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ABSTRACT 
 

Keeping pace with the rapidly changing production system is a challenge, where each day new 

technology is being invented and the market is becoming more competitive. One effective way to 

sustain is to have a production planning system that can react to sudden changes in the 

production phase and also is capable of finding an optimum solution among production 

challenges. This thesis aims to propose a semi-automated dynamic hybrid flow shop scheduling 

model that can provide an optimum production schedule considering capacity limitations, 

operators learning effect, machine break-down conditions, etc. In order to make the production 

scheduling semi-automated, a machine learning algorithm, Support Vector Machine (SVM) is 

used to formulate a job classification model that can classify jobs based on their priority level. 

Furthermore, a scheduling model is developed that utilizes each job’s corresponding priority 

level information. The model aims to address three objectives: minimization of make-span, 

minimization of tardiness and maximization of efficiency. In this work maximization of 

efficiency is calculated in terms of machine idle time. To make this model applicable to real-life 

production challenges, uncertainties related to processing time and machine break-down are 

considered. Finally, a meta-heuristic algorithm, Particle Swarm Optimization is used to find the 

optimum schedule. The job classification approach used in this thesis has not been explored by 

other researchers so far. This proposed method has proved its efficacy in depicting real-life 

production challenges and providing an optimum result. 
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CHAPTER 1 : INTRODUCTION 
 

1.1 Background of the Study 

To improve organizational effectiveness with customer satisfaction, it requires some important 

decision-making processes. Among then the decision of scheduling has a significant importance 

level. Scheduling mainly deals with resource (i.e. machines) allocation considering some 

performance criteria such as make-span, tardiness, flow-time and so on. It is a process by which 

limited resources are assigned to sequential or parallel activities over a given time frame. 

Intelligent scheduling methods are needed to ensure optimum allocation of scarce resources 

within limited execution time. 

Manufacturing industries are facing different challenges such as customized product demand, 

shorter product life cycles, continuously changing market demand, and global competition. 

Without improving the performance of the production scheduling systems under increasing 

market fluctuations and internal uncertainties in the manufacturing process (e.g. machine 

breakdown, tool failure, and change of processing times) it will be difficult for manufacturing 

companies to survive in the competitive environment. There is also continuous advancement in 

technology advancement and manufacturing industries need to keep pace with that. So, 

scheduling should be done in such a way that ensures efficient use of available resources. The 

efficient use of resources can be ensured by optimum scheduling. 

An optimum schedule can be obtained by optimizing various performance measures. One 

measure can be the minimization of the completion time of the last job which is termed as make-

span and another can be the minimization of the number of jobs completed after their respective 

due dates or minimizing the number of days by which a job is delayed from its due date. It is also 

important to choose the objectives properly so that the optimized schedule can meet the 

requirements properly. 

The performance of an organization can be measured by two dimensions, those are technological 

and organizational dimensions. The technological dimension focuses on satisfying the required 

quality at a lower cost. These requirements along with the rapid technological advancement of 

products lead companies to opt for mass production. Production cycle times, expected delivery 
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date, inventory, and work in process management, etc are addressed by the organizational 

dimension. Therefore, companies need to have powerful production planning and control 

methods. 

By specifying the resource configuration and the nature of the tasks scheduling models are can 

be categorized. For instance, when a job needs to be machined by one machine, it is likely to be 

processed on a single stage. Whereas, if a job requires multiple operations or machines it will be 

multi-stage scheduling which is called flexible scheduling or hybrid scheduling. In static 

scheduling, at the beginning of the scheduling process, all jobs to be scheduled are available, 

whereas in dynamic scheduling the set of jobs to be processed is continuously changing. 

Generally, it is easy to deal with static scheduling rather than dynamic scheduling. Based upon 

the certainty of parameter scheduling can be of two types, one is deterministic and the other one 

is stochastic, when all parameters are known with certainty, the scheduling model is called 

deterministic. On the other hand, if uncertainty exists with the scheduling parameters it is 

stochastic scheduling. In this work, stochastic scheduling is being addressed. 

Based upon the application there are several types of scheduling such as- single machine 

scheduling, job shop scheduling, flow-shop scheduling, flexible or hybrid job shop scheduling. 

flexible or hybrid flow-shop scheduling. In job shop scheduling problem a set of n jobs to be 

processed by a set of machines, each job is processed on machines in a predefined order. In this 

case, the objective is to find an optimal ordering of all the jobs with respect to their varied 

routing requirements through the machines. The job flow through machines is multidirectional 

flow. The flow-shop scheduling problem (FSP) consists of m machines and n jobs, where the 

objective is to sequence n jobs on m machines in an optimum way. All machines are situated in a 

defined series and all jobs need to be processed on each of the machines. The routing of the jobs 

through the different machines are unidirectional flow. A job can move forward in the queue 

when the preceding operation is completed. A hybrid flow shop (HFS) consists of a series of 

production stages with several parallel machines, where a set of operations are done on jobs in a 

predefined order [Linn & Zhang, 1999]. Some examples of HFS are an automotive assembly 

line, semiconductor production, textile production line, etc 

Shop scheduling problems can be represented by the combinatorial optimization class of 

problems. In combinational optimization problems, an optimal solution is searched in a finite set 
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of potential solutions. At the very beginning, solving scheduling problems were done by exact 

methods that guarantee to find an optimal solution. Later on, researchers have identified job 

scheduling problems as NP-hard (non-deterministic-time hard) problems. That means it can be 

solved by exact methods. Then researchers started to use various hybrid algorithms as well as 

meta-heuristic algorithms to find a local solution in spite of the global one [Framinan, Gupta & 

Leisten, 2004]. In this work, the PSO algorithm has been used to find the optimum scheduling. 

In earlier research works some specific objectives such as reducing tardiness and maintaining 

stability [Rahmani & Ramezanian, 2016] or reduce mean flow time (Shahvari & Logendran, 

2018) were considered. A number of works [Novak, Sucha & Hanzalek, 2019;Jamili, 2019] 

have been done considering uncertainty in processing time while scheduling, under some special 

considerations of a single machine, workers rest time, etc. Whereas, this work will consider 

uncertainties in processing time for multiple machines, machine break-down as well as focus on 

multiple objectives such as tardiness, mean flow-time. 

In the last decade, the use of artificial intelligence had grabbed the attention of researchers in 

various fields such as- image processing, data mining, even in medical sectors. Using artificial 

intelligence, with the help of historical data which is termed as training data set various 

prediction models and decision-making models can be developed. These models can imitate the 

human decision-making process. So, considering the computational complexity of scheduling 

problems due to its NP-hard nature, the use of AI in this sector had proved its efficacy. Though a 

very small amount of work has been done using a machine learning algorithm in scheduling. 

Mostly scheduling models are focus on job shop type scheduling and finding a suitable dispatch 

rule. However, this thesis work focuses on finding an optimum schedule for hybrid flow shop. 

This research has used Support Vector Machine (SVM) an artificial intelligence (AI) algorithm 

to classify the jobs as per their priority level along with a heuristic algorithm to solve it. In 

previous works, SVM has proved its efficacy in assigning dispatching rules to jobs in flexible 

manufacturing systems [Priore et al, 2006; Priore et al, 2018; Y. H. Liu, Huang & Lin, 2005]. 

Both AI and a heuristic algorithm have been used to make this model adaptive to real-life 

changes with faster computation capacity. Previous works did not focus on both prioritizing the 

job and considering the uncertainties related to the parameters together. This work combines 

these two aspects which makes this model more beneficial to manufacturing industries. 
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To sustain in the competitive global market, an optimal production sequence is a prerequisite that 

will help to achieve the planned production quantity. This work develops a scheduling model, 

that provides an optimum job sequencing based on each job’s priority level and then provides an 

optimum job assignment to machines. This model can be used in the manufacturing industry to 

obtain the optimized schedule which corresponds to minimized make-span, minimized tardiness 

and maximized efficiency. The model segregates the jobs based on their priorities which will 

help them to identify important jobs. Furthermore, it provides optimum scheduling for a set of 

jobs in a hybrid flow shop considering uncertainties and multiple objectives. This scheduling 

model will help manufacturing industries to make the production planning decisions in a semi-

automated manner. 

1.2 Objectives with Specific Aims 

Hybrid flow shop problem is known to be an NP-hard problem and most research works 

concentrate on developing a heuristic procedure, to provide a better result  [Framinan, Gupta & 

Leisten, 2004]. However, little attention had been given to develop a common framework that 

resembles real-life production situations. Furthermore, very little work has been done by 

combining machine learning concept with meta-heuristics. The uncertainty considerations were 

seen limited to small production scale, whereas, in real life, hybrid flow shop is applicable in 

mass production. This work aims to bridge these research gaps and develop a hybrid flow show 

shop scheduling model, that can replicate real-life scenarios. 

The specific objectives of this research are: 

 To develop a multi-objective hybrid flow shop scheduling model considering uncertainty 

on production which can resemble real-life production scheduling. 

 To incorporate a machine learning algorithm (SVM) to classify jobs based on their 

priority level which will consider qualitative information associated with the jobs. 
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1.3 Outline of Methodology  

a. Different assessment criteria for prioritizing among a set of jobs has been identified from 

expert opinion. 

b. The criteria identified in (i) have been used as features of the training data set of SVM 

(Support Vector Machine). This trained multiclass classifier SVM model has been used 

to classify future jobs. In this work, jobs have been classified among three classes. Each 

class will have a different priority level. 

c. Based on this priority level, a priority index has been assigned to each job. The weightage 

value has been determined by management. 

d. A multi-objective job scheduling model has been formulated to minimize tardiness (delay 

between compilation time and due date of the respective job), minimize mean flow time 

(amount of time spent by a job in the shop) and maximize overall efficiency. This model 

has used the priority index value determined in (iii) to schedule a set of jobs with the 

highest priority index in descending order. 

e. In order to validate the proposed model, data have been collected from the manufacturing 

industry. Data set consisted of processing time, delivery date, material availability status 

and sequence of operation of each job, the capacity of the industry, etc. 

f. The multi-objective scheduling model has been solved using PSO (Particle Swarm 

Optimization), a meta-heuristic algorithm, to obtain the optimum value of the objective 

functions.  

g. A sensitivity analysis of the model has been performed to examine the stability of the 

scheduling model. 
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1.4 Organization of the Thesis  

This thesis has been chalked out into seven chapters along with references and appendices 

Chaprter 1: Introduction The background of the research work, methodologies to 
develop a scheduling model for dynamic hybrid flow shop is 
mentioned in this chapter. 

Chaprter 2: Literature Review It includes the related literature on hybrid flow shop 
scheduling, uncertainty is in flow shop, use of PSO and SVM 
in flow shop scheduling.  

Chaprter 3: Theoretical 
Framework  

The theory for SVM and how the basic SVM has emerged 
into the current form is discussed in this chapter. As well as, 
the basic theory for the PSO algorithm is included in this 
chapter. 

Chaprter 4: Model 
Formulation 

It describes the formulation of the model for a hybrid flow 
shop scheduling which specifies the objective functions and 
constraints associated with the model. 

Chaprter 5: Model 
Implementation 

In this chapter, the formulated model and SVM model are 
implemented in the manufacturing industry. 

Chaprter 6: Result Analysis This chapter discusses the result obtained after the model 
implementation. It also includes a sensitivity analysis of the 
model in different scenarios. 

Chaprter 7: Conclusion and 
Future Works 

It contains the conclusion of this work and mentions the 
scope of future research associated with this work. 
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CHAPTER 2 : LITERATURE REVIEW 
 

2.1 Hybrid Flow Shop 

A flow shop is a scheduling approach where, m machines are set in a series and each job has to 

be processed on each of the machines, m, following the same route. A new job in the queue can 

be processed when the processing of an earlier job is done. Whereas, a flexible or hybrid flow 

shop is a generalization of the flow shop and parallel machine environments. In a hybrid flow 

shop instead of m machines in series, there are c stages in series with at each stage a number of 

identical machines in parallel. Though some stages may have only one machine, at least one 

stage must have multiple machines. The flow of jobs through the shop is unidirectional. Each job 

is processed by one machine in each stage and it must go through one or more stages [Linn & 

Zhang, 1999]. A hybrid flow shop is suitable for mass production of any product. The 

performance of a flow shop can be measured in terms of make-span(i. e. the completion time of 

the last job to leave the system), tardiness (i.e. the difference between the required delivery date 

and actual production completion date), etc. Most research works had considered the above-

mentioned measures to determine the performance of a flow shop or hybrid flow shop. 

Wang & Xia, [2005] considered the learning effect in the flow shop scheduling problem, where 

an optimal solution for two-machine flow shop scheduling was obtained with minimized make-

span considering the learning effect.  

Availability constraints were considered in the work of Aggoune, [2003]. In their problem, they 

considered the fact that a machine may not be continuously available due to preventive 

maintenance activity. They used GA and Tabu search methods to solve the make-span 

minimization problem.  

The main objective of Luo et al, [2013] was to improve production efficiency, which they related 

to the reduction of energy consumption. It became important with the advent of green 

manufacturing. They solved the optimization problem by using a multi-objective ant colony 

algorithm. 
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Precedence constraints, several time lags(i.e. either machine setup time, machine removal time or 

transportation time), and due-dates were considered by Botta-Genoulaz, [ 2000] while solving a 

single objective scheduling model to minimize maximum lateness. 

A realistic situation was considered by Ruiz, Şerifoǧlu & Urlings, [2008], where per machine 

sequence-dependent setup times were considered anticipatory and non-anticipatory along with 

machine lags, release dates for machines, machine eligibility and precedence relationships 

among jobs were also considered. In that work, the optimization criterion was the minimization 

of make-span. 

Production planning and control function in a textile plant can be modeled by using the concept 

of hybrid flow-shop. A scheduling problem can be divided into two parts, one is ‘capacity 

loading function’ and the other one is ‘scheduling function’, both were considered for a given 

planning horizon. Also, manufacturing environments like food processing, ceramic tile 

manufacturing, and several others can be modeled by a hybrid flow shop scheduling system  

Ruiz, Şerifoǧlu & Urlings, [2008]. 

2.2 Algorithms to Solve Hybrid Flow Shop Scheduling 

In 1954  Jonshon first presented a paper on flow shop which can be considered as a pioneer in 

the research field of flow shop. The proposed algorithm is known by Jonshon’s rule, which is a 

simple technique to sequence a set of jobs optimally [Gupta & Stafford, 2006]. A two-stage 

hybrid flow shop model was developed to minimize make-span was one of the very first 

contributions in this area, a heuristic approach was used for the solution. Hybrid flow shop 

scheduling being an NP-Hard problem, it is difficult to get a direct solution. For this purpose, 

meta-heuristic approaches need to be used to find the near-optimal solution Sayadi, Ramezanian 

& Ghaffari-Nasab, [2010]. From literature, it has been seen that, for complex situations, heuristic 

and meta-heuristic methods and hybrid procedures are much more useful than other exact 

methods [Sun et al, 2011] . 
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2.2.1 Single Objective Hybrid Flow Shop Scheduling 

Flow shop scheduling problem being an NP-hard problem, many research works had been 

conducted to find an efficient solution method. Osman & Potts, [1989] proposed Simulated 

annealing as a heuristic to obtain approximate solutions, where the objective was to minimize the 

maximum completion time or minimize the make-span. Murata, Ishibuchi & Tanaka, [1996] 

compared the genetic algorithm with other search algorithms such as local search, taboo search 

and simulated annealing where the objective was to minimize make-span and concluded that 

computer simulations had better performance. However, with the increase of complexity of the 

problem performance of computer simulations may degrade. Ruiz & Stützle, [2007] proposed a 

new iterated algorithm that is applied to two phases iteratively. In the first phase, jobs were 

eliminated from the incumbent solution and in the second phase, eliminated jobs were reinserted 

into the sequence by using Nawaz-Enscore-Ham (NEH) heuristic. This algorithm was named as 

the greedy algorithm and the two stages were named destruction and construction respectively. 

Ruiz, Maroto & Alcaraz, [2006] used robust GA with new genetic operators such as 

hybridization with local search and efficient population initialization. Design of Experiments was 

used for a complete evaluation of parameters. The considered optimization criterion was the 

minimization of make-span. Rajendran & Ziegler, [2004] used the ant colony algorithm to solve 

a single objective flow shop scheduling problem, where the objective was to minimize total 

make-span. An improved cuckoo search algorithm was developed by Marichelvam, Prabaharan 

& Yang, [2014] to solve hybrid flow shop scheduling problems with a single objective of 

minimizing the make-span. 

Artificial immune system (AIS), a new approach was proposed by Engin & Döyen, [2004] to 

solve an NP-hard, two-stage hybrid flow shop problem with a single objective of minimizing the 

make-span. Sayadi et al., [2010] used discrete firefly meta-heuristics to solve a permutational 

flow shop problem, where the objective was to minimize the make-span.  An effective hybrid 

genetic algorithm (HGA) was implemented to solve a permutation flow shop scheduling with 

limited buffers, where the objective was to minimize total completion time (or make-span). 
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2.2.2 Multi-objective Hybrid Flow Shop Scheduling 

To measure the performance of a hybrid flow shop it requires developing a multi-objective 

optimization problem. To handle these multi-objective optimization problems Ishibuchi & 

Murata, [1998] had used genetic algorithm to a two-objective function problem, where the result 

was in a Pareto front and two objectives: to minimize the make-span and to minimize the total 

tardiness. A hybrid algorithm was proposed by Ishibuchi & Murata, [1998] where local search 

procedure was applied for each solution, that was generated using genetic operations. In this 

approach, the local search procedure was modified as only a small number of neighborhood 

solutions were examined. The fitness function for this approach used the weighted sum of 

multiple objectives.  

