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Abstract

Given a set of customers C, a set of proposed facilities F', an opening cost op(f) of each facility
f € F and a cost function cost(c, f) for each ¢ € C and f € F, the facility location problem
asks to find an assignment of customers to facilities such that a designated cost is minimized.
Because of the absence of lower bound on the number of customers assigned to each facility,
the number of customers assigned to a facility can be small. To address this problem, recently
a new variant of facility location problem called the r-gathering problem is introduced. An
r-gathering is an assignment of customers to the facilities such that each facility serves zero
or at least r customers. The r-gathering problem asks to find an r-gathering which minimizes
the maximum distance between a customer and its facility. A seemingly related problem called
the r-gather clustering problem asks to partition a set of points P into some clusters such that
each cluster has at least r points and the maximum distance between two points in the same
cluster is minimum.

Both the r-gathering and r-gather clustering problems can be used to find locations for
establishing shelters with limited capacity and an assignment of residents to shelters that can
minimize the evacuation span in time of disaster. Both the problems are NP-hard in general,
and polynomial time algorithms are known when the customers and facilities are on a line.
In this thesis, we attempt to reduce the distance between the two results. We consider r-
gathering and r-gather clustering problems when the customer and facilities are on a “star”
and give algorithms for the problems which run in polynomial time if the degree of the star is
constant. We also consider the uncertain r-gathering problem where the customer locations are
given as probability density functions. We give an exact exponential algorithm for the uncertain
r-gathering problem on a line when the customer locations are specified by histograms. We
also give a polynomial time algorithm for a restricted case when customer locations are given

as well-separated uniform distributions.

X



Chapter 1

Introduction

Making better decisions is one of the keys for improvement of human from both personal to
collective viewpoint. A decision making process is a problem solving activity to pick a choice
from some alternatives which results in the most desired outcome. Operations Research is a
field which deals with development and application of mathematical and algorithmic methods
to make better decisions efficiently. Most problems in operations research deal with difficulties
arising from managing complex management and production environment. Thus the problems
mostly ask for satisfying some constraints and optimizing one or more criteria. Since the
problems usually consist of many constraints and variables, efficient computational means are
often required to solve those problems. Thus many problems in operations research are actively
studied in computer science, mostly in the form of combinatorial optimization problems.

The Facility Location Problem is a well known combinatorial optimization problem in oper-
ations research and many variants of the problem are well studied [15]. Given a set of customers
C, a set of facilities I, an opening cost op(f) for each facility f € F', a connection cost cost(c, f)
between each facility f € F' to each customer ¢ € C, the basic facility location problem asks to
open a subset F' C F' of facilities and find an assignment A : C' — F such that a designated
cost is minimum. When the connection cost between each facility and customer admits sym-
metry and triangle inequality then the problem is called the metric facility location problem.

The facility location problem models several practical scenarios where server of certain category
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should be opened to serve the clients. Such applications can be found in locating warehouse,
power-plant or servers of communication networks. The most common form of the facility loca-
tion problem is the uncapacitated facility location problem which asks to minimize the total cost
of setting up facilities and serving all the customers [13]. The other common facility location
problem is the minimax facility location problem which seeks to minimize the maximum cost
incurred by setting up facilities and serving the customers [16]. All these variants of the facility
location problem are uncapacitated. Thus an optimal assignment may assign a large number
of customers to a facility while leaving a small number of customers to another facility. The
capacitated facility location problem put an additional constraint on the maximum capacity of
each open facility. Thus the capacitated facility location problem asks to find an assignment of
customers to facilities so that no facility becomes overcrowded. However, an optimal solution
of the capacitated facility location problem can have an underutilized facility because of the
absence of lower bounds on the number of customers at each facility. A recently proposed
variant of the facility location problem called the r-gathering problem addresses the issue of
unbalanced assignment of customers to facilities by giving a lower bound on the number of
customers for cach open facility [10]. Since the introduction of the problem, it has gained much

attention from the researcher for its practical applications and load balancing ability.

Many other variants of the facility location problem such as k-center, k-median problems
[30, 17] are well studied. These problems ask to find & points as facility and assign each
customer to its closest facility so that a designated cost is minimized. The designated cost is
mostly defined as the total distance from each customer to its nearest facility or the maximum
distance between a customer to its nearest facility. These variants often do not include any
facilities as part of the input. Thus they can be viewed as a clustering problem where the
customers assigned to the same facility are regarded as a cluster. However, the lack of load
balancing between the facility still exists in such k-center and k-median problems. A recently
introduced problem called the r-gather clustering problem can address the load balancing issue
by putting an additional constraint that each cluster must have at least r customers. The r-

gather clustering problem was originally introduced to protect privacy of published data through
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anonymity [6]. Despite being a relatively new problem, the r-gather clustering problem has
been studied in different settings by the researchers.

In this thesis, we study the r-gathering problem and the r-gather clustering problem. Both
problems are NP-complete in general and constant factor approximation algorithms are known
for them. Recently they have been considered in a restricted setting where the customers and
the facilities are on a line. In this thesis, we consider a more general setting where the customers
and facilities are on a “star”. In the study of facility location problems, uncertainty often plays
an important role. Since facility setup is costly and each facility is intended to serve for a long
time, many facility location problems are considered when the input points contain uncertainty.
In this thesis, we consider the r-gathering problem when the customer locations are uncertain.

In the rest of this chapter, we provide the necessary background and objectives for the
r-gathering and the r-gather clustering problems. In Section 1.1 we describe the r-gathering
problem and in Section 1.2 we describe the r-gather clustering problem. We discuss the ap-
plications of the r-gathering problem and the r-gather clustering problem in Section 1.3 and
1.4 respectively. We devote Section 1.5 for the literature review. In Section 1.6 we detail the
scope of this thesis. Finally, Section 1.7 gives the summary of the contributions of this work

and Section 1.8 is the description of the organization of this thesis.

1.1 r-Gathering Problem

Let C be a set of n customers, F' be a set of m facilities, and d(c, f) be the distance between ¢ €
C and f € F. An r-gathering of C' to F' is an assignment A : C' — F' such that each facility has
at least r or zero customers assigned to it. A facility is called open if it has r or more customers
assigned to it. The cost of an open facility f is calculated as cost(f) = max.ae—r{d(f,c)}.
The cost of an r-gathering is max.co{d(c, A(c))} which is the maximum distance between a
customer and its facility. The r-gathering problem asks to find an assignment of C' to F' having
the minimum cost [10], and such an r-gathering is called an optimal r-gathering. This problem

is also known as the min-max r-gathering problem. Figure 1.1(b) illustrates an optimal r-
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gathering of the set of customers and facilities shown in Figure 1.1(a), where the customers
1, Co, 3, ¢4 are assigned to fi and cs, cg, ¢7 are assigned to f3. Figure 1.1(c) illustrates another r-
gathering, which is not optimal, where the customers ¢, co, c3, ¢4 are assigned to fo and c¢s, cg, ¢7

arc assigned to f3.

Cyq
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(a) (b) (c)
Figure 1.1: (a) A set of customers and a set of facilities, (b) an optimal r-gathering of cost 10

and (c) an r-gathering of cost 20.

Problem r-GATHERING PROBLEM

Input A set of customers C' and a set of facilities F.

Output An assignment of C' to F' such that each facility serves zero or at least
r customers and the maximum distance between a customer to its

corresponding facility is minimum.
The other version of the problem is known as the min-sum r-gathering problem which asks

to find an assignment which minimizes ) .. d(c, A(c)) [25, 22]. In this thesis, we consider the
min-max r-gathering problem and we use the term r-gathering problem to refer the min-max

version unless specified otherwise.

1.2 r-Gather Clustering Problem

Let C' be a set of n points. An r-gather clustering of C'is a partition of C' into clusters such that
each cluster contains at least r points. The cost of a cluster is the maximum distance between

a pair of points in the cluster. The cost of an r-gather clustering is the maximum cost among
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the costs of the clusters. The r-gather clustering problem asks to find an r-gather clustering of

C' with minimum cost [6], and such a clustering is called an optimal r-gather clustering.

Problem r-GATHER CLUSTERING PROBLEM

Input A set of points C.

Output A partition of C' into clusters such that each cluster contains at least
r points and the maximum distance between a pair of points in the

same cluster is minimum.

The r-gather clustering problem can be viewed as a special case of the r-gathering problem
when facilities can be placed anywhere. In such case, an optimal r-gathering can be found by
placing facility in the center of the disk of minimum radius which contains all the customers of
a cluster in the optimal r-gather clustering. On the other hand, for the r-gathering problem

we can view the customers assigned to the same facility as a cluster of customers.

1.3 Application of r-Gathering

The r-gathering problem has application in finding suitable locations for setting up facilities
such that each facility can be economically justified and the maximum distance between the
customers and their corresponding facilities is minimum. Consider a scenario where kids live
in a locality and there is a set of proposed playground locations in the locality. We want to set
up playgrounds for the kids and assign each kid to a playground. In such situation we want
each playground to be load balanced so that neither any playground becomes overpopulated
nor any playground becomes underutilized. We also want to assign the kids to the playgrounds
such that the time for all kids to return their homes after the game is as small as possible. In
order to the playgrounds to be load balanced we give a constraint that at least r kids have to
be assigned to each playground. To minimize the time for the kids to return home, we need to
minimize the maximum distance between a kid and its corresponding playground. The scenario
can be modeled to the r-gathering problem. An r-gathering corresponds to an assignment of

kids to playgrounds such that at least r kids play in each open playground and the r-gathering
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problem finds the r-gathering minimizing the time for all kids to return home.

1.4 Application of r-Gather Clustering

The r-gather clustering problem has similar application as the r-gathering problem. For exam-
ple, consider the scenario described in Section 1.3. If there is no proposed playground location,
then we can set up a playground in the center of the disk of minimum radius containing all
kids of a cluster in an r-gather clustering and assign each kid of the cluster to the playground.
Thus an r-gather clustering corresponds to an assignment of kids to playgrounds such that
each “open” playground is used by at least r kids and the r-gather clustering problem finds the
r-gather clustering minimizing the time for all kids to return home.

The r-gather clustering problem can also be used to ensure privacy through anonymity [6].
In particular, r-gather clustering can be used to provide location privacy in wireless networking.
The ubiquity of GPS receiver in devices facilitates different location based services. For location
based services, locations of devices are collected and for different queries locations are needed
to be given as input to the query. In such cases, if an adversary compromises the server of a
location based service, then sensitive information of users can be inferred. This yields privacy
issues which can be categorized into query privacy and location privacy. The query privacy
is about protecting the identity of the user requesting the query, while the location privacy
is about protecting the location of the user [36, 12]. Anonymity is a common approach to
ensure privacy while publishing database. One way to achieve anonymity is by k-anonymity
where some of the identifying attributes are suppressed or generalized so that, for each record
in the modified table, there are at least k& — 1 other records in the modified table that are
identical to it along the identifying attributes [41]. For query and location privacy, another
approach is to group queries or locations into a cluster, ecach of having at least r queries or
points. Thus creating clusters of queries before sending the query to the server can make the
query sender indistinguishable from the other senders of the cluster. To facilitate the query

processing it is desirable to create query clusters so that nearby points remain in the same
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cluster. Thus the goal becomes to create clusters such that each cluster contains at least r
points and maximum diameter among the disks of minimum diameter containing points of the

same cluster is minimized, which can be found by an optimal r-gather clustering.

1.5 Literature Review

The facility location problem is a well studied combinatorial optimization problem [15]. The
Fermat-Weber problem is considered the first facility location problem, studied as early as in the
17th century. Since then, many variants of the facility location problems have been extensively
studied. Most of the variants are NP-Hard in general and many approximation algorithms
are known for them [37, 21, 29, 11]. The current best approximation algorithm is due to Li
who improved the approximation ratio to 1.4838 [27]. On the negative side, Guha and Khuller
proved that the problem cannot be approximated within a factor 1.463 unless P = NP [21]. A
2-approximation algorithm is known for the capacitated facility location problem [29].

The r-gathering problem was introduced by Karger and Minkoff [25] and Guha et al. [22]
in parallel [25, 22]. They both considered the min-sum r-gathering problem with different
customer demands and gave a (}f—gﬁ, «) bicriteria approximation algorithm where av < 1 and
[ is the approximation ratio of the metric facility location problem. A 448-approximation
algorithm and 82.6-approximation algorithm for the min-sum r-gathering problem are known
when each customer has unit demand [40, 7]. Recently Li gave a 4000-approximation algorithm
for the facility location problem with general lower bounds [28]. The min-max r-gathering
problem is NP-complete in general [10]. A 3-approximation algorithm is known for the r-
gathering problem and it is proved that the problem cannot be approximated within a factor
less than 3 for r > 3 unless P = NP [10]. Recently, the r-gathering problem is considered
in a setting where all the customers and facilities are lying on a line. For the r-gathering
problem an O((n+m)log(n+m)) time algorithm [9] based on matrix search method [18, 5], an
O(n+mlog® r+mlogm) time algorithm [23], an O(n-+7%m) time algorithm [31] by reduction to

the min-max path problem in a weighted directed graph [19], and an O(n + m) time algorithm
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[35] are known when all the customers and facilities are on a line.

