

researchers because of its wide range of applications such as solar collectors, 

microelectronic devices, float glass production and electrical components etc.  

Many researchers have paid attention to the lid-driven square cavity, both from 

engineering and theoretical viewpoint. Mahmud et al.  [4] Analyzed free convection 

in an enclosure with vertical wavy walls. They observed that the higher heat transfer 

at lower aspect ratios for a certain value of the Grashof number. Das and Mahmud 

[5] have studied natural convection inside a wavy enclosure. Their results illustrated 

that the amplitude and the number of undulations of the wavy wall affect heat 

transfer characteristics inside the cavity. Misirlioglu et al. [6] studied numerically 

natural convection inside an inclined wavy enclosure filled with a porous medium. 

Al-Amiri et al. [7] investigated the effect of sinusoidal wavy bottom surface on 

mixed convection heat transfer in a lid-driven cavity. They investigated the effect of 

Richardson number, undulation number and amplitude of the wavy surface on flow 

structure and heat transfer characteristics. Rostami [8] numerically simulated the 

unsteady natural convection in an enclosure with vertical wavy walls. Mansour et al. 

[9] considered numerically the problem of natural convection in wavy porous 

cavities under the influence of thermal radiation using a thermal non-equilibrium 

model. Mushate [10] Analyzed CFD prediction of natural convection in a wavy 

cavity filled with Porous medium. Also, the results indicated that the rate of heat 

transfer increases as the Rayleigh number increases and decreases with the increase 

of amplitude. Abu-Nada and Chamkha [11] numerically simulated the mixed 
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convection flow of a nanofluid in a lid-driven cavity with a wavy wall. They found 

that the heat transfer rate increases with the volume fraction of nanoparticles for all 

values of Richardson numbers and bottom wall geometry ratios. Sheremet and Pop 

[12] studied the natural convection in a wavy porous cavity with sinusoidal 

temperature distributions on both side walls filled with a nanofluid: Buongiorno's 

mathematical model.  

Convective flow and heat transfer from wavy surfaces is given by Shenoy et al. [13]. 

The authors of this book provided an excellent background in the field of natural 

convection and heat transfer in wavy cavities filled with viscous fluids, porous 

media, and nanofluids. Recently, Sheremet et al. [14] studied free convection in a 

partially heated wavy porous cavity filled with a nanofluid under the effects of 

Brownian diffusion and thermophoresis. Cheong et al. [15] considered the natural 

convection in a wavy porous cavity with sinusoidal heating and internal heat 

generation. Alsabery et al. [16] reported the effect of rotating solid cylinder on 

entropy generation and convective heat transfer in a wavy porous cavity heated from 

below. They showed that the flow control can be accomplished by the angular 

rotational velocity or direction of the cylinder rotation. Moreover they seen that, an 

augmenting in the porosity of the medium causes an increase in heat transfer from 

the wall to the fluid and therefore an increase in the convective flow and 

consequently a decrease in the Bejan number. 

Magnetic field effect of electrically conducting fluid on the heat transfer and fluid 

flow encountered in many engineering applications such as purification of molten 

metal’s, MHD power generators, micro MHD pumps and liquid metal flow control 

etc. Magnetic field effects are also important in medicine. Tumour treating fields are 

said to be a 4th treatment in the battle against cancer. Doctors inject a magnetically-

sensitive fluid into the cancer area and use a powerful magnet to generate heat in the 

body. The heat kills the cancer cells without harming healthy organs. Vacuum 

cleaners, blenders and washing machines all have electric motors that work by 

magnetic principles. Rahman et al. [17] studied the conjugate effect of Joule heating 

and magnetic force, acting normal to the left vertical wall of an obstructed lid-driven 

cavity saturated with an electrically conducting fluid numerically using finite 
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element method. They showed that the Joule heating parameter and the Hartmann 

number have a notable effect on fluid flow and heat transfer. Saha et al. [18] 

investigated the effect of internal heat generation or absorption on MHD mixed 

convection flow in a lid driven cavity. They observed that the heat transfer rate 

decreases with increasing of Hartmann number and heat generation parameter 

whereas increases for the increasing values of heat absorption parameter. Thus, the 

magnetic field plays an important role to control heat transfer and fluid flow. The 

rate of reduction is higher for high values of the Richardson number. Khudheyer [19] 

numerically simulated the MHD mixed convection in double lid- driven 

differentially heated trapezoidal cavity. The results show that at mixed convection 

regime (Ri = 1) and in the absences of the magnetic field (Ha = 0), the maximum 

heat transfer occurs for trapezoidal cavity at inclined wall angle (300). Ali et al. [20] 

studied the magnetohydrodynamic mixed convection flow in a hexagonal enclosure. 

They found that Hartmann number and Richardson number have a considerable 

effect on the flow field and temperature field. Öztop et al. [21] Analyzed mixed 

convection of MHD flow in nanofluid filled and partially heated wavy walled lid-

driven enclosure. They showed that the rate of heat transfer decreases with increasing 

the Hartmann number. The rate of heat transfer can be enhanced or reduced by 

increasing the volume fraction of nanoparticles based on Hartmann and Richardson 

numbers. Ashorynejad and Shahriari [22] studied the MHD natural convection of 

hybrid nanofluid in an open wavy cavity. 

Additionally, due to various engineering applications of the problem of fluid flow 

and heat transfer inside the enclosure with a fin such as radiators in cars, 

computer CPU heat sinks, heat exchangers in power plants and heat exchanging 

devices. They are also used in newer technology such as hydrogen fuel cells. 

Frederick [23] studied numerically natural convection in an inclined square enclosure 

with a partition attached to its cold wall. Bilgen [24] studied numerically natural 

convection in cavities with a thin fin on the hot wall. It was found that the heat 

transfer rate was a lower limit with the fin attached to the middle of near the middle 

of the heated wall. Shi and Khodadadi [25] investigated the steady laminar natural 

convection heat transfer in a differentially heated square cavity due to a thin fin on 

the hot wall. They found that for higher value Rayleigh number, the heat transfer rate 
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was enhanced irrespective of the fin position or length. Frederick and Valencia [26] 

studied numerically heat transfer in a square cavity with a conducting partition on its 

hot wall. It was found that increasing thermal conductivity ratio enhanced heat 

transfer. Nag et al. [27] studied numerically natural convection in a differentially 

heated square cavity with horizontal partition plate on the hot wall. The study was 

done for two cases: a highly conductive fin and an adiabatic fin. For the case of a 

highly conductive fin, it was found that the Nusselt number on the cold wall 

increased compared to the case with no fin. For the case with the adiabatic fin, heat 

transfer was reduced compared to the case without a fin. Bilgen [28] studied natural 

convection in enclosures with partial partitions. It was concluded that up to Ra = 108, 

laminar flow regime was found while turbulent flow regime starts to be formed for 

higher values of Rayleigh number. Shi and Khodadadi [29] investigated the steady 

laminar fluid flow and heat transfer in a lid-driven cavity due to a thin fin. They 

concluded that the fin slowed the flow near the anchoring wall and reduces the 

temperature gradient, thus the heat transfer capacity was degraded. Three-

dimensional study of natural convection for air inside a cubic enclosure with a thick 

fin attached to the hot left wall was conducted by Frederick and Moraga [30] studied 

the three-dimensional natural convection in finned cubical enclosures. The study 

showed that by increasing the thermal conductivity ratio between the fin material and 

the air inside the enclosure, the cell was displaced away from the hot wall and the 

blockage effect was reduced. They also found that for a high conductivity ratio, 20% 

enhancement of heat transfer was obtained compared to the cube without a fin. 

Tasnim and Collins [31] investigated numerically natural convection heat transfer in 

a square cavity with a baffle on hot wall. They found that the effect of fin position on 

the heat transfer rate was depended strongly affected by Rayleigh number and the fin 

length. Öztop and Bilgen [32] studied numerically natural convection in 

differentially heated and partially divided square cavities with internal heat 

generation. The study has shown that increasing both the thickness and length of the 

cold partition reduce the heat transfer rate. Ben-Nakhi and Chamkha [33] reported 

the effect of length and inclination of a thin fin on natural convection in a square 

enclosure. It was found that the effect of fin inclination angle was dependent on the 

fin length. Ben-Nakhi and Chamkha [34] also studied numerically conjugate natural 
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convection in a square enclosure with inclined thin fin of arbitrary length. They 

found that increasing the thermal conductivity and decreasing the fin length 

enhanced the average Nusselt number on the hot wall while increasing the fin length 

enhanced the average Nusselt number on cold surfaces. Sun et al. [35] studied 

numerically mixed convection in lid-driven enclosures using conductive triangular 

fins. They observed that the triangular fin is a good control parameter for flow 

structure, temperature field and rate of heat transfer. Dariz et al. [36] investigated the 

fin effect on mixed convection heat transfer in a lid-driven cavity. Heat transfer was 

observed for the cavity with fewer fins and high Richardson number. Xu et al. [37] 

reported the effect of the fin length on natural convection flow transition in a cavity. 

They found that the flow near the finned wall changes from a steady to periodic 

unsteady flow at a critical Rayleigh number that is sensitive to the fin length. Xu and 

Saha [38] studied the transition to an unsteady flow induced by a fin on the sidewall 

of a differentially heated air-filled square cavity and heat transfer. Elatar et al. [39] 

performed a numerical study on laminar natural convection inside square enclosure 

with adiabatic horizontal wall with a single horizontal fin at different length and 

positions attached to the hot wall. They investigated the effect of Rayleigh number, 

fin lengths and fin positions of the enclosure on fluid flow structure and heat transfer 

characteristics. Gdhaidh et al. [40] investigated analytically the enhancement of 

natural convection heat transfer within closed enclosure using parallel fins. They 

observed that as the fin number increases the maximum heat source temperature 

decreases. 

1.6 PARTICULAR APPLICATIONS 

Mixed convection heat transfer has always been of great interest because of its wide 

range of applications. The relevant research output has numerous applications such 

as MHD power generators, radiators in cars, computer CPU heat sinks, hydrogen fuel 

cells, biological transportation, geophysical fluid mechanics, liquid metal flow 

control and etc. Magnetic field effects are also important in medicine. Tumors 

treating fields are said to be a 4th treatment in the battle against cancer.  
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1.7 OBJECTIVES OF THE PRESENT STUDY  

A review of earlier studies indicates that the mixed convection heat transfer in 

presence of magnetic field in a lid-driven wavy cavity having vertical fin has not 

been analyzed yet. The study will be carried out numerically with an accurate 

numerical procedure, and the related results will be shown using streamlines, 

isotherms, and related graphs and charts. 

1.7.1 Objectives with Specific Aims 

The specific objectives of the present research work are to: 

1) Analyze the variation of heat transfer due to vertical heated fin attached to 

the bottom wall of the cavity having wavy side walls. 