 A hybrid quantum-inspired genetic algorithm (HQGA) for the multi-objective flow shop 

scheduling problem (FSSP) was proposed by Li & Wang, [2007], where a randomly weighted 

linear-sum function was used.  

 Ant colony optimization (ACO) was used by Yagmahan & Yenisey, [2008] to solve a multi-

objective flow shop scheduling problem, where the objectives were to minimize the make-span, 

total flow time and total machine idle time. In that work, total machine idle time was defined by 

the difference between make-span and flow time. Multi-objective ant colony system algorithm 

(MOACSA) was proposed, which combined ant colony optimization approach and a local search 

strategy in order to solve a multi-objective flow shop scheduling problem with both objectives of 

make-span and total flowtime. 

A discrete firefly algorithm was extended by Marichelvam, Prabaharan & Yang, [2014] to solve 

hybrid flow shop scheduling problems with two objectives, which were minimization of make-

span and mean flow time 

2.2.3 Use of Particle Swarm Optimization in Hybrid Flow Shop Scheduling 

Flow shop scheduling problem is one of the hardest combinatorial optimization problems 

[Ercan, 2008b] .To solve this, a similar particle swarm optimization algorithm (SPSOA) was 

used to solve a scheduling problem of minimizing make-span.   
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B. Liu, Wang & Jin, [2007] had proposed a modified PSO which is PSOMA. The model had 

three modifications, use of ranked-order value rule to convert continuous particle positions 

values to job permutation; use of Nawaz-Enscore-Ham (NEH) and finally used simulated 

annealing (SA) to avoid premature convergence. Similar to the modified PSO, B. Liu, Wang & 

Jin, [2008] proposed HPSO for the permutation flow shop scheduling problem which had limited 

buffers between consecutive machines to make-span. No-wait flow shop scheduling can also be 

solved by the proposed hybrid PSO [B. Liu, Wang & Jin, 2007a]. Another modified PSO was 

proposed by Pan, Fatih Tasgetiren & Liang, [2008] where the particle and velocity were 

redefined and the proposed modification was able to provide a better result with total flowtime 

criterion. 

Pan et al., [2008] presented a discrete particle swarm optimization (DPSO) algorithm to solve the 

no-wait flow shop scheduling problem with two criteria: make-span and total flowtime. The 

main contribution of the work was it presented particles as discrete job permutations. In addition 

to this, DPSO is hybridized with the variable neighborhood descent (VND) algorithm. Tang & 

Wang, [2010] used modified PSO along with greedy method to minimize total weighted 

completion time, where they used a job permutation concept. 

Li, Wang & Liu, [2008] have employed a parallel evolution mechanism in PSO to solve multi-

objective hybrid flow shop scheduling problem. In their work, they used ranked-order value for 

initialization, Nawaz-Enscore-Ham method to modify the local search approach. Kuo et al., 

[2009] proposed a novel hybrid flow shop algorithm, that combined random-key encoding 

scheme, individual enhancement scheme, and particle swarm optimization (PSO) altogether. 

Choong, Phon-Amnuaisuk & Alias, [2011] combined particle swarm optimization (PSO) with 

simulated annealing (SA) and tabu search (TS), to develop a hybrid model and found that 

memetic techniques produced improved solutions over conventional methods with faster 

convergence. Similarly, Liao, Tjandradjaja & Chung, [2012]used particle swarm optimization 

and bottleneck heuristic to solve a hybrid flow shop scheduling problem to minimize make-span. 

For group scheduling, another hybrid PSO was proposed by Hajinejad, Salmasi & Mokhtari,   

[2011], with a single objective of minimizing total flow time. Ranked order value-based 

encoding scheme was developed for their work. 
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A cost optimization problem of a hybrid flow shop was studied by Han et al, [2012], where total 

production cost was a function of time-based scheduling. The costs include processing costs, 

waiting costs, and product storage costs.  

B. Liu, Wang & Jin, [2005] considered a hybrid flow shop with stochastic processing time and 

the objective was to minimize make-span. PSO along with simulated annealing was used to solve 

the NP-hard problem. 

Many optimization and search problems have used PSO for its simplicity and ability to tackle 

difficult NP-hard problems successfully [Ercan, 2008a] .The performance of PSO is better than 

all existing GA and ACS algorithms [Tseng & Liao, 2008] .So, PSO can be a preferable method 

among other available solution approaches. That is why for this present work PSO has been 

selected for solving multi-objective constrained scheduling problems. 

2.3 Uncertainties in Flow Shop 

Uncertainty in processing time can be described in three ways (1) bounded form, (2) probability 

description and (3) fuzzy description [Karunakaran et al, 2017]. In this work, we have used the 

probability distribution concept. Scheduling under uncertainty can be classified into two classes. 

One is preventive and the other one is reactive. The preventive scheduling approach requires 

historical data on the problem [Karunakaran et al, 2017]. Uncertainty is addressed by 

preventive scheduling in current work. 

Another way to address uncertainty is to model the tasks to have multiple processing times 

concerning their criticality. This approach converts these scheduling problems into deterministic 

scheduling with alternative processing times [Novak et al., 2019]. 

To address uncertainty in processing time Janak, Lin & Floudas, [2007] had proved that the true 
value of the processing time can be represented in terms of the nominal processing time as 
follows 

 
                                                 

(2.1) 

 

Where  ξαij is a random variable with known distribution. For the case where the uncertainty ϵ is 
uniform in the interval [−1, 1]. 
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A reactive scheduling framework was developed by Janak et al, [2006] that used mixed-integer 

linear programming (MILP) to develop a short time scheduling model. They identified the jobs, 

which were not affected by uncertainty to avoid rescheduling of all jobs. Another approach to 

reactive scheduling is a two-step procedure, where the first step produces an initial solution and 

the second adopts to unexpected situations [Rahmani & Heydari, 2014]. 

Considering processing time as a deterministic value may cause an error in the result. For this 

purpose Behnamian & Zandieh, [2013] had considered position-dependent learning effects, they 

assumed process and setup times as a function of the number of repetitions of production item. 

Apart from processing time, another source of uncertainty on the production floor is machine 

break-down. Mirabi, Ghomi & Jolai, [2013] had considered machine break-down situation, 

where they multiplied machine break-down probability with machine repair time to determine 

addition time required for machine unavailability. Jamili, [2019] had considered uncertainty 

from workers' rest time concept. Because, if a job is scheduled during a worker’s rest time, there 

will be a difference in scheduled production quantity and realized production quantity. 

Xiong, Xing & Chen, [2013] developed robust scheduling for a flexible job-shop problem with 

random machine break-down. They had two objectives make-span and robustness. They 

identified five different ways to address the robustness of the model. 

2.4 Machine Learning Concept in Flow Shop Scheduling 

After reviewing solution approaches for flow shop, it was observed that heuristics are moving 

towards artificial intelligence search techniques that reflect new solution methods [H. Wang, 

2005]. 

It is really important to define a dispatching rule in a flexible manufacturing system [Shaw, Park 

& Raman, 1992]. So, they developed a framework incorporating machine learning capabilities 

to build an inductive learning module. Their proposed framework could help to classify jobs 

based on their distinct manufacturing patterns. The draw-back of dispatching rule is that one 

dispatching rule may not be best for all jobs. Dispatching rule may vary based upon a job [Priore 

et al., 2006]. A case-based reasoning approach was proposed by Priore et al., [2006] that could 

specify different dispatch rules for different jobs. Priore et al., [2018] compared the performance 
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of various machine learning algorithms to identify dispatching rules in a flexible manufacturing 

system. 

Dorronsoro & Pinel, [2017] combined Virtual Savant (VS) with a parallel genetic algorithm 

(called PA-CGA) which provided accurate results in extremely low run times. So, it can be said 

that combining machine learning concept with heuristics increases the efficiency of the solver. 

Among various machine learning algorithms, the support vector machine is superior [Y. H. Liu 

et al., 2005]. A support vector machine scheduler was developed to identify dispatching rules in 

a dynamic flexible manufacturing system and the throughput result was better than static 

dispatching rules. 

2.5 Summary of Literature Review 

From the previous research works, it can be concluded that various researches had focused on 

solving scheduling problems with various approaches. In the very first, researchers tried to solve 

the scheduling problem by exact methods. When scheduling problems were identified as NP-

hard problems, researches started to explore new optimization techniques focusing on local 

solutions instead of global once. During that phase, various optimization algorithms (i.e. GA, TS, 

SA, PSO, ACO, Firefly Algorithm) were explored. Furthermore, various hybrid algorithms were 

used by combining the above-mentioned algorithms. With time production complexity increased 

and researchers started to consider uncertainties in the production floor. After the advancement 

of artificial intelligence, some work had been done by combing machine learning with 

metaheuristics and that proved to give better results compared to previous approaches.  
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CHAPTER 3 : THEORETICAL FRAMEWORK 
 

3.1 Support Vector Machine (SVM) 

Machine learning is divided into two categories, one is supervised learning and the other one is 

unsupervised learning. If prior information about the predicting data set is present, then a 

supervised learning algorithm can be used. Otherwise, unsupervised algorithms need to be 

implemented. For the work, previous information about predicting data set is available, so a 

supervised machine learning algorithm is being used for this purpose. For this work, the SVM 

training algorithm is used for classification which is a supervised clustering algorithm. An SVM 

model is basically a representation of examples in a feature space is such a way that examples 

belonging to different classes can be separated by a boundary line or plane. Then the SVM 

model is used to predict the class of new examples. This prediction is done based on the distance 

between the boundary line and their position on which they fall on. 

 

Figure 3.1: Presentation of SVM 

In Figure 3.1 𝑥+ 𝑎𝑛𝑑 𝑥− corresponds to two different classes, those are separated by the 
boundary line. 
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3.1.1 Mathematical Model 

Ҥ is a hyperplane with given dot product space, which consists of the following set of pattern 

vectors. 

𝑥1,𝑥2,𝑥3, … … … … … 𝑥𝑚 ∈  Ҥ 

The hyperplane Ҥ can be written as following Eq. (3.1): 

 {𝑥 ∈ Ҥ| < 𝑤, 𝑥 > +𝑏 = 0}, 𝑤 ∈ Ҥ, 𝑏 ∈ ℝ                                                                                                      (3.1) 

 

Here, 𝑤 is a vector orthogonal to the hyperplane Ҥ and 𝑏 is a threshold value. In Eq. (3.1), 

< 𝑤, 𝑥 > is the length 𝑥 of along the direction of  𝑤, when 𝑤 is an unit vector . Furthermore, 

(𝑤, 𝑏)  ∈  Ҥ × ℝ is called canonical form of hyperplane Ҥ with respect to 

𝑥1,𝑥2,𝑥3, … … … … … 𝑥𝑚 ∈ Ҥ, if it is scaled such that 

 𝑚𝑖𝑛|< 𝑤, 𝑥𝑖 > +𝑏| = 1                          

                                                                                               ∀𝑖 = 1,2, … … … … 𝑚                                     

(3.2) 

 

 

It can be said that the point closest to the hyperplane has a distance of 1 ‖𝑤‖⁄  in Eq. (3.2). From 

Eq. (3.2), it is seen that two pairs of points (𝑤, 𝑏) and (−𝑤, −𝑏) satisfies the canonical 

hyperplane. However, for pattern recognition, these two hyperplanes are different for their 

different orientation and both of them correspond to the decision functions given by following 

Eq. (3.3): 

   𝑓𝑤,𝑏: Ҥ → {±1}        

𝑥 → 𝑓𝑤,𝑏(𝑥) = 𝑠𝑔𝑛(< 𝑤, 𝑥 > +𝑏)                                                                                    

(3.3) 
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In Eq. (3.3), 𝑠𝑔𝑛(< 𝑤, 𝑥 > +𝑏) means (< 𝑤, 𝑥 > +𝑏) will be either +1 or -1.These decision 

functions are the inverse of each other. However, by using 𝑦𝑖 ∈ {±1} which is associated 

with 𝑥𝑖, these two hyperplanes can be represented as a single identity. 

For pattern recognition, the target is to find a solution for 𝑓𝑤,𝑏 that satisfies 𝑓𝑤,𝑏(𝑥𝑖) = 𝑦𝑖 for all 

i, which means, it can separate the training data set correctly. To achieve a large margin between 

hyperplanes ‖𝑤‖ should be kept small so that the distance between hyperplanes ( 1
‖𝑤‖⁄ ) is 

large enough. 

3.1.2 Optimal Hyperplane 

In order to find an optimal hyperplane, the target is to find a decision function  

  𝑓𝑤,𝑏(𝑥) = 𝑠𝑔𝑛(< 𝑤, 𝑥 > +𝑏)                                                                                    (3.4) 

 

Which satisfies 

  𝑓𝑤,𝑏(𝑥𝑖) = 𝑦𝑖                                                                                    (3.5) 

 

Where example sets are (𝑥1, 𝑦1),……..., (𝑥𝑚, 𝑦𝑚), 𝑥𝑖 ∈ Ҥ, 𝑦𝑖 ∈ {±1}. 

If such 𝑓𝑤,𝑏(𝑥) exists which satisfies Eq. (3.5), from canonicality of Eq. (3.2), it implies 

 𝑦𝑖(< 𝑥𝑖, 𝑤 > +𝑏) ≥ 1                                                                                    (3.6) 

 

So, a generalized hyperplane can be constructed by solving the following problem: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜏(𝑤) =
1

2
‖𝑤‖2        

                                                                                        ∀𝑤 ∈ Ҥ, 𝑏 ∈ ℝ                                                                             

(3.7) 
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Subjected to, 

 𝑦𝑖(< 𝑥𝑖, 𝑤 > +𝑏) ≥ 1                                                  

                                                                                       ∀𝑖 = 1,2, … … … … 𝑚                                   

(3.8) 

 

The optimization problem presented in Eq. (3.7) and Eq. (3.8), is called the primal optimization 

problem. 

3.1.3 Lagrangian Transformation and Support Vectors 

To solve the constrained primal optimization problem a dual problem needs to be derived, where 

both primal and dual problems have the same solution. For this purpose, Lagrangian is 

introduced in following Eq. (3.9). 

 𝐿(𝑤, 𝑏, 𝛼) =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖(𝑦𝑖(< 𝑥𝑖 , 𝑤 > +𝑏) − 1))𝑚

𝑖=1                                                   

                                                                                                                       𝑓𝑜𝑟 𝛼𝑖 ≥ 0                                   

(3.9) 

 

 

This Lagrangian should be maximized with respect to 𝛼𝑖, and minimized with respect to w and b. 

As a result at the saddle point, derivatives of L with respect to primal variables will be zero 

which implies, 

 𝜕

𝜕𝑏
𝐿(𝑤, 𝑏, 𝛼) = 0                                                  

                                                                                                                                                          

(3.10) 

 

 𝜕

𝜕𝑤
𝐿(𝑤, 𝑏, 𝛼) = 0                                                  

                                                                                                                                                          

(3.11) 

 

 Solving Eq. (3.10) and Eq. (3.11), leads to following formations 

 ∑ 𝛼𝑖𝑦𝑖 = 0𝑚
𝑖=1                                                   

                                                                                                                                                          

(3.12) 
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 𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑚
𝑖=1                                                   

                                                                                                                                                          

(3.13) 

 

 From Eq. (3.13), it is seen that solution vector w is an expansion of training samples and it has a 

unique expression. However, w being unique 𝛼𝑖 can have similar values. 

According to KKT theorem [Schölkopf & Smola, 2000] only the Lagrange multipliers 𝛼𝑖 that 

are non-zero at the saddle point, correspond to the constraint in Eq. (3.8). Formally for all 

i=1,……. m,  it is given, 

 𝛼𝑖[𝑦𝑖(< 𝑥𝑖 , 𝑤 > +𝑏) − 1] = 0                                                 (3.14) 

 

The patterns 𝑥𝑖 , for which 𝛼𝑖 > 0 are called Support Vectors.  From Eq. (3.15), it can be seen 

that they lie exactly on the margin. So, the remaining examples in training set become irrelevant, 

for them Eq. (3.8), are satisfied automatically. 

Now, substituting the extreme conditions obtained in Eq. (3.12) and Eq. (3.13), into Lagrangian 

in Eq. (3.9), following dual formulation of the problem can be obtained. 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑊(𝛼) = ∑ 𝛼𝑖
𝑚
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗

𝑚
𝑗=1 𝑦𝑖𝑦𝑗 < 𝑥𝑖, 𝑥𝑗 >𝑚

𝑖=1                                                   

                                                                                                                       ∀ 𝛼𝑖 ∈ ℝ𝑚                                   

(3.15) 

 

Subjected to, 

 𝛼𝑖 ≥ 0                                                  

                                                                                                  ∀𝑖 = 1,2, … … … … 𝑚                                                       

(3.16) 

 

 ∑ 𝛼𝑖𝑦𝑖 = 0𝑚
𝑖=1                                                                                                                                                                                                           (3.17) 
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Now by substituting the Eq. (3.13), into decision function, Eq. (3.3), an expression is obtained in 

terms of dot products between the pattern to be classified and Support Vectors, 

 𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝛼𝑖
𝑚
𝑖=1 𝑦𝑖 < 𝑥, 𝑥𝑖 > +𝑏)                                                                                    (3.18) 

 

3.1.4 Nonlinear Support Vector Machine  

In the last section, all data set considered are linear. However, to deal with more general decision 

surfaces, Kernel transformation is used to nonlinearly transform the data set 𝑥1,𝑥2, … … , 𝑥𝑚 ∈ 𝒳 

into high-dimensional feature space. For linear separation in the feature space map 𝜙: 𝑥𝑖 → 𝑥𝑖
∗ is 

used. 

