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Abstract  

Dihydrobenzofuran (DHB) is the key structure moiety of many highly bilogically 

active materials, constructing pharmaceuticals (furadm), lignans and other 

biologically natural compounds (pterocarpans). Pterocarpans have a 2,3-

Dihydrobenzofuran skeleton which could be response to fungi infections and 

biological activities against such as HIV, central nervous system(CNS) injury and 

malaria. An efficient one pot synthesis of 2,3-dihydrobenzofurans  (14a-18a) 

derivatives by bis-triphenyl phosphine palladium(II) chloride, bis-triphenyl 

phosphine cobalt(II) chloride, bis-triphenyl phosphine nickel(II) bromide and Pd/Cu 

bimetallic nano particles catalyzed reactions of 2-iodophenol derivatives with 

terminal alkenes is reported. The reactions of 2-iodophenol derivatives (5-8) with 

acrylic esters (13,13a) were performed in presence of different catalyst 

[Pd(Ph3P)2Cl2, Co(Ph3P)2Cl2, Ni(Ph3P)2Br2, Pd/Cu Bimetallic nano particles], 

triethylamine (Et3N) and DMF under nitrogen atmosphere for 20-24 hrs at 80-120 oC 

to obtain alkyl 2, 3-dihydrobenzofuran-2-ylcarboxylates (14a-18a) in good yield 

%(50-70) as shown in the scheme  

 

 

Condition 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iv Pd/Cu Bimetallic nano particles, DMF, Et3N, N2, 80-100 oC, 20-24 hrs 
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1.  Background of the Present Work  

1.1 Introduction : 
 

 The 2,3-dihydrobenzofuran (DHB) skeleton 1 comprises a saturated 5-

membered oxygen heterocycle fused to a benzene ring with the oxygen atom 

adjacent to the aromatic system (Fig. 1). This ring system confers a rigid shape to a 

molecule, with a well-defined spatial arrangement of substituents in a similar manner 

to strained small rings such as cyclopropanes and cyclobutanes. However, the ring-

strain in the DHB system is moderate, and somewhat smaller than in the 

corresponding dihydrofuran system 2 without the fused benzene ring [1]. The older 

name “coumarone” is nearly obsolete. The corresponding formal hydrogenation of 

the furan ring gives the 2,3-dihydrobenzofuran (1) nucleus (older name coumarane).  

 

 

 

 

                                   1                                 2 

Fig. 1 :The structures of 2,3-dihydrobenzofuran (DHB) and 2,3-dihydrofuran 

 

 The dihydrobenzofuran moiety has been known for a long time, and a first 

report on its synthesis dates back to 1892 [2]. Successively, various methods have 

been applied for the preparation of 2,3-dihydrobenzofurans. Clearly, many of the 

methods for the preparation of substituted 2,3-dihydrobenzofurans developed in the 

early days of the last century do not appear to be satisfactory from the standpoint of 

yield, selectivity and generality [3]. 
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1.2 Biological importance of DHBs:   
 

 Many bioactive molecules containing the DHB structural motif have been 

reported including a vast array of natural products (selected examples shown in Fig. 

2, 3–8) [4-10] and numerous synthetic compounds with useful biological activity 

(selected examples shown in (Fig. 3, 9–14). DHB containing natural products have 

been reported with activity against cancer (4–5) [4, 5, 10-12]. tuberculosis, [13] 

malaria [14] and cataracts [15] as well as activity at specific targets such as HIF-1 

(8), [8]6 αglucosidase, [16] aldose reductase, [8] 5-LOX (7), [9] COX-2 (7), [10] NF-

κβ [6] and the muscarinic M3 receptor [15-18]. Other DHB natural products show 

antioxidant and/or cytoprotective properties [19] and insecticidal activity [20] Figure 

1 shows only a fraction of the many known DHB natural products — more than 500 

DHB-containing natural products were reported in 2009–2010 alone. [A Reaxys® 

search of DHB containing natural products reported during this time period produced 

562 substance hits. Note that this includes previously known structures (re-isolations, 

etc) as well as structurally novel natural products.] 

  

 It should also be noted that a DHB system forms part of the skeleton of the 

morphine alkaloids, although the synthesis of these more complex polycyclic 

systems will not be considered here.  

 

 Synthetic DHB derivatives include recently reported molecules such as the 

GPR4 Agonist 9 [21] imidazolium compound 10 (cytotoxic) [22], triazole 11 

(antitubercular) [23], diester 12 (active against leishmaniasis) [24], and the drugs 

Prucalopride 13 [25] (treatment of constipation) and Efaroxan14 (α2-adrenoceptor 

antagonist) [26]. 
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Fig. 2 :Selected DHB natural products 
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Fig. 3 :Some synthetic DHBs with useful biological activity 
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1.3 General Methods for the Synthesis of Benzofurans: 
 

 It is considered as one of the important heterocyclic rings because of its 

diverse biological profile [27]. Medicinal chemists are actively involved in the 

synthesis of benzofuran ring containing molecules due to its clinical importance [28]. 

Many of the clinically approved drugs are synthetic and naturally occurring 

substituted benzofuran derivatives containing mono and fused benzofuran ring in 

conjunction with other heterocycles. As a consequence of the diverse biological 

activities displayed by these compounds, synthetic chemists have developed many 

effective methods for accessing the DHB skeleton. The DHBs moiety has been 

known for a long time, and first report on its synthesis dates back to 1892 [29]. The 

synthetic approaches are classified according to the method by which the saturated 

oxygen ring is constructed. Plausible synthetic approaches to the DHB skeleton are 

shown in Scheme 1. The most obvious strategy involves a classical phenol alkylation 

approach (I, O-alkyl bond formation). Alternatively, the O-aryl bond can be 

constructed via a transition-metal catalysed cross coupling (II). The direct 

construction of the aromatic ring itself (III) is an approach that has rarely been 

applied in DHB synthesis. In contrast, the construction of the C-aryl bond (IV) is a 

well explored approach (e.g. via lithation of an aryl halide). The formation of the 

alkyl C–C bond (V) is commonly achieved via transition-metal mediated carbene C–

H insertion processes using diazo compounds. Finally, more complex strategies 

involving either the formation of two or more bonds in a single reaction (VI), or the 

rearrangement of an existing ring system (VII) can be employed. 
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Scheme 1 
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1.3.1 Formation of the o-alkyl bond  
 

 The intramolecular alkylation of a phenol is perhaps the most common 

method for the construction of DHBs. Given that many natural products contain a 

hydroxyalkyl group joined to the ring system at C2, the ring opening of an epoxide is 

a particularly useful approach and has been explored extensively in recent years. For 

example, the chiral ketone 15 was used to access enantioenriched epoxides 16 which 

gave the corresponding DHB derivatives 17 in good yield and high (Scheme 2), after 

deprotection of the phenol with fluoride [30].  

 

 

 

 

 

 

 

 

 

 

Scheme 2 

  

This approach was used in the synthesis of the DHB containing natural product (+)-

marmesin [31]. In a similar fashion, Sharpless asymmetric epoxidation of allylic 

alcohols such as 18 gave enantioenriched epoxides 19 (Scheme 3). Deprotection of 

the phenol and cyclisation with base enabled chiral diol 20 to be synthesised in good 
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yield [32]. This approach was used to access the core structure (21) of heliannuols G 

and H [33]. 

 

 

 

 

 

  

 

Scheme 3 

1.3.2 Synthesis of DHBs by formation of the O-aryl bond 
  

 The intramolecular copper or palladium-catalysed coupling of an aliphatic 

alcohol with an aryl halide is an effective strategy to access DHB derivatives which 

was developed several years ago [34-37]. Surprisingly there have been few recent 

developments in this area, despite the high level of interest in the development of 

novel catalytic methods for aryl-heteroatom bond formation. An unusual approach to 

DHBs via a catalytic intramolecular Chan–Lam coupling reaction has recently been 

reported (Scheme 4) [38]. o-Alkynlbenzeneboronic acids 22 undergo Au-catalysed 

enolate formation and aldol reaction to give cyclic borates 23. These compounds can 

be cyclised to the corresponding 2,3-disubstituted DHBs24 containing a pendant 

ketone group at C3 with very good yields over this three step reaction process. It is 

notable that this crosscoupling reaction involves the arylation of an aliphatic alcohol 

and also only requires catalytic quantities of copper; both of these factors being 

somewhat unusual in Chan-Lam coupling reactions [39]. This approach is potentially 

quite versatile as variation of the groups at R1 and R2 can easily be achieved (e.g. 25–

26).  
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Scheme 4 

 

 Yu and co-workers recently reported a Pd-mediated C-H activation protocol 

for the direct cyclisation of homo-benzylic alcohols 27, which proceeds in high yield 

to give 2,2-disubstituted DHBs28 (Scheme 5) [39]. These reactions were much more 

efficient for the formation of 2,2-disubstituted DHBs (e.g. 29–30), with the 

corresponding reactions of secondary alcohols proceeding in lower yield. 

Nevertheless, this methodology is potentially very powerful as it does not require 

pre-functionalisation of the aromatic ring. It is also compatible with the presence of 

aryl bromides, enabling the construction of halogenated DHBs (30) which can then 

be further elaborated via traditional transition-metal catalysed coupling reactions. 

 

 

 

 

 

 

Scheme 5 
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1.3.3 Synthesis of DHBs by formation of the aromatic ring 
  

 The direct formation of the benzene ring has rarely been used in the 

construction of DHBs, despite the fact that Rh-catalysed [2+2+2] cycloadditions for 

the formation of closely related fused benzofurans have been reported [40]. An iron-

mediated approach proceeding via the Fe-complexed cyclopentadienone 31 was 

reported in 2001 (Scheme 10) [41]. An alkynyl homopropargyl ether, generated from 

the dichlorovinyl ether 32, underwent cyclisation in the presence of iron 

pentacarbonyl to give 33 in moderate yield over the two steps. After oxidative 

decomplexation, the free cyclopentadienone system readily undergoes cycloaddition 

with dimethyl acetylenedicarboxylate (DMAD) followed by extrusion of CO, to give 

the polysubstitutedDHB32 in moderate yield over two steps. This example serves to 

illustrate how this type of approach can be used to construct DHBs containing a 

highly substituted aromatic ring. 

 

 

 

 

 

 

Scheme 6 
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1.3.4  Synthesis of DHBs by Palladium-Catalyzed  
 

 Due to the versatility, availability and utility of organopalladium complexes, 

palladium is one of the most extensively used transition metal for synthetic purpose 

[42-43].The recent trend is to develop palladium catalyzed heteroannulation 

procedure for the synthesis and functionalization of various heterocyclic moieties. 

 

 The initial reports of palladium catalyzed synthesis of benzofurans involved 

use of stoichiometric amount of costly palladium complexes. However, over the 

years, a number of very efficient catalytic systems has been developed, making the 

procedure competitive with the available methods of synthesis. 

 

 A stoichiometric palladium acetate catalyzed cyclization of diphenyl ethers 

34 and related compounds in acetic acid was reported in 1975 [44] 35 (Scheme 7). 

 

 

 

 

 

94 : R = H 

Scheme 7 

 

 The rate of cyclization and required amount of palladium acetate were found 

to depend upon electron supply in the aromatic ring. In the presence of electron 

releasing groups cyclization was rapid (0.5-1h) and required one equivalent of the 

catalyst. Presence of electron withdrawing groups on the aromatic rings 
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necessiateduse of two equivalents of palladium acetate and the reaction took longer 

time ( 2 hours) to get completed. The reaction was found to be catalyzed by acids. 

 

The palladium acetate catalyzed cyclization of diphenyl ethers 34 under acidic 

condition reported by Akermarket a1[44]in 1975 required stoichiometric amounts of 

palladium acetate. It could be made catalytic by carrying out the reaction at high 

pressure in 1:1 mixture of nitrogen and oxygen [45]. However lack of selectivity led 

to intermolecular hydrogenative coupling to give 36 as a side product (Scheme 8). 

 

 

 

 

Scheme 8 

 

A general procedure was reported [46] for cyclization of substituted 2-bromophenyl 

ethers 37 to obtain substituted dibenzofurans 38 under basic condition. The process 

required only 10 mol% of palladium acetate and could tolerate electron withdrawing 

as well as electron releasing groups (Scheme 9). 

 

 

 

 

R= H, 2-NO2, 3-NO2, 4-NO2, 4-OH-CH2, 3-OH-CH2, 4-COOH. 

Scheme 9 
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 2-Allylphenols 39 having a cyelohexenyl moiety could be cyclized by an 

equimolecular amount of palladium acetate in methanol at room temperature and in 

the presence of air togive a mixture of cis-1, 2,4a, 9b-tetrahydrobenzofuran40 and 

cis-1,4,4a,9b-tetrahydrobenzofuran41 in 1:1 ratio, along with small amount of 2,3-

butanobenzofuran42 (Scheme 10) [47]. 

 

 

Scheme 10 

 

The reaction could be carried out catalytically with respect to palladium catalyst in 

presence of oxygen (one atm.). For the production of one mole of cyclized product 

(40 + 41 + 42), 0.5 molar equivalent of oxygen was consumed under these condition; 

co-oxidants e.g. copper (II) were not required. The distribution of the products (40, 

41 and 42) were found to depend upon substrate concentrations; e.g. in presence of 

excess substrate, the major product was 40. Furthermore, addition of nine equivalents 

of cyclohexene was found to increase the proportion of 40 at the expense of 41 and 

42. 

 

The observed change in product distribution was explained in terms of alternation of 

reaction palladium(II) species and interaction of palladium(II) complexes with 

olefins. 
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In 1973, Hosakawaet a1[48]synthesized benzofurans 43, 44 by refluxing sodium salt 

of 2-allylphenols 102 prepared from 2-allylphenol and sodium methoxide with a 

stoichiometric amount of dichloro bis(benzonitrile) palladium (Scheme 11). 

 

 

Scheme 11 

 

2-Propenylphenol could not be cyclized, indicating that cyclization proceeded not via 

first isomerization of starting olefin, but through coupling of oxygen and -carbon of 

alkyl group. 