The r-gather clustering problem is introduced by Aggarwal et al. [6]. They showed the
hardness of the problem and gave a 2-approximation algorithm [6]. Recently, the problem is
considered in a setting where the points are lying on a line. An O(nlogn) time algorithm
[9] based on matrix search method [18, 5], and an O(rn) time algorithm [31] by reduction to
the min-max path problem in a weighted directed graph [19] are known for r-gather clustering
problem when all the points are on a line. Due to the linear time algorithm for the r-gathering
problem [35], the r-gather clustering problem can be solved in O(n) time. Recently the r-gather
clustering problem is studied on mobile setting and a 4-approximation distributed algorithm
is known [46]. Similar clustering problems with lower bounds on the number of points in each

cluster are also studied with different cost function [1, 8].

1.6 Scope of The Thesis

The r-gathering problem and the r-gather clustering problem arise from the need of setting up
economically justified, load-balanced facilities. In general settings both problems are compu-
tationally hard, while they can be efficiently solved when the input points are on a line. The
algorithms for the problems when the points are on a line relies on a property that, there is an
optimal solution where the points in a cluster or the customers assigned to the same facility
are consecutive. However, such property does not hold when the points are on more general
settings such as points on tree. In this thesis, we attempt to put the first step towards that
question and consider the r-gathering problem and the r-gather clustering problem on “star”.

Since setting up a facility is costly and each facility will be justified if it can serve for a long
term, it is important to consider the existence and movement of customers in the r-gathering
problem. Many variants of the facility location problem are considered when the customer
locations or demands contains probabilistic value. In this thesis, we consider the r-gathering
problem when the locations of the customers are defined by probability density functions instead

of exact locations.
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1.7 Contributions

In this thesis, we consider the r-gathering problem and the r-gather clustering problem in two
different settings. Firstly, we consider the problems when the input points are on a “star”.
Secondly, we considered the r-gathering problem when the input points contain uncertainty

and are lying on a line. The main results of this thesis are as follows.

1. We give an algorithm to solve the r-gathering problem and the r-gather clustering problem

when the customers and the facilities are on a star.

2. We introduce a new cost function for the r-gathering problem and show the hardness of
the problem under the new cost function even when the customers and the facilities are

on a star.

3. We give an exact exponential algorithm to solve the r-gathering problem under uncer-
tainty when the customers and the facilities are on a line and the customer locations are

specified by piecewise uniform functions.

4. We give an algorithm to solve uncertain r-gathering problem when the facilities are on
a line and the probability density functions of the customers are specified by “well-

separated” uniform distribution functions on the line.

1.8 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we give some basic terminology of
graph theory, algorithms, complexity classes and probability theory. In Chapter 3, we present
algorithms for the r-gathering and r-gather clustering problems on a star, introduce a new cost
function for the r-gathering problem and show the hardness of the r-gathering problem under
the new cost function. In Chapter 4, we give our results on the r-gathering problem under
uncertainty. Finally, Chapter 5 discusses the open problems in this field and gives this thesis

an ending.



Chapter 2

Preliminaries

In this chapter we define some basic terminologies of graph theory, algorithm, complexity
classes, and probability theory. Definitions that are not included in this chapter will be intro-
duced as they are needed. At first in Section 2.1 we define some basic terminologies of graph
theory. In Section 2.2 we define some basic terminologies of algorithms and complexity classes.

Finally, in Section 2.3 we define basic terminologies of probability theory.

2.1 Basic Terminology

In this section we give definitions of some graph theoretical terms used throughout the remain-

der of this thesis. Interested readers are referred to detailed texts of the literature [44, 32, 33].

2.1.1 Graphs

A graph G is a structure (V, E') which consists of a finite set of vertices V' and a finite set of edges
E; cach edge is an unordered pair of vertices [33]. The sets of vertices and edges of G are denoted
by V(G) and E(G) respectively. Figure 2.1(a) depicts a graph where V(G) = {vy,vq, -+ , v}
and F(G) = {ey,eq, -+ ,es}. An edge between two vertices u and v is denoted by (u,v). If

(u,v) € E then the vertices u and v are said to be adjacent and the edge (u,v) is said to be

10
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incident to vertices u and v. The vertices v and v are called end-vertices of the edge (u,v).
The vertex u is also called a neighbor of v in G and vice versa. The degree of a vertex v in G

is the number of edges incident to it in G and is denoted by deg(v).

(a) (b)

Figure 2.1: (a) A graph with six vertices and eight edges and (b) a multigraph.

A loop is an edge whose end-vertices are same. Multiple edges arc edges with the same pair
of end-vertices. A graph with no loop or multiple edges is called a simple graph. The graph
shown in Figure 2.1(a) is a simple graph. On the other hand, a graph having loops or multiple
edges is called a multigraph. Figure 2.1(b) depicts a multigraph where there is multiple edges
between vertex a,b and there is a loop in vertex a. In this thesis, we only consider simple

graphs.

2.1.2 Directed and Undirected Graphs

In a directed graph, the edges do have a direction but in an undirected graph, the edges do not
have any direction [33]. The graph shown in Figure 2.1(a) is an undirected graph, while the
graph shown in Figure 2.2 is a directed graph. In this thesis, by the term “a graph” we mean

a simple, undirected graph unless otherwise mentioned.



12 Chapter 2. Preliminaries

\

Figure 2.2: A directed graph.

2.1.3 Paths and Cycles

A walk in a graph G is a non-empty list W = wvg, e1,v1,*++ , Un_1, €n_1, Vn Whose elements are
alternatively vertices and edges of G where the edge e; has end-vertices v;_; and v; for 1 < ¢ < n
[33]. The vertices vy and vy are called end-vertices of the walk W and the other vertices are
called internal vertices. If the vertices on a walk are distinct(except end-vertices) then it is
called a path and is usually denoted by a sequence of vertices vg, vy, va, - ,v,. If u,v are the
end-vertices of a path, then it is called an u,v-path in G and we denote it as P,,. A sub-path
of P, is a subsequence P, = v, viy1,- -+ ,v; for some 1 <7 < j < n. If the end-vertices of a
path or walk repeat then it closed. A closed path containing at least one edge is called a cycle.

A cycle with n vertices is denoted by C,.

2.1.4 Complete Graphs

A complete graph is a simple graph whose vertices are pairwise adjacent. A complete graph

with n vertices is denoted as K, [33].

2.1.5 Trees

A tree is a connected graph that contains no cycle. Figure 2.3 depicts a tree with 13 vertices.

The vertices in a tree are usually called nodes [33]. A rooted tree is a tree in which one of the
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nodes is distinguished from other nodes and the node is called root of the tree. A rooted tree is
usually drawn in a way such that the root remains in the top. In Figure 2.3, v; is the root. If a
rooted tree is regarded as a directed graph in which each edge is directed from top to bottom,
then every node u other than the root is connected by an edge from some other node p, called
the parent of u. We also call u a child of node p. We draw the parent of a node above that
node. In Figure 2.3, v; is the parent of vy, v3 and vy; v9, v3 and vy are children of v;. A vertex
with degree one in a tree is called a leaf of the tree. All the vertices other than leaves are called
internal nodes. Thus every node of a tree is either a leaf or an internal node. In Figure 2.3,

the leaves are vs, vs, v7, U9, V10, V11, V12 and v;3, and the internal nodes are vy, v9, v4, vg and vg.

U1
() V4
U3
Vs U6 vy (OF]
V9 V10 V11 V12 V13

Figure 2.3: A tree.

2.1.6 Star graphs

A star graph S, is a tree on n nodes with one node having degree n — 1 and all other nodes

having degree 1 [33]. Figure 2.4 shows a star graph with six vertices.

2.2 Algorithms and Complexity

In this section we briefly introduce some terminologies related to algorithms and complexity of

algorithms. For interested readers, we refer to [20, 14, 26].
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Figure 2.4: A star graph.

2.2.1 Big-O Notation

Analyzing the efficiency of an algorithm is an integral part of designing an algorithm. The
standard analysis of algorithms consists of measuring time complexity and memory complexity.
Time complexity or running time is the number of operations it performs before producing the
output. Expressing running time in terms of basic computer steps is a simplification, since the
time taken by one such step depends on the machine executing the algorithm. Thus the time
for execution of an algorithm can differ from one machine to another. Even such time may
differ in the same machine on another execution because of context switching, caching etc. It
therefore makes more sense to seek a machine-independent characterization of the efficiency
of an algorithm. To this end, we will always express running time by counting the number
of basic computer steps, as a function of the size of the input. However, the time complexity
of an algorithm can be made simpler. Instead of reporting that an algorithm takes, we can
only consider the “asymptotic behaviour” of an algorithm. For example, let an algorithm takes
3n? 4+ 5n + 2 steps on an input of size n. Firstly, it is much simpler to leave out lower-order
terms such as 5n and 2 since they become insignificant as n grows. Secondly, we can ignore the
detail of the coefficient 3 of n? and just say that the algorithm takes time O(n?) (pronounced
“big oh of n?”). Such asymptotic behavior is more important, since when applied to very large
inputs the constant factors and low order terms become insignificant. Formally, if f(n) and
g(n) are the functions from positive integers to positive reals, then we write f(n) = O(g(n))

(which means that f(n) grows no faster than g(n)) if there exists positive constants ¢; and ¢y
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such that f(n) < c¢1g(n) + ¢, for all n.

2.2.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its complexity is
bounded by a polynomial of the size of input [26]. Examples of such complexities are O(n),
O(nlogn), O(n'®), etc. The remaining algorithms are usually referred to as exponential or
nonpolynomial. Examples of such complexity are O(2"), O(n!), etc. If the time complexity of
an algorithm is bounded by O(n), then we call it a linear-time algorithm or simply a linear

algorithm. By an efficient algorithm, we generally mean that the algorithm is polynomial.

2.2.3 Complexity Classes

Although it is desirable to have efficient algorithm for every computational problem, there are
some interesting problems for which we do not know any polynomial time algorithm yet. In this
section we will briefly explain the properties of those seemingly “hard” problems and the classes
of problems. In the following, we first define some terminology and the complexity classes.

Decision problems refer to the algorithmic questions that can be answered by yes or no [26].
For example, “Is there a truth assignment that satisfies a given boolean formula?” The state
of algorithms consists of the values of all the variables and position of the next instruction
to be executed. A deterministic algorithm is one for which each state, upon execution of
the instruction, uniquely determines at most one of the following states (next states). The
computers we have now are deterministic. On the other hand a nondeterministic algorithm
is one for which a state may determine many next states simultaneously. A nondeterministic
algorithm can be viewed as having the capability of branching off into many copies of itself, one
for the each next state. Thus, while a deterministic algorithm must explore a set of alternatives
one at a time, a nondeterministic algorithm examines all alternatives at the same time.

A problem Q is polynomial time verifiable if there is a polynomial deterministic algorithm

A that takes as input the given instance Z of the problem () and the proposed solution S, and
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outputs true if and only if S really is a solution to instance Z. A problem @ is polynomial
time reducible to problem Q' (Q) <, Q') if there is a polynomial time algorithm that transforms
an arbitrary instance Z of ) to an instance Z' of @)’ such that the answer to Z is affirmative

(Z € Q) if and only if the answer to Z' is affirmative (Z' € Q).

The Class P

P is the class of problems that can be solved by deterministic polynomial time algorithm [26].
Thus there is a deterministic algorithm that takes as input an instance Z and runs in polynomial
time such that if I has a solution, the algorithm returns such a solution; and if I has no solution,

the algorithm correctly reports so.

The Class NP

NP stands for “nondeterministic polynomial time” [26]. The class NP contains the problems
solutions of which can be verified deterministically in polynomial time. We can also define NP
as the class of decision problems that can be solved nondeterministically in polynomial time.
It is obvious that, P C NP. But the question, “P = NP?” is still unresolved. It is widely
believed that P # N P. However, proving this has turned out to be extremely difficult, one of

the deepest and most important unsolved puzzles of mathematics.

The class N P-complete
A problem @ is NP-complete if it satisfies the following two conditions [26].
1. @ eNP.

2. For every problem @)’ eNP, Q' <, Q.

A problem satisfying condition 2 is said to be NP-hard, whether or not it satisfies condition
1. NP-complete problems are considered to be the hardest problems in NP. These problems

have the following interesting properties.
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(a) No NP-Complete problem can be solved by any known polynomial algorithm.

(b) If there is a polynomial algorithm for any NP-Complete problem, then all NP-complete

problems can be solved in polynomial time.

2.2.4 Approximation Algorithm

Many problems with real life applications are NP-complete. Thus it is more likely that those
problems are not solvable in polynomial time. However, because of practical important it is
desirable to solve those problems computationally. Different approaches are known to cope with
such hardness. One is developing approximation algorithm. Briefly approzimation algorithms
are polynomial algorithms for the hard problems which cannot ensure optimality of solution,
rather they produce near optimal solution. This near optimal solution are often good enough.
Performance of an approximation algorithm is often measured by how close the output of the

approximation algorithm to the optimal solution in worst case.

