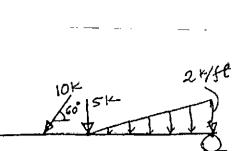
Date : 21/10/2019

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

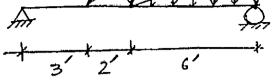
L-1/T-1 B. Sc. Engineering Examinations 2018-2019

Sub : CE 101 (Analytical Mechanics)

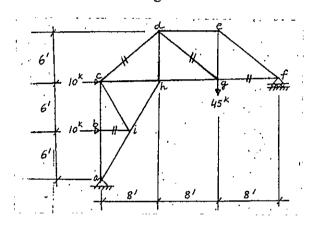
Full Marks: 210 Time : 3 Hours

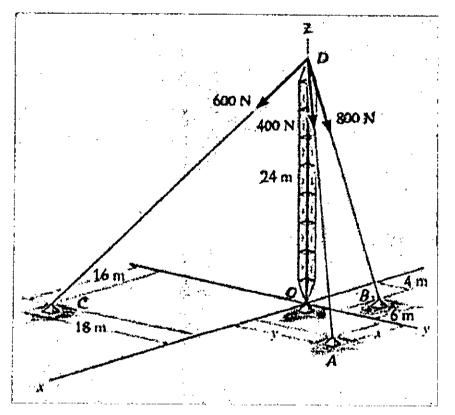

USE SEPARATE SCRIPTS FOR EACH SECTION

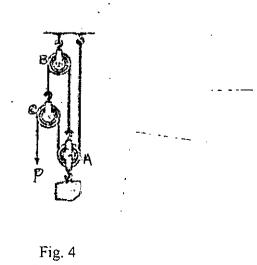
The figures in the margin indicate full marks.

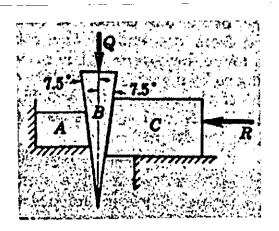

<u>SECTION – A</u>

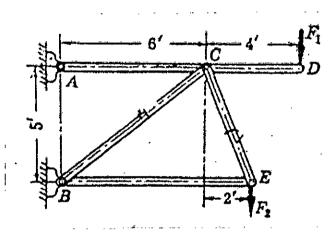
There are FOUR questions in this section. Answer any THREE.


(10)1. (a) Calculate the support reactions of the beam shown in Fig.1. (b) For the truss shown in Fig. 2, find the force in the members bi, cd, dg and gf. (15)(c) The tower shown in Fig. 3 is held in place by three cables. If the force of each cable acting on the tower is as shown in the figure, determine the magnitude and direction of the resultant force. Take x = 20 m and y = 15 m. (10)(a) Determine the force P needed to hold the 100 lb block in equilibrium as shown in 2. Fig. 4. (7) (b) A wedge B is inserted between a fixed surface A and a movable block C which weighs 5000 lb as shown in Fig. 5. For all slipping surface f = 1/3. If there is a horizontal resistance acting on C of R = 8000 lb, what force Q will impose impending motion of C? (12)(c) Determine the forces in all two-force members and horizontal and vertical components of the reactions at A and B of the frame shown in Fig. 6. Let, $F_1 = 5000$ lb, and $F_2 = 4000$ lb. (16) (a) Determine the location of centroid of the area bounded by the curves $y^2 = 16x$ and 3. y = x. (15)(b) What is the least radius of gyration of the shaded area of Fig. 7. (20) 4. (a) Find the centroid of a right circular cone whose altitude is h and base has a radius r. (10)(b) Derive the expression of moment of inertia of a thin homogeneous disk about a diametral axis through its centroid. (10)(c) The wood handle, of the mallet of Fig. 8, is L = 3 ft long, weighs 3.14 lb and has uniform cross section. The head weighing 16.1 lb, is a wood cylinder of diameter D = 6 in. Find the moment of inertia of mass of the mallet with respect to y axis. (15)


=2=







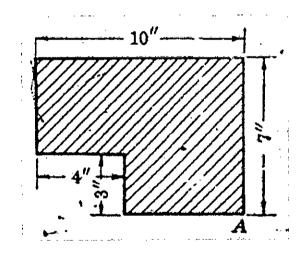
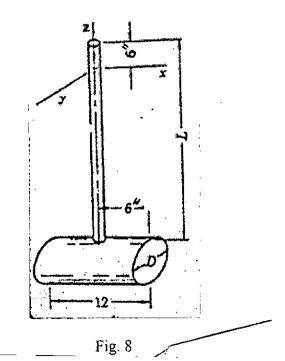
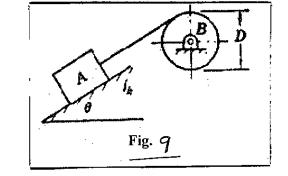



Fig. 7

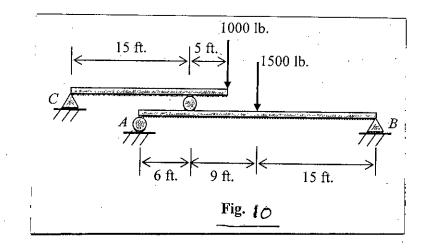
Gowld. ____ P/3

5.

