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ABSTRACT

Open-ended pipe piles are commonly used for offshore foundations. Capacity of an
open-ended pipe pile is controlled by depth and property of the soil within the pile.
Under static loading in compression, open-ended piles may fail in a plugged mode
or in an unplugged mode depending upon the stress conditions of the internal soil.
Due to the development of arching in the internal soil, stresses in the soil increase
exponentially. When the stresses at the base of the internal soil is greater than the
end bearing capacity of pile, the pile may be assumed to fail as a closed ended pile,
in plugged mode. In this study attempts have been made to determine the behaviour
of the soil inside the pile under axial loading. Finite element analysis is performed
by using critical state program- CRISP to investigate the effect of soil depth and
pile diameter on pile capacity. Distribution of stresses in pile and internal soil is
also studied to understand the mechanism of plug development.

Experiments were carried out with varying diameter of piles (three types) having
different depths of internal soil. Density of the internal soil of pipe piles were
measured before and after the experiment. Electronic strain gauges were attached
on the pipe pile outer surface to study the load transfer mechanism.

It was found that depth ratio (LID) and the displacement of pile played the most
important roles in the development of arching in the soil within the pipe pile.
Capacity of soil plug was found to increase linearly with the increase of soil depth
within the pile before the developement of arching. But when arching started to
develop, the pile capacity increased exponentially up to a depth required for the
development of full plugging. It was observed that depth ratio required to develop
arching was about 9 to 15. After the development of full plugging, further increase
of soil depth did not result in significant increase of pile capacity. Attempts was
made to explain the results obtained from experiments by numerical simulation.
Finite element analysis was performed with varying soil properties to simulate the
experimental results. Soil properties were assumed to change in a zone near the pile
tip as suggested by Terzaghi (1936).

An empirical formula has been proposed after extensive study of the experimental
results. The formula is capable of calculating plug capacity for any allowable
settlement. A formula is also proposed to calculate the ultimate plug capacity
assummg allowable settlement of 10%of the pile diameter.
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CHAPTER!

INTRODUCTION

1.1 General

Large diameter pipe piles are commonly used for offshore foundation.
Traditionally, a part of the soil inside the pile is replaced with a concrete plug to
ensure sufficient capacity of internal soil (soil inside the pile). Use of concrete
plug in the pipe piles has a number of disadvantages. Concrete grout shrinks with
time and degrades. This causes the plug capacity to be reduced gradually. On the
other hand, the concrete in pipe causes extra cost of foundation. To avoid the
situation, more recently, use of tubular steel pile without concrete fIll was
proposed for Jamuna multi-purpose bridge in Bangladesh. It was assumed that the
pile may be plugged during driving with soil arching near the pile tip. But due to
uncertainty in its behaviour now concrete filled tube piles are used.

During installation of pile, a plug of soil will move up mside the pile, with the top
of the soil maintaining approximately its original levels. Entrance of soil into the
pile continues until the inner soil cylinder develops sufficient resistance to prevent
further soil intrusion. If the stresses in the inner soil is sufficient to resist further
soil intrusion, the pile will act as a closed ended pile. Thus if the shear resistance
along the length of the soil plug exceeds the end bearing capacity at the base of
the plug, the pile will fail in plugged mode. On the other hand pipe pile will fail in
unpluggedmode when shear failure occur between the soil plug and the pile shaft.
Open ended pipe pile, therefore, might be used without any concrete plugging to
achieve sufficient pile capacity if it can be ensured that the pile is acting in the
plugged mode:

Kishida and Isemoto (1977) have demonstrated experimentally that arching action
of soil within pipe piles lead to a high value of internal friction. If axial stress is
increased at the base of the soil plug, due to arching, the increased axial stress will
lead to a corresponding increase in the lateral stress and hence the skin friction. As
a result shear capacity of the soil plug is increased considerably. If this shear
capacity exceeds the end-bearing capacity of pile, the pile will fail in a plugged
mode.
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Development of arching in the internal soil plug depend on a number of factors
such as depth of soil, relative movement of pile and soil, soil density, pile
diameter etc. Thus the plugging in soil is a complex phenomenon. For this reason
use of pipe pile without concrete grout requires extensive investigations and
research. The present research includes the study of behaviour of open-ended pipe
pile both numerically and experimentally. In the subsequent articles the scope and
the main area of this research are briefly outlined.

1.2 Present State ofTheArt ofResearch Topic

Open-ended pipe piles are widely used for foundations in construction on both
land and offshore. Most open-ended piles will fill up with soil during driving, but
fail as closed ended piles during static loading (Paikowshy et al. 1990). This
frequent occurrence of soil plugging increase the pile capacity sharply. In spite of
this important effect, only limited attention has so far given to the subject.

Some attempts have been made to visualise the behaviour of plug in pipe piles.
Kishida & Isemoto (1947) first demonstrated based on their experiments that
arching of the soil within the pipe pile increases the internal friction to very high
values. Matsumoto and Takei (1991) used wave theory to the offshore open-ended
pipe pile to clarify the effects of the soil plug on the behaviour of the pile during
driving. Comparisons with full scale measurements are necessary to examine the
validity of their conclusions.

One dimensional analysis of the soil plug under partially drained condition in
calcareous soil was performed by Randolph, Leong and Houlsby (1990). They
used [mite difference operators to estimate derivatives and either explicit or
implicit integration in time. Solution procedure is implemented in computer
program SPA (Soil Plug Analysis). An axisymmetric [mite element analysis,
based on the modified Cam Clay soil model was also performed and the
experimental results have been simulated. These analytical and numerical model
do not carry out the full description of real situation. Application of the analysis
has concentrated on carbonate soils and the assumptions comparable internal and
external friction during static loading is highly conservative and inconsistent with
the recent experimentaIevidence.
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Effects of plugging on pile performance and design are examined by Paikowsky et
al (1990) in reference to the aspects: ultimate static capacity, time dependent pile
capacity and dynamic behaviour. The investigation does not attempt to provide
solutions to the associated engineering problems and the results presented can not
be applied to all pile diameters. Besides, results of static and dynamic pile testing
with open-ended steel piles driven into soft rock are presented by Matsumoto,
Michi and Hirano (1995). Thus all of the results provide reliable data for further
research in understanding the behaviour of unplugged pipe pile.

1.3 Objectives of The Research

This research is aimed at studying the behaviour and the load transfer mechanism
of open ended steel pipe piles. The principal objectives of the present research are

a) to observe the load settlement responses of open-ended pipe piles for pipes
of different diameters with different depths of penetrations;

b) to observe the load transfer phenomenon and the distribution of stress in the
pile, and internal and external soil;

c) to determine the parameters affecting the development of plugging in the
internal soil and recommend on the values required to develop plugging;

d) to verify Randolph (et al. 1990)'s one dimensional formula of calculating
plug capacity;

e) to observe experimentally the frictional resistance of soil within a pipe pile
for different depths.

f) to simulate the experimental results numerically and explain the soil
behaviour based on analysis.

3



1.4 ScopeofThe Research

Ultimate goal of the research was to determine the principal parameters affecting
bearing capacity of pipe piles. It is evident that depth of soil and the diameter of
the pile play an important role on the bearing capacity of pile. Since the friction of
the outer soil can be determined in the same way as that of solid pile, emphasis
were given on the behaviour of the soil within the pile.

In order to study the effect of internal soil depth and diameter of pile on plugging
and on bearing capacity of pile numerically, finite element analysis was performed
with varying diameter of piles with different depth of pile penetration. Three
diameter (102 mm, 152 mm and 203 mm) were used in this analysis. Depth of
penetration of piles were taken as 5, 10, and 15 times the pile diameter in all
cases.

Effect of the depth of soil on the development of soil plug is determined from the
above analysis. Depth of soil required for the development of plugging is then
recommended.

Experiments were performed to investigate the response of the internal soil only.
Effects of depth on plug capacity are studied extensively for 102 mm diameter
pile. Depth of soil used in the tests were 5, 7, 9 and 11 times the pile diameter.
Properties of the soil and pile material were determined from the laboratory
experiments.

Plugged and unplugged behaviour of the piles are interpreted from experimental
results reviewed through numerical analysis under various boundary conditions.

4
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2.2

2.1

2.2 Bearing Capacity of Pipe Piles

CHAPTER 2

Bearing capacity of a pipe pile largely depends on the skin friction of the soil
within and outside the pile. Internal skin friction depends on the arching of the
internal soil. Arching phenomena is the outcome of loading in a hollow pile
under a particular geometric configuration with a certain material properties.
This field of study attracted many researchers due to its application in the
construction industry. Load transfer mechanism of open-ended pipe piles has
also been an area of interest.

LITERATURE REVIEW

2.1 Introduction

Interest in the mechanical behaviour of soils arose historically from the needs of
construction on soils. Simulation of geomechanical behaviour are hampered
partly by the heterogeneity of the soil and partly by the complicated mechanical
material behaviour. Understanding of the behaviour of soil can be achieved if
intelligent simplifications of real soil are made and analysis are performed using
simplified models of the real soil. A review of the constitutive models used in
Geomechanics and load transfer mechanism of pipe piles are presented in this
chapter from the available literature.

According to the static approach of calculation, ultimate load capacity of an
open-ended pipe pile can be estimated by using one of the following equations as
appropriate:

where,

Qup = ultimate axial load capacity (Unplugged mode)
Qpl = ultimate axial load capacity (plugged mode)
fso = ultimate unit shaft friction outside the pile



fsi= ultimate unit shaft friction inside the pile
A.,= shaft area of the pile outside
Ai = inside shaft area of the pile
Ap= cross sectional area of the pile base
At = cross sectional area of the steel tip
qp = unit end bearing capacity. It is assumed same for both the steel area

and total cross section

Under static loading in compression open-ended pipe pile shows tendency to fail
in unplugged mode with shear failure occurring between the soil plug and the
pile shaft until the shear capacity along the length of the internal soil exceeds the
end bearing capacity at the base of the pile. In unplugged mode pile fails through
entering of soil into the pile. In that case the ultimate capacity of the pile can be
determined by the equation (2.1).

Kishida and Isemotto (1977) have demonstrated experimentally that arching
action occurs within pipe piles, leading to very high values of internal friction ..
Consequently, as load is applied to the base of the soil plug, the increased axial
stress will lead to a corresponding increase of lateral stress and hence the skin
friction at the pile-soil interface. At a stage inner-soil cylinder develop sufficient
resistance to prevent further soil intrusion. Thus the pile is plugged and it acts as
a closed ended pile. Capacity of closed ended pile can be obtained by using
equation (2.2).

To evaluate the stress components in a working pile, the load transfer mechanism
of the pile should be properly understood. Following sections discuss the load
transfer mechanism of plugged and unplugged pipe pile.

2.2.1 Skin friction of the internal soil

Fig.2.1 shows idealized stress conditions in an open ended pipe pile under (a)
unplugged and (b) plugged condition. Skin friction of the internal soil plays an
important key role in determining whether the soil will fail in unplugged mode or
plugged mode. The term Lf"A, in equation (2.1) express the contribution of
skin friction of the internal soiL In granular soil the value of fsi depends on
various factors, such as soil density, surface roughness. Even with these factors,
an identical shaft friction depend on the arching phenomenon and the normal
stress along the interface (Paikowsky 1989). For a pipe pile of internal diameter

6



I .Figure 2.1 Stresses acting on open pipe pile under (a) Unplugged
and (b) plugged conditions
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13 - Sin<pSin(Ll-0)
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dz [

Figure 2.2 Stress conditionwithin soil plug.

A simple analytical treatment of the soil plug response under drained condition
has been presented by Randolph (1988). As an one dimensional idealisation, the
soil plug is treated as a series of horizontal disc (Fig. 2.2), with each disc acted
upon by vertical stress, o-v at the top and o-v+ do-vat the bottom and shear stress,
fsi at the pile wall. The internal shear stress between the soil and the pile wall
was related to the local vertical stress as

d, containing a soil plug of overall length h, if the average internal skin friction is
assumed to be fsi, the accumulated inside skin friction will be given by

The value of 13 will depend on the ratio of horizontal to vertical effective stress
in the plug, which is difficult to estimate. However, for design purposes a
minimum value of 13 may be obtained by assuming that the soil near the edge of
the plug is of active failure, with internal angle of friction <pand interface friction
angle between soil and pile, O. From the limiting Mohr's circle (Fig. 2.2) it may
be shown that
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This bearing capacity is equivalent to that given by equation (2.3). For the case
of zero surcharge, the plug capacity is

At the base of a soil plug of height h, where the initial effective stress is p +y h,
the limiting end bearing capacity in excess of the initial effective stress is:

where p is an initial effective surcharge acting at z = 0 and y is the effective
unit weight of the soil.

Consideration of the vertical equilibrium of each horizontal slice of soil leads to
an expression for the effective stress at any depth z,

If this end bearing capacity of soil plug exceeds the ultimate static bearing
capacity of the soil below the toe of the pile, then the pile behaves as though it is
closed ended pile, otherwise it behaves as a unplugged pile.

When a pile is loaded under static condition, axial stress at the base of the pile
increases. The effects of stress increase at the base of the soil plug will gradually
propagate up the plug. To mobilise the internal skin friction local relative
displacement between the central part of the plug and the pile wall is necessary.
The displacement to mobilise internal skin friction is proposed to be of the order
of 0.2-0.5% of the pile diameter (Randolph, 1987). The length of plug over
which internal skin friction is mobilised is active length of plug (Fg.2.3). Weight
of the soil above that depth may be treated as surcharge. For analyses it is



Pipe pile
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2.8

Active length
of plug, 1

+t#
cr=yh+&}

z

fso =Kp tane

h

2.2.2 Skin friction of the outer soil

convenient to take the datum for z at the depth where skin friction mobilisation
start.

Figure2.3Conceptof activelengthof soilplug.

The interaction between the soil and the pile is very complex and poorly
understood. A little attention has been given so far in the theoretical
determination of side friction in sand. Meyerhof (1959) and Nordlund (1963)
considered this portion of bearing capacity of piles with adequate attention. The
determination of the ultimate unit side resistance foo, is based on the laws of
mechanics, considering friction between two different surfaces. The magnitude
of foo is commonly determined using

in which K is the coefficient of lateral earth pressure, p is the average effective
overburden pressure along the segment of pile being considered and tane is the
coefficient of friction between pile and the soil.

Meyerhof and Nordlund dealt theoretically with the problem of the
determination of the lateral earth pressure coefficient, K. Potyondy (1961)
determined the coefficient of friction between various construction materials and
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Figure 2.4 Simplified distribution of vertical stress adjacent to pile in sand
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2.2.3 Skin friction by J3 method

2.9
L

Q, = f f"dA, = f ccr~k tanOdz
o

On the basis of the test results of Vesic (1967), values of Ktano and the
dimensionless critical depth ZJd have been evaluated. Meyerhof (1956) also
suggested more appropriate values of these parameter. Relationship between K
tano and <P and ZJd and <P are shown in Fig. 2.5.

c is a factor provided to calculate skin friction area.

Three procedures are currently used for computing the skin resistance of piles in
cohesive soils. These will be called cr, A and J3 methods. The J3 method is also
used for pile in cohesionless soils and hence discussed here. In all the methods
the skin resistance capacity part of the bearing capacity equation is computed as

p, = LA,f,

where fs = skin resistance to be computed

Some design approaches have effectively incorporated Vesic's fmdings by
specifying an upper limit to the shaft resistance. An idealised distribution of
effective vertical stress, cr~ with depth adjacent to a pile in shown in Fig.2A. cr~
is assumed to be equal to the overburden pressure up to some critical depth Zc ,

beyond which cr ~ remains constant. Then the frictional contribution of the outer
soil is given by

Vesic (1977) proposed a different approach for the determination of tano. The
sand located at the interface between the soil and the pile is considered to be at a
state of ultimate failure for determination of side resistance. Consequently the
angle of friction between the pile and the soil, 0 is independent of the soil
density and pile material. It is considered equal to the residual friction angle of

the sand, <Pres.

cohesionless soils using direct shear tests in the laboratory. In addition to the
determination of the coefficient of friction, tano between the soil and the pile
materials, the angle of internal friction of the sand, <Pwas also determined.
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As= effective pile surface area on which fs acts.

2.1Ocf, = P(q+q,)

As previously used, q = average effective vertical stress for the ith element of
length L and the friction coefficient, f = tan3. So an estimate for the soil-to-pile
friction angle must be made.

Most authorities agree that fs in Eq. (2.10) does not increase indefinitely with
depth but rather, beyond some critical depth LIB it increases at an ever
decreasing rate. Bhushan (1982) suggests for large displacement piles (closed
end pipe, solid concrete, possibly open end pipe with a plug) that a reasonable
estimate for K and 13 be as follows:

1. Soil remoulding adjacent to the pile during driving reduces the effective
stress cohesion intercept on a Mohr's circle to zero.

3. The major shear distortion during pile loading is confmed to a relatively thin
zone around the pile shaft and drainage of this thin zone occurs rapidly
during loading - or has already occurred in the delay between driving and
loading.

2. The effective stress acting on the pile surface after dissipation of excess pore
pressures generated by volume displacement is at least equal to the
horizontal effective stress (Ko) prior to pile installation.

-
f, = Kq tan 15 2. lOa

Taking 13 =Ktan3 , the equation for skin resistance can be written as
f, = pq 2. lOb

Since q = effective overburden pressure at Zi, modifYingfor a surcharge qs to

With these assumptions Burland (1973) developed a simple design equation
written as

The 13 method was suggested by Burland (1973) and makes the following
assumption:



where Dr is the relative density (as a percent). SPT correlation might be used to
obtain Dr with depth.

TABLE 2.1 - Recommended value of lateral earth pressure coefficient for
different pile

2.12

2.11

Lateral earth pressure co-efficient
1.4 to 1.9
1.2 to 1.3
1.45 to 1.6

1.25
0.4 to 0.9
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<P = <Po - 5.5 log qen
qo

J3= K tan15= 0.18 + 0.0065Dr
K = 0.50 + 0.008Dr

Type of pile
H piles
Pipe piles
Precast square concrete piles
Timber (1 test)
Tension test (8 all types)

Some persons suggest a maximum for 8 on the order of 0.5 to 0.75q>/ , while
others routinely use q>/. It has already been pointed out that 8 is dependent on
the normal pressure at the interface of soil and pile.