2) Investigate the effects of physical parameters such as Richardson number 

(Ri), and Hartmann number (Ha) on the flow field inside the cavity with 

appropriate boundary conditions. 

3) Investigate the effects of the fin lengths on the flow field and temperature 

distribution. 

1.7.2 Possible Outcome 

The outcomes of the study are 

1) The flow structure inside the enclosure expected to be noticeably affected 

by the variation of fin position and length. The heat transfer rate could be 

enhanced for greater Richardson number (Ri) with lower Hartmann   

number (Ha). 

2) The strength of magnetic field and isotherms are might be affected by the 

increase of the Richardson number.  

3) The velocity magnitude might decline with the increase of Hartmann 

number (Ha) while the same value of Richardson number (Ri). 

4) The results can be helpful in a wide range of applications including 

renewable energy, solar collectors, cooling of nuclear reactors, liquid metal 

flow control, electrical components, biological transportation and so on. 
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1.8 OUTLINE OF THE THESIS  

This dissertation contains five chapters. In chapter 1, a brief introduction is presented 

with aim and objective. This chapter also consists of a literature review of the past 

studies on fluid flow and heat transfer in cavities. In this state-of-the-art review, 

different aspects of the previous studies have been mentioned categorically. This is 

followed by the post-mortem of a recent historical event for the illustration of fluid 

flow and heat transfer effects in cavities or wavy enclosure having fin.  

In Chapter 2 we have discussed the computational technique of the problem for 

viscous incompressible flow. 

In Chapter 3 mixed convection heat transfer in presence of magnetic field in a lid-

driven wavy cavity having vertical fin have been investigated numerically. 

Mathematical modeling and Finite Element Formulation is employed in this study 

and explained elaborately. 

In Chapter 4 a detailed parametric study on mixed convection heat transfer in 

presence of magnetic field in a lid-driven wavy cavity having vertical fin is 

conducted. Effects of the major parameters such as Richardson number, Hartmann 

number and the physical parameter such fin length on the flow and thermal field with 

cavity have been presented. 

Finally, in Chapter 5 the dissertation is rounded off with the conclusions. Lastly, 

recommendations for further study of the present problem are outlined. 



CHAPTER 2 

COMPUTATIONAL TECHNIQUE 
Computational fluid dynamics (CFD) has been rapidly gaining popularity over the 

past several years for technological as well as scientific interests. For many problems 

of industrial interest, experimental techniques are extremely expensive or even 

impossible due to the complex nature of the flow configuration. Analytical methods 

are often useful in studying the basic physics involved in a certain flow problem, 

however, in many interesting problems; these methods have limited direct 

applicability. The dramatic increase in computational power over the past several 

years has led to a heightened interest in numerical simulations as a cost-effective 

method of providing additional flow information, not readily available from 

experiments, for industrial applications, as well as a complementary tool in the 

investigation of the fundamental physics of turbulent flows, where analytical 

solutions have so far been unattainable. It is not expected (or advocated), however, 

that numerical simulations replace theory or experiment, but that they are used in 

conjunction with these other methods to provide a more complete understanding of 

the physical problem at hand. 

Mathematical model of physical phenomena may be ordinary or partial differential 

equations, which have been the subject of analytical and numerical investigations. 

The partial differential equations of fluid mechanics and heat transfer are solvable for 

only a limited number of flows. To obtain an approximate solution numerically, we 

have to use a discretization method, which approximated the differential equations by 

a system of algebraic equations, which can then be solved on a computer. The 

approximations are applied to small domains in space and/or time so the numerical 

solution provides results at discrete locations in space and time. Much as the 

accuracy of experimental data depends on the quality of the tools used, the accuracy 

of numerical solutions depend on the quality of discretizations used. Computational 

fluid dynamics (CFD) computation involves the formation of a set number that 

constitutes a practical approximation of a real-life system. The outcome of the 

computation process improves the understanding of the performance of a system. 

Thereby, engineers need CFD codes that can make physically realistic results with 
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good quality accuracy in simulations with finite grids. Contained within the broad 

field of computational fluid dynamics are activities that cover the range from the 

automation of well-established engineering design methods to the use of detailed 

solutions of the Navier-Stokes equations as substitutes for experimental research into 

the nature of complex flows. CFD has been used for solving a wide range of fluid 

dynamics problem. It is more frequently used in fields of engineering where the 

geometry is complicated or some important feature that cannot be dealt with standard 

methods. More details are available in Ferziger & Perić [41] and Patankar [42].  

The remainder of this chapter, a tutorial introduction to the computational method 

with advantages of numerical investigation because the numerical method has played 

a central role in this thesis. Various components of the numerical method have been 

also explained. Finally, the major steps involved in finite element analysis of a 

typical problem have been discussed. 

2.1 MERITS AND DEMERITS OF NUMERICAL METHOD 

As computational power grows, the need for more advanced numerical algorithms 

also increases. There are many different techniques for constructing numerical 

solutions of fluid flow problems, e.g. finite difference methods (FD), finite volume 

methods (FV), and finite element methods (FE), to name a few, and all have their 

strengths and weaknesses. Since the goal of the present research lies in the 

development of methods which may ultimately be used for large-scale applications of 

industrial interest, finite element methods have been chosen, given their accuracy as 

well as their ability to approximate arbitrarily complex geometric configurations. The 

finite element method applied to fluid dynamics has reached a level of maturity over 

the past two decades such that it is now being successfully applied to industrial 

strength problems including turbulent flows. More details are available in Ferziger & 

Perić [41] and Patankar [42]. 

Finite element method is an ideal numerical approach for solving a system of partial 

differential equations. The finite element method produces equations for each 

element independently of all other elements. Only when the equations are collected 

together and assembled into a global matrix are the interactions between elements 
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taken into account. Despite these ideal characteristics, the finite element method 

dominates in most of the computational fluid dynamics. The present research is an 

attempt to bring the FE technique again into light through a novel formulation of 

two-dimensional incompressible thermal flow problems. As the formulation 

establishes a priority of finite element technique over the FD and FV method, the 

philosophy and approach of the three methods are recapitulated here in brief. The 

finite difference method relies on the philosophy that the body is in one single piece 

but the parameters are evaluated only at some selected points within the body, 

satisfying the governing differential equations approximately, whereas the finite 

volume method relies on the philosophy that the body is divided into a finite number 

of control volumes, On the other hand, in the finite element method, the body is 

divided into a number of elements. The Finite element method works when all other 

methods fail and it’s managing complex geometrical bodies and boundaries.  There 

are many commercial packages such as ANSYS, MATLAB and COMSOL 

MULTIPHYSICS for analyzing practical problems.  The demerits of this method, it 

considers the body is not in one piece, but it is an assemblage of elements connected 

only at nodes and Finite element solution is highly dependent on the element type.   

Accurate and reliable prediction of complex geometry is of great importance to meet 

the severe demand of greater reliability as well as an economic challenge. It is noted 

that these complex geometries occur most frequently in CFD. Presented methods 

have a common feature: they generate equations for the values of the unknown 

functions at a finite number of points in the computational domain. But there are also 

several differences. The finite difference and the finite volume methods generate 

numerical equations at the reference point based on the values at neighbouring 

points. The finite element method takes care of boundary conditions of Neumann 

type while the other two methods can easily apply to the Dirichlet conditions. The 

finite difference method could be easily extended to multidimensional spatial 

domains if the chosen grid is regular (the cells must look cuboids, in a topological 

sense). The grid indexing is simple but some difficulties appear for the domain with 

complex geometry. For the finite element method, there are no restrictions on the 

connection of the elements when the sides (or faces) of the elements are correctly 

aligned and have the same nodes for the neighbouring elements. This flexibility 
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allows us to model very complex geometry. The finite volume method could also use 

irregular grids like the grids for the finite element methods but keeps the simplicity 

of writing the equations like that for the finite difference method. Of course, the 

presence of a complex geometry slows down the computational programs. Another 

benefit of the finite element method is that of the specific mode to deduce the 

equations for each element that are then assembled. Therefore, the addition of new 

elements by a refinement of the existing ones is not a major problem. For the other 

methods, the mesh refinement is a major task and could involve the rewriting of the 

program. But for all the methods used for the discrete analogue of the initial 

equation, the obtained system of simultaneous equations must be solved. That is why 

the present work emphasizes the use of finite element techniques to solve flow and 

heat transfer problems. The details of this method are explained in the following 

section.  

2.2 ELEMENTS OF NUMERICAL SOLUTION METHODS 

Several components of numerical solution methods are available in Ferziger and 

Perić [41], here only the main steps will be demonstrated in the following. 

2.2.1 Mathematical Model 

The starting point of any numerical method is the mathematical model, i.e. the set of 

partial differential equations and boundary conditions. A solution method is usually 

designed for a particular set of equations. Trying to produce a general-purpose 

solution method, i.e. one which is applicable to all flows, is impractical, if not 

impossible and as with most general purpose tools, they are usually not optimum for 

any one application.  

2.2.2 Discretization Process 

After selecting the mathematical model, one has to choose a suitable discretization 

method, i.e. a method of approximating the differential equations by a system of 

algebraic equations for the variable at some set of discrete locations in space and time 

by Ferziger and Perić [41]. 
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2.2.3 Numerical Grid 

The numerical grid defines the discrete locations, at which the variables are to be 

calculated, which is essentially a discrete representation of the geometric domain on 

which the problem is to be solved. It divided the solution domain into a finite number 

of sub-domains (elements, control volumes etc). Some of the options available are a 

structural (regular) grid, block-structured grid, unstructured grids etc.  

2.2.4 Finite Approximations  

Following the choice of grid type, one has to select the approximations to be used in 

the discretization process. In a finite difference method, approximations for the 

derivatives at the grid points have to be selected. In a finite volume method, one has 

to select the methods of approximating surface and volume integrals. In a finite 

element method, one has to choose the functions and weighting functions.  

2.2.5 Solution Technique 

Discretization yields a large system of non-linear algebraic equations. The method of 

solution depends on the problem. For unsteady flows, methods based on those used 

for initial value problems for ordinary differential equation (marching in time) is 

used. At each time step, an elliptic problem has to be solved. Pseudo-time marching 

or equivalent iteration schemes usually solve steady flow problems. Since the 

equations are non-linear, an iteration scheme is used to solve them. These methods 

use successive linearization of the equations and the resulting linear systems are 

almost always solved by iterative techniques. The choice of solver depends on the 

grid type and the number of nodes involved in each algebraic equation. More details 

are available in Patankar [42]. 