SECTION - B


= 3 =

There are **FOUR** questions in this section. Answer any **THREE**.


(a) Suppose a motor is driving a shaft with an angular acceleration $\alpha = 3t - 12 \text{ rad/s}^2$ with an initial angular velocity of 15 rad/s with the same sense as the angular acceleration. Diameter of the shaft is 6 in. (i) What will be the maximum linear velocity of a particle on the shaft after 10 s.? (ii) What will be the linear tangential and normal accelerations of the particle at that time?

(b) A flexible cable weighing 3 lb/ft is strung between two supports. One support is 80 ft higher than the other and the sag measured from the upper support is 130 ft. The tension in the cable at the lower support is 9000 lb. Calculate the following: (i) Distance between the two supports (ii) Total length of the cable (iii) Slope in degree at the upper support (iv) Tension at the upper support.

(c) In Fig.9, $W_A = 64.4$ lb., $f_k = 0.2$ for A, $\theta = 30^\circ$, $W_B = 966$ lb. and D = 4 ft. The cord from A wraps around the cylinder B. How many rotations does B make in 5 sec. after it is released from rest?

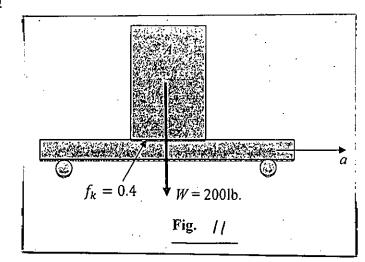
6. (a) By the method of virtual work, find the supporting force at *B* of the beam assembly shown in Fig. 10.

(b) A test sample A weighing 200 lb. is placed on a shaking table as shown in Fig. 11 for dynamic testing. The table is to be shaken with a simple harmonic motion of frequency 1 Hz. The coefficient of friction at the interface between the table and the test sample, $f_k = 0.4$. What is the maximum acceleration that can be applied to the table so that the sample does not slide or tip-over? What will be the maximum velocity and displacement of the table for that acceleration?

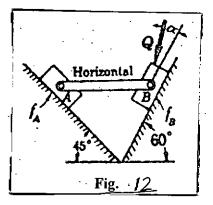
Contd P/4

(10)

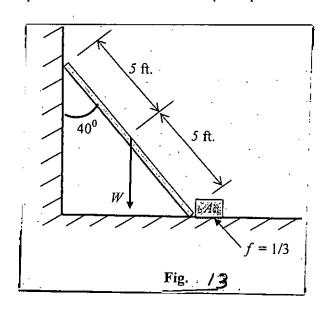
(12)


(10)

(12)

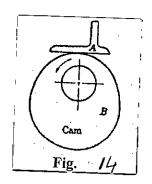

(13)

= 4 =

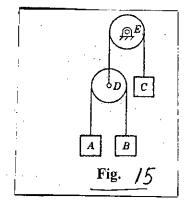

CE 101 Contd... Q. No. 6(b)

(c) In Fig. 12, body A weighs 400 lb, body B weighs 200 lb. Coefficient of static friction for all slipping surface is 0.3. What force Q causes impending motion towards the left if $\alpha = 15^{\circ}$.

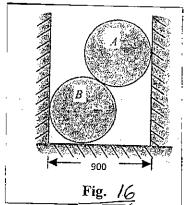
7. (a) Suppose a 10 ft. long leaning bar (Fig. 13) supports a weight W = 400 lb. The bar is supported at the bottom with a stumble block A. Static coefficient of friction of block and the supporting surface is 1/3. What is the minimum weight of block A that can keep the bar in equilibrium? Use virtual work principle.

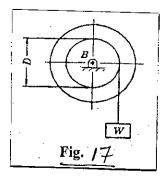

(b) The reciprocating follower A which weigh 6 lb., is moved upward by the cam B with constant acceleration (Fig.14). If the cam turns at a constant speed of 120 rpm and the force between the cam and the follower is 10 lb., determine the maximum velocity ad maximum acceleration of the follower.

(10)


(12)

(13)


CE 101 Contd... Q. No. 7(b)

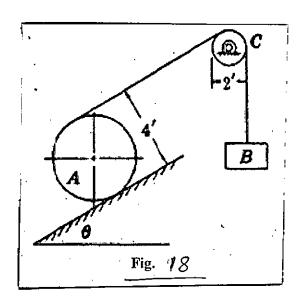

(c) The masses of A, B and C (Fig. 15) are respectively 1 slug, 2 slugs and 4 slugs. The cords are weightless and flexible. Sheaves D and E are considered free and weightless. After all elements are simultaneously released from rest, when A moves 40 ft. upward, what are the velocities and displacements of B and C?