Finally, the lateral earth pressure coefficient is questioned. While some use the
given equation (2.11) for K in terms of relative density, there are others who use
somewhat arbitrary choices based on load tests performed or reported in the
literature. For example, Mansur and Hunter (1970) in an extensive pile test
program found values as follows

where q>is the angle of internal friction at the effective normal pressure qen at
depth of interest, q>ois the reference angle obtained at an effective normal

pressure qo.

Zeitlen and Paikowsky (1982) suggest that the "limiting fs" can be accounted for
the decrease in q>with effective normal confIning pressure using the following
equation:



2.2.4 End bearing

The theoretical determination of the point load has received intensive attention
through the years. According to Vesic (1967) the theoretical approach to solve
this problem was started by Prandtle (1920) and Reissner (1924). They initiated
with the assmnptions that soil is elasto-plastic material and the failure is
punching failure (Fig.2.6). Main characteristics of a punching failure is that there
will be no well defined shear zones at the sides of the footing and no heave will
occurs. Terzaghi (1943) extended the classical work on punching failure done by
Prandtl and Reissner.

Meyerhof (1953) proposed rigid plastic soil model which means that there are no
strains at any point until the failure condition is fulfilled (Fig.2.7a). On the other
hand Bishop Collingridge and O'Sullivan (1948) and Vesic (1977) considered
the soil to be compressible which was more realistic (Fig.2.7b) Vesic considered
soil failure induced by the pile point as a special case of the expansion of a
cavity inside a solid mass (Fig. 2.9).

In all the theoretical solution the ultimate unit point resistance, qo is usually
expressed in the form (Coyle and Castello, 1981):

where, y, is the effective unit weight of the soil at the pile points, b is the least
foundation dimension, (/vo is the effective overburden pressure at the pile point
level; C is the cohesion of the soil, Sy, Sc , Sq are the shape factors and Ny, Nc,
Nq are bearing capacity factors, usually depending upon the soil friction angle
and the assmned pattern or mechanism of failure.

The first term of the equation (2.13) is very small in comparison to the remaining
part and can be neglected. For cohesionless soil the second part of the equation
can be neglected. The fmal simplification concerns thus the form of the
remaining term. For pipe pile of circular shape the shape factor is same and so it
is reasonable to use the only bearing capacity factor Nq that incorporates this
constant shape factor. Therefore, the commonly used form of end bearing
capacity,

15
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2.14

Dc:; l5B
Dc:; l8B

For loose sand Dc:; 7B
For medium dense sand
For dense sand

2.3 Constitutive Models

The modelling of materials is primarily governed by their stiffness and strength
of the materials. Coulomb (1776) gave a kaleidoscopic views on geotechnical
engineering, the formulation of the friction law with cohesion and the
calculations related to an earth retaining wall. The first plasticity model
involving stresses and concerning the strength was formulated by Tresca in 1868.
He included shear criteria for the yielding of materials. In 1882,Mohr

Soil shows inelastic or plastic behaviour when loaded. For this, recent finite
element analysis incorporates a elastic-plastic strain hardening-softening soil
models. Study and analyses of the behaviour of materials that experience plastic
deformation constitutes the theory of plasticity. Thus the reviews in this section
are mainly based on information of the theory of plasticity.

All of the bearing capacity theories require the evaluation Nq for the use in
Eq.(2.l4), shonld be considered. A smumary of the ranges of values of Nq

according to the different theories is presented in Table 2.2. It is evident that
there are major deviation from one theory to another, leading to the conclusion
that the true failure mechanism is not, generally well understood. Zeitlen and
Paikowsky (1982) proposed relation ofNq which may be used for pipe pile.

The limiting point bearing in a cohesionless soil is given for %~D~ as

qrnax=Ap(50Nq)tan<p 2.15

qprnaxis the limiting value of qpat the critical depth Dc.

Vesic observed that ultimate base resistance become constant beyond a certain
depth of penetration known as critical depth. That is, the end resistance,

qp = cr~oNq:::;qmax
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(a)

Strain

Figure 2.7 (a) Stress - Strain curve for Plastic Material
(b) Stress - Strain Curve for Comprsssive Material

Figure 2.6(a) Stress - Strain diagram for Elasto Plastic Material
(b) Punching Failure Pattern

Stressl--------
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Soil in Plastic Range

~ Elastic Zone

r Plastic Zone

Conical Wedge

1

Figure 2.9 Expansion of a Spherical Cavity

Figure 2.8 Vesic Model of Pile Behaviour
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2.16

2.17

2.18

cr=EE

{cr} = [C]{E}

O'ij ::::Cjjkl8kl

For three dimensional bodies, the generalised Hooke's law can be expressed as:

An elastic materials in general can be non-linear (Fig 2-1O(a)). A special case is
that of linear elastic behaviour (Fig. 2-1O(b)). The linear elastic Hooke's law is
the simplest example of a constitutive law; for uniaxial loading it can be
expressed as:

where cr is the stress, E the strain and E the response parameter commonly
known as the Young's modulus.

For an elastic materials, the state of stress is a function of the current state of
deformation only. An elastic medium returns to its initial state after a cycle of
loading and unloading.

2.3.1 Elasticity model

or

represented failure by a line tangential to circles representing the stress
. conditions at failure. von Mises formulated a yield criterion for metals based on
a strain energy per unit of volume in distortion as a criteria for failure.
Development of Geomechanical modelling began inunediately after an era of
huge mathematical impulse from the work of Bernouli, Euler, Leibnitz, Green
etc. Here follows a brief description of some constitutive models.

where the fij are response functions.

In general, the relation for non-linear elastic law can be expressed as a unique
..relation stress and strain as:



Table 2.2 _Bearing Capacity Factors for Deep Foundation (Vesic. 1972, 1977)

Approximate Nq Values for Various

Theories Friction Angles, qJ , in degree

25 30 35 40 45

De Beer (1945) 59 155 380 1150 4000

Mayerhof (1953): Driven piles 38 89 255 880 4000

Caquot-Kerisel (1956) 26 55 140 350 50

Brinch Hansen (1961) 23 46 115 350 1650

Skempton- Yassin-Gibson (1953) 46 66 110 220 570

Brinch- Hansen (1951) 32 54 97 190 400

Berezantsev (1961) 16 33 75 186 ----

Vesic (1963) 15 28 58 130 315

Vesic (1972): I, = 60 36 46 57 70 84

I, = 200 60 79 103 131 164

Terzaghi (1943): General shear 12.7 22.5 41.4 81.3 173.3

: Local shear 5.6 8.3 12.6 20.5 53.1

I, =Rigidity Index

20
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(b)

a

. c .
(J'ij::::: ijkl E kl

(a)

a

2.3.2 Plasticity models

Figure 2.10 Elastic models: (a) nonlinear elastic; (b) linear elastic

2!

Materials that retain a P.art of the deformation on unloading is called inelastic or
plastic materials. When plastic material is loaded both elastic and plastic
deformation will occur.

where CJ is the stress, CJ. the rate of stress, E the strain and E. the rate of strain.
Cijkl is the response function of only the stress tensor.

The behaviour of hypo-elastic material is dependent on the stress path followed.
Behaviour of such materials can be simulated from increment to increment rather
than for entire load or stress at a time. A simplest form of constitutive law can be

expressed as:

Basic laws and equations governing problems in engineering are derived on the
basis of the energy stored in a body. There is a defInite relationship between the
potential of force spent to perform work in deforming a body and the internal
strain energy due to deformation. On the basis of this concept Cauchy and Green
derived constitutive laws for non-linear elasticity of hyperelastic materials (Desai
& Siriwardane, 1984, pp 83). Cauchy's approach is based on the assumption that
for elastic material stress is a function of strain. Green's elastic material models
are derived, based on the concept that no energy is dissipated during the
deformation process.
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2.20

F

F=F(Oll'0'22'0'33' 0'12' 0'23' 0'13)

C t:
Plaslic I Ebstic

I

This can also be expressed more conveniently in term of the invariant of the

stress tensor as follows:

B

22

Figure 2.11 Typical stress-strain curve for metal under uniaxial tension

a

Two major aspects that constitute the theory of plasticity are the yield criteria
and post yield behaviour. The yield criteria can be defined as the limit of elastic
deformations expressed by a combination of states of stress. In case of yielding
of materials under three-dimensional states of stress, it is convenient to define a

scalar function F as the yield criteria.

The elastic strain increment is assumed to be completely described within the
framework of incremental Hooke's law, when bulk modulus K and shear
modulus, G can be a relevant function of stress invariant or other state variables.

where the superscripts e and p denote elastic and plastic components

respectively.

In plasticity models, total incremental strain is decomposed into
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2.24

2.22

The equation of yield surface can be written as:

where k is the yield strength of material determined from pure shear. According
to Tresca yield criterion,

0"1 - 0"3 = :t O"y

0"2 - 0"3 = :t O"y 2.23
0"3 - 0"1 = :t O"y

Tresca (1869) proposed that yield criterion depends only on the invariant of
deviatoric stresses Sij . According to this criterion, yielding will initiate when the
maximum value of the extreme shear stress is reached. In this theory, yield
strength in tension and compression has been assumed to be equal. The Tresca
criterion can be expressed in terms of principal stresses as follow:

where J1 , J2 and J3 are the invariant of the stress tensor.

Different proposed yield criteria are discussed in the following sections.

where 0"1 , 0"2 and 0"3 are major, intermediate and minor principal stresses
respectively and O"y is yield stress of material under uniaxial condition.

(a) Tresca model

Experimental evidence shows that the yielding of a metal is not affected
significantly by moderate hydrostatic pressure (Desai & Siriwardane, 1984). This
leads to the conclusion that the yield criterion depends essentially only on the
deviatoric stress. Therefore, the yield function can be expressed in terms of the
invariant of the deviatoric stress tensor as

where J2D and J30 are the second and third invariant of the deviatoric stress
tensor.
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In case of frictional materials, yielding will depend on fIrst invariant of stress
tensor (hydrostatic pressure) in addition to invariant of deviatoric stress. To
include the effect of hydrostatic pressure Tresca criterion is modifIed as:

The equation represent a hexagonal prism whose generator is parallel to the
hydrostatic axis (0'] = 0'2 =0'3) in principle stress space [Fig. 2.13(a)]. It is a
regular hexagon on 71:plane (Fig. 2.14) and symmetric hexagon on 0'] = 0'2 plane
(Fig. 2.15).

24

(b) von M;ises yield criteria

von Mises suggested in 1913 that yielding will initiate when the second invariant
of the deviatoric stress tensor reaches a certain value. Actually, this criteria
assumes that yielding begins when the distortional energy reaches a value that is
equal to the distortional energy at yield in simple tension. According to this
criterion, material will yield if

O'ywhere is a material constant, one can fmd that, k = .J3

von Mises criteria can be represented by a cylinder in the principle stress space
[Fig.2.13(b)]. It represent a circle on 71:plane and an ellipse on 0'] = 0'2 plane.

To include the effect of hydrostatic pressure von Mises criteria is extended as:

Jf;-----C4I+C,



Figure 2.13 Perfectly plastic yield criteria

Hydrostatic axis
(crJ = cr, = cr,)

(b) Von Mises yield criterion
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Hydrostatic axis
(JI = (J2 = 0'3

Figure 2.12 Tresca yield criterion under plane stress-state (cr3 = 0)

(a) Tresca yield criterion
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"3

Hydrostatic axis

0'\ = l'J'z = 0"3
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"

'l: = C + crtan<p

Figure 2.16 Mohr-Coulomb criteria

"f A

Above yield criteria are valid for metals which are considered frictionless. Mohr-
Coulomb criteria define the yield criterion of frictional materials. According to
the Mohr-Coulomb criterion, the shear strength increases with increasing normal
stresses on the failure plane.

(c) Mohr- Coulomb model

The Mohr-Coulomb criteria ignores the effects of intermediate principle stress.
In the principle stress space this criteria can be described as:

where 'l: is the shear stress on the failure plane, C the cohesion of the material, 0"

the normal effective stress on the failure surface and <pthe angle of internal
friction.

where 0"1 and 0"3 are the major and minor principle stresses respectively.

This equation represents an irregular hexagonal pyramid in the stress space
(Fig.2.16); the projection of this surface on the 1[- plane is shown in Figure 2.17.
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2.29

2.30

Mohr - Coulomb

1t 1t--:<;8:<;-
6 6

f = J 1Simp+ ~J 2D Cos8 - ~J 2D SimpSin8- cCos<p= 0
3

h 8 I. -I ( 3.J3 J 3D) dwere = --Sill ---.- an
3 2 J2D

Figure 2.17 Mohr - Coulomb and Drucker - Prager criteria on the
1t - plane
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Its representations can be changed to a more convenient form in term of J1, J2D
and 8 (Lode angle) in a three dimensional space as:

Mohr-Coulomb model can represent the strength characteristics of most of the
geotechnical materials quite reasonably.

(d) Drucker-Prager model

Drucker and Prager (1952) suggested a yield surface using the invariant of the
stress tensor. The generalised criteria can be written as ;

where a and K are positive material parameters, J1 is the first invariant of the
stress tensor and J2D is the second invariant of the deviatoric stress tensor.

The equation represent a straight line on a J[ versus J2D plot (Fig. 2.18). In the
three dimensional stress space, the criterion plots as a right circular cone and the



The value of a and K of Drucker-Prager model can be expressed in terms of
angle of internal friction <pand cohesion C .

2.31

2.32

Hydrostatic axis
(J\ = cr2 = 0'3

Figure 2.19 Drucker - Prager criteria on
3 - D space
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2Sin<pa---~---
.J3(3 - Sinq»
6cCosq>

K=-----
.J3(3 - Sinq»

tanq>
a=------

(9 + 12tan2 q».Yz

3c
K=-----~

(9 + 12tan2 q».Yz

projection on the 1t - plane is a circle (Fig. 2.19). When the state of stress reaches
the failure surface (Eq.2.30), the material undergoes plastic deformations.
According to the criterion, a state of stress outside the surface is not stable.

For conventional triaxial compression

For plane strain condition

Figure 2.18 Drucker - Prager criterion
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2.33
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These critical states were reached with an effective stress ratio,

In normally compressed soil, yielding fIrst occurs with stress ratio T]<M.
Continued loading, whether drained or undrained, is associated with plastic
hardening, expansion of yield loci, and increase of stress ratio until ultimately
the perfectly plastic critical state is reached with T]=M.

Many geologic materials experience plastic deformations almost from the very
start of loading. During any loading path LL1 (Fig. 2.18), the material undergoes
a process of continuous yielding until it fmally reaches the conventional failure
or ultimate state defmed by yield function, which may be considered as the fmal
yield surface. At this state plastic shearing continue indefmitely without changes
on volume or effective stresses. This condition of perfect plasticity is known as
critical state. The attainment of critical state can be expressed by

2.4 Yielding of Soils Based on Theory of Plasticity

2.4.1 Cap models

It is possible to defme the foregoing behaviour by defming a series of yield
surfaces prior to reaching the failure or the fmal yield surfaces. During the
successive yielding, the material generally hardened and exhibits strain or work
hardening behaviour. For such a hardening materials, when stress point moves
beyond the current yield surface, a new yield surface is established. The yield
surfaces that defIne the hardening behaviour are often called hardening caps.
Here in the following sections two models are discussed that allow for the
continuous yielding and hardening behaviour.

The cap models are expressed in terms of three-dimensional state of stress and it
is formulated on the basis of consistent mechanics. The model is composed of
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2.35

2.34 a

2.34 b

f = ~ +ye~~J, -lX = 0I V.J2D

Fixed yield surface
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Where Kl defmes the deformation history and usually is taken as the volumetric.
plastic strain.

The fixed and moving yield surfaces are assumed to intersect such that the
tangents to the yield surfaces at the intersection are parallel to the J1 axis,
implying no volume change once the fixed surface is reached. The yield surfaces
intersect the J1 axis at right angles, implying that under isotropic compression
there are no shear deformations.

moving caps that play the main role in defining yielding and the fixed yield
surface used essentially to defme the critical state. The fixed yield surface ,
which can be considered to be an ultimate yield surface, is expressed as:

and the yield caps are expressed as:

In the cap model, the fixed surface was assumed to be composed of an initial
portion of the Drucker-Prager envelope joined smoothly to the subsequent von-
Mises surface (Fig.2.20). The expression for f1 adopted by DiMaggio and
Sandler (1971) is given by :

where lX, f3 and y are material parameter

Within the range of stress levels for the artificial soil, the failure surface was
found to be somewhat different from Eq.2.35. It was assumed to be composed of
an initial Drucker-Prager surface which is connected by a smooth curve to
another Drucker- Prager surfaceat higher stress (Fig. 2.21).
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Drucker - Prager line

,.'
.•..

f 2 ( )' "2 = R J'd + J I - C = R v

f' - ~ -~J, 8J - 0'-VJ2D+ye - ,-u-

Figure 2.20 Cap model
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Von Mises line
........ - - __ .. '.~""

.'

where Rb=(X-C)

A modified form of'Drucker':Prager I' surface is

and the equation of 'Drucker-Prager II' surface is

where e is an additional material parameter.

Yield Caps

DiMaggio and Sandler adopted an elliptic cap for representing yield surfaces for
the cohesionless materials. The expression for yield caps used was

R is the ratio of the major to minor axis of ellipse, X is the value of J I at the
intersection of the cap with the JI-axis, C is the value of J1 at the centre of
ellipse, and b is the value of JJ: when J 1 = C.
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q =MP'ln(PX;J

p'
where p' =-'

2

p'avP + qiJEP = Mp'iJEP

M=~
p'

Along the critical state line, unlimited plastic shear strain develop with no plastic
volumetric strain. This represent the fixed failure surface.

Applying the condition of normality, the Cam-Clay yield locus can be derived

as:

Figure 2~21Interpretation of parameters of modified
Drucker - Prager model

~'J Drucker - Prager I
'1m

J,

When cam-clay is yielding, the plastic work done is given by Mp/ OE . Therefore

2.4.2 Cam Clay model

Ultimate states or failure points lie on the same critical void ratio line. The slope
of this line on the p-q plot is denoted by 'M', which is a material parameter
(Fig.2.22).