Optimization problems can be of two types: maximization problems and minimization
problems. For maximization problem any solution which is not optimal exhibits a smaller
value than the optimum, while for minimization problem any solution which is not optimal
exhibits larger cost than the optimum. We define approzimation ratio p(n) of an algorithm as
follows: for any input of size n, the cost C' of the solution produced by the algorithm is within

a factor of p(n) of the cost C* of an optimal solution. Mathematically,

c c*
— v <
max{c*, 8 } < p(n)

It is also easy to observe that p(n) > 1. A constant factor approximation algorithm is an

algorithm which produces output no worse than a constant factor of the optimal result.
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2.3 Probability Theory

In this section, we briefly describe some basic concepts of probability theory. For interested

readers, we refer to [34].

2.3.1 Random Variable

A random variable is a variable whose possible value is determined by a random phenomenon
[34]. A random variable is usually denoted by a capital letter such as X or Y. A random
variable can be of two types: discrete random variable and continuous random variable. A
discrete random variable can take a finite or countable number of distinct values. For example,
the random variable denoting the outcome of a coin flip is a discrete random variable. In
contrast, a continuous random variable can take infinite number of values. Service time in a

server is an example of a continuous random variable.

2.3.2 Probability Density Function

A continuous random variable is associated with a probability density function(PDF) which
refer the relative probability of each value to come up [34]. The PDF associated with a random
variable X is denoted by fx(z). For cach € R, fx(x) > 0. The value of PDF at a certain x
does not mean the probability of the occurrence of . The probability of a continuous random
variable is defined over an interval. The probability of a continuous random variable X to be
in [a,b] is Pr{X € [a,b]} = ff fx(x)dx. An important property of PDF is the area under the
curve of a PDF is 1. Thus [°_ fx(z)dz = 1.

Probability mass function is the discrete counterpart of probability density function. How-
ever unlike probability density function, the value of probability mass function at x, denoted
by px(x), represents the probability of occurrence of x. Like probability density function, sum

of the values of probability mass function is 1.



2.3. Probability Theory 19

2.3.3 Cumulative Distribution Function

Cumulative Distribution Function(CDF) of a random variable X at x, denoted by Fx (), is the
probability that X will take a value less than or equal to x [34]. If X is a continuous random
variable, then Fy(z) = Pr{X <z} = [*_ fx(z)dz. For discrete case, Fx(z) = Pr{X <z} =
Y wi<e Px(xi). It is easy to observe that, Pr{a < X < b} = Fx(b) — Fx(a).

2.3.4 Expected Value

Ezxpected value of a random variable is the average or mean value of the variable [34]. Expected
value of X is denoted by E[X]. If X is a continuous random variable then E[X] is calculated
as [7° xfy(z)dz. For discrete case, E[X] = Y aPx(x). Expected value of a function & of a
continuous random variable X is E[h(X)] = [*_h(z) fx(z)dx.

2.3.5 Uniform Random Variable

A random variable X is called uniform random variable over (a,b) if the corresponding proba-

bility density function is given by-

= a<x<b
fx(z) =
0 otherwise

2.3.6 Histogram

The probability density function of a random variable can also be a histogram. A histogram is
a piecewise uniform function. If the area under the histogram is 1, then the histogram can be
considered as a probability density function. Histogram can be used as a PDF when the PDF

of the data is unknown.
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r-Gatherings on a Star

In this chapter, we consider the r-gathering problem and the r-gather clustering problem when
the customers and the facilities are on a star. In Section 3.1 we define the two problems and
relevant terminologies. In Section 3.2 we give an algorithm for r-gather clustering on a star.
In Section 3.3 we give an algorithm for r-gathering on a star. In Section 3.4, we introduce a
new cost function for r-gathering problem and prove the hardness of the r-gathering problem

under the new cost function. Finally we give a summary in Section 3.5.

3.1 Preliminaries

In this section we define the r-gathering problem and the r-gather clustering problem on star
and give some basic definitions.

Let £ = {l1,la, -+ ,ls} be a set of d rays where all the rays of £ share a common source
point 0. We call the set of rays £ a star and the common source point o the center of the
star. The degree of a star is the number d of rays which form the star. The Euclidean distance
between two points p, g is denoted by dg(p,q). We denote by d(p,q) the distance between
two points p, ¢ which is measured along the rays. If p and ¢ are both located on the same
ray, then d(p,q) = dg(p,q). On the other hand, if p and ¢ are located on different rays, then

d(p,q) = dg(p,0) + dg(o,q). A cluster consists of points from two or more rays is a mulli-ray

20
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cluster, otherwise a single-ray cluster. Two points p and ¢ are the end-points of a cluster C if

d(p,q) = cost(C).

Let C = {c1,¢2,- -+ ,¢,} be n points located on a star. An r-gather clustering of C' is a
partition of C into clusters such that each cluster contains at least r points. The cost of a
cluster C, denoted by cost(C), is max, 4ec d(p, q). The r-gather clustering problem asks to find
an r-gather clustering such that the maximum cost among the costs of clusters is minimized,

and such a clustering is called an optimal r-gather clustering.

Let C'={c1,c,- -+ , ¢} be n customers and F = {fi, fa, -+, fm} be m possible locations
for facilities located on a star. An r-gathering of C' to F' is an assignment A of C to F such
that each facility has zero or at least r customers. A facility having one or more customers is
called an open facility. We denote by F’ the set of open facilities. A(c) denotes the facility to
which a customer c is assigned in an assignment A. The cost of a facility f, denoted by cost(f),
is max{d(f,c;)|A(c;) = f} if f has one or more customers, and is 0 if f has no customer. The
r-gathering problem asks to find an r-gathering such that the maximum cost among the costs

of facilities is minimized.

Consider a scenario where a number of streets meet in a junction, and residents live by the
streets. We wish to set up emergency shelters on the streets so that each shelter can serve at
least r residents. The distance between two points are measured along the streets. We also
wish to locate shelters so that evacuation time span can be minimized. This scenario can be
modeled by the r-gather clustering problem where all input points C' are located on a star.
In an r-gather clustering of C' having the minimum cost, each emergency shelter is located at
the center of each cluster. On the other hand, if the set F' of possible locations of shelters on
the star is also given with the set C' of residents and we wish to find an assignment of C' to
F with minimizing the evacuation time so that each shelter serves at least r residents, then
the scenario can be modeled by the r-gathering problem where C' and F' are located on a star.
In this case, an r-gathering corresponds to an assignment of residents to shelters such that
each open shelter serves at least r residents and the r-gathering problem finds the r-gathering

minimizing the evacuation time.
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Figure 3.1: An optimal 3-gather clustering on a star.

When the points are on a line, each cluster of an optimal r-gather clustering consists of
consccutive points on the line [31]. However, when the points are on a star, some clusters may
not consists of consecutive points in the optimal r-gather clustering. For example, see Fig.
3.1. We can observe that at least one cluster consists of non-consecutive points in any optimal

r-gather clustering. Fig. 3.1 demonstrates an optimal r-gather clustering for this scenario.

3.2 r-Gather Clustering on a Star

In this section we give an algorithm for r-gather clustering problem on a star. Let C be a set
of points on a star £ = {ly,lz, -+ ,lq} of d rays with center o. We consider the set C' as a
union of d sets Cy, Csy, - - - , Cy where C; is the set of points on ray [;. For the r-gather clustering
problem, the following result is known [31]. Note that any cluster with 2r or more points can

be divided into clusters so that each of which has at most 2r — 1 points and at least r points.

Lemma 3.2.1 ([31]) There is an optimal r-gather clustering in which each cluster has at most

2r — 1 points.
We now have the following lemma.

Lemma 3.2.2 There is an optimal r-gather clustering such that, for each C;, the set of points
in C; assigned to the multi-ray clusters is consecutive points on l; including the nearest point to

0.
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Proof. A pair ¢,,,cs in C; is called a reverse pair if ¢, is assigned to a multi-ray cluster, ¢, is
assigned to a single-ray cluster, and d(o,cs) < d(0, ¢;,). Assume for a contradiction that A is
an optimal r-gather clustering with the minimum number of reverse pairs but the number is
not zero. Let ¢, and ¢, be a reverse pair in C; with maximum d(o, ¢,;,). Let Cs and C,, be the

clusters containing ¢, and c¢,,, respectively. We have two cases.

Figure 3.2: (a) llustration of Case 1 and (b) illustration of Case 2 of proof of Lemma 3.2.2.

Case 1: C, has a point ¢ in C; with d(o, ¢,,) < d(o, ¢).

Let ¢’ be the nearest point to o in C,. Replacing C; and C,, in the clustering by C,\{c' }U{¢c, } and
Con \ {em } U{'} generates a new r-gather clustering with less reverse pairs as illustrated in Fig.
3.2(a). A contradiction. Note that cost(Cs\{c'}U{cm}) < cost(Cs) and cost(Cp, \ {cm fU{'}) <
cost(Cy,) hold.

Case 2: Otherwise. (Thus d(o,c) < d(o, ¢,,) for every point ¢ in Cs.)

The same replacing results in a new r-gather clustering with less reverse pairs as illustrated in
Fig. 3.2(b). A contradiction. Note that cost(Cs \ {¢'} U{cn}) < cost(C,,) and cost(Cp, \ {¢m} U
{¢}) < cost(Cy,) hold. Q.E.D.

Lemma 3.2.3 If an optimal r-gather clustering has multi-ray clusters, then at most one multi-

ray cluster contains more than v points.

Proof. Assume for a contradiction that every optimal r-gather clustering has two or more multi-

ray clusters having more than r points. Let A be an r-gather clustering with the minimum
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number of multi-ray clusters having more than r points. Let C; and C; be two multi-ray clusters
having more than 7 points. Let s;,¢; be the two endpoints of C; and s;,¢; be the two endpoints
of C;. Without loss of generality, assume that ¢; is the closest point to o among the four end-
points. Let C; C C; be {c € Cj|d(o,c) > d(o,t;)}. Any point ¢ € C; must be on the same ray as

s;, otherwise ¢; would not be an end-point of C;. We have two cases.

Figure 3.3: (a) Illustration of Case 1 and (b) illustration of Case 2 of proof of Lemma 3.2.3

where r = 4.

Case 1: |Cj| <.

Let C} be a set of |C;| —r arbitrary points from C;\C;. We now derive a new r-gather clustering
A’ by replacing C; and C; by C;UC and C;\ C}. Figure 3.3(a) illustrates the construction of the
new r-gather clustering. Since ¢; is the closest point to o among the four end-points s;,t;, s;,t;
and d(o, ¢) < d(o,t;) for any point ¢ € Cj/, we have d(o, c) < d(o, s;) and d(o, c) < d(o,t;). Thus
the cost of C; U C;’ does not exceed the cost of C;. Hence the cost of A’ is not greater than the
cost of A. Thus A’ has less multi-ray clusters with more than r points, a contradiction.

Case 2: Otherwise. Thus |C}| > 7.

In this case we derive a new r-gather clustering A’ by replacing C; and C; by C; U (C; \ C}) and
C}. Figure 3.3(b) illustrates the construction of the new r-gather clustering. In this case, C; is a
single-ray cluster. By a similar argument of Case 1, the cost of A" does not exceed the cost of A.

Thus A’ has less multi-ray clusters having more than r points than A, a contradiction. Q.£.D.

We now give the following lemma, which is used in the proof of Lemma 3.2.5 and Lemma
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3.2.7.

Lemma 3.2.4 If|C| > 2r and there is an optimal r-gather clustering consisting of only multi-
ray clusters, then there is an optimal r-gather clustering with the multi-ray cluster consisting

of the farthest point from o and its r — 1 nearest points.

Proof. Let p be the farthest point from o and let IV be the r — 1 nearest points of p. Assume
for a contradiction that in every optimal solution N U {p} is not a cluster. We first prove
that N U {p} is contained in the same cluster. Let A be an optimal solution with cluster C,
containing p having the maximum number of points in N. Let ¢ be a point in N assigned to a
cluster C, # C,. Since the number of points in C, is at least r, there is a point p’ € C, not in
N. Let ¢ be the farthest point from o in C, \ {¢}. We now derive a new r-gather clustering
by replacing C, and C, by C, \ {p'} U {q} and C, \ {q} U {p'}. Thus a contradiction. Note
that, cost(C, \ {p'} U {q}) < cost(C,) and cost(C, \ {q¢} U {p'}) < max{cost(C,), cost(C,)}, since
d(o,p) = d(o,q').

We now prove that N U{p} form a multi-ray cluster. Assume for a contradiction that in any
optimal r-gather clustering N U {p} is not a cluster. Let A’ be an optimal r-gather clustering
with cluster C, containing p having the minimum number of points not in N. Let p” be the
farthest point in C, not in the ray [, containing p, and C be a cluster in A’ other than C,. Let s
be the farthest point from o in C;. We now derive a new r-gather clustering by replacing C, and
Cs with C, \ {p"} and C; U {p"} without increasing cost, a contradiction. Since d(o, s) < d(o, p),
we have d(s.p") < d(p,p”) and thus cost(C; U{p"}) < max{cost(C,), cost(Cs)}. Q.E.D.