(a) Two smooth spheres A and B are in equilibrium as shown in Fig 16. The weight of each sphere is 100 N and radius is 250 mm. Find the reaction forces at all contact points.

(b) The weight of the drum assembly B (Fig. 17) is 2576 lb. and its radius of gyration with respect to the axis of rotation is 14 in. The weight W is suspended from a cable which wraps about the D = 32 in. diameter. While W moves downward, the speed of the drum increased from 20 rpm to 40 rpm in 5 sec. If the frictional effects are negligible, what is the weight W?

Contd P/6

(10)


(12)

(13)

CE 101 Contd... Q. No. 8

(c) The 4-ft. solid cylinder A (Fig. 18) weighs 644 lb. and $\theta = 30^{\circ}$. The weight of B is 192 lb. and the pulley C has negligible weight and friction. The system starts from rest. Determine the velocity of the c.g. of A while B is displaced by 10 ft.?

(13)

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

B. Sc. Engineering Examinations

Sub : $CE \ 103$ (Surveying)

Full Marks : 🐲 280

Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

<u>SECTION – A</u>

There are FOUR questions in this section. Answer any THREE.

	1. (a) Derive the equation to	o compute length of line	between two points of	(10^{-273})
	different elevations from	measurements on a verti	cal photograph.	
1	(b) Write down the seque	ences, operations and con	siderations of an	(10)
	Elevated Expressway Pro	ject Survey.		
	(c) A vertical photograph	was taken at an altitude	of 1200 meters above	(12)
	mean sea level. Determir	e the scale of the photog	raph for terrain lying at	
	elevations of 80 meters a	nd 300 meters if the foca	l length of the camera is	
	15 cm.			
	(d) Two points A and B I	naving elevations of 500	m and 300 m respectively	(14)
	above datum appear on t	ne vertical photograph ha	ving focal length of 20	
	cm and flying altitude of 2	2500 m above datum. The	eir corrected	· · · · · · · · · · · · · · · · · · ·
-	photographic co-ordinates			
		Photographic	Co-ordinates	
	Point	x (cm)	y (cm)	
	a	+ 2.65	+ 1.36	
	b	-1.92	+3.65	
	Determine the length of th	e ground line AB.		
	2. (a) Write down the function	ons of a transition curve?		$(6^{2/3})$
	(b) Determine the length of	of a transition curve for a	6 lane rural	(12)
	highway with the following	ng available information-	•	
•••	i. Width of a single la	ne = 4 meter.		,
-	ii. Design Speed = 90	km/hr.		
-	iii. $e_{max} = 0.07; f_r$	_{nax} =0.12	-	
	(c) Explain the term 'degr	ee of curvature'? Conside	ring side friction (f),	(14)
· ·	establish a relationship an	nong design speed (v), ra	dius of curvature (R) and	
	rate of supper-elevation (e	e).		
-	(d) A parabolic vertical cu	rve is to be set out conne	ecting two uniform	(16)
-	grades of +2.5 % and -3.5			
	of vertical curve (PVC) and	e 1250 meters and 30.5 r	neters respectively.	
-	The rate of vertical curvat	ure (k) is 35. Calculate th	ne chainage and	
-	reduced levels of PVI, PV		······································	
	Here, k is the length of cu	rve per percent algebraic	difference in	····· ·· ·· ·· ··
	Intersecting grades.	· · · · · · · · · · · · · · · · · · ·		
-				(10)
-	3. ⁽ (a) Compare between:		a and fall mathe J - f	(<u>10)</u>
-		nt method of leveling; ris	se and fall method of	
	leveling	a surface surface service serv	tuis mothed of	
-		contouring and tacheome	euric method of	
-	contouring	notomistics of actions D	mary trained contains of	
-	(b)List five important cha	racteristics of contour. D	raw typical contour of	$(8^{2/3})$
	'steep slope' and 'river'.			

