
M. Engg. Project

Real Time Stress Alert for Drivers in Sound Polluted
Environment

Submitted by

Md. Ali Hossain

Student ID 0413052009

Supervised by
Dr. Mahmuda Naznin

Submitted to
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology
Dhaka 1000, Bangladesh

in partial fulfillment of the requirements for the degree of
Master of Engineering in Computer Science and Engineering

September 2019

Candidate’s Declaration

I, do, hereby, certify that the work presented in this project, titled, “Real Time Stress Alert for
Drivers in Sound Polluted Environment”, is the outcome of the investigation and research carried
out by me under the supervision of Dr. Mahmuda Naznin, Professor, Department of CSE, BUET.

I also declare that neither this project nor any part thereof has been submitted anywhere else for
the award of any degree, diploma or other qualifications.

Md. Ali Hossain

0413052009

i

The project titled “Real Time Stress Alert for Drivers in Sound Polluted Environment”,
submitted by Md. Ali Hossain, Student ID 0413052009, Session April 2013, to the Department
of Computer Science and Engineering, Bangladesh University of Engineering and Technology,
has been accepted as satisfactory in partial fulfillment of the requirements for the degree of
Master of Engineering in Computer Science and Engineering and approved as to its style and
contents on September 15, 2019.

Board of Examiners

1.
Dr. Mahmuda Naznin Chairman
Professor (Supervisor)
Department of CSE, BUET, Dhaka

2.
Dr. Md. Mostofa Akbar Member
Professor
Department of CSE, BUET, Dhaka

3.
Dr. A. B. M. Alim Al Islam Member
Associate Professor
Department of CSE, BUET, Dhaka

ii

Acknowledgement

I would like to express my deep sense of gratitude to my supervisor, Dr. Mahmuda Naznin, for
introducing me the interesting domain of remote health monitoring and teaching me how to
perform research works. This project could not be accomplished without her invaluable help and
guidance throughout the course. She constantly encouraged me to continue the research. I am
grateful to her for giving me support and confidence.

Dhaka
September 15, 2019

Md. Ali Hossain
0413052009

iii

Contents

Candidate’s Declaration i

Board of Examiners ii

Acknowledgement iii

List of Figures vi

Abstract viii

1 Introduction 1
1.1 Stress . 1
1.2 Sound Pollution . 2

1.2.1 Effects of Sound Pollution . 3
1.3 Organization . 3

2 Related Work 5
2.1 Heart Rate Variability (HRV) . 5
2.2 Stress Detection . 9
2.3 Background Study . 9

3 System Design 14
3.1 System Architecture . 14
3.2 Design . 14

3.2.1 Part 1: Data Collection . 15
3.2.2 Part 2: Data Analysis . 17
3.2.3 Part 3: Alert System . 17

4 Experimental Results 18

5 Conclusion and Future Direction 31

References 32

iv

6 Codes 34
6.1 Database Helper Class . 34
6.2 Location Helper Class . 38
6.3 Profile Class . 40
6.4 Main Program Class . 45

v

List of Figures

2.1 Heart Rate Variability [1] . 6
2.2 QRS Complex [1] . 6
2.3 Sequence of applied methods [2] . 10
2.4 Components of the system [5] . 11
2.5 Process of the system [6] . 12
2.6 Block diagram of the proposed system [21] 12
2.7 System architecture of the proposed system [7] 12

3.1 Proposed system architecture . 14
3.2 Implementation steps. 15
3.3 Location data collection route map . 16

4.1 Stress alert application screen shots . 18
4.2 Drivers profile data . 19
4.3 AC bus driver 1 - heart rate vs sound level . 19
4.4 Leguna driver 2 - heart rate vs sound level . 20
4.5 Bus driver 3 - heart rate vs sound level . 20
4.6 Bike driver 4 - heart rate vs sound level . 21
4.7 Bus driver 5 - heart rate vs sound level . 21
4.8 Leguna driver 6 - heart rate vs sound level . 22
4.9 Bus driver 7 - heart rate vs sound level . 22
4.10 Bus driver 8 - heart rate vs sound level . 23
4.11 Car driver 9 - heart rate vs sound level . 23
4.12 Truck driver 10 - heart rate vs sound level . 24
4.13 Truck driver 11 - heart rate vs sound level . 24
4.14 Bus driver 12 - heart rate vs sound level . 25
4.15 AC Car driver 13 - heart rate vs sound level 25
4.16 Bus driver 14 - heart rate vs sound level . 26
4.17 Bike driver 15 - heart rate vs sound level . 26
4.18 Bus driver 16 - heart rate vs sound level . 27
4.19 Bus driver 17 - heart rate vs sound level . 27
4.20 Bus driver 18 - heart rate vs sound level . 27

vi

4.21 Vehicle speed on heart rate of drivers . 28
4.22 Skin temperature on heart rate of drivers . 28
4.23 Sound on heart rate of drivers . 29
4.24 Drivers stress state and system generated state 29
4.25 Performance evaluation . 30

vii

Abstract

Stress is one of the primary reasons of road accidents while driving. Sound
pollution causes critical impact on the physiological condition, it decreases
concentration, and increases the stress levels. Development of technologies for
recognizing stress is a noteworthy challenge in the field of accident evasion systems.
This research presents stress level identification of a driver during sound polluted
environment. A model of stress identification has been designed utilizing individual
level on drivers physical states, and impacts on the levels of stress. The proposed
stress detection model detects stress by periodically collecting heart rate interval
data, and skin temperature data through sensors in the smart watch, movement
pattern data through location information, and sound levels data through in the smart
phone. If Heart Rate Variability value generated from Electrocardiogram signal is
less than a threshold value then stress is detected. If the stress level is high, then
system will provide a safety alert, which helps drivers for safe driving.

viii

Chapter 1

Introduction

Safe driving requires driver’s mental and physical health stability and as well as drivers fitness
[4]. Stress decreases driving ability and causes accidents while driving [5][6]. Therefore, stress
detection is important to improve drivers’ awareness and performance, which is fundamental
for road and traffic safety [2]. The significance of drivers stress analysis has been possible with
on health sensors [8][10]. Different biological factors, like ECG signal has been approved as a
stress measurement metrics [7]. In driving period, mental stress can be computed from Heart
Rate Variability (HRV) [1][9].

Sound pollution causes severe impact on the quality of life and health ailments, such as
cardiovascular tribulations, high blood pressure, increased levels of diabetes, changes in social
behavior. It induces the burdensome tendencies, decreases concentration, increases the stress
levels and psychological problems [3][12][13]. In this project, the impact of sound pollution on
drivers mental states has been analyzed. We try to put alert if stress level gets higher for a driver.
Moreover, when drivers stress levels are high, safety alerts are provided which may help drivers
to concentrate on better driving and also to honk less at the other vehicles. It helps in two major
ways. One to help for safe driving and to help to reduce sound pollution.

1.1 Stress

Drivers stress is main causal factors behind road accidents. To diminish the number of road
accidents, it is important to monitor driver and driving behavior and to give alert to the driver
when he or she is in stressful state. In addition, if it were potential to predict unsafe driving
behaviors prior to, this is able to contribute to safe driving. As per one report, the amount of
car crashes would be reduced by 10-20 percent by monitoring and foreseeing driver and driving
behaviors [4]. A dependable and robust drivers’ stressful mental state detection system would
send an alert to the driver and thus reduce the number of dangerous circumstances on the road.

1

1.2. SOUND POLLUTION 2

We already mentioned that, if it were possible to identity risky driving behavior in advance, this
would also be useful in preventing road accidents [7]. Thus, it is attractive to design a system to
extract the behavorial model of drivers and to find the impact of the noise.

Stress detection systems have been developed to notify driver risk condition which is based
on the degree of stress during real driving. In order to identify this physiological condition
many methods have been used like eye glance and on-road metrics, but these methods have
been criticized as very costly and are usually difficult to obtain [5]. In the alternative hand,
physiological signal analysis, particularly using electrocardiogram (ECG) signal, has been valid
as a good way to find completely different physiological conditions. ECG signal has been
characterized as reliable, accurate and non-invasive indicator. Many researchers have shown that
among diverse physiological signals, heart rate variability (HRV) analysis to observe the influence
on autonomic nervous system existed in the human body [1][2]. The autonomic nervous system
(ANS) is decomposed into sympathetic nervous system (SNS) and parasympathetic nervous
system (PSNS) elements. Imbalance between these two systems will be associate indicators of
physiological variation mirrored in HRV measurements.

1.2 Sound Pollution

Sound pollution is an unnecessary sound and significant form of energy, which is emitted by
a vibrating body and on reaching the ear causes sensation of hearing through nervous system.
The sound pollution generally consists of three inter-related elements - the source, receiver and
transmission path followed by the sound to reach receiver. This transmission path is typically the
atmosphere through that sound is propagated. However, it will embody structural materials of
any building containing the receiver. The sound pollution is an unwanted sound that may cause
some psychological and physical stress to the living and non-living objects exposed to it.

Sound pollution is considered as one of the major problems of urban communities that has
numerous hazardous impacts on the urban environment and may result in a great deal of costs
on the society. The increasing ranges of vehicles, musical instruments, tiny scale industries,
urbanization and human activities area unit the most sources of sound pollution. Sound pollution

refers to a sound without agreeable musical quality or as an unwanted or undesired sound. The
sound pollution is commonly measured as sound intensity that is determined in terms of the
pressure of sound waves on the eardrums, and the scale is logarithmic. Loudness of sound
coincides to the degree of sensation depending on the power of sound and sensitivity of ear. The
unit of sound intensity activity is Decibel (dB) and every dB rise depicts ten-fold increase in
sound intensity. Sound pollution causes environmental pollution and is a cause of human health
hazards [12].