We now have the following lemma.

Lemma 3.2.5 If an optimal r-gather clustering consists of only multi-ray clusters, then there

is an optimal r-gather clustering with at most d — 1 multi-ray clusters.

Proof. We give a proof by induction on the number d of rays in the star. Clearly, the claim

holds for d = 2, since in such case only one multi-ray cluster can exist. Assume that the claim
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holds for any star with less than d rays. We now prove that the claim also holds for any star of
d rays. Assume for a contradiction that every optimal solution has at least d multi-ray clusters.
Let A be an optimal r-gather clustering with the minimum number of multi-ray clusters. Let p
be the farthest point from o. By Lemma 3.2.4, there is an optimal r-gather clustering with the
cluster C, containing p and its r — 1 nearest points, denoted by N. Let [, be the ray containing
p. We have two cases.

Case 1: p and N are on ray I,

In this case there is an optimal r-gather clustering with a single ray cluster N U {p}, a contra-
diction.

Case 2: Otherwise. There is a point ¢ in N which is not on /,.

By Lemma 3.2.4 there is an optimal r-gathering with {p} U N, and since N consists of the
r — 1 nearest neighbors of p, all the points on [, are contained in C,. Thus the points in C'\ C,
are lying on other d — 1 rays except [,. By inductive hypothesis there is an optimal r-gather

clustering of C'\ C, with at most d — 2 multi-ray clusters. Thus the claim holds. 0.£D.

Corollary 3.2.6 If an optimal r-gather clustering consists of only multi-ray clusters, then C

has at most (d — 2)r +2r — 1 = dr — 1 points.

We now give an outline of our algorithm which constructs an optimal r-gathering clustering
on a star. We first choose every possible at most dr — 1 candidate points for multi-ray clusters.
We find the optimal r-gather clustering consisting of only multi-ray clusters for each candidate
points, by repeatedly searching for the farthest point from o and its » — 1 nearest point as a
multi-ray cluster of the remaining set of points, by the algorithm Multi-rayClusters.

We now have the following lemma.

Lemma 3.2.7 Let A = {C1,C5,Cs,--- ,Cjaj} be the clusters computed by Algorithm Multi-
rayClusters. If A has only multi-ray clusters, then A is an optimal r-gather clustering of

C.

Proof. The proof of this lemma is immediate from Lemma 3.2.4. Q.ED.
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Algorithm 1: Multi-rayClusters(C, r)
Input : A set C of points on a star and an integer r

Output: An r-gather clustering with only multi-ray clusters
if |C| < r or the number of rays containing points is at most one then
‘ return (;
endif
14 1;
while |C] # 0 do
if |C| < 2r then
‘ Create new cluster C; = C,;
else
p + farthest point from o in C;
Ci < {p,p1,p2, -+ ,pr—1} where p; is the i-th nearest point of p in C;
endif
if C; is a single-ray cluster then
‘ return
endif
C+ C\C;
141+ 1;
end

return {Cl, CQ,Cg, ce >Ci—1}

We now give an algorithm rGatherClusteringOnStar to construct an optimal r-gather

clustering of C' on a star. We have the following theorem.

Theorem 3.2.8 The algorithm r GatherClusteringOnStar constructs an optimal r-gather

clustering of C' on star in O(n + (r + 1)%dr) time.

Proof. We first prove the correctness of the algorithm. By Lemma 3.2.2 multi-ray clusters in
an optimal r-gathering are located near o, and by Corollary 3.2.6 the number of customers in
the multi-ray clusters is at most dr — 1. The algorithm rGatherClusteringOnStar considers
every possible choice of the set of points for multi-ray clusters having at most dr — 1 points.
The algorithm considers the solution for each possible choice for multi-ray clusters with the
solution obtained by algorithm for the one-dimensional setting for the remaining points on each
ray, and choose the solution having minimum cost. Thus the algorithm produces an optimal

r-gather clustering.
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Algorithm 2: rGatherClusteringOnStar(C, r)
Input : A set C of points on star £ = {ly,ls,l3,--- , 15} and an integer r
Output: An optimal r-gather clustering of C
if |C| < r then
‘ return (;
endif
Best < 0;
Let ny,n9, -+ ,ng be the number of points of C' in each ray Iy, 1o, - ,lg;
for i; < 0 to n; do
for i, < 0 to ny, do
for i3 + 0 to n3 do

for iy < 0 to ny do

if i1 + 9o+ -+ + 14 < dr then

S be the set of points consisting of iy, s, - - - ,igq closest points from o
for ray ly,ls, -+ ,lg;

R, < Multi-rayClusters(S, r);

R; < r-gather clustering of remaining points of ray [; by 1D
algorithm;

R(—RmURlLJRQU"'URd;

if R is the best r-gather clustering so far then

Best + R;
endif
endif

end

end

if i1 + 49 > dr then
‘ break;

endif

end

if i1 > dr then
‘ break;

endif

end

return Best;

We now estimate the running time of the algorithm. We consider points in each ray are in

sorted order according to the distance from o. The d nested loops iterates H;.lzl (nj 4+ 1) times.
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Thus the number of points involved in all calls to Multi-rayClusters is at most (r + 1)dr,
since 25:1 n; = dr — 1. Within each nested loop we repeatedly compute multi-ray clusters
which takes linear time in total. We also compute single-ray clusters on each of the d rays.
Rather than computing those single-ray clusters each time in the loop, we compute the r-gather
clustering for points consisting of ¢ farthest points from o, for each i, and for each ray in O(n)
time total [35]. Thus to compute all the required cases for single-ray cluster we need total O(n)

time. Thus the time complexity of the algorithm is O(n + (r + 1)4dr). Q.E.D.

If d is constant then this is polynomial.

3.3 r-Gathering on a Star

In this section we give an algorithm for the r-gathering problem on a star.

Let C be a set of customers and F be a set of facilities on a star £ = {ly,ly,- - , 14} of d rays
with center 0. We regard the set C' as the union of d sets C, Cy, - -+, Cy where C; is the set of
customers on ray l;. Similarly, F'is the union of Fy, Fy,--- |, Fy where F; is the set of facilities
on ray l;. In any optimal r-gathering each open facility serves at least r customers. However
the number of customers assigned to an open facility can be more than 2r — 1. In such case we
regard the set of customers assigned to a facility as the union of clusters Cy,Cs, - - - , Cy sharing a
facility and each of which satisfies r < |C;| < 2r. Thus we can think of the r-gathering problem
in a similar way to the r-gather clustering problem in Section 3, and Lemma 3.2.1 holds for
the clusters of r-gathering. We denote by A(C) the facility to which the customers in C is
assigned in r-gathering A. We define the cost of a cluster C, denoted by cost(C), in r-gathering
A as max.cc{d(c, A(c))}. It is easy to observe that Lemma 3.2.2 also holds for the clusters of

r-gatherings. We now prove that Lemma 3.2.3 also holds for the r-gathering problem.

Lemma 3.3.1 There is an optimal r-gathering including at most one multi-ray cluster having

more than r customers.

Proof. Assume for a contradiction that every optimal r-gathering has two or more multi-ray
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clusters having more than r customers. Let A be an r-gathering with the minimum number
of multi-ray clusters having more than r customers. Let C; and C; be two multi-ray clusters
having more than 7 customers. Let f; = A(C;) and f; = A(C;). Let f; and f; are located on
ray l; and [;, respectively. Without loss of generality, assume that d(o, f;) < d(o, f;). Let C} be

the subset of C; located on [;. We have two cases.

Figure 3.4: (a) Illustration of Case 1 and (b) illustration of Case 2 of proof of Lemma 3.3.1

where r = 4.

Case 1: [Cj| < r. Let CJ be a set of |C;| — r arbitrary points from C; \ C;. We now derive
a new r-gathering A’ by replacing C; and C; by D; = C; UCJ and D; = C; \ C]. Figure
3.4(a) illustrates the transformation to the new r-gathering. Note that C; \ C} has exactly r
customers. Let ¢ be a customer in C7. Since f; is closer to o than f; and ¢ is not on I;, we
have d(f;,c) < d(o, f;) +d(o,c) < d(o, f;) +d(o,c) = d(c, f;). Thus the cost of C; UC} does not
exceed the cost of max{cost(C;),cost(C;)}. Hence the cost of A’ is not greater than the cost of
A. Thus A’ has less multi-ray clusters with more than r points, a contradiction.

Case 2: Otherwise. Thus |C}| > 7. In this case we derive a new r-gathering A’ by replacing
Ci and C; by D; = C; U (C; \ C}) and D; = C;. Figure 3.4(b) illustrates the new r-gathering. In
this case, Cj is a single-ray cluster. By a similar argument of Case 1, the cost of A" does not

exceed the cost of A. Thus A’ has less multi-ray clusters having more than r customers than

A, a contradiction. Q.E.D.

We now give the following lemma.
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Lemma 3.3.2 If |C| > 2r and there is an optimal r-gathering A with only multi-ray clusters,
then there is an optimal r-gathering with only multi-ray clusters satisfying the following (a) and
(b). Let f be the farthest open facility from o in A and [ be the ray containing f.

(a) The farthest customer p from o onl and its r —1 nearest customers form a multi-ray cluster,
if I has a customer,

(b) All customers are assigned to f and the farthest customer p from o and its r — 1 nearest

customers form a multi-ray cluster, if I has no customer.

Proof. (a) We denote by N the set of the r — 1 nearest customers of p. We first prove that
there is an optimal solution with the customers in N U {p} are assigned to f. Assume for a
contradiction that in any optimal solution NV U {p} are not assigned to f. Let A be an optimal
solution with the maximum number of customers in N U {p} are assigned to f. Let C, be the
multi-ray cluster assigned to f, and ¢ be a customer in N U {p} but ¢ ¢ C,. Let ¢ is assigned
to f’. Since C, has at least r customers, there is a customer p’ € C, not in N U{p} and lying on
a ray except [. We now derive a new r-gathering A’ by reassigning ¢ to f and p’ to f’. Since
d(o, f') < d(o, ), we have d(f',p') < d(o, ') + d(o,p') < (o, f) + d(o.p/) = d(f,p'). Now if
q is (1) not on [ or (2) ¢ is on | with d(o,q) < d(o, f) then d(f,q) < d(f,p’). Otherwise, q is
on [ with d(o,q) > d(o, f) holds, then we have d(f,q) < d(f,p). Thus the cost of A" does not
exceed the cost of A, and A’ has more customers in N U {p} assigned to f. A contradiction.
Thus the customers in N U {p} are contained in C,,.

We now prove that N U{p} form a multi-ray cluster. Assume for a contradiction that in any
optimal r-gathering N Up is not a cluster. Let A’ be an optimal r-gathering with the cluster C,
containing p having the minimum number of customers not in N U{p}. Since C, is a multi-ray
cluster, C, has a customer p’ not in N U {p} and lying on a ray except [. Let Cs be a cluster
in A’ other than C, and A'(C,) = f’. We now derive a new r-gathering by replacing C, and C,
by C, \ {p"} and C; U {p"}. Since p” is reassigned to f" and d(o, f') < d(o, f), d(s, f') does not
exceed d(s, f). A contradiction.

(b) We first prove that all customers are assigned to f. Assume for a contradiction that
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there is an open facility f’ # f to which some customers are assigned. Since f is the farthest
open facility from o and there is no customer on [, we can reassign all customers to [’ without
increasing the cost of the r-gathering. A contradiction.
The proof of the 2nd part of Lemma 3.3.2(b) is similar to the proof of Lemma 3.3.2(a).
0.E.D.

We now prove that Lemma 3.2.5 also holds for r-gathering.

Lemma 3.3.3 If an optimal r-gathering consists of only multi-ray clusters, then there is an
optimal r-gathering consisting of at most d— 1 multi-ray clusters, where d is the number of rays

containing a customer.

Proof. We give a proof by induction on d.

We first show the claim holds for d = 2. Assume for a contradiction every optimal r-
gathering has two or more multi-ray clusters. Let A be an optimal r-gathering with the min-
imum number of multi-ray clusters, and f be the farthest open facility from o in A and [ be
the ray containing f. If there is no customer on [, then by Lemma 3.3.2(b) all customers are
assigned to f and the farthest customer p from o in C' and its  — 1 nearest customers N form
a cluster C. Otherwise by Lemma 3.3.2(a) the farthest customer p from o on [ and its r — 1
nearest customers N form a cluster C. In both case either C or the other cluster is a single-ray
cluster, a contradiction.

Now we consider for d > 2. Assume that the claim holds if the customers are on less than
d rays. We now prove that the claim also holds if the customers are on exactly d rays. Assume
for a contradiction that every optimal r-gathering with only multi-ray clusters has at least d
multi-ray clusters. Let A be an optimal r-gathering with the minimum number of multi-ray
clusters. Let f be the farthest open facility from o in A. Let [ be the ray containing f. We
have the following two cases.