 

Later on, the cyclization was made catalytic by using palladium acetate, cupric 

acetate and oxygen [49] (Scheme 12). 2-Allylnaphth-l-ol did not undergo 

cyclization, but gave polymeric material, due to oxidation with oxygen. 

 

 

Scheme 12 

 

The formation of cyclized products was explained by intramolecular oxypalladation 

followedby -elimination of ‘PdHCl' species (Scheme 13). 
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R= H, Ph 

Scheme 13 

When R = H or Ph, the intermediate 49 showed that C-2 hydrogen was the only -

hydrogen that could be eliminated as 'PdHCI'. However when R = CH3, two -

hydrogens were available. Predominance of unsaturated product 50 was in sharp 

contrast to stoichiometric cyclization, where 2-ethylbenzofurans51 was the main 

product (Scheme 14). 

 

 

 

Scheme 14 
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Hosokawa et a1[50]reported a palladium(II) catalyzed asymmetric synthesis of 2,3-

dihydrobenzofurans from 2-allylphenols 52 by using a catalytic amount -pinene as 

the source of chirality. The catalytic system consisted of 10 mol% palladium acetate, 

10 mol% (-) -pinene and one equivalent of cupric acetate. 19:1 (v/v) Methanol in 

water was used as solvent and the reaction was carried out at 35°C under oxygen 

(Scheme 15). When an excess of -pinene was used, no cyclization occurred with 53 

assubstrate; whereas (±)-2-(cyclopent-2-enyl)phenol reacted with palladium acetate 

even in the presence of excess -pinene.  

 

 

Scheme 15 

To gain an insight into the mechanism, the intramolecular cyclization of trans-2-(2-

butenyl)phenal54 was studied with 10 mol% (+)-(2,3,10--pinene)palladium(II) 

acetate 55 and 10 mol% cupric acetate in the presence of oxygen as effective 

catalytic system [51].An overall yield of 77-81 % was obtained as shown below in 

(Scheme 16). 

 

 

 

Scheme 16 
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No cyclization occurred in coordinating solvents e.g. DMF or pyridine, while the 

reaction proceeded sluggishly in benzene, THF and acetic acid.  

 

The reaction was thought to proceed via reversible coordination of the substrate 58 to 

the dimeric palladium complexto form the monomeric palladium(II) acetate 59. 

Intramolecular nucleophelic attack by the phenoxy group and simultaneous removal 

of acetate ligand as acetic acid led to the oxypalladation species 60. A look at this 

species showed the presence of two -hydrogens making the following two pathways 

possible: 

(i) Elimination of a -hydrogen from the methyl group of 61 gave the product 62 

and Pd-H species 63. 

(ii) Elimination of -hydrogen from C-2, followed by rearrangement gave 63 

(Scheme 17). 

 

 

 

Scheme 17 

 

The role played by cuprous acetate was not clear. The acetate ion may interact with 

palladium(II) due to its ready availability to form bridging legands.  
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The generation of catalytically active species involved oxygenation of Pd-H bond in 

64. Thus formed palladium(II) hydroperoxide was supposed to be a Pd-Cu bimetallic 

complex, since regeneration of active catalyst required cupric acetate as well as 

oxygen. The presence of acetate bridge in 65 was supported by the experimental 

observation that reactivity and enantioselectivity were influenced by steric and 

electronic factors of the carboxylate ligands associated with copper (II) (Scheme 18). 

 

 

 

Scheme 18 

 

2-(3-Methyl-2-butenyl)phenol66 underwent palladium chloride catalyzed to give 2,2-

dimethylchromone67 and 2,2-dimethyl-4-methoxychroman68 as the predominant 

products along with < 2% 2-isopropylbenzofuran69 and 2-isopropenyl-2,3-

dihydrobenzofuran70 (Scheme 19) [52]. 
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Scheme 19 

 

Formation of these products could be explained by nucleophilic attack by phenoxy 

group at 2 or 3 position of the allylic side chain. Use of nitrogen or argon instead of 

air led to poorer yields although the relative ratios among the cyclized products did 

not change. While the presence of sodium salt of carboxylic acids bearing electron-

withdrawing substituents resulted in predominant formation of six-membered 

products; addition of sodium salts of carboxylic acids bearing electron donars led to 

formation of benzofurans 69, 70 and six membered products 67, 68 in equal 

amounts. 

 

Addition of sodium acetate or use of palladium acetate resulted in non-formation of 

67. Increase in the amount of sodium acetate added led to higher overall yield 

accompanied by an increase in the presence of 70. These result were ascribed to 

change in palladium(II) species through coordination of sodium carboxylate to 

palladium. The resulting change in electron density of palladium seemed to affect the 

regioselectivity. 

 

Carbonylation of 2-acetylenic phenols 71 with carbonmonoxide in methanol 

containing sodium acetate, cuprous chloride and palladium chloride led to 

intermolecular cycloaddition to give benzofurans 72 (Scheme 20) [53]. 
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Scheme 20 

 

In 1988, Larock and Stinn [54] found that 2-iodoaryl allyl ethers 73 could be 

cyclized into 3-substituted benzofurans 74(a) in the presence of 5% palladium 

acetate under phase transfer condition (Scheme 21). 

 

 

 

Scheme 21 

 

It was found that the yields of benzofurans 74 decreased with less hindered double 

bond and with better aryl leaving groups. The observation was consistent with the 

idea that insertion into the C–O bond was the major side reaction. The formation was 

thought to reduce a -allylpalladium intermediate formed by C–O insertion and thus 

keeping the palladium(0) catalyst active. A mechanism was forwarded (Scheme 22). 
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Scheme 22 

The palladium(II) catalyzed cyclization of analogusarylmercurials75 were examined 

with an idea to improve the yield. Although, the yields were better (65-100%), the 

procedure required stoichiometric amounts of lithium tetrachloropalladate (Scheme 

23). 

 

 

Scheme 23 

 

Palladium catalyzed cross coupling between (1-ethoxy-l-alken-2-yl)boranes77 and 2-

iodophenol76 gave ortho-functionalized styryl ethers 78 in high yields. The latter 

could be converted into 3-substituted benzofurans 79 by cyclodehydration under 

acidic condition [55] (Scheme 24). The reaction could be utilized for the synthesis of 

indoles as well. 
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Scheme 24 

Arcadiet a1[56]found that when 2-hydroxyaryl or 2-hydroxyheteroaryl halides 80 

were treated with terminal alkynes 81 in the presence of a base, (Ph3P)2Pd(OAc)2 and 

cuprous iodide at room temperature or at 60°C, 2-substituted benzoburans82 were 

obtained in good yields. The reaction could accommodate a variety of functional 

groups, both in the phenol and in the alkyne moiety. Piperidine was found to give the 

best results. Other bases like sodium acetate gave moderate yields, while use of n-

tributyl amine led toMichael adduct in poor yields (Scheme 25). 

 

 

 A= CH, N 

X= I, Br 

R1= H; R2 = H, 2-Me, 1-CHO   

R3= H, 3-OMe 

R = –C4H9(n), C6H5, –CH2OH, –CH(OH)C6H5 etc. 

Scheme 25 
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Latter, Torri et a1[57]treated 2-hydroxylaryl on 2-hydroxyheteroaryl iodides 80 with 

terminal alkynes 81 in the presence of bis (triphenylphosphine) palladium (II) 

chloride (5 mol %) and cuprous iodide in triethylamine at 90°C for 10-12 hours, to 

obtain 2-substituted benzofurans 82 in 56 - 99% yields (Scheme 26). 

 

 

A = CH, N  

X = I 

R1= H, Me, CI 

R2 = R3 H; R = = –CH2OTHP, –CMe2OH, –C6H13, Ph etc. 

Scheme 26 

 

Cyclocarbonylation of 3-furylallyl acetates 83 in the presence of acetic anhydride, 

trietylamine and a catalytic amount of  bis (triphenylphosphine) palladium(II) 

chloride at 130 – 170 °C udder 50 -70 atmospheric pressure of carbon monoxide was 

found to give acetoxybenzofurans84 (Scheme 27). 3-(3-Furyl)allylacetate was found 

to cyclize selectively at the 2-position of the heterocyclic nucleus to give 7-

acetoxybenzofuran. Reaction temperature >130°C was necessary to obtain high 

yield. At lower temperature, side reactions gave unidentifiable high boiling by 

products. Triethylamine and acetic anhydride were used to esterify in situ the phenols 

produced.  
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Scheme 27 

 

Secondary allyl acetate 83 (R1 = CH3, R2 = R3 = R4 = H) did not undergo 

cyclocarbonylation due to elimination of acetic acid and polymerization of the 

resulting diene. Furtheremore-substituted allyl acetate 84 (R1 = R2 = R4 = H, R3 = 

CH3) gave poor yield due to diene formation and subsequent polymerization. 

 

It was found that 2-bromophenol 85 (X = Br) reacted with terminal acetylenes like 

phenylacetylene 86 (R = Ph) at room temperature, in the presence of a base, 

bis(triphenylphosphine)palladium(II) chloride and cuprous iodide [59](Scheme 28) 

to give 2-substituted benzofruans87. 

 

 

 

Scheme 28 

 

Heteroatom-containing aryl iodides have been found to react with 1,3-dienes 88 in 

the presence of a palladium catalyst and appropriate base to afford a variety of 

oxygen and nitrogen heterocycles 89. The catalytic system developed by Laroket al 
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[59]to effect this reaction consisted of 5% Pd(OAc)2 or Pd(dba)2, one equivalent n-

Bu4NC1, 3.5 equivalent of appropriate base, with or without triphenyl phosphine 

(Scheme 29). 

 

 

Scheme 29 

 

Recently, aryl halides possessing a heteroatom or potential carbanion containing a 

functionality in the 2-position were found to undergo regioselective reaction with 

1,2-dienes, in the presence of a palladium catalyst and a carbonate base, to give five 

and six membered cyclic compounds in heigh yields [60].Regioselectivity of this 

annulation procedure was very high; most unsymmetrically substituted 1,2-dienes 

gave only one regioisomer. The formation of five membered ring involved exclusive 

annulation across the more highly substituted carbon-carbon double bond. 

For the heteroannulation process 5% each of palladium acetate and 

triphenylphosphine, l equivalent of n-tetrabutyl ammonium chloride and 3 equivalent 

of carbonate base with DMF as solvent was found to give the best results of 

bezofuranose90 (Scheme 30). 

 

 

Scheme 30 
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Y. Nan et all [62]reported an efficient new synthetic technology for the synthesis of 

2,3-disubstituted benzo[b]furans. A highly effective cocatalysis system (PdI2-

thiourea and corbon tetrabromide) was developed for carbonylative cyclization of 

both electron rich and electron deficient o-hydroxylarylacetylenes to the 

corresponding methyl benzo[b]furan-3--carboxylates. 

 

The Pd-catalyzed reaction of 2-alkynylphenols with tertiary propargyl carbonates 

yielded 2-substituted-3-allenylbenzo[b]furans in moderate to good yields [62]. That 

heteroanulation promoted by a -allenylpalladium complex proceeded under neutral 

conditions. 

 

The Pd-catalyzed cross-coupling of o-allylic and o-vinylic phenols with vinylic 

halides and triflates produced substituted dihydrobenzopyrans and 

dihydrobenzofurans respectively in good to high yields [63].The proposed 

mechanism involves vinylpalladium addition to the olefin, rearrangement to a -

allylpaladium intermediate and subsequent intermolecular nuclephilic displacement 

of palladium. 

 

Substituted 2-methylbenzofurans were obtained from 2-allylphenols via Pd2+ 

catalyzed oxidative cyclization using Cu(OAc)2- LiCl as a reoxidant and wet DMF as 

a solvent [64]. 

 

The Pd-catalyzed annulation of silyl-protected alkynols with 2-IC6H4OH gives silyl 

protected (3-hydroxyalkyl) benzofurans [65]. The use of silyl-protected propynols 

bearing a free OH or an OFt3Si protective group resulted in the formation of 1-oxa-2-

silyclopent-3-cues as a major products. Removal of the silyl protective groups 

affords 3-(hydroxyalkyl)benzo[b]furans in good yields. 
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The palladium catalyzed cross coupling of o-allylic and o-vinylic phenols 91 with 

vinylic halide 92 and triflates produces substituted dihydrobenzopyrans and 

dihydrobenzofurans respectively in good to high yields. R. C. Larocket all 

[66]reported a conceptually related palladium-catalyzed coupling on vinylic halides 

and triflates with o-allylic and vinylic phenols, which provides a convenient, general 

route to dihydrobenzopyrans93 and dihydrobenzofurans94 respectively (Scheme 31). 

 

Scheme 31 

 

The general strategy was illustrated through the cyclization of vinyl bromide 177 

(Scheme 32). Heating a mixture of bromide 95 and Cs2C03 in dimethylacetamide 

(DMA) in the presence of catalytic amount of Herrmann's palladacyclic catalyst 

(HC) [67]promoted cyclization to the ortho and para benzofurens96 and 97 which 

were formed in a 1:1 ratio along with a small amount of resorcinol 98. 

 

 

 

Scheme 32 
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A mixture of o-iodophenyl 76 and an alkyne 99, with a terminal acetylenic function, 

when heated in the presence of a palladium catalyst, copper(1) iodide and a base in 

dimethylformamide, gave the 2-substituted benzofurans in good yields [68]. 

 

 

 

OH

C C C(OH)Me2

 

Scheme 33 

 

The reactions were usually carried out for 16h at 60°C, lower temperature leading to 

poor yields. The reaction when carried out in DMF at room temperature in the 

presence of tetrabutylammonium chloride (PTC), gave a mixture of the cyclic 

product and the corresponding acyclic product. The overall yield and the proportion 

of the cyclic product increasing the time. At the higher temperature (50°C) for 6h the 

cyclic productwas formed exclusively. This indicated the acyclic product was an 

intermediate in the formation of the benzofuran. However, with several aryl 

acetylenic carbinols a slightly higher temperature (80°C) and longer reaction period 

were required to derive the optimum yields. The reaction could not be carried out 

with methoxycarbonyland acetylene gas. 