 Cover’r theorem characterizes the number of possible linear separations of m points in an N-

dimensional space. If m < N + 1, then 2𝑚 is possible. According to this Theorem number of 

separation can be given by  2 ∑ (
𝑚 − 1

𝑖
)𝑁

𝑖=1  [Berge, 1957]. 

With the increase in the number of N, the number of elements is the sum increases. So, it can be 

said that the number of separations increases with the increase in dimensionality. 

 

 

Figure 3.2: Mapping non-linear data into higher dimensional feature space 

In Figure 3.2(a) nonlinear data is shown and in Figure 3.2 (b) those data are transferred to 

higher dimensional feature space and separating it by a hyperplane. 
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In order to make Eq. (3.15) and Eq. (3.18), suitable for a general decision surface, < 𝑥, 𝑥𝑖 > is 

substituted by < 𝜙(𝑥), 𝜙(𝑥𝑖) > in higher dimensional space. As this substation is 

computationally expensive, a positive kernel is used to make the calculation easier. 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑊(𝛼) = ∑ 𝛼𝑖
𝑚
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗

𝑚
𝑗=1 𝑦𝑖𝑦𝑗 <  𝜙(𝑥), 𝜙(𝑥𝑖) > 𝑚

𝑖=1                                                   

                                                                                                                       ∀ 𝛼𝑖 ∈ ℝ𝑚                                   

(3.19) 

 

 𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝛼𝑖
𝑚
𝑖=1 𝑦𝑖 < 𝜙(𝑥), 𝜙(𝑥𝑖) > +𝑏)                                                                                    (3.20) 

 

 (< 𝜙(𝑥), 𝜙(𝑥𝑖) >) = 𝑘(𝑥, 𝑥𝑖)                                                                                    (3.21) 

 

Using this transformation of Eq. (3.21) into Eq. (3.18), a new decision function can be obtained 

as following Eq. (3.22). 

 𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝛼𝑖
𝑚
𝑖=1 𝑦𝑖𝑘(𝑥, 𝑥𝑖) + 𝑏)                                                                                    (3.22) 

 

Now to calculate threshold value b, implying to KKT conditions [Schölkopf & Smola, 2002] to 

Eq. (3.15) , 𝛼𝑖> 0 following formulation can be obtained  

 

 ∑ 𝛼𝑖
𝑚
𝑖=1 𝑦𝑖𝑘(𝑥𝑗 , 𝑥𝑖) + 𝑏 = 𝑦𝑗                                                                                     (3.23) 

 

So, the threshold value can be obtained as following Eq. (3.24). 

 𝑏 = 𝑦𝑗 − ∑ 𝛼𝑖
𝑚
𝑖=1 𝑦𝑖𝑘(𝑥𝑗 , 𝑥𝑖)                                                                                    (3.24) 
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There are some popular forms of Kernel functions. Some of them are given by following Eq. 

(3.25), Eq. (3.26), Eq. (3.27) and Eq. (3.28): [Team, D. F., 2018] 

Polynomial Kernel Classifier with a degree of d 

 𝑘(𝑥, 𝑥𝑖) =< 𝑥, 𝑥𝑖 >𝑑                                                                                     (3.25) 

 

Gaussian Kernel 

 𝑘(𝑥, 𝑥𝑖) = exp (
−‖𝑥−𝑥𝑖‖2

2𝜎2  )                                                                                  (3.26) 

 

Radial basis function classifier with Gaussian Kernel of width c>0 

 𝑘(𝑥, 𝑥𝑖) = exp (
−‖𝑥−𝑥𝑖‖2

𝑐
)                                                                                    (3.27) 

 

Sigmoid kernel 

 𝑘(𝑥, 𝑥𝑖) = tanh(ℬ < 𝑥, 𝑥𝑖 > +𝒞)                  

                                                                             Where ℬ > 0    and   𝒞 ∈ ℝ                                                      

(3.28) 

 

3.1.5 Principle Component Analysis (PCA) 

PCA can reduce the dimensionality of the feature space and reducing dimensionality helps to 

create a classification model that has less overfitting problems. PCA linearly transforms 

predictors of training data set to remove redundant dimensions, then it creates a new set of 

predictors. However, implementing PCA may result in an under-fitting problem. So, the use of 

PCA needs to be considered properly, prior to implementing it. 

3.1.6 Soft Margin 

To implement SVM for classification, in reality, it becomes difficult to develop a separating 

hyperplane because in many cases this hyperplane may not exist. It has also shown that it is an 
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NP-hard problem to find a hyperplane whose training error is less. A new approach is using slack 

variables to deal with the difficulty [Schölkopf & Smola, 2002a]. 

 𝜉𝑖 ≥ 0                                                  

                                                                                                  ∀𝑖 = 1,2, … … … … 𝑚                                                       

(3.29) 

 

Eq. (3.29), is used for relaxing Eq. (3.8) 

 𝑦𝑖(< 𝑥𝑖, 𝑤 > +𝑏) ≥ 1 − 𝜉𝑖                                                  

                                                                                       ∀𝑖 = 1,2, … … … … 𝑚                                   

(3.30) 

 

By using Eq. (3.29), into Eq. (3.7), an updated objective function can be obtained considering the 

slack variable concept. 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜏(𝑤, 𝜉) =
1

2
‖𝑤‖2 +

𝐶

𝑚
∑ 𝜉𝑖

𝑚
𝑖=𝑚         

                                                                                        ∀𝑤 ∈ Ҥ, ∀ 𝜉𝑖 ∈ ℝ𝑚                                                                             

(3.31) 

 

 

In Eq. (3.31), C is a positive constant which determines the trade-off between minimizing the 

training error and maximizing the margin. However, it is not possible to have prior information 

about C. So, it becomes difficult to predict. In order to solve this problem parameter C replaced 

by v and a new parameter ρ is added.  

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜏(𝑤, 𝜉, ρ) =
1

2
‖𝑤‖2 − 𝑣ρ +

1

𝑚
∑ 𝜉𝑖

𝑚
𝑖=𝑚                                                   

                                                                                           ∀𝑤 ∈ Ҥ, ∀ 𝜉𝑖 ∈ ℝ𝑚, ρ𝑏 ∈ ℝ                                                              

(3.32) 

 

 

Subjected to: 

 𝑦𝑖(< 𝑥𝑖, 𝑤 > +𝑏) ≥ ρ − 𝜉𝑖                                                  

                                                                                       ∀𝑖 = 1,2, … … … … 𝑚                                   

(3.33) 
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And 𝜉𝑖 ≥ 0, ρ ≥ 0                                                  

                                                                                                  ∀𝑖 = 1,2, … … … … 𝑚                                                       

(3.34) 

 

 

Here, v is a parameter and ρ  is an additional variable to be optimized. For, 𝜉 = 0, Eq. (3.33), 

says that two classes can be separated by a margin 2ρ
‖𝑤‖⁄ .  

So, the final SVM model can be defined by the above-stated optimization problem from Eq. 

(3.32) to Eq. (3.34) 

3.1.7  Multiclass Classification SVM 

SVM can be used for multi-class classification. In SMV multi-class classification can be done in 

two approaches. One is called One Vs One classification, where if there are m number of classes, 

m times SVM classification is done. Another one is called one Vs All, in this approach 

classification is done by a certain class versus considering the rest of the classes as one class and 

it continues until the correct class is identified. 

 One versus the Rest: 3.1.7.1

To develop M-class classifier, a set of binary classifiers 𝑓1, 𝑓2, … … … … 𝑓𝑚 are developed and 

each of them is trained to separate one class from the rest of the classes. The main shortcoming 

of this approach is that it is unclear whether real value outputs are on a comparable scale or not. 

  Pairwise Classification: 3.1.7.2

In pairwise classification, a classifier is trained for each possible pair of classes. For M classes, 

the number of a binary classifier is (𝑀 − 1)𝑀
2⁄  .This number is usually larger than the number 

of one-versus-the-rest classifiers; for instance, if M = 15, 105 binary classifiers are required 

rather than 15 as in one vs rest method. This method may require larger training times; however, 

the individual problems are significantly smaller. In this method when a test pattern is to be 

classified, it requires to evaluate all 105 binary classifiers and classify according to which of the 

classes gets the highest number of votes. There are two reasons first, the training sets are smaller, 
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and second, the problems to be learned are usually easier, since the classes have less overlap, 

pairwise classification is much faster. 

 Error-Correcting Output Coding: 3.1.7.3

Error-Correcting Output Codes is an ensemble method designed for multiclass classification 

problems. If a set of a binary classifier 𝑓1, 𝑓2, … … … … 𝑓𝐿 is properly designed it will have 

consistency binary responses. However, if the responses are inconsistent or the data set is not 

large enough, a binary classifier is not reliable. To deal with these cases robustness against some 

error was proposed, by designing a clever set of binary problems. In this approach, the closest 

match between the vector of responses and the rows of the matrix is determined using the 

Hamming distance (the number of entries where the two vectors differ; essentially, the 𝐿∞ 

distance). In this case, it is possible to guarantee the correct classification of all test examples 

which may lead to at most one error amongst the binary classifiers. This method is suitable for 

multiclass classification; however, it may have some limitations in using crucial quantity in 

classifiers. 

3.1.8 Cross-Validation 

To estimate the expected error leave-one-out method can be used. The leave-one-out method is 

defined by leaving out one of the training examples and use remaining for training the model and 

using the left out training set for testing the model. This procedure is repeated until all training 

examples are used to test the accuracy of the model. This procedure averages the error generated 

from all texting set. 

 

Figure 3.3: 5-Fold Cross-validation of Training Data Set 
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3.2 Particle Swarm Optimization (PSO) 

The theory of particle swarm optimization (PSO) is proliferating. It has several applications. The 

algorithm of PSO is inspired by the behavior of animal societies like birds and fishes that don‘t 

have any leader in their group or swarm. Considering animal troops with no leader have to find 

food by random search following the other members having the closest position with a food 

source which in terms of PSO may be regarded as a potential solution. The troops simultaneously 

communicate among members who already have a better situation and reach the desired 

destination. Animals with better conditions keep on informing the other troop members to move 

simultaneously towards the place. This keeps on happening repeatedly until the best conditions 

or a food source discovered. The animal’s social behavior is followed by the PSO algorithm to 

find optimal values. Particle swarm optimization consists of a swarm of particles, where a 

particle is the representation of a potential solution.  

The advantage of using an optimization method PSO is that it does not use the gradient of the 

problem to be optimized, so the method can be readily employed for a host of optimization 

problems. This is especially useful when the gradient is too laborious or even impossible to 

derive. This versatility comes at a price, however, as PSO does not always work well and may 

need tuning of its behavioral parameters so as to perform well on the problem at hand. 

3.2.1 PSO Procedure  

A particle swarm optimization algorithm requires the definition of the following concepts of 

swarm size, information links, initialization, equations of motions.  

 Swarm Size  3.2.1.1

The size of the swarm is fixed at the beginning. Higher swarm size fastens the search in terms of 

iteration, however, it may require more compared to smaller swarm size. Rather it is more 

important to reduce computational time. Apparently, smaller swarm sizes can increase 

computational time. So, using an optimum number of swarm size is necessary to make the 

algorithm efficient. 
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 Initialization 3.2.1.2

Initialization means initially randomly placing the particles according to a uniform distribution in a 

search space. This stage is virtually present in all the algorithms of stochastic iterative optimization. 

Moreover, the particles have velocities which are vectors by definition or, more precisely, an 

operator, which, applied to a position, will give another position. Basically, it is a displacement, 

called velocity because during the increment of the iterations it is always implicitly regarded as equal 

to 1.  

 Equations of Motions  3.2.1.3

The velocity of each particle is updated using the following Eq. (3.35).  

 𝑣𝑖 (𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑥�̂�(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑔(𝑡) − 𝑥𝑖(𝑡)]                                         (3.35) 

 

Where, 

i = The particle index 

w = The inertial coefficient usually between 0.8 and 1.2 

𝑐1, 𝑐2 = Acceleration coefficients, 0 ≤ 𝑐1, 𝑐2 ≤ 2 

𝑟1, 𝑟2 = Random values which are generated for every velocity update, 0 ≤ 𝑟1, 𝑟2 ≤ 1 

𝑣𝑖(𝑡) = Particle’s velocity at time t 

𝑥𝑖(𝑡) = Particle’s position in time t 

𝑥�̂�(𝑡) = Particle’s individual best solution as of time t, which is also called  pbest 

𝑔(𝑡) = The swarm’s best solution as of time t 
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3.2.2 Pseudo-code Algorithm  

 

For each particle 

{Initialize  

} End 

(Estimate intensity of a particle as an object) 

Do  

For each particle  

{Calculate fitness  

value}  

If fitness value is better than pbest [local best]  

{Set pbest =current fitness  

value }  

If pbest is better than gbest [global best]  

{Set gbest = pbest  

} End  

For each particle  

{- Calculate particle velocity according to the equation of v  

- update particle position according to the equation of present x  

} End 
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3.2.3 Modified PSO 

From the basic form of PSO, further, there have been some modifications to make it applicable 

to more generalized cases. 

 Constrained PSO 3.2.3.1

In constrained PSO, particles are initiated after constrained are satisfied. This method reduces the 

feasible space wherein the solution to the problem can be found. Optimization algorithms need to 

ensure that a feasible solution is found. That is the optimization algorithm should find a solution 

that both optimizes the objective function satisfies all constraints. If it is not possible to satisfy 

all constraints, the algorithm has to balance the trades off between optimal objective function 

value and the number of constraints violated. 

 Multi-objective PSO 3.2.3.2

In order to solve multi-objective problems using PSO, the following approaches can be used. 

A) Aggregating approaches 
In this method, all objectives are transformed into a single objective and it is done by 

multiplying all objectives with a weight depending on their importance level. Then their 

summation is taken to convert into a single objective. This method requires prior knowledge 

about the problem. 

B) Lexicographic ordering 
In this approach, all objectives are ranked based on their importance level. It starts by 

optimizing the most important objective and using that solution to optimize the second most 

important objective function. This process continues until all objectives are optimized. This 

method is suitable for problems with less number of objectives.  

C) Sub-population approach 
A sub-population approach works by dividing the swarm of particles into sub-swarm. These 

sub-swarms search for a solution on their own and share the information with other sub-

swarms. 

D) Pareto based approaches 

Pareto based approach is one of the most applied methods to solve multi-objective PSO.  

This approach finds a set of solutions, which is called non-dominated solutions. 
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CHAPTER 4 : MODEL FORMULATION 
 

4.1 Problem Identification 

For mass production of any product, the flow shop process is preferable as it can ensure high 

production volume in less time. So, when the production planning of a set of jobs can be done in 

an optimized way, it will ensure maximum profitability. During the production planning, each 

job has some associated qualitative values, which helps the planner to prioritize a job. These 

qualitative values need to be considered during production scheduling. Though previously no 

scheduling model had addressed these qualitative values such as product value, customer priority 

level, material in hand status, available production time, this work will address these qualitative 

values associated with a particular job to interpret the priority level of the job in a better way. 

Apart from this, it is also required to achieve multiple objectives during scheduling which 

includes minimizing make-span, minimize delay in delivery, maximize efficiency. Moreover, a 

real-life scheduling problem involves various uncertainties that can originate from machine 

break-down, processing time of a job in a different machine and so on. So, in this work 

processing time of jobs is considered as stochastic values rather than deterministic ones. Adding 

to this, it also aims to minimize make-span, minimize delay in delivery, maximize efficiency so 

that the model can be more adaptive to real-life scenarios and requires less human involvement 

during the planning phase. 

The development of optimized scheduling is divided into two steps. The first step involves data 

analysis of qualitative values associated with each job. After the data analysis jobs are classified 

into three classes. Furthermore, jobs belonging to the same class are ranked according to their 

earliness of the delivery date. In this way, all jobs are sequenced before the implementation of 

the model. This model mainly assigns jobs to suitable machines in such a way that all objectives 

are fulfilled. 
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4.2 Objective Functions 

In this work, three objectives are being addressed. These objectives are minimizing make-span, 

minimizing total tardiness and maximizing efficiency by minimizing machine idle time.  

a) Make-Span: Make-span means the completion time of a job which has maximum value 

among a set of jobs on the production floor. This criterion had been mostly studied in 

previous research works. 

b) Tardiness: Tardiness is also termed as the lateness of a job. This is calculated as a 

difference between real completion time and the required delivery date of a job. This 

criterion is quite important because when an organization fails to meet a committed 

deadline it results in a loss of goodwill and market value of the organization. 

c) Efficiency: Generally efficiency is calculated in terms of a ratio of output versus input. 