Cam-Clay is the name given to an elasto-plastic model of soil behaviour
expressed on p-q plane. In this model, the critical state surface is treated as an
open fixed yield surface, and additional yielding surfaces are introduced to
account for the continuous yielding of soil.
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Moving yield surface
(cap)

Fixed yield surface or
critical state line

Modified Cam-Clay change the assumption for dissipated work m Cam-clay

yielding to p'~{(()vPr + (MOEP)'} and therefore

p'BvP +qOEP= P'~{(Bvpr + (MOEPr}
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Figure 2.22 Yield locus in q-p space

The flow rule can be applied to fmd the modified yield locus as:

This equation describes a set of ellipses, all having the same shape, all passing
through the origin and having sizes controlled by pic.

2.5 Flow Rule

The flow rule for a plastic material gives the ratios of the plastic strain
increments when the material is yielding in a particular stress state. The flow.
rule can be explained by defining a function known as plastic potential.

The function, g defming the ratios of the components of the plastic strain
increments is known as the plastic potential. The ratios of the components of the
plastic strain increment depend on the current stress and not on the stress
increment. It follows that the equation of the potential surface:
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(h)(a)

The plastic potential defines a surface in principle stress space. If vectors
representing plastic strain increments are plotted in stress space, then the strain
increment vectors are normal to the potential surface (Fig. 2.23).

Figure 2.23 Plastic strain increment vector

35

With the help of plastic potential, the mathematical expression of the flow rule
can be written as:

A. is known as the plastic multiplier which IS positive scalar factors of
proportionality.

The plastic potential of materials can be determined by performing careful
experiments. In case of metal plasticity the plastic potentials and yield loci
coincide and two sets of curves are identical (g=f). Such materials are said to
obey the postulate of normality: the plastic strain increment vector is in the
direction of the outward normal to the yield surface. Alternatively, the materials
can be said to follow a law of associated flow: the nature of the plastic
deformations, or flow, is associated with the yield surface of the material.
However, for many frictional materials like soil, plastic potentials and yield



surfaces are not identical. These materials are considered to follow non-
associative flow rules of plasticity.

2.6 Zone of Interest for Ultimate Pile Capacity

Settlement of a pile significantly depend on the bulb of pressure or the isobars.
A isobar of practical significance is the one which enclose the soil mass which is
responsible for the settlement of pile. The depth in this stressed zone may be
termed as significant depth.

Based on this observation Terzaghi recommended that direct stresses are
considered of negligible magnitude when they are smaller than 20 percent of the
intensity of the applied stress and that most of the settlement, approximately 80
percent of the total, takes place at a depth less than Ds. The depth Ds is
approximately equal to 1.5 times the width of square or circular footing
(Fig.2.24). If several loaded footings are spaced closely enough, the individual
isobars of each footing in question would combine and merge into one large
isobar of the intensity as shown in Fig. 2.24(b). Pressure isobars for piles are
shown in Fig.2.25. It appears that open ended pipe piles behave similarly to
closed end piles due to the plug of soil inside the pipe.

In case of general theory for ultimate bearing capacity different types of failure
surfaces are assumed by different investigations. On the basis of the failure
surface, qualitative zone of interest for ultimate point capacity can be assumed as
shown in Fig. 2.26 (Bowles, 1988).
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Figure 2.24 Significant depth of stresses zone
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Figure 2.26 Qualitative zone of interest for ultimate capacity
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CHAPTER 3

LABORATORY INVESTIGATION AND
MODEL EXPERIMENTS

3.1 Introduction

Load carrying capacity of a pipe pile develops due to the skin frictional resistance
of the soil within and outside the pile and the end bearing resistance. Skin friction
from external soil for a pipe pile is same as that of a solid pile. Various empirical
formula are available from literature survey to determine the skin friction from
external soil. Conventional methods of calculating ultimate skin friction of
external soil are proposed by Broms, Vesic and others (Poulos & Davis, 1980).
But very little research has been carried out to determine the skin frictional
resistance due to internal soil.

This investigation is aimed at determining the load resisting capacity of a pipe pile
due to internal soil reaction and to determine stress distribution along the length
when the pile is subjected to axial load. Steel pipes of different diameters (102
mm, 152 mm and 203 mm) were used here for this purpose. Pipes are axially
loaded with soil filled to different depths within the pile. Due to the limitation of
the loading device, it was not possible to vary depths of soil within 152 mm and
203 mm diameter pipe piles. Only 102 mm diameter pipe pile was tested with
different internal soil depths to observe the variation of pile capacity with depth.
Sylhet sand is used in all the tests in the current research. The details of test
arrangement and test procedures are discussed in the following sections.

3.2 Evaluation ofMaterial Properties

Soil used in the pipe piles were tested for grain size analysis in accordance with
ASTM D422-63 (1972) to establish the gradation, fmeness modulus and
uniformity coefficient. Figure 3.1 represent the grain size distribution curve of the
sand used. Maximum and minimum densities were also determined to estimate the
relative density of the soil during test. Direct shear test (ASTM D3080-72) was
carried out to fmd the angle of internal friction <I> at maximum and minimum
densities. Figures 3.2 and 3.3 represent the stress-displacement curves and shear
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Figure 3.4 Stress - strain curve of steel pipe.
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stress versus normal stress curves respectively from direct shear test results for
both loosest and densest conditions. Modulus of elasticity of pipe material was
determined from stress-strain curve in compression loading (Fig. 3.4). Properties
thus obtained from standard tests are shown in Table 3.1.

Table 3.1. Material properties

Material Property Assessed Test Results
Fineness modulus (F.M) 2.74
Effective particle size, DIO 0.386mm
Uniformity coefficient 2.41
Coefficient of curvature 0.89

Soil Maximum density 16.3kN/m3

Minimum density 14.0kN/m3

Angle of internal friction at 38°
densest state
Angle of internal friction at 35°
loosest state

Steel Modulus of elasticity of pile 2.01x105 MPa
Pile

3.3 Pipe Pile Test Arrangement

A universal testing machine i~ used as the loading device for the pipe piles. The
machine consists of a loading cap and a base assembly. The model steel pipe pile
was set on the base assembly as shown in Fig.3.5. The bottom of the pipe was
seated over a piston like wooden block (Fig.3.6). The wooden block consist of a
top plate, a vertical stand and a base plate. Diameter of the top plate of the
wooden block was made slightly less than the inside diameter of the pile to avoid
friction of the block with pipe. A rubber o-ring is fitted on the top edge of the top
plate to prevent soil particles from moving downward and reduce friction.

Sand of known physical properties (Table 3.1) are poured in the pipe in different
layers and compacted by gentle tapping with a mallet. Attempt is made to achieve
sand in the densest condition, although density could not be controlled very
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precisely due to lack of space inside the loading frame. Next the load is applied
through the loading block of the machine on to pile top.

3.4 Measurement of Load Response

Electronic strain gauges were used to measure the strain at five locations along the
outer surface of the pipe piles. Gauge length and resistance of the strain gauge
were 10 mm and 120 :t 0.3 ohms respectively. Thus the gauges were capable of
measuring very small strain of the model piles. Fig. 3.7 shows the arrangement of
strain gauges along the length of the pile. Spacing of the strain gauges were kept
closer along the lower portion of the pipe. Spacing is increased throughout the
upper portion. A displacement transducer and a dial gauge were used in measuring
pile tip displacement. A datalogger was used to record the strain from the strain
gauge and the displacement of the pile from displacement transducer at various
stages of loading.

As the loads were applied, pile movement caused densification of the soil in pile.
Density of the internal soil was measured before and after loading. In order to
measure the initial density, soil of known weight was poured in the pile. Length of
soil column in the pile was then measured. Thus volume of the soil inside was
calculated from the known cross section of pile and hence average density was
obtained.

Displacement of the bottom and top face of the soil column inside the pile was
measured to determine the density of the soil after loading. From the relative
movement of the two faces, the actual length of the soil column, inside, was
calculated to obtain the final density.

3.5 Interpretation of Experimental Results

Limited number of experiments were conducted to examine the settlement of the
pipe pile with vertical load and to check the stress distribution along the pile
length and inside soil. Soil depths were varied to demonstrate the effect of soil
depth on pile capacity. Piles were loaded axially. Results of the experiments are
presented in graphical form and discussed in the following sub-sections.

47



3.5.1 Load-settlement response

Fig. 3.8 represent load settlement response of 102 mm diameter pipe. Depths of
the internal soil used in the experiment of 102 mm diameter pipe were 5, 7, 9 and
11 times the diameter of the pile. Load was applied in each case increasing from 0
at an increment of 900 N up to such an amount that caused a pile movement of 25
mm or more. Ultimate load of pile is defmed as the load that causes a settlement
of 10% of the pile diameter to the pile (Tomlinson, 1980). The 152 mm diameter
and 203 mm diameter pipes are tested with soil depth of 5 times the diameter. Fig.
3.9 shows the effect of diameter on the internal soil capacity from the plotting of
load-settlement curves for 102 mm, 152 mm and 203 mm diameter pipes with
inside soil depth of 5 times the pile diameter.

In Fig. 3.10 and Fig. 3.11 load displacement curves are plotted in non-dimensional
form by dividing the axial load at any stage by ultimate load and plotting it in y_
axIS. The settlement is divided by 1/l0th of the pile diameter and plotted in X-
axIS.

Pile movement is large for shorter depth of internal soil. Due to large pile
movement soil is densified and gradually stiffened. As a result the load-
displacement curve moves upward with an increasing slope. After a certain value
of settlement the curve shows decreasing tendency of slope. The decreasing
tendency in the load-displacement curves signifies the end of densification process
and start of continuous plastic deformation inside the pile soil. Attempt was taken
to explain the phenomena numerically in the subsequent sections.

The research is oriented to determine the depth of internal soil required to attain
sufficient pile capacity due to soil plug. In order to observe the variation of soil
plug capacity with the soil depth, pile capacity is plotted against soil depth in
Fig.3.12 for 102 mm diameter pile. Soil depth is expressed as a multiple of pile
diameter. Several curves are plotted here at different level of pile settlement. Thus
equilibrium load at different soil depths and settlement are demonstrated.
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Figure 3.8. Load - settlement curves of 102 mm diameter pile.
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Figure 3.9. Load- settlement curves for UD = 5 with various pile sizes
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Figure 3.10. Nomalized load- settlement curves for102 mm diameter pile.
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3.1

3.2

D = diameter of the pile
t = thickness of the pile

53

Sp = strain of pile at any level
cr p = stress of pile at that level
Ep =Modulus of elasticity of pile material

where

Total load carried by the pile is calculated by multiplying pile stress by pile area.

3.5.2 Load transfer

Axial load is transferred fIrst from the pile to the soil through skin friction and
then to the base wooden block. Due to the transfer of load through skin friction,
vertical stress along the pile length will be different at different elevations. To
measure the pile stress an indirect technique is used. At any level pile strain is
measured by electric strain gauge. Then pile stress is calculated as:

where

Load transferred to the internal soil can be calculated by deducting pile load from
the total load applied. It may be assumed that stress in soil is uniform at any depth
over a horizontal slice. The average stress along the pile can be obtained by
dividing the load by cross sectional area of the soil plug. To observe the transfer
of load from soil to pile with the increase of load, curves are plotted at different
level ofload. Fig.3.13 shows variations of strain in pile material at different soil
depths at various loading states (Depth measured from bottom of pile). Fig.3.14
shows the distribution of pile stress at different stress level and Fig.3.15 depicts
load taken by soil within pile at different depths.



Figure 3.12. Variation of pile capacity with depth/diameter ratio
at different level of settlement (D = 102 mm).
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From the Fig.3.l4 it can be observed that with the increase of the distance from
pile top vertical stress in pile decreases. This is due to the transfer of load to the
soil through skin friction. Decrease in pile vertical stress with depth follow an
exponential form. This indicates that the vertical stress on the internal soil
increases exponentially with depth. Figure 3.16 shows the distribution of vertical
stress on internal soil with depth. The relation justify the increase of pile capacity
due to the development of arching of the soil inside the pile. From Fig. 3.13 to
3.16 it is observed that at lower level of applied load, variation of pile vertical
stress with depth is not significant. This is due to absences of arching in the soil.
At higher level of load, and hence settlement, arching of internal soil develops. As
a result vertical stress of internal soil is increased with depth in an exponential
rate. If the vertical stress of soil at the bottom is greater than the end bearing
capacity of pile, the pipe pile will act as a closed ended pile i.e. in plugged mode.
Thus it is observed here that a certain level of settlement of the pile is necessary to
develop arching in the soil that increase the pile capacity. This settlement can be
taken as 10%of the pile diameter.

3.5.3. Effect of diameter on frictional resistance

Load-displacement curves of different diameter piles with soil depth to diameter
ratio of 5 is plotted in Fig.3.9. Due to the physical limitation of the experiment
performed, it was not possible to test all the pile with different soil depth.

Fig.3.9 explains the variation of frictional resistance with diameter. It is observed
that initially, capacity of larger diameter pile is greater than that of smaller
diameter pile. But after a certain limit frictional resistance of smaller diameter
pipe is greater. This is because after a certain displacement arching of the internal
soil of smaller diameter pile develop and for this reason the frictional resistance of
that pile is higher. On the other hand a larger displacement is required to develop
soil arching in large diameter pipe pile. Hence the capacity of larger diameter pile
is smaller than that of smaller diameter pipe pile. Fig.3.9 shows that after certain
displacement the frictional resistance of larger diameter pile is greater than that of
smaller diameter pile.
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3.5.4 Variation of pile capacity with soil depth

3.3

f= Unit skin friction
Ys= Unit weight of soil
k = Coefficient of earth pressure
8 = Angle of friction between soil and pile

f= Ys zk tan15

Where,

Frictional area of larger diameter pipe pile is greater than that of smaller diameter
pipe pile . Besides, coefficient of earth pressure has a general tendency to increase
with diameter (Siddiquee et al. 1988). For this reason up to a certain level of
settlement, frictional resistance of larger diameter pile is observed to be higher
than that of smaller diameter pile (Fig.3.9). After a certain level of displacement
skin friction of soil in smaller diameter pile is fully mobilised and arching is
developed in the internal soiL When arching is developed normal force to pile
wall and hence the frictional resistance increases exponentially with depth. As a
result total frictional resistance of smaller diameter pile may be greater than that
of larger diameter pile in which no arching is developed. Settlement required to
develop arching for different diameter pile is not the same. It may be observed that
settlement required to develop arching is higher for larger diameter pile. When
arching is developed in both larger and smaller diameter pile capacity of larger
diameter pile will defInitely be higher.

Pile capacity can be expressed as a resistance to the pile movement due to the
friction of the internal soiL Skin friction of the internal soil depends on the normal
stress on the pile walL For this reason as depth of the soil increases the resistance
due to internal friction also increases.

Arching of the internal soil, if developed, increase the soil stress exponentially.
This increases the skin frictional resistance signifIcantly. SuffIcient depth of
internal soil and certain amount of displacement of pile is required to develop

Before the development of arching, skin friction of internal soil is determined. in
the same way as that of outer soil as proposed by Terzaghi (1943). According to
Terzaghi (1943) skin friction mobilised in a pile at a given depth z is given by



arching. After arching is developed, further increase of soil depth does not result
in increasing pile frictional capacity substantially. Figure 3.12 indicates that at
lower value of pile settlement, curves moves upward with increasing slope and
after a certain level of settlement, slope of the curve decrease and the increase of
pile capacity is insignificant. This is due to the fact that at lower level of
settlement, at a certain LID (=9) slope of the curve increases suddeuly indicating
the start of arching (plugging). lt is observed that a settlement of about 10% of the
pile diameter is sufficient to develop arching in the internal soil. From Fig.3.12 it
is also observed that for LID above 14 (extrapolated), the increase of pile capacity
with LID is insignificant. Hence depth of soil required to develop full arching is
14 times the pile diameter. lt is reasonable to use 9 to 14 times the pile diameter as
required depth of soil to develop arching.

3.6. Numerical Simulation of The Experimental Results

Figure 3.8 and 3.9 represent the load-displacement curves of pipe piles obtained
from the experimental investigation. In order to explain the behaviour obtained
from experiments theoretically, numerical analysis by finite element method was
performed. The problems are idealised as axisymmetric problem during the
analysis.

3.6.1. Idealisation ofthe problem

In the experiment, axial load is applied on a hollow circular pile with symmetric
section. So the axisymmetric idealisation of the problem is justified. Finite
element mesh and the idealised problem is shown in figure 3.17. Material
properties are defmed after dividing the problems into four zones: upper portion of
soil, lower portion of soil, pile elements and interface elements.

According the arching theory as proposed by Terzaghi (1936), arching is
developed in soil mass upto an elevation of about two to three times the width of
the opening from the bottom (Terzaghi, 1943). From this consideration it is
assumed that soil is densified and the soil modulus is changed in that portion of
soil mass. So the soil mass is divided into two zones. Soil modulus is changed in
the lower zone at different stress level to simulate the experimental result. Initial
soil properties were determined experimentally. Angle of internal friction for
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60

Interface elements

Pile elements

Soil elements

Zonel

Range of Relative Range ofE,

SandDensity Density
(psi) (MN/mm2

)

Loose <0.4 4000 - 8000 27.5 - 55

Medium 0.4 - 0.6 8000 - 10000 55 - 70

Dense >0.6 10000 - 16000 70 - 110

Table 3.2 Suggested average values of E, for piles in sand
(Davis and Poulos, 1980)

Figure 3.17 Finite element idealisationof the Problem

Interface element (Desai, 1984) was used to define soil - pile interface. Width of
the interface element was so selected that the aspect ratio is 0.05. It satisfies the
criteria oft/bi ratio within 0.01 to 0.1 as suggested by Desai. Normal behaviour of
interface element is obtained from soils normal behaviour as suggested by Desai.
The value of G, has been assumed very low using a very high value of v as
recommended by Jayatheran (1996). Trial curves are plotted to fit the
experimental result (Figure 3.19) and to select the value of G,.

particular relative density was determined by the linear interpolation from the
values at maximum and minimum relative density. Initial soil modulus was
determined from the available literature relating soil modulus with relative density
of soil (Table 3.2, and Table 3.3). Figure 3.18 shows the variation or the load -
displacement response with soil modulus. Average value of Poisson's ratio of soil
is assumed to be 0.30 (Davis and Poulos, 1980).