 

A convenient method for the synthesis of 2-bromo-3-aroyl-benzo[b]furans from 

readily accessible precursors has been developed [69]. The 2-bromo group has been 

employed as a versatile synthetic handle in both palladium-mediated coupling and 

direct nucleophilic substitutions to give access to a wide range of 2-substituted -3-

aroyl-benzo [b] furans (Scheme 34).  
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Scheme 34 

 

A new Pd-catalyzed tandem intramolecular oxypalladation / Heck-type coupling 

between 2-alkynyl phenols and alkenes is reported [70], leading to 3-(1-

alkenyl)benzofurans(Scheme 36).    
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Scheme 36 

 

 

 

 

 

Mark Lautens and NaohiroIsono reported [71] a rhodium-catalyzed cyclization of o-

alkynyl-phenols followed by intramolecular conjugate addition that succeeded with 
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alkyl and aryl alkynes. In this reaction, 2-3-disubstituted benzofurans were obtained 

in good to excellent yields (Scheme 37). 

 

R'

OH

+

EWG [RhCod)OH]2, 3 mol %

dioxame/H2O (1/20), 90oC

(20%)

O
R
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(Scheme 37) 
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2.1 Materials and instruments 

2.1.1 Chemicals and reagents 
 

The chemicals and reagents used in this research were analytical grade and 

commercial grade. n-hexane, chloroform, phenol derivatives Acrylic acid butyl ester 

and  2-Methyl-acrylic acid methyl ester chemicals were analytical grade used without 

further purification. The chemicals and reagents which were used in this research are 

given below:  

   

1. 4-chlorophenol (C6H5ClO) 

2. m-cresol (C7H8O) 

3. o-cresol (C7H8O) 

4. 2-Naphthol (C10H8O) 

5. Acrylic acid butyl ester 

6. 2-Methyl-acrylic acid methyl ester 

7. Chloroform (CHCl3) 

8. n-hexane (C6H14) 

9. Methanol (CH3OH) 

10. Triethylamine (C6H15N) Et3N 

11. Dimethylformamide (C3H7NO) 

12. Acetonitrile(C2H3N) 

13. 1,4-Dioxane(C4H8O2)  

14. Silica gel 60-120 Mesh (For Column Chromatography) 

15. bis (triphenyl phosphine) Palladium (II) chloride [Pd(Ph3P)2Cl2] 

16. bis (triphenyl phosphine) Cobalt (II) chloride [Co(Ph3P)2Cl2] 

17. bis (triphenyl phosphine) Nickel (II) bromide [Ni(Ph3P)2Br2] 

18. TLC plate(Silica gel precoated) 

19. Bimetalic nano catalyst 
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2.1.2   Instruments 
 

The synthesized diamides and catalyst were analysed using the following 

instruments: 

 UV-visible Spectrophotometer (Shimadzu-1800)  

 Fourier Transform Infrared Spectrophotometer (Shimadzu FT-IR-

8400)  

 Nuclear Magnetic Resonance Spectrometer (Bruker BPX- 400 ) 

 Gas Chromatography Mass Spectrometer (Shimadzu GC-MS)  

 Digital Balance (Precision electrical balance) 

 Rotatory evaporator 

 Melting point apparatus 

 Oven  

 UV-light 
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2.2  Synthesis of  2-iodophenol 5-8 : 

Aromatic iodo compounds are an important class of compounds in synthetic organic 

chemistry. They are useful for the preparation of organ metallic reagents and some 

are potential intermediates for the synthesis of pharmaceutical and bioactive 

materials. They are useful in metal catalyzed coupling reaction which are widely 

applied in the preparation of complex molecules.  

A mixture of potassiam iodide and potassium iodate is used in the presence of an 

acid for in situ iodination of aromatic compounds.  

 

 

 

Scheme 1 
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2.2.1 Synthesis of 5-methyl-2-iodophenol 5: 
 

A solution of p-chlorophenol (5 g, 38.89 mmol), potassium iodide (4.326 g, 26.05 

mmol), potassium iodate (2.75 g,12.834 mmol) was prepared in methanol (25 mL) 

and water (40 mL). This mixture was treated at room temperature with dilute HCl 

(9.5 mmol) and stirred for 2-4 hrs. The reaction mixture was diluted with water (50 

mL) and neutralized by using saturated solution of NaHCO3 extracted with 

chloroform (25 mL×3). The organic extract was washed with dilute Na2S2O3 (5%) 

and water, dried over anhydrous sodium sulfate and concentrated under reduced 

pressure to give crude oil. The latter was purified by chromatography on a column of 

silica gel (60-120 mesh) with n-hexane/ chloroform and 1:1   and two compounds (5 

and 9) were isolated. 

 

 

Scheme 2 

 

4-chloro-2-iodophenol5: 

 

5 

MF :C6H4OClI2   

MW : 256.473 
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Physical analysis:  

White crystal solid, mp. 70-72  oC, odorless, 35% yield.  

Analytical analysis:  

UV(EtOH) : max  322.40 nm. 

IR(KBr) :max 3452.3, 3286.5, 3100.0, 1571.9, 1407.9, 810.0 and  690.5 cm-1. 

1H NMR(400 MHz, CDCl3) : H 5.69 (br. s, 1H, Ar–OH), 6.90(s, 1H, Ar–H), 7.19 

(d, 1H, J=2.8 Hz, Ar–H), 7.62 (d, 1H, J=2.4 Hz, Ar–CH). 

4-chloro-2,6-diiodophenol 9: 

 

9 

MF :C6H3OClI2 

MW : 383.373 

Physical analysis:  

Yellow amorphous, mp. 70-77 oC, odorless, 55 % yield.  

Analytical analysis:  

UV(EtOH) :max302.80 nm. 

IR(KBr) : max 3460.1, 3068.5, 1531.4, 1427.2, 1143.7, 850.5 and 705.9 cm-1. 

1H NMR(400 MHz, CDCl3) : H 5.55 (br.s, 1H, Ar–OH), 7.65(s, 2H, Ar–H). 
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2.2.2 Synthesis of 4-chloro-2-iodophenol 6: 
 

According to the above iodination reaction (2.2.1) compounds (6 and 10) were 

isolated from m-cresol 2, 6 gm (0.0462 mmol), potassium iodide (4.326g, 26.05 

mmol), potassium iodate (2.75 g,12.834 mmol), methanol (25 mL).  

 

 

Scheme 3 

2-iodo-5-methylphenol6: 

 

6 

MF :C7H7OI      

MW : 233.97 

Physical analysis: 

Yellow crystalline solid, mp. 32-36 oC, odorless and 60% yield   

Analytical analysis:  

UV(EtOH) :max 283.60  nm. 

IR(KBr) :max  3421.5, 1649.0, 1456.2 and 800 cm-1. 
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1H NMR(400 MHz, CDCl3) :H 2.19 (s, 3H, Ar–CH3), 5.28(br.s, 1H,Ar–OH), 

6.42(s, 1H, Ar–H), 6.74(d, 1H, J=7.6 Hz,   Ar–H), 7.43(d, 1H, J=8 Hz, Ar–H). 

13C NMR (100 MHz, CDCl3): C 20.97(Ar–CH3), 111.97(Ar–C), 115.84 (Ar–CH), 

123.37(Ar–CH), 137.80(Ar–CH), 140.46(Ar–CH), 154.64(Ar–C).  

 

2,4-diiodo-5-methylphenol10: 

 

 

10 

MF :C7H6OI2       

MW : 359.93 

Physical analysis : 

White crystal, low melting (30-32 oC), odorless and 30% yield. 

Analytical analysis:  

UV(EtOH) :max 287.60 nm. 

IR(KBr) : max 3460.1, 1300, 1449.9 and 800 cm-1.  

1HNMR(400 MHz, CDCl3) : H 1.61 (s, 3H, Ar–CH3), 5.62(s, 1H, Ar–OH), 6.59(s, 

1H, Ar–H), 7.28(s, 1H, Ar–H). 

13CNMR (100 MHz, CDCl3): C 28.45(Ar–CH3), 77.84(Ar–C), 90.22      (Ar–C), 

123.48(Ar–CH), 137.98 (Ar–CH), 143.55 (Ar–C), 153.21(Ar–C).  
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2.2.3 Synthesis of 2-Iodo-6-methyl-phenol 7: 
 

According to the above iodination reaction (2.2.1) compounds (7 and 11) were 

isolated from o-cresol 3 6 gm (0.0462 mmol), potassium iodide (4.326g, 26.05 

mmol), potassium iodate (2.75 g,12.834 mmol), methanol (25 mL).  

 

 

Scheme 4 

 

2-iodo-6-methylphenol7: 

 

 

7 

 

 

MF :C7H7OI      

MW : 233.97 

Physical analysis: 

Yellow crystalline solid, mp. 40-45 oC, odorless and 60% yield   
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Analytical analysis:  

UV(EtOH) :max 283.60  nm. 

IR(KBr) :max 3421.5, 1649.0, 1456.2 and 800 cm-1. 

1H NMR(400 MHz, CDCl3) : δ 2.18 (3H, s), 6.96 (1H, dd, J = 8.1, 1.3 Hz), 7.06 

(1H, dd, J = 8.1, 7.7 Hz), 7.29 (1H, dd, J = 7.7, 1.3 Hz). 

 

3,6-diiodo-2-methylphenol11: 

 

11 

MF :C7H6OI2       

MW : 359.93 

Physical analysis : 

White crystal, low melting (30-32 oC), odorless and 30% yield. 

Analytical analysis:  

UV(EtOH) :max 287.60 nm. 

IR(KBr) : max 3460.1, 1300, 1449.9 and 800 cm-1.  

1HNMR(400 MHz, CDCl3):   δ 2.30 (3H, s), 7.26 (1H, d, J = 7.6 Hz), 7.31 (1H, 

d, J = 7.6 Hz). 
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2.2.4 Synthesis of 1-iodo-naphthalen-2-ol 8: 
 

According to the above iodination reaction (2.2.1) compounds(8 and 12) were 

isolated from naphthalen-2-ol 4, 6 gm (0.0462 mmol), potassium iodide (4.326g, 

26.05 mmol), potassium iodate (2.75 g,12.834 mmol), methanol (25 mL).  

 

 

 

Scheme 5 

 

1-iodonaphthalen-2-ol8: 

 

8 

MF :C10H7IO      

MW : 269.95 
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Physical analysis: 

Yellow crystalline solid, mp. 60-36 oC, odorless and 60% yield   

Analytical analysis:  

UV(EtOH) :max283.60 nm. 

IR(KBr) : max 3421.5, 1649.0, 1456.2 and 800 cm-1. 

1H NMR(400 MHz, CDCl3) : δ 7.08 (1H, dd, J = 8.8, 0.5 Hz), 7.46-7.66 (3H, 7.51 

(dddd, J = 7.9, 7.5, 1.7, 0.5 Hz), 7.61 (ddd, J = 8.6, 7.5, 1.5 Hz), 7.49 (dddd, J = 8.8, 

1.9, 0.5, 0.5 Hz)), 7.73 (1H, dddt, J = 7.9, 1.9, 1.5, 0.5 Hz), 7.89 (1H, ddt, J = 8.6, 

1.7, 0.5 Hz). 

 

1,3-diiodonaphthalen-2-ol12: 

 

 

12 

 

MF :C10H6I2O       

MW : 395.85 

Physical analysis : 

White crystal, low melting (45-50 oC), odorless and 30% yield. 

Analytical analysis:  

UV(EtOH) :max 287.60 nm. 
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IR(KBr) :max  3460.1, 1300, 1449.9 and 800 cm-1.  

1HNMR(400 MHz, CDCl3)  δ 7.47-7.62 (3H, 7.51 (dddd, J = 7.9, 7.5, 1.6, 0.5 Hz), 

7.57 (ddd, J = 8.6, 7.5, 1.6 Hz), 7.57 (dddd, J = 7.9, 2.0, 1.6, 0.4 Hz)), 8.00 (1H, 

dddd, J = 8.6, 1.6, 0.5, 0.4 Hz), 8.23 (1H, dt, J = 2.0, 0.5 Hz). 
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2.3  Synthesis of substituted 2,3-dihydrobenzofuran14a-17a: 

2-iodophenol5-8 were converted to the substituted 2,3-dihydrobenzofuran14a-22aon 

the treatment with terminal alkenes 13 in the condition of (i-iv) as shown in the 

Scheme 6. 

 

S.L Condition 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

 

 

Scheme 6 

 

 

 

 

 

 

2.3.1 Synthesis of methyl 5-chloro-2-methyl-2, 3-dihydrobenzofuran-

2-carboxylate 14a 
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A mixture of 4-chloro-2-iodophenol20.5g, (2.283 mmol) in condition (i-iv) catalyst 

(0.056 g, 3.5 mol%) and triethylamine (Et3N) (0.924 g, 4 equiv) was stirred in DMF 

(10 mL) under nitrogen atmosphere for 1h. Then, 2-methyl-acrylic acid methyl ester 

13 0.236 g, (3 equiv) was added to the reaction mixture. The solution was heated at 

80-120 oC for 20-24 hrs. The progress of the reaction was monitored by TLC (n-

hexane/chloroform 1:1). After completion of the reaction, the mixture was 

evaporated to dryness under reduced pressure and the residue was extracted with 

chloroform   (350 mL). The combined chloroform extract was washed with distilled 

water (50 mL) dried over anhydrous Na2SO4, filtered and concentrated under 

reduced pressure to obtain reddish gum. The latter was purified by chromatography 

on a column of silica gel (60-120 mesh) with n-hexane / chloroform 3:1 and 

chloroform.  5-chloro-2-methyl-2,3-dihydrobenzofuran-2-carboxylate14aand methyl 

3-(5-chloro-2-hydroxyphenyl)-2-methylpropanoate14b and small amount of 

deiodinated product were obtained (Scheme 7) 

 

 

Condition 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

 

Scheme 7 

 

 

methyl-5-chloro-2-methyl-2,3-dihydrobenzofuran-2-carboxylate  14a 
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14a 

MF: C11H11ClO3 

MW: 226.04 

Physical Analysis : 

White crystalline solid; mp. 64-69 oC;  

 

IR: max (KBr) 3066.92, 2953.12, 2854.74, 1706.09, 1592.29, 1457.27, 1264.38, 

1230.63, 1127.43, 1065.71 cm-1. 