Case 1: There is a customer on [. Let p be the farthest customer from o on [ and N be the
r — 1 nearest customers of p. By Lemma 3.3.2(a), there is an optimal r-gathering consisting

of only multi-ray clusters with cluster C, = N U {p}. Now the customers in C'\ C, are lying
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on other d — 1 rays except [. By inductive hypothesis there is an optimal r-gathering of C'\ C,
with at most d — 2 multi-ray clusters. Thus the claim holds.

Case 2: Otherwise. By Lemma 3.3.2(b), there is an optimal r-gathering where all customers
are assigned to f. Since there are at least d multi-ray clusters, the number of customers is at
least dr. Thus there is a ray I’ with r or more customers. We can form a single-ray cluster with

the r customers on [, a contradiction. Q.ED.

We now give algorithm Multi-rayClusters2. If there is an optimal r-gathering with only
multi-ray clusters, then the algorithm finds such an r-gathering, by repeatedly removing a

cluster ensured by Lemma 3.3.2.

Algorithm 3: Multi-rayClusters2(C, F', r)
Input : A set C' of customers and a set of F' of facilities on a star, and an integer r

Output: An r-gathering with only multi-ray clusters

if |C| < r or the number of rays containing customers is at most one or F' = () then
‘ return ();

endif

if |C| < 2r or the number of rays containing customers is two then
Assign C' to its best facility; /* Lemma 3.3.2(b) */

return {C};
endif
Ans « (;
Best + oo;

for each ray l; containing a customer do
C; < p; and its r — 1 nearest customers in C'; /* Lemma 3.3.2(a) */

if C; is a multi-ray cluster then
Assign C; to its best facility;
A « {C;}U Multi-rayClusters2(C \ C;, F,1);
if cost(A) < Best then
Best «+ cost(A);
Ans + A;
endif
endif
end

return Ans

Lemma 3.3.4 If there is an optimal r-gathering consisting of only multi-ray clusters, then Al-
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gorithm Multi-rayClusters2 finds an optimal r-gathering. The running time of the algorithm

is O(2%rd + (d + log m)d*r?).

Proof. If there is an optimal r-gathering with only multi-ray clusters, then, by repeatedly
removing a cluster ensured by Lemma 3.3.2, we can find a sequence Cy,Co, - - - ,Cy of multi-ray
clusters such that C; consists of exactly r customers in C'\ (C; UCy U ---C;_1) except the last
cluster Cy with r < |Cx| < 2r — 1. The algorithm checks every possible sequence of the rays
containing the farthest open facility and chooses the best one as an optimal r-gathering. Note
that if a cluster is a single-ray cluster, then the algorithm skips recursive call, since it try to
find an r-gathering consisting of only multi-ray clusters.

We now estimate the running time of the algorithm.

By Lemma 3.3.3 the depth of the recursive calls is at most d— 1. Thus, by the tree structure
of the calls, the number of calls is at most d!. The algorithm repeatedly constructs a multi-
ray cluster with exactly r customers by Lemma 3.3.2. We can precompute the sorted list of
candidate customers for the multi-ray clusters according to the distance from the center in
O(drlogd) time. Using the sorted list, construction of each multi-ray cluster takes O(r) time
for each and O(rd) time in total. The cluster is assigned to its best facility of the cluster. The
best facility of a multi-ray cluster is the nearest facility to the mid-point of the farthest two
customers on two different rays in the cluster. The best facility can be found in O(d + logm)
time for each cluster. For each possible pair of customers we precompute the best facility. Thus
the algorithm runs in O(d!rd + (d + logm)d®r?) time.

We can improve the running time by modifying the algorithm to save the solution of each
subproblem in a table. The number of distinct subproblems is the number of the combinations
of the rays checked. Thus the number of distinct subproblems is Z?;i (f) = O(29). Then the
running time is O(2%d + (d + log m)d?r?). Q.E.D.

Theorem 3.3.5 An optimal r-gathering of C to F can be computed in O(n +m + d*r*(d +

logm) + (r + 1)42%d) time.

Proof. Similar to Theorem 3.2.8 we can prove the number of possible choices of the customers
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for multi-ray clusters is at most (r + 1)%dr. For each choice we compute an r-gathering with
Multi-rayClusters2 and compute r-gatherings of the remaining one-dimensional problems, then
combine them to form an r-gathering of C' to F'. Then output the best one. This construction of
multi-ray clusters needs O(2¢rd+(d+log m)d>r?) for each. To eliminate redundant computation
we precompute the best facilities of each pair in the dr customers which are candidate for the
farthest two customers in possible multi-ray clusters. Such precomputation takes O(d*r?(d +
logm)) time. We can solve all possible one dimensional r-gathering problem in O(n +m) time
in total [35] and we store the solutions in a table. Note that when we solve one dimensional
r-gathering problem of ray I, we may assign a cluster to the nearest facility to o located on
other ray, however one can compute such f quickly. Thus the time complexity of finding an

optimal r-gathering is O(n + m + d*r*(d + logm) + (r + 1)%2%rd). Q.£.D.

If d is constant, then this is polynomial.

3.4 Min-Tree r-Gathering Problem

In this section we introduce a new cost function for the r-gathering problem and show that the
r-gathering problem is NP-Hard with the new cost function even when the points are on a star.

Let C be a set of customers, F' be a set of facilities and A be an r-gathering of C to F'. We
define the tree cost of a facility f as > 4= d(c, A(c)). The min-trec r-gathering problem asks
to find an r-gathering such that the maximum tree cost among all the facilities is minimum.
The decision min-tree r-gathering problem is defined as follows.

Problem: DECISION MIN-TREE r-GATHERING PROBLEM.

Instance: A set of customers C' and a set of facilities F', an integer r, and a number q.

Question: Does there exist an r-gathering A such that for each f € F, ZC:A(C):]( d(e, Ae)) <
q?

We show the hardness of the decision min-sum r-gathering problem by reduction from the
3-partition problem [20]. The 3-partition problem is defined as follows.

Problem: 3-PARTITION PROBLEM.
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Instance: A multi-set S = {ay,as, - , a3} of 3k integers and a number b such that
b boeo ; , _ 1
3 <a; <3 foreach 1 <i <3k and Zai = kb.

Question: Can S be partitioned into k subsets 57,55, ,.5, such that for each ¢ =
L2, ks Y g a =07

We now give the following theorem.

Theorem 3.4.1 The decision min-tree r-gathering problem is NP-Hard even when the cus-

tomers and facilities are on a star .

Proof. We prove the NP-Hardness of the decision min-tree r-gathering problem by giving a
polynomial time reduction from the 3-partition problem.

Given an instance Z(S,b) of the 3-partition problem, we construct an instance Z(C, F,r, q)
of the decision min-tree r-gathering problem such that Z(.5,b) has an affirmative answer if and
only if Z(C, F,r,q) has an affirmative answer. We first construct a star £ = {l1,lo, -+, I3}
of degree 3k and center o. For each a; € S we take a customer ¢;, lying on [;, such that
d(o,¢;) = a;. Note that,

< d(0,¢;) < % holds, since %

1< a; < g for each a;. We now take

NS

k facilities fi, fa,- -+, fr such that f; is lying ray [; and d(o, f;) = € where ¢ < min{d(o,¢;)}.
Finally we set ¢ = b+ ¢ and » = 3. In the following we prove that there is a solution to an
instance Z(S,b) if and only if Z(C, F,r, q) has a solution.

We first assume that Z(.9, b) has an affirmative answer. Let Sy, S, - , Sk be the partition of
S such that »_ o a = b for each S;. We can construct an r-gathering of instance Z(C, F,7, k)
in the following way: for each S; = {a;,a;,,a;,} we assign the customers ¢;,, ¢;,, ¢;y to the
facility f;,. Note that f;, is lying on the same ray [;, as ¢;;. Since there is no other customer on
ray l;,, the number of customers assigned to f;, is exactly 3. Now the cost of the facility f;, is
d(o,ci,) + d(o,c;,) +d(o,¢iy) + € = b+ €. Thus each open facility f; serves at least 3 customers
and for each f € F, 37 4=, d(c, A(c)) < b+e.
Conversely, assume that Z(C, F,r, ¢) has an affirmative answer. Let A be the corresponding

r-gathering. We first claim that, each open facility in A serves exactly 3 customers. For a

contradiction, assume otherwise. Let f; be an open facility such that f; serves at least four
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customers. Since 2 < d(o,¢;) < & holds for each ¢;, Doea=p WS €) = D0 a=y, dlo,c) +2€ >
4% § =+ 2, a contradiction. We now claim that, = 4.y, d(fi,¢) = b holds for each open
facility f;. Assume for a contradiction that, > . A(e)=f; d(fi,c) < b+ € holds for an open facility
fi- Thus we get > A()=; d(o,c) < b. Let C' be the set of customers assigned to some facility
other than f;. Clearly |C'| = 3k — 3. Since }_ o d(0,¢) = kband 3 4—;, d(fi; ) < b, we get
> cecr d(0,¢) > (k= 1)b. Then there is at least one facility f; for which }°_ 4 _, d(o,c) > b
holds. Thus 3. 4y, d(fj,¢) > b+ €. A contradiction. Q.£.D.

3.5 Summary

In this chapter, we give algorithms for the r-gather clustering problem and the r-gathering
problem which run in polynomial time if the number of rays are constant. We also introduce
the min-tree r-gathering problem and show the hardness of the min-tree r-gathering problem

even when the customers and the facilities are on a star.



Chapter 4

r-(Gzatherings on Uncertain Data

In this chapter we study the r-gathering problem on uncertain data.

Study of different problems under uncertain settings become much popular recently. Uncer-
tainty in data usually occurs because of noise in measured data, sampling inaccuracy, limitation
of resources etc. Hence uncertainty is ubiquitous in practice and managing the uncertain data
has gained much attention [2, 3, 4, 39]. Different variants of the facility location problem has
also been investigated under uncertain settings. Setting up a facility is costly to do and each
facility is supposed to serve for a long period of time. On the other hand existence, location
and demand of a client can change over time. Thus it is important to set up facility by keeping
the uncertainty in mind. For the detailed state of art of uncertain facility location problem, we
refer the survey of Snyder [38].

There are two models to deal with location uncertainty: one is existential model [24, 45]
and the other is locational model [2, 3, 42]. In the existential model, existence of each point is
uncertain. Thus each point has a specific location and there is a probability for the existence
of each point. In the locational model each point is certain to be exist, but its position in
uncertain and defined by a PDF. In this thesis we consider the locational model of uncertainty.

The rest of the chapter is organized as follows. In Section 4.1 we define the uncertain
r-gathering problem and provide definitions of basic terminologies. In Section 4.2 we give

algorithms for uncertain r-gathering problem for two type of input probability distributions.

38
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Finally we provide a summary in Section 4.3.

4.1 Preliminaries

In this section we define the uncertain r-gathering problem and relevant terminologies.

Let C = { C1,C%,---,C,} be a set of n customers where each C; is a identically and
independently distributed random variable, and F' = {fi, fa, -+, fm} be a set of m facilities.
The expected distance between a facility f and an uncertain customer C, denoted by E[d(C, f)],
is [7_d(z, f)gc(x)dx where go(z) is the PDF associated with C. An r-gathering A of C to F
is an assignment A : C — F such that each facility serves zero or at least r customers. The
cost of a facility is the maximum expected distance between the facility and its customers. The
cost of an r-gathering is the maximum cost among all the facilities. The uncertain r-gathering
problem asks to find an r-gathering with minimum cost. In this chapter we refer the traditional
version of r-gathering problem as deterministic r-gathering problem in order to differentiate
between the deterministic and uncertain counterpart.

It is easy to observe that the general uncertain r-gathering problem is NP-Hard since it

contains the deterministic r-gathering problem as a special case.

4.2 Uncertain r-Gathering on a Line

In this section we give algorithms for the uncertain r-gathering problem on a line.

Let C = {C},Cy, -+ ,C,} be a set of n uncertain customer on a line where each customer
is specified by a PDF ¢; : R — RT U {0}, and F = {f1, f2, -, fm} be a set of m facilities
on the line. We consider the facilities are ordered from left to right. An r-gathering of C to
F is an assignment of A : C — F such that each facility serve zero or at least r customers.
The uncertain r-gathering problem asks to find an r-gathering such that maximum expected
distance among the expected distances between a customer to the corresponding facility is

minimum.
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4.2.1 Histogram

In this section we give algorithm for uncertain r-gathering problem when each customer location

is specified by a piecewise uniform function, i.e., a histogram.

2 4 0 1 2 3 4 5 & 1 & 9 10

(a) (b)
Figure 4.1: (a) Illustration of histogram as a PDF and (b) corresponding function of expected

distance.

We consider the pdf g; of each customer is defined as a piecewise uniform function, i.e.,
a histogram and the distribution of each uncertain customer is independent. We consider
histogram since it can be used to approximate any other PDF [2]. The histogram model is
considered by Wang and Zhang [43] for the uncertain k-center problem on a line. Each PDF g;
consists of at most k+1 pieces where each piece is a uniform function. Specifically for a customer
Cj, there are k points x;1, T, - - - , g, Where x5 < 0 < -+ < Xy, and Y1, ¥i2, - -+, Yi(k—1) Such
that g;(z) = vi; if z;; < @ < @41, We also consider two other points z;y = —oo and
Tik1) = 00, and g;(x) = 0 if v < x5 or > xy. Figure 4.1(a) illustrates a histogram of 6

picces. The expected distance E[d(p, C;)] from a point p to C; is defined as follows.

o

Eld(p, Ci)] = / gi(x)|x — pldx

—00

A function h : IR — IR is called a unimodal function if there is a point p such that h(z) is
monotonically decreasing in (—oo, p] and monotonically increasing in [p, 00). Wang and Zhang

showed that the function E[d(p, )] is unimodal as described in the following lemma [43].