						11	ants and	(20)
	(c) A pag	(20)						
	the readi							
	with the	help of av	ailable re	adings a	and apply arit	thmetic che	ск.	
	Distance	Back-	Inter-	Fore-	Height of	R.L	Remarks	
	(in m)	sight	sight	sight	instrument			
		?			?	209.510	B.M	
ŀ	0		1.675	- 11		?		
Ì	30		?			210.425		
Ī	60		3.355			209.080		
	?	0.840		?	209.52	?	Changing	
							point	
	120		?			208.275		
	150		?			210.635	Underside	
	100						of bridge	
							girder	
	?	?	· · · · · · · · · · · · · · · · · · ·	2.630	?	?	?	
	210		?			206.040		
	240		1.920			205.895		
	270			?		205.690		
		_				·····		
	(d) List	the natura	l errors ir	levelin	g. How can y	you conduc	t leveling for a	(8)
(d) List the natural errors in leveling. How can you conduct leveling for a pond or lake which is too wide to be sighted across?							Hanna Pri su contra de la Mandeffi es pri com - Landa	
Pond of take which is too what to be spine as a set							and a second sec	
4. (a) List the main features of a tacheometer. Briefly describe a method to						$(12^{2/3})$		
obtain the constants of tacheometer in the field.							AMPROVATION OF A STATE OF THE	
(b)The elevation of a point P is to be determined by observations from two) (22)	
adjacent stations of a tacheom etric survey. The staff was held vertically								
	upon the point, and the instrument was fitted within an anallactic lens. The						e	
	constants of the instrument are 100 and 0. Compute the elevation of the							
	point P from the following data. Also calculate the distance of A and B							
	from P.							
	[D = ks	$\cos^2\theta$ +	$C\cos\theta$;	V = ks	$\frac{\sin 2\theta}{2} + C \sin \theta$	ιθ]		
								valanin ali talah karangan yana arang kangan katana talan ya arawa ya
In	strument	Height o	f Staff	Verti	cal Staff	Readings	Elevation	And a real of the second
	station	instrume	nt station	ang	le		(m)	

Instrument station	Height of instrument (meter)		Vertical angle	Staff Readings	Elevation (m)		
A	1.42	Р	+ 5° 30′	2.230, 3.055, 3.880	77.75		
В	1.40	Р	- 3° 30	1.785,2.800,3.815	97.14		
 (c)Comp	are between	•	• · • · · ·			(12)	
 (i) '							
 (ii)	'Indirect leve	ling' and	l 'Direct le	veling'.			

.

<u>SECTION – B</u>

There are FOUR questions in this Section. Answer any THREE.

Assume reasonable values for any missing data

5ar	-	sensing in civ b) A traverse wa	ystem. What is remo il engineering. as run with prismatic	compass and the	e lengths and bea	rings of the lines	20	
			given bellow. Check aphical method.	c whether or not	ine traverse close.	s. If not, balance		
			-	Table 1			•	
		Line	AB	BC	CD	DA		
	-	Length	105.8	142.5	188.8	188.9		
		Bearing	N40º 45' W	N51º 30'E	S48º 15'E	\$76 ⁰ 45'W		
		c) Explain vario	us methods for deter	mining the width	n of a river by cha	in surveying	$12\frac{2}{3}$	
7	6.	a) A traverse su observed bac	rvey was conducted k bearings and fore l	and the data give bearings of the li	en in table 2 was r nes are given. Che	oted. The eck and correct	$20\frac{2}{3}$	
7		the angles.		, Table 2	<u></u>			
		Line	Fore beari	ing	Back Bearing			
		AB	160° 33′		340° 33′			
		BC	58° 48′		238° 48′	:		
		CD	320° 47'	,	140° 47′			
		DE	280° 27	,	100° 27′			
		EF FA	222° 52 114° 53		42° 52′ 294° 59′			
		FA		, 	294° 59′	plain the steps	10	
		 FA b) Briefly description b) Briefly description b) Briefly description c) A 30 m long used to mease 150N. The transfer of the cross set of the cro	114º 53	onducting the sur red at 20 ^o C and u when the tempera it the ends only. I as 4 mm ² , the un	294° 59' vey of an area, ex ander a pull of 100 ture was 45 °C an Find the correction t weight of the tag) N. The tape was d the pull was ns per tape length pe is 0.0786 N/	10	

No.	Questions	Marks
7.	a) Write short notes on two major Astronomical Corrections.	12
·.	 b) The altitudes of a star at upper and lower culmination are 72°18' and 21°30', respectively, both on the north side of the zenith. Find the declination of the star and latitude of the place. 	12
	c) Find the shortest distance between A ($\phi = 140^{\circ}E$, $\theta = 20.5^{\circ}S$) and B ($\phi = 70^{\circ}E$, $\theta = 20.5^{\circ}S$). Also, find the distance between A and B along a line of constant latitude.	$16\frac{2}{3}$
	 d) Define magnetic declination. List the factors upon which the diurnal variation depends. 	6

7	8.	a) Define curvature correction for volume computation. How would apply curvature correction for curved embankment with end cross-section A ₁ and A ₂ ?	$12\frac{2}{3}$	•
		 b) To determine the height of a chimney, a theodolite was kept at two stations A and B, 200 m apart, station A being nearer to the chimney. The readings at the benchmark (RL = 1020.375 m) were 1.35 m from station A and 2.15 m from B. The vertical angles to the top of the chimney were 19°30' and 8°15' from stations A and B, 	16	
		 respectively. Find the horizontal distance and RL of the top of the chimney. c) A single-level section has a formation width of 7.5 m and side slopes of 2:1. The depth-of cutting at the center at 30-m intervals are 1.8 m, 2.175 m, 2.55 m, 2.925 m, and 3 m. Find the volume of earthwork in the length of 120 m. Use the trapezoidal formula. 	- 12	
		d) Write various methods of traversing.	6	

= 4=

CE103

•

.