2.3 DISCRETIZATION APPROACHES 

The first step to numerically solve a mathematical model of physical phenomena is 

its numerical discretization. This means that each component of the differential 

equations is transformed into a “numerical analogue” which can be represented in the 

computer and then processed by a computer program, built on some algorithm by 

Ferziger & Perić [41] and Patankar [42].  
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There are several discretization methods available for the high-performance 

numerical computation in CFD are given below. 

   Finite volume method (FVM) 

   Finite element method (FEM) 

   Finite difference method (FDM) 

   Boundary element method (BEM) 

   Boundary volume method (BVM) 

In the present numerical computation, the Galerkin finite element method (FEM) has 

been used. 

2.4 FINITE ELEMENT METHOD  

The finite element method (FEM) is a powerful computational technique for solving 

problems which are described by partial differential equations or can be formulated 

as functional minimization. The basic idea of the finite element method is to view a 

given domain as an assemblage of simple geometric shapes, called finite elements, 

for which it is possible to systematically generate the approximation functions 

needed in the solution of partial differential equations by the variational or weighted 

residual method. The computational domains with irregular geometries by a 

collection of finite elements make the method a valuable practical tool for the 

solution of the boundary layer, initial and eigenvalue problems arising in various 

fields of engineering.  

The approximation functions, which satisfy the governing equations and boundary 

conditions, are often constructed using ideas from interpolation theory. 

Approximating functions in finite elements are determined in terms of nodal values 

of a physical field which is sought. A continuous physical problem is transformed 

into a discretized finite element problem with unknown nodal values. For a linear 

problem, a system of linear algebraic equations should be solved. Values inside finite 

elements can be recovered using nodal values. More details are available in by Taylor 

& Hood [43] and Dechaumphai [44]. 
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The major steps involved in finite element analysis of a typical problem are: 

1. Discretization of the domain into a set of finite elements (mesh generation). 

2. Weighted-integral or weak formulation of the differential equation to be 

analyzed. 

3. Development of the finite element model of the problem using its weighted-

integral or weak form. 

4. Assembly of finite elements to obtain the global system of algebraic equations. 

5. Imposition of boundary conditions. 

6. Solution of equations. 

7. Post-computation of solution and quantities of interest. 

2.4.1 Mesh Generation 

The present numerical technique will discretize the computational domain into 

unstructured triangles by Delaunay Triangular method. The Delaunay triangulation is 

a geometric structure that has enjoyed great popularity in mesh generation since the 

mesh generation was in its infancy. In two dimensions, the Delaunay triangulation of 

a vertex set maximizes the minimum angle among all possible triangulations of that 

vertex set. Figure 2.1 shows the mesh mode for the present numerical computation. 

Mesh generation has been done meticulously. 

     

Figure 2.1: Current mesh structure of elements for wavy cavity with fin length  

L = 0.45, fin position D = 0.50, fin thickness B = 0.04, A = 0.1 and λ = 2 
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2.4.2 Computational Technique 

Discretization yields a large system of non-linear algebraic equations. The method of 

solution depends on the problem. For unsteady flows, methods based on those used 

for initial value problems for ordinary differential equation (marching in time) is 

used. At each time step an elliptic problem has to be solved. Pseudo-time marching 

or an equivalent iteration scheme usually solves steady flow problems. Since the 

equations are non-linear, an iteration scheme is used to solve them. These methods 

use successive linearization of the equations and the resulting linear systems are 

almost always solved by iterative techniques. The choice of solver depends on the 

grid type and the number of nodes involved in each algebraic equation.  

2.5 ALGORITHM 

The algorithm was originally put forward by the iterative Newton-Raphson 

algorithm; the discrete forms of the continuity, momentum and energy equations are 

solved to find out the value of the velocity and the temperature. It is essential to 

guess the initial values of the variables. Then the numerical solutions of the variables 

are obtained while the convergent criterion is fulfilled. The simple algorithm is 

shown by the flow chart below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Update Properties. 

Solve momentum equations (u, v velocity). 

Solve continuity equation. Update pressure, face mass flow rate. 

Solve energy and other scalar equations. 

Figure 2.2: Flow chart of the computational procedure 
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2.5.1 Solution of System of Equations 

A system of linear algebraic equations has been solved by the UMFPACK with 

MATLAB interface. UMFPACK is a set of routines for solving asymmetric sparse 

linear systems Ax = b, using the Asymmetric MultiFrontal method and direct sparse 

LU factorization by Taylor and Hood [43] and Dechaumphai [44]. Five primary 

UMFPACK routines are required to factorize A or Ax = b: 

1. Pre-orders the columns of A to reduce fill-in and performs a symbolic 

analysis. 

2. Numerically scales and then factorizes a sparse matrix. 

3. Solves a sparse linear system using the numeric factorization. 

4. Frees the Symbolic object. 

5. Frees the Numeric object. 

Additional routines are: 

1. Passing a different column ordering 

2. Changing default parameters 

3. Manipulating sparse matrices 

4. Getting LU factors 

5. Solving the LU factors 

6. Computing determinant 

UMFPACK factorizes PAQ, PRAQ, or PR−1AQ into the product LU, where L and U 

are lower and upper triangular, respectively, P and Q are permutation matrices, and R 

is a diagonal matrix of row scaling factors (or R = I if row-scaling is not used). Both 

P and Q are chosen to reduce fill-in (new nonzeros in L and U that are not present in 

A). The permutation P has the dual role of reducing fill-in and maintaining numerical 

accuracy (via relaxed partial pivoting and row interchanges). The sparse matrix A 

can be square or rectangular, singular or non-singular, and real or complex (or any 

combination). Only square matrices A can be used to solve Ax = b or related 

systems. Rectangular matrices can only be factorized. UMFPACK first finds a 

column pre-ordering that reduces fill-in, without regard to numerical values. It scales 

and analyzes the matrix, and then automatically selects one of three strategies for pre-
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ordering the rows and columns: asymmetric, 2-by-2 and symmetric. These strategies 

are described below. 

One notable attribute of the UMFPACK is that whenever a matrix is factored, the 

factorization is stored as a part of the original matrix so that further operations on the 

matrix can reuse this factorization. Whenever a factorization or decomposition is 

calculated, it is preserved as a list (element) in the factor slot of the original object. In 

this way, a sequence of operations, such as determining the condition number of a 

matrix and then solving a linear system based on the matrix, do not require multiple 

factorizations of the intermediate results. 

Conceptually, the simplest representation of a sparse matrix is as a triplet of an 

integer vector i giving the row numbers, an integer vector j giving the column 

numbers, and a numeric vector x giving the non-zero values in the matrix. The triplet 

representation is row-oriented if elements in the same row were adjacent and column-

oriented if elements in the same column were adjacent. The compressed sparse row 

(CSR) or compressed sparse column (CSC) representation is similar to a row-

oriented triplet or column-oriented triplet respectively. These compressed 

representations remove the redundant row or column in indices and provide faster 

access to a given location in the matrix. 



CHAPTER 3 

MATHEMATICAL MODELLING 
The convection heat transfer occurs due to temperature difference that affects the 

density and thus relative buoyancy of the fluid which is referred to as combined or 

mixed convection. The starting point of any numerical method is the mathematical 

model, i.e. the set of partial differential equations and boundary conditions. A 

solution method is usually designed for a particular set of equations. Trying to 

produce a general-purpose solution method, i.e. one which is applicable to all flows, 

is impractical, if not impossible and as with most general purpose tools, they are 

usually not optimum for any one application. The generalized governing equations 

are used based on the conservation laws of mass, momentum and energy. As the heat 

transfer depends upon a number of factors, dimensional analysis is presented to show 

the important non-dimensional parameters which will influence the dimensionless 

heat transfer parameter. 

The remainder of this chapter is as follows. In section 3.1, the physical 

configurations of the current research interest are shown. Then the appropriate 

mathematical model (both governing equations and boundary conditions) is 

considered in section 3.2. After that, a numerical scheme that is employed in this 

study is described in section 3.3. 

3.1 PHYSICAL CONFIGURATIONS 

A wavy cavity is considered for the present study with physical configuration and 

boundary conditions as shown in Fig. 3.1 which represents of the two-dimensional 

lid-driven wavy cavity of height and width W. The top and bottom walls are kept at a 

constant heat temperature (Th) whereas the vertical wavy walls are kept at a constant 

cold temperature (Tc) maintaining Th > Tc. A heated fin of length ( )l and thickness (b) 

is attached to the hot bottom wall at a position (d) from the base of the left wavy 

wall. The top wall moves from right to left with constant velocity. The gravitational 

force acts in the vertically downward direction and uniform magnetic field with a 

constant magnitude ( )0B in the direction of the moving lid is applied. 
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Figure 3.1: Schematic diagram of the wavy cavity with boundary conditions 

3.2 GOVERNING EQUATIONS ALONG WITH BOUNDARY CONDITIONS 

The fundamental laws used to solve the fluid flow problems are the law of 

conservation of mass or continuity equations, conservation of momentums, and 

conservation of energy, which constitute a set of coupled, nonlinear, partial 

differential equations. The thermo-physical properties of the fluid are assumed to be 

constant, except for the density variation in the buoyancy term which is treated 

according to Boussinesq approximation while the effects of radiation and non-

viscous dissipation are neglected. In general, the enclosure fluid is assumed to be 

Newtonian and incompressible, steady and laminar flow. 

Following the previous assumptions, the system of equations governing the two-

dimensional form as follows: 

Continuity Equation  

0=
∂
∂

+
∂
∂

y
v

x
u  (3.1) 

Momentum Equations  
2 2

2 2
1u u p u uu v

x y x x y
ν

ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3.2) 

22 2
0

2 2
1 ( )c

Bv v p v vu v g T T
x y y x y

σ
ν β ν

ρ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + + − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
                               (3.3) 
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Energy Equations  
2 2

2 2
T T T Tu v
x y x y

α
⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.4) 

where u and v are the velocity components along x-axis and y-axis respectively, p is 

the pressure, ρ  is the density, v is the kinematic viscosity, g is the acceleration due 

to gravitational, β  is the volumetric thermal expansion coefficient, σ is the electrical 

conductivity, B0 is the magnitude of Magnetic field, T is the temperature and 

p

k
c

α
ρ

= is the thermal diffusivity. 

3.2.1 Dimensional Boundary Conditions 

No-slip boundary conditions are used and problems are specified as follows: 

On the top wall: , 0,lid hu u v T T= = =  

On the bottom wall: 0, hu v T T= = =  

On the left vertical wavy wall: ( )( )0, ; 1 cos 2c Au yv T T πλ= = −=  

On the right vertical wavy wall: ( )( )0, ; 1 1 cos 2c Au yv T T πλ= = = −−  

For the Fin surface: 0 , 0,  and
2 2

 ;h
b by l u v T T x d x d≤ ≤ = = = = + = −

 
where  A is the amplitude and  λ is the number of oscillations. 