Lemma 4.2.1 ([43]) Let C be an uncertain point which is specified by a piece-wise uniform

function consisting of k + 1 pieces. Then the function E[d(p,C)| is a unimodal function.
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We now review the following lemma given by Wang and Zhang [43].

Lemma 4.2.2 ([43]) Let C be an uncertain point which is specified by a piece-wise uniform
function consisting of k + 1 pieces. Then the function E[d(p,C')] consists of a parabola in each

interval [xj, x;41). Furthermore the function E[d(p,C)] can be computed in O(k) time.

Proof. We first compute the function E[d(p,C)]. Without loss of generality, assume that

2y < p < x451. Then we have,

B0l = [ " e - plg(a)da

o]

= [ -ty + / " (@ - pg(a)d

—0o0
We now evaluate the first integral. We have,

-1

[ o-ngtaris - 5 [ w-amdet - oo

— 00 ]:0 Tj Tt

B tzlj . (p:C xQ)T,JH » <p$ l,Q)P
= ; - 2 - =
=0 2/, 2/,

§=0
yt t—1 nyt t—1 m2+1 T
- §p2+ Zyj(%ﬂ—%)—xtyt P+t7 j[ : 5 7]
7=0 7=0

Similarly for the second integral we obtain,

» k
/ (p—z)g(x)dz = %PQ - LZ Yj (Tjr1 — ) — Teyera

—oC =t4+1

i x?—i—lyt n Zk: *T?H - 15]2
b 1 Yj 9

Thus we get,

Eld(p.C)] = yp® +

t—1 k
Zy]’ (Tj1 — 25) — Z Yi (Tjr1 — 75) — ye(e + $t+1)] P

1 k t—1
+3 [Z vi (250 —23) =Yy (25— 23) + w(af + $t2+1)] (4.1)

=t+1 §=0
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Thus we can write E[d(p,C)] = ai(t)p? + aa(t)p + a3(t). Clearly, E[d(p,c)] is a parabola in
each [z, x141). Note that if y, = 0 for any [x¢, 2441) then the function E[d(p,C)] is a line in
the interval [x;,x441) which we consider as a special parabola. Figure 4.1(b) illustrates the
Eld(p, C)] function for the histogram in Figure 4.1(a).

We now show that the function E[d(p,C)] can be computed in O(k) time. Since a;(t) = y:,
we can compute a;(t) of each piece in constant time. Both as(t) and a3(t) contain terms which
are either sum of terms from 0 to ¢t — 1, or from t + 1 to k. However, we can compute those
sum terms using the value computed for as(t — 1) and a3(t — 1). Hence computation of each

as(t) and ag(t) take additional constant time. Q.E£.D.

We now give the following lemma.

Lemma 4.2.3 Let C be an uncertain point on a line which is specified by a piece-wise uniform
function consisting of k + 1 pieces, and F = {f1, fa,-++, fm} be a set of m facilities on the
line. We can compute expected distances between all the facilities and the uncertain point in
O(m + k) time. Furthermore the expected distances between the facilities and the uncertain

point can be sorted in O(m) time.

Proof. We first precompute the function E[d(p,C)] in O(k) time by Lemma 4.2.2. With the
precomputed function E[d(p, C')], the expected distance between the uncertain point and all the
facilities can be computed in O(mlog(k)) time using binary search. However, we can improve
the running time to O(m + k) using a plane sweep from left to right. We take each facility
in left to right order, determine the corresponding interval [z;,z;1), and compute the value
of E[d(f;,C)]. Since both the facilities and the x1,zs,--- 23 are ordered from left to right,
the search for the interval in which f; is located can start from the interval in which f; ; is
located. Hence ecach z; will be considered once. Thus the total running time is O(m + k). We
now show that the sorted list of distances between the facilities and the uncertain point can
be constructed in O(m + k) time. Since E[d(p,C)] is a unimodal function, there is a facility

fi such that E[d(f;,C)] is decreasing for f; < f; and increasing for f; > f;. Thus we have a
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descending list of expected distances for fi, fo, -+, f; and ascending list of expected distances
for fiy1, fize, -+, fm- We can merge these two lists into an ascending list of expected distances
in O(m) time. Q.E.D.

Corollary 4.2.4 Let C be a set of n uncertain points on a line each of which is specified by a
piece-wise uniform function consisting of k + 1 pieces, and F = {f1, fo, -+, fm} be a set of m
facilities on the line. The expected distances between all pair of uncertain points and facilities

can be computed and sorted in O(nk + mnlogn) time.

Proof. By Lemma 4.2.3, we can compute n sorted list of expected distances between customers
and facilities in O(nk + mn) time. The n sorted lists can be merged into a single list using

min-heap in O(mnlogn) time. Q.£.D.

We now consider the decision version of the uncertain r-gathering problem on a line. In
order to solve the uncertain r-gathering problem on a line, we first solve the decision version and
then search for the optimal solution. Given a set of uncertain customers C, a set of facilities
I on a line, and a number b, the decision uncertain r-gathering problem asks to determine
whether there is an r-gathering A of C to F' such that E[d(C, A(C))] < b for each C' € C. The

following lemma is known [43].

Lemma 4.2.5 ([43]) Let C' be an uncertain point on a line which is specified by a piece-wise
uniform function consisting of k + 1 pieces and b is a number. Then the points p for which

E[d(C,p)] < b holds form an interval on the line.

We call the interval which admits E[d(C,p)] < b for customer C' a (C, b)-interval and denote
the interval by [s,(C), t,(C')]. Thus for each customer C' we get a (C, b)-interval. Furthermore in
any r-gathering A admitting E[d(C,p)] < b, A(C) is lying between [s,(C), ¢,(C)]. Thus to find
whether there is an r-gathering satisfying E[d(C,p)] < b for each customer C, it is sufficient
to solve the interval r-gathering problem which is defined as follows. Given a set of facilities F’

on a line and a set of customers C where each customer C' € C has an interval [s(C),#(C)] on
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the line, the interval r-gathering problem asks to determine whether there is an r-gathering A
such that each facility f € F' serves zero or at least r customers and for each customer C' € C,
s(C) < A(C) < t(C) holds.

We now give an algorithm for the interval r-gathering problem. Let F = {f1, f2, -+, fin} be
a set of facilities and C = {C,Cy, - -+, C,,} be a set of customers on a line where each customer
C; has an interval I; = [s(C;),t(C;)]. An interval I; is called the leftmost interval if for each
C; # C;, t(C;) < t(C;) holds, and the customer C; is called the leftmost customer. A facility
fu is called the preceding facility of I; if s(C;) < f, < t(C;) and there is no facility f; such that
fu < fL < t(C;). Similarly a facility f, is called the following facility of I; if s(C;) < f. < t(C;)
and there is no facility f,, such that s(C;) < f/ < f.. We denote the set of right neighbors of
C; by N;. We denote by C, the set of customers who have f,, contained within their intervals.
We call a customer C; a right neighbor of C; if ¢(C;) > t(C;) and s(C;) < t(C;). We now have

the following lemma.

Lemma 4.2.6 Let F' = {f1, fo, -+, fm} be a set of facilities and C = {C1,Cq,--- ,Cy,} be a
set of customers on a line where each customer C; has an interval I;. Let I; be the leftmost
interval, f, be the preceding facility of I;, and C,, be the set of customers containing f, in their
intervals. If there is an interval r-gathering of C to F, then there is an interval r-gathering with
fu be the leftmost open facility. Furthermore, the customers assigned to f, have consecutive

right end-points in C, including C;.

Proof. We first prove that there is an interval r-gathering with f,, be the leftmost open facility.
Assume for a contradiction that there is no interval r-gathering with f, be the leftmost open
facility. Let A be an interval r-gathering with f, be the leftmost open facility. We can observe
that f, < f, , since in each interval r-gathering C; is assigned to a facility within the interval
I, and f, is the preceding facility of I;. Let C! be the set of customers assigned to f, in A.
For any customer C; in C;, we have s(C;) < f, < fi, < t(C;) < t(C;), since I; is the leftmost

interval. We now can derive a new interval r-gathering by reassigning the customers C, to f,.

A contradiction.
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We now prove that the customers are assigned to f, have consecutive right end-points in
C,. We call a pair C;,Cy € C, a reverse pair if ¢(C;) < t(Cy), Cy assigned to f,, and C}
assigned to f, > f,. Assume for a contradiction that there is no interval r-gathering where
the customers assigned to f, have consecutive right end-points in C,. Let A’ be an interval
r-gathering with minimum number of reverse pairs but the number is not zero. Let Cj, C}, be a
reverse pair in A" where ¢(C;) < t(Cy), and Cj is assigned to facility f,, and Cj is assigned to
fu- Since t(Cy) > t(C;) and fi, > fu. we get s(Ck) < fi, < t(Cx). We now derive a new interval
r-gathering with less reverse pairs by reassigning C; to f,, and Cj to f,,. A contradiction.

Q.£.D.

We now have the following lemma.

Lemma 4.2.7 Let F = {f1, fo, -+, fm} be a set of facilities and C = {C1,Cy,--- ,Cy} be a
set of customers on a line where each customer C; has an interval I;. Let C; be the leftmost
customer, f, be the preceding facility of I;, and C, be the set of customers containing f, in their
intervals. Let C; be the leftmost customer in C\ C,, and C,, C C, be the customers such that for
each C € C,, t(C) < t(C;). Now if there is an interval r-gathering, then there is an interval
r-gathering satisfying one of the following.

(a) If |Cl| < r, then exactly the r leftmost customers in C, are assigned to f,.

(b) If |Cl| > r , then max{|C.,| — r + 1,7} leftmost customers of C., are assigned to f,.

Proof.

(a) By Lemma 4.2.6, the customers assigned to f, are consecutive in C,. Thus the leftmost
r customers C, in C, are assigned to f,. We now prove that there is an interval r-gathering
where no customer in C, \ C!, is assigned to f,. Assume for a contradiction that in every interval
r-gathering there are some customers in C, \ C}, which are assigned to f,. Let A be an interval
r-gathering where the number of customers in C, \ C, assigned to f, is minimum, and Cj be
a customer in C, \ C!, which is assigned to f,. Since |Cl| < r, we get ¢(Cx) > t(C;). Let C; is

assigned to f, in A. We now derive a new r-gathering by reassigning C' to f,, a contradiction.
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(b) We first consider r < |C/,| < 2r. In this case max{|C/,| —r+1,r} = r. Since by Lemma 4.2.6
the customers assigned to f, are consecutive in C,, the leftmost r customers in C, are assigned
to fu-

We now consider |C,| > 2r. In this case, max{|C.| —r + 1,r} = |C/| —r + 1. Let C! be the
leftmost |C,| — r + 1 customers in C,,. Assume for a contradiction that there is no interval r-
gathering where C! are assigned to f,. Let A’ be an interval r-gathering with maximum number
of customers D, C C/ assigned to f,. Let Cs € C be the customer with smallest ¢(C) which
is not assigned to f,,. Let Cj is assigned to f, > f,. By Lemma 4.2.6, any customer C; € C!
with ¢(Cy) > t(C5) is not assigned to f,. We first claim that the number of customers assigned
to f, is exactly r. Otherwise we can reassign Cs to f, and thus contradicting our assumption.
Let C! be the customers assigned to f,. We now claim that there is an interval r-gathering
where C] consists of r customers having consecutive right end-points in C,. Assume otherwise
for a contradiction. Let A” be an interval r-gathering with minimum number of crossing pair
where a crossing pair is a pair of customer C,, C, with ¢(C,) < t(C,), C, assigned to f,, C;
assigned to f,, > f,. Since t(C,) < t(C,) and f, < f,, we get s(Cy) < fi, < t(C,). We now
derive a new interval r-gathering by reassigning C, to f, and Cy to f,, a contradiction. Now
since |D,| < |C,,| —r + 1, we get |C/, \ D,| > r. Thus C, C C,,. We now derive a new interval

r-gathering by assigning C, to f,. A contradiction. Q.E.D.

We now give an exact algorithm for the interval r-gathering problem.

We now have the following theorem.

Theorem 4.2.8 The algorithm Interval-r-gather decides whether there is an interval r-

gathering of C to F, and constructs one if exists in O(m + nlogn + nrr) time.

Proof. The correctness of Algorithm Interval-r-gather is immediate from lemma 4.2.6 and 4.2.7.