1.3. ORGANIZATION 3

1.2.1 Effects of Sound Pollution

Due to sound pollution, the disorders of human, animal and plant bodies are described in the
following lines [12]:
Human Efficiency - Regarding the impact of sound pollution on human efficiency there are
number of experiments, which shows that the human efficiency decreases with the increase of
sound pollution and it increases with the reduction of sound pollution.
Lack of Concentration - For better quality of work there should be concentration, sound
pollution causes lack of concentration. Mostly all the offices are on main road and the sound
pollution of traffic or the loud speakers of diverse types of horns, divert attention of people
working in the offices.
Memory Loss - The effects of excessive sound pollution could be so severe that either there is
a permanent loss of memory or a psychiatric disorder.
Fatigue - Because of sound pollution, people cannot concentrate on their work. Thence they
spent longer for finishing the work and that they expertise exhaustion. It creates fatigue.
Digestion Problem - The digestion, stomach contractions, flow of saliva and gastric juices all
stop proper working due to the high frequency of sound pollution, because the changes are so
marked, repeated exposure to astonishing sound pollution should be kept to a minimum.
Blood Pressure Problem - Sound pollution causes certain diseases in human sue to traffic
sound pollution such as the headache, high blood pressure and other stresses among the exposed
individuals.
Deafness Disaster - The effect of sound pollution on audition is well recognized. Mechanics,
locomotive drivers, telephone operators etc., all have their hearing impairment as a result of
sound pollution at the place of work. Physicians and psychologists are of the view that sustained
exposure to sound level above 80 to 100 dB is risky and thunderous sound pollution causes
temporary or permanent deafness.
Hypertension - Relatively low level of sound pollution affects human health adversely and it
may cause hypertension, disrupt sleep and or hinder cognitive development in children.

Impact on Animals - Sound pollution damage the nervous system of animals. They lose
management of the mind and should become dangerous.

Impact on Plants - Sound pollution causes poor quality of crops even in a pleasant atmosphere.

1.3 Organization

The rest of the project is organized as follows: Chapter 2 presents a brief discussion on related
work. Chapter 3 presents system design and implementation. Chapter 4 presents experimental
results. Conclusion is given in Chapter 5.

Stress claims lose in health, productivity and financial prospect. We find this as motivational

1.3. ORGANIZATION 4

factor behind this study on automatic stress detection and development of effective alert system.
Therefore, the objective of this research project are:

1. To detect if there is any relation of sound pollution on drivers physiological and
psychological states.

2. To monitor stress levels of drivers in sound polluted environment.

3. To provide real-time stress alert if there occurs any stress sign.

Chapter 2

Related Work

In this chapter, we talk about some projects related to stress and the impact on driving.

2.1 Heart Rate Variability (HRV)

HRV refers to the variations within the beat intervals or correspondingly within the instant
HR. Heart Rate Variability (HRV) is additionally acquainted as ”cycle length variability”, ”RR
variability” (where R may be a point reminiscent of the height of the QRS complex of the ECG
wave; and RR is that the interval between ordered Rs), and ”heart period variability”. It is the
physiological phenomenon of variation within the measure between heart beats. The degree of
variability within the HR provides information about the functioning of the nervous control on
the HR and also the heart’s ability to respond [15]. Heart Rate Variability is measured by the
variation within the beat-to-beat interval. Methods accustomed to detect beats include: ECG,
blood pressure, ballistocardiograms, and the pulse wave signal derived from a photo-plethysmo-
graph (PPG). ECG is taken into account superior because it provides a clear waveform, which
makes it easier to exclude heartbeats not originating within the sinoatrial node. The term ”NN” is
employed in place of RR to stress the fact that the processed beats are ”normal” beats. HRV will
be evaluated by variety of methods which can be classified in two major types: Time Domain
Methods and Frequency Domain Methods.

Time Domain Methods In time domain methods, either the heart rate at any purpose in time
or the intervals between ordered normal complexes are determined. In a very continuous ECG
record, every QRS complex (Figure 2.2) is detected, and therefore the normal-to-normal (NN)
intervals of the instantaneous heart rate is set. Time Domain Methods area unit analysed to
calculate variables such as:

• SDNN: The quality deviation of NN intervals. SDNN is commonly calculated over a
24-hour period. SDANN- the quality deviation of the typical NN intervals calculated

5

2.1. HEART RATE VARIABILITY (HRV) 6

Figure 2.1: Heart Rate Variability [1]

Figure 2.2: QRS Complex [1]

over short periods, typically five minutes. SDANN is thus a measure of changes in heart
rate due to cycles longer than five minutes. SDNN reflects all the cyclic parts liable for
variability within the period of recording, thus it represents total variability. Equation 2.1
provides the formula to calculate SDNN.

SDNN =

√√√√ 1

N − 1

N∑
n=2

[I(n) − Ī]2 (2.1)

2.1. HEART RATE VARIABILITY (HRV) 7

Here N is that the Total number of heart beats over the time period and Ī is that the mean
of RR intervals; calculated as:

Ī =
1

N − 1

N∑
n=2

I(n) (2.2)

• RMSSD: RMSSD is the Root mean square of successive differences. RMSSD is that the
square root of the mean of the squares of the successive differences between adjacent NNs.
It provides estimate of short parts of HRV. RMSSD is set as:

RMSSD =

√√√√ 1

N − 1

N−1∑
n=1

[I(n) − I(n + 1)]2 (2.3)

• SDSD: Standard deviation of successive differences. SDSD provides the quality deviation
of the serial variations between adjacent NNs.

• NN50: The quantity of pairs of serial NNs that dissent by over fifty ms.

• pNN50: The proportion of NN50 divided by total number of NNs.

• NN20: The quantity of pairs of serial NNs that dissent by over twenty ms.

• pNN20: The proportion of NN20 divided by total range of NNs.

• EBC: Estimated breath cycle. EBC is usually provided in knowledge acquisition
eventualities wherever HRV feedback in real time is a primary goal. EBC is that the
range (max-min) within a moving window of a given time duration within the study period.
The windows will move in in an exceedingly self-overlapping method or be strictly distinct
(sequential) windows. EBC derived from over ten seconds and sixteen seconds ordered
and overlapping windows has been shown to correlate extremely with SDNN.

While SDANN and SDNN estimates long term components and overall HRV respectively, for
estimation of short term components RMSSD is treated as a useful measure [16].

Frequency Domain Methods
Frequency domain HRV metrics are supported on the calculable power spectral density (PSD) of
the NN (normal to normal RR) intervals. These strategies assign bands of frequency and then
count the number of NN intervals that match every band. The common definition of bands [17]
are as follows:

2.1. HEART RATE VARIABILITY (HRV) 8

Total HRV power 0 - 0.5 Hz
Ultra-low frequency (ULF) power 0 - 0.0033 Hz

Very low frequency (VLF) power 0.0033 - 0.04 Hz

Low frequency (LF) power 0.04 - 0.15 Hz

High frequency (HF) power 0.15 - 0.4 Hz

Very high frequency (VHF) power 0.4 - 0.5 Hz

In addition, the LF/HF quantitative relation is usually cited as a parameter of interest. In healthy
adults, the LF/HF quantitative relation is often between 1.5 and 4.5. Several methods of frequency
domain analysis are in follow. Power spectral density (PSD), using parametric or non-parametric
methods, provides basic information on the power distribution across frequencies. one in every
of the foremost ordinarily used PSD methods is that the discrete Fourier transform. Methods
for the calculation of PSD could also be usually classified as non-parametric and parametric. In
most instances, each methods provide comparable results.

The convenience of the non-parametric methods are:

1. In in-depth cases Fast Fourier Transform [FFT] is customized. The simplicity of the
algorithm is one of the advantages of this methodology.

2. The high transform speed.

On the opposite hand the benefits of parametric methods are:

1. Smoother spectral components that can be distinguished independent of pre-selected
frequency bands.

2. Easy post process of the spectrum with associate degree calculation of low and high-
frequency power parts with a simple identification of the central frequency of of every
element.

3. Accurate estimation of PSD even on a tiny low variety of samples on that the signal is
meant to keep up stationery.

The basic disadvantage of parametric methods is that the want of verification of the quality of
the chosen model and of its complexion(that is, the order of the model). Along with classical
FFT-based methods used for the calculation of frequency parameters, a additional appropriate
PSD estimation technique is that the Lomb–Scargle (LS) periodogram [17]. Analysis has shown
that the LS periodogram can turn out a extra correct estimate of the PSD than FFT methods
for typical RR data. Since the RR knowledge is an inconsistently sampled knowledge, another
advantage of the LS technique is that in distinction to FFT-based methods it is ready to be used
without the ought to re-sample and deterrent the RR data [18].

2.2. STRESS DETECTION 9

2.2 Stress Detection

Several studies indicate that HRV can be a useful indicator to understand psychological state
of drivers. In our study we have considered, [19] as base values to detect stress. The HRV is
measured exploitation sensing element data provided by smart watch. As a sample we have
used Microsoft Band 2 [11] which reads Heart Rate, Heart Rate Interval, Skin Temperature as
long as the driver is wearing the band. To receive the R-R Interval, an Android application has
been developed. Initially after informing the drivers about some basic information figure 4.1 the
application asks to provide a few demographic information of the drivers, i.e. name, age, vehicle
type, gender etc. The UI of the profile creation is illustrated in figure 4.1. Once the profile is
made, the user is asked for Heart Rate Interval subscription consent by the appliance. Once
the user grants permission, the application continues reading R-R interval data in background.
RMSSD is calculated over 20 RR interval readings, and this gives one stress reading according
to the experimental result of Agelink et al. [19]. After taking such readings, if the drivers found
any stress sign, an alert will be populated.

This application automatically detects stress without any active participation of the drivers.
Privacy of the drivers personal information is fully protected, as the system does not upload
any data to any remote server. Therefore it does not require internet connection either. Such
automated systems can be of use in monitoring patients with stress who are forgetful of their
personal well-being. There is a provision to store stress history in the application database, which
can be helpful for the drivers state. Again, this history are often viewed solely with consent
of the account possessor. At present the system considers only HRV as indicator of stress and
detects stress according to reference RMSSD value of HRV. We have future plan to add more
indicators according to our study outcome, and we also plan to make the system context adaptive
incorporating machine learning methodologies.

2.3 Background Study

Identification of stress depends on heart rate variability (HRV) examination which is gotten from
ECG signal, and reflects autonomic nervous system condition of the human body. The change of
autonomic nervous system predicts the feeling of anxiety of drivers during driving activity and
permits a safe driving by the probability of an early cautioning. This stress, occurring during
driving, is caused by assorted factors, for example, evolving disposition, bio rhythm, weariness,
fatigue or ailment which can keep the driver from arriving at unseemly state for driving. The
ECG sign of the driver is extracted and preprocessed so as to play out the HRV examination. This
investigation is accomplished utilizing one of the domain investigation approach, for example,
time, frequency, time-frequency or non-linear methods including Wavelet and STFT. After HRV

2.3. BACKGROUND STUDY 10

examination, a few parameters are separated to fabricate a vector of highlights for the order stage.
Authors experimentation is performed with information issued from 16 unique subjects from
the Stress Recognition in Automobile Driver database (DRIVEDB). A few order systems were
examined including support vector machine with radial basis function (SVM-RBF) bit, K nearest
neighbor (KNN), and radial basis function (RBF) classifiers. Authors results show that pressure
identification could be anticipated with a precision of 83 percent utilizing SVM-RBF classifier.
This likewise calls attention to the power of ECG biometric as an exact physiological pointer of
a driver state. Figure 2.3 shows the sequence of applied methods of the system [2].