Figure 3.18 Effect of soil modulus on load - displacement curves
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Figure 3.19 Effect Gs on load - displacement curves (E=69MPa).
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Table 3.3 Typical range of values for the static stress _
strain modulus Es for selected soils

(Bowles, 1988)

E,
Soil

ksf I MPa

Clay

Very soft 50 - 250 2 - 15

Soft 100 - 500 5 - 25

Medium 300 - 1000 15 - 50

Hard 1000 - 2000 50 - 100

Sandy 500 - 5000 25 - 250

Glacial till

Loose 200 - 3200 10 - 150

Dense 3000 - 15000 150 - 720

Very dense 10000 - 30000 500 - 1440

Loess 300 - 1200 15 - 60

Sand

Silty 150 - 450 5 -20

Loose 200 - 500 10 - 25

Dense 1000 - 1700 50 - 81

Sand and gravel

Loose 1000 - 3000 50 - 150

Dense 2000 - 4000 100 - 200

Silt 40 - 400 2 - 20
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3.6.2. Results from numerical analysis

Here, purpose of the fInite element analysis is to explain the experimental results.
Behaviour of the soil in the model pipe pile is changed due to pile and soil
movement when subjected to load. It is assumed that soil properties are changed
in Zone 2 (Fig.3.1?). Suitable properties of the soil are adjusted to simulate the
results from the experiments. Figure 3.20 to 3.23 represent the numerical
simulation of the experimental results.

The most signifIcant parameter whose influence on the load-displacement
response is very high, is the soil modulus. Change of the value of soil modulus
and the rate of change depends on various parameters as initial soil density,
relative density, depth of soil, rate of loading etc. The concave upward nature of
load-displacement curves can only be explained by continuous densrncation near
the pile tip within a zone, suggested by Terzaghi (1936). So fInite element
analysis were carried out with different Young's modulus as suggested from the
experimental density change. Variation of the soil modulus with different level of
load and settlement for pipes with different soil depth is observed. Figure 3.24
represent the variation of soil modulus with the level of applied load, required to
simulate the experimental result.

3.7 Model for The Prediction of Plug Capacity

A series of tests were performed to interpret the mechanism of plugging in pipe
pile. The diameter of the pile was kept constant (102 mm) and the load
displacement responses for different LID ratio were determined. Fig.3.8 shows the
load-displacement curves from the tests. In the experiment, densrncationplayed a
major role in determining the shape of the load-displacement curves. The
densifIcation phenomena in a pipe pile is further explained by FE analysis in
section 3.6. The load-displacement curves are normalised by a consistent ultimate
load and settlement (section 3.5.1) to reduce the influencing factors. Trend of the
curves of normalised load displacement responses is then observed. The nature of
the normalised load-displacement curves shows two apparent factors affecting its
shape. First factor is the (LID) ratio and second factor is the change in density.
during the loading. .
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Figure 3.20 Numerical simulation of experimental result
For pile with UD = 11 (D = 102 mm).
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Figure 3.21 Numerical simulation of experimental result for pile
with UO = 9 (0 = 102 mm).
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Figure 3.22 Numerical simulation of experimental result for pile
with UD = 7 (D = ,102 mm).
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Figure 3.23 Numerical simulation of the experimental result for
pile With UD =5 (D = 102 mm).
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The normalised load displacement behaviours predicted by Eq.3.4 have been
compared with the corresponding load displacement behaviours obtained from
experiments in Fig.3.29 to Fig.3.32. Value of 'n' has been calculated using Eq.3.5
and value of 'a' has been taken to be 1.03744. It is clear from Fig.3.29 to Fig.3.32
that the load displacement curves obtained from the proposed model and the load
displacement responses obtained from experiments are almost same. Thus, it can

3.4

3.5

P (S)n
Pu = a 0.1 x D

a and n are parameters to be determined.

L
n = 0.82326-0.03009-+ 15.6866(Dri - Drf)

D

where, P =Applied load on pipe pile
Pu =Ultimate load at O.ID settlement
S = Settlement of pile

The proposed equation (Eq.3.4) is regressed by least square method with the
normalised load-displacement data (Fig.3.25 to Fig.3.28) to determine the values
of the parameters a and n. It is observed here that value of 'a' is almost constant.
Average value of 'a' is proposed to be 1.03744. Constant 'n' is correlated with the
variation of LID and change in relative density. An empirical equation for 'n' is
proposed as Eq. 3.5. The equation relates n with LID and change in relative
density.

An empirical equation is proposed to formulate the general trend of these

normalised load displacement curves. In doing so, an exponential function in the

form of Eq. 3.4 has been selected. The rationale of choosing an exponential

function to represent the model for determining plugged pile capacity is lying in

the exponential nature of normal stress distribution during arching and subsequent

plugging. The proposed empirical equation is,

Here, Dri = Initial relative density of soil .
Drf = Final relative density of soil
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Table 3.4 Values of 'n' and 'a' From Best Fitted Curves

3.6
L

for -2':9
D

L L
Pu =-14.8063+4.4847- for -s9D D
= -119.5644 + 21.9732 ~ _ 0.6589(~) 2

LID Change of n a

relative density

11 0.02 0.7753 1.0248

9 0.033 1.1537 1.0422

7 0.041 1.1813 1.0510

5 0.042 1.3536 1.0317

One limitation of the proposed formula is that it has been formulated for 102mm
diameter pile with (LID) ratio ranging from 5 to 11 in sand possessing almost
uniform properties in the laboratory. Similar empirical relations for piles of other
diameter should be obtained. This may lead to the development of a design aid for
calculating approximate plug capacity for any allowable settlement. Moreover,
this study presents a methodology by which an empirical method can be
developed for piles of any diameter with varying soil properties.

be stated that the proposed empirical equation simulates the load displacement
responses satisfactorily for pipe of 102mm diameter.

Fig.3.33 compares the proposed formula of ultimate capacity with the
experimental result.

Ultimate capacity is dermed here as the load required to produce a settlement of
10% of the pile diameter. With this consideration, a formula (Eq.3.6) is proposed
for the calculation of ultimate capacity based on the experimental results
(Fig.3.12). The nature of the curve (Fig.3.12) shows two distinct phase of.
frictional capacity of pipe pile. One is before plugging, identifiable by uniform
increase in pile load capacity. The other is after plugging which can be determined
by sharp change in pile load capacity with (LID) ratio. As the theoretical variation
of plugged pile load capacity is parabolic with (LID), a second degree parabolic
curve is proposed for this part of the empirical equation ofPu'



Figure 3.25 Normalized load displacement response along
with the best fitted exponential curve
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Figure 3.26 Normalized load-displacement response along
with the best fitted exponential curve.
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Figure 3.27 Normalized load-displacement response along
with the best fitted exponential curve.
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Figure 3.28 Normalized load-displacement response along
with the best fitted exponential curve.
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Figure 3.29 Normalized load displacement response from experiment
and proposed model (102 mm dia pile, UO =5)
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Figure 3.30 Normalized load displacement response from experiment
and proposed model (102 mm diameter pile, UD = 7)
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Figure 3.31 Normalized load displacement response from experiment
and proposed model (102 mm diameter pile, UD =9)
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Figure 3.32 Normalized load displacement response from experiment
and proposed model (102 mm diameter pile, UD = 11).
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Figure 3.33 Variation of pile capacity with UO as predicted by
proposed equation and the experimental result

(0 = 102 mm)
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CHAPTER 4

DEVELOPMENT OF ANALYSIS SCHEME

4.1 Introduction

Under axial loading sufficient resistance of soil develop inside the pipe pile. It is
also observed from the laboratory investigation that the soil density and related
properties change with the increase of load on pile. Downward movement of the
soil in the experiment was resisted by wooden block. But in the real situation the
soil will be resisted by the soil mass at the pile base. So the change in the
properties may not be so significant in real situation. To simulate the loading
condition numerical analysis by Finite Element Method was performed.

4.2 Analysis Scheme

Analysis of a continuum by fmite element method comprises idealisation of
continuum into descretized elements, evaluation of element characteristics by a
suitable constitutive law and analysis of element assemblage by an efficient non-
linear solution techniques.

The finite element programme, CRISP (CRItical State Progranune) (Britto &
Gunn ,1987) is used in the analysis of pipe pile. Features of the CRISP are
discussed in Appendix E. An axisymmetric fmite element analysis is performed
for axially loaded pile soil system. Load-displacement behaviour, stress
distribution in the soil, pile and pile-soil interface are observed from the analysis.
Then the effect of the depth of inside soil on pipe pile capacity is viewed.

4.3 Description of Finite Element Model

Idealisation of the problem and selection of suitable element type is very
important in fmite element method. For axially loaded pile it is quite reasonable to
idealise the problem as an axisymmetric case.

There are ten different element types available in CRISP. In this study, linear
strain quadrilateral element with displacement unknown has been used for
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Figure 4.1 Idealisationof pipe pile problem for finite
element analysis.

It can be observed from pressure bulb for vertical stress that effect of pile stress on
soil is insignificant if the depth of soil is larger than 3 to 4 times the pile diameter.
For this reason to select the vertical extents of soil for the analysis, depth of soil
below the pile tip is taken to be 5 times the pile diameter.

The lateral extent of mesh plays a important role in the analysis of problem. Outer
extent of soil for the current research is chosen to be 8 to 10 times the pile
diameter. To investigate the effect of pile extent, distribution of the vertical stress
over the external soil is observed in the analysis.

decretization of both pile and soil. All these elements are basically standard
displacement type element (Zienkiewicz, 1971). For interface, the 6 nodded
interface element with displacement unknown is used. Fig. 4.1 shows the typical
idealised system of the problem. In figure 4.1, zone 1 represent the soil inside the
pile, zone 2 represent the interface of pile with the inner soil, zone 3 represent the
pile material, zone 4 represent the interface of pile with outer soil, zone 5
represent the pile outer soil and zone 6 represent the soil below the pile. Finite
element mesh used in the analysis are shown in Appendix C.



4.4 Material Properties

Any Finite Element Analysis is basically founded on constitutive law of the
material being analysed. Constitutive law of the material determines the number
and type of material properties to define the material behaviour in its evolution
process during loading. In this study, sand is used as internal filler soil of pipe
pile. So Mohr-Coulomb type of elasto-plastic constitutive law is used to describe
the behaviour of sand. The elasto-plastic J2 model of sand requires a knowledge of
the deformation parameters E" VS of the soil and the soil shear strength parameters
C, <pand the pile soil adhesion. Methods of determining soil shear strength are
well-established as described in Chapter 2. However, methods for determining the
soil deformation parameters are not so well established. There are three ways to
determine these parameter: (1) laboratory triaxial test, (2) pile-loading test, and (3)
empirical correlation based on experiences.

In order to determine the value of Young's modulus, Es for situation in which
pile-loading test data are not available, a number of published pile test results have
been analysed and values ofEs determined (Table 3.2).

Relatively little information is available in the literature for correlations studied on
Poisson's ratio. However, this parameter does not vary greatly. For isotropic
elastic materials, the entire range of Vs is from 0 to 0.5. Values of Poisson's ratio,
Vs , obtained from triaxial tests generally lie between 0.25 and 0.35 at relatively
low stress level. An average value of 0.3 is reasonable when no test data are
available (Poulos 1980). Typical values of Vs for several materials are given in
Table 4.1 (Bowles, 1988).

Correlations for estimating the effective stress friction angle for cohesionless soils
have been presented by numerous authors. Early work on this topic suggested
simplified tabulated values for the effective stress friction angle, such as those
given in Table 4.2 (Kulhawy & Mayne, 1990). Subsequent approaches have
correlated the values of <pwith one or more soil index parameters such as soil
type, relative density and unit weight or void ratio (Fig. 4.2).
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Table 4.2 Representative value of effective stress friction angle
(Kulhawy &Mayne, 1990)

Table 4.1 Values ranges for Poisson's ratio, Vs

(Bowles, 1988)

34
45
50

30 to 34
30 to 35

<pI (degree)

Loose Dense
27.5
33
35

27 to 33
27 to 30

Vs
0.4 - 0.5
0.1 - 0.3
0.2 - 0.3
0.3 - 0.35
0.3 - 0.4
0.1 - 0.4
0.1-0.3
0.36
0.15

Types of Soil
Clay, Saturated
Clay, Unsaturated
Sandy Clay
Silt
Sand, Gravelly Sand
Rock
Loess
Ice
Concrete

Soil Material

Sand, round grains, uniform
Sand, angular grains, well-graded
Sandy gravels
Silty sand
Inorganic silt

84



~
I-g.

~ 40'

'"c
<:(

c
0 35':,::
u
~
lL

30'

o 20 40 60 80 100
Relative Density. Dr {"!oj

Figure 4.2 Relation of friction angle with relative density.
(Schernenrnann, 1978)

Aim of the numerical analysis of the research is to determine the qualitative
behaviours of pipe pile in granular soil. In doing so, the average values of
different soil parameters have been selected from the readily available literatures
based on soil test data. Moreover, this study is mainly concerned with proposing a
methodology by which the load response of pipe pile in any soil can be observed.
The material properties of different material zones have been presented in Table
4.3, 4.4 and 4.5. A complete input file for both geometry and main part of the
program (CRISP) for a typical pipe pile problem has been presented in Appendix
A.

Table 4.3 Parameters for sand used in FEM analysis

Zone Eo <p Ybolk Rate of
No. MN/m2 v C kN/m3 Increase of

Soil Modulus
1 35 0.3 0 350 18.9 0
5 35 0.3 0 350 18.9 0
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Table 4.4 Parameters for pile materials used in FEM
analysis

Zone No. Ej E2 v y
MN/m2 MN/m2 kN/m3

3 200 200 0.25 77

Table 4.5 Parameters for interface elements used in
FEM analysis

Zone C ,) K. G, Gee,
No. MPa MPa kPa
2 0 20 41 13.8 7
4 0 20 41 13.8 7

4.5. Data Generation

CRISP requires enormous input data for the both the geometric and main part of
the program. It is difficult to write such a large number of data correctly by hand
calculation. For this reason a data generation program is developed which requires
only a few input data concerning the pile length, depth of soil, pile diameter and
lateral extent of soil to be used in the analysis. The program generate the mesh,
nodal co-ordinates connectivity of element, element type, total number of
elements and nodes, material zone numbers of each element etc. which are
necessary to run the geometry part of CRISP, The soil-pile system is fIrst divided
into different material zones. For the main part of CRISP, the program generate
the boundary conditions for the mesh generated ..The program code is presented in
AppendixD.

4.6 Load-Displacement Responses

To investigate the effect of the depth of embedment of pile and the variation of
pile diameter on the load response of pipe pile, a scheme has been followed in this
numerical study. Firstly diameter of the pile has been kept constant and the load
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displacement responses for different depth of embedment of pile has been
investigated.With the same depth of embedment, analysis is performed for pile of
different diameters (102 mm, 152 mm, 203 mm). Fig. 4.3, Fig. 4.5 and Fig. 4.7
represent the load displacement responses of 102 mm, 152 mm and 203 mm
diameter piles respectively with different depth of penetration. Normalised load-
displacement curves are plotted (Fig. 4.4, Fig. 4.6, Fig. 4.8) by dividing the pile
stress by a ultimate stress and the settlements by 0.1 times pile diameter. Ultimate
stress is defmed as the stress corresponding to settlement of 0.1 times the diameter
(Tomlinson, 1980). Depth of penetration is expressed here as a multiple of pile
diameter. From figure 4.4, 4.6 and 4.8 it is observed that within the allowable
range of settlement, normalised stress-displacement response for any pipe pile
with all LID ratio, is identical. This fmding provide a valuable information that in
the allowable range of settlement all stress-displacement relation of any pipe pile
can be represented by a non-dimensional equation relating stress ratio and
settlement ratio.

Now to observe the effect of pile diameter on the load response, load
displacement curves are plotted with constant depth of pile penetration for piles of
different diameters. Fig. 4.9, Fig. 4.10 and Fig. 4.11 represent the load-settlement
curves with different diameters of piles for pile penetration of 5D, lOD and 15D.
It is also observed here that for any LID ratio, normalised stress-settlement curve
of pipe pile of any diameter is identical and can be represented by a non-
dimensional equation.

Efforts have been made to observe the increase of pile capacity with the increase
of depth of pile embedment. Capacity of pile for different pile embedment depend
on the allowable level of settlements of the piles. In order to examine the variation
of pile capacity with the depth/diameter ratio, investigations were performed at
settlements of 5%,10%,15% and 20% of pile diameter. Fig. 4.12 to Fig. 4.14
indicates the variation of pile capacity with the pile depth/diameter ratio for
different level of settlement for pile of different diameters. It is observed that with
the increase of depth/diameter ratio pile capacity increases, but the rate of increase
decreases. It is also observed that for depth/diameter ratio greater than 12 to 15 the
increase of pile capacity is insignificant. It can be concluded from this observation
that penetration of pipe pile to a depth of 12 to 15 times the diameter is sufficient
to derive sufficient capacity for a particular pile.
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Figure 4.3 Stress-settlement curves of 102 mm diameter
pile for different depth of pile penetration.

Figure 4.4. Normalized stress-settlement curves
of 102 mm diameter pile.
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Figure 4.5 Stress - settlement curves for 152 mm diameter
pile at different depth of penetration.
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Figure 4.9(a). load-settlement curves at UD = 5.
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Figure 4.11 (a) Load - settlement curves at UD = 15.
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Figure 4.11(b) Normalized load - settlement curves
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Figure 4.12 Variation of pile capacity with depth/diameter ratio
at different level of settlement (0 = 102 mm).
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Figure 4.13 Variation of pile capacity with depth/diameter ratio
at different level of settlement ( D = 152 mm).
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Figure 4.14 Variation of pile capacity with depth/diameter ratio
at different level of settlement ( D = 203 mm ).
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Atteinpts are also made to observe the effect of pile diameter on the variation of
pile capacity with depth/diameter ratio (Fig. 4.15). It is observed from Fig. 4.16
that for particular depth of penetration pile capacity increases significantly with
the diameter of pile. For piles of diameter larger than 102 rom the rate of increase
of pile capacity with diameter is very high. Another important phenomenon
observed from Fig. 4.16 is that there is a jumped increase of pile capacity for pile
penetration increased from 5D to 10D. But for increase of pile penetration from
10Dto 15D, increase of pile capacity is not so high. This observation justifies that
for pile penetration of 1OD, arching is developed in the soil. After arching is
developed, further increase in pile penetration does not increase the pile capacity
substantially.