3.2.2 Dimensional Analysis 

The non-dimensional parameters that are used for making the governing equations 

(3.1−3.4) into dimensionless form are stated as follows: 

, , , ,  and, , ,  c

h c

x y u v p T T h l bX Y U V P H L B
W W u u u T T W W Wlid lid lid

θ
ρ

−
= = = = = = = = =

−
 

where X and Y are the coordinates varying along with horizontal and vertical 

directions, respectively, U and V are, the velocity components in the X and Y 

directions, respectively, θ is the dimensionless temperature and P is the 

dimensionless pressure. After substitution the dimensionless variables into the 

equations (3.1-3.4), we get the following dimensionless equations as 
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Continuity Equation 

0=
∂
∂

+
∂
∂

Y
V

X
U     (3.5) 

Momentum Equations 

2 2

2 2
1U U P U UU V

X Y X Re X Y
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
    (3.6) 

2 2 2

2 2
1

Re
V V P V V HaU V Ri V
X Y Y Re X Y

θ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
    (3.7) 

Energy Equations 

2 2

2 2
1U V

X Y Re Pr X Y
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟

∂ ∂ ∂ ∂⎝ ⎠
    (3.8) 

The non-dimensional numbers that appear in equations (3.6) - (3.8) are as follows: 

0

3( ), , , and2 2    h c
u W g T T W GrlidPr Re Gr Ha B W Ri

v Re

ν β σ
α µν

−
= = = = =  

3.2.3 Boundary Conditions (non-dimensional) 

On the top wall: 1, 0, 1U V θ= − = =  

On the bottom wall: 0, 1U V θ= = =  

On the left vertical wavy wall: ( )( )1 co0, 0 s 0 1; 2 ,U V A Y Yθ πλ= = ≤= − ≤  

On the right vertical wavy wall: ( )( )0, 0; 1 1 cos 2 , 0 1A Y YU V θ πλ−= − ≤= ≤=  

For the Fin surface:  and0 , 0, ;
2

 1
2
B BY L U V X D X Dθ≤ ≤ = = = = + = −

 
where  A is the amplitude and  λ is the number of oscillations. 

3.2.4 Nusselt Number 

First, the heat transfer by conduction was equated to the heat transfer by convection 

                 *    Th T k
n

∂
∆ = −

∂
                                                                                  (3.9) 
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where n is the non-dimensional distances either along x or y-direction acting normal 

to the surface. By introducing the dimensionless variables into equation (3.9) the 

local Nusselt number is defined as: 

      L
Surface

Nu
N
θ∂

= −
∂

                                                                                 (3.10) 

The average Nusselt number on the cold wall is obtained as follows: 

1

0
      av

Surface

Nu dS
N
θ∂

= −
∂∫                                                                              (3.11)  

3.3 NUMERICAL ANALYSIS 

The governing equations along with the boundary conditions are solved numerically, 

employing Galerkin weighted residual finite element techniques discussed below. 

3.3.1 Finite Element Formulation and Computational Procedure 

To derive the finite element equations, the method of weighted residuals Taylor and 

Hood [43] and Dechaumphai [44] is applied to the equations (3.5) – (3.8) as  

0
A

U VN dA
X Yα
∂ ∂⎛ ⎞+ =⎜ ⎟∂ ∂⎝ ⎠∫  (3.12) 

2 2

2 2
1

A A A

U U P U UN U V dA H dA N dA
X Y X Re X Yα λ α

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = − + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫ ∫  (3.13) 

 

2 2

2 2

2
 

1

 

A A A

A A

V V P V VN U V dA H dA N dA
X Y Y Re X Y

HaRi N dA N V dA
Re

α λ α

α αθ

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = − + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ −

∫ ∫ ∫

∫ ∫

 (3.14) 

2 2

2 2
1

A A
N U V dA N dA

X Y Re Pr X Yα α
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫  (3.15) 

where A is the element area, Nα ( α = 1, 2, ……, 6) is the element interpolation 

functions for the velocity components and the temperature and Hλ ( λ = 1, 2, 3) is the 

element interpolation functions for the pressure. 
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Then apply Gauss’s theorem into equations (3.13) - (3.15) to generate the boundary 

integral terms associated with the surface tractions and heat flux. After that the 

equations (3.13) - (3.15) become, 

00
                                                                 

1

  

A A A

xS

N NU U P U UN U V dA H dA dA
X Y X Re X X Y Y

N S dS

α α
α λ

α

∂ ∂∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞+ + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
=

∫ ∫ ∫

∫
 (3.16) 

2

00

1
A A A

yA A S

N NV V P V VN U V dA H dA dA
X Y Y Re X X Y Y

HaRi N dA N VdA N S dS
Re

α α
α λ

α α αθ

∂ ∂∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞+ + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− + =

∫ ∫ ∫

∫ ∫ ∫
 (3.17) 

1
1

w wA A Sw

N NN U V dA dA N q dS
X Y Re Pr X X Y Y

α α
α α

θ θ θ θ∂ ∂∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞+ + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫  (3.18) 

The equations (3.16) - (3.17) specify surface tractions (Sx, Sy) along outflow 

boundary S0 and (3.18) specifying velocity components and fluid temperature or heat 

flux (qw) that flows into or out from domain along wall boundary Sw. 

The basic unknowns for the above differential equations are the velocity components 

U, V the temperature, θ and the pressure, P. The six node triangular element is used 

in this work for the development of the finite element equations. All six nodes are 

associated with velocities as well as temperature; only the corner nodes are 

associated with pressure. This means that a lower order polynomial is chosen for 

pressure and which is satisfied through the continuity equation. 

The velocity component and the temperature distributions and linear interpolation for 

the pressure distribution according to their highest derivative orders in the differential 

equations (3.5) - (3.8) as  

( ) ββ UNYXU =,  (3.19) 

( ) ββ VNYXV =,  (3.20) 

( ) ββ θθ NYX =,  (3.21) 
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( ) λλ PHYXP =,  (3.22) 

where  β = 1, 2, … … , 6;  λ = 1, 2, 3. 

Substituting the element velocity component distributions, the temperature 

distribution, and the pressure distribution from equations (3.19) - (3.22), we get the 

following equations: 

( ), , 0x yA
N N U N V dAα β β β β+ =∫   (3.23) 

( )( ) ( )( )
( )

, , ,

, , , , 00

1
x y xA A

x x y y xA S

N N U N U N V N U dA H H P dA

N N U N N U dA N S dS
Re

α β β γ γ β β γ γ λ µ µ

α β β α β β α

⎡ ⎤+ + −⎣ ⎦

+ =

∫ ∫

∫ ∫
  (3.24) 

( )( ) ( )( )
( )

, , ,

, , , ,

2

00

1
x y yA A

x x y yA A

yA S

N N U N V N V N V dA H H P dA

N N V N N V dA Ri N N dA
Re
Ha N N V dA N S dS
Re

α β β γ γ β β γ γ λ µ µ

α β β α β β α β β

α β β α

θ

⎡ ⎤+ + −⎣ ⎦

+ − +

=

∫ ∫

∫ ∫

∫ ∫

  (3.25) 

( )( ) ( )( )
( )

, ,

, , , ,
1

x yA

x x y y w wA Sw

N N U N N V N dA

N N N N dA N q dS
Re Pr

α β β γ γ β β γ γ

α β β α β β α

θ θ

θ θ

⎡ ⎤+ +⎣ ⎦

+ =

∫

∫ ∫
  (3.26) 

Then the finite element equations can be written in the form 

0x yK U K Vβ βα β α β
+ =   (3.27) 

( )1
x y x xx yy uK U U K V U M P S S U Q

Reβ γ β γ µ βαβγ αβγ λµ αβ αβ α
+ + − + =   (3.28) 

( )
2

1
x y y xx yy

v

K U V K V V M P S S V Ri K
Re

Ha K V Q
Re

β γ γ γ µ β αβ βαβγ αβγ αµ αβ αβ

αβ β α

θ+ + − + −

+ =
  (3.29) 

( )1
x y xx yyK U K V S S Q

Re Prβ γ β γ β θαβγ αβγ αβ αβ α
θ θ θ+ − + =     (3.30) 
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where the coefficients in element matrices are in the form of the integrals over the 

element area and along the element edges S0 and Sw as 

,  x xA
K N N dAα βαβ

= ∫   (3.31a) 

,  y yA
K N N dAα βαβ

= ∫   (3.31b) 

,  x xA
K N N N dAα β γαβγ

= ∫   (3.31c) 

,  y yA
K N N N dAα β γαβγ

= ∫   (3.31d) 

 
A

K N N dAαβ α β= ∫   (3.31e) 

,  ,xx x xA
S N N dAα βαβ

= ∫   (3.31f) 

, ,  yy y yA
S N N dAα βαβ

= ∫   (3.31g) 

,  x xA
M H H dAλ µλµ

= ∫   (3.31h) 

,  y yA
M H H dAα µαµ

= ∫  (3.31i) 

00
 u xS

Q N S dSαα
= ∫  (3.31j) 

00
 v yS

Q N S dSαα
= ∫   (3.31k) 

 w wSw
Q N q dSθ αα

= ∫  (3.31l) 

These element matrices are evaluated in a closed form ready for numerical 

simulation. Details of the derivation for these element matrices are omitted herein. 

For numerical simulation, these element matrices are evaluated in closed-form. 

Details of the derivation for these element matrices are omitted herein for briefness. 

The resultant finite element equations (3.27) - (3.30), are nonlinear. These nonlinear 

algebraic equations are solved employing the Newton-Raphson iteration technique by 

first writing the unbalanced values from the set of the finite element equations (3.27) 

- (3.30) as 
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p x yF K U K Vβ βα αβ αβ
= +  (3.32a) 

1 ( )u x y x xx yy uF K U U K V U M P S S U Q
Reβ γ γ γ µ βα αβγ αβγ αµ αβ αβ α

= + + − + −  (3.32b) 

2
 

1 ( )v x y y xx yy

v

F K U V K V V M P S S V
Re

HaRi K K V Q
Re

β γ γ γ µ βα αβγ αβγ αµ αβ αβ

αβ β αβ β α
θ

= + + − +

− + −
 (3.32c) 

( )1
x y xx yyF K U K V S S Q

Re Prθ β γ β γ β θα αβγ αβγ αβ αβ α
θ θ θ= + − + −  (3.32d) 

This leads to a set of algebraic equations with the incremental unknowns of the 

element nodal velocity components, temperatures, and pressures in the form, 

0
0 0

uuu uv u up

vvu vv v vp

u v

pu pv p

FK K K K u
FK K K K v
FK K K

pK K F

αθ

θ α

θθ θ θθ α

α

θ

⎡ ⎤⎡ ⎤ ∆⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥∆ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

 (3.33) 

where, ( )1
uu x x y xx yyK K U K U K V S S

Reβ γ βαβγ αβγ αβγ αβ αβ
= + + − +  

uv yK K U
αβγ

γ=  

0uK θ =  

up xK M
αµ

=  

vu xK K V
αβγ

γ=  

( )1
vv x y y xx yyK K U K V K V S S

Reβ γ γαβγ αγβ αβγ αβ αβ
= + + − +  

vK R i Kθ αβ= −  

vp yK M
αµ

=  

u xK Kθ αβγ
θγ=  
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v yK Kθ αβγ
θγ=  

1 ( )x y xx yyK K U K V S S
Re Prθθ β βαβγ αβγ αβ αβ

= + − +  

pu xK M
αµ

=  

pv yK M
αµ

=  and 0p p ppK K Kθ θ= = =  

The iteration process is terminated if the percentage of the overall change compared 

to the previous iteration is less than the specified value. 