We now estimate the running time of the algorithm. We can sort the customers based on
their right end-points in O(nlogn) time. For each customer we can precompute the preceding
facility f in O(n + m) time. For each facility f we can precompute the sets of customers C

containing each facility and the leftmost customer C’ having left end-point on right of f in
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Algorithm 4: Interval-r-gather(C, F)

Input : A set C of customers each having an interval and a set of F' of facilities on a
line

Output: An interval r-gathering if exists
if [C| <7 or F = then

‘ return
endif
C' <+ leftmost customer in C;
f « preceding facility of C}
Cs < customers containing f in their intervals;
C" « leftmost customer in C \ Cy;
C} < customers in Cy having smaller right end-point than ¢(C");
F’ + facilities right to f;
if |Cs| < r then

return (;

endif
if |C}| < then
Dy + r leftmost customers in Cy;
Assign Dy to f;
Ans < Interval-r-gather(C \ {D;}, F');
if Ans # () then

‘ Return Ans U {Dy};
endif
return (;
endif
Dy < max{r,|C;| — r + 1} leftmost customers in Cy;
Assign Dy to f;
¢} ¢\ {Dyk;
while C{ is not empty do
Ans < Interval-r-gather(C \ {D;}, F');
if Ans # () then

‘ Return Ans U {Dy};
endif
C" « leftmost customer in C¥;
Assign C" to f;
Df — Df U {C”};
end

return () ;
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O(n+m) time. In each call to Interval-r-gather, we need O(|Cy|) time and at most r recursive
calls to Interval-r-gather. Let T'(n) be the running time of the algorithm for n customers. We
have T'(n) < O(|C4]) + 31—, T(n —r +1) < O(nr+). Thus the running time of the algorithm
is O(m +nlogn +nrr). Q.E.D.

We now have the following theorem.

Theorem 4.2.9 Let C = {Cy,Cy,--- ,C,} be a set of uncertain customers on a line each
of which is specified by a piece-wise uniform function consisting of k + 1 pieces, and F =
{fis f2,- -+, fu} be a set of m facilities on the line. Then the optimal r-gathering can be con-

structed in O(nk +mnlogn + (m +nlogk +nr+))logmn) time.

Proof. We give outline of an algorithm to compute optimal r-gathering. We first compute the
Eld(p, C;)] function for each C; € C. This takes O(nk) time in total. By Corollary 4.2.4, we
compute the sorted list of all expected distances between customers and facilities in O(nk +
mnlogn) time. We find the optimal r-gathering by binary search, using the algorithm for
interval r-gathering log(mn) time. For solving each interval r-gathering problem, we compute
the intervals for all customers in O(nlogk) time and sort the intervals in O(nlogn) time.
Using the sorted list of intervals and facilities, we solve the interval r-gathering in O(m +nr+).
Thus finding optimal r-gathering by binary search requires O(nk + mnlogn + (m + nlogk +
nr+))logmn) time. Q.E£D.

4.2.2 Uniform Distribution

In this section we give an algorithm for uncertain r-gathering problem when each customer
location is specified by a uniform distribution.

In the uniform distribution model, location of each customer C; is specified by a uniform
function g; : R — R* U {0} where gi(p) = 1/(t; — s;) if t; < p < s; and g;(p) = 0 otherwise.
We denote the uniform distribution between [s;, ;] by U(s;,t;). The customer C; has a uniform

distribution U (s;, t;) is denoted by C; ~ U(s;, t;). Figure 4.2(a) illustrates a uniform distribution
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(a) (b)
Figure 4.2: (a) Hlustration of uniform distribution as a PDF and (b) corresponding function of

expected distance.

where s; = 0 and t; = 3. The range of U(s;,t;), denoted by [;, is the value of ¢; — s;, and the

mean of Ul(s;,t;), denoted by u;, is the value of % It is easy to observe that, the uniform
distribution model is a special case of the histogram model described in Section 4.2.1. Thus
by Lemma 4.2.1, 4.2.2 and 4.2.5, the function E[d(p,C)] is a unimodal function where each
piece is a parabola and the points for which E[d(p,C)] < b form an interval. We now have the

following lemma.

Lemma 4.2.10 Let C ~ U(s,t) be an uncertain point which is specified by a uniform function
within [s,t]. Then the function E[d(p,C)] consists of a parabola in the interval [s,t] and two
straight lines of slope +1 and -1 in interval (t,00) and (—o0, s) respectively. Furthermore the

minimum value of E[d(p,C)] is + and the value of E[d(p,C)] at s,t is .

Proof. We use the Equation 4.1 to compute the function E[d(p,C)]. For p < s, we get-

Eld(p,C)] = —p+ %(t—#s)
s+t

2

(1* — 5)

Similarly for p > ¢, we get E[d(p, C)] = p+ *5*. Thus the function E[d(p,C)] is a straight line
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of slope -1 for p < s, and a straight line of slope 1 for p > t. Now for s < p <t we get,

1 1 1 1
E _ 2 L 2 42
AP O) = = (s + ot (5 + )
_ 1 s+1\> t—s
 t—s 2 4
Thus E[d(p,C)] is a parabola in the interval [s,¢]. Hence we get-
W=D ifp<s
Eld(p,C)] = % (p— u)z + i ifs<p<t (4.2)
—p+p ifp>t
At p = s weget Eld(s,C)] = 7 (s — 5”) + 8 =5 = L Similarly, E[d(t.C)] = . Now

for p < s and p > t, E[d(p,C)] > 5*. The minimum value of the parabola - (p — %”)2 + L2
ED

+t which is + 0.

is at p = 5= 4

By Equation 4.2, we can calculate E[d(p, C)] for a fixed point p in O(1) time. In the following
lemma, we show that for a customer C' and a number b we can compute the (C.,b)-interval in

O(1) time.

Lemma 4.2.11 Let C' ~ U(s,t) be an uncertain point and b be a number. Then the (C,b)-

interval can be computed in O(1) time.

Proof. To find the (C,b)-interval, we first compute the inverse of the Equation 4.2. For
E[d(p, )] =b> L wehave p < sorp >t Thus weget, p=p=+b For £ < E[d(p,C)] =
b <=z , we have s < p < t. Thus we get p = p &+ /(b — Z)' Finally there is no p for which
Eld(p,C)] < L. Hence the (C,b)-interval for b < L is empty. Thus the (C, b)-interval I can be

written as following.

(1t — b, p+b] ifo>1
—\JUb=5) p+Jlb=1)] i L <b< ] (4.3)
0 fb<i

By Equation 4.3 we can compute (C,b)-interval in O(1) time. 0.E£.D.
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Let C; ~ Ul(sy,t;),C; ~ U(sj,t;) be two uncertain points. Let [y, = max{l;,l;} and

lmin = min{l;, [;}. We call C;,C; well-separated if none of the intervals [s;, ;| and [s;, ;] is

contained within the other and |p; — ;| > %\/ Linin(Lmaz — Umin)-

Lemma 4.2.12 Let C; ~ U(s;,t;),C; ~ U(sj.t;) be two uncertain well-separated points and b
be a number. Let I;,I; be the (C;,b)-interval and (C;,b)-interval respectively. Then none of I;

and I; is contained within the other.

Proof. Since C; and C; are well-separated, it is easy to observe that s; = s; if and only if
t; = t;. In this case the claim trivially holds. We thus consider otherwise. Without loss of
generality we assume that, s; < s;, t; < ¢; and I[; < [;. Since s; < s; and t; < t;, we get
i = % < 3%1 = ;. We now have two cases.

Case 1: [; > 2l;. In this case we have three subcases to consider.
Case la: b > %
By Equation 4.3 we get I; = [p; — b, jt; + b]. Similarly, we get I; = [i; — b, 1; + b]. Now since
i < iy, we get p; —b < p; — b and p; +b < pj 4+ b. Thus none of I;, I; is contained within the
other.

Case 1b: %gbg %

~
|

NI
o~
S

NS,

Since l; > 2l;, we have

V80— 1;/4), 5 + /(b +1;/4)

within the other. We first consider I; is contained within I;. Since b > L we get w—b <

< By Equation 4.3, I, = [ — b,p; + 0] and [; = [p; —

. Assume for a contradiction that either /; or I; is contained

27
s; and p; +0 > t;. On the other hand, since b < % we get pu; —+/lj(b—1;/4) > s; and

11j—+/1;(b—1;/4) < t;. Now since I; is contained within I;, we have ju; —/1;(b — 1;/4) < p1;—b
and p; ++/1;(b—1;/4) > p; +b. Thus we get s; < s; and ¢; < t;, a contradiction.

We now consider I; is contained within /;. In this case, p; — b < p; — \/m and
pi +b >+ \/W . Note that, the absolute value of the slope of tangent of parabola

%(p — 11;)? + 4 at any point p € [s;,t;] is less than 1. Hence the interval [; at b = % must

be contained within the interval I; at b = boatp =4

I L
. L, we have I; = [u; — 4,1 + %] and

I; = [pj, pij]. Since I; is contained within I;, we get p; — p; < ZZJ. Now since I; is not contained
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within I; and [; > 2[;, we get-

l.
Sj = F‘j_é
lj l;
< Hi+z—§
l;
i
< Hi— g
= Si

Similarly, we can show t; > t;. Thus /; is contained within /;, a contradiction.
Case 1c: b < lz’

Since b < 4, we get I; = 0. Thus the claim holds.

Case 2: [; < 2l;. For this case, we have four subcases to consider.
Case 2a: b > 2. Similar to Case la.
Case 2b: ¥ <b< ~L
In this case by Equation 4.3, I; = [u; — b, pt;+b] and I; = [1;—/1;(b — 1;/4), j1;+/1;(b + 1; /4)].
Assume for a contradiction that either ; or I; is contained within the other. We first consider

I; is contained within ;. Since b > %, we get pu; — b < s; and p; +b > t;. On the other

hand, since b < %— we get j1; — \/1;(b—1;/4) > s; and p; — \/1;(b — 1;/4) < t;. Now since I; is
contained within 7;, we have p1; — \/1;(b — 1;/4) < pt; —b and ji; ++/1;(b — 1;/4) > j1; +b. Thus
we get s; < s; and ¢; < tj, a contradiction.

We now consider I; is contained within /;. In this case, p; —b < p1; — \/m and p; +b >
i+ \/—7l/4 Since the absolute value of the slope of tangent of parabola + (p 14;)? —|—l71 at

any point p € [s;, t;] is less than 1, the interval [; at b = 2 . must be contained within the interval

Latb="4% Atb=1% wehave I; = [, — 4, g+ 4] and [; = [p;— /(5 — 2), 41/ 1 (4% — ]

Thus [; is contained within /; if and only if p; — p; < 3 L - 3 51 — %’) Now since l; < 1;, we
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have 2l; — 1; < [;. Hence we get,

l; 1 L 1 l 1 /0L
L VL A A R N A
2 253(2 4)—2 2(2 4)
l; l;
S )
2 +2
— i— b
2
Thus I is contained within 7; if and only if p; —p; < lj;li. ince, i1 i

li

within the other, we have p; — u; > lj%
Case 2c: 541 <bh< l—; In this case, I; = [p; — \/Li(b—1;/4), ;i + J1i(b+1;/4)] and I; =
— V10— 1;/4), 1y + \/1;(b + 1;/4)]. Assume for a contradiction that I; or I; is contained
within the other. We first consider /; is contained within /;. Since p; < pui;, I; is contained within
I; if and only if p; — \/1:(b — 1;/4) > p; — \/1;(b — 1;/4) which yields p; — p; < \/1;(b — 1;/4) —
\/m Similarly, I; is contained within I; if and only if p; — p; < /Li(b—1;/4) —
lj(b—1;/4). Thus either I, or I; is contained within the other if and only if p; — p; <
G0 —1/3) — /I — /D).
Let h(b) = \/1;(b—1;/4) — \/1;(b — I;/4). We now show that, the function h(b) is increasing at

any point b > [;/4. Clearly, h(b) is not defined for b < 1,;/4. We can calculate the derivative of
h(b) as follows.

d Lo
db V-1 4b — 1;
V8iAb— 1) — /1,40 — 1))
V({4b = 1;)(4b — 1)

Since l; < 1j, we get \/1;(4b — 1;) > /1;(4b — I;). Thus %h(b) > 0 for any b > [;/4, and hence
the function h(b) is increasing. We now show that the maximum value of |A(b)| within interval

boLy g at b = [;/4. We first observe that h(b) = 0 at b = @. Since [ >l77 ’> ll
472

Thus |h(b)| is decreasing in the interval [4 2 4], Hence the maximum value of |h(b)| within the

interval [2, 4] is at b = Zj. Thus the maximum value of |h(b)| is

Yol
47 2
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= Skl —1)

Since C;, C; are well-separated, ji; — y1; cannot be greater than % li(l; — l;), a contradiction.

Case 2d: b < %. Similar to Case lc. Q.ED.