4.7 Pile Load Transfer

The predicted load transfer of 102 rom diameter pipe with pile embedment depth
of 10 times pile diameter are shown in Fig. 4.17. A large portion of the pile loads
are transferred through the interface shear into the surrounding soil and the rest
portion is resisted by the pile. Fig. 4.18 and Fig. 4.19 shows the normal and shear
stresses in the internal soil-pile interface for 102 rom diameter pile with LID = 10.
Stress distributions for other piles are shown in Appendix B.

Fig. 4.20 (a,b,c) display the isobars for vertical stress in the soil within the pile.
From the stress contour it is observed that at any horizontal level stress is almost
same. This justify the Randolph's one dimensional idealisation of the inner soil
plug (Randolph et al 1991). Fig. 4.21 shows the vertical stress in the inner soil
with depth. The stress is compared with that obtained from the one dimensional
analysis. It is clear that the stresses from the one dimensional analysis are less
than those at the defined ultimate load, obtained from finite element analysis.
Thus the Randolph's theory is somewhat conservative in calculating end bearing
capacity of the internal soil mass.

End bearing capacity for 102 rom diameter pile with LID = lOis calculated by
conventional method and found to be 958 kN/m2

. It is observed from Fig. 4.21
that the calculated end bearing pressure is less than the vertical stress in the inner
soil at the base of the pile. That is, the pile is acting as a plugged pile.
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In the outer soil of pile-soil system, stress is transferred from the pile through out
a interface friction. Stresses are decreased as the distance of soil element from pile
increases. The vertical stress contour for different tip settlement of pile are shown
in Fig. 4.22(a), (b) and (c). The vertical stress distribution with distance from pile
in the outer soil is looked at in Fig. 4.23. All these plots show that the maximum
stresses develop near the pile wall with a tendency of stress concentration near the
pile tip. For soil elements at a distance more than 5 times the pile diameter from
the pile, the effect of pile stresses on soil is negligible.
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Figure 4.17 Vertical stress along pile depth (D = 102 mm, UD = 10).
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Figure 4.19 Shear stress along the interface elements.
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Figure 4.21 Vertical stresses in the internal soil with depth.
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CHAPTERS

CONCLUSIONS AND RECOMMENDATION

5.1 Conclusion

Behaviour of open-ended steel pipe piles in granular soil is studied in this
research. Nwnerical analysis is performed to perceive the load response and
identifY the parameters affecting the capacity of pipe piles. From finite element
analysis, it is found that plugging is controlled by the behaviour of the soil within
the pile. Stress distributions in the pile and soil were calculated by FEM to acquire
a basic understanding of the plugging mechanism. Limited experiments were
carried out to justifY the results obtained from nwnerical analysis. Effects of the
depth of soil and the diameter of the pipe pile on the pile capacity were
investigated. Parameters affecting the development of plugging on the internal soil
were identified. Experiments were performed to explore the mechanism of soil
plug formation within the pipe piles. After an extensive and systematic study, the
following conclusions can be drawn from the previous chapters.

(a) Skin frictional resistance of the soil within the pipe pile is significantly
higher than common design values for the external soil when arching in the
internal soil develop. Plugging happens when the total inner shaft
resistance is greater than the end-bearing of the ground below the soil plug
at the tip.

(b) Capacity of the pile increases linearly with the increase of internal soil
depth, without the formation of plugging. But from the onset of plugging
pile capacity increases exponentially and after the full development of
plugging, any further increase in the depth of internal soil does not increase
the pile capacity significantly.

(c) Required depth ratio (LID) to develop plug is found to be between 9 and
15.
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(d) The pile tip displacement required to develop plugging is about 10% of the
internal pile diameter.

(e) For the same LID ratio, capacity of pipe pile increases significantly with
the increase in diameter of the pile. For LID ratio in the range of 10 to 15,
the increase of capacity with diameter is very high.

(1) Stress in the internal soil is almost uniform at any depth. It increases
exponentially with increase of depth from the pile top, when plugging
occurs.

(g) Randolph's one dimensional formula of calculating stresses in the internal
soil for plugged pile is slightly conservative. This is due to the very
simplified linear elastic assumptions of material model.

(h) As load is applied on pile, properties of the internal soil is changed
continuously. Internal soil stiffness usually increases during loading of pipe
pile due to the densification process accompanying with the settlement of
pile. This change in basic soil property (stiffness) is attributed to a number
of factors, i.e., initial relative density of internal soil, gradation, depth of
soil etc.

(i) Maximum stresses develop near the shaft of pile in the outer soil with
tendency of stress concentration near the pile tip. As the pile transfers load
predominantly as friction along the shaft, this pattern of stress contour is
quite expected.

(j) An empirical equation given below is proposed to calculate plugged / non-
plugged pile load capacity for a particular type of sand.

P (s)n
Pu = a 0.1 x D

where, P = Applied load on pipe pile
pu =Ultimate load at O.ID settlement
S = Settlement of pile
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5.2 Recommendations for Future Research

Current research on the behaviour of pipe pile does not fully cover the field
observations. But the results in this study provide reliable information for further
investigation of pipe pile behaviour. In order to enhance the fmdings of this
study, the following additional works may be undertaken in a future research:

(a) An extensive experiments can be performed with pipe piles of different
diameter and different soil depths to verify the results obtained from this
research and comparison can be done with the empirical equations proposed.

(b) Results obtained from the laboratory experiments and numerical analysis
may be verified by prototypes in the field. A realistic model for the
simulation of field condition may be developed by some modification in the
laboratory model.

(c) Plugging behaviour in sand under saturated condition may be observed.
Development of pore water pressure and its affect on plugging can be
examined.

(d) Investigations can be performed with varying density of soil and the effect of
density on plug capacity can observed. Density of the inside soil can be
measured continuously with the increase of applied load and the change of
density in the inside soil with load may be observed.

(e) Effects of surface roughness of pile shaft on the plug response may be
studied by changing the surface condition in model piles and by using piles
made of different materials.

(f) The study may be extended to include the effect oflateralload on soil plug
response and on the capacity of pipe pile.

(g) Finally a generalised model can be developed for analysis and design of pipe
piles that will include all the parameters affecting pile capacity.
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AI. INPUT FILES FOR THE NUMERICAL ANALYSES

A1.1 Geometry program for analysis of 102 mm diameter pile with LID = 5

"Pipe pile problem"
999
1861604424
186 160
1 1 1 1 1 1 1 000
0000
1 .00 20.00 40 2.00 29.33
2 .00 21.33 41 2.00 30.67
3 .00 22.67 42 2.00 32.00
4 .00 24.00 43 2.00 33.33
5 .00 25.33 44 2.00 34.67
6 .00 26.67 45 2.00 36.00
7 .00 28.00 46 2.00 37.33
8 .00 29.33 47 2.00 38.67
9 .00 30.67 48 2.00 40.00
10 .00 32.00 49 2.13 20.05
11 .00 33.33 50 2.13 21.33
12 .00 34.67 51 2.13 22.67
13 .00 36.00 52 2.13 24.00
14 .00 37.33 53 2.13 25.33
15 .00 38.67 54 2.13 26.67
16 .00 40.00 55 2.13 28.00
17 1.00 20.00 56 2.13 29.33
18 1.00 21.33 57 2.13 30.67
19 1.00 22.67 58 2.13 32.00
20 1.00 24.00 59 2.13 33.33
21 1.00 25.33 60 2.13 34.67
22 1.00 26.67 61 2.13 36.00
23 1.00 28.00 62 2.13 37.33
24 1.00 29.33 63 2.13 38.67
25 1.00 30.67 64 2.13 40.00
26 1.00 32.00 65 2.38 20.05
27 1.00 33.33 66 2.38 21.33
28 1.00 34.67 67 2.38 22.67
29 1.00 36.00 68 2.38 24.00
30 1.00 37.33 69 2.38 25.33
31 1.00 38.67 70 2.38 26.67
32 1.00 40.00 71 2.38 28.00
33 2.00 20.00 72 2.38 29.33
34 2.00 21.33 73 2.38 30.67
35 2.00 22.67 74 2.38 32.00
36 2.00 24.00 75 2.38 33.33
37 2.00 25.33 76 2.38 34.67
38 2.00 26.67 77 2.38 36.00
39 2.00 28.00 78 2.38 37.33
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79 2.38 38.67 128 32.38 32.00
80 2.38 40.00 129 32.38 36.00
81 2.52 20.00 130 32.38 40.00
82 2.52 21.33 131 .00 16.00
83 2.52 22.67 132 .00 13.33
84 2.52 24.00 133 .00 10.67
85 2.52 25.33 134 .00 8.00
86 2.52 26.67 135 .00 5.33
87 2.52 28.00 136 .00 2.67
88 2.52 29.33 137 00 .00
89 2.52 30.67 138 1.00 16.00
90 2.52 32.00 139 1.00 13.33
91 2.52 33.33 140 1.00 10.67
92 2.52 34.67 141 1.00 8.00
93 2.52 36.00 142 1.00 5.33
94 2.52 37.33 143 1.00 2.67
95 2.52 38.67 144 1.00 .00
96 2.52 40.00 145 2.00 16.00
97 5.18 21.33 146 2.00 13.33
98 5.18 22.67 147 2.00 10.67
99 5.18 25.33 148 2.00 8.00
100 5.18 26.67 149 2.00 5.33
101 5.18 29.33 150 2.00 2.67
102 5.18 30.67 151 2.00 .00
103 5.18 33.33 152 5.18 16.00
104 5.18 34.67 153 5.18 13.33
105 5.18 37.33 154 5.18 10.67
106 5.18 38.67 155 5.18 8.00
107 9.18 20.00 156 5.18 5.33
108 9.18 24.00 157 5.18 2.67
109 9.18 28.00 158 5.18 .00
110 9.18 32.00 159 9.18 16.00
III 9.18 36.00 160 9.18 13.33
112 9.18 40.00 161 9.18 10.67
113 16.92 20.00 162 9.18 8.00
114 16.92 24.00 163 9.18 5.33
115 16.92 28.00 164 9.18 2.67
116 16.92 32.00 165 9.18 .00
117 16.92 36.00 166 16.92 16.00
118 16.92 40.00 167 16.92 13.33
119 24.65 20.00 168 16.92 10.67
120 24.65 24.00 169 16.92 8.00
121 24.65 28.00 170 16.92 5.33
122 24.65 32.00 171 16.92 2.67
123 24.65 36.00 172 16.92 .00
124 24.65 40.00 173 24.65 16.00
125 32.38 20.00 174 24.65 13.33
126 32.38 24.00 175 24.65 10.67
127 32.38 28.00 176 24.65 8.00
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177 24.65 5.33 39 13 2 42 41 57 58
178 24.65 2.67 40 13 2 43 42 58 59
179 24.65 .00 41 13 2 44 43 59 60
180 32.38 16.00 42 13 2 45 44 60 61
181 32.38 13.33 43 13 2 46 45 61 62
182 32.38 10.67 44 13 2 47 46 62 63
183 32.38 8.00 45 13 2 48 47 63 64
184 32.38 5.33 46 13 2 33 81 65 49
185 32.38 2.67 47 4 3 49 65 66 50
186 32.38 .00 48 4 3 50 66 67 51

0 49 4 3 51 67 68 52
1 4 1 1 17 18 2 50 4 3 52 68 69 53
2 4 1 2 18 19 3 51 4 3 53 69 70 54
3 4 1 3 19 20 4 52 4 3 54 70 71 55
4 4 1 4 20 21 5 53 4 3 55 71 72 56
5 4 1 5 21 22 6 54 4 3 56 72 73 57
6 4 1 6 22 23 7 55 4 3 57 73 74 58
7 4 1 7 23 24 8 56 4 3 58 74 75 59
8 4 1 8 24 25 9 57 4 3 59 75 76 60
9 4 1 9 25 26 10 58 4 3 60 76 77 61
10 4 1 10 26 27 11 59 4 3 61 77 78 62
11 4 1 11 27 28 12 60 4 3 62 78 79 63
12 4 1 12 28 29 13 61 4 3 63 79 80 64
13 4 1 13 29 30 14 62 13 4 66 65 81 82
14 4 1 14 30 31 15 63 13 4 67 66 82 83
15 4 1 15 31 32 16 64 13 4 68 67 83 84
16 4 1 17 33 34 18 65 13 4 69 68 84 85
17 4 1 18 34 35 19 66 13 4 70 69 85 86
18 4 1 19 35 36 20 67 13 4 71 70 86 87
19 4 1 20 36 37 21 68 13 4 72 71 87 88
20 4 1 21 37 38 22 69 13 4 73 72 88 89
21 4 1 22 38 39 23 70 13 4 74 73 89 90
22 4 1 23 39 40 24 71 13 4 75 74 90 91
23 4 1 24 40 41 25 72 13 4 76 75 91 92
24 4 1 25 41 42 26 73 13 4 77 76 92 93
25 4 1 26 42 43 27 74 13 4 78 77 93 94
26 4 1 27 43 44 28 75 13 4 79 78 94 95
27 4 1 28 44 45 29 76 13 4 80 79 95 96
28 4 1 29 45 46 30 77 4 5 81 107 97 82
29 4 1 30 46 47 31 78 4 5 82 97 98 83
30 4 1 31 47 48 32 79 4 5 97 107 108 98
31 13 2 34 33 49 50 80 4 5 83 98 108 84
32 13 2 35 34 50 51 81 4 5 84 108 99 85
33 13 2 36 35 51 52 82 4 5 85 99 100 86
34 13 2 37 36 52 53 83 4 5 99 108 109 100
35 13 2 38 37 53 54 84 4 5 86 100 109 87
36 13 2 39 38 54 55 85 4 5 87 109 101 88
37 13 2 40 39 55 56 86 4 5 88 101 102 89
38 13 2 41 40 56 57 87 4 5 101 109 110 102
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88 4 5 89 102 110 90 125 4 6 138 139 146 145
89 4 5 90 110 103 91 126 4 6 139 140 147 146
90 4 5 91 103 104 92 127 4 6 140 141 148 147
91 4 5 103 110 111 104 128 4 6 141 142 149 148
92 4 5 92 104 111 93 129 4 6 142 143 150 149
93 4 5 93 111 105 94 130 4 6 143 144 151 150
94 4 5 94 105 106 95 131 4 6 145 146 153 152
95 4 5 105 111 112 106 132 4 6 146 147 154 153
96 4 5 95 106 112 96 133 4 6 147 148 155 154
97 4 5 107 113 114 108 134 4 6 148 149 156 155
98 4 5 108 114 115 109 135 4 6 149 150 157 156
99 4 5 109 115 116 110 136 4 6 150 151 158 157
100 4 5 110 116 117 111 137 4 6 152 153 160 159
101 4 5 111 117 118 112 138 4 6 153 154 161 160
102 4 5 113 119 120 114 139 4 6 154 155 162 161
103 4 5 114 120 121 115 140 4 6 155 156 163 162
104 4 5 115 121 122 116 141 4 6 156 157 164 163
105 4 5 116 122 123 117 142 4 6 157 158 165 164
106 4 5 117 123 124 118 143 4 6 159 160 167 166
107 4 5 119 125 126 120 144 4 6 160 161 168 167
108 4 5 120 126 127 121 145 4 6 161 162 169 168
109 4 5 121 127 128 122 146 4 6 162 163 170 169
110 4 5 122 128 129 123 147 4 6 163 164 171 170
111 4 5 123 129 130 124 148 4 6 164 165 172 171
112 4 6 1 131 138 17 149 4 6 166 167 174 173
113 4 6 17 138 145 33 150 4 6 167 168 175 174
114 4 6 33 145 152 81 151 4 6 168 169 176 175
115 4 6 81 152 159 107 152 4 6 169 170 177 176
116 4 6 107 159 166 113 153 4 6 170 171 178 177
117 4 6 113 166 173 119 154 4 6 171 172 179 178
118 4 6 119 173 180 125 155 4 6 173 174 181 180
119 4 6 131 132 139 138 156 4 6 174 175 182 181
120 4 6 132 133 140 139 157 4 6 175 176 183 182
121 4 6 133 134 141 140 158 4 6 176 177 184 183
122 4 6 134 135 142 141 159 4 6 177 178 185 184
123 4 6 135 136 143 142 160 4 6 178 179 186 185
124 4 6 136 137 144 143
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A1.2 Main program for analysis of 102 mm diameter pile with LID = 5

119

136 151 158 2 1 .0.0.0
142 158 165 2 1 .0.0.0
148 165 172 21.0.00
154 172 179 21.0.0.0
155 181 180 1 1 .0.0.0
156 182 181 1 1 .0.0.0
157 183 182 1 1 .0.0.0
158 184 183 1 1 .0.0.0
159 185 184 1 1 .0.0.0
160 186 185 1 1 .0.0.0
160 179 186 21.0.0.0

112000-100000011 0000
61 6480 O. 1000.0 O. 1000.0 O. 1000.0
2201 10000 -100000011 0000
61 6480 O.4000.0 0.4000.0 O.4000.0

1110-1000000210000
61 64 80 O. 30.0 O. 30.0 O. 30.0
2 2 800 0 -1 0 0 0 00000 0 0 0 0
61 64 80 O. 23970.0 O.23970.0 O. 23970.0
3 801 8010 -1 00000121 0000
61 6480 0.22.5 O. 22.5 O.22.5
4802 15000 -1 000000000000
61 6480 O. 16477.5 o. 16477.5 O. 16477.5
5150122000-1000000000000
61 6480 O. 15000.0 O. 15000.0 O. 15000.0
6220122010-1000001210000
61 6480 0.22.5 O. 22.5 O. 22.5
7220224000 -1 000000000000
61 64 80 0.4477.5 O. 4477.5 O. 4477.5

1 2 1 1 .0 .0 .0
2 3 1 1 .0 .0 .0
3 4 1 1 .0 .0 .0
4 5 1 1 .0 .0 .0
5 6 1 1 .0 .0 .0
6 7 1 1 .0 .0 .0
7 8 1 1 .0 .0 .0
8 9 1 1 .0.0.0
9 10 1 1 .0.0.0
10 11 1 1 .0 .0 .0
11 12 1 1 .0 .0 .0
12 13 1 1 .0 .0 .0
13 14 1 1 .0.0.0
14 15 1 1 .0.0.0
15 16 1 1 .0.0.0
125 126 1 1 .0 .0 .0
126 127 1 1 .0 .0 .0
127 128 1 1 .0 .0 .0
128 129 1 1 .0 .0 .0
129 130 1 1 .0 .0 .0
1 131 1 1 .0 .0 .0
180 125 1 1 .0.0.0
131 132 1 1 .0 .0 .0
132 133 1 1 .0 .0 .0
133 134 1 1 .0 .0 .0
134 135 1 1 .0 .0 .0
135 136 1 1 .0 .0 .0
136 137 1 1 .0 .0 .0
137 144 2 1 .0.0.0
144 151 2 1 .0.0.0