Whereas, in this work, efficiency is calculated in terms of machine idle times. It is 

considered that frequent line or machine change over results in lower production quantity 

as machines are kept idle for a new set up and also it requires additional time for the 

operator’s skill development. 

For this purpose, three different objective functions are developed. Finally, this multi-objective 

optimization is solved by a weighted average method. 

4.2.1 Minimize Make-span 

The first objective is to minimize make-span, which means minimize the making time of a job 

which spends a maximum amount of time on the production floor. The notation for make-span is  

𝑪𝒊(𝒎𝒂𝒙). In this notation 𝑪𝒊 is defined as the completion time of job i. In the formulation 

subscript, max is used to address the completion time of a job which spends maximum time on 

the production floor compared to other jobs. The following Eq. (4.1) is the first objective 

function. 

Minimize make-span: 

 𝑀𝑖𝑛: 𝐶𝑖(𝑚𝑎𝑥)  (4.1) 
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 Completion Time Calculation 4.2.1.1

In order to calculate make-span, it is prerequisite to calculation the completion time of each job 

in each stage, which is defined by 𝑪𝒊𝒋, this means the completion time of job i in stage j. It can be 

calculated by following Eq. (4.2), which is applicable when calculating completion time in stage-

1. To calculate the completion time of a job, which is sequenced in position i two considerations 

are done, those are job waiting time and a particular job is assigned to which machine. A job may 

need to wait in a queue before its operation starts in a particular machine. So, to consider the 

waiting time is necessary. In order to consider that waiting time for that particular machine, the 

processing time, 𝑷𝒊𝒋𝒌
𝒐  of all jobs that precedes a particular job, i in a particular machine is 

multiplied with the assignment decision variable, 𝑿𝒊𝒋𝒌 and their summation is added to have the 

value of waiting time. If any of the preceding jobs are not assigned to that particular machine, 

their corresponding assignment decision variable will be zero and 𝑿𝒊𝒋𝒌. 𝑷𝒊𝒋𝒌
𝒐  for that not assigned 

job will be zero. As a result, its processing time will not be considered in the waiting time 

calculation. Furthermore, ∑ 𝑿𝒊𝒋𝒌.𝒊=𝒊
𝒊=𝟏 𝑷𝒊𝒋𝒌

𝒐  is multiplied by 𝑿𝒊𝒋𝒌 to check if job, i is assigned to 

machine k or not. This calculation is done for all machines in stage-1. As one job can be assigned 

to only one machine in one stage, the processing time will be available for only one machine and 

for the rest of the machine it will be zero. So, by taking the summation of processing times in all 

machines in stage-1 will give the completion time of stage-1. 

 𝐶𝑖𝑗 = ∑ {(∑ 𝑋𝑖𝑗𝑘.𝑖=𝑖
𝑖=1 𝑃𝑖𝑗𝑘

𝑜 ). 𝑋𝑖𝑗𝑘}
𝑘=𝑀𝑗

𝑘=1   

                                                                                          ∀ i ϵ {1,2,3,……N}                                 

                                                                                                       for j =1 

(4.2) 

 

 

Now, to calculate the completion time for other stages apart from stage 1 some additional 
considerations are done. It is really important to calculate the waiting time of each job when it is 
assigned to a particular machine. While calculating the completion time for the remaining stages, 
there can be two scenarios. 

a. If the mean processing time in the preceding stage is smaller than the mean processing 
time of the current stage, then the completion time of the current stage is calculated by 
following Eq. (4.3) and Eq. (4.4). 
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 𝐶𝑖𝑗 = ∑ (𝐶𝑖,𝑗−1 + 𝑋𝑖𝑗𝑘. 𝑃𝑖𝑗𝑘
𝑜 ). 𝑋𝑖𝑗𝑘

𝑘=𝑀𝑗

𝑘=1   

                                                                                           for i =1   

                                                                                                       ∀j ϵ {2,3,…........ L} 

(4.3) 

 

 

 𝐶𝑖𝑗 = ∑ [𝑚𝑎𝑥{(𝐶1,𝑗−1. 𝑋1,𝑗,𝑘), (𝐶2,𝑗−1. 𝑋2,𝑗,𝑘), … … . (𝐶𝑖−1,𝑗−1. 𝑋𝑖−1,𝑗,𝑘)}
𝑘=𝑀𝑗

𝑘=1   

         +𝑚𝑎𝑥(𝐶𝑖,𝑗−1 , ∑ 𝑋𝑖𝑗𝑘
𝑖=𝑖−1
𝑖=1 . 𝑃𝑖𝑗𝑘

𝑜 ) + 𝑋𝑖𝑗𝑘 . 𝑃𝑖𝑗𝑘
𝑜 ]. 𝑋𝑖𝑗𝑘                                                                                     

                                                                                                       ∀ i ϵ {2,3,………N}                                 

                                                                                                       ∀j ϵ {2,3,…........ L} 

(4.4) 

 

 

In scenario (a) which is presented by Eq. (4.3) and Eq. (4.4) at first completion time (𝑪𝒊−𝟏,𝒋−𝟏) of 
all preceding jobs in the earlier stage is multiplied by the assignment decision variable 
𝑿𝒊−𝟏,𝒋,𝒌 corresponding to the particular machine of current stage. Then among all preceding jobs 
which will also be assigned to the particular machine k in stage j prior to job i, the job with 
largest completion time in an earlier stage is considered and its completion time added to the 
processing time of job i in machine k in stage j. Then the completion time(𝑪𝒊,𝒋−𝟏 ) of job i in 
stage j-1 is compared with the waiting time (∑ 𝑿𝒊𝒋𝒌

𝒊=𝒊−𝟏
𝒊=𝟏 . 𝑷𝒊𝒋𝒌

𝒐 ) of job i in stage j in machine k. 
Among them the larger one on is added to get final completion time in stage j. Then this value is 
multiplied by assignment variable,  𝑿𝒊𝒋𝒌. Completion time of job i is stage j will be calculated for 
only that machine for which assignment variable 𝑿𝒊𝒋𝒌 is 1 

b. If the mean processing time in the preceding stage is greater than the mean processing 
time of the current stage, then the completion time of the current stage is calculated by 
following Eq. (4.6). 

 𝐶𝑖𝑗 = ∑ {𝑚𝑎𝑥(𝐶𝑖,𝑗−1,  ∑ 𝑋𝑖𝑗𝑘
𝑖=𝑖−1
𝑖=1 . 𝑃𝑖𝑗𝑘

𝑜 ) + (𝑋𝑖𝑗𝑘. 𝑃𝑖𝑗𝑘
𝑜 )}. 𝑋𝑖𝑗𝑘

𝑘=𝑀𝑗

𝑘=1   

          

                                                                                                       ∀ i ϵ {1,2,………N}                                 

                                                                                                       ∀j ϵ {2,3,…........ L} 

(4.5) 

 

 

In scenario (b) which is presented by Eq. (4.5) the completion time(𝑪𝒊,𝒋−𝟏 ) of job i in stage j-1 is 
compared with the waiting time (∑ 𝑿𝒊𝒋𝒌

𝒊=𝒊−𝟏
𝒊=𝟏 . 𝑷𝒊𝒋𝒌

𝒐 ) of job i in stage j in machine k and the larger 
value is added to the summation of waiting time and processing time of job i in stage j in 
machine k which is 𝑿𝒊𝒋𝒌. 𝑷𝒊𝒋𝒌

𝒐 . 



 

34 
 

So, for each stage, the completion time is updated considering the completion time of the earlier 
stage.  

In this manner completion time of the last stage is calculated, which is actually the final 
completion time a particular job.  It is represented by Eq. (4.6) and Eq. (4.7). 

 𝐶𝑖 = ∑ ∑ 𝑋𝑖𝑗𝑘
𝑘=𝑀𝑗

𝑘=1
𝑗=𝐿
𝑗=1 . 𝑃𝑖𝑗𝑘

𝑜         

                                                                                         for i=1  

(4.6) 

 

 

 𝐶𝑖 = 𝐶𝑖𝐿  

                                                                                          ∀ i ϵ {2,3,………N}                                 

                                                                                                        

(4.7) 

 

 Processing Time Calculation 4.2.1.2

To calculate the processing time of each job in each machine there are three considerations. 

I. Processing time is considered as a stochastic element 
II. Machine break down is considered during the processing time calculation 

III. When a product is assigned to a machine which is not suitable for that product it requires 
additional set up a time 

Processing time is considered as a stochastic element it is calculated using the following Eq. 
(4.8) so that the model is more adaptive to real-life situations 

 𝑃𝑖𝑗𝑘 = (1 + φ. ε). 𝑃𝑖𝑗𝑘
~   

                                                                                                        

(4.8) 

 

 

During production to encounter machine break-down situations is very common. So, calculating 
the impact of machine break down in the processing time is considered where machine break-
down probability can be calculated by following Eq. (4.9). 

 ρ𝑗𝑘 =
𝐵𝑇𝑗𝑘

𝐵𝑇𝑇𝑜𝑡𝑎𝑙
                                                                                                        (4.9) 

 

 

It is assumed that all machines are not suitable for all jobs. If a job is assigned to such a machine, 
where its operator has less idea about the job, in that case, operation time will have a learning 



 

35 
 

time adding to the normal processing time. So, each machine has a processing time including 
learning curve and it is represented as 𝑃𝑖𝑗𝑘

𝐿 .  

 𝑃𝑖𝑗𝑘
𝑜 = 𝑌𝑖𝑗𝑘. 𝑃𝑖𝑗𝑘 + (1 − 𝑌𝑖𝑗𝑘). 𝑃𝑖𝑗𝑘

𝐿   

                                                                                                        

(4.10) 

 

 

 𝑃𝑖𝑗𝑘
𝑜 = 𝑌𝑖𝑗𝑘. 𝑃𝑖𝑗𝑘 + (1 − 𝑌𝑖𝑗𝑘). 𝑃𝑖𝑗𝑘

𝐿 + ρ𝑗𝑘. 𝑅𝑇𝑗𝑘  

                                                                                                        

(4.11) 

 

If a job is assigned to a machine that is suitable for it, then processing time without the learning 
curve is considered. However, if a job is assigned to a machine that is not suitable for it then 
processing time with the learning curve is considered. For a particular machine, a job cannot 
have two processing times, both with and without a learning curve. It is ensured by 𝒀𝒊𝒋𝒌. 𝑷𝒊𝒋𝒌 +

(𝟏 − 𝒀𝒊𝒋𝒌). 𝑷𝒊𝒋𝒌
𝑳  in Eq. (4.10). To consider machine break downtime, machine break down 

probability is multiplied by the machine repair time and this is added to Eq. (4.10). So the final 
processing time is calculated as per Eq. (4.11). 

4.2.2 Minimize Total Tardiness 

The second objective function is to minimize delay in delivery, which is called minimize 

tardiness. For this work instead of considering tardiness, the tardiness of each job multiplied with 

the jobs respective priority index value is considered. This modification is done because a delay 

in the delivery of a job with higher priority will have a greater impact than the job with a lower 

priority level.  

Minimize total tardiness: 

  𝑀𝑖𝑛: ∑ [𝑚𝑎𝑥{0, α𝑖  . (𝐶𝑖  −  𝐷𝐷𝑖)}]𝑖=𝑁
𝑖=1  (4.12) 

 

In the given Eq. (4.12), (𝑪𝒊  −  𝑫𝑫𝒊) represents the difference between the completion time  (𝑪𝒊) 

of a job i required delivery date (𝑫𝑫𝒊) of that job. This difference is further multiplied by the 

priority index (𝛂𝒊) of the respective job so that the priority level of a job comes into 

consideration during the calculation. If a job is finished prior to its required delivery date, (𝑪𝒊  −

 𝑫𝑫𝒊)  gives negative value. Considering this negative value while calculating tardiness, will 

give an erroneous result. It is not desired to have a finished product much prior to its required 

delivery date as it will result in an additional holding cost of that product. So, it is ensured that, if 
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a job is finished earlier than its required delivery date negative value is not taken by taking a 

maximum value between zero and 𝛂𝒊 . (𝑪𝒊  −  𝑫𝑫𝒊) in Eq. (4.12) . By doing so, it is ensured that 

while calculating the tardiness of a particular job only nonnegative values are considered. 

4.2.3 Maximize Efficiency 

The third objective is to maximize efficiency, which can be obtained by minimizing the machine 

idle time. In a real production scenario, if a machine is suitable for a particular type of product 

and a different type of product is assigned to that machine it requires additional time for machine 

set up according to the new type of product. It also requires some learning time for the operator 

to adjust to the new product type. This additional machine set up time and the time for operators 

learning about new products reduces productivity. This can be minimized if a product that is 

suitable for a particular machine can be assigned to that machine. It will result in minimizing the 

machine idle time and subsequently maximizing efficiency.  

Maximize Efficiency: 

 𝑀𝑖𝑛: ∑ ∑ ∑ 𝑋𝑖𝑗𝑘
𝑘=𝑀𝑗

𝑘=1
𝑗=𝐿
𝑗=1

𝑖=𝑁
𝑖=1 . (1 − 𝑌𝑖𝑗𝑘). (𝑃𝑖𝑗𝑘

𝐿 − 𝑃𝑖𝑗𝑘 + 𝑇𝑠𝑒𝑡 𝑢𝑝)  (4.13) 

 

In Eq. (4.13), 𝒀𝒊𝒋𝒌  is a binary variable, it is defined as, if machine k of stage j is suitable for 

product i, then  𝒀𝒊𝒋𝒌 will have value 1, otherwise it will be zero. So, if the product i is assigned to 

a machine which is suitable for it, then (𝟏 − 𝒀𝒊𝒋𝒌) will be zero. For that particular assignment 

value of the objective function will be zero. However, if the product i is assigned to a machine 

which is not suitable for it, the value of (𝟏 − 𝒀𝒊𝒋𝒌) will be 1. It will require additional time for 

processing. This additional time is formulated in Eq. (4.13), as (𝑷𝒊𝒋𝒌
𝑳 − 𝑷𝒊𝒋𝒌 + 𝑻𝒔𝒆𝒕 𝒖𝒑). Here, 

𝑷𝒊𝒋𝒌
𝑳 − 𝑷𝒊𝒋𝒌  gives the additional time required for a worker to learn about new product and 

𝑇𝑠𝑒𝑡 𝑢𝑝 provides the additional time required for adjustment of the machine as per new products 

requirement.  
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Finally, this multi-objective model is formulated by the weighted aggregation approach and the 

objective function is given below: 

 𝑤1. 𝐶𝑖(𝑚𝑎𝑥) + 𝑤2. ∑ [𝑚𝑎𝑥{0, α𝑖  . (𝐶𝑖  −  𝐷𝐷𝑖)}]𝑖=𝑁
𝑖=1   

+𝑤3. ∑ ∑ ∑ 𝑋𝑖𝑗𝑘
𝑘=𝑀𝑗

𝑘=1
𝑗=𝐿
𝑗=1

𝑖=𝑁
𝑖=1 . (1 − 𝑌𝑖𝑗𝑘). (𝑃𝑖𝑗𝑘

𝐿 − 𝑃𝑖𝑗𝑘 + 𝑇𝑠𝑒𝑡 𝑢𝑝)  

(4.14) 

 

 

In this case, all the separate objective functions of minimizing make-span, minimizing tardiness 

and maximizing efficiency are multiplied by three weighted value 𝑤1, 𝑤2, 𝑤3 respectively. 

4.3 Decision Variable 

This model has only a set of binary decision variables, which can have only two values either 

one or zero. If job i is assigned to machine k in stage j, Xijk will be 1, otherwise, it will be zero. If 

there is N number of jobs and in total L stages there are Mtotal machines, then the total number of 

decision variables will be N x Mtotal. 

So following is the decision variable. 

Xijk = {
1,       𝑖𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘 𝑖𝑛 𝑠𝑡𝑎𝑔𝑒 𝑗
0,            𝑒𝑙𝑠𝑒                                                                                 

  

4.4 Constraints 

The model formulation involves a set of constraints. The first constraint is that a job can be 

assigned to only one machine in a particular stage. For example, in stage 2 there is a total of 10 

machines. So a job can be assigned to only one of those 10 machines in stage 2. This constraint 

will restrict the multiple assignments of the same job in different machines. Because one 

operation is done in one stage and it will be done by one machine on a particular job. This 

constraint is presented by following Eq. (4.15). 

 ∑ 𝑋𝑖𝑗𝑘
𝑘=𝑀𝑗

𝑘=1 = 1  

                                                                                                       ∀ i ϵ {1,2,………N}                                 

                                                                                                       ∀j ϵ {1,2,…........ L} 

(4.15) 
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The second constraint is, the decision variable, 𝑋𝑖𝑗𝑘 can have only two values one or zero. As 
during job assignment, there can be only two scenarios, either a job is assigned to a particular 
machine or it is not assigned to that machine 

 𝑋𝑖𝑗𝑘 ϵ {0,1} (4.16) 

 

4.5 Assumptions 

Each job follows the same order of stages 

I. Time to transport a job between two-stage is negligible. 
II. One job passes a particular machine only once. 

III. A machine can operate at most on one job at a time. 
IV. A job can be assigned to only one machine in one stage. 
V. Machine break down probability of a particular machine is known. 