To solve the sets of the global nonlinear algebraic equations in the form of a matrix, 

the Newton-Raphson iteration technique has been adapted through PDE solver with 

MATLAB interface. The convergence of solutions is assumed when the relative error 

for each variable between consecutive iterations is recorded below the convergence 

criterion ε such that, 

ε<Ψ−Ψ + nn 1 , where n is a number of iteration and , ,U V θΨ = . The convergence 

criterion was set to 10- 5. 

3.3.2 Grid Size Sensitivity Test 

In order to determine a proper grid size for the present study at Pr = 0.71, Ri = 1,      

A = 0.1, λ = 2, L = 0.45 and D = 0.50, a grid independent test was analyzed with five 

types of meshes, average Nusselt number of the fin surface is obtained. This is 

described in Table 3.1 and as seen in Figure 3.2 

Table 3.1: Grid sensitivity check at Pr = 0.71, Ri = 1, 2,λ =  L = 0.45 and D = 0.50  

Nodes  931 1213 1823 6844  25133  

Elements 1700 2245 3421 13273 49464 

a vN u  5.1290 5.2303 5.3952 5.6491 5.6574 

Time (s) 7 10 13 21 38 
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Table 3.1 is presented the average Nusselt number of the fin surface for different 

grids. As it can be observed from the table, the grid size of 6844 nodes and 13273 

elements provided a satisfactory solution for the present numerical investigation. 

 
Figure 3.2: Grid independency study for different elements while Pr = 0.71, Ri = 1, 

Ha = 10, A = 0.1, λ = 2, L = 0.45 and D = 0.50 

3.3.3 Validation of the Numerical Scheme 

In order to check the accuracy of the numerical results obtained in this problem, the 

average Nusselt number along the right cold wall was compared with the results 

presented by Nag et al. [27] and Elatar et al. [39] at L = 0.20 and Ra = 106.              

Table 3.2: Comparison of average Nusselt number on cold wall for L = 0.20,           

Pr = 0.71 and Ra = 106 

B 0.02 0.04 0.1 

Nag et al. [27] 8.861 8.888 9.033 

Elatar et al. [39] 8.672 8.710 8.947 

Present results 8.783 8.838 8.985 
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The average Nusselt number values as seen in Table 3.2 shows good agreement. In 

addition, a comparison of the streamlines and isotherms is made for the present 

results with those of Tasnim and Collins [31] and Elatar et al. [39] at 
510 , 0.01, 0.5 and 0.75)Ra B L D= = = =  as shown in Figure 3.3. The shapes of 

streamline contours are almost identical. For the isotherms, one can see the strong 

agreement of the present results with those by Tasnim and Collins [31] and Elatar et 

al. [39] as seen in Figure 3.3  
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 Tasnim and Collins [31] Elatar et al. [39]        Present results 

Figure 3.3: Comparison of Streamlines and isotherms with Pr = 0.71, Ra = 105, 

B = 0.1, L = 0.50 and D = 0.75 



CHAPTER 4 

RESULTS AND DISCUSSION 

A numerical study has been performed through the finite element method to analyze 

the laminar mixed convection heat transfer and fluid flow in a lid-driven wavy cavity 

having vertical fin. Numerical results are presented in order to determine the effects 

of the considered parameters. The dimensionless parameters specified for the system 

are Richardson number (Ri), Hartmann number (Ha) and physical parameter for the 

fin length (L) of the wavy cavity. Results are presented through streamline and 

isotherms along with necessary plots at the three different fin length L = 0.25, 0.35 

and 0.45 along with fin thickness B = 0.04, fin position D = 0.50, amplitude A = 0.1 

of oscillations λ = 2, Re = 100 and Prandtl number Pr = 0.71 for different values of 

Ri = 0.1 to 10, and Ha = 0 to 60. Furthermore, the velocity profiles, local Nusselt 

number, and heat transfer rate in terms of the average Nusselt number (Nuav) and the 

average fluid temperature (θav) are displayed. Finally, the performance of fin 

expressed in terms of the fin effectiveness (εf) is also displayed. 

4.1 CASE 1 (Effect of Fin Length When L = 0.25) 

In this section, results of the numerical investigation of mixed convection heat 

transfer in presence of magnetic field in a lid-driven wavy cavity having vertical fin 

are numerically presented. The results have been obtained fin length 0.25 for the 

Richardson number, Hartmann number and the rate of heat transfer. The results of 

this parametric study are shown in Figure 4.1- 4.8.  

4.1.1 Effect of Richardson number  

The effects of Richardson number Ri (= 0.1, 1, 5, 10) on streamlines and isotherms 

for the present configuration at Ha = 10, Pr = 0.71, L = 0.25, A = 0.1 and λ = 2 has 

been demonstrated in Figure 4.1(a)–(b) in terms of dimensionless velocity profiles 

along the horizontal centre line and local Nusselt number along the bottom hot wall 

are shown in Figure 4.2 and Figure 4.3 respectively. Richardson number represents 

the relative importance of mixed convection or combined forced convection and free 

convection. From Figure 4.1 (a), it is seen that when Ri = 0.1 the strength of 
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buoyancy force inside the cavity is significant and one vortex appear inside the 

cavity generated by the movement of the lid wall.  
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Figure 4.1: Effect of Richardson number on (a) streamlines and (b) isotherms 
for L = 0.25, Pr = 0.71, Ha = 10 and λ = 2 
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Again when Ri = 1 the flow structure is similar to Ri = 0.1 but two vortices appear 

inside the cavity which one is major vortex and another one is a minor vortex. 

Further again when Richardson number increases (Ri = 5 and 10), the strength of the 

buoyancy force is more significant and two vortices appear to move down the right 

half and left half of the cavity. The physical fact behind it’s that the greater effect of 

the Richardson number increases the buoyancy force to influence the flow field. 

Conduction dominant heat transfer is observed from the isotherms in Figure 4.1 (b) 

at L = 0.25 and Ha = 10, it is clear that the thick thermal boundary layer exists near 

to the heated walls (top and bottom walls) and the fin surface due to the lower value 

of Ri = 0.1 and these become thinner with higher value of Ri = 10. The curvature of 

the isotherms increases with increasing Ri and the heat lines are condensed to the 

vertical wavy walls and the fin surface, which means increasing heat transfer through 

convection. 

 

 

Figure 4.2: Variation of velocity profiles along the horizontal centre line of cavity 

for L = 0.25, B = 0.04, D = 0.50, Ha = 10 and Pr = 0.71 varying Ri 

The effect of Richardson number (Ri) on the vertical component of the velocity 

profiles along the horizontal centre line of the cavity at L = 0.25 and Ha = 10 is 

displayed in Figure 4.2. It can be seen from the figure that for lower values of 

Richardson number, velocity profiles bring smaller change but the higher value of 

Richardson number, velocity profiles causes larger change. Moreover, the absolute 
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value of the maximum and minimum value of the velocity increases with increasing 

Richardson number (increasing the buoyancy force). 

 

Figure 4.3: Variation of local Nusselt number along the bottom heated wall of cavity 

for L = 0.25, B = 0.04, D = 0.50, Ha = 10 and Pr = 0.71 varying Ri 

The variation of the local Nusselt number distribution along the bottom heated wall 

of the enclosure for D = 0.50, Pr = 0.71, L = 0.25 and Ha = 10 varying Richardson 

number (Ri) is shown in Figure 4.3. It can be seen from the figure that the local 

Nussult number increases with increasing Richardson number in a major portion of 

the bottom heated wall. It is also observed that the middle of the bottom wall (fin tip 

position D = 0.50 and thickness B = 0.04) the local Nusselt number is zero and does 

not change significantly with the increase in the Richardson number. 

4.1.2 Effects of Hartmann number  

The influence of Hartman number on the streamlines and isotherms for different 

values of Ha (= 0.0, 20.0, 40.0, 60.0) with Ri = 1.0, Pr = 0.71, L = 0.25, A = 0.1 and 

λ = 2 has been demonstrated in Figure 4.4 (a)–(b) in terms of dimensionless velocity 

profiles and local Nusselt number along the horizontal centre line of the cavity are 

shown in Figure 4.5 and Figure 4.6 respectively. From Figure 4.4 (a) it can be seen 

that when Ha = 0 the strength of buoyancy force inside the cavity is more significant 

and two vortices appear inside the cavity which one is major vortex is produced by 
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the movement of the lid wall and another one is minor vortex produced by the right 

half of the cavity. Again when Ha = 20 and 40 the strength of buoyancy force inside 

the cavity is significant and two vortices appear inside the cavity.  
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Figure 4.4: Effect of Hartmann number on (a) streamlines and (b) isotherms 
for L = 0.25, Pr = 0.71, Ri = 1 and λ = 2 



Chapter 4 

 44

Further again when Ha = 60, produced one vortex appear inside the cavity generated 

by the movement of the lid wall. The physical fact behind it’s that the flow 

circulation decreases with increasing Hartmann number (increasing the strength of 

the magnetic field). This is because; applied magnetic field tends to slow down the 

fluid motions within the cavity. This means that the flow field strongly depends on 

the effect magnetic field. On the other hand, conduction dominant heat transfer is 

observed from the isotherms are almost similar and uniformly distributed due to the 

greater values of Hartmann number (Ha) is shown in Figure 4.4 (b); which is 

consistent to the effect of the magnetic field. 

 
Figure 4.5: Variation of velocity profiles along the horizontal centre line of cavity 

for L = 0.25, B = 0.04, D = 0.50, Ri = 1 and Pr = 0.71 varying Ha 

The effect of Hartmann number (Ha) on the vertical component of the velocity 

profiles along the horizontal centre line of the cavity at L = 0.25 and Ri = 1 is 

displayed in Figure 4.5. It can be observed that the changing rate of velocity is 

similar for every Hartmann number but different from each other. Moreover, the 

absolute value of the maximum and minimum value of the velocity increases with 

decreasing Hartmann number (increasing the buoyancy force).  