 

1H NMR (400 MHz, CDCl3):  2.25 (s, 3H, CH3), 3.25 (d, 1H, J = 15.2), 3.32 (d, 

1H, J = 15.2 Hz), 3.85 (s, 3H, OCH3),  7.39(d, 1H, J = 7.6), 7.41(d, 1H, J = 7.6 ), 

7.84 (s, 1H). 

 

 13C NMR  (100 MHz, CDCl3):23.28 (-CH3), 42.72 (CH2), 52.32 (-OCH3), 87.21 

(C), 120.74 (Ar–CH), 125.96 (Ar–CH), 126.13 (Ar–C), 130.52  (Ar–CH), 130.96 

(Ar–CH), 160.96 (Ar–C), 168.08 (–C=O). 

Anal. Calc. for C11H11ClO3: C, 58.29; H, 4.89; Cl, 15.64; Found: C, 58.22; H, 4.77. 
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2.3.2 Synthesis of methyl 2,6-dimethyl-2, 3-dihydrobenzofuran-2-

carboxylate 15a 
 

A mixture of 5 and 13 in the above procedure for 2.3.1 was followed for the 

preparation of methyl 2,6-dimethyl-2,3-dihydrobenzofuran-2-carboxylate 15aand 

methyl 3-(2-hydroxy-4-methylphenyl)-2-methylpropanoate15b and small amount of 

deiodinated product were obtained (Scheme 8) 

 

 

 

Condition 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

 

Scheme 8 
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methyl 2, 6-dimethyl-2, 3-dihydrobenzofuran-2-carboxylate 15a 
 

 

 

15a 

 

Molecular Formula: C12H14O3 

Molecular Weight: 206.24 

Physical Analysis : 

Deep Light crystalline solid; mp 70-75 oC;  

IR: max (KBr) 3183.91, 2949.26, 1683.91, 1573.00, 1436.05, 1284.63, 1126.47, 

1020.38 cm-1;   

 

1H NMR (400 MHz, CDCl3):  2.01 (s, 3H, CH3), 2.26 (s, 3H, Ar–CH3), 2.81 (d, 

1H, J = 15.2 Hz), 3.05 (d, 1H, J = 15.2 Hz), 3.84 (s, 3H, OCH3),  6.70-6.79 (m, 2H, 

Ar–H), 7.13(dd, 1H, Ar–H),  

 

13C NMR  (100 MHz, CDCl3):  21.32 (CH3), 23.09 (Ar–CH3), 43.51 (-CH2), 52.21 

(OCH3), 87.03 (C–1), 117.01 (Ar–CH), 129.0  (Ar–CH), 121.27  (Ar–CH), 129.14 

(Ar–CH), 138.17 (Ar–C), 155.84 (Ar–C), 169.12 (C=O). 

 

Anal. Calc. for C12H14O3: C, 69.88; H, 6.84; Found: C, 69.73; H, 6.88. 
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methyl 3-(2-hydroxy-4-methylphenyl)-2-methylacrylate15b 

 

 

15b 

 

Molecular Formula: C12H14O3 

Molecular Weight: 206.24 

Physical Analysis : 

IR: max (KBr) 3379.40, 2949.26, 1683.91, 1611.58, 1573.00, 1436.05, 1284.63, 

1126.47. 2020.38 cm-1;   

 

1H NMR (400 MHz, CDCl3):  2.01 (s, 3H, CH3), 2.20 (s, 3H, Ar–CH3), 3.84 (s, 3H, 

-OCH3), 5.7(br. s 1H OH), 6.73 (d, 1H, J = 8.8 Hz), 6.74 (s, 1H, Ar-H), 7.14(d, 1H, 

J=8.4, Ar-H), 7.74(s, 1H, vinylic–H),  
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2.3.3 Synthesis of methyl 2,7-dimethyl-2,3-dihydrobenzofuran-2-

carboxylate 16a 
 

A mixture of 8 and 13 in the above procedure for 2.3.1 was followed for the 

preparation of methyl 2,7-dimethyl-2,3-dihydrobenzofuran-2-carboxylate 16aand 

butyl 3-(2-hydroxy-3-methylphenyl) propanoate 16b and small amount of 

deiodinated product were obtained (Scheme 9) 

 

 

Condition 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

 

Scheme 9 
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methyl- 2,7-dimethyl-2,3-dihydrobenzofuran-2-carboxylate16a 
 

 

16a 

Molecular Formula: C12H14O3 

Molecular Weight: 206.24 

Physical Analysis : 

crystalline solid; mp. 32-37 oC;  

IR: max (KBr) 3104.55, 2956.97, 2360.95, 2070.65, 1894.16, 1659.80, 1599.04, 

1504.53, 1430.26, 1363.72, 1262.56, 1112.0 cm-1;   

 

1H NMR (400 MHz, CDCl3):  2.15 (s, 3H, CH3), 2.28 (s, 3H, Ar–CH3), 2.71 (d, 

1H, J = 15.2 Hz, CH2), 3.10 (d, 1H, J = 15.2 Hz, CH2), 3.82 (s, 3H, OCH3),  6.82 (t, 

1H, J = 5.2 Hz, Ar–H), 7.19 (dd, 2H, J = 8.4 Hz Ar–H). 

 

13C NMR  (100 MHz, CDCl3):  15.94 (Ar-CH3), 23.14 (–CH3), 42.18 (-CH2), 52.01 

(OCH3), 87.14 (C–1), 123.96 (Ar–CH), 124.34 (Ar–CH), 127.40(Ar–CH), 

128.03(Ar–CH), 131.23(Ar–CH), 154.44 (Ar–C), 169.59 (C=O).  

 

Anal. Calc. for C12H14O3: C, 69.88; H, 6.84; Found: C, 69.90; H, 6.78. 
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methyl -3-(2-hydroxy-3-methylphenyl)-2-methylacrylate16b 
 

 

16b 

Molecular Formula: C12H14O3 

Molecular Weight: 206.24 

Physical Analysis : 

crystalline solid; mp. 35-39 oC;  

IR: max (KBr) 3350.40, 2949.26, 1683.91, 1611.58, 1573.00, 1436.05, 1284.63, 

1126.47. 2020.38 cm-1;   

 

1H NMR (400 MHz, CDCl3):  2.12 (s, 3H, CH3), 2.28 (s, 3H, Ar–CH3), 3.82 (s, 3H, 

-OCH3), 5.61(s, 1H OH), 6.84 (d, 1H, J = 8.4 Hz), 7.20(d, 1H, J=8.4, Ar-H), 7.22 (s, 

1H, Ar-H), 7.63(s, 1H, vinylic–H),  
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2.3.4 Synthesis of methyl 2-methyl-1, 2-dihydronaphtho [2, 1-b] 

furan-2-carboxylate 17a 
 

A mixture of 11 and 13 in the above procedure for 2.3.1 was followed for the 

preparation of methyl 2-methyl-1,2-dihydronaphtho[2,1-b]furan-2-carboxylate 

17aand methyl 3-(2-hydroxynaphthalen-1-yl)propanoate 17b and small amount of 

diiodinated product were obtained (Scheme 10) 

 

 

Condition 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

 

Scheme 10 
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methyl 2-methyl-1,2-dihydronaphtho[2,1-b]furan-2-carboxylate17a 
 

 

 

 

17a 

 

Molecular Formula: C15H14O3 

Molecular Weight: 242.27 

Physical Analysis : 

Deep Red solid; mp. 60-65 oC;  

IR: max (KBr) 3060.17, 2925.15, 28.54.74, 1621.22, 1510.31, 1462.09, 1384.94, 

1244.13, 1120.68 cm-1;   

 

1H NMR (400 MHz, CDCl3):  1.33 (s, 3H, CH3), 3.61 (d, 1H, J = 15.2 Hz, CH2), 

3.70 (s, 3H, OCH3), 3.81 (d, 1H, J = 15.2 Hz, CH2), 7.20 (d, 1H J = 9.2 Hz, Ar–H),  

7.62-7.86 (m, 3H, Ar–H), 8.41 (d, 1H J = 8.8 Hz, Ar–H), 8.54 (d, 1H J = 8.8 Hz, Ar–

H).  

 

13C NMR  (100 MHz, CDCl3):  179.59(C=O), 155.44(Ar–CH), 131.25(Ar–

CH),129.46(Ar–CH), 128.78(Ar–CH), 128.72(Ar–CH), 128.42(Ar–CH),124.26(Ar–

CH),123.63(Ar–CH), 118.01(Ar–CH), 109.48(Ar–CH), 87.14(C–1), 52.01(OCH3), 

42.18(-CH2), 28.14(–CH3). 

 

Anal. Calc. for C15H14O3: C, 74.36; H, 5.82; Found: C, 74.48; H, 5.79. 

 



Chapter 02: Experimental 

 

66 
 

methyl 3-(2-hydroxynaphthalen-1-yl)acrylate17b 
 

 

 

17b 

Molecular Formula: C15H14O3 

Molecular Weight: 242.27 

Physical Analysis : 

Deep Red solid; mp. 60-65 oC;  

IR: max (KBr) 3370.17, 2925.15, 28.54.74, 1621.22, 1510.31, 1462.09, 1384.94, 

1244.13, 1120.68 cm-1;   

 

1H NMR (400 MHz, CDCl3):  1.43 (s, 3H, CH3), 3.71 (s, 3H, OCH3),  5.22(s, 1H 

OH), 7.20 (d, 1H J = 9.2 Hz, Ar–H),  7.62-7.86 (m, 3H, Ar–H), 8.41 (d, 1H J = 8.8 

Hz, Ar–H), 8.54 (d, 1H J = 8.8 Hz, Ar–H).  

 

The data of UV, IR, 1H NMR and 13C NMR spectra were found to be consistent with 

the structure of this compound as shown below: 

Anal. Calc. for C15H14O3: C, 74.36; H, 5.82; O, 19.81 
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2.3.5 Synthesis of butyl 6-methyl-2,3-dihydrobenzofuran-2-

carboxylate18a 
 

A mixture of 5 and 13a in the above procedure for 2.3.1 was followed for the 

preparation of butyl 6-methyl-2,3-dihydrobenzofuran-2-carboxylate18aand butyl 3-

(2-hydroxy-4-methylphenyl)acrylate18b and small amount of diiodinated product 

were obtained (Scheme 11) 

 

 

Condition 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

 

Scheme 11 

 

butyl 6-methyl-2,3-dihydrobenzofuran-2-carboxylate18a 
 

 

 

18a 

 

Light pink crystalline solid; mp. 98-100 oC;  

IR: max (KBr) 3141.8, 3022.2, 2956.7, 1670.2, 16.4.7, 1575.7, 1423.4, 1305.7, 

1209.3, 1166.9, 1041.5, 1004.8 cm-1;   
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1H NMR (400 MHz, CDCl3):  0.96 (t, 3H, J = 7.4 Hz, CH3), 1.46 (m, 2H,   

CH2),1.67 (m, 2H, CH2), 2.29 (s, 3H, Ar–CH3), 4.22 (t, 2H, J = 6.8 Hz, OCH2), 6.59 

(d, 1H, J = 16.4 Hz, H-3), 6.66 (s, 1H, H-3), 6.71(d, 1H, J = 8 Hz, Ar–H), 6.75 (s, 

1H, Ar–H), 7.33 (d, 1H, J = 7.8 Hz, Ar–H), 7.98 (d, 1H, J = 16 Hz, H-2).   

 

13C NMR (100 MHz, CDCl3):  13.70 (CH3), 19.14 (CH2), 28.20 (CH2), 30.69  (Ar–

CH3), 67.42 (OCH2), 116.46 (C–3), 117.92 (C–2), 120.92 (Ar–C), 121.60 (Ar–CH), 

129.18 (Ar–CH), 131.44 (Ar–CH), 141.18 (Ar–C), 155.86 (Ar–C), 169.59 (C=O). 

 

Anal. Calc. for C14H18O3: C, 71.77; H, 7.74; Found: C, 71.64; H, 7.80. 

 

butyl 3-(2-hydroxy-4-methylphenyl)acrylate18b 
 

 

 

18b 

Molecular Formula: C14H18O3 

Molecular Weight: 234.13 

Physical Analysis : 

Ash solid; mp. 59-67oC;  

 

1H NMR (400 MHz, CDCl3): 0.80 (t, 3H, J = 7.6 Hz, CH3), 1.49 (m, 2H,   

CH2),1.67 (m, 2H, CH2), 2.17 (m, 2H, CH2), 2.30 (s, 3H, Ar–CH3), 3.65 (t, 2H, J = 

6.8 Hz, OCH2), 5.51(br. s 1H OH),  6.55 (d, 1H, J = 5.6 Hz, 1H), 6.84 (d, 1H, J = 

8.4, Ar-H), 6.04 (s, 1H, Ar–H), 7.29(d, 1H, J = 7.2 Hz, Ar–H),  7.64 (d, 1H, J = 5.6 

Hz, 1H). 
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2.4  Characterization of synthesized product 

2.4.1. UV-Visible spectrophotometer 
 

The UV-Visible spectral analysis was performed with a double beam UV-Visible 

spectrophotometer. The analyses were involved within 200-800 nm range. For, UV-

Vis spectral analyses, purified and dried 2,3-dihydrobenzofurans were dissolved in 

chloroform solvent. The dissolved sample was placed in the sample cuvette while the 

reference cuvette was filled with the corresponding solvents. All the analysis was 

performed at room temperature 30°C (±2°C). 

 

2.4.2. Fourier Transform Infrared (FTIR) analysis 
 

The infrared spectra of the synthesized 2,3-dihydrobenzofurans were recorded on an 

FTIR spectrometer in the region of 4000 – 500 cm-1. All the 2,3-dihydrobenzofurans 

samples had dried. A small portion of samples were taken and mixed with KBr. The 

powder mixtures were then compressed in a metal holder under pressure to make 

pellets. The pellets were then placed in the path of IR beam for measurements. 