Figure 2.3: Sequence of applied methods [2]

Evaluating 10 to 30 percent of street fatalities are identified with drowsy driving or driver fatigue.
Drivers drowsiness identification dependent on natural and vehicle sign is being considered
in preventive vehicle wellbeing. Autonomous Nervous System (ANS) action, which can be
estimated non-intrusively from the Heart Rate Variability (HRV) signal acquired from surface
ECG, presents changes during pressure, outrageous weakness and drowsiness scenes. Authors
speculation is that these modifications show on HRV. Authors build up an on-line locator of
drivers drowsiness in view of HRV investigation. Two databases have been investigated: one of
driving recreation in which subjects were restless, and the other of genuine circumstance with no
lack of sleep. An outer onlooker commented on every moment of the accounts as sluggish or
wakeful, and establishes creators reference. The proposed indicator arranged sluggish minutes
with an affect ability of 0.85 what’s more, a prescient positive estimation of 0.93, utilizing 25
highlights. Figure 2.4 shows the components of the system [5].

2.3. BACKGROUND STUDY 11

Figure 2.4: Components of the system [5]

Presenting techniques by authors for gathering and analyzing physiological information
during genuine world driving undertakings is to decide a drivers relative feeling of anxiety.
Electrocardiogram, electromyogram, skin conductance and breath were recorded persistently
while drivers pursued a set course through open streets in the more noteworthy Boston region.
Information from twenty four drives of in any event fifty minute term were gathered for
examination. The information were broke down in two different ways. Investigation one
utilized highlights from five moment intervals of information during the rest, parkway and city
driving conditions to recognize three degrees of driver worry with an exactness of more than
97 percent over various drivers and driving days. Examination two thought about constant
highlights, determined at one second intervals all through the whole drive, with a measurement
of noticeable stressors made by autonomous coders from video tapes. The outcomes demonstrate
that for most drivers considered, skin conductivity and pulse measurements are most firmly
corresponded with driver anxiety. These discoveries demonstrate that physiological sign can
give a measurement of driver stress in future vehicles equipped for physiological checking. Such
a measurement could be utilized to help oversee non-basic in-vehicle data frameworks and could
likewise give a nonstop proportion of how unique street and traffic conditions influence drivers.
Figure 2.5 shows the process of the system [6].

Drowsiness of Drivers is one of the fundamental causes of traffic collisions. Driver fatigue
is a noteworthy factor in countless vehicle collisions. The advancement of innovations for
identifying or averting drowsiness in the drivers seat is a noteworthy test in the field of accident
avoidance systems. Because of the peril that drowsiness displays out and about, techniques
should be created for checking its effects. Authors portray an ongoing non-meddlesome strategy
for distinguishing drowsiness of driver. It utilizes webcam to procure video pictures of the driver.
Visual highlights like mouth and eyes which are ordinarily describing the languor of the driver
are extracted with the assistance of picture preparing procedures to recognize drowsiness. Figure
2.6 shows the block diagram of the proposed system [21].

2.3. BACKGROUND STUDY 12

Figure 2.5: Process of the system [6]

Figure 2.6: Block diagram of the proposed system [21]

Figure 2.7: System architecture of the proposed system [7]

Authors bargain about the structuring and advancement of a driver alert system dependent on EKG
signals to recognize the driver drowsiness and in this manner to lessen accident rate. Conductive
sensor connected to the hand which constantly screen drivers pulse and disperse cautioning
message through mail and SMS to the proprietor or particular expert. The structure framework
contains four parts including signal acquisition unit, signal conditioning unit processing unit and
Message delivery system. The sign obtained from the conductive plate contains commotions.
Evacuation of the clamor signals from the ECG sign is significant and basic. One of the original
thoughts in the work is the advancement of conductive sensor utilizing conductive plates and

2.3. BACKGROUND STUDY 13

incorporated sign molding module AD8232 to quantify the pulse. Utilization of a coordinated
sign molding module makes the framework little and practical. Authors utilize a Tiva C series
micro-controller for processing unit and Raspberry-pi as message delivery system. Mail and
message sending highlights of the framework causes the particular specialist to take quick
activities. Improvement can be done to the framework by including the GPS usefulness for
tracking the area of vehicle. Figure 2.7 shows the system architecture of the proposed system [7].

Chapter 3

System Design

In this chapter, we provide the details of our designed system and the steps of implementation.

3.1 System Architecture

Here, we provide the details of our designed system architecture.

Figure 3.1: Proposed system architecture

The model in the above figure is divided in to three parts, one data is collected from different
sensors, data is processed through an android application, and the alert output is generated to
alert the driver. We provide the detail design as follows.

3.2 Design

In this section, we provide the detail design. It is clear that, psychological condition of an
individual is cogitated in several day-to-day manner and activities. We have planned to design a
real time stress alert for drivers in sound polluted environment involving three parts such as 1.
Data Collection, 2. Data Analysis, and 3. Providing Alerts.

14

3.2. DESIGN 15

Figure 3.2: Implementation steps.

In Figure 3.2, we find that the system collects data of drivers from the wearable devices. Android
application processes the collected data and provide messages.

3.2.1 Part 1: Data Collection

In our system, data will be gathered from smart wearable device and smart phone. The smart
wearable device recurrently collects drivers physiological data. Smart wearable device and smart
phone are provided with these data on the following:

• Heart Rate Data: A study guided by Harvard Medical School [14] shows that,
cardiovascular system is directly influenced by mind and mood. Psychological states
like anxiety, depression etc. make a condition of emergency readiness, which results in
hormone levels rise, blood vessels constrict, and heartbeat speed up. If an individual is
seriously anxious, the emergency response becomes constant. Eventually, it damages the
blood vessels and makes the heart less sensitive to signals telling it to slow down or speed
up as the body’s demands change. Our proposed system will monitor these deviations and
try to detect stress from the heart rate data [1].

3.2. DESIGN 16

• R-R Interval Data The ECG of healthy individuals inspect periodic variation in R-R
Intervals the beat to beat variation in either heart rate or the duration of the R-R Interval.
QRS detection was achieved with the optimized Pan and Tompkins method explained, and
R-R Intervals were obtained.

• Skin Temperature Data Our system is designed to track the skin temperature data
measured in degree Celsius.

• Latitude Data The angular distance of a place North or South of the earth’s equator. Our
system is designed to track location data with a view to identify the change the vehicle
speed. Our study data are collected from latitude 23.902225 to latitude 23.922030. Figure:
3.3 shows the data collection route map.

• Longitude Data The angular distance of a place East or West of the earth’s equator. Our
system is designed to track location with a view to identify the change the vehicle speed.
Our study data are collected from longitude 90.412807 to longitude 90.433661. Figure:
3.3 shows the data collection route map.

Figure 3.3: Location data collection route map

• Speed Data Our system is designed to calculate vehicle speed from location data measured
using kilometers per hour (km/h) using smart phone.

3.2. DESIGN 17

• Sound Data Our system is designed to keep record sound levels data measured using
decibel (dB) using smart phone.

• Time Data Our system is designed to keep record times data using smart phone.

3.2.2 Part 2: Data Analysis

Smart wearable device periodically collects data on physical parameters, these data will be sent
to the synchronized smart phone, where it will be analyzed to identify specific patterns indicating
stress. Once the system detects stress, it triggers the alert system. In the same time, the system
keeps record of stress to identify the severity of stress and initiates adaptive alert mechanisms.
In the same time, the system keeps the record of the sound levels in Decibel (dB), location
data point of latitude and longitude, it calculates vehicle speed from location over time. All of
analysis working procedure query are executed in Microsoft SQL Server.

3.2.3 Part 3: Alert System

The alert system might need rigorous calibration. An Android application is designed to act
according to the level of stress. If stress level is high then system will provide safety alerts. If
stress level is high and speed is high then system will provide safety alerts. If stress level is high
and the speed is high and sound level is high then system provides safety alerts.

Chapter 4

Experimental Results

In this chapter, we record data, we analyze and report the results what we have found. In the
following figure our alert system is shown.

Figure 4.1: Stress alert application screen shots

To evaluate correctness of the system we have designed an experimental setup. We conducted
our research experiment of the system on 18 drivers and at the same time have assessed their
psychological condition with an established scale [20]. Finally we have compared outcome of
drivers stress status and our system status to measure accuracy of our system.

Drivers: We collected data from 18 drivers and took their consent to conduct the experiments.
We approached all of them in person and assured them that the experiment will be completely

18

19

anonymous and none of their personal information will be shared with anyone. All of them
agreed and co-operated. Figure 4.2 shows the age range of the drivers is 28-48 and all of them
are male. All of the drivers were sound both mentally and physically and were not consuming
any anti-depressant medication.

Figure 4.2: Drivers profile data

Experiment setup: The experiment was run on each drivers for at least 30 minutes. For these
30 minutes the put on the smart-watch which is synchronized with an android phone. The
smart-watch collected Heart Rate Interval of the drivers and sent the data to the smart phone via
Bluetooth. The HRV was calculated taking 20 consecutive Heart Rate Interval readings. We
considered 20 consecutive HRV values to determine psychological state of the drivers without
relaxing quality of performance of the system. If the system detects in the range below the
standard value according to [19] drivers will be considered stressful by the system.

Figure 4.3: AC bus driver 1 - heart rate vs sound level

Figure 4.3 shows the ac bus driver 1 started his journey from location 23.900766, 90.411121 to

20

23.917483, 90.429974 and time from 6/24/2019 7:42:23 pm to 6/24/2019 8:01:00 pm. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 85 to 89 db and heart rate range was 87 to 91 bpm. We
examined, when sound level is increased then heart rate also increased.

Figure 4.4: Leguna driver 2 - heart rate vs sound level

Figure 4.4 shows the leguna driver 2 started his journey from location 23.902225, 90.412807
to 23.868478, 90.403312 and time from 6/17/2019 8:57:02 am to 6/17/2019 9:21:05 am. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 88 to 90 db and heart rate range was 91 to 100 bpm. We
examined, when sound level is increased then heart rate also increased.

Figure 4.5: Bus driver 3 - heart rate vs sound level

Figure 4.5 shows the bus driver 3 started his journey from location 23.901583, 90.410153 to
23.921083, 90.430154 and time from 6/25/2019 9:08:15 am to 6/25/2019 9:22:30 am. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in

21

decibel (dB). Here, sound range was 90 to 90 db and heart rate range was 95 to 100 bpm. We
examined, sound level is fixed and heart rate is up and down.