PIPE PILE PROBLEM
999
162110000010
0001180001160
o
1 5 5000 0.25 0.001 35 0400.07 0 0 0 0
280206000.2000. 10.1000000
3 1 29E5 29E5 0.3 0.3 11.154E5 000.283
0000
480206000. 2000. 1 0.1 000000
5 5 50000.25 0.001 350400.070000
65 50000.25 0.001 35 0400.070000
12
1 400000000.0
200.92.8 0.90000.0
041 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
107
108
109
110
111
112
118
119
120
121
122
123
124
124
130



A2. INPUT FILES FOR THE NUMERICAL SIMULATION OF THE
EXPERIMENTAL RESULTS

A2.1 Geometry program for 102 mm diameter pile with LID = 5

"Pipe pile problem"
999
80604424
8060
1 III 1 1 1 000
0000

1 .00 20.00 39 2.00 28.00
2 .00 21.33 40 2.00 29.33
3 .00 22.67 41 2.00 30.67
4 .00 24.00 42 2.00 32.00
5 .00 25.33 43 2.00 33.33
6 .00 26.67 44 2.00 34.67
7 .00 28.00 45 2.00 36.00
8 .00 29.33 46 2.00 37.33
9 .00 30.67 47 2.00 38.67
10 .00 32.00 48 2.00 40.00
11 .00 33.33 49 2.06 20.00
12 .00 34.67 50 2.06 21.33
13 .00 36.00 51 2.06 22.67
14 .00 37.33 52 2.06 24.00
15 .00 38.67 53 2.06 25.33
16 .00 40.00 54 2.06 26.67
17 1.00 20.00 55 2.06 28.00
18 1.00 21.33 56 2.06 29.33
19 1.00 22.67 57 2.06 30.67
20 1.00 24.00 58 2.06 32.00
21 1.00 25.33 59 2.06 33.33
22 1.00 26.67 60 2.06 34.67
23 1.00 28.00 61 2.06 36.00
24 1.00 29.33 62 2.06 37.33
25 1.00 30.67 63 2.06 38.67
26 1.00 32.00 64 2.06 40.00
27 1.00 33.33 65 2.31 20.00
28 1.00 34.67 66 2.31 21.33
29 1.00 36.00 67 2.31 22.67
30 1.00 37.33 68 2.31 24.00
31 1.00 38.67 69 2.31 25.33
32 1.00 40.00 70 2.31 26.67
33 2.00 20.00 71 2.31 28.00
34 2.00 21.33 72 2.31 29.33
35 2.00 22.67 73 2.31 30.67
36 2.00 24.00 74 2.31 32.00
37 2.00 25.33 75 2.31 33.33
38 2.00 26.67 76 2.31 34.67
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77 2.31 36.00 29 4 1 30 46 47 31
78 2.31 37.33 30 4 1 31 47 48 32
79 2.31 38.67 31 13 5 34 33 49 50
80 2.31 40.00 32 13 5 35 34 50 51

0 33 13 5 36 35 51 52
1 4 4 1 17 18 2 34 13 5 37 36 52 53
2 4 4 2 18 19 3 35 13 5 38 37 53 54
3 4 4 3 19 20 4 36 13 5 39 38 54 55
4 4 4 4 20 21 5 37 13 2 40 39 55 56
5 4 4 5 21 22 6 38 13 2 41 40 56 57
6 4 4 6 22 23 7 39 13 2 42 41 57 58
7 4 1 7 23 24 8 40 13 2 43 42 58 59
8 4 1 8 24 25 9 41 13 2 44 43 59 60
9 4 1 9 25 26 10 42 13 2 45 44 60 61
10 4 1 10 26 27 11 43 13 2 46 45 61 62
11 4 1 11 27 28 12 44 13 2 47 46 62 63
12 4 1 12 28 29 13 45 13 2 48 47 63 64
13 4 1 13 29 30 14 46 4 3 49 65 66 50
14 4 1 14 30 31 15 47 4 3 50 66 67 51
15 4 1 15 31 32 16 48 4 3 51 67 68 52
16 4 4 17 33 34 18 49 4 3 52 68 69 53
17 4 4 18 34 35 19 50 4 3 53 69 70 54
18 4 4 19 35 36 20 51 4 3 54 70 71 55
19 4 4 20 36 37 21 52 4 3 55 71 72 56
20 4 4 21 37 38 22 53 4 3 56 72 73 57
21 4 4 22 38 39 23 54 4 3 57 73 74 58
22 4 1 23 39 40 24 55 4 3 58 74 75 59
23 4 1 24 40 41 25 56 4 3 59 75 76 60
24 4 1 25 41 42 26 57 4 3 60 76 77 61
25 4 1 26 42 43 27 58 4 3 61 77 78 62
26 4 1 27 43 44 28 59 4 3 62 78 79 63
27 4 1 28 44 45 29 60 4 3 63 79 80 64
28 4 1 29 45 46 30
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A2.2 Main program for 102 rom diameter pile with LID = 5

PIPE PILE PROBLEM
999
1 53 1 8000 1 0
o 0 0 60 65 0 0 50 60
o
1 5 19000.3 0.001 360400.0560000
2 8 0 24 2558. 700. 1 0.06000000
3 1 29E5 29E5 0.3 0.3 11.154E5 0 0 0.283 0 0 0 0
45 19000.3 0.001 360400.0560000
5 8 0 24 2558. 700. 1 0.06000000
1 2
1 400000000.0
2200.37 1.120.370000.0
o 17 1

1 1 2 1 1 .0 .0 .0
2 2 3 1 1 .0 .0 .0
3 3 4 1 1 .0 .0 .0
4 4 5 1 1 .0 .0 .0
5 5 6 1 1 .0 .0 .0
6 6 7 1 1 .0 .00
7 7 8 1 1 .0 .0 .0
8 8 9 1 1 .0 .0 .0
9 9 10 1 1 .0 .0 .0
10 10 11 1 1 .0 .0 .0
11 11 12 1 1 .0 .0 .0
12 12 13 1 1 .0 .0 .0
13 13 14 1 1 .0.0.0
14 14 15 1 1.0.0.0
15 15 16 1 1 .0.0.0
1 1 17 2 1 .0 .0 .0
16 17 33 2 1 .0.0.0

1150-1000000000000
6064 80 O. 0000.0 O. 0000.0 O. 0000.0
26450 -1 00000011 0000
606480 O. 1500.0 O. 1500.0 O. 1500.0
346800-100000011 0000
6064 80 O. 0000.0 O. 0000.0 O. 0000.0

1110-1000000210000
61 6480 0.30.0 0.30.0 0.30.0
228000 -1000000000000
61 6480 O. 23970.0 O. 23970.0 O. 23970.0
3801 8010 -1 000001210000
61 64 80 0.22.5 O. 22.5 O.22.5
4 802 1500 0 -1 0 0 0 00000 0 0 0 0
61 6480 O. 16477.5 O. 16477.5 O. 16477.5
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APPENDIX B

DISTRIBUTION OF STRESSES
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Figure 81.5 Vertical stress along pile depth (D = 152 mm, UD = 15)
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Figure 81.7 Vertical stress along pile depth (D = 203 mm, LID = 10)
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B2. VERTICAL STRESS DISTRIBUTION IN THE INTERNAL SOIL
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Figure B2.1 Vertical stress in the internal soil with depth
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Figure 82.2 Vertical stress in the internal soil with depth

(D = 102 mm, UD = 15)
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Figure 2.3 Vertical stress in the internal soil with depth
(D = 152 mm, UD =5)
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Figure 82.4 Vertical stresses in the internal soil with depth
(D = 152 mm, UD = 10)
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Figure 82.5 Vertical stress in the internal soil with depth
(D= 152mm, UD= 15)
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Figure 82.6 Vertical stress in the internal soil with depth
(D = 203 mm. UD = 5)
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Figure 82.7 Vertical stress in the internal soil with depth
(D = 203 mm, UD = 10)

2000

(a)

1500

(b)

136

(a) Settlement = 20% of pile diameter
(b) Settlement = 10% of pile diameter
(0) Settlement = 5% of pile diameter

(0)

500 1000

Vertical stress (kN/m2)

o

25

-150

-125

o

-75

-50

-25

-175

-200

-225

E
,£. -100
.s=
Q.
Ql
Cl



Figure 83.1 Normal stresses along the interface elamants (D = 102 mm, UD = 5)
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Figure 83.2 Normal stresses along the interface elements
(D = 102 mm, UD = 15)
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Figure 83.3 Normal stresses along the interface elements
(D = 152 mm, UD = 5)
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Figure 83.4 Normal stresses along the interface elements
(D = 152 mm, UD = 10)

800

(c)

600

(b)

(a) Settlement = 5% of pile diameter
(b) Settlement = 10% of pile diameter
(c) Settlement = 20% of pile diameter

140

(a)

200 400

Normal Stress (kN/m2)

o

-40

o

-20

-60

-100

-120

-140

-160

E
~ -80
.s:::
Q.
Q)o



Figure 83.5 Normal stresses along the interface elements
(0 = 152 mm, UO = 15)
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Figure 83.6 Normal stresses along the interface elements
(D = 203 mm, UD = 5)
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Figure 83.7 Normal stresses along the interface elements
(D = 203 mm, UD = 10)
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Figure 84.1 Shear stress along interface elements ( D = 102 mm, UD = 5))
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Figure 84.2 Shear stresses along the interface elements
(D = 102 mm, UD = 15)
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Figure 84.3 Shear stresses along the interface elements
(D = 152 mm, UD = 5)
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Figure 84.5 Shear stresses along the interface elements
(D= 152mm, UD = 15)
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Figure 84.6 Shear stresses along the interface elements
(D = 203 mm, UD = 5)

20o

(0)(b)

149

(a) Settlement = 20% of pile diameter
(b) Settlement = 10% of pile diameter
(0) Settlement = 5% of pile diameter

(a)

-200 -180 -160 -140 -120 -100 -80 -60 -40 -20

Shear stress (kN/m2)

-20

o

-40

-80

-60

-100

'R
'"o



Figure 85.1 Vertical stress along outer soil of pile with distance from pile
(D = 102 mm, UD = 5)
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85. VARIATION OF STRESS WITH DISTANCE FROM PILE
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Figure 85.3 Vertical stress along outer soil of pile with distance from pile
(D = 152 mm, UD = 10)
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Figure 85.5 Vertical stress along outer soil of pile with distance from pile
(0 = 203 mm. UO = 5)
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Figure 85.6 Vertical stress along outer soil of pile with distance from pile

(D = 203 mm, UD = 10)
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APPENDIX C

FINITE ELEMENT MESHES
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Figure C1 Finite element mesh (Diameter = 152 mm, Depth = 76.2 em)
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Figure C2 Finite element mesh (Diameter = 152 mm, Depth = 152.4 em)
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Figure C3 Finite element mesh (Diameter = 152 mm, Depth = 228.6 em)
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Figure C4 Finite element mesh (Diameter = 102 mm, Depth = 50.8 em)
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Figure C5 Finite element mesh (Diameter = 102 mm, Depth = 101.6 em)
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Figure C6 Finite element mesh (Diameter = 102 mm, Depth = 152.4 em)
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Figure C7 Finite element mesh (Diameter = 203 mm, Depth = 101.6 em)
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Figure C8 Finite element mesh (Diameter = 203 mm, Depth = 203.2 em)
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Figure C9 Finite element mesh (Diameter = 203 mm, Depth = 304.8 em)
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DATA GENERATION PROGRAMME

Dl. MAIN PROGRAMME: PMESH

C PROGRAM TO GENERATE THE CO-ORDINATE OF THE NODES
DIMENSION X(l OOOO),Y(lOOOO),NREF(l0000)
COMMON ELNOD(1 0000,4),NETYP(1 OOOO),MZONE(10000)
INTEGER ELNOD,NETYP,MZONE
CHARACTER OP*1
OPEN(3,FILE='CGP.DA T',STATUS='UNKNOWN')
OPEN( 4,FILE='CMP.DA T',STA TUS='UNKNOWN')
OPEN(5,FILE='FMESH.DA T',STATUS='UNKNOWN')
PRINT*,'PILE RADIUS=?, OUTER EXTEND=?, DEPTH BELOW PILE=?'
READ*,PR,XEX,HB
PRINT*,'PILE LENG1H=?,PILE lHlCKNESS=?,IN1ERFACE lHlCK CALCULATED'
READ*,PL,TP
PRINT*,'INTERNAL SOIL FULL OR NOT? YIN'
READ(*,81)OP

81 FORMAT(Al)
PRINT*,'COMMENT: ??????'
PRINT*,'VERTICAL DIVISION INDICATE PLUG DEPTH AS 3*PILE THICKNESS'
PRINT*,'FOR INNER SOIL,HORIZONTAL DIY=?, VERTICAL DIY=?'
READ*,INHD,INVD

C TI=0.1*3*TP
XI=PR/FLOAT(INHD)
NP=NINT(PL/(3 *S*TP) )*3
PRINT*,'NUMBER OF PILE DIVISION=', NP
AL=PL/FLOA T(NP)
TI=O.OS*AL
IF(OP.EQ.'Y')INVD=NP
INVRDV=INVD+ 1
INHRDV=INHD+ 1

C INNER SOIL CO-ORDINATES
II=O
DO 22 I=I,INHRDV
DO 22 J=I,INVRDV
1I=1I+1
X(II)=(I-I)*XI
Y(II)=HB+(J-I)*AL

C WRITE(S,SO)X(II),Y(II)
C WRITE(3,23)II,X(II),Y(II)
22 CONTINUE
C
C PILE ELEMENT CO-ORDINATES INCLUDING INTERFACE

XT=PR+TI
DO 141=1,2
NP1=NP+l
DO 14 J=I,NPI
II=II+1
X(II)=XT+(I-I)*TP
Y(II)=HB+(J-l)*AL
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IF(J.EQ.l)Y(II)=HB+O.l*(TP+2*TI)
C WRITE(5,50)X(II),Y(II)
C WRITE(3,23)II,X(II),Y(II)
14 CONTINUE

DO 15 J=I,NPI
11=11+1
X(II)= XT +TP+ TI
Y(II)=HB+(J-I)*AL

C WRITE(5,50)X(II),Y(II)
C WRITE(3,23)II,X(II),Y(II)
15 CONTINUE
C
C CO-ORDINATE OF THE COMPLEX ZONE

NC=NP/3*2
XC=X(II)
NCC=NCI2

C DECIDE FOR SMALL ELEMENT, LENTH=2 OR 3*AL AND CORRECT NS
NS=2
DO 16 J=I,NCC
11=11+1
X(II)=XC+NS*AL
YC=(3*J-2)* AL
Y(II)=HB+YC

C WRITE(5,50)X(II),Y(II)
C WRITE(3,23)II,X(II),Y(II)

11",,11+1
X(II)=XC+NS* AL
Y(II)=HB+YC+AL

C WRITE(5,50)X(II),Y(II)
C WRITE(3,23)II,X(II),Y(II)
16 CONTINUE
C
C CO-ORDINATE OF THE EXTERNAL SOIL MASS
C DECIDE FOR LARGE ELEMENT, LENGTH=5 OR 6*AL AND CORRECT NL

NL=5
XC=X(II)+(NL-NS)* AL

17 PRINT*,'DIVISION OF THE EXTERNAL PORTION OF COMPLEX ZONE=?'
READ*,NEX
XE=(XEX- TI-NL *AL)/FLOAT(NEX)
IF(XE.GT.(9* AL»GOTO 17
NEl=NEX+1
NC2=NCC+l
DO 181=I,NEI
DO 18 J=I,NC2
11=11+1
X(II)=XC+(I-l)*XE
Y(II)=HB+(J-l)*3* AL

C WRITE(5,50)X(II),Y(II)
C WRITE(3,23)II,X(II),Y(II)
18 CONTINUE

NLAST=II
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PRINT*, 'NLAST=',NLAST
C
C CO-ORDINATE OF TIlE SOIL MASS BELOW TIlE PILE
C DECIDE DEPTII OF THE BELOW COMPLEX ZONE 3 OR 4*AL AND CORRECT NBE

NBE=3
HBI=HB-NBE*AL

19 PRINT*,'VERTICAL DMSION OF DEPTH BELOW REF=?'
READ*,NBD
YC=HB I/FLOA T(NBD)
IF(YC.GT.(3*XI»GOTO 19
NTR=INHRDV+2+NEX
NBDI=NBD+I
XR2=O
DO 20 I=I,NTR
DO 21 J=I,NBDl
11=11+1
IF(I.LE.(INHD»XCH=XI
IF(I.EQ.(INHD+ 1»XCH=2*TI+ TP+NS* AL
IF(I.EQ.(INHD+ 2»XCH=(NL-NS)* AL
IF(I.GT.(INHD+ 2»XCH= XE
X(II)=XR2
Y(II)=HBI-(J-I)*YC

C WRITE(5,50)X(lI),Y(II)
C WRITE(3,23)II,X(lI),Y(II)
21 CONTINUE

XR2=XR2+XCH
20 CONTINUE

NVTX=II
C
C TO FIND TIlE NODE OF TIlE REFERENCE LINE

J=I
DO 28 1=1,11
IF(Y(I).NE.HB)GOTO 28
NREF(J)=I
J=1+1

28 CONTINUE
CALL CONNI(INVD,INHD,NP,NEL,NEX)
CALL CONN2(NEL,NBD,NLAST,INHD,NEX,NREF)
WRITE(3,54)NVTX,NEL

54 FORMA T(/I5,I5, IX,'4', IX,'4', IX,'2', IX,'4')
WRITE(3,53)

53 FORMAT(2(1)
DO 60 I=I,NEL
WRITE(5,51 )(ELNOD(I,K),K= I ,4)

51 FORMAT(4(IX,I5»
60 CONTINUE

DO 55 I=I,NVTX
WRITE(5,50)X(I),Y(I)
WRITE(3 ,23)I,X(I), Y(I)