 

2.4.3. Nuclear Magnetic Resonance (NMR) analysis 
 

1H and 13C-NMR spectra were recorded by Bruker BPX- 400 spectrophotometer 

operating at 400.23 MHz and 100.63 MHz respectively and CDCl3 used as solvent, 

tetramethylsilane (TMS) as an internal standard. All chemical shifts (δ) were 



Chapter 02: Experimental 

 

70 
 

reported in ppm and coupling constants (J) in Hz. Chemical shifts were performed 

relative to tetramethylsilane (TMS) and d-solvent peaks (7.28 ppm in 1H and 77.00 

ppm in 13C, chloroform), respectively. Abbreviations used in the NMR experiments: 

s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet.  

 

2.4.4. Gas Chromatography Mass Spectrum (GC-MS) analysis 
 

Retention time and mass spectrum for N, N-dioctyl-butanediamide was recorded in 

chloroform using column: Rxi-5ms, 30m, 0.25mm ID, 0.25µ df  by Shimadzu GC-

MS. 

 

2.4.5. Melting Point 
 

Melting points for 2,3-dihydrobenzofurans were determined in open capillary tubes 

in melting point apparatus. 

 

2.4.6. Solubility 
 

All the 2,3-dihydrobenzofurans were soluble in chloroform solvent. 
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3.  PRESENT WORK: METAL MEDIATED SYNTHESIS 

OF 2, 3-DIHYDRO BENZOFURAN DERIVATIVES 

3.1 Rationale 
 

Benzofurans are an important class of heterocyclic compounds[1] with unique 

biological activities. [2] Notable instances include derivatives of benzofurans acting 

as antitumor agents, [3] angiotensin II inhibitors, [4] and 5-lipoxygenase inhibitors 

etc.[5]. Because of their occurrence as natural products and their biological activities, 

various classical methods have been developed over the years for elaborating the 

benzofuran structure [1a,2a]. A rhodium-catalyzed cyclization of 2-alkynyl phenols 

followed by intermolecular conjugate addition has been reported[5]. A new Pd-

catalyzed tandem intramolecular Oxypalladation/Heck-type coupling between 2-

alkynylphenols and alkenes was reported,[6] leading to 3- (1-alkenyl) benzofurans. A 

method for the synthesis of 2-bromo-3-aroyl-benzo[b]furans from readily accessible 

precursors has been developed[7]. 

N.G. Kundu et al reported a study of the heteroannulation of 2-iodophenol with 

acetylenic substrate through palladium-copper catalysis leading to the synthesis of 

the 2- substituted benzofurans. M.W. Khan et al[8] reported the synthesis of 2-

acyl/aroyl benzofurans through combined palladium-catalyzed and Friedel-Crafts 

reactions of 2-iodophenol. The acylated benzofuran compounds demonstrated mild 

to significant growth inhibition against antibiotic-susceptible standard and clinically 

isolated strains of Gram-positive and Gram-negative bacteria as well as human 

fungal pathogens.  

For the last few decades palladium-catalyzed reactions have been of great 

significance in carbon-carbon[131] and carbon-heteroatom bonds formations[9]. 

Recently, our research group has developed methods for the synthesis of various 

benzofused heterocyclic compound e.g. benzofurans[10], isoindolinones and 

isoquinolinones[11] through combined palladium-catalyzed and Friedel-Crafts 

reactions with terminal alkynes and acid chloride. Although a number of synthetic 

methods for the preparation of benzofurans have been reported, simple and efficient 

approaches still remain scarce for the synthesis of substituted dihydrobenzofurans.  



Chapter 03: Results& Discussion 

73 
  

In view of the extensive natural occurrence and biological importance of 

dihydrobenzofurans, it was planned to develop a convenient method for the synthesis 

of substituted 2, 3-dihydrobenzofuran derivatives from the reaction of substituted 2-

iodophenol and terminal alkenes (acrylic ester) by palladium-catalyzed reactions. 

3.2 Preparation and Characterization of 2-iodophenol 2, 6, 8, 11 

Table-1: Synthesis of 2-iodophenol 2, 5, 8, 11: 

 

Entry Substrate Reagent and condition Product Yield% 

I 

 

OH

Cl

 

1 

KIO3, KI, H+, solvent 

MeOH, rt, 3h 

 

OH

Cl I

 

5 

+ 

OH

Cl I

I  

9 

70 

 

 

 

 

 

30 

II OHH3C  

2 

OHH3C

I

 

6 

+ 

OHH3C

II

 

10 

 

60 

 

 

 

15 
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III 
OH

CH3  

3 

 

OH

CH3

I

 

7 

+ 

OH

CH3

I

I

 

11 

35 

 

 

 

 

 

55 

IV 

 

OH

 

4 

KIO3, KI, H+, solvent 

MeOH, rt, 3h 

 

OH

I

 

8 

+ 

I

I

OH

 

12 

80 

 

 

 

 

 

10 
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3.2.1 Preparation of 4-chloro-2-iodophenol 2 
 

The compound p-chlorophenol 1 underwent a smooth reaction with potassium 

iodide, potassium iodate in methanol and aqueous solution of HCl to produce desired 

products 4-chloro-2-iodophenol5 and 4-choro-2,6-diiodophenol9 in good yields, as 

shown in the  

 

 

 

3.2.1a.  Characterization of 4-chloro-2-iodophenol 5 
 

A white color crystal was obtained with 35% yield, mp. 70-72 oC, which was 

moisture sensitive. The structure of the compound was predicted by various spectral 

data.  

UV(EtOH) : max = 322.40 nm 

IR : The IR spectrum showed the following absorption bands at max 3286.5. 1571.9, 

1300, 810 and 690.5 cm-1 indicating the stretching of –OH, –C=C, –C–H, –C–I and  

–C–Cl groups in the compound respectively.  

1H NMR : The 1H NMR spectra of the compound 7 revealed one proton singlet at  

5.65 (br. s, 1H, Ar–OH) of Ar–OH group. The chemical shift position at  6.91 (s, 

1H,  Ar–H) indicated one aromatic hydrogen, doublet at  7.19 (d, 1H, J=2.8 Hz, Ar–

H) for one aromatic hydrogen, the chemical shift position at  7.62 (d, 1H, J=2,4 Hz, 

Ar–H) indicated one aromatic hydrogen.  
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A white color crystal was obtained with yield of 66%, mp.70-75 oC, the compound 

was moisture sensitive. The structure of the compound was assigned by different 

spectral data.  

All spectral data were found to be consistent with the following structure. 

 

 

 

3.2.1b.  Characterization of 4-chloro-2,6-diiodophenol9 
 

A white colour crystal was obtained with 55% yield, mp 70-77 oC, which was 

moisture sensitive. The structure of the compound was predicted by various spectral 

data. In UV (EtOH) spectrum, the max value was found at 302.80 nm. 

The IR spectrum showed the following absorption bands at max 3460.1, 3068.5, 

1531.4, 850.5 and 705.9 cm-1 indicating the stretching of –OH, aromatic C–H, –C=C, 

–C–I disubstitued and –C–I groups in the compound 8 respectively. 

The 1H NMR spectra of compound 8 indicated  5.55 (br. s, 1H, Ar–OH) for one 

hydrogen of –OH group, the chemical shift position at  7.65 (s, 2H, Ar–H) indicated 

two aromatic hydrogen. 

The above data of UV, IR and 1H NMR spectra were found to be consistent with the 

structure of this compound as shown below: 

 

OH

Cl I

I  

9 
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3.2.2 Preparation of 5-methyl-2-iodophenol 6 
 

According to the above iodination reaction(3.2.1) from 2 synthesized of 2-Iodo-5-

methyl-phenol 6 and small amount of diiodinated product 2,4-Diiodo-5-methyl-

phenol 10 . 

 

 

 

 

3.2.2a.  Characterization of 5-methyl-2-iodophenol5 
 

A yellowish solid was obtained with 60% yield, mp 32-36 oC, which was moisture 

sensitive. The structure of the compound was established by various spectral data. In 

UV max was found 283.60 nm for the compound. 

 

The IR (KBr) spectrum of this compound exhibited absorption bands at max 

3421.5,1649.0, 1456.2 & 800 cm-1 for the stretching of –OH,  –C=C, H3C–C and   –

C–I groups in the compound 5 respectively. 

 

The 1H NMR spectra showed presence of seven (7) hydrogens in the compound. 

Chemical shift position at  2.19 (s, 3H, Ar–CH3) showed for three hydrogen in 

methyl group,  5.28 (br.s, 1H, OH) for –OH proton,  6.42 (s, 1H, Ar–H) for one 

aromatic hydrogen, doublet at  6.74(d, 1H, J=7.6 Hz, Ar–H) and 7.43(d, 1H, J=8 

Hz, Ar–H) also for two aromatic hydrogen.  
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The 13C NMR spectral data showed presence of seven (7) carbon atoms in the 

compound. Chemical shift 20.97 was due to the presence of one carbon in methyl 

group (Ar–CH3), chemical shift of  111.97 and 115.84 for the     (Ar–C) and (Ar–

CH),  123.37, 137.80 for (Ar–CH),  140.46 and 154.64 for (Ar–C) were obtained.  

On the basis of  UV, IR, 1H NMR and 13C NMR spectra and elementary data, the 

structure of this compound was predicted as the following structure: 

 

 

 

3.2.2b. Characterization of 5-methyl-2,6-diiodophenol 6 
 

A white crystal with 30% yield was obtained, mp 30-32 oC, this compound was 

moisture sensitive. The structure of the compound was established by different 

spectral data. The UV (EtOH) spectrum was showed max 287.60 nm for the 

compound. 

 

The IR (KBr) spectrum of this compound showed absorption bands at max3460.1cm-

1 for the stretching of –OH group. Stretching bands max 1449.9, 1300 and 800 cm-1 

indicated the presence of –C–H, –C–O, and   –C–I groups in the compound 6 

respectively. 

 

The 1H NMR spectra of compound 6 revealed three protons singlet at  1.61 (s, 3H, 

Ar–CH3) of methyl group, chemical shift  5.62(s, 1H, OH) was for one aldehyde 

hydrogen, singlet at  6.59 & 7.28 (s, 1H, Ar–H) for two hydrogens of aromatic ring.  
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The structure of the compound was further confirmed by its 13C NMR data. 

Chemical shift position at  28.45 indicated presence of one carbon of methyl group 

(Ar–CH3),  77.84 and 90.22 obtained for the two tertiary carbons of aromatic ring 

(Ar–C), chemical shift at  123.48 and 137.98 presented two carbons in aromatic 

ring (Ar–CH),  143.55 and 153.21 for the two tertiary carbons of benzene ring (Ar–

C).  

 

The data of UV, IR, 1H NMR and 13C NMR spectra were found to be consistent with 

compound as follows: 

 

 

3.2.3 Preparation of 2-iodo-6-methyl-phenol 8 
 

According to the above iodination reaction(3.2.1) from 3 synthesized of  2-Iodo-6-

methyl-phenol 7 and small amount of 3,6-Diiodo-2-methyl-phenol 11 . 
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3.2.3a.  Characterization of 2-iodo-6-methyl-phenol 8 

 

OH

CH3

I

 

7 

 

3.2.3b. Characterization of 3,6-diiodo-2-methylphenol 9 

 

OH

CH3

I

I

 

 

11 

 

 

 

 

3.2.4 Preparation of 1-iodo-naphthalen-2-ol 11:  
 

According to the above iodination reaction(3.2.1) from 4 synthesized of  1-Iodo-

naphthalen-2-ol8 and small amount of diiodinated product 1,3-diiodo-naphthalen-2-

ol12. 
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3.2.4a.  Characterization of 1-iodonaphthalen-2-ol11 

 

OH

I

 

11 

 

3.2.4b. Characterization of 1,3-diiodonaphthalen-2-ol 12 

 

 

I

I

OH

 

12 
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3.3  Preparation and characterization of substituted 2, 3-

dihydrobenzofuran14a-17a 
 

2-iodophenol5-8 were converted to the substituted 2,3-dihydrobenzofuran14a-17aon 

the treatment with terminal alkenes in the condition of (i-iv) as shown in the Scheme 

5. 

 

 

Condition 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 

 

 

Scheme 5 
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3.3.1  Mechanism :   
 

 

 

(Ph3P)2PdCl2

CH2C

NEt3

NHEt3Cl

Pd(Ph3P)2 CH C
2

R" = C OR3

R2

R2

O

R2 = H 

        CH3

R3 = CH3

        C4H9

C CH CH C

R2 R2

R""R

R"

R"

(Ph3P)2Pd(0)

R1

I

OH

R1

OH

Pd(Ph3P)2I

R1

OH

CH2 C

R2

R"

Pd(Ph3P)2I

R2

R"

H

H

R1

Pd(Ph3P)2I

R2

R"

H

H

OH

R1
Pd(Ph3P)2I

R2

R"

H

H

O

R1 HPd(Ph3P)2IR2

R"

H
H

O

HI

Oxidative Addition

Alkene Insertion

C-C Bond Rotation

Reduction elimination

 

 

 

Scheme-6 

 

 

 



Chapter 03: Results& Discussion 

84 
  

A plausible mechanism for the formation of substituted 2,3-dihydro benzofuran 14a-

17a through palladium catalyzed reaction of iodophenol5-8 with terminal alkenes 

(acrylic ester) (13) is illustrated in Scheme 6. 

 

Once formed the highly coordinative unsaturated 14-electron palladium (0) complex 

participates in an oxidative addition reaction with the o-iodophenol4 to give a o-aryl 

palladium (II) complex which then trans-metallats with terminal alkenes (13) to 

generate the arylalkynyl palladium (II) species. The intermediate arylalkynyl 

palladium (II) involves a simple bond rotation. This event is essential because it 

establishes the necessary syn relationship between a -hydrogen and the palladium 

atom in a common plane, the -hydride elimination can take place to give the 

coupling product substituted 2,3-dihydrobenzofurans (14a-17a) and the 

hydridopalladium complex. Finally, a base triethyl amine assisted reductive 

elimination of HI from the latter regenerates the palladium (0) catalyst, thus 

permitting a subsequent turn through the cycle.    
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Table 2: Synthesis of  2-alkyl-2,3-dihydrobenzofuran acetate 14a-17a: 

 

Entry Substrate Alkenes Products aYield % 

 

1. 