VI. In each stage probability distribution of processing time of a job in a particular machine 
is known. 

VII. Each machine is suitable for a particular type of product. Except for suitable jobs to that 
machine, other jobs will require additional machine set up time and learning time for the 
operator. 

VIII. In each stage for the first job, a machine has no waiting time. 
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4.6 Parameters 

N = Total number of jobs 

L = Total number of stages 

Mj = Total number of machines in stage j 

Mtotal = Total number of machines in all stages 

DDi = Due date of job i 

RDi = Release date of job i 

Cij = Completion time of job i in stage j 

Ci = Completion time of job i 

ρjk = Probability of machine breakdown in stage j at machine k 

RTjk = Repair time of machine k in stage j 

Pijk
~ = Mean Processing time of job i in stage j at machine k without a learning curve 

Pijk = Processing time of job i in stage j at machine k without a learning curve 

Pijk
L = Processing time of job i in stage j at machine k with a learning curve 

Pijk
o = Considered processing time of job i in stage j at machine k 

Tset up = Machine set-up  time 

BTjk = Busy time of machine k in stage j 

BTtotal = Total busy time of all machines 

αi = Priority index of job i 

ε = A random variable with a known probability distribution 

φ = A given uncertainty level 

Yijk = {
1,       if a product i can be done in machine k in stage j
0,       else                                                                                 

  

i = Job index 

j = Stage/Operation Index 

k = Machine Index 

𝑤1, 𝑤2,𝑤3 = Weight of objective functions respectively 
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Table 4.1: Model Formulation 

Individual objective functions 

Minimize make-span : 𝑀𝑖𝑛: 𝐶𝑖(𝑚𝑎𝑥) 

Minimize tardiness: 𝑀𝑖𝑛: ∑ [𝑚𝑎𝑥{0, α𝑖  . (𝐶𝑖  −  𝐷𝐷𝑖)}]𝑖=𝑁
𝑖=1  

Maximize Efficiency: 𝑀𝑖𝑛: ∑ ∑ ∑ 𝑋𝑖𝑗𝑘
𝑘=𝑀𝑗

𝑘=1
𝑗=𝐿
𝑗=1

𝑖=𝑁
𝑖=1 . (1 − 𝑌𝑖𝑗𝑘). (𝑃𝑖𝑗𝑘

𝐿 − 𝑃𝑖𝑗𝑘 + 𝑇𝑠𝑒𝑡 𝑢𝑝) 

Objective function 

𝑤1. 𝐶𝑖(𝑚𝑎𝑥) + 𝑤2. ∑ [𝑚𝑎𝑥{0, α𝑖  . (𝐶𝑖  −  𝐷𝐷𝑖)}]𝑖=𝑁
𝑖=1   

+𝑤3. ∑ ∑ ∑ 𝑋𝑖𝑗𝑘
𝑘=𝑀𝑗

𝑘=1
𝑗=𝐿
𝑗=1

𝑖=𝑁
𝑖=1 . (1 − 𝑌𝑖𝑗𝑘). (𝑃𝑖𝑗𝑘

𝐿 − 𝑃𝑖𝑗𝑘 + 𝑇𝑠𝑒𝑡 𝑢𝑝)  

Subjected to, 

∑ 𝑋𝑖𝑗𝑘
𝑘=𝑀𝑗

𝑘=1 = 1  

                                                                                                       ∀ i ϵ {1,2,………N}                                 

                                                                                                       ∀j ϵ {1,2,…........ L} 

𝑋𝑖𝑗𝑘 ϵ {0,1} 

Where, 

𝐶𝑖𝑗 = ∑ {(∑ 𝑋𝑖𝑗𝑘.𝑖=𝑖
𝑖=1 𝑃𝑖𝑗𝑘

𝑜 ). 𝑋𝑖𝑗𝑘}
𝑘=𝑀𝑗

𝑘=1   

                                                                                          ∀ i ϵ {1,2,3,……N}                                 

                                                                                                       for j =1 

If the mean processing time in the preceding stage is smaller than the mean processing time of 

current stage: 

𝐶𝑖𝑗 = ∑ (𝐶𝑖,𝑗−1 + 𝑋𝑖𝑗𝑘 . 𝑃𝑖𝑗𝑘
𝑜 ). 𝑋𝑖𝑗𝑘

𝑘=𝑀𝑗

𝑘=1   

                                                                                           for i =1   

                                                                                                       ∀j ϵ {2,3,…........ L} 

𝐶𝑖𝑗 = ∑ [𝑚𝑎𝑥{(𝐶1,𝑗−1. 𝑋1,𝑗,𝑘), (𝐶2,𝑗−1. 𝑋2,𝑗,𝑘), … … . (𝐶𝑖−1,𝑗−1. 𝑋𝑖−1,𝑗,𝑘)}
𝑘=𝑀𝑗

𝑘=1   

         +𝑚𝑎𝑥(𝐶𝑖,𝑗−1,  ∑ 𝑋𝑖𝑗𝑘
𝑖=𝑖−1
𝑖=1 . 𝑃𝑖𝑗𝑘

𝑜 ) + 𝑋𝑖𝑗𝑘. 𝑃𝑖𝑗𝑘
𝑜 ]. 𝑋𝑖𝑗𝑘                                                                                     

                                                                                                       ∀ i ϵ {2,3,………N}                                 

                                                                                                       ∀j ϵ {2,3,…........ L} 
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Table 4.2: Model Formulation (Continued) 

If the mean processing time in the preceding stage is greater than the mean processing time of 
current stage: 
 
𝐶𝑖𝑗 = ∑ {𝑚𝑎𝑥(𝐶𝑖,𝑗−1,  ∑ 𝑋𝑖𝑗𝑘

𝑖=𝑖−1
𝑖=1 . 𝑃𝑖𝑗𝑘

𝑜 ) + (𝑋𝑖𝑗𝑘 . 𝑃𝑖𝑗𝑘
𝑜 )}. 𝑋𝑖𝑗𝑘

𝑘=𝑀𝑗

𝑘=1   

          

                                                                                                       ∀ i ϵ {1,2,………N}                                 

                                                                                                       ∀j ϵ {2,3,…........ L} 

 

𝐶𝑖 = ∑ ∑ 𝑋𝑖𝑗𝑘
𝑘=𝑀𝑗

𝑘=1
𝑗=𝐿
𝑗=1 . 𝑃𝑖𝑗𝑘

𝑜         

                                                                                         for i=1 

𝐶𝑖 = 𝐶𝑖𝐿  

                                                                                          ∀ i ϵ {2,3,………N}   

𝑃𝑖𝑗𝑘
𝑜 = 𝑌𝑖𝑗𝑘. 𝑃𝑖𝑗𝑘 + (1 − 𝑌𝑖𝑗𝑘). 𝑃𝑖𝑗𝑘

𝐿 + ρ𝑗𝑘. 𝑅𝑇𝑗𝑘  
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4.7 Proposed Framework of SVM Guided Hybrid Flow Shop Scheduling: 
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CHAPTER 5 : MODEL IMPLEMENTATION 
 

5.1 Case Study 

In order to implement the hybrid flow shop scheduling model developed in the preceding chapter 

a textile industry is selected, where a certain portion of the entire production floor is considered 

for implementation. In the textile industry, the whole production process is divided into three 

stages, these are respectively cutting, sewing and finishing section. In the sewing stage, each 

production line comprises of several machines. However, once a product enters a line it passes 

through all the machines sequentially. So, to reduce model complexity, each line is considered as 

a single machine unit as there is no change in the sequence once a product enters a particular 

sewing line. The illustration of the hybrid flow shop is given below: 

 

  

 

 

Figure 5.1: Hybrid flow Shop for textile industry 
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5.2 Job Classification Model Formulation 

In this work, job scheduling is divided into two stages, where the first stage is to classify the jobs 

based on their importance level. For this purpose, a job classification model is developed by 

implementing Support Vector Machine. To develop the job classification model, at first support 

vector machine is trained using historical data. A sample of training data set used to develop the 

job classification model is given in Appendix B. 

The features used in the training data set are-  

i. The quantity of the order- As flow-shop is suitable for batch production, each job is 

assumed to have an order quantity. The quantity of each batch is considered as a 

feature of the training data set. 

ii. The value of the job- This feature considers the price of each job, as each job. 

iii. Production lead time available- This is the difference between the job creation date 

and the required delivery date of the product. 

iv. Material Availability Status- The material availability status of a job is considered as 

a feature. As, if the material required for the production is not available, production 

cannot start and it should be scheduled later once material is available. 

v. Line Running Status- This feature considers if any similar product is being produced 

on the production floor. If a similar product is already being produced, it means for 

that job operator does not require learning time which means it is beneficient to 

schedule that job.  

vi. Customer- The customer who is placing the order has an impact on identifying the job 

priority level. As, if a job is created from a customer who is really important, by 

default the importance of that order will be more than other jobs. 

Above mentioned six features are used to train SVM so that it can predict the importance level of 

any future job based on previous importance level of other jobs. This job classification help to 

identify jobs with higher priority. SVM classifies each job into three classes and each class has a 

priority index. For this model jobs are classified into below 3 classes with the respective priority 

index value.  
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Table 5.1: Job Classification and Priority Index 

Class Name Priority Index 

Urgent 3 

Moderate 2 

Minor 1 

 

For identifying a prediction model which is can predict the priority level of jobs based on the 

above-mentioned features different SVM models are checked by using MATLAB toolbox. Those 

models are: 

i. Linear SVM- Uses linear Kernel 

ii. Quadratic SVM- Uses quadratic Kernel 

iii. Cubic SVM- Uses cubic Kernel 

iv. Fine Gaussian SVM- Uses Gaussian Kernel with Kernel scale (√(No of features))⁄4 

v. Medium Gaussian SVM- Uses Gaussian Kernel with Kernel scale √(No of features) 

vi. Coarse Gaussian- Uses Gaussian Kernel with Kernel scale (√(No of features))*4 
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Table 5.2:  Job to be Classified 

Job ID Ordered 
Quantity Customer 

Production  
Lead Time 

(days) 

Value 
($) 

Line 
Running 

Material 
Availability 

971 462 Europe 18 2231 Yes Available 
77358 528 Europe 17 2550 Yes Available 
45388 528 Morocco 33 2550 Yes Available 
76526 2838 Europe 17 13708 Yes Available 
9493 390 Malaysia 15 1677 Yes Available 
46896 660 Europe 17 2838 Yes Available 
98804 2040 Europe 18 8772 Yes Available 
37304 5330 Europe 17 22919 Yes Available 
41555 700 Malaysia 96 3010 No Not available 
51144 1140 Russia 46 4902 Yes Available 
15068 700 China 79 5327 No Not available 
79878 1090 Europe 86 8295 No Not available 
21738 1150 Europe 114 8752 No Not available 
19376 1600 Europe 100 12176 No Not available 
6370 1620 Europe 93 12328 No Not available 
22216 1810 Europe 107 13774 No Not available 
22224 432 Europe 19 2575 Yes Available 
6324 432 Europe 102 2575 No Not available 
40919 2232 Europe 101 13303 Yes Available 
52303 3536 Europe 59 56116 Yes Available 

 

In Table 5.3 the accuracy of different SVM models given. Six SVM models are checked to find 

the model which has the highest accuracy level. For this purpose, at first, models are checked 

with 5-fold cross-validation with PCA (principal component analysis). It can be seen that with 

PCA the model accuracy is less than models’ without PCA. Furthermore, new models are 

checked by using a 10-fold cross-validation method. Finally, it is observed in Table 5.3  that  

model-22 has the best accuracy level with a training time of 4.31 seconds at a speed of 630 

observations per second.  
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Table 5.3: Prediction Accuracy Level of a Model 

Model No SVM type PCA Accuracy (%) Cross-Validation 
Model-1  Linear SVM On 77.7 5-Fold 
Model-2 Quadratic SVM On 78.4 5-Fold 
Model-3 Cubic SVM On 60.8 5-Fold 
Model-4 Fine Gaussian SVM On 75 5-Fold 
Model-5 Medium Gaussian SVM On 77 5-Fold 
Model-6 Coarse Gaussian On 67.6 5-Fold 
Model-7 Linear SVM Off 85.1 5-Fold 
Model-8 Quadratic SVM Off 91.2 5-Fold 
Model-9 Cubic SVM Off 93.9 5-Fold 
Model-10 Fine Gaussian SVM Off 81.8 5-Fold 
Model-11 Medium Gaussian SVM Off 85.1 5-Fold 
Model-12 Coarse Gaussian Off 75.7 5-Fold 
Model-13 Cubic SVM Off 92.6 5-Fold 
Model-14 Linear SVM On 77.7 10- Fold 
Model-15 Quadratic SVM On 79.7 10- Fold 
Model-16 Cubic SVM On 60.8 10- Fold 
Model-17 Fine Gaussian SVM On 74.3 10- Fold 
Model-18 Medium Gaussian SVM On 77.7 10- Fold 
Model-19 Coarse Gaussian On 70.3 10- Fold 
Model-20 Linear SVM Off 85.8 10- Fold 
Model-21 Quadratic SVM Off 93.2 10- Fold 
Model-22 Cubic SVM Off 95.3 10- Fold 
Model-23 Fine Gaussian SVM Off 84.5 10- Fold 
Model-24 Medium Gaussian SVM Off 86.5 10- Fold 
Model-25 Coarse Gaussian Off 81.8 10- Fold 
Model-26 Cubic SVM Off 92.6 10- Fold 

 

As model-22 has best accuracy level, this model is studied further to understand how features are 

co-related and impact of each feature in the job classification. Firstly, the confusion matrix for 

model-22 is given in Figure 5.2 where it can be seen that the model can 100% correctly jobs 

belonging to “Minor” class and 90%  and 94% accuracy for “Moderate” and “Urgent” class 

respectively. 
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Figure 5.2: Confusion Matrix for Model-22 

In Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8 scatter plots are given 
which reflect which features can separate classes with less overlapping. From the scatter plot in 
Figure 5.4 and Figure 5.6, it can be seen that order quantity, production lead time and product 
value these three features are more useful for job classification.  

 

Figure 5.3: Scatter Plot for order value versus order quantity 

In Figure 5.3 it can be seen that by plotting predicted data with rest to features product value and 
order quantity of respective job ID, the model cannot separate “Minor”, “Moderate” and 
“Urgent” class with a certain boundary gap. 
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Figure 5.4:  Scatter Plot for production lead time versus order quantity 

Whereas, in Figure 5.4 when data points are presented with respect to production lead time and 
order quantity, they are easily separable. So, it can be said that production lead time and order 
quantity have a greater impact on job classification. 

 

Figure 5.5: Scatter Plot for customer versus order quantity 

From Figure 5.5 it can be observed that when data points are presented with respect to customer 
and order quantity, one particular customer “Europe Zone” is placing more orders compared to 
others. However, this is not separating the classes in a visible way. 
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Figure 5.6: Scatter Plot for order value versus production lead time 

Figure 5.6 illustrates that when data points are plot in a two-dimensional space with respect to 
product value and available lead time, these features can separate the classes in a better way. 

 

Figure 5.7: Scatter Plot for material availability versus order quantity 

Figure 5.7 represents job classification with respect to material availability status and order 
quantity. It can be observed that irrespective to order quantity if the material is not available a 
job is considered to be in “Minor” class and when the material is available it can be both on 
urgent or moderate class based on its quantity. 
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Figure 5.8: Scatter Plot for line running status versus order quantity 

In Figure 5.8 it can be observed that, if lines are running for a particular type of product, then 
any job corresponding to that type will be either in “Moderate” or “Urgent” class. Whereas, if 
line is not running, the predicted model tends to predict it in the “Minor” class. 

 

Figure 5.9: Parallel plot for Model-22 

Figure 5.9 shows the parallel plot of all features which reflects how each feature has an impact 
on the classification model. In Figure 5.9 blue lines, red lines and orange lines respectively 
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represent “Minor”, “Moderate”, “Urgent” class. The area between the features, where these lines 
are easily separable have a greater impact on the classification model compared to other features. 
All parameters are standardized here. 

 

 

Figure 5.10: Parallel plot for Model-22 (modified) 

In Figure 5.10 the parallel plot in Figure 5.9 is modified by keeping only three features those 
are order quantity, production lead time and order value, which separates the classes in a better 
way. 