Figure 4.6: Bike driver 4 - heart rate vs sound level

Figure 4.6 shows the bike driver 4 started his journey from location 23.869297, 90.400368 to
23.871526, 90.401591 and time from 6/17/2019 7:28:36 pm to 6/17/2019 7:40:32 pm. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 81 to 89 db and heart rate range was 86 to 93 bpm. We
examined, when sound level is increased then heart rate also jumped.

Figure 4.7: Bus driver 5 - heart rate vs sound level

Figure 4.7 shows the bus driver 5 started his journey from location 23.906602, 90.414853 to
23.916802, 90.416854 and time from 6/18/2019 8:42:34 am to 6/18/2019 8:57:21 am. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 84 to 90 db and heart rate range was 91 to 102 bpm. We

22

examined, when sound level is increased then heart rate also increased.

Figure 4.8: Leguna driver 6 - heart rate vs sound level

Figure 4.8 shows the leguna driver 6 started his journey from location 23.922381, 90.435189
to 23.906602, 90.414853 and time from 6/18/2019 8:23:47 am to 6/18/2019 8:37:18 am. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 84 to 90 db and heart rate range was 91 to 99 bpm. We
examined, when sound level is increased then heart rate also increased.

Figure 4.9: Bus driver 7 - heart rate vs sound level

Figure 4.9 shows the bus driver 7 started his journey from location 23.900766, 90.411121 to
23.917483, 90.429974 and time from 6/18/2019 7:42:23 pm to 6/18/2019 8:01:00 pm. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 81 to 89 db and heart rate range was 88 to 91 bpm. We
examined, when sound level is increased then heart rate also increased.

23

Figure 4.10: Bus driver 8 - heart rate vs sound level

Figure 4.10 shows the bus driver 8 started his journey from location 23.897893, 90.409205 to
23.922030, 90.433661 and time from 6/25/2019 7:34:37 pm to 6/25/2019 8:00:35 pm. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 88 to 90 db and heart rate range was 91 to 99 bpm. We
examined, when sound level is increased then heart rate also increased.

Figure 4.11: Car driver 9 - heart rate vs sound level

Figure 4.11 shows the car driver 9 started his journey from location 23.913225, 90.412807 to
23.869479, 90.400312 and time from 6/23/2019 8:57:02 am to 6/23/2019 9:21:05 am. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 88 to 90 db and heart rate range was 91 to 100 bpm. We
examined, when sound level is increased then heart rate also increased.

Figure 4.12 shows the truck driver 10 started his journey from location 23.871526, 90.400591
to 23.92245, 90.435032 and time from 6/17/2019 7:55:35 pm to 6/17/2019 8:23:10 pm. Here,

24

Figure 4.12: Truck driver 10 - heart rate vs sound level

we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 82 to 89 db and heart rate range was 91 to 93 bpm. We
examined, when sound level is increased then heart rate also increased.

Figure 4.13: Truck driver 11 - heart rate vs sound level

Figure 4.13 shows the truck driver 11 started his journey from location 23.922381, 90.435189
to 23.906602, 90.414957 and time from 6/24/2019 8:23:47 am to 6/24/2019 8:37:18 am. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 86 to 90 db and heart rate range was 88 to 99 bpm. We
examined, when sound level is increased then heart rate also increased.

Figure 4.14 shows the bus driver 12 started his journey from location 23.874251, 90.400337 to
23.874764, 90.400676 and time from 6/25/2019 6:58:54 pm to 6/25/2019 7:07:30 pm. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 85 to 88 db and heart rate range was 87 to 92 bpm. We

25

Figure 4.14: Bus driver 12 - heart rate vs sound level

examined, when sound level is increased then heart rate also increased.

Figure 4.15: AC Car driver 13 - heart rate vs sound level

Figure 4.15 shows the ac car driver 13 started his journey from location 23.891536, 90.400591
to 23.94245, 90.436732 and time from 6/23/2019 7:55:35 pm to 6/23/2019 8:23:10 pm. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 60 to 60 db and heart rate range was 78 to 80 bpm. We
examined, sound level is normal and heart rate is also normal.

Figure 4.16 shows the bus driver 14 started his journey from location 23.863876, 90.401109 to
23.864879, 90.421106 and time from 6/18/2019 7:20:27 pm to 6/18/2019 7:30:33 pm. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 81 to 90 db and heart rate range was 90 to 97 bpm. We
examined, when sound level is increased then heart rate also increased.

26

Figure 4.16: Bus driver 14 - heart rate vs sound level

Figure 4.17: Bike driver 15 - heart rate vs sound level

Figure 4.17 shows the bike driver 15 started his journey from location 23.919649, 90.43259 to
23.901083, 90.410153 and time from 6/25/2019 8:46:42 am to 6/25/2019 9:00:54 am. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 87 to 89 db and heart rate range was 88 to 94 bpm. We
examined, when sound level is increased then heart rate is also increased.

Figure 4.18 shows the bus driver 16 started his journey from location 23.906602, 90.414853 to
23.926612, 90.434873 and time from 6/24/2019 8:42:34 am to 6/24/2019 8:57:21 am. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 86 to 90 db and heart rate range was 88 to 102 bpm. We
examined, when sound level is increased then heart rate also increased.

Figure 4.19 shows the bus driver 17 started his journey from location 23.873872, 90.401109 to
23.883877, 90.411189 and time from 6/24/2019 7:20:27 pm to 6/24/2019 7:30:33 pm. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in

27

Figure 4.18: Bus driver 16 - heart rate vs sound level

Figure 4.19: Bus driver 17 - heart rate vs sound level

decibel (dB). Here, sound range was 86 to 90 db and heart rate range was 88 to 97 bpm. We
examined, when sound level is increased then heart rate also increased.

Figure 4.20: Bus driver 18 - heart rate vs sound level

28

Figure 4.20 shows the bus driver 18 started his journey from location 23.869297, 90.400368 to
23.877546, 90.425593 and time from 6/23/2019 7:28:36 pm to 6/23/2019 7:40:32 pm. Here,
we measured the time in seconds (s), heart rate in beats per minutes (bpm) and sound level in
decibel (dB). Here, sound range was 81 to 89 db and heart rate range was 86 to 93 bpm. We
examined, when sound level is increased then heart rate also increased.

Figure 4.21: Vehicle speed on heart rate of drivers

Figure 4.22: Skin temperature on heart rate of drivers

Validation: For validation of the result we have used the standard scale provided by [20]. After
the experiment, the result obtained by the system has been compared with the outcome of the
drivers feedback. Our system only captured stressful and not stressful states of drivers.

Drivers Feedback: While designing the system, we asked their opinion about our research, all
of our research and field test drivers responded positively regarding necessity of such system.
Mainly they appreciated data collection system as it was automated and they liked automatic
alert system. They gave feedback. Some of them liked continuous monitoring, alert system and

29

Figure 4.23: Sound on heart rate of drivers

Figure 4.24: Drivers stress state and system generated state

storing data of drivers psychological states. Figure 4.24 is presented as the drivers feedback with
psychological states.

Results: The experimental result shows the system has correctly determined the psychological
state of the drivers. 22% cases are determined as false positive, 72% cases are determined as true
negative and 6% cases are determined as true positive. Several reasons may be thought-about
accountable behind this development. The scale used to validate the system requires conscious
response regarding one drivers psychological state.

30

Figure 4.25: Performance evaluation

Stressed individuals are often found to hide their emotional condition. It is also evident that false
negative reading is 0% of the experimental cases, which indicates that this system can be reliable
to monitor and alert stress individuals. From figures 4.21 - 4.23 show the heart rate, sound level,
vehicle speed, and skin temperature condition of the drivers and from figures 4.3 to 4.20 show
individual drivers heart rate and sound level condition. Figure 4.25 presents the drivers stress
level performance evaluation. We find that in non-AC vehicles, heart rate increases if sound
heard is more. In AC vehicles, heart rate varies less and shows the stability.

Chapter 5

Conclusion and Future Direction

The target of this research is to use technology to find the impact of sound pollution on driving.
We have tended to detect psychological stress that hampers driving capability. In the beginning,
we led a study that uncovers critical relationship between stress and sound level and its harsh
impact on drivers. We collected data in different conditions- in sound contaminated condition,
in less noisy condition (AC bus or AC car). Using smart wearable system we collected data
for identifying drivers physiological condition. We developed an android application for data
collection from the wearable smart watches. Stress has been computed gathering RMSSD of
Heart Rate Variability of the drivers. The system gives the indications of stress from the sensor
data. If there is stress feeling recognized, a programmed alarm is given. In trial arrangement,
the framework performed with high accuracy. In future, we will consider different biological
and environmental factors for measurement of stress, which may be helpful for better stress
management. We will also consider different location route map for identifying the road
conditions. Our ultimate goal is to have safe driving, create awareness among drivers to honk
less while driving to reduce sound pollution in the road.

31

References

[1] M. Tasnim, R. Shahriyar, N. Nahar, and H. Mahmud, “Intelligent Depression Detection
and Support System: Statistical Analysis, Psychological Review and Design Implication”,
in Proc. of IEEE 18th International Conference on e-Health Networking, Applications and
Services(Healthcom), Munich, Germany, 2016.

[2] N. Munla, M. Khalil, Shahin, and A. Mourad, “Driver Stress Level Detection using HRV
Analysis”, In Advances in Biomedical Engineering (ICABME), NY, USA, 2015.

[3] B. H. Dalton and D. G. Behm, “Effects of Noise and Music on Human and Task
Performance: A Systematic Review”, Occupational Argonomics, vol. 7, issue 3, pp. 143-
152, 2007.

[4] X. Yu, “Real-time Nonintrusive Detection of Driver Drowsiness”, Technical Report of ITS,
University of Minnesota, USA, 2009.

[5] J. Vicente, P. Laguna, A. Bartra and R. Bailon, “Detection of Driver’s Drowsiness by Means
of HRV Analysis”, Computing in Cardiology, vol. 38, pp. 89-92, 2011.

[6] J. A. Healey and R. W. Picard, “Detecting Stress During Real-World Driving Tasks Using
Physiological Sensors”, IEEE Transaction of ITS, vol. 6, issue 2, pp. 156-166, 2005.

[7] R. Roy and K. Venkatasubramanian, “EKG/ECG Based Driver Alert System for Long Haul
Drive”, Indian Journal of Science and Technology, vol. 8, issue 19, 2015.