OH

Cl I

 

 

5 

 

H2C C

CH3

C

O

OCH3 

 

13 

 

Cl

O

CH3

O

OCH3

 

14a 

60 

 

 

14b 

35 

 

2. 
OHH3C

I

 

6 

 

H2C C

CH3

C

O

OCH3 

 

13 

 

O

CH3

O

OCH3

H3C
 

15a 

50 

 

 

15b 

40 

 

3. 

OH

CH3

I

 

 

7 

 

H2C C

CH3

C

O

OCH3 

 

13 

 

O

CH3

O

OCH3

CH3  

16a 

 

70 
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16b 

27 

 

4. 

OH

I

 

 

8 

 

H2C C

CH3

C

O

OCH3 

 

13 

 

O

CH3

O

OCH3

 

17a 

50 

 

17b 

30 

 OHH3C

I

 

6 
13a 

 

18a 

69 

 

18b 

20 

a yield % was calculated on the basis of 2-iodophenol.



Chapter 03: Result & Discussion 

87 
  

3.4 Characterization of 2,3-dihydrobenzofuran14a-17a 

3.4.1 Characterization of methyl 5-chloro-2-methyl-2,3-

dihydrobenzofuran-2-carboxylate 14a 
 

A white color crystal was obtained will yield of 60%, mp. 64-69 oC, the compound 

was moisture sensitive. The structure of the compound was assigned by different 

spectral data.  

 

The IRspectrum [Fig. 8] of 14acompound presented absorption bands at  max 

3066.92 and 2953.12 cm-1 for stretching of aromatic C-H, aliphatic C-H groups 

respectively and1706.09, 1592.29, 1457.27, 1264.38 and 1127.43 cm-1 indicated 

stretching bands ofand -C=O, -C=C, COO-, -C-O and -C-O-C groups in the 

compound respectively.  

 

The1H NMR spectrum [Fig. 9a,b,c] of the compound 14a indicated the chemical 

shift2.25 (s, 3H, -CH3) for three hydrogens in methyl group at C2 position. The 

chemical shift 3.25 (d, 1H, J = 15.2Hz, C3Ha) and 3.32 (d, 1H, J = 15.2 Hz, C3Hb) 

for two doublet for two hydrogen in -CH2 at C3 position, the chemical shift 3.85 (s, 

3H, -OCH3) for methoxy group,  7.39(d, 1H, J = 7.6Hz, Ar-H), 7.41(d, 1H, J = 7.6 

Hz, Ar-H ), 7.84 (s, 1H, Ar-H) for three hydrozens in benzene ring. Total eleven(11) 

hydrogen atoms were indicate in the compound by 1H NMRspectrum.  

 

The structure of the compound14a was further confirmed by13C NMRspectural data 

[Fig. 10]. Chemical shitf at23.28 (-CH3) and 42.72 (C3 positon CH2) for C2 postion 

methyl and C3 position CH2 carbons. The Chemical shitf at52.32 (-OCH3), 87.21 ( 

for C2position C), and 120.74 (Ar–CH), 125.96 (Ar–CH), 126.13 (Ar–C), 130.52  

(Ar–CH), 130.96 (Ar–CH), 160.96 (Ar–C) indicated the carbons of benzene ring, 

The chemical shift at 168.08 indicated the presence of carbonyl carbon (–C=O)  in 

ester group.Total carbons presence in the compound were eleven (11).  
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Anal. Calc. for C11H11ClO3: C, 58.29; H, 4.89; Cl, 15.64; Found: C, 58.22; H, 4.77. 

 

The above data of IR, 1H NMR and 13C NMR spectra were found to be consistent 

with the structure of this compound as shown below: 

 

 

14a 

 

3.4.2 Characterization of methyl 2, 6-dimethyl-2, 3-

dihydrobenzofuran-2-carboxylate  15a 
 

A deep Light crystalline solid was obtained with yield 50%, mp 70-75 oC, which was 

very moisture sensitive. The structure of the compound was established by different 

spectral data.  

 

The IR: max (KBr) spectrum [Fig. 11] of the compound 15a exhibited bands3183.91 

2949.26, 1683.91cm-1 for stretching of aromatic C-H, aliphatic C-H and C=O groups 

respectively. Stretching bands 1573.00, 1284.63cm-1indicated -C=C, and -C-O 

groups in the compound respectively.  

 

Inthe1H NMR spectrum [Fig. 12a,b,c] of the compound 15a chemical shift2.01 (s, 

3H, CH3), 2.26 (s, 3H, Ar–CH3) indicated for hydrozens in C2 position methyl and 

aromatic methyl groups.Chemical shift 2.81 (d, 1H, J = 15.2 Hz, C3Ha), 3.05 (d, 

1H, J = 15.2 Hz, C3Hb) was two doublet for two hydrozen at C3 position CH2, 

chemial shift  3.84 (s, 3H, OCH3) for methoxy methyl group and chemical 

shift6.70-6.79 (m, 2H, Ar–H), 7.13(dd, 1H, Ar–H) for two hydrozen in benzene 

ring. Total carbons presence in the compoud 15a were fourteen (14).   
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Thestructure of the compound 15awas furtherconfirmed by13C NMR spectral data 

[Fig. 13]. Chemical shift at 21.32 for C2 position methyl groups (-CH3), 23.09  for 

benzine ring methyl groups(Ar–CH3). The chemical shift 43.51 (-CH2) indicated for 

C3 position Carbon in CH2 and 52.21 (OCH3) for methoxy methyl group. The 

chemical shift  87.03 (C-2) for C2 postion carbons, and 117.01 (Ar–CH), 119.75 

(Ar–CH), 129.0 (Ar–CH), 121.27 (Ar–CH), 129.14 (Ar–CH), 138.17 (Ar–C), 155.84 

(Ar–C) were benzen ring carbons. Chemical shift 169.12 indicated the presence of 

carbonyl carbon (C=O) in ester group. Total carbons presence in the compound were 

twelve (12). 

 

Anal. Calc. for C12H14O3: C, 69.88; H, 6.84; Found: C, 69.73; H, 6.88. 

 

The above data of IR, 1H NMR and 13C NMR spectra were found to be consistent 

with the structure of this compound as shown below: 

 

 

 

 

15a 

 

 

3.4.3 Characterization of   methyl 3-(2-hydroxy-4-methylphenyl)-2-

methylacrylate15b 
 

A light red crystalline solid was obtained with yield 40%, mp75-78oC, which was 

very moisture sensitive. The structure of the compound was established by different 

spectral data.  

 



Chapter 03: Result & Discussion 

90 
  

Inthe1H NMR spectrum [Fig. 14a,b,c] of the compound 15b chemical shift2.01 (s, 

3H, CH3) for C2 position methyl, 2.20 (s, 3H, Ar–CH3) for benzene methyl, 3.84 (s, 

3H, -OCH3) for methoxy methyl. The chemical shift  5.7(br. s 1H OH) showed for -

OH group and  6.73 (d, 1H, J = 8.8 Hz), 6.74 (s, 1H, Ar-H), 7.14(d, 1H, J=8.4, Ar-

H) indicated benzen protons. The chemical shift 7.74(s, 1H, vinylic–H) indicated 

C3-position position. Total hydrogen presence in the compoud 15b were fourteen 

(14).   

 

The above data of1H NMRspectra were found to be consistent with the structure of 

this compound as shown below: 

 

 

15b 

 

 

3.4.4 Characterization of  methyl 2,7-dimethyl-2,3-

dihydrobenzofuran-2-carboxylate16a 
 

A crystalline solid was obtained with yield 70%,mp32-37oC, which was very 

moisture sensitive. The structure of the compound was established by different 

spectral data.  

 

The IRspectrum [Fig. 15]max3104.55, 2956.97, 1894.16, 1659.80 cm-1stretching 

ofaromatic C-H, aliphatic C-H and C=O groups respectively in the compound 16a. 

max1599.04 and 1262.56cm-1 indicated -C=C, and -C-O groups in the compound 

respectively.  
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The1H NMR spectra [Fig. 16a, b, c] showedat chemical shift2.15 (s, 3H, CH3) 

singlet pic for C2 position methyl group, 2.28 (s, 3H, Ar–CH3) showed for benzene 

methyl group. At chemical shift3.71 (d, 1H, J = 15.2 Hz, CH2), 3.10 (d, 1H, J = 15.2 

Hz, CH2) indicated two doublet for C-3 position two hydrozen. Chemical shift 3.82 

(s, 3H, OCH3) showed for methoxy methyl group and 6.82 (t, 1H, J = 5.2 Hz, Ar–

H), 7.19 (dd, 2H, J = 8.4 Hz Ar–H) indicated for three hydrogen in aromatic ring. 

Total carbons presence in the compoud 16a were fourteen (14).   

 

In the13C NMRspectral[Fig. 17] data of compound 16achemical shift 15.94 (Ar-

CH3) indicated the presence of one carbon in benzene methyl group, chemical 

shift23.14 (–CH3) showed for one C2 position methyl group. Chemical shift42.18 

(-CH2) for C3 position carbon and52.01 (OCH3) showed for methoxy methyl 

carbon. The chemical shift 87.14 (C–2) showed for C-2 position carbon and 123.96 

(Ar–CH), 124.34 (Ar–CH), 127.40(Ar–CH), 128.03(Ar–CH), 131.23(Ar–CH), 

154.44 (Ar–C) indicated the presence of aromatic ring carbon. The chemical shift 

169.59 (C=O) showed for acytyl group carbon. Total carbons presence in the 

compound were twelve (12) . 

 

Anal. Calc. for C12H14O3: C, 69.88; H, 6.84; Found: C, 69.90; H, 6.78. 

 

The above data of IR, 1H NMR and 13C NMR spectra were found to be consistent 

with the structure of this compound as shown below: 

 

 

 

16a 
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3.4.5 Characterization of methyl 3-(2-hydroxy-3-methylphenyl)-2-

methylacrylate16b 
 

A light red crystalline solid was obtained with yield 27%,mp35-39 oC, which was 

very moisture sensitive. The structure of the compound was established by different 

spectral data.  

 

Inthe1H NMR spectrum [Fig. 18a,b,c] of the compound 16b chemical shift 

showed2.12 (s, 3H, CH3) for C2 positioin methyl group, 2.28 (s, 3H, Ar–CH3) for 

benzene methyl group, 3.82 (s, 3H, -OCH3) for methoxy methyl group, 5.61(s, 1H 

OH) for -OH group.  6.84 (d, 1H, J = 8.4 Hz), 7.20(d, 1H, J=8.4, Ar-H), 7.22 (s, 1H, 

Ar-H) indicted of benzene proton. Chemical shift 7.63(s, 1H, vinylic–H) indicated 

C3-position position hydrogen.Total hydrogen presence in the compoud 16b were 

fourteen (14).   

 

The data of 1H NMRspectra were found to be consistent with the structure of this 

compound as shown below: 

 

 

 

16b 
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3.4.6 Characterization of methyl 2-methyl-1,2-dihydronaphtho[2,1-

b]furan-2-carboxylate17a 
 

Deep Red solid was obtained with yield 50%, mp60-65oC, which was very moisture 

sensitive. The structure of the compound was established by different spectral data.  

 

TheIR spectrum [Fig. 19] showed max 3060.17, 2925.151621.22 cm-1 stretching 

bands represented =C-H, -C-H aliphatic and C=O groups in the compound 17a.  

max1510.31, 1462.09, 1244.13cm-1 indicated stretching bands of aromatics C-C, and 

ether-C-O. 

 

The1H NMR spectra [Fig. 20a, b, c ] showedsinglet1.33 (s, 3H, CH3) for three 

hydorgen in C2 position methyl group and doublet at 3.61 (d, 1H, J = 15.2 Hz, CH2) 

for C3 position two one hydrogen Ha and 3.81 (d, 1H, J = 15.2 Hz, CH2) showed C3 

position two one hydrogen Hb. The chemical shift at 3.70 (s, 3H, OCH3) showed for 

for methoxy group. Chemical shift at 7.20 (d, 1H J = 9.2 Hz, Ar–H),  7.62-7.86 (m, 

3H, Ar–H), 8.41 (d, 1H J = 8.8 Hz, Ar–H), 8.54 (d, 1H J = 8.8 Hz, Ar–H) indicated 

the presence of napthol hydrogen. Total hydrogen presence in the compoud 17a were 

fourteen (14).   

 

Anal. Calc. for C15H14O3: C, 74.36; H, 5.82; Found: C, 74.48; H, 5.79. 

 

The data of IR, 1H and NMRspectra were found to be consistent with the structure of 

this compound as shown below: 

 

 

17a 
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3.4.7 Characterization of methyl 3-(2-hydroxynaphthalen-1-

yl)acrylate17b 
 

Deep Red solid; mp. 60-65 oC;  

 

Inthe1H NMR spectrum [Fig. 21a,b] of the compound 17b chemical shift showed 

1.43 (s, 3H, CH3) for C2 positioin methyl group and chemical shift 3.71 (s, 3H, 

OCH3) for methoxy methyl group. The chemical shift showed at5.22(s, 1H OH), for 

-OH group and the chemical shift 7.20 (d, 1H J = 9.2 Hz, Ar–H),  7.62-7.86 (m, 3H, 

Ar–H), 8.41 (d, 1H J = 8.8 Hz, Ar–H), 8.54 (d, 1H J = 8.8 Hz, Ar–H) indicted of 

napthol proton. Chemical shift 7.36(s, 1H, vinylic–H) indicated C3-position position 

hydrogen.Total hydrogen presence in the compoud 17b were fourteen (14).   