In Appendix A the job classification obtained using all 26 models is given. Among them, the 

prediction result of models - 8, 9, 13, 22 and 26 are given below as all these models have 

accuracy above 90%. It can be seen that all models have the same prediction for 19 out of 20 

jobs. So, the prediction is considered to be consistent. Finally, the prediction of model-22 which 

is Cubic SVM with 10 fold cross-validation is used for job classification as it has the highest 

accuracy level among all models. 
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Table 5.4: Job Classification Model Comparison 

Job ID Model-8 Model-9 Model-13 Model-22 Model-26 

971 Urgent Urgent Urgent Urgent Urgent 
77358 Urgent Urgent Urgent Urgent Urgent 
45388 Urgent Urgent Urgent Urgent Urgent 
76526 Urgent Urgent Urgent Urgent Urgent 
9493 Urgent Urgent Urgent Urgent Urgent 
46896 Urgent Urgent Urgent Urgent Urgent 
98804 Urgent Urgent Urgent Urgent Urgent 
37304 Urgent Urgent Urgent Urgent Urgent 
41555 Minor Minor Minor Minor Minor 
51144 Moderate Moderate Moderate Moderate Moderate 
15068 Minor Minor Minor Minor Minor 
79878 Moderate Moderate Moderate Moderate Moderate 
21738 Minor Minor Minor Minor Minor 
19376 Moderate Moderate Moderate Moderate Moderate 
6370 Moderate Moderate Moderate Moderate Moderate 
22216 Moderate Moderate Minor Moderate Minor 
22224 Urgent Urgent Urgent Urgent Urgent 
6324 Minor Minor Minor Minor Minor 
40919 Moderate Moderate Moderate Moderate Moderate 
52303 Moderate Moderate Moderate Moderate Moderate 

5.3 Uncertainty Considerations 

The model developed considers some uncertainties related to the production floor, which may 

arise from machine breaks down or uncertain processing time. To deal with these uncertainties it 

requires below data preparations: 

I. Calculating machine break down probability for each machine 

II. Calculating the processing time of each job on each machine considering processing time 

as a stochastic element 

5.3.1 Machine Break-down Probability Calculation 

 The probability of the break-down of a single machine can be calculated from the Eq. (4.9) 

given in section 4.2.1.2. This empirical formula was derived by Al-Hinai & Elmekkawy, [2011] 

which is: 
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 𝜌𝑚 =
𝐵𝑇𝑚

𝐵𝑇𝑇𝑜𝑡𝑎𝑙
  

                                                                                                        

(5.1) 

 

Where,  

𝜌𝑚 = Machine break down the probability of machine m 

𝐵𝑇𝑚 = Busy time of machine m 

𝐵𝑇𝑇𝑜𝑡𝑎𝑙 = Busy time of all machines 

The considered hybrid flow shop consists of 8 machines. Two machines (A, B) in stage 1, four 

machines (C, D, E, F) in stage 2 and two machines (G, H) in stage 3. As mentioned in section 

5.1, to avoid calculation complexity in stage 2 each line consisting of 15 separate machines is 

considered as a single machine. However, to calculate the machine break down probability on 

machines in stage 2, it requires two-step calculations. 

In Table 5.5 all busy times are given in unit of hours and for stage 2, the busy times of all 

machines are calculated separately to calculate the machine break down the probability of each 

machine in one particular line of stage 2, which is further considered as a single machine. 

Table 5.5: Machine Busy Time 

Stage-1 

A 47 

B 50 

Stage-2 

        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

C 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 

D 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 

E 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 

F 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 

Stage-3 

G 45 

H 48 
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By taking the summation of all machine’s machine busy time, total machine busy time is  

𝐵𝑇𝑇𝑜𝑡𝑎𝑙 = 2965 ℎ𝑜𝑢𝑟𝑠  

One example of a machine break-down the probability of machine A is shown below: 

𝜌𝐴 =
𝐵𝑇𝐴

𝐵𝑇𝑇𝑜𝑡𝑎𝑙
=

47

2965
= 0.016  

In this same procedure machine, break-down probability of machine B, G, H can be calculated. 

However, to calculate the machine break down the probability of lines C, D, E, F it requires 

calculating the machine break-down probability of each machine separately and taking the 

summation of all machines belonging to one line, to calculate the machine break-down 

probability of that line. In this case, the summation is taken because the probability of each 

machine break-down is mutually exclusive and the line cannot work if any of the machines face 

a breakdown. 

Calculations of machine break down the probability of machine -1 of line C 

𝜌𝐶,1 =
𝐵𝑇𝐶,1

𝐵𝑇𝑇𝑜𝑡𝑎𝑙
=

48

2965
= 0.017  
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Following the same procedure, machine break down the probability of each machine inline C, D, 

E, F are given in Table 5.6 

Table 5.6: Machine Break-down Probability in Stage-2 

Machine No C D E F 

1 0.017 0.017 0.018 0.014 
2 0.017 0.017 0.018 0.014 
3 0.017 0.017 0.018 0.014 
4 0.017 0.017 0.018 0.014 
5 0.017 0.017 0.018 0.014 
6 0.017 0.017 0.018 0.014 
7 0.017 0.017 0.018 0.014 
8 0.017 0.017 0.018 0.014 
9 0.017 0.017 0.018 0.014 
10 0.017 0.017 0.018 0.014 
11 0.017 0.017 0.018 0.014 
12 0.017 0.017 0.018 0.014 
13 0.017 0.017 0.018 0.014 
14 0.017 0.017 0.018 0.014 
15 0.017 0.017 0.018 0.014 

Total 0.255 0.255 0.27 0.21 
 

In stage-2, as all machines are in series in each line, so the probability that there will be a break-

down in a line is the summation of the probability of machine break down of every single 

machine, which can be given by below equation. 

 𝜌Ņ = ∑ 𝜌Ņ,𝑖
𝑟
𝑖=1   

                                              Where,    Ņ = 𝐶, 𝐷, 𝐸, 𝐹   

                                                                r= machine number in corresponding line                                               

(5.2) 
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Table 5.7: Machine Break-down Probability 

Machine No 
Machine break- 

down probability 
Machine No 

Machine break- 

down probability 

A 0.016 E 0.27 

B 0.017 F 0.21 

C 0.255 G 0.015 

D 0.255 H 0.016 

 

This machine break-down probability is multiplied by the repair time of the corresponding 

machine. Further, this additional time for machine break-down is added with the processing time 

of all jobs, done on that machine. 

5.3.2 Processing Time Calculation 

The processing time of different operations of a job in different machines are not deterministic 

values, there are stochastic. Processing time may depend on various external factors such as the 

operator’s skill level, machine condition and so on. So, in this work, we have tried to address 

these uncertainties by using a formulation proposed by Janak, Lin, & Floudas, [2007], where the 

real value of processing time is presented in terms nominal values as following Eq. (5.3): 

 𝑃𝑚 = (1 + φ. ε). 𝑃𝑚
~  

                                                                                                        

(5.3) 

 

In Eq. (5.3), φ is a given uncertainty level and in this case, we have considered 30% of 

uncertainty so, φ = 0.3 is used for future calculations. In Eq. (5.3), ε is a random number that 

follows normal distribution within an interval of [-1, 1].  

The value of processing time will defer based on learning curve. If the operator is skilled in a 

particular job, in that case, the operator will require less time compared to the operator who is 

new to that job. This can have a vital effect on processing time. This work aims to calculate 

processing time considering two scenarios: processing time with learning curve and processing 

time without learning curve. 
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 Processing Time without Learning Curve 5.3.2.1

In textile industries processing time of a particular job is calculated using SAM (standard 

allocated minutes). In this work SAM is used to calculate the daily output of a particular product, 

further the value of output per day of a product is used to calculate the processing time of a 

particular job. The formula used to calculate the daily output of a product is given below:  

 𝑃𝑒𝑟 𝑑𝑎𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 =
(𝑁𝑜 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟×𝑊𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟 𝑝𝑒𝑟𝑑𝑎𝑦×60×𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦)

𝑆𝐴𝑀  
  

                                                                                                        

(5.4) 

 

A sample calculation for calculating per day output is of job ID- 98804 for a particular machine 

is given below: 

SAM= 22.90 

No of operator = 20 

Working hour per day = 8hours 

Efficiency = 60% 

 𝑃𝑒𝑟 𝑑𝑎𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 =
(20×8×60×0.6)

22.90  
 =252 

                                                                                                        

 

Using Eq. (5.4), per day output will be 252 Pieces and the total order quantity was 2040. So, for 

that particular machine processing time of job ID- 98804 will be 9 days. This processing time is 

used in Eq. (5.3), to have a stochastic processing time. For this purpose, this processing time 

9days is used as nominal value and 100 values are generated using random variables with normal 

distribution. Finally, the mean value of those hundred observations is considered as processing 

time that will be a stochastic value. For each job in all 8 machines processing time is calculated 

following this method. The table of processing time is given in Appendix C.  

 Processing Time with Learning Curve 5.3.2.2

Processing time considering learning curve is greater than processing time without learning 

curve, as skilled operators require less time to finish an operation compared to a new operator. 

Calculating the processing time considering learning curve is the same as calculating processing 

time without learning curve. However, processing time with learning curve considers the 

additional time for changing the machine set up and training an operator about the operation. 



 

59 
 

Considering learning curve effect when processing time of job ID- 98804 is calculated it is 

increased to 16days for that same machine if the operator is new. While calculating processing 

time with learning curve, Eq. (5.3), is used to determine the stochastic value. 

Whether a machine is suitable for a job or the operators are skilled about that particular job, this 

information was collected from the production floor and below matrix is formed.  

Table 5.8: Machine Suitability Matrix 

  
                                               Machines 

  
A B C D E F G H 

Job  
ID 

9493 1 1 0 1 1 0 1 1 
77358 1 1 1 0 0 1 1 1 
76526 1 1 1 0 0 1 1 1 
46896 1 1 0 1 1 0 1 1 
37304 1 1 0 1 1 0 1 1 
971 1 1 1 0 0 1 1 1 

98804 1 1 0 1 1 0 1 1 
22224 1 1 0 1 1 0 1 1 
45388 1 1 1 0 0 1 1 1 
51144 1 1 0 1 1 0 1 1 
52303 1 1 1 0 0 1 1 1 
79878 1 1 0 0 0 0 1 1 
6370 1 1 0 0 0 0 1 1 
19376 1 1 0 0 0 0 1 1 
40919 1 1 0 1 1 0 1 1 
22216 1 1 0 0 0 0 1 1 
15068 1 1 0 0 0 0 1 1 
41555 1 1 0 1 1 0 1 1 
6324 1 1 0 1 1 0 1 1 
21738 1 1 0 0 0 0 1 1 

 

By using the Machine Suitability Matrix processing time of each job on each machine can be 

determined based on the effect of learning curve. The below-given formulation is used for this 

calculation. 

 𝑃𝑖𝑚
𝑜 = 𝑌𝑖𝑚. 𝑃𝑖𝑚 + (1 − 𝑌𝑖𝑚). 𝑃𝑖𝑚

𝐿   

                                                                                                        

(5.5) 
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 In Eq (4.10),  𝑌𝑖𝑚 is the machine suitability matrix, 𝑃𝑖𝑚 is the processing time without learning 

curve and 𝑃𝑖𝑚
𝐿  is processing time with learning curve for a particular job i and machine m. If 

machine m is suitable job i processing time without learning curve will be considered else 

processing time with learning curve will be considered for that job machine pair. Finally after 

adding machine break-down repair time with Eq. (4.10), final processing time is calculated and 

that is used for scheduling model. 

 𝑃𝑖𝑚
𝑜 = 𝑌𝑖𝑚. 𝑃𝑖𝑚 + (1 − 𝑌𝑖𝑚). 𝑃𝑖𝑚

𝐿 +  ρ𝑚. 𝑅𝑇𝑚  

                                                                                                        

(5.6) 

 

By using Eq. (4.11), final processing time for job set is given below: 

Table 5.9: Processing Time 

  
                                               Machines 

  
A B C D E F G H 

Job 
ID 

9493 0.5 0.5 6.1 2.1 2.1 7.2 1.1 1.1 
77358 0.6 0.6 3.1 7 7.9 3.1 1.1 1 
76526 2.1 2.6 15 22 22 14.1 4.1 4.1 
46896 0.6 0.6 7 3.1 3 8.1 1 1 
37304 3.1 3.5 32.1 22.2 20.2 27.8 4 4.1 
971 0.5 0.5 3 7 8.1 3 1 1 

98804 1.1 1 16.1 8.9 8 15.8 2 2 
22224 0.6 0.5 7 3.1 3 8.1 1 1.1 
45388 0.5 0.5 3.1 7 8 3.1 1 1.1 
51144 0.6 0.5 9.1 5.1 5 10.1 1 1 
52303 3.1 3.5 28.8 32.1 28.1 26 4 4 
79878 1 1 15.9 16.1 16.2 16.1 1.5 1.6 
6370 1 1.1 19.9 20 20.2 20 1.5 1.6 
19376 1 1 20.3 19.6 20.2 19.8 1.5 1.5 
40919 1 1.1 18.9 12.2 12.1 20.2 1.6 1.5 
22216 1.1 1.1 20.9 21.1 21.5 20.9 1.5 1.6 
15068 1 1 13.1 13.1 10.2 10.1 1.6 1.6 
41555 0.6 0.5 7 3.1 3 7.9 1 1 
6324 0.5 0.5 7 3.1 3.1 8.2 1.1 1 
21738 1.1 1.1 15.9 16.3 17.1 17.2 1.6 1.6 
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5.4 Job Scheduling  

After job classification according to their priority level and considering uncertainty in processing 

time, these inputs are used for the job scheduling model. Jobs belonging to the same class are 

sequenced based on their delivery date. Jobs with earlier delivery dates are sequenced prior to 

jobs with subsequent delivery dates. Finally, jobs are sequenced as below position: 

Table 5.10: Job Sequencing 

Job ID Priority 
Level 

Order 
Sequence Job ID Priority 

Level 
Order 

Sequence 
9493 Urgent 1 52303 Moderate 11 
77358 Urgent 2 79878 Moderate 12 
76526 Urgent 3 6370 Moderate 13 
46896 Urgent 4 19376 Moderate 14 
37304 Urgent 5 40919 Moderate 15 
971 Urgent 6 22216 Moderate 16 

98804 Urgent 7 15068 Minor 17 
22224 Urgent 8 41555 Minor 18 
45388 Urgent 9 6324 Minor 19 
51144 Moderate 10 21738 Minor 20 

 

In the job scheduling model, the job index i will be the associated sequence number of the job, 

for solving the model Job ID is not considered further.  

5.4.1 Job Completion Time  

The scheduling model developed in Chapter 4 involves a calculation of job completion times 
prior to implementing the model. 

Completion in Stage-1 ( Cutting) 

The cutting stage has two machines A and B. So,  when jobs are in the cutting stage, the 
completion time of each job follows below formula: 

 𝐶𝑖1 = ∑ {(∑ 𝑋𝑖1𝑘.20
𝑖=1 𝑃𝑖1𝑘

𝑜 ). 𝑋𝑖1𝑘}𝑘=2
𝑘=1   

                                                                                          ∀ i ϵ {1,2,3,……20}                                                             

(5.7) 

 

 

In Eq. (4.2), the value of  𝑃𝑖1𝑘
𝑜  is a matrix which is processing time of each job in machines A 

and B, these values are used from Table 5.9. 
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Completion in Stage-2 ( Sewing) 

It is seen from Table 5.9  that the mean sewing time, which is the processing time of stage-2 is 

greater than the processing time of stage-1. So, the time required for a job to complete the 

sewing stage is given by the below formula as mentioned in section 4.2.1.1. 

 𝐶12 = ∑ (𝐶11  +𝑋12𝑘. 𝑃12𝑘
𝑜 ). 𝑋12𝑘

𝑘=4
𝑘=1   

                                                                                                                                                                                 

(5.8) 

 

 𝐶𝑖2 = ∑ [𝑚𝑎𝑥{(𝐶1,1. 𝑋1,2,𝑘), (𝐶2,1. 𝑋2,2,𝑘), … … . (𝐶𝑖−1,1. 𝑋𝑖−1,2,𝑘)}𝑘=4
𝑘=1   

         +𝑚𝑎𝑥(𝐶𝑖,1,  ∑ 𝑋𝑖2𝑘
𝑖=𝑖−1
𝑖=1 . 𝑃𝑖2𝑘

𝑜 ) + 𝑋𝑖2𝑘. 𝑃𝑖2𝑘
𝑜 ]. 𝑋𝑖2𝑘                                                                                     

                                                                                                       ∀ i ϵ {2,3,………20}                                 

(5.9) 

 

Completion in Stage-3 ( Finishing) 

The mean completion time of the finishing stage is smaller than the mean completion time of the 

sewing stage. So, the job completion time of the finishing stage is calculated using the below 

formula as mentioned in section 4.2.3. 

 𝐶𝑖3 = ∑ {𝑚𝑎𝑥(𝐶𝑖,2,  ∑ 𝑋𝑖3𝑘
𝑖=𝑖−1
𝑖=1 . 𝑃𝑖3𝑘

𝑜 ) + (∑ 𝑋𝑖3𝑘.𝑖=𝑖
𝑖=1 𝑃𝑖3𝑘

𝑜 )}. 𝑋𝑖3𝑘
𝑘=2
𝑘=1   

                                                                                                      ∀ i ϵ {1,2,………N}                                 

                                                                                                       ∀j ϵ {2,3,…........ L} 

(5.10) 

 

 

Eq. (4.3), Eq. (4.4) and Eq. (4.5), are used for the calculation of make-span and tardiness. 