[8] M. Miyaji, “Method of Drowsy State Detection for Driver Monitoring Function”,
International Journal of Information and Electronics Engineering, vol. 4, issue 4, pp.
264-268, 2014.

[9] T. A. Zografos and D. G. Katritsis, “Guidelines and Regulations for Driving in Heart
Disease”, Hellenic Journal Cardiology, vol. 52, issue 3, pp. 226-234, 2010.

[10] M. Salai, I. Vassanyi, and I. Kosa, “Stress Detection Using Low Cost Heart Rate Sensors”,
Journal of Health care Engineering, Hindawi, vol. 2016, pp. 1-13, 2016.

[11] Microsoft Band Features. https://www.microsoft.com/microsoft-band/en-us/features.

32

REFERENCES 33

[12] D. Pramendra, and S. Vartika, “Environmental Noise Pollution Monitoring and Impacts On
Human Health in Dehradun City, Uttarakhand, India”, Civil and Environmental Research,
vol. 1, issue 1, 2011.

[13] M. J. Aslam, M. A. Aslam, and A. Batool, “Effect of noise pollution on hearing of public
transport drivers in Lahore city”, Pak J Med Sci, vol. 24, issue 1, pp. 142-146, 2008.

[14] HeartRate. Depression and heart disease : Mind and mood affect the heart.
http://www.health.harvard.edu/press-releases/depression-and-heart-disease.

[15] U Rajendra Acharya, K Paul Joseph, Natarajan Kannathal, Choo Min Lim, and Jasjit S
Suri, “Heart rate variability: a review”, Medical and biological engineering and computing,
vol. 44, issue 12, pp. 1031–1051, 2006.

[16] Alberts Aldersons and Andris Buikis “Mathematical algorithm for heart rate variability
analysis”, In Proceedings of the 11th WSEAS international conference on Applied
informatics and communications, and Proceedings of the 4th WSEAS International
conference on Biomedical electronics and biomedical informatics, and Proceedings of
the international conference on Computational engineering in systems applications. World
Scientific and Engineering Academy and Society (WSEAS), pp. 381–386, 2011.

[17] Frequency Domain Measures. Frequency domain measures: The fourier transform, the
lomb periodogram, and other methods. https://www.physionet.org/events/hrv-2006/moody-
1.html.

[18] George B Moody, “Spectral analysis of heart rate without resampling”, In Computers in
Cardiology 1993, Proceedings, IEEE, pp. 715–718, 1993.

[19] Marcus W Agelink, Cavit Boz, Heiko Ullrich, and Jurgen Andrich, “Relationship between
major depression and heart rate variability.: Clinical consequences and implications for
antidepressive treatment”, vol. 113, issue 1, pp. 139–149, 2002.

[20] MD Uddin and MM Rahman, “Development of a scale of depression for use in bangladesh”,
Bangladesh psychological Studies, vol. 15, pp. 25–44, 2005.

[21] Kusuma Kumari B.M, “A Real Time Driver Drowsiness Detection System”, International
Conference on Information and Communication Technologies (ICICT), 2014.

Chapter 6

Codes

6.1 Database Helper Class

1 public class DatabaseHelper extends SQLiteOpenHelper {

2 public static final String DB_NAME = "dbDriverStress.db";

3 public static final String TB_NAME = "tbDriverStressAll";

4 public static final String TB_NAME_ANA = "tbDriverStressAna";

5 public static final String col_u_id = "u_id";

6 public static final String col_u_name = "u_name";

7 public static final String col_u_age = "u_age";

8 public static final String col_u_gender = "u_gender";

9 public static final String col_u_vehicleType = "u_vehicleType";

10 public static final String col_u_heartRate = "u_heartRate";

11 public static final String col_u_hrv = "u_hrv";

12 public static final String col_u_skinTemp = "u_skinTemp";

13 public static final String col_u_decibel = "u_decibel";

14 public static final String col_u_latitude = "u_latitude";

15 public static final String col_u_longitude = "u_longitude";

16 public static final String col_u_distance = "u_distance";

17 public static final String col_u_speed = "u_speed";

18 public static final String col_u_datetime = "u_datetime";

19 public static final String col_u_id1 = "u_id";

20 public static final String col_u_name1 = "u_name";

21 public static final String col_u_age1 = "u_age";

22 public static final String col_u_gender1 = "u_gender";

23 public static final String col_u_vehicleType1 = "u_vehicleType";

24 public static final String col_u_avgHeartRate1 = "u_avgHeartRate";

25 public static final String col_u_rmssd1 = "u_rmssd";

26 public static final String col_u_avgSkinTemp1 = "u_avgSkinTemp";

27 public static final String col_u_avgSound1 = "u_avgSound";

28 public static final String col_u_avgDistance1 = "u_avgDistance";

29 public static final String col_u_avgSpeed1 = "u_avgSpeed";

34

6.1. DATABASE HELPER CLASS 35

30 public static final String col_u_datetime1 = "u_datetime";

31 public static final String col_u_alarm1 = "u_alarm";

32

33 public DatabaseHelper(Context context) {

34 super(context, DB_NAME, null, 1);

35 }

36

37 @Override

38 public void onCreate(SQLiteDatabase db) {

39 db.execSQL("CREATE TABLE IF NOT EXISTS "

40 + TB_NAME

41 + "("

42 + "u_id INTEGER PRIMARY KEY AUTOINCREMENT,"

43 + "u_name TEXT,"

44 + "u_age TEXT,"

45 + "u_gender TEXT,"

46 + "u_vehicleType TEXT,"

47 + "u_heartRate TEXT,"

48 + "u_hrv TEXT,"

49 + "u_skinTemp TEXT,"

50 + "u_decibel TEXT,"

51 + "u_latitude TEXT,"

52 + "u_longitude TEXT,"

53 + "u_distance TEXT,"

54 + "u_speed TEXT,"

55 + "u_datetime TEXT"

56 + ")");

57

58 db.execSQL("CREATE TABLE IF NOT EXISTS "

59 + TB_NAME_ANA

60 + "("

61 + "u_id INTEGER PRIMARY KEY AUTOINCREMENT,"

62 + "u_name TEXT,"

63 + "u_age TEXT,"

64 + "u_gender TEXT,"

65 + "u_vehicleType TEXT,"

66 + "u_avgHeartRate TEXT,"

67 + "u_rmssd TEXT,"

68 + "u_avgSkinTemp TEXT,"

69 + "u_avgSound TEXT,"

70 + "u_avgDistance TEXT,"

71 + "u_avgSpeed TEXT,"

72 + "u_datetime TEXT,"

73 + "u_alarm TEXT"

74 + ")");

75 }

6.1. DATABASE HELPER CLASS 36

76

77 @Override

78 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion

) {

79 db.execSQL("DROP TABLE IF EXISTS " + TB_NAME);

80 db.execSQL("DROP TABLE IF EXISTS " + TB_NAME_ANA);

81 onCreate(db);

82 }

83

84 public boolean insertData(String u_name, String u_age, String u_gender,

String u_vehicleType,

85 String u_heartRate, String u_hrv, String u_skinTemp, String u_decibel,

String u_latitude,

86 String u_longitude, String u_distance, String u_speed, String u_datetime)

{

87 SQLiteDatabase db = this.getWritableDatabase();

88 ContentValues contentValues = new ContentValues();

89 contentValues.put(col_u_name, u_name);

90 contentValues.put(col_u_age, u_age);

91 contentValues.put(col_u_gender, u_gender);

92 contentValues.put(col_u_vehicleType, u_vehicleType);

93 contentValues.put(col_u_heartRate, u_heartRate);

94 contentValues.put(col_u_hrv, u_hrv);

95 contentValues.put(col_u_skinTemp, u_skinTemp);

96 contentValues.put(col_u_decibel, u_decibel);

97 contentValues.put(col_u_latitude, u_latitude);

98 contentValues.put(col_u_longitude, u_longitude);

99 contentValues.put(col_u_distance, u_distance);

100 contentValues.put(col_u_speed, u_speed);

101 contentValues.put(col_u_datetime, u_datetime);

102 long result = db.insert(TB_NAME, null, contentValues);

103 if(result == -1)

104 {

105 return false;

106 }

107 else

108 {

109 return true;

110 }

111 }

112

113 public void insertDataAna(String u_name, String u_age, String u_gender,

String u_vehicleType,

114 String u_avgHeartRate, String u_rmssd, String u_avgSkinTemp, String

u_avgSound,

115 String u_avgDistance, String u_avgSpeed, String u_datetime, String

6.1. DATABASE HELPER CLASS 37

u_alarm) {

116 SQLiteDatabase db = this.getWritableDatabase();

117 ContentValues contentValues = new ContentValues();

118 contentValues.put(col_u_name1, u_name);

119 contentValues.put(col_u_age1, u_age);

120 contentValues.put(col_u_gender1, u_gender);

121 contentValues.put(col_u_vehicleType1, u_vehicleType);

122 contentValues.put(col_u_avgHeartRate1, u_avgHeartRate);

123 contentValues.put(col_u_rmssd1, u_rmssd);

124 contentValues.put(col_u_avgSkinTemp1, u_avgSkinTemp);

125 contentValues.put(col_u_avgSound1, u_avgSound);

126 contentValues.put(col_u_avgDistance1, u_avgDistance);

127 contentValues.put(col_u_avgSpeed1, u_avgSpeed);

128 contentValues.put(col_u_datetime1, u_datetime);

129 contentValues.put(col_u_alarm1, u_alarm);

130 db.insert(TB_NAME_ANA, null, contentValues);

131 }

132

133 public Cursor getAllData() {

134 SQLiteDatabase db = this.getWritableDatabase();

135 Cursor res = db.rawQuery("select * from " + TB_NAME + " order by "

+

136 col_u_id + " desc", null);

137 return res;

138 }

139

140 public Cursor getAllDataAna() {

141 SQLiteDatabase db = this.getWritableDatabase();

142 Cursor res = db.rawQuery("select * from " + TB_NAME_ANA + " order

by " +

143 col_u_id + " desc", null);

144 return res;

145 }

146

147 public void deleteDataAll () {

148 SQLiteDatabase db = this.getWritableDatabase();

149 db.execSQL("delete from " + TB_NAME);

150 }

151

152 public void deleteDataAna () {

153 SQLiteDatabase db = this.getWritableDatabase();

154 db.execSQL("delete from " + TB_NAME_ANA);

155 }

156

157 public Cursor getAllDataByLimit(int limit) {

158 SQLiteDatabase db = this.getWritableDatabase();

6.2. LOCATION HELPER CLASS 38

159 Cursor res = db.rawQuery("select * from " + TB_NAME + " order by "

+ col_u_id +

160 " desc limit " + limit, null);

161 return res;

162 }

163 }

6.2 Location Helper Class

1 public class GetLocation extends Service implements LocationListener {

2 private final Context mContext;

3 boolean isGPSEnabled = false;

4 boolean isNetworkEnabled = false;

5 boolean canGetLocation = false;

6 private static final long MIN_DISTANCE_CHANGE_FOR_UPDATES = 1; //1

meter

7 private static final long MIN_TIME_BW_UPDATES = 3000; //3 seconds

8 protected LocationManager locationManager;

9 Location location;

10 double latitude;

11 double longitude;

12

13 public GetLocation(Context context) {

14 this.mContext = context;

15 getLocation();

16 }

17

18 public Location getLocation() {

19 try {

20 locationManager = (LocationManager) mContext.getSystemService(

LOCATION_SERVICE);

21 isGPSEnabled = locationManager.isProviderEnabled(

LocationManager.GPS_PROVIDER);

22 isNetworkEnabled = locationManager.isProviderEnabled(

LocationManager.NETWORK_PROVIDER);

23

24 if (!isGPSEnabled && !isNetworkEnabled) {

25 this.canGetLocation = false;

26 }

27 else {

28 this.canGetLocation = true;

29 if (isNetworkEnabled) {

30 locationManager.requestLocationUpdates(LocationManager.