The variation of the local Nusselt number distribution along the horizontal centre line 

of the enclosure for D = 0.50, Pr = 0.71, L = 0.25 and Ri = 1 varying Hartmann 

number (Ha) is shown in Figure 4.6. It can be seen from the figure that the changing 

rate of local Nusselt number is similar for every Hartmann number but different from 
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each other. Moreover, the local Nusselt number has two concaves up and one 

concave down the effect for every Hartmann number. 

 

Figure 4.6: Variation of local Nusselt number along horizontal centre line of cavity 

for L = 0.25, B = 0.04, D = 0.50, Ri = 1 and Pr = 0.71 varying Ha 

4.1.3 Heat Transfer Rates 

In this section, results of the numerical investigation of mixed convection heat 

transfer in presence of magnetic field in a lid-driven wavy cavity having vertical fin 

are numerically presented. The average Nusselt number versus Hartmann numbers 

and Richardson numbers heat transfer rates are shown in Figure 4.7-4.8 and heat 

transfer rates Table 4.1-4.2 given below.  

 
Table 4.1: Numerical values of average Nusselt number against Ha on the right cold 

wall for selected value Ri while Pr = 0.71, L = 0.25, B = 0.04 and D = 0.50 

Average Nusselt Number (Nuav) 
Ha 

Ri = 0.1 Ri = 1 Ri = 5 Ri = 10 

0 6.3764 6.4095 6.6872 6.9981 

20 6.3541 6.3794 6.6539 6.9670 

40 6.3417 6.3637 6.6471 6.9684 

60 6.3312 6.3561 6.6327 6.9602 
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Figure 4.7: Variation of the average Nusselt number against Ha for selected value Ri 

while Pr = 0.71, L = 0.25, B = 0.04 and D = 0.50 

Figure 4.7 illustrate that the average Nusselt number (Nuav) versus Hartmann number 

along the right cold wall for various Richardson number (Ri) with fin length L = 0.25 

and Pr = 0.71 while the value of the remaining parameters is kept fixed. It can be 

seen from this Figure, the average Nusselt number increases when the value of the 

Richardson number increases. At a constant Richardson number, with a decrease in 

Hartmann number the buoyancy force increases and the heat transfer is enhanced.  

Table 4.2: Numerical values of average fluid temperature against Ri for selected 

value Ha while Pr = 0.71, L = 0.25, B = 0.04 and D = 0.50 

Average Temperature (θav) 
Ri 

Ha = 0 Ha = 20 Ha = 40 Ha = 60 

0.1 0.44621 0.44362 0.44253 0.44227 

1 0.45074 0.44907 0.44849 0.44837 

5 0.47049 0.46671 0.46457 0.46388 

10 0.47290 0.46795 0.46513 0.46423 
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Figure 4.8: Variation of the average fluid temperature against Ri for selected value 

Ha while Pr = 0.71, L = 0.25, B = 0.04 and D = 0.50 

Figure 4.8 illustrate that the average fluid temperature (θav) versus Richardson 

number (Ri) for various values of Hartmann number (Ha) with the fin length L = 

0.25 and Pr = 0.71 while the value of the remaining parameters is kept constant. It 

can be seen from this figure, average fluid temperature increases when the value of 

Hartmann number decreases. It is also seen from this figure, average fluid 

temperature increases steadily with increasing Ri when Hartmann number is kept 

constant. 

Table 4.1 - 4.2 represent the values of the average Nusselt number and average fluid 

temperature respectively for considered parameters including L = 0.25, Ri, Pr, Ha 

and B respectively. Both the numerical result indicates that the average Nusselt 

number and average fluid temperature increases with increasing the value of Ri and 

decrease with the higher value of Ha.  

Finally, both heat transfer rate and average temperature increase with increasing of 

Richardson number for all values of Hartmann number. At a constant Hartmann 
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number, with an increase in Richardson number the buoyancy force increases and 

heat transfer is enhanced. 

4.2 CASE 2 (Effect of Fin Length When L = 0.35) 

In this section, results of the numerical investigation of mixed convection heat 

transfer in presence of magnetic field in a lid-driven wavy cavity having vertical fin 

are numerically presented. The results have been obtained fin length 0.35 for the 

Richardson number, Hartmann number and the rate of heat transfer. The results of 

this parametric study are shown in Figure 4.9- 4.16.  

4.2.1 Effect of Richardson number 

The effects of Richardson number Ri (= 0.1, 1.0, 5.0, 10.0) on streamlines and 

isotherms for the present configuration at Ha = 10, Pr = 0.71, L = 0.35, A = 0.1 and  

λ = 2 has been demonstrated in figure 4.9 (a)–(b) in terms of dimensionless velocity 

profiles along the horizontal centre line and local Nusselt number along the bottom 

hot wall are shown in Figure 4.10 and Figure 4.11 respectively. From Figure 4.9 (a), 

it is seen that when Ri = 0.1 the strength of buoyancy force inside the cavity is 

significant and one vortex appear inside the cavity generated by the movement of the 

lid wall. Again when Ri = 1 the flow structure is similar to Ri = 0.1 but two vortices 

appear inside the cavity which one is major vortex and another one is a minor vortex. 

Further again when Ri increases (Ri = 5 and 10), the strength of the buoyancy force is 

more significant and two vortices appear to move down the right half and left half of 

the cavity. The physical fact behind it’s that the greater effect of the Richardson 

number increases the buoyancy force to influence the flow field.  

Conduction dominant heat transfer is observed from the isotherms in Figure 4.9 (b) 

at L = 0.35 and Ha = 10, it is clear that the thick thermal boundary layer exists near 

to the heated walls and the fin surface due to the lower value of Ri = 0.1 and these 

become thinner with higher value of Ri = 10. The curvature of the isotherms 

increases with increasing the Richardson number (Ri) and the heat lines are 

condensed to the wavy walls and the fin surface, which means increasing heat 

transfer through convection. 
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Figure 4.9: Effect of Richardson number on (a) streamlines and (b) isotherms 

for L = 0.35, Pr = 0.71, Ha = 10 and λ = 2 
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The effect of Richardson number (Ri) on the vertical component of the velocity 

profiles along the horizontal centre line of the cavity at L = 0.35 and Ha = 10 is 

displayed in Figure 4.10. It can be seen from the figure that for lower values of 

Richardson number, velocity profiles bring smaller change but the higher value of 

Richardson number, velocity profiles causes larger change. Moreover, the absolute 

value of the maximum and minimum value of the velocity increases with increasing 

Richardson number (Ri).  

 

 
Figure 4.10: Variation of velocity profiles along the horizontal centre line of cavity 

with Richardson number for L = 0.35, at Pr = 0.71, Ha = 10 and λ = 2 

 

 
Figure 4.11: Variation of local Nusselt number along the bottom heated wall of 

cavity with Richardson number for L = 0.35 at Pr = 0.71, Ha = 10 and λ = 2 
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The variation of the local Nusselt number distribution along the bottom heated wall 

of the enclosure for D = 0.50, Pr = 0.71, L = 0.35 and Ha = 10 varying Richardson 

number (Ri) is shown in Figure 4.11. It can be seen from the figure that the local 

Nussult number increases with increasing Richardson number in a major portion of 

the bottom heated wall. It is also observed that the middle of the bottom wall (fin tip 

position D = 0.50 and thickness B = 0.04) the local Nusselt number is zero and does 

not change significantly with the increase in the Richardson number. 

4.2.2 Effects of Hartmann number  

The influence of Hartman number on the streamlines and isotherms for different 

values of Ha (= 0.0, 20.0, 40.0, 60.0) with Ri = 1.0, Pr = 0.71, L = 0.35, A = 0.1 and 

λ = 2 has been demonstrated in figure 4.12 (a)–(b) in terms of dimensionless velocity 

profiles and local Nusselt number along the horizontal centre line of the cavity are 

shown in Figure 4.13 and Figure 4.14 respectively. From Figure 4.12 (a) it can be 

seen that when Ha = 0 the strength of buoyancy force inside the cavity is more 

significant and two vortices appear inside the cavity which one major vortex is 

produced by the movement of the lid wall and another one is minor vortex is 

produced by the right half of the cavity. Again when Ha = 20 and 40 the strength of 

buoyancy force inside the cavity is significant and two vortices appear inside the 

cavity. Further again when Ha = 60, produced are also two vortices appear inside the 

cavity. The physical fact behind it’s that the flow circulation decreases with 

increasing Hartmann number (increasing the strength of the magnetic field).         

This is because; applied magnetic field tends to slow down the fluid motions within 

the cavity. This means that the flow field strongly depends on the effect of a 

magnetic field.  

On the other hand, conduction dominant heat transfer is observed from the isotherms 

are almost similar for every Hartmann number and uniformly distributed due to the 

different values of Hartmann number (Ha) is shown in Figure 4.12 (b); which is 

consistent to the effect of the magnetic field. 
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Figure 4.12: Effect of Hartmann number on (a) streamlines and (b) isotherms 

for L = 0.35, Pr = 0.71, Ri = 1 and λ = 2 
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Figure 4.13: Variation of velocity profiles along the horizontal centre line of cavity 

for L = 0.35, B = 0.04, D = 0.50, Ri = 1 and Pr = 0.71 varying Ha 

The effect of the Hartmann number (Ha) on the vertical component of the velocity 

profiles along the horizontal centre line of the cavity at L = 0.35 and Ri = 1 is 

displayed in Figure 4.13. It can be observed that the changing rate of velocity is 

almost similar for every Hartmann number but different from each other. Moreover, 

the absolute value of the maximum and minimum value of the velocity increases 

with decreasing Hartmann number (Ha).  

 

Figure 4.14: Variation of local Nusselt number along horizontal centre line of cavity 

for L = 0.35, B = 0.04, D = 0.50, Ri = 1 and Pr = 0.71 varying Ha 
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The variation of the local Nusselt number distribution along the horizontal centre line 

of the enclosure for D = 0.50, Pr = 0.71, L = 0.35 and Ri = 1 varying Hartmann 

number (Ha) is shown in Figure 4.14. It can be seen from the figure that the 

changing rate of local Nusselt number is similar for every Hartmann number but 

different from each other. Moreover, the local Nusselt number has two concaves up 

and one concave down the effect of Hartmann number. 

4.2.3 Heat Transfer Rates 

In this section, results of the numerical investigation of mixed convection heat 

transfer in presence of magnetic field in a lid-driven wavy cavity having vertical fin 

are numerically presented. The average Nusselt number versus Hartmann numbers 

and Richardson numbers heat transfer rates are shown in Figure 4.15-4.16 and heat 

transfer rates Table 4.3-4.4 given below.  