.

. جند ج

.

1

1

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA L-1/T-1 B. Sc. Engineering Examinations 2018-2019 Sub : CHEM 103 (Chemistry - I)

Full Marks : 210 Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

$\underline{SECTION-A}$

	There are FOUR questions in this section. Answer any THREE.	
1.	(a) Derive de Broglie's wave equation and show that Bohr's principle of quantisation of angular momentum of a moving electron can be derived from de Broglie concept. Prove	
	that this equation is not applicable for large particle.	(12)
	(b) Explain Sommerfeld's extension of Bohr's Atom Model.	(11)
	(c) Derive the Schrödinger wave equation for the motion of a particle in three dimension.	(12)
2.	(a) What are the features favouring the formation of ionic bond. Explain the presence of covalent character in some ionic compounds.	(10)
	(b) Predict the magnetic property and bond order of Boron and Carbon molecules	
	showing molecular orbital energy level diagram.	(10)
	(c) What are the differences between bonding molecular orbitals and antibonding	(7)
	orbitals?	(7)
	(d) Explain, why N_2 moleculer is more stable than NO molecule.	(8)
3.	(a) How does heat evolve or absorb during dissolution of ionic compound to a polar	
	solvent? Explain with suitable example.	(10)
	(b) Distinguish between the following terms:	
	(i) Henry's law constant and Bunsen absorption coefficient.	
	(ii) Mutual solubility temperature and critical solution temperature.	
	(iii) Ideal solution and saturated solution	
	(iv) Integral heat of solution and integral heat of dilution.	(16)
	(c) When the two immiscible liquids chlorobenzene and water are boiled at a pressure of	
	734.4 mm Hg, then the boiling point is 90°C, while the ratio of weight of chlorobenzene	
	to water is 2.47 in the distillate. Find the molar mass of chlorobenzene. Vapour pressure	
	of water at 90°C is 526.0 mm Hg.	(9)
4.	(a) Derive an equation to determine the variation of heat of reaction with temperature at	
	constant pressure.	(10)
	(b) Thermodynamically prove that the elevation of boiling point of solutions is	
	proportional to the molality of the substance in the solution and show the calculation of	
	molecular weight of the substance dissolved in the solution from boiling point elevation.	(12)

<u>CHEM 103</u>

.

4

.

<u>Contd..... Q. No. 4</u>

(c) Derive Van't Hoff equation for osmotic pressure.	(7)
(d) A 35 g sample of haemoglobin is dissolved in water and the total volume of the	
solution is made to 1.0 liter. The osmotic pressure of the solution is 10.0 torr at 25°C.	
Calculate the molar mass of haemoglobin.	(6)

<u>SECTION – B</u>

There are FOUR questions in this section. Answer any THREE.

5.	(a) What do you understand by setting and hardening of cement? Discuss the colloidal	
	theory of Michaelis for setting and hardening of cement.	(9)
	(b) "Hardening of cement is mainly due to hydrolysis and hydration of the components	
	of cement." Justify the comment with appropriate chemical reactions.	(10)
	(c) Discuss the advantages and disadvantages of using fly ash into cement.	(8)
	(d) What do you mean by dusting of clinker? Why this phenomenon is observe?	(8)
6.	(a) Discus how do the colloidal particles acquire electrical charge?	(9)
	(b) What is zeta potential? What is the effect of electrolyte concentration on zeta	
	potential?	(10)
	(c) What do you mean by sedimentation of a colloidal solution? Write down the	
	expression of Stoke's law.	(8)
	(d) State Hardy-Schulze rule for coagulation.	(8)
	Aluminum hydroxide forms a positively charged sol. Which of the following ionic	
	substances should be most effective in coagulating the sol and why? Nacl, Cacl ₂ ,	
	$Fe_2(SO_4)_3$ and K_3PO_4 .	
7.	(a) The solubility product of $PbBr_2$ is 8.9×10^{-6} . Determine the molar solubility (a) in	
	pure water, (b) in 0.20 M KBr solution, (c) in 0.20 M Pb(NO ₃) ₂ solution.	(9)
	(b) Calculate the pH of 1.00 L of the buffer 1.00 M CH3COONA/1.00 M Ch ₃ COOH	
	before and after the addition of (a) 0.080 mol NaOH, (b) 0.12 mol HCL. (Assume that	
	there is no change in volume. The K _a of CH ₃ COOH is 1.8×10^{-5})	(10)
	(c) Which of the following ionic compounds will be more soluble in acid solution than in	
	water? (a) $BaSO_4$, (b) $PbCl_2$, (c) $Fe(OH)_3$, (d) $CaCO_3$.	(8)
	(d) Making mayonnaise involves beating oil into small droplets in water in the presence	
	of egg yolk. What is the purpose of the egg yolk?	(8)