31 NETWORK_PROVIDER, MIN_TIME_BW_UPDATES,

MIN_DISTANCE_CHANGE_FOR_UPDATES, this);

32 if (locationManager != null) {

6.2. LOCATION HELPER CLASS 39

33 location = locationManager.getLastKnownLocation(

LocationManager.NETWORK_PROVIDER);

34 if (location != null) {

35 latitude = location.getLatitude();

36 longitude = location.getLongitude();

37 }

38 }

39 }

40

41 if (isGPSEnabled) {

42 if (location == null) {

43 locationManager.requestLocationUpdates(

LocationManager.

44 GPS_PROVIDER, MIN_TIME_BW_UPDATES,

MIN_DISTANCE_CHANGE_FOR_UPDATES, this);

45 if (locationManager != null) {

46 location = locationManager.getLastKnownLocation

(LocationManager.GPS_PROVIDER);

47 if (location != null) {

48 latitude = location.getLatitude();

49 longitude = location.getLongitude();

50 }

51 }

52 }

53 }

54 }

55 }

56 catch (Exception e) {

57 }

58 return location;

59 }

60

61 public void stopUsingGPS(){

62 if(locationManager != null){

63 locationManager.removeUpdates(GetLocation.this);

64 }

65 }

66

67 public double getLatitude(){

68 if(location != null){

69 latitude = location.getLatitude();

70 }

71 return latitude;

72 }

73

74 public double getLongitude(){

6.3. PROFILE CLASS 40

75 if(location != null){

76 longitude = location.getLongitude();

77 }

78 return longitude;

79 }

80

81 public boolean canGetLocation() {

82 return this.canGetLocation;

83 }

84

85 public void showSettingsAlert(){

86 AlertDialog.Builder alertDialog = new AlertDialog.Builder(mContext)

;

87 alertDialog.setTitle("GPS is settings");

88 alertDialog.setMessage("GPS is not enabled. Do you want to go to

settings menu?");

89

90 alertDialog.setPositiveButton("Settings", new DialogInterface.

OnClickListener() {

91 public void onClick(DialogInterface dialog,int which) {

92 Intent intent = new Intent(Settings.

ACTION_LOCATION_SOURCE_SETTINGS);

93 mContext.startActivity(intent);

94 }

95 });

96

97 alertDialog.setNegativeButton("Cancel", new DialogInterface.

OnClickListener() {

98 public void onClick(DialogInterface dialog, int which) {

99 dialog.cancel();

100 }

101 });

102

103 alertDialog.show();

104 }

105

106 @Override

107 public IBinder onBind(Intent arg0) {

108 return null;

109 }

110 }

6.3 Profile Class

1 public class StartActivity extends Activity implements

OnItemSelectedListener {

6.3. PROFILE CLASS 41

2 EditText etName, etAge;

3 Spinner spVehicleType;

4 Button btNext, btViewData, btExportData, btDeleteData;

5 String Name, Age, VehicleType;

6 RadioGroup genderRadioGroup;

7 DatabaseHelper myDb;

8 String[] vehicleTypes;

9 ArrayAdapter<String> adapter;

10

11 @Override

12 protected void onCreate(Bundle savedInstanceState) {

13 super.onCreate(savedInstanceState);

14 setContentView(R.layout.activity_start);

15

16 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

17 etName = (EditText) findViewById(R.id.etName);

18 etAge = (EditText) findViewById(R.id.etAge);

19 spVehicleType = (Spinner) findViewById(R.id.spVehicleType);

20 btNext = (Button) findViewById(R.id.btNext);

21 btViewData = (Button) findViewById(R.id.btViewData);

22 btExportData = (Button) findViewById(R.id.btExportData);

23 btDeleteData = (Button) findViewById(R.id.btDeleteData);

24 genderRadioGroup = (RadioGroup) findViewById(R.id.rgGender);

25 myDb = new DatabaseHelper(this);

26

27 vehicleTypes = new String[]{"Car", "Bike", "Bus", "Truck", "Leguna"

, "CNG"};

28 adapter = new ArrayAdapter<String>(this, android.R.layout.

29 simple_spinner_dropdown_item, vehicleTypes);

30 spVehicleType.setAdapter(adapter);

31 spVehicleType.setOnItemSelectedListener(this);

32

33 btNext.setOnClickListener(new View.OnClickListener() {

34 public void onClick(View v) {

35 Name = etName.getText().toString();

36 Age = etAge.getText().toString();

37 if(!Name.trim().isEmpty() && !Age.trim().isEmpty()){

38 Intent intent = new Intent(getApplicationContext(),

MainActivity.class);

39 intent.putExtra("Name", Name);

40 intent.putExtra("Age", Age);

41 int id = genderRadioGroup.getCheckedRadioButtonId();

42 RadioButton radioButton = (RadioButton) findViewById(id

);

43 intent.putExtra("Gender", radioButton.getText().

toString());

6.3. PROFILE CLASS 42

44 intent.putExtra("VehicleType", VehicleType);

45 startActivity(intent);

46 }

47 else {

48 Toast.makeText(getBaseContext(), "Data required", Toast.

LENGTH_SHORT).show();

49 }

50 }

51 });

52

53 btViewData.setOnClickListener(new View.OnClickListener() {

54 @Override

55 public void onClick(View v) {

56 Cursor res = myDb.getAllData();

57 if(res.getCount() == 0) {

58 Toast.makeText(getBaseContext(), "Nothing found", Toast.

LENGTH_SHORT).show();

59 return;

60 }

61 StringBuffer buffer = new StringBuffer();

62 while (res.moveToNext()) {

63 buffer.append("Name: "+ res.getString(1)+"\n");

64 buffer.append("Age: "+ res.getString(2)+"\n");

65 buffer.append("Gender: "+ res.getString(3)+"\n");

66 buffer.append("Vehicle Type: "+ res.getString(4)+"\n");

67 buffer.append("Heart Rate: "+ res.getString(5)+"\n");

68 buffer.append("HRV: "+ res.getString(6)+"\n");

69 buffer.append("Skin Temp: "+ res.getString(7)+"\n");

70 buffer.append("Decibel: "+ res.getString(8)+"\n");

71 buffer.append("Latitude: "+ res.getString(9)+"\n");

72 buffer.append("Longitude: "+ res.getString(10)+"\n");

73 buffer.append("Distance: "+ res.getString(11)+"\n");

74 buffer.append("Speed: "+ res.getString(12)+"\n");

75 buffer.append("Datetime: "+ res.getString(13)+"\n\n");

76 }

77 showMessage("Data",buffer.toString());

78 }

79 });

80

81 btExportData.setOnClickListener(new View.OnClickListener() {

82 @Override

83 public void onClick(View v) {

84 ExportData();

85 ExportAnalysis();

86 }

87 });

6.3. PROFILE CLASS 43

88

89 btDeleteData.setOnClickListener(new View.OnClickListener() {

90 @Override

91 public void onClick(View v) {

92 myDb.deleteDataAll();

93 myDb.deleteDataAna();

94 Toast.makeText(getBaseContext(), "Delete Successfull", Toast.

LENGTH_SHORT).show();

95 }

96 });

97 }

98

99 protected void ExportData(){

100 File exportDir = new File(Environment.getExternalStorageDirectory(), ""

);

101 if (!exportDir.exists()) {

102 exportDir.mkdirs();

103 }

104 File file = new File(exportDir, "export-data.csv");

105 try {

106 file.createNewFile();

107 PrintWriter csvWrite = new PrintWriter(new FileWriter(file));

108 Cursor curCSV = myDb.getAllData();

109 csvWrite.println("Name"+","+"Age"+","+"Gender"+","+"Vehicle

Type"+","+

110 "Heart Rate"+","+"HRV"+","+"Skin Temp"+","+"Decibel"+","+"Latitude"+"

,"+

111 "Longitude"+","+"Distance"+","+"Speed"+","+"Time");

112 while (curCSV.moveToNext()) {

113 csvWrite.println(curCSV.getString(1)+","+curCSV.getString

(2)+","+

114 curCSV.getString(3)+","+curCSV.getString(4)+","+curCSV.getString(5)

+","+

115 curCSV.getString(6)+","+curCSV.getString(7)+","+curCSV.getString(8)

+","+

116 curCSV.getString(9)+","+curCSV.getString(10)+","+curCSV.getString

(11)+","+

117 curCSV.getString(12)+","+curCSV.getString(13));

118 }

119 csvWrite.close();

120 curCSV.close();

121 Toast.makeText(getBaseContext(), "Export All Data Successfull",

Toast.LENGTH_SHORT).show();

122 }

123 catch(Exception ex) {

124 Toast.makeText(getBaseContext(), ex.getMessage(), Toast.

6.3. PROFILE CLASS 44

LENGTH_SHORT).show();

125 }

126 }

127

128 protected void ExportAnalysis(){

129 File exportDir = new File(Environment.getExternalStorageDirectory(), ""

);

130 if (!exportDir.exists()) {

131 exportDir.mkdirs();

132 }

133 File file = new File(exportDir, "analysis-data.csv");

134 try {

135 file.createNewFile();