55 CONTINUE
DO 56 I=I,NEL
WRITE(3,26)I,NETYP(I),MZONE(I),(ELNOD(I,K),K= I ,4)
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26 FORMAT(I5,IX,I4,IX,I3,IX,4(lX,I5))
56 CONTINUE

PRINT*,'TIllCKNESS OF THE INTERFACE ELEMENT=',TI
50 FORMAT(F6.2,IX,F6.2)
23 FORMAT(I5,F7.2,IX,F7.2)

STOP
END
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D2. SUBROUTINE CONN2

$DEBUG
SUBROUTINE CONN2(NEL,NBD,NLAST,INHD,NEXD,NREF)
COMMON ELNOD(l 0000,4),NETYP(l OOOO),MZONE(l0000)
DIMENSION NREF(lOOOO)

C
INTEGER ELNOD

C
C CONNECTMTY OF THE BOTTOM COMPLEX ZONE

IVAR=I
IFX=I
VI=O
V2=0
V3=0

C WRITE(3,27)
C 27 FORMAT(/I/'CONNECTIVITY FOR THE SOIL ZONE BELOW THE PILE'I/)

NTERM=INHD+2+NEXD
DO 20 I=I,NTERM
NEL=NEL+I
NETYP(NEL)=4
MZONE(NEL)=6
ELNOD(NEL,l )=NREF(I)
ELNOD(NEL,2)=NLAST +(I-I)*(NBD+ 1)+ I
ELNOD(NEL,3)=NLAST +I*(NBD+ 1)+ I
ELNOD(NEL,4)=NREF(I+ I)

IF(I.EQ.I)THEN
WRITE(4,40)NEL,ELNOD(NEL, I),ELNOD(NEL,2),IV AR,IFX,VI, V3,V2
ENDIF
IF(I.EQ.NTERM)THEN
WRITE(4,40)NEL,ELNOD(NEL,3),ELNOD(NEL,4),IV AR,IFX,VI, V3,V2
ENDIF

40 FORMAT(lX,I5, IX,2(I5, IX),2(I2),3(F3.1»
C WRITE(5,51)(ELNOD(NEL,J),J=I,4)
C 51 FORMAT(4(I4»
C WRITE(3,26)NEL,NETYP(NEL),MZONE(NEL),(ELNOD(NEL,J),J= 1,4)
C 26 FORMAT(I3,I4,I3,4(I4»
20 CONTINUE
C CONNECTIVITY FOR THE SOIL ZONE BELOW THE BOTTOM COMPLEX ZONE

NT=NTERM
DO 25 I=I,NT
1START=NLAST +(1-1)*(NBD+ I)
DO 25 J=I,NBD
NEL=NEL+I
NETYP(NEL)=4
MZONE(NEL)=6
ELNOD(NEL,I)=IST ART +J
ELNOD(NEL,2)=ELNOD(NEL, 1)+I
ELNOD(NEL,3)=ELNOD(NEL,2)+NBD+ I
ELNOD(NEL,4)=ELNOD(NEL,3)-1
IF(I.EQ.I)THEN
WRITE(4,40)NEL,ELNOD(NEL, I),ELNOD(NEL,2),IV AR,IFX, VI, V3,V2
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ENDIF
IF(l.EQ.NT)1HEN
IVAR=I
WRITE( 4,40)NEL,ELNOD(NEL,3),ELNOD(NEL,4 ),IVAR,IFX, VI ,V3,V2
ENDIF
IF(J.EQ.NBD)1HEN
IVAR=2
WRITE( 4,40)NEL,ELNOD(NEL,2),ELNOD(NEL,3),IV AR,IFX, VI ,V3,V2
ENDIF

C WRITE(5,51)(ELNOD(NEL,K),K=I,4)
C WRITE(3,26)NEL,NETYP(NEL),MZONE(NEL),(ELNOD(NEL,K),K= I ,4)
25 CONTINUE

RETURN
END
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D3. SUBROUTINE CONN!

$DEBUG
SUBROUTINE CONNI(INVD,INHD,NP,NEL,NEXD)
COMMON ELNOD( I0000,4),NETYP( IOOOO),MZONE(l0000)

C CONNECTIVITY FOR TIlE INNER SOIL MASS
C

INTEGER ELNOD,NETYP,MZONE
IVAR=I
IFX=I
VI=O
V2=0
V3=0
WRITE(4,4I)

41 FORMAT(8(/)
C WRITE(3,3I)
C 31 FORMAT(//I'CONNECTMTY OF TIlE UPPER SOIL ZONE'/'NE NTYP CON'!/)

NEL=O
INVRDV=INVD+ I
INHRDV=INHD+ I
DO 10 I=I,INHRDV
ISTART=(I-I)*(INVD+ I)
DO 10 J=I,INVD
NEL=NEL+I
ELNOD(NEL, I)=ISTART +J
ELNOD(NEL,2)=IST ART +(INVD+ 1)+J
ELNOD(NEL,3)=ELNOD(NEL,2)+ I
ELNOD(NEL,4)=ELNOD(NEL, 1)+ I
IF(LL T.INHRDV}TIlEN
NETYP(NEL)=4
MZONE(NEL)=I
ELSE
ELNOD(NEL,2)=ISTART+J
ELNOD(NEL,3)=ISTART+(INVD+ I)+J
ELNOD(NEL,4)=ELNOD(NEL,3)+ I
ELNOD(NEL, I )=ELNOD(NEL,2)+ I
NETYP(NEL)= 13
MZONE(NEL)=2
ENDIF
IF(LEQ.I)THEN
WRITE( 4,40)NEL,ELNOD(NEL, I),ELNOD(NEL,4),IV AR,IFX, VI, V3,V2

40 FORMA T(lX,I5,lX,2(I5,lX),2(I2),3(F3.l»
ENDIF

C WRITE(5,5I)(ELNOD(NEL,K),K=I,4)
C WRITE(3,26)NEL,NETYP(NEL),MZONE(NEL),(ELNOD(NEL,K),K= 1,4)
10 CONTINUE

NEL=NEL+I
ELNOD(NEL, I)=INHD*INVRDV+ I
ELNOD(NEL,2)=ELNOD(NEL, I)+INVD+ 2*(NP+ 1)+ I
ELNOD(NEL,3)=ELNOD(NEL,2)-NP-I
ELNOD(NEL,4 )=ELNOD(NEL,3)-NP-I
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NETYP(NEL)= 13
MZONE(NEL)=2

C
C CONNECTIVITY FOR THE PILE ZONE

DO 11 1=1,2
ISTART=INHRDV*INVRDV+(I-l)*(NP+ 1)
DO 11 J=I,NP,1
NEL=NEL+l
ELNOD(NEL,I)=ISTART+J
ELNOD(NEL,2)=IST ART+NP+ 1+J
ELNOD(NEL,3)=ELNOD(NEL,2)+ 1
ELNOD(NEL,4)=ELNOD(NEL, 1)+ 1
IF(I.EQ.l)THEN
NETYP(NEL)=4
MZONE(NEL)=3
ELSE
ELNOD(NEL,2)=ISTART+J
ELNOD(NEL,3)=IST ART +NP+ 1+J
ELNOD(NEL,4)=ELNOD(NEL,3)+ 1
ELNOD(NEL, 1)=ELNOD(NEL,2)+ 1
NETYP(NEL)= 13
MZONE(NEL)=4
ENDIF

C WRITE(5,51)(ELNOD(NEL,K),K=I,4)
C WRITE(3,26)NEL,NETYP(NEL),MZONE(NEL),(ELNOD(NEL,K),K= 1,4)
11 CONTINUE
C
C CONNECTIVITY FOR THE COMPLEX ZONES

IONE=INHRDV*INVRDV+ 2*(NP+ 1)-2
IFIVE=(IONE+ 2)+(NP+ 1)-1
ISEVEN=(IFIVE+ 1)+(NP/3)*2
NC=NP/3
DO 12 I=I,NC
IONE=IONE+3
IFIVE=IFIVE+2
ISEVEN=ISEVEN+ 1

12 CALL UNIT(IONE,IFIVE,ISEVEN,NEL)
C CONNECTIVITY OF THE OUTER ZONE

NC=NP/3
DO 13 I=I,NEXD
1START=INHRDV*INVRDV+(NP+ 1)*3+NC*2+(I-l )*(NC + 1)
DO 13 J=I,NC
NEL=NEL+l
ELNOD(NEL, 1)=ISTART +J
ELNOD(NEL,2)=ISTART +NC+ 1+J
ELNOD(NEL,3)=ELNOD(NEL,2)+ 1
ELNOD(NEL,4)=ELNOD(NEL, 1)+1
NETYP(NEL)=4
MZONE(NEL)=5
IF(I.EQ.NEXD)THEN
WRITE( 4,40)NEL,ELNOD(NEL,2),ELNOD(NEL,3),IV AR,IFX,Vl,V3,V2
ENDIF

172



C WRITE(5,51)(ELNOD(NEL,K),K=I,4)
C 51 FORMAT(4(I4»
C WRITE(3,26)NEL,NETYP(NEL),MZONE(NEL),(ELNOD(NEL,K),K= 1,4)
C 26 FORMAT(I3,I4,I3,4(I4»
13 CONTINUE

RETURN
END
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D4 SUBROUTINE UNIT

SUBROUTINE UNIT(IONE,IFIVE,ISEVEN,NEL)
COMMON ELNOD( I0000,4),NETYP(1 OOOO),MZONE(I0000)
INTEGER ELNOD,NETYP,MZONE
NEL=NEL+I
ELNOD(NEL,l)=IONE
ELNOD(NEL,2)=ISEVEN
ELNOD(NEL,3)=IFIVE
ELNOD(NEL,4)=IONE+I
NETYP(NEL)=4
MZONE(NEL)=5

C WRITE(5,51)(ELNOD(NEL,J),J=I,4)
C 51 FORMAT(4(I4))
C WRITE(3,26)NEL,NETYP(NEL),MZONE(NEL),(ELNOD(NEL,K),K= I ,4)
C 26 FORMAT(I3,I4,I3,4(I4))

NEL=NEL+I
ELNOD(NEL,I)=IONE+I
ELNOD(NEL,2)=IFIVE
ELNOD(NEL,3)=IFIVE+ I
ELNOD(NEL,4)=IONE+2
NETYP(NEL)=4
MZONE(NEL)=5

C WRITE( 5,5 1)(ELN 0D(NEL,J),J = 1,4)
C WRITE(3,26)NEL,NETYP(NEL),MZONE(NEL),(ELNOD(NEL,K),K= I,4)

NEL=NEL+I
ELNOD(NEL, 1)=IFIVE
ELNOD(NEL,2)=ISEVEN
ELNOD(NEL,3)=ISEVEN+ 1
ELNOD(NEL,4)=IFIVE+ I
NETYP(NEL)=4
MZONE(NEL)=5

C WRITE(5,51)(ELNOD(NEL,J),J=I,4)
C WRITE(3,26)NEL,NETYP(NEL),MZONE(NEL),(ELNOD(NEL,K),K= 1,4)

NEL=NEL+I
ELNOD(NEL,I)=IONE+2
ELNOD(NEL,2)=IFIVE+ 1
ELNOD(NEL,3)=ISEVEN+ 1
ELNOD(NEL,4)=IONE+3
NETYP(NEL)=4
MZONE(NEL)=5

C WRITE(5,5 I)(ELNOD(NEL,J),J= 1,4)
C WRITE(3,26)NEL,NETYP(NEL),MZONE(NEL),(ELNOD(NEL,K),K= 1,4)

RETURN
END
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FEATURES OF THE PROGRAMME USED

E.! Introduction

The finite element method was introduced during the 1950s as a computer
based technique for the stress analysis of continuous structures. During the
1960s the method was extended to non-structural problems. The finite element
method has grown to be the most popular technique for predicting the
behaviour of deformable bodies in different branches of engineering. Its
popularity is mostly due to the fact that it is available to engineers as general-
purpose computer programme.

A fmite element programme CRISP (Britto & Gunn) was used in the study of
pipe pile problem. CRISP was developed over a number of years by research
workers in the Cambridge University Engineering Department Soil Mechanics
Group, starting in 1975. Since 1977 A.M.Britto and M.J. Gunn have been
responsible for the publication of documentation of the programme. The
programme used was modified in 1990by them.

The CRISP (CRItical State. Programme) is an approximately 8000 line
FORTRAN computer programme. The programme uses the finite element
technique and allows prediction to be made of ground deformations using
critical state theories. It is possible to predict the development of deformations
with time due to consolidation by using this program.

Salient features of CRISP along with some relevant new features (Bari, 1996)
are discussed in the following sections.

E.2 General Features

The critical state program, CRISP can tackle any size of problem depending on
the amount of memory and processing power of the computer concerned. It
contains facilities to analyse several soil-structure interaction problem provided
realistic soil parameters are available. A brief sununary of facilities provided by
CRISP are as below:
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c) Element types:

I

i

consolidation analysis of two
(with axisymmetric loading) or

a) Types of analysis:

Undrained, drained or fully coupled
dimensional plain strain or axisymmetric
three dimensional bodies.

b) Soil models:

d) Non-linear techniques:

Isotropic and anisotropy elasticity, inhomogeneous elasticity (properties
varying with depth, critical state soil models (Cam-Clay and Modified Cam-
clay), elastic perfectly plastic models (with yield criterion by von Mises,
Tresca, Drucker Prager, Mohr-Coloumb), the Schofield soil model.

In CRISP, elements incorporated are: 3-nodal bar element, linear and cubic
strain triangle, linear and cubic strain quadrilateral, linear strain brick
element, 3-nodded beam element and 6-nodded interface element. The
program has been designed so that new element types can be added with
relatively little effort. In numbering the vertex nodes and the elements in the
mesh, gaps in the numbering are allowed for; this permits the user to alter
some part of the mesh without having to re-number of the mesh completely.
Additional nodes along element sides and any inner nodes are assigned by
the program.

Incremental (tangent stiffness) approach is used in non-linear analysis.
Options are available for updating nodal co-ordinates with progress of
analysis and for integration in time, 8 = I (consolidation analysis).

e) Boundary conditions:

Element sides can be given prescribed incremental values of displacements
or excess pore pressures. Loading applied as nodal loads or pressure loading
on element sides. Automatic calculation of loads simulating excavation, or
construction when elements are removed or added.



f)Miscellaneous:

Stop-restart facility allows analysis to be continued from a previous run.
Non-linear finite element analyses tends to be a time-consuming business for
both the computer and the program user. Getting the size of the load
increments right, usually involves re-running the program several times and
examining the computer output. So that the user does not have to continually
rerun the analysis from the start each time, a stop restart facility is provided.
The stop restart facility also makes possible the production of graphical
displays of the result.

CRISP solves the linear simultaneous stiffness equations using the frontal
solution method to minimise operations on zero terms and to use minimum
computer memory for the stiffuess matrix. The program is based on the
model program by Irons (1970), modified for variable numbers of degrees of
freedom at nodal points.

E.3 Solution Technique

In most geotechnical analysis, non-linearity arises from material behaviour. The
cause of non-linear response can be identified as being either geometric non-
linearity or material nonlinearity. Geometric nonlinearity arises when large
deformations of the Structure take place. In that case equilibrium equations
based on undeformed geometry are no longer sufficiently accurate. Material
non-linearity rises when the stress-strain relation for the material is non-linear.
In general, non-linearity of a system may be due to geometric non-linearity,
material non-linearity or both together. According to Carter (Carter et al. 1977),
the linear assumptions of small strains and small displacements is usually
satisfactory in the solution of geotechnical problems, and so the non-linearity
mainly due to material behaviour. In CRISP, the small displacement, small
strain approach is used in analyses. The program contain the option of co-
ordinate updating for the case of large displacement.

There are number of techniques for analysing non-linear problems using finite
element. CRISP uses the incremental or tangent stiffness approach. The user
divides the total load acting into a number of small increments and the program
applies each of these incremental loads in turn. During each increment the
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stiffuess properties appropriate for the current stress levels are used in the
calculations. In contrast to this approach elasto-plastic behaviour can be
simulated by using larger size of increments and by performing iterations
within each increment until convergence to the non-linear load-displacement
curve is obtained.

The analysis can be divided into the following steps:

i) Calculation of incremental loads
ii) Application of the boundary conditions
iii) Assembly of the stiffness matrix
iv) Solution of the equations
v) Calculation of strains and stresses
vi) Output of results

E.3.1 Incremental blocks

When a non-linear or consolidation analysis is performed using CRISP, it is
necessary to divide either the loading or the time span of the analyses into
numbers of increments. CRISP calculates the incremental displacements for
each increment using a tangent stiffness approach, i.e. the current stiffuess
properties are based on the stress at the start of each increment.

Total number of increments that are necessary will vary from problem to
problem. While it is desirable to use as many increments as possible to obtain
accurate results, the escalating computer costs that this entails will inevitably
mean that some compromise is to be made between accuracy and cost. The
recommended way of reviewing the results to determine whether enough
increments have been used in an analysis is to examine the value of yield ratio
(YR) at each integration point. The parameter yield ratio is defmed as the ratio
of the yield locus size at the end of the current increment to the size at the
begirming of the current increment. The ratio is printed for each integration
point. Value of about 1.02 (0.98, if softening) are generally regarded as leading
to sufficiently accurate calculations. If values greater than 1.05 (less than 0.95,
if softening) are seen, then the size of the load increments should be reduced.
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(I) 6 - noded interface element

(d) Quadrilateral element

(b) 6 noded linear strain triangle
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Figure E.! Different fInite elements used in CRISP

VI

(a) 3 noded bar element

(e) 20 - noded linear strain brick element

(c) 15 noded cubic strain triangle
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(b) 8 - noded quadrilateral
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Displacement, u

Figure E.3 Intregration Points

Figure E.2 Incremental and Iterative Technique

(a) Linear strain triangle

Load,Q



The analyses is sub-divided into one or more incremental blocks. Each
increment block consists of one or more increments. The use of the increment
block is adopted for two reasons: (a) removal of elements and additions of
elements can be carried out over a nmnber of increments and (b) with repeated
application of loading increments can be grouped together as an increment
block thereby reducing the amount of data input. Element stiffuesses are always
added or removed in the fIrst increment of a block, but the associated loads are
distributed over all the increments in the block. Clearly this procedure
introduces an extra degree of approximation in modelling, but it has been found
to be satisfactory in practice.