<u>CHEM 103</u>

Ŧ

,

5

8.	(a) What do you mean by silica content in water. How the presence of silica in water	
	impose detrimental effects? How it can be removed?	(9)
	(b) What do you mean by flocculation of water? Mention the name of two commonly	
	used flocculants. Discuss how it works.	(10)
	(c) How ozonization method can be employed to sterilize water?	(8)
	(d) Discuss softening of water by ion exchange process? How the activities of Na-cation	
	exchanger and H-cation exchanger are regenerated?	(8)

,

.

Į

đ.

Date : 04/11/2019

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-1/T-1 B. Sc. Engineering Examinations 2018-2019

$\mathsf{Sub}: HUM \; 355 \; (\mathsf{Sociology})$

Full Marks: 140 Time : 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

<u>SECTION – A</u>

There are **FOUR** questions in this section. Answer any **THREE**.

1.	(a) 'Sociological imagination is a systematic way of analyzing social relationship without personal biasness'-Explain.	(10)
	(b) Critically explain functionalist theoretical perspective of sociology.	$(13\frac{1}{3})$
2.	(a) Define social stratification. Explain caste system and social class system of social stratification.(b) Discuss various roles of social norms and social values for developing a normative	(10)
	system of a society.	$(13\frac{1}{3})$
3.	(a) Evaluate the roles of family, peers and educational institute as important agents of socialization.	<u>(</u> 10)
	(b) Explain G.H. Mead's theory of self development.	$(13\frac{1}{3})$
4.	Write short notes on any three of the following:	$(23\frac{1}{3})$
	(a) Anticipatory socialization and re- socialization.	
	(b) Ethnocentrism and cultural relativism.	
	(c) Conflict view of mass media.	

(d) Types of social mobility.

SECTION - B

There are FOUR questions in this section. Answer any THREE.

5.	(a) Define environment and pollution.	$(3\frac{1}{3})$
	(b) How can we save the environment and make it greener?	(10)
	(c) What is meant by the 4R's?	(10)

<u>HUM 355</u>

4 2*

6.	6. (a) Explain the socio-economic features of pre-industrial, industrial and post-industri				
	societies.	(10)			
	(b) 'Private property is the terra ferma of capitalism'- Explain this statement on the				
	. basis of the nature of capitalism.	$(13\frac{1}{3})$			
7.	(a) Define social disorganization and social problem.	$(5\frac{1}{3})$			
	(b) What is meant by crime, deviance, white collar crime and juvenile delinquency?	(10)			
	(c) What do you understand by work? Explain the nature of work.	(8)			
8.	Write short notes on any <u>THREE</u> of the following:	$(23\frac{1}{3})$			
	(a) Demographic transition theory				
	(b) Causes of crime				

- (c) Red category industry
- (d) Social consequences of industrial revolution.

Date : 04/11/2019

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-1/T-1 B. Sc. Engineering Examinations 2018-2019

Sub : HUM 375 (Government)

Full Marks: 140

USE SEPARATE SCRIPTS FOR EACH SECTION

Time : 3 Hours

The figures in the margin indicate full marks.

<u>SECTION – A</u>

There are FOUR questions in this section. Answer any THREE.

1.	(a) Describe various types of sovereignty with examples.			
	(b) What is meant by the term 'Rights'? Analyze the legal rights of a citizen in a state.	(12)		
2.	(a) Classify democratic types of government with relevant examples.(b) Define democracy. Which conditions are necessary for the success of Democracy?	$(11\frac{1}{3})$ (12)		
3.	(a) Make a comparison between parliamentary and presidential forms of government.(b) What is good governance? Examine the agenda for good governance.	$(11\frac{1}{3})$ (12)		
4.	Write short notes on any three (3) of the following:(a) Local government(b) Constitutional monarchy	$(23\frac{1}{3})$		

(c) Civil society

(d) Shadow cabinet.

SECTION - B

There are **FOUR** questions in this section. Answer any **THREE**.

5. (a) What is nationalism? Explain the merits and demerits of nationalism in a modern state. $(11\frac{1}{3})$

(b) Define constitution. Discuss the basic characteristics of a good enough constitution.

(12)

Contd P/2

3

<u>HUM 375</u>

5.