136 PrintWriter csvWrite = new PrintWriter(new FileWriter(file));

137 Cursor curCSV = myDb.getAllDataAna();

138 csvWrite.println("Name"+","+"Age"+","+"Gender"+","+"Vehicle

Type"+","+

139 "AVG Heart Rate"+","+"LOGRMSSD"+","+"AVG Skin Temp"+","+"AVG Decibel"

+","+

140 "AVG Distance"+","+"AVG Speed"+","+"Time"+","+"Alarm");

141 while (curCSV.moveToNext()) {

142 csvWrite.println(curCSV.getString(1)+","+curCSV.getString(2)+

","+

143 curCSV.getString(3)+","+curCSV.getString(4)+","+curCSV.getString(5)

+","+

144 curCSV.getString(6)+","+curCSV.getString(7)+","+curCSV.getString(8)

+","+

145 curCSV.getString(9)+","+curCSV.getString(10)+","+curCSV.getString

(11)+","+

146 curCSV.getString(12));

147 }

148 csvWrite.close();

149 curCSV.close();

150 Toast.makeText(getBaseContext(), "Export Analysis Data

Successfull",

151 Toast.LENGTH_SHORT).show();

152 }

153 catch(Exception ex) {

154 Toast.makeText(getBaseContext(), ex.getMessage(), Toast.

LENGTH_SHORT).show();

155 }

156 }

157

158 public void showMessage(String title, String Message){

159 AlertDialog.Builder builder = new AlertDialog.Builder(this);

160 builder.setCancelable(true);

6.4. MAIN PROGRAM CLASS 45

161 builder.setTitle(title);

162 builder.setMessage(Message);

163 builder.show();

164 }

165

166 @Override

167 public boolean onCreateOptionsMenu(Menu menu) {

168 getMenuInflater().inflate(R.menu.start, menu);

169 return true;

170 }

171

172 public void onItemSelected(AdapterView<?> adapterView, View v, int

position, long id) {

173 VehicleType = String.valueOf(adapterView.getItemAtPosition(position));

174 }

175

176 public void onNothingSelected(AdapterView<?> parent) {

177

178 }

179

180 @Override

181 public boolean onOptionsItemSelected(MenuItem item) {

182 switch(item.getItemId()){

183 case R.id.action_exit:

184 moveTaskToBack(true);

185 android.os.Process.killProcess(android.os.Process.myPid());

186 System.exit(1);

187 return true;

188 }

189 return(super.onOptionsItemSelected(item));

190 }

191 }

6.4 Main Program Class

1 public class MainActivity extends Activity {

2

3 private TextView HRVal;

4 private TextView TempVal;

5 private TextView BandDecibel;

6 private TextView BandLatitude;

7 private TextView BandLongitude;

8 private Button btStartConsent, btStartHeartRate;

9 private BandClient client;

10 private String rrInterval;

11

6.4. MAIN PROGRAM CLASS 46

12 private BandHeartRateEventListener mHeartRateEventListener = new

BandHeartRateEventListener() {

13 @Override

14 public void onBandHeartRateChanged(final BandHeartRateEvent event)

{

15 if (event != null) {

16 HRVal.post(new Runnable() {

17 @Override

18 public void run() {

19 HRVal.setText(String.format("%d", event.getHeartRate()));

20 }

21 });

22 }

23 }

24 };

25

26 private BandSkinTemperatureEventListener skinTemperatureEventListener =

new BandSkinTemperatureEventListener() {

27 @Override

28 public void onBandSkinTemperatureChanged(final

BandSkinTemperatureEvent event) {

29 if (event != null) {

30 TempVal.post(new Runnable() {

31 @Override

32 public void run() {

33 TempVal.setText(String.format("%.2f",event.getTemperature

()));

34 }

35 });

36 }

37 }

38 };

39

40 private BandRRIntervalEventListener rrIntervalEventListener = new

BandRRIntervalEventListener() {

41 @Override

42 public void onBandRRIntervalChanged(final BandRRIntervalEvent event

) {

43 if (event != null) {

44 rrInterval = String.format("%.6f", event.getInterval());

45 }

46 }

47 };

48

49 private DatabaseHelper myDb;

50 private String name, age, gender, vehicleType, date;

6.4. MAIN PROGRAM CLASS 47

51 private double latitude = 0, longitude = 0, latitude_old = 0,

longitude_old = 0;

52 private Calendar calander;

53 private SimpleDateFormat simpledateformat;

54 private GetLocation gps;

55 private MediaRecorder mRecorder;

56 private Thread thread_save;

57 private Thread thread_update;

58 private MediaPlayer mPlayer;

59 private int status = 0;

60

61 protected void UpdateAlarm() {

62 try {

63 if (mPlayer.isPlaying()) {

64 mPlayer.stop();

65 mPlayer.release();

66 mPlayer = MediaPlayer.create(getBaseContext(), R.raw.danger);

67 }

68 mPlayer.start();

69 }

70 catch(Exception e) {

71 appendToUI(e.getMessage());

72 }

73 }

74

75 protected void UpdateGPS() {

76 gps = new GetLocation(getBaseContext());

77 if(gps.canGetLocation()){

78 latitude = gps.getLatitude();

79 longitude = gps.getLongitude();

80 BandLatitude.setText(String.valueOf(latitude));

81 BandLongitude.setText(String.valueOf(longitude));

82 }

83 else{

84 gps.showSettingsAlert();

85 }

86 }

87

88 @Override

89 protected void onCreate(Bundle savedInstanceState) {

90 super.onCreate(savedInstanceState);

91 setContentView(R.layout.activity_main);

92

93 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

94 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON

);

6.4. MAIN PROGRAM CLASS 48

95 HRVal = (TextView) findViewById(R.id.tvHRValue);

96 TempVal = (TextView) findViewById(R.id.tvSkinTemp);

97 BandDecibel = (TextView) findViewById(R.id.tvDecibel);

98 BandLatitude = (TextView) findViewById(R.id.tvLatitude);

99 BandLongitude = (TextView) findViewById(R.id.tvLongitude);

100 btStartConsent = (Button) findViewById(R.id.btStartConsent);

101 btStartHeartRate = (Button) findViewById(R.id.btStartHeartRate);

102 mPlayer = MediaPlayer.create(getBaseContext(), R.raw.danger);

103

104 btStartHeartRate.setOnClickListener(new View.OnClickListener() {

105 @Override

106 public void onClick(View v) {

107 new HeartRateSubscriptionTask().execute();

108 }

109 });

110

111 final WeakReference<Activity> reference = new WeakReference<

Activity>(this);

112

113 btStartConsent.setOnClickListener(new View.OnClickListener() {

114 @SuppressWarnings("unchecked")

115 @Override

116 public void onClick(View v) {

117 new HeartRateConsentTask().execute(reference);

118 }

119 });

120

121 Intent intent = getIntent();

122 name = intent.getStringExtra("Name");

123 age = intent.getStringExtra("Age");

124 gender = intent.getStringExtra("Gender");

125 vehicleType = intent.getStringExtra("VehicleType");

126 myDb = new DatabaseHelper(this);

127

128 UpdateGPS();

129 UpdateDecibel();

130

131 thread_save = new Thread() {

132 @Override

133 public void run() {

134 try {

135 while (!isInterrupted()) {

136 Thread.sleep(2000);

137 runOnUiThread(new Runnable() {

138 @SuppressLint("SimpleDateFormat")

139 @Override

6.4. MAIN PROGRAM CLASS 49

140 public void run() {

141

142 calander = Calendar.getInstance();

143 simpledateformat = new SimpleDateFormat("

yyyy-MM-dd HH:mm:ss");

144 date = simpledateformat.format(calander.

getTime());

145 UpdateGPS();

146 UpdateDecibel();

147

148 latitude_old = GetDatabaseValue(9);

149 longitude_old = GetDatabaseValue(10);

150 double distance_m = CalculateDistance(

latitude, longitude, latitude_old, longitude_old);

151 double speed_ms = distance_m / 3;

152 double speed_kmh = speed_ms * 3.6;

153

154 if(!String.valueOf(HRVal.getText()).equals(

"0")){

155

156 boolean isInserted = myDb.insertData(name

, age, gender, vehicleType, String.valueOf(HRVal.getText()), rrInterval,

String.valueOf(TempVal.getText()), String.valueOf(BandDecibel.getText()

), String.format("%.6f", latitude), String.format("%.6f", longitude),

String.format("%.4f", distance_m), String.format("%.4f", speed_kmh),

date);

157

158 if(isInserted == true){

159 status = 1;

160 }

161 else {

162 status = 0;

163 }

164 }

165 }

166 });

167 }

168 }

169 catch (InterruptedException e) {

170 appendToUI(e.getMessage());

171 }

172 }

173 };

174

175 thread_save.start();

176

6.4. MAIN PROGRAM CLASS 50

177 thread_update = new Thread() {

178 @Override

179 public void run() {

180 try {

181 while (!isInterrupted()) {

182 Thread.sleep(40000);

183 runOnUiThread(new Runnable() {

184 @Override

185 public void run() {

186 if(status == 1) {

187 int dataLimit = 20;

188 String alarm = "";

189 Cursor res = myDb.getAllDataByLimit(dataLimit);

190 double[] myList = new double[res.getCount()];

191 if(res.moveToFirst()) {

192 for(int i = 0; i < res.getCount(); i++) {

193 myList[i] = Double.parseDouble(res.

getString(6));

194 res.moveToNext();

195 }

196 }

197 res.close();

198 double total = 0, rmssd = 0, rmssdFinal = 0;

199 int len = myList.length - 1;

200 for (int j = 0; j <= len; j++) {

201 if(j == len) break;

202 double num1 = myList[j];

203 double num2 = myList[j + 1];

204 double sub = num1 - num2;

205 total += Math.pow(sub, 2);

206 }

207 rmssd = Math.sqrt(total/len);

208 rmssdFinal = rmssd * 100;

209

210 int avgHearRate = (int)GetAverageValue(5,

dataLimit);

211 int avgSound = (int)GetAverageValue(8,

dataLimit);

212 int avgSkinTemp = (int)GetAverageValue(7,

dataLimit);

213 double avgDistance = GetAverageValue(11,

dataLimit);

214 double avgSpeed = GetAverageValue(12,

dataLimit);

215

216 if(rmssdFinal < 1 && avgSound > 85) {

6.4. MAIN PROGRAM CLASS 51

217 alarm = "alert-stress-sound";

218 UpdateAlarm();

219 }

220 else if(rmssdFinal < 1 && avgSound > 85 && avgSpeed > 60)

{

221 alarm = "alert-stress-sound-speed";