5.4.2 Efficiency Calculation 

To calculate efficiency from the concept of minimizing machine idle time, processing time with 

a learning curve and without learning curve given in Appendix D and machine suitability matrix 

is given in Table 5.8 is used.  Efficiency is calculated by the below equation: 

 ∑ ∑ ∑ 𝑋𝑖𝑗𝑘
𝑘=𝑀𝑗

𝑘=1
𝑗=3
𝑗=1

𝑖=20
𝑖=1 . (1 − 𝑌𝑖𝑗𝑘). (𝑃𝑖𝑗𝑘

𝐿 − 𝑃𝑖𝑗𝑘 + 𝑇𝑠𝑒𝑡 𝑢𝑝)  (5.11) 

 

Consequently, the value of all three objectives functions are calculated and constrained multi-

objective PSO algorithm  is used to find the optimum jib assignment matrix 𝑿𝒊𝒋𝒌. 
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CHAPTER 6 : RESULT AND ANALYSIS 
 

6.1 Job Assignments 

After implementing the model in a textile industry mentioned in Chapter 5, the optimum 
scheduling result can be obtained. This model aims to optimize three objectives which are 
minimizing make-span, minimizing tardiness and maximize efficiency by minimizing machine 
idle time or the time required for a learning curve. As this model is a multi-objective 
optimization problem, to solve it, the weighted aggregation approach is used. While using the 
weighted aggregation approach, the weight of each objective is changed 12 times so that for 
different importance levels of a particular objective, the corresponding job schedule can be 
obtained. The result summary is given in Table 6.1, where make-span, tardiness, efficiency, and 
value of the objective function are given in days. 

Table 6.1: Function Value 

Combination 
No 

Weight 
of Make-

span 

Weight 
of 

Tardiness 

Weight of 
Efficiency 

Make-
span Tardiness Efficiency Objective 

Function 

1 0.5 0.2 0.3 98 270 73.8 137.64 
2 0.5 0.3 0.2 89.3 261.6 68.2 136.77 
3 0.3 0.5 0.2 113.7 200 62.6 176.18 
4 0.3 0.2 0.5 101.6 267.7 57.7 112.87 
5 0.2 0.5 0.3 109.8 181.95 52.1 128.565 
6 0.2 0.3 0.5 110.2 199.8 64 113.98 
7 0.6 0.3 0.1 90 153.2 52.7 105.23 
8 0.6 0.1 0.3 89.89 183.3 64.4 91.584 
9 0.3 0.6 0.1 110.7 216 77.4 170.55 
10 0.3 0.1 0.6 134.5 210 57.7 113.97 
11 0.1 0.6 0.3 101 290.8 72.6 196.26 
12 0.1 0.1 0.6 110.3 263.7 82.6 75.93 

 

For combination 1, the job assignment is given in Table 6.2, and in each stage job assignments 
to each machine are illustrated in Figure 6.1, Figure 6.2 and Figure 6.3 respectively. In Figure 
6.4, the PSO curve obtained for this combination is shown, where the best function value 
obtained is 137.64 days. 
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Table 6.2: Job Allocation (Combination-1) 

   
Machine No 

  
Sequence A B C D E F G H 

Job  
ID 

9493 1 0 1 0 0 0 1 1 0 
77358 2 0 1 1 0 0 0 1 0 
76526 3 0 1 0 0 0 1 0 1 
46896 4 1 0 1 0 0 0 0 1 
37304 5 0 1 1 0 0 0 1 0 
971 6 1 0 1 0 0 0 1 0 

98804 7 1 0 0 1 0 0 1 0 
22224 8 1 0 0 0 1 0 1 0 
45388 9 0 1 0 0 1 0 0 1 
51144 10 0 1 0 0 1 0 0 1 
52303 11 1 0 1 0 0 0 0 1 
79878 12 1 0 0 0 1 0 1 0 
6370 13 1 0 0 0 0 1 0 1 
19376 14 0 1 0 0 0 1 0 1 
40919 15 0 1 0 1 0 0 0 1 
22216 16 1 0 0 0 1 0 1 0 
15068 17 0 1 0 0 1 0 0 1 
41555 18 1 0 0 1 0 0 1 0 
6324 19 1 0 0 0 0 1 0 1 
21738 20 0 1 0 1 0 0 1 0 

 

From Table 6.1, it can be that this job assignment is obtained by giving the lowest weight to 
tardiness. By comparing the required delivery date of each order with its completion time it can 
be observed that jobs in Table 6.3 cannot be completed before the due date. So, it will be the 
decision of the producer whether he needs to increase his capacity to complete them within the 
due date or needs to cancel those orders. 

 

Table 6.3: List of delay jobs (Combination -1) 

Job ID  Sequence Delay Job ID  Sequence Delay 
76526 3 8.4 98804 7 2.3 
37304 5 32.5 52303 11 33.4 
971 6 41.6 15068 17 11.3 
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Figure 6.1: Job allocation in stage-1 (Combination-1) 

Figure 6.1 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (A) will process jobs in sequence- 4, 6, 7, 8, 11, 12, 13, 16, 18, 19 in the given order 
and the machine-2 (B) will process jobs in sequence – 1, 2, 3, 5, 9, 10, 14, 15, 17, 20 sequentially 
where job in sequence 20 finishes stage-1 as the last job. 

 

Figure 6.2: Job allocation in stage-2 (Combination-1) 

Figure 6.2 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (C) will process jobs in sequence- 2, 4, 5, 6, 11 in the given order; the machine-2 (D) 
will process jobs in sequence – 7, 15, 18, 20; the machine-3 (E) will process jobs in sequence – 
8, 9, 10, 12,16,17; the machine-4 (F) will process jobs in sequence – 1, 3, 13, 14, 19  
sequentially.  
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Figure 6.3: Job allocation in stage-3 (Combination-1) 

Figure 6.3 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (G) will process jobs in sequence- 1, 2,  5, 6, 7, 8, 12, 16, 18, 20 in the given order 
and the machine-2 (H) will process jobs in sequence – 3, 4, 9, 10, 11, 13, 14, 15, 17, 19 
sequentially. 

 

Figure 6.4: PSO Plot (Combination-1) 

Figure 6.4 illustrates the PSO curve, where the value of the objective function is decreasing with 
each iteration and finally at iteration no 180 the algorithm terminates as there is no improvement 
in objective function value.  
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For combination 2, the job assignment is given in Table 6.4, and in each stage job assignments 
to each machine are illustrated in respectively Figure 6.5, Figure 6.6 and Figure 6.7. In Figure 
6.8, the PSO curve obtained for this combination is shown, where the best function value 
obtained is 136.7 days. 

Table 6.4: Job Allocation (Combination-2) 

   
Machine No 

  
Sequence A B C D E F G H 

Job  
ID 

9493 1 1 0 1 0 0 0 1 0 
77358 2 0 1 0 0 1 0 0 1 
76526 3 1 0 0 1 0 0 0 1 
46896 4 1 0 1 0 0 0 0 1 
37304 5 0 1 0 0 1 0 1 0 
971 6 1 0 0 0 0 1 0 1 

98804 7 1 0 0 1 0 0 0 1 
22224 8 1 0 0 0 1 0 0 1 
45388 9 0 1 1 0 0 0 1 0 
51144 10 1 0 0 1 0 0 0 1 
52303 11 1 0 0 0 0 1 0 1 
79878 12 0 1 1 0 0 0 1 0 
6370 13 0 1 0 1 0 0 1 0 
19376 14 0 1 0 0 1 0 0 1 
40919 15 1 0 0 0 1 0 0 1 
22216 16 0 1 0 0 0 1 0 1 
15068 17 0 1 1 0 0 0 0 1 
41555 18 1 0 1 0 0 0 1 0 
6324 19 0 1 0 1 0 0 0 1 
21738 20 1 0 0 0 0 1 1 0 

 

From Table 6.1, it can be that this job assignment is obtained by giving second importance to 
tardiness. By comparing the required delivery date and completion time of each job, job IDs 
mentioned in Table 6.3, cannot be completed before the due date.  

 

Table 6.5: List of delay jobs (Combination -2) 

Job ID  Sequence Delay Job ID  Sequence Delay 
76526 3 12.7 98804 7 24.6 
46896 4 2.7 22224 8 26.4 
37304 5 16.8 51144 10 6 
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Figure 6.5: Job allocation in stage-1 (Combination-2) 

Figure 6.5 illustrates that according to job allocation from combination-2, in first stage the 
machine-1 (A) will process jobs in sequence- 1, 3, 4, 6, 7, 8, 10, 11, 15, 18, 20 in the given order 
and the machine-2 (B) will process jobs in sequence – 2, 5, 9, 12, 13, 14, 16, 17, 19 sequentially.  

 

Figure 6.6: Job allocation in stage-2 (Combination-2) 

Figure 6.6 illustrates that according to job allocation from combination-2, in first stage the 
machine-1 (C) will process jobs in sequence- 1, 4, 9, 12, 17, 18 in the given order; the machine-2 
(D) will process jobs in sequence – 3, 7, 10, 13, 19; the machine-3 (E) will process jobs in 
sequence – 2, 5, 8, 14, 15; the machine-4 (F) will process jobs in sequence – 6, 11, 16, 20  
sequentially. 
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Figure 6.7: Job allocation in stage-3 (Combination-2) 

Figure 6.7 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (G) will process jobs in sequence- 1, 5, 9, 12, 13, 18, 20 in the given order and the 
machine-2 (H) will process jobs in sequence – 2, 3, 4, 6, 7, 8, 10, 11, 14, 15, 16, 17, 19. 

 

Figure 6.8: PSO Plot (Combination-2) 

Figure 6.8 illustrates the PSO curve with the decreasing value of the objective function with 
each iteration and finally at iteration no 160 the algorithm terminates as there is no improvement 
in objective function value. 
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For combination 3, the job assignment is given in Table 6.6, and in each stage job assignments 
to each machine are illustrated respectively in Figure 6.9, Figure 6.10 and Figure 6.11. Figure 
6.12, represents the corresponding PSO curve with the best function value obtained of 176.18 
days. 

Table 6.6: Job Allocation (Combination-3) 

   
Machine No 

  
Sequence A B C D E F G H 

Job 
 ID 

9493 1 0 1 0 1 0 0 1 0 
77358 2 1 0 1 0 0 0 1 0 
76526 3 0 1 0 1 0 0 1 0 
46896 4 1 0 0 0 0 1 0 1 
37304 5 0 1 0 1 0 0 1 0 
971 6 0 1 1 0 0 0 0 1 

98804 7 0 1 0 0 1 0 0 1 
22224 8 0 1 1 0 0 0 0 1 
45388 9 0 1 1 0 0 0 1 0 
51144 10 1 0 0 0 1 0 0 1 
52303 11 0 1 0 0 0 1 0 1 
79878 12 1 0 0 1 0 0 0 1 
6370 13 1 0 0 1 0 0 1 0 
19376 14 1 0 0 0 1 0 1 1 
40919 15 1 0 0 0 1 0 0 1 
22216 16 1 0 0 0 0 1 1 0 
15068 17 1 0 0 0 0 1 0 1 
41555 18 1 0 0 0 0 1 1 1 
6324 19 1 0 0 0 1 0 0 1 
21738 20 0 1 1 0 0 0 0 1 

 

From Table 6.1, it can be that this job assignment is obtained by giving first priority to tardiness. 
By comparing the required delivery date and completion time of each job, job IDs mentioned in 
Table 6.7, cannot be completed before the due date. 

 

Table 6.7: List of delay jobs (Combination -3) 

Job ID  Sequence Delay Job ID  Sequence Delay 
76526 3 14.9 45388 9 3.1 
37304 5 42.7 6370 13 8.8 
98804 7 2.1 15068 17 9 
22224 8 8.8 41555 18 17.7 
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Figure 6.9: Job allocation in stage-1 (Combination-3) 

Figure 6.9 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (A) will process jobs in sequence- 2, 4, 10, 12, 13, 14, 15, 16, 17, 18, 19 in the given 
order and the machine-2 (B) will process jobs in sequence – 1, 3, 5, 6, 7, 8, 9, 11, 20 
sequentially. 

 

Figure 6.10: Job allocation in stage-2 (Combination-3) 

Figure 6.10 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (C) will process jobs in sequence- 2, 6, 8, 9, 20 in the given order; the machine-2 (D) 
will process jobs in sequence – 1, 3, 5, 12, 13; the machine-3 (E) will process jobs in sequence – 
7, 10, 14, 15, 19; the machine-4 (F) will process jobs in sequence – 4, 11, 16, 17, 18  
sequentially. 
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Figure 6.11: Job allocation in stage-3 (Combination-3) 

Figure 6.11 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (G) will process jobs in sequence- 1, 2,  3, 5, 9, 13, 14, 16, 18 in the given order and 
the machine-2 (H) will process jobs in sequence – 4, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20 
sequentially. 

 

Figure 6.12: PSO Plot (Combination-3) 

Figure 6.12 illustrates the PSO curve, where the value of the objective function is converging 
with each iteration and at iteration no 140 the algorithm terminates as there is no improvement in 
objective function value. 
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For combination 4, the job assignment is given in Table 6.8, and in each stage job assignments 
to each machine are illustrated respectively in Figure 6.13, Figure 6.14 and Figure 6.15. Figure 
6.16, represents the corresponding PSO curve with the best function value obtained of 112.87 
days 

Table 6.8: Job Allocation (Combination-4) 

   
Machine No 

  
Sequence A B C D E F G H 

Job 
 ID 

9493 1 0 1 0 1 0 0 0 1 
77358 2 1 0 1 0 0 0 0 1 
76526 3 0 1 1 0 0 0 0 1 
46896 4 0 1 0 0 1 0 1 0 
37304 5 0 1 0 0 1 0 0 1 
971 6 1 0 1 0 0 0 0 1 

98804 7 1 0 0 0 1 0 1 0 
22224 8 1 0 0 1 0 0 1 0 
45388 9 0 1 1 0 0 0 0 1 
51144 10 1 0 1 0 0 0 0 1 
52303 11 0 1 0 1 0 0 0 1 
79878 12 1 0 0 0 1 0 1 0 
6370 13 0 1 0 0 0 1 1 0 
19376 14 0 1 0 0 1 0 1 0 
40919 15 1 0 0 1 0 0 1 0 
22216 16 1 0 0 0 0 1 1 0 
15068 17 0 1 0 0 0 1 0 1 
41555 18 1 0 0 0 0 1 0 1 
6324 19 0 1 0 0 1 0 1 0 
21738 20 0 1 0 0 0 1 1 0 

 

From Table 6.1, it can be that this job assignment is obtained by giving less importance to 
tardiness. By comparing the required delivery date and completion time of each job, job IDs 
mentioned in Table 6.9, cannot be completed before the due date. In this case, the number of 
delay jobs is comparatively high though none of the jobs will be delayed more than 25 days. 

 

Table 6.9: List of delay jobs (Combination -4) 

Job ID  Sequence Delay Job ID  Sequence Delay 
76526 3 7.9 45388 9 6.7 
37304 5 24.4 51144 10 8.4 
971 6 17.5 52303 11 4.5 

98804 7 23.4 15068 17 2.2 
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Figure 6.13: Job allocation in stage-1 (Combination-4) 

Figure 6.13 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (A) will process jobs in sequence- 2, 6, 7, 8, 10, 12, 15, 16, 18 in the given order and 
the machine-2 (B) will process jobs in sequence – 1, 3, 4, 5, 9, 11, 13, 14, 17, 19. 

 

Figure 6.14: Job allocation in stage-2 (Combination-4) 

Figure 6.14 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (C) will process jobs in sequence- 2, 3, 6, 9, 10 in the given order; the machine-2 (D) 
will process jobs in sequence – 1, 8, 11, 15; the machine-3 (E) will process jobs in sequence – 4, 
5. 7, 12, 14, 19; the machine-4 (F) will process jobs in sequence – 13, 16, 17, 18, 20  
sequentially. 
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Figure 6.15: Job allocation in stage-3 (Combination-4) 

Figure 6.15 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (G) will process jobs in sequence- 4, 7, 8, 12, 13, 14, 15, 16, 19, 20 in the given order 
and the machine-2 (H) will process jobs in sequence – 1, 2, 3, 5, 6, 9, 10, 11, 17, 18 sequentially. 

 

Figure 6.16: PSO Plot (Combination-4) 

Figure 6.16 demonstrates the convergence of PSO curve where optimum function value is 
obtained at iteration 140. 
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For combination 7, the job assignment is given in Table 6.10, and in each stage job assignments 
to each machine are illustrated respectively in Figure 6.17, Figure 6.18 and Figure 6.19. Figure 
6.20, represents the corresponding PSO curve with the best function value obtained of 105.23 
days 

Table 6.10: Job Allocation (Combination-7) 

   
Machine No 

  
Sequence A B C D E F G H 

Job 
 ID 

9493 1 1 0 0 0 1 0 1 0 
77358 2 1 0 1 0 0 0 1 0 
76526 3 0 1 0 0 0 1 1 0 
46896 4 0 1 0 0 1 0 0 1 
37304 5 1 0 0 1 0 0 1 0 
971 6 1 0 0 0 1 0 0 1 

98804 7 0 1 0 1 0 0 0 1 
22224 8 0 1 1 0 0 0 0 1 
45388 9 1 0 1 0 0 0 1 0 
51144 10 0 1 0 0 1 0 0 1 
52303 11 0 1 1 0 0 0 0 1 
79878 12 1 0 0 0 0 1 0 1 
6370 13 1 0 1 0 0 0 0 1 
19376 14 0 1 0 0 1 0 0 1 
40919 15 0 1 0 1 0 0 1 0 
22216 16 1 0 0 0 0 1 0 1 
15068 17 0 1 0 0 0 1 0 1 
41555 18 1 0 0 1 0 0 1 0 
6324 19 1 0 0 1 0 0 1 0 
21738 20 1 0 0 0 1 0 1 0 

 

From Table 6.1, it can be that this job assignment is obtained by giving moderate importance to 
tardiness. By comparing the required delivery date and completion time of each job, job IDs 
mentioned in Table 6.9, cannot be completed before the due date. 