E.3.2 Incremental stress-strain relations

In an elasto-plastic analysis the stiffness matrix of a fInite element will be
dependent on the stress state within the element. In general the stress state will
vary across an element and the stiffuess terms are calculated by integrating
expressions dependent on these varying stress over the volmne of each element.
CRISP integrates these expressions nmnerically by sampling the stresses at
particular points within the element and then using standard nmnerical
integration rules for triangular areas. Options are available on whether the
nodal co-ordinates are updated after each increment of the analysis. Internal
loads and internal stresses may be assmned to be in equilibrimn in relation to
the original geometry of the fInite element mesh based on small displacement
assmnption.

In order to perform non-linear fInite element analysis using elasto-plastic
models of soil behaviour, it is necessary to compute the modulus matrix D

ep
relating an increment of strain to an increment of stress. The incremental strains
are calculated as

E.l

where ~E , B and q are strain, strain-displacement matrix and nodal
displacements respectively.

The cmnulative strains are incremented by the incremental strains. The
incremental stresses are then calculated from the incremental strains.
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E.3

E.5
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K = .~:>;rDiBiIJIWi
i=!

N

Y(~,ll) = 2:Ni(~' ll)Yi
i=l

N

x(~,ll) = 2: Ni(~' ll)xi
i=l

/ / /cr. = cr. !+ .1.cr.1 1- I

E.2 (a,b)

Starting from the yield function f(cr, h) = 0, and the plastic potential g(cr, h) = 0
there is a piece of standard manipulation to obtain a formula for D

ep
(Zienkiewicz, 1977):

Where a = i3g= Of C = Of and H is a matrix relating changes in hardeningaa aa' 8h

parameters to changes in the incremental plastic strain dh = H dEP . Shape

functions are used to calculate the co-ordinates of the integration points form

the nodal co-ordinates.

Depending upon the constitutive relationship being used, D matrix is calculated
in different routine.

where i is the integration point.



E.3.3 Solution of equations

The frontal solution step is divided into the following three parts:

4321

Active front Active front loads Array for iII- Buffer
stiffuess region regIOn conditioning check

CRISP uses the well known frontal method (Irons, 1970) to solve the
assembled equations. In this method the global stiffuess matrix is never fully
assembled. The frontal solver in the program uses a one-dimensional array and
is for the solving of symmetric stiffness matrices only. Therefore only problems
of material behaviour which obey the associated flow rule can be analysed.

i) adding element stiffuess matrix into front

ii) dealing with prescribed displacements and applied loads
iii) forward elimination and backward substitution

The frontal method begins as soon as the ftrst element stiffuess matrix has been
assembled into the frontal region. The frontal region is made up of a one-
dimensional array partitioned into four different regions. In this particular
version it is as shown below:

The D matrix is independent of the stress level and therefore is a constant for a
given element.

The element stiffuess matrix is assembled into the appropriate locations in
region 1. The elimination phase begins for all equations which are fully
assembled. For these equations the corresponding variable is checked to see
whether it is prescribed. The corresponding load term is also assembled into its
assigned location in region 2. The coefficient of the complete equation are
transferred to the buffer, one by one; at each stage the relevant column of terms
is modifted. The next element is then assembled and the whole procedure is
repeated.

The solver can handle variable d.o.f of nodes and is independent of the type of
element being used. A minimum amount of core is necessary to solve the
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equations. This is calculated as the core required to keep all the stiffuess terms,
load terms and terms for ill-conditioning check when the front-width is at its
maximum. The program is not capable of solving the equations if this minimum
core is not provided.

E.4 Incorporation ofInterface Element

Behaviour at junctions or interfaces between structure and soil elements
involve relative slippage or separation of structure from soil. This may occur
because of exceeding the limiting interface friction and inward movement of
the structure. In order to obtain a better simulation of soil-structure interaction,
special interface elements have to be used while using finite element method as
the numerical tool.

Attempts have been made by a number of investigators to develop interface
elements. Zienkiewicz, et al. (1970) suggested the use of continuous
isoparametric elements with a simple non-linear material property for shear and
normal sn:esses, assuming uniform strain in the thickness direction. In certain
cases, ill conditioning of the stiffness matrix takes place in this case. Goodman,
Taylor and Brekke (1968) developed interface element of zero thickness to
account for relative movements between rock joints. Katona, et al. (1976) and
Katona (1981) introduced a simple friction-contact interface element from the
principle ofYirtual work modified by appropriate constraint conditions. Various
deformation modes at the interface are incorporated in this formulation. Desai
et al. (1984) proposed a thin-layer element, for using in structure-soil
interaction and rock joints. Various deformation modes such as stick, slip,
debonding and rebonding can be handled with this element. It is capable of
providing improved definition of normal and shear behaviour; hence, it can be
computationally more reliable than the zero thickness element. The formulation
of this element is essentially the same as other solid elements. As such it is
easier to program and implement. Inclusion of a finite thickness for the
interface is realistic since there is very often a thin layer of soil which
participates in the interaction behaviour. The thin layer element can easily be
introduced in an interface having a curved configuration. The thin-layer
element has been used in the present research and hence discussed here.
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E.4.1 Interface behaviour

The physical behaviour of a structure-soil interface may involve relative
movements that are both normal and tangential to the interface surface. The
thin layer interface element is derived to account for various modes of
deformations such as :

a) Stick or no-slip;
b) Slip or sliding;
c) Separation or debonding; and
d) Rebonding.

Figure EA shows various modes of deformation for a two-dimensional
idealisation. An interface element is in stick or no-slip mode when there is no
relative movement between the adjoining bodies, Fig. EA(a). Slip or sliding
occurs when relative movements take place in such a manner that the contact
between the mating bodies is maintained, Fig. EA(b). Separation or debonding
mode occurs when gaps open up between two bodies that were in contact
previously, Fig. EA(c). An interface element in separation mode can return to
stick mode in subsequent loading, which is referred to as rebonding, Fig.
EA(d).

In the concept of thin layer interface element (Desai et al. 1984) a basic
assumption made is that the behaviour near the interface in a soil-structure
interaction problem involves a finite thin zone. The behaviour of this thin zone
can be significantly different from the behaviour of the surrounding structural
and geological materials. This condition is simulated approximately by
adopting appropriate constitutive laws for the element. Thus the thin layered
interface element can be treated essentially like a solid isoparametric element,
but with different constitutive properties.

The thin-layer interface element can be formulated by assuming it to be linear
elastic, non-linear elastic or elastic-plastic. The stiffuess matrix of the interface
element, [K]j is written as

E.6
v
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(d) Rebonding

(b) Slip

I A-A, A,
A.

I I
A-A.
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(a) Stick or no slip

(c) Debonding

Figure E.4 Schematic diagrams of modes of deformation at interface

A = Total surface area
Ac = Contact area
A, =Area of slip



E.7

E.8

E(l- v)
CI=-~-~-

(1 + v)(l- 2v)

C _ Ev
2 - (l+v)(1-2v)
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where [B] = transformation matrix, v = volume and [C]i is the constitutive
matrix. Then the element equations are written as

where {q} = vector of nodal displacements and {Q} = vector of nodal forces.

Gi= the shear modulus which is determined from laboratory tests.

1- v2 -v(l+ v)
0

E E

and [Dl = -v(I + v) 1- v2
0 E.9

E E

0 0
1

Gj

where,

For two dimensional plane-strain idealisation, the matrix [C]i and its inverse
form [D]i are given as

For non-linear elastic behaviour E, v and G can be defined as variable moduli
based on triaxial and direct shear tests.
In general, the stiffness properties of the interface elements are quite different
from the properties of the adjacent continuum elements. It is assumed. that the
normal behaviour of the interface element is the same as regular soil elements;
however the shear behaviour is quite different (Desai, et al. 1984).



E.4.2 Simulation of deformation modes

Various deformation modes that an interface can experience are incorporated in
the thin layered element. It is assumed that before the application of load the
interface elements are in stick or no-slip mode. Mohr-Coulomb criteria is used
in order to identify the various modes of deformation. For a given increment of
load, the normal stress, an, and the total shear stress, 't, on the plane of interface
elements are calculated. The modes of deformation are then checked and if the
element is found to be in separation or slip mode, appropriate redistribution of
stresses is performed. Details of the adopted procedure are given in the
following steps.

i) The normal stress, an, and shear stress, 't, due to the loading in a particular
increment is calculated for the interface plane. Then, the sign of the normal
stress, an is checked. If it is found to be positive, the element can be either in
stick mode or in slip mode (positive sign of an indicates compressive stress
while the negative sign indicates tensile stress). If an is found to be negative,
the element is considered to be in separation mode.

ii) For positive value of an , the stick or slip mode is determined using the
limiting shear stress of the interface place. The limiting shear stress, 'tL in the
shear plane is calculated based on Mohr-Coulomb criteria as

E.1O

where, C. is the adhesion and cl>a is the angle of friction between structure and
soil.

iii) If I'tL / ~ /'t 1 then, element is in non-slip or stick mode. In this case, there
will be no re-distribution of stresses and no change in the stiffuess parameters E
andGj•

iv) If I 'tL / < /'t I, the element is in slip mode. Now, the shear stress, 't, would
be made equal to the limiting shear stress, 'tL. Thus the unbalanced load due to
the excess shear stress ('t -'tL) would be applied at the nodes of the interface
elements as self-equilibrating. Thus the stress is redistributed to the
surrounding medium of interface element. The equivalent nodal loads due to
stresses in an element is calculated by using.
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ii) material properties associated with each finite element

E.l1{F} = f[BY{cr}dv

i) information describing the fmite element mesh, i.e the co-ordinates of
nodal points associated with each fmite element.

iii) boundary conditions for the analysis

v) If O"n is found to be negative, the element is considered to be in separation
mode. In this case the unbalance equivalent nodal loads, corresponding to the
stresses are calculated using Eq. (E.11), and is applied at the nodes of interface
elements as self-equilibrating load in the next increment of load. The E and G

j

values at this stage are actually zero. In order to avoid numerical difficulties, a
very low value of E and Gj are assigned for the next step of analysis.

The quality of simulation of the interface behaviour depends on a number of
factors such as physical and geometrical properties of the surrounding media,
non-linear material behaviour and the thickness of the thin-layer element. If the
thickness is too large in comparison with the average contact dimension of the
surrounding elements, the thin layer element will behave essentially as a solid
element. If it is too small, computational difficulties may arise. Desai, et al.
(1984) have proposed that for satisfactory simulation of the interface
behaviour, the ratio of thickness to average contact dimension should lie
between 0.01 and 0.1.

vi) To check the possibility of re-bonding, the sign of normal stress for each
individual loading increment is checked. If it is found to be positive, the total
normal stress which was negative previously is made to be equal to zero. As a
result, it is no longer negative and falls into the category of stick or slip mode.
Then the element would undergo the same steps as experienced by a normal
interface element with positive normal stress.

E.5 Input and Output of The Program

The input data which the user must provide the program can be divided into the
following categories:



The CRISP program has two input files to be prepared by the user for any
problem. First one is the geometry input file describing the geometry of the
problem, includes nodal co-ordinates and doment connectivity. The second are
is the main data input file incorporates all other data described in the
subsequent sections.

E.5.1 Geometry part of program:

The geometry part of the input data consists of the types of elements being used
in the mesh, the co-ordinates of all vertex nodes and the list of elements and the
nodes associated with each.

Element and node numbering

Numbers assigned to each element and each vertex node in the finite element
mesh must be unique (integer) and in the following ranges:

1 :0; node number :0; 750

1 :0; element number :0; Nmax as specified by user

It is not necessary for either the node numbers or the element numbers to fonn
a complete set of constitutive integers, i.e. there may be 'gaps' in the
numbering scheme adopted.

The geometry part of the program assigns numbers in the range 751 upwards to
nodes on element sides and in element interiors. Co-ordinates of these nodes
are calculated by linear interpolation from the co-ordinates of nodes at either
end of the element sides. The elements are considered in the sequence they
appeared in the input data. Each side of the element is considered in turn in the
anti-clockwise order. The number of displacement nodes (side nodes) along the
sides depends on the order of the element. The lower order elements presented
here are the linear strain element, which have one node at the midpoint of the
side.
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Co-ordinate system

The program recommend to adopt a co-ordinate systems with the y-aXIS
pointing upwards and Xaxis pointing to the right. If the x-axis points to the left
then the program will calculate element areas and stiffuess as negative
quantities for element nodes numbers are listed in an anti-clockwise sense.

y

x
Figure E.5 Co-{)rdinate System

When the axisymmetric analysis option is selected it is assumed that the y axis
is the axis of symmetIy and the x axis is in the radial direction.

Material zone number

In considering the mesh, one has to identify different zones of material
behaviour. Each zone is identified by a number, and all elements which are
within that zone are given the same number. Zone number must be within the
range of I to 10.Gaps in the number of zones are not allowed.

Nodal connectivity

The next input data are the node numbers which are associated with each
element. The link between nodes and elements is referred to as element nodal
connectivity. The number can begin at any node, but then should follow an
anti-clockwise ordering. Specifying the nodes in clockwise order results in a
negative value for the area of the element and will cause the program to stop at
a later stage.

In case of interface element the nodes along the longer dimension should be
input first, when defining connectivity.
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E.5.2 Main part of the program

After specifying the geometIy of mesh and its element configuration,
parameters have to be set for this part of the program. The data generated from
the run of geometIy program is used during different runs of the main program.
In the present study, axisymmetric analysis have been performed. Options have
been selected not to update the co-ordinates after each increment but apply out
of balance loads from one increment as correcting load in the next increment.

E.5.2.1 Material Properties

The program reads the material properties for the different material zones
specified in the mesh. Material property types incorporated in the program are:
(1) elastic, isotropic or anisotropy, (2) Elastic linear variation ith depth, (3)
Modified cam-clay (MCC), (4) Cam-clay (CC), (5) Elastic perfectly plastic,
and (6) The Schofield soil model (SCRO). Elastic isotropic property is used to
define pile material characteristics and elastic perfectly plastic property is used
to define the soil behaviour in the current analyses. For elastic isotropic
material parameters to be defined are modulus of elasticity, Poisson's ratio,
modulus of rigidity and unit weight of material. Stress-strain test is performed
to determine these parameters (Fig. E.6).

For elastic perfectly plastic material model it is necessary to defme yield
criteria as von Mises, Tresea, Drucker-Prager, Mohr-Coulomb etc. Mohr-
Coulomb criteria is used in the present research. Parameter necessary to define
elastic-perfectly plastic model are Young's Modulus at any depth, Poisson's
ratio, cohesion, angle of internal friction, rate of increase of Young's modulus
and shear strength at ith depth if necessary and bulk unit weight of the soil. For
model pile it is reasonable to use same Young's modulus and shear strength at
any depth.

Special parameters are necessary to define interface element. These are:
thickness or height of the interface element, tj or bi, modulus in the normal
direction, Kn, shear modulus G" cohesion Ca, angle of wall friction 8 etc.
The Ca and 8 values of interface element should be the C and qJ value
respectively for pile and soil interface; not for soil itself. Usually 8 value is
slightly lower than qJ value in case of steel pile. For sand-pile interface Ca
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can be assumed to be zero. The value of 0 is assumed to be 2/3 <p in the
current research.

(J

Figure E.6 Stress. Strain relation

The modulus in the normal direction of the interface elements (K
n
) and the

shear modulus of interface element (G,) can be calculated form E and v as
follows:

K = _E_(_l-_v_)_
n (1+ v)(1-2v)

E.12
G= E
, 2(I+v)

According to the assumption of the thin layered interface element (Desai et al.
1981) the normal behaviour of the interface elements is the same as regular soil
elements, however, the shear behaviour is quite different (Desai, 1984). Thus
value of E for interface element can be used as that of surrounding soil to
calculate kn. The value of G, for interface can be obtained form shear test
conduced between two dissimilar materials. In this research shear stiffuess, G,
of the element is set to a very low value assuming a very high value of v as
recommended by Jayatheran (1996).

The residual shear modulus after the interface element has reached its limiting
shear value Gre, should have a very low value as it is almost equal to zero in
reality. So in this study Gre, has been assigned to be equal to 7 kN/m2 arbitrarily
to avoid the numerical problems.
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E.l3

E.I4Ka = I-Simp

E.5.2.2 Insitu stresses:

U = pore water pressure, can be easily calculated from the position
of water table

Yb = bulk density
h = depth

In an elasto-plastic analysis the stiffness matrix of a fInite element will be
dependent on the state of stress within the element. For this, insitu stress state
is necessary in elasto-plastic fmite element analysis.

In general the stress state will vary across an element, and the stiffness terms
are calculated by integrating expressions dependent on these varying stresses
over the volume of each element. CRISP integrates these expressions
numerically 'sampling' the stresses at particular points within the element and
then using standard numerical integration rules for triangular areas.

The insitu stresses that are to be assigned are cr: , crhl , Uo , and p/ for the
entire region of the mesh. The parameter p/, isotropic preconsolidation
pressure, is only needed for Cam-clay models. The calculation of the vertical
effective stress is straightforward as:

where, vertical totals stress, crv= Ybh

The calculation of the horizontal effective stress is not so straightforward
because the co-efficient of earth pressure at rest depends on the stress history of
the soil. In elastic analysis and some elastic perfectly plastic analysis it is quite

v'common to set, K =--
o 1- v'

Jaky (1944) gave a good approximation for Ka as:

Jaky's relation is used to calculate horizontal effective stress in the current
analysis.



In situ stresses can be specified in every integration point for each element and
it could also be specified for certain horizontal layers when insitu stresses for
each element is interpolated from the given sets of reference points representing
layers. The latter is used in the current study.

E.5.2.3 Boundary condition

The zero displacement boundary conditions has to be specified along the
boundary that is restrained. In specifying these conditions it is necessary to
specify the parts of boundary which are loaded. This specified loading or
boundary condition is expected to be in equilibrium with the insitu stresses.

E.5.3 Output from the programs

Output consists of the incremental applied load, the out-of-balance load,
element stresses, strains, nodal displacements and the total applied load at the
nodes. The output are printed depending upon the output option. Depending
upon these options stresses and strains are printed at element centroid or at all
integration points or are not printed at all. Similarly displacements are printed
at vertex nodes or all nodes or not printed at all.
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