 
Table 4.3: Numerical values of average Nusselt number against Ha on the right cold 

wall for selected value Ri while Pr = 0.71, L = 0.35, B = 0.04 and D = 0.50 

Average Nusselt Number (Nuav) 
Ha 

Ri = 0.1 Ri = 1 Ri = 5 Ri = 10 

0 6.5975  6.6529  6.9985  7.3648 

20 6.5761  6.6137  6.9367  7.3077 

40 6.5713  6.6105  6.9271  7.2946 

60 6.5625  6.6027  6.9129  7.2841 

 

Figure 4.15 illustrate the average Nusselt number (Nuav) versus Hartmann number 

along the right cold wall for various Richardson number (Ri) with fin length L = 0.35 

while the value of the remaining parameters is kept fixed. It can be seen from this 

figure, the average Nusselt number increases when the value of the Richardson 

number increases. At a constant Richardson number, with a decrease in Hartmann 

number the buoyancy force increases and the heat transfer are enhanced. 
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Figure 4.15: Variation of the average Nusselt number against Ha for selected value 

Ri while Pr = 0.71, L = 0.35, B = 0.04 and D = 0.50 

Table 4.4: Numerical values of average fluid temperature against Ri for selected 

value Ha while Pr = 0.71, L = 0.35, B = 0.04 and D = 0.50 

Average Temperature (θav) 
Ri 

Ha = 0 Ha = 20 Ha = 40 Ha = 60 

0.1 0.47661 0.47465  0.47373  0.47348  

1 0.48250 0.48091  0.48014  0.47993  

5 0.50282 0.49889  0.49654  0.49577  

10 0.50690 0.50181  0.49879 0.49780  
 

Figure 4.16 illustrate the average fluid temperature (θav) versus Richardson number 

(Ri) for various values of Hartmann number (Ha) with the fin length L = 0.35, while 

the value of the remaining parameters is kept constant. It can be seen from this 

figure, average fluid temperature increases when the value of Ha decreases. It is also 

seen from this figure, average fluid temperature increases steadily with increasing 

value of Richardson number when Hartmann number is kept constant. 
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Figure 4.16: Variation of the average fluid temperature against Ri for selected value 

Ha while Pr = 0.71, L = 0.35, B = 0.04 and D = 0.50 

Table 4.3 - 4.4 represent the values of the average Nusselt number and average fluid 

temperature respectively for considered parameters including Ri, Pr, Ha, L = 0.35 

and B respectively. Both the numerical result indicates that the average Nusselt 

number and average fluid temperature increases with increasing the value of Ri and 

decrease with the higher value of Ha.  

Finally, both heat transfer rate and average temperature increase with increasing of 

Richardson number for all values of Hartmann number. At a constant Hartmann 

number, with the increase in Richardson number the buoyancy force increases and 

heat transfer is enhanced. 

4.3 CASE 3 (Effect of Fin Length When L = 0.45) 

In this section, results of the numerical investigation of mixed convection heat 

transfer in presence of magnetic field in a lid-driven wavy cavity having vertical fin 

are numerically presented. The results have been obtained fin length 0.45 for the 



Chapter 4 

 57

Richardson number, Hartmann number and the rate of heat transfer. The results of 

this parametric study are shown in Figure 4.17- 4.24.  

4.3.1 Effect of Richardson number 
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Figure 4.17: Effect of Richardson number on (a) streamlines and (b) 

isotherms for L = 0.45, Pr = 0.71, Ha = 10 and λ = 2 
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The effects of Richardson number Ri (= 0.1, 1.0, 5.0, 10.0) on streamlines and 

isotherms for the present configuration at Ha = 10, Pr = 0.71, L = 0.45, A = 0.1 and  

λ = 2 has been demonstrated in Figure 4.17 (a)–(b) in terms of velocity profiles along 

the horizontal centre line and local Nusselt number along the bottom hot wall are 

shown in Figure 4.18 and Figure 4.19 respectively. From Figure 4.17 (a), it is seen 

that when Ri = 0.1 the strength of buoyancy force inside the cavity is significant and 

one vortex appear inside the cavity generated by the movement of the lid wall. Again 

when Ri = 1 the flow structure is similar to Ri = 0.1 but two vortices appear inside 

the cavity which one is major vortex and another one is a minor vortex. Further again 

when Richardson number increases (Ri = 5 and 10), the strength of the buoyancy 

force is more significant and two vortices appear to move down the right half and left 

half of the cavity. The physical fact behind it’s that the greater effect of the 

Richardson number increases the buoyancy force to influence the flow field. 

Conduction dominant heat transfer is observed from the isotherms in Figure 4.17 (b) 

at L = 0.45 and Ha = 10, it is clear that the thick thermal boundary layer exists near 

to the heated walls and the fin surface due to the lower value of Ri = 0.1 and these 

become thinner with higher value of Ri = 10. The curvature of the isotherms 

increases with increasing Ri and the heat lines are condensed to the wavy walls and 

the fin surface, which means increasing heat transfer through convection. 

 

 
Figure 4.18: Variation of velocity profiles along the horizontal centre line of cavity 

with Richardson number for L = 0.45, at Pr = 0.71, Ha = 10 and λ = 2 
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The effect of Richardson number on the vertical component of the velocity profiles 

along the horizontal centre line of the cavity at L = 0.45, λ = 2, Pr = 0.71 and         

Ha = 10 is displayed in Figure 4.18. It can be seen from the figure that for lower 

values of Richardson number, velocity profiles bring smaller change but the higher 

value of Richardson number, velocity profiles causes bigher change. Moreover, the 

absolute value of the maximum and minimum value of the velocity increases with 

increasing Richardson number (Ri). 

 
Figure 4.19: Variation of local Nusselt number along the bottom heated wall of 

cavity with Richardson number for L = 0.45 at Pr = 0.71, Ha = 10 and λ = 2 

The variation of the local Nusselt number distribution along the bottom heated wall 

of the enclosure for D = 0.50, Pr = 0.71, L = 0.45 and Ha = 10 varying Richardson 

number (Ri) is shown in Fig. 4.19. It can be seen from the figure that the local 

Nussult number increases with increasing Richardson number in a major portion of 

the bottom heated wall. It is also observed that the middle of the bottom wall (fin tip 

position D = 0.50 and thickness B = 0.04) the local Nusselt number is zero and does 

not change significantly with the increase in the Richardson number. 

4.3.2 Effect of Hartmann number 

The influence of Hartman number on the streamlines and isotherms for different 

values of Ha (= 0.0, 20.0, 40.0, 60.0) with Ri = 1.0, Pr = 0.71, L = 0.25, A = 0.1 and 

λ = 2 has been demonstrated in Figure 4.20 (a)–(b) in terms of dimensionless 
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velocity profiles and local Nusselt number along the horizontal centre line of the 

cavity are shown in Figure 4.21 and Figure 4.22 respectively.  
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Figure 4.20: Effect of Hartmann number on (a) streamlines and (b) isotherms 

for L = 0.45, Pr = 0.71, Ri = 1 and λ = 2 
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From figure 4.20 (a) it can be seen that when Ha = 0 the strength of buoyancy force 

inside the cavity is more significant and two vortices appear inside the cavity which 

one major vortex is produced by the movement of the lid wall and another one is 

minor vortex is produced by the right half of the cavity. Again when Ha = 20, 40 and 

60 the strength of buoyancy force inside the cavity is significant and also two 

vortices appear inside the cavity which one major vortex is produced by the 

movement of the lid wall and another one is minor vortex is produced by the right 

half of the cavity but the vorticity decreases with increasing Hartmann number. The 

physical fact behind it’s that the flow circulation decreases with increasing 

Hartmann number. This is because; applied magnetic field tends to slow down the 

fluid motions within the cavity. This means that the flow field strongly depends on 

the effect magnetic field. On the other hand, conduction dominant heat transfer is 

observed from the isotherms are almost similar for every Hartmann and uniformly 

distributed due to the different values of Hartmann number (Ha) is shown in Figure 

4.20 (b); which is consistent to the effect of the magnetic field. 

 
Figure 4.21: Variation of velocity profiles along the horizontal centre line of cavity 

for L = 0.45, B = 0.04, D = 0.50, Ri = 1 and Pr = 0.71 varying Ha 

The effect of Hartmann number (Ha) on the vertical component of the velocity 

profiles along the horizontal centre line of the cavity at L = 0.45 and Ri = 1 is 

displayed in Figure 4.21. It can be observed that the changing rate of velocity is 

similar for every Hartmann number but different from each other. Moreover, the 
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absolute value of the maximum and minimum value of the velocity increases with 

decreasing Hartmann number. 

 
Figure 4.22: Variation of local Nusselt number along horizontal centre line of cavity 

for L = 0.45, B = 0.04, D = 0.50, Ri = 1 and Pr = 0.71 varying Ha 

The variation of the local Nusselt number distribution along the horizontal centre line 

of the enclosure for D = 0.50, Pr = 0.71, L = 0.45 and Ri = 1 varying Hartmann 

number (Ha) is shown in Figure 4.22. It can be seen from the figure that the 

changing rate of local Nusselt number is similar for every Hartmann number but 

different from each other. Moreover, the local Nusselt number has two concaves up 

and two concaves down the effect of Hartmann number. 