We now give an algorithm for the decision version of uncertain r-gathering problem when the
customer locations are specified by well-separated uniform distributions. Clearly, the decision
version is the interval r-gathering problem as specified in Section 4.2.1. Since the intervals are
proper for the well-separated uniform distribution, we call the decision version proper interval
r-gathering problem. The proper interval r-gathering problem is defined as follows. Given a set
of facilities F' = {f1, f2, -, fm} on a line and a set of customers C = {Cy,Cy, -+ ,C,} where
each customer C; has an interval I; = [s(C;),t(C;)] on the line such that I; is not contained
within any interval I; # I;, the interval r-gathering problem asks to determine whether there
is an r-gathering A such that each facility f; serves zero or at least r customers and for each
customer Cj, s(C;) < A(C;) < t(C;) holds. We assume the customers are ordered in increasing
order of right end-points and the facilities are ordered from left to right.

If all the intervals are proper, we can improve the running time of Algorithm Interval-r-
gather by dynamic programming approach. We memoize the call to the interval r-gather. Since
all the intervals are proper, each call to Interval-r-gather with C; as the leftmost customer has
same set of customers. Thus we have at most n distinct subproblems, and in each call to
Interval-r-gather we take O(n) time other than recursive calls. Hence with memoization, the
algorithm runs in O(m + n?) time. However we can further improve the running time by
modifying the algorithm for (k,r)-gathering on a line by Akagi and Nakano [9]. We solve the
proper interval r-gathering problem by solving the problem P(i) which is defined as follows.
Given a set of facilities ' = {f1, fo, -+, fm} on a line and customers C = {C},Cy, - ,C,}
where each customer has an interval I; = [s(C;),t(C;)] such that I; is not contained within

any interval [}, the problem P(7) asks to find a set of customers C; and an interval r-gathering



4.2. Uncertain r-Gathering on a Line 55

A of customers C; C C to F; = {f1, fo,-++, fi} such that (1) C; contains all customers with
t(C;) < fi, (2) fi has r customers, and (3) maxcee, {t(C)} is minimum. We denote the customer
with maxcec, {t(C)} by z(i). Let C; be the customer such that s(C;) is the minimum. We
can observe that there is a proper interval r-gathering if and only if P(:) has a solution for

fi > s(C;). We have the following lemma.

Lemma 4.2.13 Let F = {f1, fo, -+, fm} be a set of facilities on a line and C = {Cy,Cs,--- ,Cp}
be a set of customers where each customer C; has an interval I; = [s(C;),t(C;)] and no interval
is contained within any other. If P(i) has a solution, then there is an interval r-gathering where

customers assigned to each open facility has consecutive right end-points.

Proof. In an interval r-gathering A we call a pair of customers C,,C, a crossing pair, if
t(Cy) < t(C,) and A(Cy) > A(C,). Let C; be the set of customers corresponding to the solution
of P(i). For a contradiction, assume there is no interval r-gathering where customers assigned
to each open facility is consecutive. Let A; be an interval r-gathering corresponding to P(i) with
minimum number of crossing pairs. Let C,, C, be a crossing pair. Since all the intervals are
proper, s(C,) < s(C,). Thus we have s(C,) < A;(C,) < t(C,), and s(C,) < A;(Cy) < H(C).
Now we can derive a new r-gathering by reassigning C, to A;(C,) and C, to A;(C,), which

reduces the number of crossing pairs by one. A contradiction. 0.£.D.

We now have the following lemma.

Lemma 4.2.14 Let F = {f1, fo, -+, fmm} be a set of facilities on a line and C = {C,Cs, -+ ,Cp}
be a set of customers where each customer C; has an interval I; = [s(C;),t(C;)] and no interval
is contained within any other. Let f;, f; be two facilities with f; < f;. If both P(i) and P(j)

has solution then t(z(i)) < t(z(j)).

Proof. For a contradiction assume t(z(i)) > t(2(j)). Let A; be an interval r-gathering cor-
responding to P(j). Since all the intervals are proper, we have s(z(7)) > s(z(j)). We have

s(z(j)) < fi, since 2(j) is assigned to f; in A;. Let C; be the set of customers assigned to any
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facility between f; to f; (including f;) in A;. For any customer Cy € C7, we have s(Cy) < f;
and t(Cy) > f;. We now derive a new interval r-gathering A’ by reassigning the leftmost
customers C; to f;. Clearly, maxcee,{t(C)} < #(2()) and thus A} is a solution of P(i), a

contradiction. Q.ED.

Using Lemma 4.2.13 and 4.2.14, we can determine whether P(7) has solution by the following
way. If f; < #(C), then P(i) has solution if and only if f; is contained within at least r intervals.
Otherwise if f; > t(Cy), then there must be two or more open facilities. In this case P(7) has
a solution if and only if there is a facility f; such that P(i') has a solution and satisfying one
of the following conditions.
col: If t(2(i')) > fi, then there are at least r customers in C \ C; containing f;.
co2: If £(z(i")) < fi, then there are at least r customers in C \ C; which contain f; and each
customer C; € C\ Cy having t(C;) < f; has s(C;) < fir.

Let ' = {f1, f2, -, fm} be a set of facilities on a line and C = {C},Cy,---,C,} be a
set of customers where each customer C; has an interval I; = [s(C;),t(C;)] and no interval is
contained within any other. Let f;, fi, fiv be three facilities such that f;» < fi < f; and each of
P(1), P(¢'), P(i") has a solution. Let C;» be the set of customers such that there is an interval
r-gathering of C;» to F; with f; open and f;» be the second rightmost open facility such that
maxcec,, {t(C)} is minimum. Let Cy be the set of customers such that there is an interval
r-gathering of Cy to F; with f; open and fi be the second rightmost open facility such that
maxcec, {¢(C)} is minimum. Then maxcec,, {{(C)} < maxcec, {t(C)}.

Let P(i) has a solution and f; > t(C4). For such P(i), we have one or more open facilities.
We call the minimum second rightmost open facility fi for which P(i) has a solution as the

mate of f;, denoted by mate(f;). We have the following lemma.

Lemma 4.2.15 Let F' = {f1, fo, -+, fm} be a set of facilities on a line and C = {Cy,Cy,--- ,Cp,}
be a set of customers where each customer C; has an interval I; = [s(C;), t(C;)] and no inter-
val is contained within any other. Let f; # f, be a facility such that f; > t(Cy) and each of

P(i), P(i + 1) has a solution. Then mate(f;) < mate(fiz1).
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Proof. For a contradiction assume mate(f;) > mate(fiy1). Let f; = mate(f;) and f; =
mate(fit1). By Lemma 4.2.14 we have t(2(j)) > ¢(z(j')). Since f; is mate of fi11, there is
no customer C' such that f; < s(C) < ¢(C) < fiq1. If t(2(j)) < fi. then fj; is also a mate
of f;, a contradiction. Now if ¢(2(j)) > f;, then f; is a mate of f; since t(2(j')) < t(2(j)), a

contradiction. QED.

We now have the following lemma.

Lemma 4.2.16 Let F' = {f1, fo, -, f} be a set of facilities on a line and C = {C1,Cs,--- ,C,}
be a set of customers where each customer C; has an interval I; = [s(C;), t(C;)] and no interval

is contained within any other. Let f; be a facility such that f; > t(Cy) and fy be the leftmost

facility such that P(i') has solution, there is no customer Cy with fi; < s(Cy) < t(Cy) < fi,

and C \ Cy has less than r customers containing f;. Then the following holds.

(1) No facility f; with f; > fy is a mate of f;.

(2) If P(i) has no solution and P(i+ 1) has a solution, then mate(fiy1) > fir.

Proof.

(1) By Lemma 4.2.14 for any facility f; > fy. if P(j) has a solution, then mate(j) > mate(i').
Thus the number of customers in C \ C; containing f; in their interval is less than 7.

(2) Assume for a contradiction that mate(fi41) < fi. Let fir = mate(fir1). We have t(z(i")) <
t(z(¢')). Since fy is a mate of f;,1, there is no customer Cy with fin < s(Cy) < t(Ck) < fiz1-
Thus there is no customer Cj, such that fir < s(Cy) < t(Cx) < f;. Since there are less than r
customers containing f; in C \ Cy and #(z(i")) < t(z(i")), there are also less than 7 customers
containing f; in C \ C;». Hence f; cannot be the leftmost facility such that P(i') has solution,

there is no customer Cy, with fi < s(Cy) < t(Cy) < f;, and C \ Cy. A contradiction.  Q.£.D.

By Lemma 4.2.15 and 4.2.16, we observe that we can search for mate(f;;1) from where the
search for mate of mate(f;) ends. Based on these observation we give the following Algorithm

called proper interval r-gather.
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If the intervals are sorted according to their right end-points and the facilities are ordered
from left to right, then we can preprocess the set of customers containing each facility in linear
time. Each customer and each facility have to be processed for a constant number of times.

Hence the algorithm runs in O(n + m) time. We thus have the following theorem.

Theorem 4.2.17 Let F' = {fi, fa,- -, fm} be a set of facilities on a line and C = {Cy,Cy,--- ,Cy}
be a set of customers where each customer C; has an interval I; = [s(C;), t(C;)] and no interval
is contained within any other. The algorithm Proper-interval-r-gather decides whether there

is an interval r-gathering of C to F', and constructs one if exists in O(n + m) time.

We now give outline of the algorithm to solve uncertain r-gathering problem on a line where
the customer locations are specified by well-separated uniform distributions. Computing the
Eld(p, C;)] for all the customers takes O(n) time. Computing the distances between each pair of
customers and facilities takes O(nm) time and the sorting of distances requires O(mn log(mn))
time. We do binary search on the ordered list of distances to find the optimal r-gathering. We
can compute the (C,b)-intervals for all customers in O(n) time. The (C,b)-intervals can be
sorted in O(nlogn) time. Solving each decision instance takes O(n + m) time. Thus to find
the optimal solution by binary search we need O((nlogn + m)log(mn)). Hence the running

time is O(mnlog(mn) + nlognlog(mn)). Thus we have the following theorem.

Theorem 4.2.18 Let F' = {f1, fa, -+ , fm} be a set of facilities on a line and C = {Cy,Cy,--- ,C,}
be a set of customers where each customer C; has a well-separated uniform distribution. Then
an optimal r-gathering of C to F can be constructed in O(mnlogn + (m + nlogn)log(mn))

time.

4.3 Summary

In this chapter, we give algorithms for the uncertain r-gathering problem on a line for two

input probability distributions. For the general case where the customer locations are specified
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by histograms, our algorithm runs in exponential time. We also give an O(mnlogn + (m +
nlogn)log(mn)) time algorithm for uncertain r-gathering problem when the customer locations

are given in well-separated uniform distributions.
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Algorithm 5: Proper-interval-r-gather(C, F')
Input : A set C of customers each having an interval where no interval is contained

within other and a set of F' of facilities on a line
Output: An interval r-gathering if exists
if [C| <7 or F = then
‘ return
endif
14+ 1;
while f; < ¢(C;) do
if f; > s(C,) then
‘ 2(i) + Cy;
endif
i i1
end
J< L
while 1 <m do
Cy, < set of customers containing f;;
while 7 <7 do
if t(2(j)) < fi and |Cy,| > r and there is no customer C' with
fi <s(C) <t(C) < f; then
C < r-th customer in Cy,;
z(i) « C;
mate(i) < 7;
break;
endif
C' < customers C with t(C') > t(z(7));
if t(2(j)) > fi and there are at least v customers in Cy, N C' then
C' < r-th customer in Cy, N C’;
2(i) «+ C;
mate(i) < 7J;
break;
endif
if There are no customer between f; and f;, and there are less than r
customers in Cs, N C' then
break;
endif
Je=J+ L
end
141+ 1;
end
if P(i) has solution for f; > s(C,) then
A; < Assignment of customers in open facility in P(i);
return A;;
endif
return (;




Chapter 5

Conclusion

In this chapter we review the ideas discussed in the previous chapters and explain some inter-
esting open problems in this field.

In this thesis we have dealt with two problems called the r-gathering problem and the
r-gather clustering problem. At first, in Chapter 1 we have defined the two problems and
discussed their applications. We have also reviewed the literature of the two problems and give
an objective of this thesis.

In Chapter 2 we have given some preliminary definitions on graph, algorithmic theory and
probability theory. We have also discussed about different graph classes that are necessary to
understand this thesis work.

In Chapter 3 we have considered the r-gathering problem and the r-gather clustering prob-
lems when the customers and facilities are lying on a star. We give algorithm for both problems
which run in polynomial time if the number of rays of the star is constant. We also showed a
relevant variant of r-gathering problem on star is NP-hard.

In Chapter 4 we have considered the r-gathering problem when the customer locations are
uncertain. For one-dimensional case, we give an exact exponential algorithm for solving the
problem when customer locations are specified by histogram. For more restricted case when the
customer locations are specified by well-separated uniform distribution, we give a polynomial

time algorithm for the problem.
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In this thesis we have tried add more results on the r-gathering and the r-gather clustering

problem. However he following problems are still open and remained as future works.

1. Improve the running time of the r-gathering and r-gather clustering problems on star.

2. Determine the complexity of the problems when the customers and facilities are lying on

a tree.

3. Find a polynomial time algorithm for the uncertain r-gathering problem when the cus-

tomer and facilities are on a line and the customer locations are specified by histograms.

4. Determine the complexity of the uncertain r-gathering problem on a line for some other

probability distributions.

5. Find an approximation algorithm for uncertan r-gathering problem on plane.
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