 

The data of1H NMRspectra were found to be consistent with the structure of this 

compound as shown below: 

 

Anal. Calc. for C15H14O3: C, 74.36; H, 5.82; O, 19.81 

 

 

 

17b 
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3.4.8 Characterization of butyl 6-methyl-2,3-dihydrobenzofuran-2-

carboxylate18a 
 

Light pink crystalline solid; mp. 98-100 oC;  

 

IR: max (KBr) 3141.8, 3022.2, 2956.7, 1670.2, 16.4.7, 1575.7, 1423.4, 1305.7, 

1209.3, 1166.9, 1041.5, 1004.8 cm-1;   

 

1H NMR (400 MHz, CDCl3):  0.96 (t, 3H, J = 7.4 Hz, CH3), 1.46 (m, 2H,   

CH2),1.67 (m, 2H, CH2), 2.29 (s, 3H, Ar–CH3), 4.22 (t, 2H, J = 6.8 Hz, OCH2), 6.59 

(d, 1H, J = 16.4 Hz, H-3), 6.66 (s, 1H, H-3), 6.71(d, 1H, J = 8 Hz, Ar–H), 6.75 (s, 

1H, Ar–H), 7.33 (d, 1H, J = 7.8 Hz, Ar–H), 7.98 (d, 1H, J = 16 Hz, H-2).   

 

13C NMR (100 MHz, CDCl3):  13.70 (CH3), 19.14 (CH2), 28.20 (CH2), 30.69  (Ar–

CH3), 67.42 (OCH2), 116.46 (C–3), 117.92 (C–2), 120.92 (Ar–C), 121.60 (Ar–CH), 

129.18 (Ar–CH), 131.44 (Ar–CH), 141.18 (Ar–C), 155.86 (Ar–C), 169.59 (C=O). 

 

The above data of IR, 1H NMR and 13C NMR spectra were found to be consistent 

with the structure of this compound as shown below: 

 

 

 

18a 
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3.4.9 Characterization of butyl 3-(2-hydroxy-4-

methylphenyl)acrylate18b 
 

Yellowish Red solid; mp. 55-60oC;  

The1H NMR spectra [Fig. 22] showed triplet at 0.80 (t, 3H, J = 7.6 Hz, CH3) for 

three proton, chemicial shift at 1.49 (m, 2H,   CH2) multilate for apliphatic CH2, at 

1.67 (m, 2H, CH2) for another alophatic CH2, and chemical shift at 2.17 (m, 2H, 

CH2) for aliphatic CH2. The chemical shift at 2.30 (s, 3H, Ar–CH3) for aromatic CH3 

tree proton, and chemical shift at 3.65 (t, 2H, J = 6.8 Hz, OCH2) for OCH2, In spectra 

chemical shift at 5.51(br. s 1H OH) singlet broght pick showed for phenolic OH, and 

chemical shift at 6.55 (d, 1H, J = 5.6 Hz, 1H), 6.84 (d, 1H, J = 8.4, Ar-H), 6.04 (s, 

1H, Ar–H), 7.29(d, 1H, J = 7.2 Hz, Ar–H) showed for aromatic hydrogen.  7.64 (d, 

1H, J = 5.6 Hz, 1H). Total hydrogen presence in the compound 18b were eighteen. 

The data of1H NMRspectra were found to be consistent with the structure of this 

compound as shown below: 

 

The data of1H NMRspectra were found to be consistent with the structure of this 

compound as shown below: 

 

 

18b 
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3.5Catalyst screening for synthesis 2,3-

dihydrobenzofuran14a-17a 

3.5.1 Catalyst screening of methyl 5-chloro-2-methyl-2, 3-dihydrobenzofuran-2-

carboxylate 14a 

 

Model Reaction 

 

Table-3: Catalyst screening for model reaction 

 

Condition Yeild % 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 60 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 50 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 47 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 58 

 

 

Fig. 4 Catalyst screening for synthesis 14a 
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3.5.2 Catalyst screening of methyl 2,6-dimethyl-2, 3-dihydrobenzofuran-2-

carboxylate 15a 

Model Reaction 

 

Table-4: Catalyst screening for model reaction 

 

Condition Yeild % 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 50 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 30 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 35 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 45 

 

 

Fig. 5 Catalyst screening for synthesis 15a 
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3.5.3 Catalyst screeningof methyl 2,7-dimethyl-2,3-dihydrobenzofuran-2-

carboxylate 16a 

 

 

Model Reaction 

 

 

Table-5: Catalyst screening for model reaction 

 

Condition Yeild % 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 70 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 40 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 45 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 60 

 

 

Fig. 6 Catalyst screening for synthesis 16a 
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3.5.4 Catalyst screening of methyl 2-methyl-1, 2-dihydronaphtho [2, 1-b] furan-

2-carboxylate 17a 

 

 

Model Reaction 

 

 

Table-6: Catalyst screening for model reaction 

 

Condition Yeild % 

i Pd(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 50 

ii Co(Ph3P)2Cl2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 38 

iii Ni(Ph3P)2Br2, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 42 

iv Bimetallic nano catalyst, DMF, Et3N, N2, 80-100 oC,  20-24 hrs 43 

 

 

Fig. 7 Catalyst screening for synthesis 17a 
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3.6Spectra14a-17a 
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Fig. 8IR of Compound 14a  
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Fig. 9.a1H NMR of Compound 14a 
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Fig. 9.b1H NMR of Compound 14a 
 



Chapter 03: Result & Discussion 

104 
  

 

 

 

 

 

 

 

 

           14a 

 

 

 

 

 

 

Fig. 9.c1H NMR of Compound 14a 
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Fig. 1013C NMR of Compound 14a 
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Fig. 11IR of Compound 15a 
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Fig. 12.a1H NMR of Compound 15a 
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Fig. 12.b1H NMR of Compound 15a 
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Fig. 12.c1H NMR of Compound 15a 
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Fig. 1313C NMR of Compound 15a 
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Fig. 14.a1H NMR of Compound 15b 
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Fig. 14.b1H NMR of Compound 15b 
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Fig. 14.c1H NMR of Compound 15b 
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Fig. 15IR of Compound 16a 
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Fig. 16.a1H NMR of Compound 16a 
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Fig. 16.b1H NMR of Compound 16a 
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Fig. 16.c1H NMR of Compound 16a 
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Fig. 1713C NMR of Compound 16a 
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Fig. 18.a1H NMR of Compound 16b 
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Fig. 18.b1H NMR of Compound 16b 
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Fig. 18.c1H NMR of Compound 16b 
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Fig. 19IR of Compound 17a 
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Fig. 20.a1H NMR of Compound 17a 
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Fig. 20.b1H NMR of Compound 17a 
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Fig. 20.c13C NMR of Compound 17a 
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Fig. 21.a1H NMR of Compound 17b 
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Fig. 21.b1H NMR of Compound 17b 
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Fig. 22.a1H NMR of Compound 18a 
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Fig. 22.b1H NMR of Compound 18b 
 



Chapter 03: Result & Discussion 

130 
  

 

 

 

 

 

   

18b 

 

 

 

 

 

 

 

 

Fig. 23.a1H NMR of Compound 18b 
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Fig. 23.b1H NMR of Compound 18b
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3.7Computational Studies for14a-17a 
 

3.7.1 Computational details 

The Gaussian 16W software package was used for geometrical optimizations 

and computational spectroscopic characterization of 14a-17a using DFTcalculations. 

The B3LYP, APFD exchange-correlation functional has been used with 3-21G basis 

set. The Gauss View 6.0.16 software was used for visualization. 

 

The time-dependent DFT (TD-DFT) calculations using321G basis set with 

Gaussian 16W software package have been also used to study the properties such as 

HOMO-LUMO energies, MEP, global chemical reactivity descriptors, absorption 

wavelengths, oscillator strengths and electronic excitation energies of 14a-17a. 

 

3.7.2 Vibrational assignments 
 

The vibrational spectroscopy is broadly employed in organic chemistry to 

recognize the various functional groups of organic compounds. The 14a-

17amolecule made up of 25-32 atoms, thus has minimum 69 and maximum 90 

modes of vibrations according to the vibrational degree of freedom (3N-6) for the 

non-linear molecule and this molecule belongs to the C1 point group. The theoretical 

calculations were performed using B3LYP/3-21G basis set. The optimized molecular 

geometry of 14a-17a was obtained by optimization with DFT method is displayed in 

Fig. 24.  

 

The computed vibration vibrational (unscaled and scaled) frequencies and 

experimental (FT-IR) measurements are summarized in Table 7.The experimental 

and simulated FT-IR spectra of 14a-17a are presented in Fig.25(a, b, c). The 

computed frequencies are normally greater than the related experimental 

wavenumbers due to the correlation effects of electron and basis set inadequacy. As a 

result of scaling the theorical frequencies are matching in accordance with 

experimental values.  
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3.7.2.1 C-H Vibrations 

 The title molecules have four C-H stretching modes, three from the benzene 

ring and one form furan ring. Normally in the benzene ring, C-H stretching 

assignments are present in the array of 3100-3000 cm-1 whereas in furan, C-H 

stretches are seen at 3180-3090 cm-1. In 14a-17aC-H vibrations of the benzene ring 

are showed at 3060-3183 cm-1 in FT-IR in experiment spectra. The computed valuse 

of benzene and furan rings are found to be 3248, 3207, 3216 and 3217 cm-1 

respectively by DFT method. These results comply that both experimental and 

simulated data are in good agreement.  

 

3.7.2.2 CH3 Vibrations 

 In benzene ring, the CH3 asymmetric stretching modes are predicted to be in 

the span of 3000-2925 cm-1 and symmetric stretching modes are largely fallen in the 

extent of 2940-2905 cm-1
. In 14a-17a, the CH3 asymmetric stretching vibrations are 

theoretically calculated at 3072-3075 cm-1 and experimental FT-IR peaks are 

observed at 2925-2956 cm-1. 

 

3.7.2.3 C-C Stretching Vibrations 

 In benzene ring, C-C stretching vibration modes falls in the range of 1625-

1430 cm-1. It is quoted that, the peaks are with changeable intensities at 1380-1280, 

1465-1430, 1540-1470, 1590-1575 and 1625-1590 cm-1. In 14a-17a the C-C 

stretching modes are assigned 1615-1644 cm-1 and experimentally found at 1510-

1599 cm-1. 

 

3.7.2.4 C=O Stretching Vibrations 

 In 14a-17a, C=O stretching vibrations are showed at 1706, 1683.91, 1659.80, 

1621.22, cm-1respectively in FT-IR and computed at 1791, 1758.73, 1789.28, 

1758.90cm-1respectively. 
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3.7.2.5 Other vibration modes 

 In furan ring for 14a-17a, C-O stretching vibrations are appeared at 1264, 

1284.63, 1262.56, 1244.13 cm-1 respectively in FT-IR and computed at 1247, 

1274.31, 1237.63, 1282.46 cm-1respectively.  

 

3.7.3Frontier molecular orbital studies 
  

 The reaction rate is comparative with the energy gap between the highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 

(LUMO). The LUMO is considered as an electrophilic, as it attracts electrons and 

HOMO can be a nucleophile that donates electrons to an electrophile. The energy 

gap of HOMO and LUMO determines the chemical stability of the molecule. A 

sample with large energy gap will have a good stability with high chemical hardness 

whereas with a small energy gap the molecule is considered to be soft and has good 

chemical reactivity. The hard molecule is less polarizable than soft one. From the 

HOMO and LUMO energies of the 14a-17a molecules, we can find out the global 

reactivity descriptors viz. electron affinity (EA), ionization potential (IP), chemical 

potential (V), electronegativity (𝜒), softness (𝑆), global hardness (𝜂) and 

electrophilicity index () the computed values of EHOMO, ELUMO and corresponding 

energy gap (∆𝐸 = LUMO-HOMO) of the 14a-17a molecules are presented in Table 

8 and HOMO-LUMO energy diagram is presented in Fig. 26(a, b, c, d).    

  

 According to the Koopmans' theorem ionization potential (IP) and electron 

affinity (EA) are the negative energies of HOMO and LUMO respectively. 

 

  IP = -EHOMO 

  EA = - ELUMO 

 

 Electronegativity (𝜒) is defined by 

 

𝜒 = (𝐼𝑃 + 𝐸𝐴)/2 
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and chemical potential (V) is a negative of electrongaativity 

 

V = -(IP+EA)/2  

 

both are estimated rom the values of IP and EA. The chemical hardness (𝜒) is 

defined by  

𝜒 = (𝐼𝑃 − 𝐸𝐴)/2 

 

and chemical softness (S) is inverse of chemical hardness  

 

S = 
1

𝜒
 .  

The extreme stream of electrons between donor (HOMO) and the acceptor 

(LUMO) result is lowering of energy considered to be electrophilicity index. The 

electrophilicity index of the title compound is found to be 

 

 𝜔 =  
𝜇2

2𝜂
 ,    here 𝜇 =  −𝜒 

 

 From above calculations, I can conclude that 14a-17a molecules has good 

chemical reactivityand soft. 

 

3.7.4NMR spectra and calculations.  
 

 The NMR is a high-ranking instrument used for the determination of structure 

of molecules the combined experimental and simulated studies. of NMR give more 

confirmation about the structure of the molecules. Theoretical 1H NMR and 13C 

NMR chemical shifts were computed through GIAO method by using APFD/6-

311G+ (d, p)basis set. The experimental and theoretical 13C and 1H NMR spectra are 

presented in Figs 27(a, b, c, d) and Table 9 and 10.  

 

 All experimental 13C-NMR and 1H-NMR chemical shifts correspond with the 

calculated data.  
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3.7.5Molecular Electrostatic potential.  
 

 The MEP gives the essential information regarding molecular shape, size and 

nature such as neutral negative and positive electrostatic potential areas which are 

represented in the form of color coding. It also delivers the most concerning idea 

regarding the nucleophilic and electrophilic reactivity of molecules. Being a real 

physical property V(r) can be determined experimentally by diffraction or 

computational methods. To examine the chemical reactivity of the molecule, on the 

optimized geometry of the 14a-17a, MEP map was framed and presented in Fig. 

28(a, b, c, d).Over the surface on the MEP red color indicates the electrophilic attack 

i.e., maximum negative region and blue color indicates the nucleophilic i.e., 

maximum positive region. The potential reduces in the order of 

blue>green>yellow>orange>red. The color code of MEP diagram lies in between -

0.02546 a.u (dark red) and 0.02546 a.u (dark blue) for 14a-17a.  