4.3.3 Heat Transfer Rates 

In this section, results of the numerical investigation of mixed convection heat 

transfer in presence of magnetic field in a lid-driven wavy cavity having vertical fin 

are numerically presented. The average Nusselt number versus Hartmann numbers 

and Richardson numbers heat transfer rates are shown in Figure 4.23-4.24 and heat 

transfer rates Table 4.5-4.6 given below.  
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Table 4.5: Numerical values of average temperature of the fluid against Ri for 

selected value Ha while Pr = 0.71, L = 0.45, B = 0.04 and D = 0.50 

Average Nusselt Number (Nuav) 
Ha 

Ri = 0.1 Ri = 1 Ri = 5 Ri = 10 

0 6.8217 6.8786 7.2917 7.6491 

20 6.7948 6.8405 7.2264 7.5774 

40 6.7801 6.8277 7.2179 7.5638 

60 6.7693 6.8163 7.2056 7.5490 
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Figure 4.23: Variation of the average Nusselt number against Ha for selected value 

Ri while Pr = 0.71, L = 0.45, B = 0.04 and D = 0.50 

Figure 4.23 depict that the average Nusselt number (Nuav) versus Hartmann number 

along the right cold wall for various Richardson number (Ri) with fin length L = 0.45 

while the value of the remaining parameters is kept fixed. It can be seen from this 

figure, the average Nusselt number increases when the value of the Richardson 

number increases. At a constant Richardson number, with a decrease in Hartmann 

number the buoyancy force increases and the heat transfer are enhanced.  
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Table 4.6: Numerical values of average temperature of the fluid against Ri for 

selected value Ha while Pr = 0.71, L = 0.45, B = 0.04 and D = 0.50 

Average Temperature (θav) 
Ri 

Ha = 0 Ha = 20 Ha = 40 Ha = 60 

4 0.50535  0.50380  0.50300  0.50276 

1 0.51077  0.50924  0.50839  0.50813 

5 0.52929  0.52568  0.52345  0.52270 

10 0.53403  0.52920  0.52627  0.52530 
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Figure 4.24: Variation of the average fluid temperature against Ri for selected value 

Ha while Pr = 0.71, L = 0.45, B = 0.04 and D = 0.50 

Figure 4.24 illustrate the average fluid temperature (θav) versus Richardson number 

(Ri) for various values of Hartmann number (Ha) with the fin length L = 0.45, while 

the value of the remaining parameters is kept constant. It can be seen from this 

figure, average fluid temperature increases when the value of Hartmann number 

decreases. It is also seen from this figure, average fluid temperature increases 

steadily with increasing value of Richardson number when Hartmann number is kept 

constant. 
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Table 4.5 - 4.6 represent the values of the average Nusselt number and average fluid 

temperature respectively for considered parameters including Ri, Pr, Ha, L = 0.45 

and B respectively. Both the numerical result indicates that the average Nusselt 

number and average fluid temperature increases with increasing the value of Ri and 

decrease with the higher value of Ha.  

Finally, both heat transfer rate and average temperature increase with increasing of 

Richardson number for all values of Hartmann number. At a constant Hartmann 

number, with the increase in Richardson number the buoyancy force increases and 

heat transfer is enhanced. 

4.4 FIN EFFECTIVENESS 

In this section, results of the numerical investigation of mixed convection heat 

transfer in presence of magnetic field in a lid-driven wavy cavity having vertical fin 

are numerically presented. The results have been obtained fin effectiveness for the 

Richardson number versus Hartmann number. The results of this parametric study 

are shown in Figure 4.25- 4.28 and numerical values are shown in Table 4.7- 4.10.  

Table 4.7: Numerical values of fin effectiveness as a function of Ri for different 

values of Ha while Pr = 0.71, L = 0.25, B = 0.04 and D = 0.50 

Fin Effectiveness (εf) 
Ri 

Ha = 0 Ha = 20 Ha = 40 Ha = 60 

0.1 1.081425 1.080930 1.079222 1.075849 

1 1.087349 1.087252 1.086481 1.084033 

5 1.103860 1.103765 1.103278 1.101785 

10 1.118086 1.117703 1.116529 1.114484 

 

The below Figure 4.25 depict that the effect of Richardson number on fin 

effectiveness (εf) while the controlling parameters are Pr = 0.71, Ha = 0, 20, 40, 60, 

L = 0.25, B = 0.04 and D = 0.50.  It can be seen from this figure, the fin effectiveness 

increases associated with the increasing values of the Richardson number when the 
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Hartmann number is kept constant. It is also seen from this figure, fin effectiveness 

increases steadily due to decreasing the Hartmann number when the Richardson 

number is kept unchanged. In this case, the maximum and minimum fin effectiveness 

are 1.118086 and 1.075849 respectively which is εf > 1 indicates that the fins are 

enhancing heat transfer from the enclosure. 
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Figure 4.25: Variation of fin effectiveness against Ha for selected value of Ri while 

Pr = 0.71, L = 0.25, B = 0.04 and D = 0.50 

Table 4.8: Numerical values of fin effectiveness as a function of Ri for different 

values of Ha while Pr = 0.71, L = 0.35, B = 0.04 and D = 0.50 

Fin Effectiveness (εf) 
Ri 

Ha = 0 Ha = 20 Ha = 40 Ha = 60 

0.1 1.132538 1.132198 1.130892 1.126286 

1 1.138264 1.138125 1.138077 1.135724 

5 1.153317 1.153249 1.153224 1.152160 

10 1.169180 1.168798 1.167629 1.165381 
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Figure 4.26: Variation of fin effectiveness against Ha for for selected value of Ri 

while Pr = 0.71, L = 0.35, B = 0.04 and D = 0.50 

The above Figure 4.26 depict that the effect of Richardson number on fin 

effectiveness (εf) while the controlling parameters are Pr = 0.71, Ha = 0, 20, 40, 60, 

L = 0.35, B = 0.04 and D = 0.50.  It can be seen from this figure, the fin effectiveness 

increases associated with the increasing Ri when the Hartmann number is kept 

constant. In this case, the maximum and minimum fin effectiveness are 1.169180 and 

1.126286 respectively which is εf > 1 indicates that the fins are enhancing heat 

transfer from the cavity 

Table 4.9: Numerical values of fin effectiveness as a function of Ri for different 

values of Ha while Pr = 0.71, L = 0.45, B = 0.04 and D = 0.50 

Fin Effectiveness (εf) 
Ri 

Ha = 0 Ha = 20 Ha = 40 Ha = 60 

0.1 1.183970 1.183324 1.180897 1.175560 

1 1.187686 1.187577 1.187263 1.184662 

5 1.197163 1.197054 1.196953 1.195186 

10 1.211730 1.211083 1.209867 1.207140 
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Figure 4.27: Variation of fin effectiveness against Ha for for selected value of Ri 

while Pr = 0.71, L = 0.45, B = 0.04 and D = 0.50 

The above Figure 4.27 depict that the effect of Richardson number on fin 

effectiveness (εf) while the controlling parameters are Pr = 0.71, Ha = 0, 20, 40, 60, 

L = 0.45, B = 0.04 and D = 0.50.  It can be seen from this figure, the fin effectiveness 

increases associated with the increasing values of the Richardson number when the 

Hartmann number is kept constant. It is also seen from this figure, fin effectiveness 

increases steadily due to decreasing Ha when Ri is kept unchanged. In this case, the 

maximum and minimum fin effectiveness are 1.211730 and 1.175560 respectively 

which is εf > 1 indicates that the fins are enhancing heat transfer from the cavity. 

Table 4.10: Numerical values of fin effectiveness as a function of fin length for 

different values of Ri while Pr = 0.71, Ha = 20, B = 0.04 and D = 0.50 

Fin effectiveness ( )fε  
L 

Ri = 0.1 Ri = 1 Ri = 5 Ri = 10 

0.25 1.080930 1.087252 1.103765 1.117703 

0.35 1.132198 1.138125 1.153249 1.168798 

0.45 1.183324 1.187577 1.197054 1.211083 
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Figure 4.28: Variation of fin effectiveness against Ri for selected value of L while    

Pr = 0.71, Ha = 20, B = 0.04 and D = 0.50 

The above Figure 4.28 depict that the effect of fin length on fin effectiveness while 

the controlling parameters are Pr = 0.71, Ri = 0.1, 1, 5, 10, Ha = 20, B = 0.04 and    

D = 0.50. It can be seen from this figure, the fin effectiveness increases associated 

with increasing values of fin length when the Richardson number is kept constant. It 

is also seen from this figure, fin effectiveness increases steadily due to increasing the 

Richardson number when the fin length is kept unchanged. In this case, the 

maximum fin effectiveness is 1.211083 at the fin length L = 0.45 and Ri = 10. 

Table 4.7 - 4.10 represent the values of fin effectiveness for considered parameters 

including Ri, Pr, Ha, L, B respectively. The numerical result indicates that the fin 

effectiveness increases with the increased value of  Ri and L and decrease with the 

higher value of Ha. Moreover, fin effectiveness is greater than 1 for each fin length 

and εf > 1 indicates that the performance of the fins is enhancing heat transfer from 

the enclosure. 



CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

The effect on the flow structure and heat transfer behaviors for mixed convection 

heat transfer in presence of magnetic field in a lid-driven wavy cavity having vertical 

fin has been studied numerically. Finite element method is used to solve governing 

equations. Comparisons with the published works are performed and found to be in 

excellent agreement. The influences of Richardson number, Hartmann number and 

size of fin length of the wavy cavity have been reported. The various ideas and 

results have been discussed in detail in the relevant chapters of the thesis. In the 

present chapter, an attempt is made to summarize the concepts presented and results 

obtained in the work reported already. A section on the scope of further work on 

associated fields of investigation is also included. 

SUMMARY OF THE MAJOR OUTCOMES 

Three different fin length as Case-1 (L = 0.25), Case-2 (L = 0.35) and                  

Case-3 (L = 0.45) where Prandtl number chosen as Pr = 0.71 is used. 

The following conclusions can be drawn from the present study: 

(i) Flow strength and heat transfer increases with increasing Richardson number in 

all cases. As the Richardson number increases the velocity profiles, local 

Nusselt number and the heat transfer rate as well as the average Nusselt number 

changes. The best result is found at Case-3, for the highest value of Richardson 

number. The mixed convection parameter Ri has significant effects on the flow 

and temperature fields. 

(ii) Flow structure and heat transfer reduces with increasing of Hartmann number 

in all cases. No significant change occurred in isotherms for all values 

Hartmann number. Velocity profiles, local Nusselt number, average Nusselt 

number and the average fluid temperature changes from highest to lowest as Ha 

changes lowest to highest. 
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(iii) The influence of the fin length on fluid flow and temperature field is found to 

be pronounced in all cases. As the fin length increases the heat transfer rate as 

well as the average Nusselt number and average fluid temperature changes. The 

best result is found at L = 0.45. 

(iv) The maximum rate of heat transfer is obtained for the highest Ri with the 

lowest Ha at the fin length L = 0.45. 

(v) The fin effectiveness is enhanced by increasing Ri for different values of Ha. It 

is also found that the fin effectiveness increases with the increase of the         

fin length.  

(vi) The highest fin effectiveness for fin length (L=0.45) and Richardson number        

(Ri =10) is found at the lowest Hartmann number (Ha= 0).  

EXTENSION OF THIS WORK 

The following can be put forward for the further works as follow-ups of the present 

research as. 

 Double-diffusive mixed convection can be analyzed through including the 
governing equation of concentration conservation.  

 Steady flow is considered in this thesis; it can be extended to the unsteady case. 

 Only single fin is considered in this thesis, it can be extended to the parallel or 
series fins. 

 The study can be extended for turbulent flow, different thermal boundary 
conditions such as constant heat flux or radiation. 

 Investigation can be performed by using magnetic fluid instead of electrically 
conducting fluid within the porous medium. 

 Two-dimensional fluid flow and heat transfer has been analyzed in this thesis. 
So this deliberation may be extended to three-dimensional analyses.  

 The study can be extended by choosing different shapes of the cavity. 

 The study can be extended for Nano-fluids. 
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