Table 6.11: List of Delay Jobs (Combination -7) 

Job ID  Sequence Delay 
76526 3 6 
37304 5 19.7 
971 6 0.4 

98804 7 21.3 
15068 17 11 
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Figure 6.17: Job allocation in stage-1 (Combination-7) 

Figure 6.17 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (A) will process jobs in sequence- 1, 2, 5, 6, 9, 12, 13, 16, 18, 19, 20 in the given 
order and the machine-2 (B) will process jobs in sequence – 3, 4 7, 8, 10, 11, 14, 15, 17 
sequentially. 

 

Figure 6.18: Job allocation in stage-2 (Combination-7) 

Figure 6.18 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (C) will process jobs in sequence- 2, 8, 9, 11, 13 in the given order; the machine-2 (D) 
will process jobs in sequence – 5, 7, 15, 18, 19; the machine-3 (E) will process jobs in sequence 
– 1, 4, 6, 10, 14, 20; the machine-4 (F) will process jobs in sequence – 3, 12, 16, 17  sequentially. 
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Figure 6.19: Job allocation in stage-3 (Combination-7) 

Figure 6.19 illustrates that according to job allocation from combination-1, in first stage the 
machine-1 (G) will process jobs in sequence- 1, 2, 3, 5, 9, 15, 18, 19, 20 in the given order and 
the machine-2 (H) will process jobs in sequence – 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17 
sequentially. 

 

Figure 6.20: PSO Plot (Combination -7) 

Figure 6.20 illustrates the PSO curve, where the value of the objective function is decreasing 
with each iteration and finally at iteration no 210 the algorithm terminates as there is no 
improvement in objective function value. 
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Figure 6.21: Pareto Front 

Figure 6.21, represents the value of the objective functions in 3D-Plot, using these points Pareto 
surface presented in Figure 6.22 is generated. 

 

Figure 6.22: Pareto Surface 
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6.2 Sensitivity Analysis 

In order to validate the proposed model sensitivity analysis is conducted by changing the number 
of jobs and examining its impact on make-span, tardiness, and efficiency. In Table 6.12 make-
span, tardiness and efficiency are given in days. From Figure 6.23, it is observed that make-span 
is in increasing trend with the increase in job number. It can be understood that if the job number 
is increasing make-span will increase with a fixed number of machines. Similarly in Figure 6.24 
and Figure 6.25 tardiness and machine idle time both are in increasing trend with the increase in 
job number for a fixed number of machines. For fewer jobs machine idle time is less because 
fewer jobs require less line change over, which results in less idle time. Consequently, less 
machine idle time leads to higher efficiency. So, with the increase in the number of jobs for a 
fixed number of machines, machine idle time increases comparatively resulting in a decreasing 
efficiency.  

Table 6.12: Change of Objective Function Values with Job Number Variation 

Number of 
Jobs 

Make-span Tardiness Machine 
Idle Time 

10 55 45.6 15 
12 64 57 30 
14 73 127 48.5 
16 88 147 56.5 
18 110 177 65 
20 112 181.95 69 

 

 

Figure 6.23: Make-span versus the number of jobs 
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Figure 6.24: Tardiness versus the number of jobs 

 

 

Figure 6.25: Machine idle time versus the number of jobs 

From the result analysis, it can be seen that job assignments changes with the different priority 
level of make-span, tardiness, and efficiency. Depending upon the scheduler's requirement 
priority level of the objectives can be changed to get the desired output. The result also gives an 
idea that if the job number can be reduced or the machine number can be increased better results 
can be obtained with fewer delay jobs and lower completion time of each job. This helps to 
provide an overview of available production capacity versus the required production capacity. 
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CHAPTER 7 : CONCLUSIONS AND FUTURE RESEARCH 
 

7.1 Conclusions 

The noteworthy contributions of the research work are given below: 

i. Developing a job classification model, that can classify jobs based on their priority level. 

In the production system, there is some associated qualitative and quantitative 

information for each job, which becomes quite difficult to address through existing 

scheduling algorithms, whereas, this information plays a vital role during job sequencing. 

The proposed job classification model developed by implementing SVM is capable to 

address the limitation of existing models, which is a major contribution of this work. 

ii. As mentioned in the literature review, hybrid flow shop scheduling is an NP-hard 

problem that is quite difficult to solve.  The model formulation is done in such a way that 

it has only two constraints and there is only one decision variable present. Adding to this, 

the scheduling model is also capable of reacting to uncertainties. 

iii. Finally, the job scheduling approach proposed in this thesis is a novel approach, where 

the computational time is relatively less compared to existing scheduling models. As the 

first step that involves job classification requires less computational effort. 

7.2 Future Research 

For future research work, this thesis can be modified by incorporating the following 

considerations: 

i. Incorporating the concept of green manufacturing, which can be done by considering 

energy consumption on the production floor.  

ii. Considering machine longevity, the current status of a machine, etc while calculating 

machine break-down probability. 

iii.  Furthermore, in this thesis, PSO is used to solve the scheduling problem, due to its 

efficacy and simplicity. However, other hybrid methods can be used to understand which 

algorithm offers a better result. As well as optimized weightage value for each objective 

can be used. 
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Appendix A 
 

Job classification result for model 1 to model 9: 

Job ID Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7 Model-8 Model-9 
971 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 

77358 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
45388 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
76526 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
9493 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
46896 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
98804 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
37304 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
41555 Minor Minor Moderate Minor Minor Minor Minor Minor Minor 
51144 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Moderate Moderate 
15068 Minor Minor Minor Minor Minor Minor Minor Minor Minor 
79878 Minor Minor Moderate Minor Minor Minor Moderate Moderate Moderate 
21738 Minor Minor Moderate Minor Minor Minor Minor Minor Minor 
19376 Minor Minor Moderate Minor Minor Minor Moderate Moderate Moderate 
6370 Minor Minor Moderate Minor Minor Minor Moderate Moderate Moderate 
22216 Minor Minor Moderate Minor Minor Minor Moderate Moderate Moderate 
22224 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
6324 Minor Minor Moderate Minor Minor Minor Minor Minor Minor 
40919 Urgent Urgent Urgent Urgent Urgent Urgent Moderate Moderate Moderate 
52303 Urgent Urgent Urgent Urgent Urgent Urgent Moderate Moderate Moderate 
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Job classification result for model 10 to model 18: 

Job ID Model-10 Model-11 Model-12 Model-13 Model-14 Model-15 Model-16 Model-17 Model-18 
971 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 

77358 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
45388 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
76526 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
9493 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
46896 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
98804 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
37304 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
41555 Minor Minor Moderate Minor Minor Minor Moderate Minor Minor 
51144 Moderate Urgent Urgent Moderate Urgent Urgent Urgent Urgent Urgent 
15068 Minor Minor Minor Minor Minor Minor Minor Minor Minor 
79878 Moderate Moderate Moderate Moderate Minor Minor Moderate Minor Minor 
21738 Minor Minor Minor Minor Minor Minor Moderate Minor Minor 
19376 Moderate Moderate Moderate Moderate Minor Minor Moderate Minor Minor 
6370 Moderate Moderate Moderate Moderate Minor Minor Moderate Minor Minor 
22216 Moderate Moderate Moderate Minor Minor Minor Moderate Minor Minor 
22224 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Minor Urgent 
6324 Minor Minor Moderate Minor Minor Minor Moderate Minor Minor 
40919 Moderate Moderate Urgent Moderate Urgent Urgent Urgent Urgent Urgent 
52303 Urgent Moderate Urgent Moderate Urgent Urgent Urgent Urgent Urgent 
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Job classification result for model 19 to model 26: 

Job ID Model-19 Model-20 Model-21 Model-22 Model-23 Model-24 Model-25 Model-26 
971 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 

77358 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
45388 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
76526 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
9493 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
46896 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
98804 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
37304 Urgent Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
41555 Minor Minor Minor Minor Minor Minor Moderate Minor 
51144 Urgent Urgent Moderate Moderate Moderate Urgent Urgent Moderate 
15068 Minor Minor Minor Minor Minor Minor Minor Minor 
79878 Minor Moderate Moderate Moderate Moderate Moderate Moderate Moderate 
21738 Minor Minor Minor Minor Minor Minor Minor Minor 
19376 Minor Moderate Moderate Moderate Moderate Moderate Moderate Moderate 
6370 Minor Moderate Moderate Moderate Moderate Moderate Moderate Moderate 
22216 Minor Moderate Moderate Moderate Moderate Moderate Moderate Minor 
22224 Minor Urgent Urgent Urgent Urgent Urgent Urgent Urgent 
6324 Minor Minor Minor Minor Minor Minor Moderate Minor 
40919 Urgent Moderate Moderate Moderate Moderate Moderate Urgent Moderate 
52303 Urgent Moderate Moderate Moderate Urgent Moderate Urgent Moderate 
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Appendix B 
Training data set for SVM: 

Job ID Ordered 
Quantity Customer Prod Lead 

Time (days) 
Value 

($) 
Line 

running 
Material 

Availability 
Priority 

Level 

95773 312 Europe 47 1941 Yes Available Moderate 

44475 330 Malaysia 35 1594 No Not available Moderate 

18109 378 Europe 24 2597 Yes Available Urgent 

4151 396 Bresil 35 1913 No Not available Moderate 

7142 396 Bresil 34 1913 No Not available Moderate 

6887 516 Bresil 40 3210 No Not available Moderate 

11107 546 Europe 31 3751 Yes Available Urgent 

21618 720 Europe 45 3326 Yes Available Moderate 

3581 726 Bresil 36 3507 Yes Available Moderate 

97807 726 Bresil 47 3507 No Not available Moderate 

49142 756 Europe 31 9866 Yes Available Urgent 

72126 760 Europe 17 10055 Yes Available Urgent 

24639 1716 America 31 8288 No Available Urgent 

90539 2004 Europe 21 26152 No Available Urgent 

71269 2046 Europe 15 9882 Yes Available Urgent 

73130 2046 Europe 17 9882 Yes Available Urgent 

73982 2160 Europe 18 9979 No Available Urgent 

73423 2178 Europe 18 28815 No Available Urgent 

55983 2652 Europe 38 16495 Yes Available Moderate 
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 Training data set for SVM: 

Job ID Ordered 
Quantity Customer Prod Lead 

Time (days) 
Value 

($) 
Line 

running 
Material 

Availability 
Priority 

Level 

55983 2652 Europe 38 16495 Yes Available Moderate 

95772 3888 Europe 47 24183 Yes Available Moderate 

13322 3902 Europe 17 51350 Yes Available Urgent 

14738 3960 Europe 45 18295 Yes Available Moderate 

86166 5490 Europe 16 25364 Yes Available Urgent 

9130 9036 Europe 46 187949 Yes Available Moderate 

36309 304 Europe 33 6278 Yes Available Moderate 

39705 330 Malaysia 32 1594 No Not available Moderate 

79135 360 Europe 19 4738 Yes Available Urgent 

98520 360 Europe 13 4738 Yes Available Urgent 

78068 590 Europe 19 7764 Yes Available Urgent 

79134 622 Europe 19 8186 Yes Available Urgent 

77829 624 Europe 19 8212 Yes Available Urgent 

39706 630 Malaysia 18 2911 Yes Available Urgent 

78070 652 Europe 19 8580 Yes Available Urgent 

78067 684 Europe 19 9001 Yes Available Urgent 

78750 726 Europe 12 9605 Yes Available Urgent 

79133 1772 Europe 19 23320 Yes Available Urgent 

98523 352 Europe 13 4657 Yes Available Urgent 
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Training data set for SVM: 

Job ID Ordered 
Quantity Customer Prod Lead 

Time (days) 
Value 

($) 
Line 

running 
Material 

Availability 
Priority 

Level 

98519 458 Europe 13 6027 Yes Available Urgent 

94131 738 Europe 18 9764 Yes Available Urgent 

2164 768 Europe 12 10161 Yes Available Urgent 

78749 1186 Europe 12 15691 No Available Urgent 

79132 2526 Europe 12 33242 Yes Available Urgent 

99486 7500 Europe 19 34650 No Available Urgent 

2150 400 Europe 73 6060 No Not available Moderate 

6376 554 Europe 74 8393 No Not available Moderate 

55245 300 Europe 17 1386 Yes Available Urgent 

51340 326 Morocco 22 4290 Yes Available Urgent 

47761 336 Europe 16 4445 Yes Available Urgent 

77830 524 Europe 38 6896 Yes Available Moderate 

37986 736 Europe 13 9737 Yes Available Urgent 

78069 756 Europe 39 9949 Yes Available Moderate 

14756 762 Europe 17 10028 Yes Available Urgent 

49186 777 Europe 16 5338 Yes Available Urgent 

55164 924 America 23 4463 Yes Available Urgent 

68004 992 Europe 11 13124 Yes Available Urgent 

35425 1056 Europe 46 23443 Yes Available Moderate 
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Appendix C 
 

Processing time without learning curve effect: 

  
                                               Machines 

  
A B C D E F G H 

Job 
ID 

9493 0.5 0.5 2 2.1 2.1 2.1 1.1 1.1 
77358 0.6 0.6 3.1 3 3 3.1 1.1 1 
76526 2.1 2.6 15 15.1 14 14.1 4.1 4.1 
46896 0.6 0.6 3.1 3.1 3 3 1 1 
37304 3.1 3.5 22.2 22.2 20.2 20.3 4 4.1 
971 0.5 0.5 3 3.1 3.1 3 1 1 

98804 1.1 1 9 8.9 8 7.9 2 2 
22224 0.6 0.5 3 3.1 3 3.1 1 1.1 
45388 0.5 0.5 3.1 3.1 3.1 3.1 1 1.1 
51144 0.6 0.5 5.1 5.1 5 5.1 1 1 
52303 3.1 3.5 28.8 28.4 26 26 4 4 
79878 1 1 9.1 8.9 8 7.9 1.5 1.6 
6370 1 1.1 13.1 13.1 11.7 12 1.5 1.6 
19376 1 1 13.2 13.1 12.2 12 1.5 1.5 
40919 1 1.1 12.1 12.2 12.1 12 1.6 1.5 
22216 1.1 1.1 14 13.9 13.1 13.2 1.5 1.6 
15068 1 1 6.1 6.1 5.1 5 1.6 1.6 
41555 0.6 0.5 3.1 3.1 3 3 1 1 
6324 0.5 0.5 3.1 3.1 3.1 3 1.1 1 
21738 1.1 1.1 9.1 9 9.2 9.1 1.6 1.6 
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Appendix D 
 

Processing time with learning curve effect: 

  
                                               Machines 

  
A B C D E F G H 

Job 
ID 

9493 0.6 0.5 6.1 6.1 7 7.2 1.1 1.1 
77358 0.5 0.6 7.1 7 7.9 8 1.1 1 
76526 2 2.6 22.2 22 22 22.1 4.1 4 
46896 0.6 0.6 7 7 8.1 8.1 1.1 1.1 
37304 3.1 3.5 32.1 31.7 28.2 27.8 4 4.1 
971 0.5 0.5 7 7 8.1 8.1 1.1 1.1 

98804 1.1 1 16.1 16.2 15.9 15.8 2.1 2 
22224 0.6 0.6 7 7 8 8.1 1.1 1.1 
45388 0.6 0.5 7.1 7 8 8.2 1 1 
51144 0.6 0.6 9.1 9 10.2 10.1 1 1.1 
52303 3.1 3.6 32.1 32.1 28.1 28 6.1 6 
79878 1.1 1.1 15.9 16.1 16.2 16.1 1.5 1.6 
6370 1 1.1 19.9 20 20.2 20 1.5 1.5 
19376 1.1 1.1 20.3 19.6 20.2 19.8 1.5 1.5 
40919 1.1 1 18.9 19.2 19.9 20.2 1.6 1.6 
22216 1 1 20.9 21.1 21.5 20.9 1.6 1.6 
15068 1 1 13.1 13.1 10.2 10.1 1.5 1.6 
41555 0.5 0.6 7 7.1 8.1 7.9 1 1 
6324 0.6 0.5 7 7.1 8 8.2 1.1 1 
21738 1.1 1.1 15.9 16.3 17.1 17.2 1.6 1.6 

 

 

 

 

 

 

 

 



 

97 
 

Appendix E 

Likert Scale to Select Criteria for the Job Classification: 

 Very 
Important Important Moderately 

Important 
Slightly 

Important 
Unimportant 

Order Value 1 2 3 4 5 

Available Production 
Lead Time 1 2 3 4 5 

Responsible 
Customer 1 2 3 4 5 

Customer Urgency 
Level 1 2 3 4 5 

Material Availability 
Status 1 2 3 4 5 

Product Type 1 2 3 4 5 

Production Status of 
Same Product 1 2 3 4 5 

Finished Goods 
Inventory Status 1 2 3 4 5 

Material Expiry Date 1 2 3 4 5 

Order Quantity 1 2 3 4 5 

 

Using this chart, among 9 criteria 6 criteria has been chosen.  The first 6 criteria that have been 
ranked ‘very important’ and ‘important’ by most responses have selected as features of the 
training data set of SVM. 

 

 