  

 In the present maps, the most negative electrostatic potential area are 

localized in the region of the O and H atoms. The positive electrostatic potential are 

localized on the O17, O12, Cl26 atoms in 14a; O24, O17 atoms in 15a; O17, O12 

atoms in 16a; and O32, O26 atoms in 17a.The H24, 19, 16, 15, 9 atoms in 14a; H29, 

28, 22, 11 atoms in 15a; H16, 15, 14 atoms in 16a; and H30, 29, 19, 11 atoms in 17a 

have most positive region to nucleophilic attack.  

 

 From this discussion, it is clear that C=O, C-O-C and C-H are the most 

favoured region for an electrophilic and a nucleophilic attack.  
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Fig. 24:  Optimized geometric structure with atoms numbering of 14a-17a 
 

Electronic Energy=-1105.88Hartree 

Dipole Moment =4.21Debye 

Polarizability (α)=  119.94 a.u. 

 

 

Electronic Energy=-687.59Hartree 

Dipole Moment = 1.99Debye 

Polarizability (α)= 122.33  a.u. 

 

Electronic Energy=-687.60Hartree 

Dipole Moment = 2.694332Debye 

Polarizability (α)=  119.73 a.u. 

 

 

Electronic Energy=-801.29Hartree 

Dipole Moment =1.86Debye 

Polarizability (α)=  153.96 a.u. 
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Fig. 25(a) Theoretical and Experimental IR spectra for 14a 
 

 

 

 

 

 

 

 

Fig. 25(b) Theoretical and Experimental IR spectra for 15a 
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Fig. 25(c) Theoretical and Experimental IR spectra for 16a 
 

 

 

 

 

 

 

 

 

Fig. 25(d) Theoretical and Experimental IR spectra for 17a 
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Fig. 26(a):  HOMO-LUMO gap of 14a 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26(b):  HOMO-LUMO gap of 15a 
 

ELUMO = - 0.03301 eV 

ΔE = 0.23450 eV 

EHOMO = - 0.26751 eV 

ELUMO = - 0.00773 eV 

ΔE = 0.20104 eV 

EHOMO = - 0.20877 eV 
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Fig. 26(c):  HOMO-LUMO gap of 16a 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26(d):  HOMO-LUMO gap of 17a 
 

ELUMO = - 0.00167 eV 

ΔE = 0.20711 eV 

EHOMO = - 0.20878 eV 

ELUMO = - 0.03515 eV 

ΔE = 0.16533 eV 

EHOMO = - 0.20048 eV 
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Table 7. Some important assignments of experimental and theoretical IR spectral bandsof14a-17a 

 

Functional 

Group 

Litterateur 

IR 

(cm-1) 

14a 15a 16a 17a 

Computed 

B3LYP/ 

3-21G 

(cm-1) 

Expt. 

(cm-1) 

Computed 

B3LYP/ 

3-21G 

(cm-1) 

Expt. 

(cm-1) 

Computed 

B3LYP/ 

3-21G 

(cm-1) 

Expt. 

(cm-1) 

Computed 

B3LYP/ 

3-21G 

(cm-1) 

Expt. 

(cm-1) 

Aromatic 

𝝊(C-H)str. 
3000-3100 3248.14 3066.92 3207.26 3183.91 3216.19 3104.55 3217.29 3060.17 

Aliphatic  

𝝊 (C-H)str. 
3000-2850 3074.15 2953 3074.32 2949.26 3072.60 2956.97 3075.71 2925.15 

𝝊(C=O) str. 1750-1735 1791 1706 1758.73 1683.91 1789.28 1659.80 1758.90 1621.22 

Aromatic 

𝝊(C-C) str. 

in ring 

1600-1400 1615 1592.29 1644.08 1573.00 1643.17 1599.04 1635.57 1510.31 

𝝊(C-O)str. 1320-1000 1247 1264 1274.31 1284.63 1237.63 1262.56 1282.46 1244.13 

Aromatic 

𝝊(C-Cl)str. 
800-600 689.19 754.19 - - - - - - 
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Table 8. Calculated energy values of 14a-17a by B3LYP/321G method 

 

Different parameters 
DFT, B3LYP/321G method 

14a 15a 16a 17a 

EHOMO (eV) - 0.26751 - 0.20877 - 0.20878 - 0.20048 

ELUMO (eV) - 0.03301 - 0.00773 - 0.00167 - 0.03515 

Energy gap∆𝐄 (eV) 0.23450 0.20104 0.20711 0.16533 

Ionization potential IP(eV)  0.26751  0.20877 0.20878 0.20048 

Electron affinityEA (eV) 0.03301 0.00773 0.00167 0.03515 

Electronegativity 𝝌(eV) 0.15026 0.10825 0.10522 0.11781 

Chemical potential V - 0.15026 - 0.10825 - 0.10522 - 0.11781 

Chemical hardness 𝜼 (eV) 0.11725 0.10052 0.10355 0.08266 

Softness S (eV)-1 8.52878 9.94826 9.65640 12.09702 

electrophilicity index (𝛚) 𝐞𝐕 0.09628 0.05828 0.05345 0.08395 
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Table 9. Theoretical and Experimental of13C isotropic chemical shift (with respect to TMS, all values in ppm) for14a-17a by 

APFD/6311G++(d, p) method 

13C NMR chemical shift, DFT, APFD/6311G+(d, p)method 

14a 15a 16a 17a 

Atom Theoretical Experimental Atom Theoretical Experimental Atom Theoretical Experimental Atom Theoretical Experimental 

13-C 

1-C 

4-C 

2-C 

5-C 

3-C 

6-C 

7-C 

14-C 

8-C 

20-C 

179.99 

162.80 

140.85 

129.22 

127.37 

123.41 

111.37 

92.09 

53.11 

42.91 

21.14 

168.08 

160.96 

130.96 

130.52 

126.13 

125.96 

120.74 

87.21 

52.32 

42.72 

23.28 

23-C 

2-C 

4-C 

1-C 

6-C 

5-C 

3-C 

8-C 

26-C 

7-C 

18-C 

13-C 

187.37 

167.82 

146.53 

130.78 

129.19 

126.62 

114.07 

96.824 

59.15 

44.80 

23.56 

22.78 

169.12 

155.84 

138.17 

129.14 

129.0 

121.27 

117.01 

87.03 

52.21 

43.51 

23. 09 

21.32 

13-C 

1-C 

5-C 

2-C 

6-C 

3-C 

4-C 

7-C 

14-C 

8-C 

20-C 

26-C 

181.68 

162.50 

129.37 

126.59 

123.15 

121.51 

121.37 

91.70 

53.32 

43.75 

21.26 

13.88 

169.59 

154.44 

131.23 

128.03 

127.40 

124.34 

123.96 

87.14 

52.01 

42.18 

23.14 

15.94 

25-C 

 1-C  

 3-C   

 4-C  

 5-C 

12-C  

16-C     

14-C  

13-C  

 2-C     

 6-C  

 7-C     

28-C       

 8-C   

21-C 

180.18 

160.36 

131.86 

130.97 

129.79 

129.58 

127.09 

122.79 

122.33 

119.89 

111.59 

91.993 

54.393 

39.575 

19.703 

179.59 

155.44 

131.25 

129.46 

128.78 

128.72 

128.42 

124.26 

123.63 

118.01 

109.48 

87.14 

52.01 

42.18 

28.14 
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Table 10. Theoretical and Experimental of1H isotropic chemical shift (with respect to TMS, all values in ppm) for14a-17a by 

APFD/6311G++(d, p) method 

DFT, APFD/6311G+(d, p)method – Chemical shift 

14a 15a 16a 17a 

Atom Theoretical Experimental Atom Theoretical Experimental Atom Theoretical Experimental Atom Theoretical Experimental 

25-H         

9-H          

10-H         

15-H         

24-H         

16-H         

11-H         

19-H         

21-H         

22-H         

23-H 

7.37 

7.25 

7.00 

3.92 

3.88 

3.71 

3.70 

3.36 

2.13 

2.00 

1.76 

7.84 

7.41 

7.39 

3.85 

3.85 

3.85 

3.32 

3.25 

2.25 

2.25 

2.25 

11-H 

10-H 

9-H 

12-H 

27-H 

29-H 

28-H 

22-H 

16-H 

14-H 

15-H 

20-H 

21-H 

19-H 

7.24 

6.91 

6.78 

4.09 

3.99 

3.89 

3.78 

3.04 

2.54 

2.54 

2.04 

2.01 

1.39 

1.27 

7.13 

6.79 

6.70 

3.84 

3.84 

3.84 

3.05 

2.81 

2.26 

2.26 

2.26 

2.01 

2.01 

2.01 

25-H  

 9-H 

10-H 

24-H 

15-H 

11-H 

16-H 

19-H 

28-H 

27-H 

21-H 

29-H 

22-H 

23-H 

7.39 

7.28 

7.19 

3.93 

3.92 

3.80 

3.67 

3.53 

2.90 

2.46 

2.15 

2.05 

2.02 

1.79 

7.19 

7.19 

6.82 

3.82 

3.82 

3.82 

3.10 

2.71 

2.28 

2.28 

2.28 

2.15 

2.15 

2.15 

18-H 

 9-H  

19-H 

17-H 

15-H 

10-H  

20-H  

29-H 

31-H 

30-H 

11-H 

23-H 

24-H 

22-H 

8.33 

8.22 

8.02 

7.96 

7.78 

7.45 

4.57 

4.13 

4.02 

3.68 

3.57 

2.43 

1.60 

1.50 

8.54 

8.54 

8.54 

8.41 

7.62 

7.70 

7.86 

7.20 

3.81 

3.70 

3.70 

3.70 

3.61 

1.33 
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 Theoretical1C spectrafor 14a 

 

 

 

 

Experimental1C spectra for 14a 

 

 

Theoretical 1H spectra for 14a 

 

 

 

 

 

Experimental 1H spectra for 14a 

 

Fig. 27(a) Theoretical and Experimental13C&1H spectra for 14a 
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 Theoretical 1C spectra for 15a 

 

 

 

 

Experimental 1C spectra for 15a 

 

 

Theoretical 1H spectra for 15a 

 

 

 

 

 

Experimental 1H spectra for 15a 

 

Fig. 27(b) Theoretical and Experimental13C&1H spectra for 15a 
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 Theoretical 1C spectra for 16a 

 

 

 

 

 

Experimental 1C spectra for 16a 

 

Theoretical 1H spectra for 16a 

 

 

 

 

 

Experimental 1H spectra for 16a 

Fig. 27(c) Theoretical and Experimental13C&1H spectra for 16a 
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 Theoretical 1C spectra (17a) 

 

 

 

 

 

Experimental 1C spectra (17a) 

 

Theoretical 1H spectra (17a) 

 

 

 

 

 

Experimental 1H spectra (17a) 

Fig. 27(d) Theoretical and Experimental13C&1H spectra for 17a 
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Fig. 28(a)Computed molecular electrostatic potential surface for 14a 
 

 

 
Fig. 28(b)Computed molecular electrostatic potential surface for 15a 

 

 
Fig. 28(c)Computed molecular electrostatic potential surface for 16a 

 

 

 
Fig. 28(d)Computed molecular electrostatic potential surface for 17a 
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3.8Comparative Spectra Data Study between Cyclic(14a-

17a) and acyclic (14b-17b) 
 

Structure IR 1NMR 
melting 

point 

 
14a 

Showed -C-O-C- 

stretching 

3.25 (d, 1H, J = 15.2Hz) 

3.32 (d, 1H, J = 15.2Hz) 
 

64-69 oC 

 
14b 

Showed  

-OH stretching  
5.3 (br. s 1H OH), 56-61 oC 

 
15a 

Showed -C-O-C- 

stretching 

2.81 (d, 1H, J = 15.2 Hz) 

3.05 (d, 1H, J = 15.2 Hz) 
70-75oC 

 
15b 

Showed  

-OH stretching 

5.7(br. s 1H OH), 

7.74(s, 1H, vinylic–H) 
 

50-55 oC 

 
16a 

Showed -C-O-C- 

stretching 

2.71 (d, 1H, J = 15.2 Hz) 

3.10 (d, 1H, J = 15.2Hz) 
32-37oC 

 
16b 

Showed  

-OH stretching 

5.61(br. s, 1H OH) 

7.63(s, 1H, vinylic–H) 
 

40-45oC 

 
17a 

Showed -C-O-C- 

stretching 

3.61 (d, 1H, J = 15.2 Hz) 

3.81 (d, 1H, J = 15.2 Hz) 
60-65 oC 

 
17b 

Showed  

-OH stretching 
5.22(br. s, 1H OH) 53-58 oC 

 
18a 

Showed -C-O-C- 

stretching 

6.59 (d,1H, J = 16.4 Hz, H3) 

6.66 (s, 1H, H-3) 

7.98 (d, 1H, J = 16 Hz, H-2)   

98-100oC 

 
18b 

Showed  

-OH stretching 
5.51(br. s 1H OH) 65-69oC 
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4.0 Conclusion  

 

In conclusion, we have successfully developed a convenient general and facile 

method for the synthesis of alkyl 2,3-dihydrobenzofuran-2-ylcarboxylatesthrough 

(Ph3P)2Cl2, Co(Ph3P)2Cl2, Ni(Ph3P)2Br2, Bimetallic nano catalyzed reaction of 2-

iodophenol with terminal alkenes (acrylic ester) in one pot reaction separately and 

characterized by different spectroscopic methods such as FT-IR, NMR spectral 

analysis. The experimentally observed FT-IR, spectra were well agreed with the 

computed vibrational frequencies using DFT calculations. The HOMO-LUMO 

energy gap found to be around 0.23450, 0.20104, 0.20711, 0.16533eV, which shows 

that the 14a-18amoleculehas good chemical reactivity and softness. The MEP 

indicates the C=O is the most favoured region for an electrophilic. 

 

The most important features of the synthesis were that: 

 Readily available inexpensive starting materials were used under relatively 

mild conditions and relatively good yields.  

 No toxic and hazardous compounds are produced by this synthesis. 

 A variety of functional groups can be introduced at the C-5 and C-6 position 

of the benzofuran ring by this procedure. 

 Therefore, this methodology could be utilized to synthesize the biologically 

important benzofuran derivatives. This method will be attractive to both 

organic and medicinal chemists.      

 