- 6. (a) What do you mean by bureaucracy? Discuss the main features of the Max Weber's ideal type of bureaucracy with limitations. (11 1/3)
 (b) Define NGOs. Discuss the role of NGOs in socio-economic development of developing countries like Bangladesh. (12)
 7. (a) What is foreign policy? Explain the determinants of foreign policy of Bangladesh. (11 1/3)
 - (b) Discuss the significance of the language movement of 1952 in the political history of Bangladesh. (12)

 $(23\frac{1}{3})$

8. Write short notes on any three of the following:

- (a) Bangladesh constitution
- (b) SAARC
- (c) State
- (d) E-government.

÷.

e i

Date: 31/10/2019

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-1/T-1 B. Sc. Engineering Examinations 2018-2019

Sub : **PHY 101** (Physical Optics, Waves and Oscillations, Heat and Thermodynamics)

Full Marks: 210

Time : 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

$\underline{SECTION} - A$

There are **FOUR** questions in this section. Answer any **THREE**.

1.	(a) What are Newton's rings? Explain why Newton's rings are circular.	(10)
	(b) Describe the geometrical features of Fresnel's biprism. Discuss how it can be used	
	to find the wavelength of monochromatic light.	(18)
	(c) A parallel beam of sodium light of wavelength 5890 Å strikes a film of oil floating on water. When viewed at an angle of 30° from the normal, 8 th dark band is seen.	
	Determine the thickness of the film. Refractive index of oil is 1.46.	(7)
2.	(a) From the expression of intensity for diffraction of light due to a single slit, find the	
	condition of secondary maxima.	(8)
	(b) Discuss the construction and theory of a plane transmission grating and obtain the	
	expression of intensity corresponding to the principle maxima.	(20)
	(c) Diffraction pattern of a single slit of width 0.5 cm is formed by a lens of focal	
	length 40 cm. Calculate the distance between the first dark and next bright fringe from	
	the centre. Wavelength used is 4890 \AA .	(7)
3.	(a) Write down Brewster's law and Malus' law.	(8)
	(b) Discuss how light can be polarized by reflection and refraction and explain this	
	polarization mechanism by Fresnel's theory.	(20)
	(c) Two polaroids are so arranged that the amount of light transmitted through them is	
	maximum. What will be the percentage reduction in the intensity of the incident light	
	when the analyzer is rotated through 30°?	(7)
4.	(a) State and prove Carnot's theorem.	(15)
	(b) What are the thermodynamic potentials? Deduce the Maxwell's thermodynamic	
	relations by using the thermodynamic functions.	(20)

<u>PHY 101</u>

, ,

۰.

.

 \sim

Ç

<u>SECTION - B</u>

There are FOUR questions in this section. Answer any THREE.

5.	(a) State the laws of thermodynamics.	(10)
	(b) Show that the entropy remains constant in a reversible adiabatic process and	
	increases in an irreversible process.	(15)
	(c) A Carnot engine whose temperature of the source is 927°C takes 200 calories of	
	heat at this temperature and rejects 100 calories of heat in the sink or temperature	
	27°C. Calculate the efficiency of the engine.	(10)
6.	(a) What is degrees of freedom? State the law of equipartition of energy. Establish a	
	relationship between the ratio of two specific heat and the degrees of freedom.	(15)
	(b) Derive an expression for the r. m. s. velocity of a gas molecule by using the	
	Maxwell's law of distribution of velocities expression.	(10)
	(c) Define Clausius- Clapeyron equation for latent heat.	(10)
7.	(a) What are free, damped and forced oscillations?	(6)
	(b) A particle executing damped harmonic motion is subjected to an external periodic	
	force. Establish the differential equation of the motion of particle. Solve the differential	
	equation and obtain the expression for its maximum amplitude.	(22)
	(c) A harmonic oscillator of quality factor 12 is subjected to sinusoidal applied force of	
	frequency one and half times the natural frequency of the oscillator. If the damping	
	is small, obtain the amplitude of the forced oscillation in terms of maximum amplitude.	(7)
8.	(a) What are reverberation and reverberation time?	(6)
	(b) Derive the expression for the growth and decay of sound intensity inside a room.	
	Obtain an expression for the reverberation time.	(22)
	(c) The volume of a room is 800 m^3 . The area of wall, floor and ceiling are 150, 110	
	and 120 cm ² , respectively. The average absorption coefficients for walls, ceiling and	
	floor are 0.03, 0.80 and 0.06, respectively. Calculate the average sound absorption	
	coefficient and the reverberation time.	(7)

= 2 =

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-1/T-1 B. Sc. Engineering Examinations 2018-2019

Sub: MATH 137 (Differential and Integral Calculus, Matrices)

Full Marks: 210 Time: 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks

<u>SECTION – A</u>

There are FOUR questions in this section. Answer any THREE.