222 UpdateAlarm();

223 }

224 else if (rmssdFinal < 1) {

225 alarm = "alert-stress";

226 UpdateAlarm();

227 }

228 else {

229 alarm = "alert-off";

230 }

231

232 myDb.insertDataAna(name, age, gender, vehicleType, String

.valueOf(avgHearRate), String.format("%.6f", rmssdFinal), String.valueOf

(avgSkinTemp), String.valueOf(avgSound), String.format("%.4f",

avgDistance), String.format("%.4f", avgSpeed), date, alarm);

233 }

234 }

235 });

236 }

237 }

238 catch (InterruptedException e) {

239 appendToUI(e.getMessage());

240 }

241 }

242 };

243

244 thread_update.start();

245 }

246

247 @Override

248 protected void onResume() {

249 super.onResume();

250 StartRecorder();

251 }

252

253 @Override

254 protected void onPause() {

255 super.onPause();

256 if (client != null) {

257

258 try {

6.4. MAIN PROGRAM CLASS 52

259 client.getSensorManager().registerHeartRateEventListener(

mHeartRateEventListener);

260 }

261 catch (BandIOException e) {

262 appendToUI(e.getMessage());

263 }

264 catch (BandException e) {

265 appendToUI(e.getMessage());

266 }

267

268 try {

269 client.getSensorManager().registerSkinTemperatureEventListener(

skinTemperatureEventListener);

270 }

271 catch(BandException e) {

272 appendToUI(e.getMessage());

273 }

274

275 try {

276 client.getSensorManager().registerRRIntervalEventListener(

rrIntervalEventListener);

277 }

278 catch (InvalidBandVersionException e) {

279 appendToUI(e.getMessage());

280 }

281 catch(BandException e) {

282 appendToUI(e.getMessage());

283 }

284 }

285

286 StopRecorder();

287 }

288

289 @Override

290 protected void onDestroy() {

291 if (client != null) {

292 try {

293 client.disconnect().await();

294 }

295 catch (InterruptedException e) {

296 appendToUI(e.getMessage());

297 }

298 catch (BandException e) {

299 appendToUI(e.getMessage());

300 }

301 }

6.4. MAIN PROGRAM CLASS 53

302 StopAlarm();

303 thread_save.interrupt();

304 thread_update.interrupt();

305 super.onDestroy();

306 }

307

308 private class HeartRateSubscriptionTask extends AsyncTask<Void, Void,

Void> {

309 @Override

310 protected Void doInBackground(Void... params) {

311 try {

312 if (getConnectedBandClient()) {

313 if (client.getSensorManager().getCurrentHeartRateConsent() ==

UserConsent.GRANTED) {

314 client.getSensorManager().registerHeartRateEventListener(

mHeartRateEventListener);

315 client.getSensorManager().registerSkinTemperatureEventListener(

skinTemperatureEventListener);

316 client.getSensorManager().registerRRIntervalEventListener(

rrIntervalEventListener);

317 }

318 else {

319 appendToUI("You have not given this application consent to

access heart rate data yet. Please press the Heart Rate Consent button.\

n");

320 }

321 }

322 else {

323 appendToUI("Band isn’t connected. Please make sure bluetooth is

on and the band is in range.\n");

324 }

325 }

326 catch (Exception e) {

327 appendToUI(e.getMessage());

328 }

329 return null;

330 }

331 }

332

333 private class HeartRateConsentTask extends AsyncTask<WeakReference<

Activity>, Void, Void> {

334 @Override

335 protected Void doInBackground(WeakReference<Activity>... params) {

336 try {

337 if (getConnectedBandClient()) {

338 if (params[0].get() != null) {

6.4. MAIN PROGRAM CLASS 54

339 client.getSensorManager().requestHeartRateConsent(params[0].get

(), new HeartRateConsentListener() {

340 @Override

341 public void userAccepted(boolean consentGiven) {

342 }

343 });

344 }

345 }

346 else {

347 appendToUI("Band isn’t connected. Please make sure bluetooth is

on and the band is in range.\n");

348 }

349 }

350 catch (BandException e) {

351 String exceptionMessage="";

352 switch (e.getErrorType()) {

353 case UNSUPPORTED_SDK_VERSION_ERROR:

354 exceptionMessage = "Microsoft Health BandService doesn’t support

your SDK Version. Please update to latest SDK.\n";

355 break;

356 case SERVICE_ERROR:

357 exceptionMessage = "Microsoft Health BandService is not available

. Please make sure Microsoft Health is installed and that you have the

correct permissions.\n";

358 break;

359 default:

360 exceptionMessage = "Unknown error occured: " + e.getMessage() + "

\n";

361 break;

362 }

363 appendToUI(exceptionMessage);

364 }

365 catch (Exception e) {

366 appendToUI(e.getMessage());

367 }

368 return null;

369 }

370 }

371

372 private boolean getConnectedBandClient() throws InterruptedException,

BandException {

373 if (client == null) {

374 BandInfo[] devices = BandClientManager.getInstance().getPairedBands()

;

375 if (devices.length == 0) {

376 appendToUI("Band isn’t paired with your phone.\n");

6.4. MAIN PROGRAM CLASS 55

377 return false;

378 }

379 else{

380 client = BandClientManager.getInstance().create(getBaseContext(),

devices[0]);

381 return false;

382 }

383 }

384 else if (ConnectionState.CONNECTED == client.getConnectionState()) {

385 return true;

386 }

387 else{

388 appendToUI("Band is connecting...\n");

389 return ConnectionState.CONNECTED == client.connect().await();

390 }

391 }

392

393 private void appendToUI(final String string) {

394 this.runOnUiThread(new Runnable() {

395 @Override

396 public void run() {

397 Toast.makeText(getBaseContext(), string, Toast.LENGTH_SHORT).

show();

398 }

399 });

400 }

401

402 @Override

403 public void onBackPressed() {

404 thread_save.interrupt();

405 thread_update.interrupt();

406 StopAlarm();

407 moveTaskToBack(true);

408 android.os.Process.killProcess(android.os.Process.myPid());

409 System.exit(1);

410 }

411

412 @Override

413 public boolean onCreateOptionsMenu(Menu menu) {

414 getMenuInflater().inflate(R.menu.main, menu);

415 return true;

416 }

417

418 @Override

419 public boolean onOptionsItemSelected(MenuItem item) {

420 switch(item.getItemId()){

6.4. MAIN PROGRAM CLASS 56

421 case R.id.action_exit:

422 thread_save.interrupt();

423 thread_update.interrupt();

424 StopAlarm();

425 moveTaskToBack(true);

426 android.os.Process.killProcess(android.os.Process.myPid());

427 System.exit(1);

428 return true;

429 }

430 return(super.onOptionsItemSelected(item));

431 }

432

433 public void StartRecorder(){

434 if (mRecorder == null)

435 {

436 mRecorder = new MediaRecorder();

437 mRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

438 mRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);

439 mRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

440 mRecorder.setOutputFile("/dev/null");

441 try

442 {

443 mRecorder.prepare();

444 }

445 catch (IOException e) {

446 appendToUI(e.getMessage());

447 }

448 catch (SecurityException e) {

449 appendToUI(e.getMessage());

450 }

451 try

452 {

453 mRecorder.start();

454 }

455 catch (SecurityException e) {

456 appendToUI(e.getMessage());

457 }

458 }

459 }

460

461 public void StopRecorder() {

462 if (mRecorder != null) {

463 mRecorder.stop();

464 mRecorder.release();

465 mRecorder = null;

466 }

6.4. MAIN PROGRAM CLASS 57

467 }

468

469 public void StopAlarm() {

470 if (mPlayer.isPlaying()) {

471 mPlayer.stop();

472 mPlayer.release();

473 mPlayer = null;

474 }

475 }

476

477 public double GetAmplitude() {

478 if (mRecorder != null)

479 return mRecorder.getMaxAmplitude();

480 else

481 return 5;

482 }

483

484 public double GetDecibelValue(){

485 return 20 * Math.log10(GetAmplitude());

486 }

487

488 public void UpdateDecibel(){

489 int getValue = (int)GetDecibelValue();

490 if(getValue > 0)

491 BandDecibel.setText(String.valueOf(getValue));

492 else

493 BandDecibel.setText("40");

494 }

495

496 public double CalculateDistance(double lat1, double lon1, double lat2,

double lon2) {

497 if ((lat1 == lat2) && (lon1 == lon2)) {

498 return 0;

499 }

500 else {

501 double Radius = 6378.00;

502 double dLat = Math.toRadians(lat2 - lat1);

503 double dLon = Math.toRadians(lon2 - lon1);

504 double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(Math.

toRadians(lat1)) * Math.cos(Math.toRadians(lat2)) * Math.sin(dLon / 2) *

Math.sin(dLon / 2);

505 double c = 2 * Math.asin(Math.sqrt(a));

506 return Radius * c;

507 }

508 }

509

6.4. MAIN PROGRAM CLASS 58

510 public double GetAverageValue(int valuePosition, int dataLimit){

511 Cursor res = myDb.getAllDataByLimit(dataLimit);

512 double[] myList = new double[res.getCount()];

513 int len = myList.length - 1;

514 double total = 0.00;

515 if(len > 0){

516 if(res.moveToFirst()) {

517 for(int i = 0; i < res.getCount(); i++) {

518 myList[i] = Double.parseDouble(res.getString(valuePosition));

519 res.moveToNext();

520 }

521 }

522 res.close();

523 for (int j = 0; j <= len; j++) {

524 total += myList[j];

525 }

526 return total/len;

527 }

528 else

529 {

530 res.close();

531 return 0.00;

532 }

533 }

534

535 public double GetDatabaseValue(int valuePosition){

536 Cursor res = myDb.getAllDataByLimit(1);

537 double value = 0;

538 if(res.getCount() > 0){

539 if(res.moveToFirst()) {

540 value = Double.parseDouble(res.getString(valuePosition));

541 }

542 }

543 res.close();

544 return value;

545 }

546 }

	Candidate's Declaration
	Board of Examiners
	Acknowledgement
	List of Figures
	Abstract
	Introduction
	Stress
	Sound Pollution
	Effects of Sound Pollution

	Organization

	Related Work
	Heart Rate Variability (HRV)
	Stress Detection
	Background Study

	System Design
	System Architecture
	Design
	Part 1: Data Collection
	Part 2: Data Analysis
	Part 3: Alert System

	Experimental Results
	Conclusion and Future Direction
	References
	Codes
	Database Helper Class
	Location Helper Class
	Profile Class
	Main Program Class