 (a) Find values of the constants k and m, if possible, that will make the function f continuous everywhere.

$$f(x) = \begin{pmatrix} x^2 + 5, x > 2 \\ m(x+1) + k, -1 < x \le 2 \\ 2x^3 + x + 7, x \le -1 \end{cases}$$

(b) State L' Hospital's rule. Hence evaluate $\lim_{x\to 0} \left[\frac{1}{x^2} - \frac{1}{\sin^2 x} \right]$. (10)

- (c) Apply Leibnitz's theorem to prove $\frac{d^n}{dx^n} \left(x^{n-1} e^{1/x} \right) = (-1)^n \frac{e^{1/x}}{x^{n+1}}.$ (10)
- (a) If f(x)=x⁴-5x³+9x² then use the first and second derivatives of f to determine the intervals on which f is increasing, decreasing, concave up and concave down. Also locate all the inflection points.
 - (b) State Euler's theorem for homogeneous function. Hence verify Euler's theorem for the following function: (10)

$$u = \frac{x^{1/4} + y^{1/4}}{x^{1/5} + y^{1/5}}.$$

(c) Expand $y = e^x cosx$ in a series of ascending power of x.

(a) State and give geometrical interpretation of Rolle's theorem. Verify the hypotheses of Rolle's theorem for

$$f(x)=2x^3+x^2-4x-2$$
 over $\left[-\sqrt{2},\sqrt{2}\right]$.

(b) If $x\cos\alpha + y\sin\alpha = p$ touches the curve $\frac{x^m}{a^m} + \frac{y^m}{b^m} = 1$, then show that

$$(a\cos\alpha)^{m/m-1} + (b\sin\alpha)^{m/m-1} = p^{m/m-1}.$$
 (12)

(c) Find the pedal equation of the parabola $y^2 = 4b(x + b)$. (11)

4. (a) Write down geometric interpretation of integration and the drawbacks in the study of integral calculus.

(11)

(15)

(15)

(10)

(12)

<u>MATH 137</u>

<u>Contd... Q. No. 4</u>

(b) Evaluate the following:

(i)
$$\int \frac{dx}{\sqrt{\sin^5 x \cos^7 x}}$$

(ii)
$$\int \frac{dx}{3 + 2sinx + cosx}$$

<u>SECTION – B</u>

There are FOUR questions in this section. Answer any THREE.

5. (a) Find a reduction formula for $\int e^{ax} \cos^n x dx$ and hence evaluate $\int e^{2x} \cos^4 x dx$. (15)

(b) Evaluate
$$\int_{a}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx.$$
 (10)

(c) Evaluate
$$\lim_{n \to \infty} \left[\left(2 + \frac{1}{n^2} \right)^{\frac{1}{n^2}} \left(2 + \frac{2^2}{n^2} \right)^{\frac{2}{n^2}} \left(2 + \frac{3^2}{n^2} \right)^{\frac{3}{n^2}} \dots \left(2 + \frac{n^2}{n^2} \right)^{\frac{n}{n^2}} \right].$$
 (10)

6. (a) Evaluate
$$\int_{-\infty}^{\frac{1}{2}} \frac{dx}{\sqrt{1-\frac{1}{2}\sin^2 x}}$$
 (10)

(b) Evaluate
$$\iiint_R \frac{1}{\sqrt{x+y}} dy dx dz$$
, where $R: x \le y \le z, \ 0 \le x \le z, \ 1 \le z \le 4$. (10)

(c) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -2 & -1 \\ -1 & -4 & 4 & 0 \\ 2 & -7 & 4 & -7 \\ 1 & 6 & -5 & 1 \end{bmatrix}$ by using elementary row

transformations and hence check your result.

7. (a) Define Hermitian, Periodic and Nilpotent matrices with example.

(b) Determine the values of λ and μ such that the following system of equation in unknowns x_1 , x_2 and x_3 have (i) unique solution, (ii) more than one solution and (iii) no solution:

$$x_1 + 2x_2 + x_3 = 8$$

$$2x_1 + x_2 + 3x_3 = 13$$

$$3x_1 + 4x_2 - \lambda x_3 = \mu$$

(c) Define rank of a matrix with applications. Find the canonical form and the rank of the following matrix *A* where

Contd P/3

= 2 =

(15)

(24)

(8)

(12)

(15)

<u>MATH 137</u>

Contd... Q. No. 7(c)

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 3 & -3 & -2 \\ 3 & 8 & 1 & 3 \\ 3 & 10 & -1 & -3 \end{bmatrix}.$$

8.

(a) State Cayley-Hamilton theorem. Verify Cayley-Hamilton theorem and find A^4 for

	4.	-1	1	
the matrix $A =$	-1	4	-1	 5)
	1	-1	4	

(b) Find the eigenvalues and maximum set of linearly independent vectors of the matrix (20)

$$A = \begin{bmatrix} 5 & 3 & -1 \\ 3 & 5 & -1 \\ -3 & -3 & 3 \end{bmatrix}.$$

Is the matrix A diagonalizable? If so, write down a nonsingular matrix P that diagonalizes A and hence determine the corresponding diagonal matrix D.
