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ABSTRACT

2.

Integral method tocgether with Finitc Difference method
was uvsed to study the laminer flow characteristics in the
entrance regicon of an ~ennulus for a flat veleccity profile

st the entry. A velocity profile based on the fully deve-
loped flow -in- the boundexy layer, and a constant ratio of
inner to outer boundary layer thicknesses in the entrance -
Treglon mére used for the Integral method. An algebraic
eguation for the pressure distribution in the entrance .
region of annull was derived by this method, which was also
Used in the Finite-Difference—method:.-The analytical results .
for pressure distribution were extended for comparison with
the experimental results for flow through a parallcl plate

channel,

From the characteristiics-of -the résultswmbtained,frnm
the Finite Difference method, the entrance regicn was divided
into o zones, viz. (i) the inlet region, and (1) thé
filled region. Ax the end of the imlet region the boundary
layers met- together.but the velocity profile was not iden-
tical to that of the fully develped one. In the filled
region, edjustment of the complet=ly viscous profile took
place wuntil the fully developed similar proefile sttained

zt the enc of it.

The fullv ceveloped vrlocity profile was not symmetrical

shout the cent e of the hydroulic wediuz of the ennuli. The

X

ive of e velrelily profile

magrnitude of this ssymmatric it

-t
L

wzs higher Tor smeller radius mriio of vho ennhvlii. But this



reyminetny of ine velocity profile near the entrence was very

gl

small and greduslly increased to its fully developed nature

2t o fsr downsiream distance.

The magnitude of the radial velocity obtained from
the Finite Difference method was small.compared to that of
the axial component. The radial velecity was also asymmetric
about the centre of the hydraulic radius and this asymmetry
was guite prominent for smaller radius ratio. The‘radial
uelocity decayed with axlal distances, but such decaying.

was very répid for smaller radius ratio at the inner wall,

Entfaﬂce length was calculated on the basis of the
viscous term rether than the core velocity. Results of
axial and radial velocity, Qall shear stresé, boundary
layer development in the entrance region of five different
radius ratio annpuli were presented. The results indicated
that the influence of the radius ratio on flow character-

jistics wass very small for 0.5 € o & 1.0
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NOMENCLATURE
a half width of parallel-plate channel
A total flouw cross—éectional area , w(rg— ri); constant
defined in equation (5.1) -

A1,H2..H43defined in APPENDIX-B

B,  (xy/rg)”

B, (r2/r62)2 )

Cq,Ez defined in APPENDIX-B.
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k - constant- defined -in-equation (A.1) .

K(x) ~ incremental pressure.drop,..AP. - (%%)fdffnf'

m constant in Ostwald de Wall power jaw eqguation

n - constgnt'in<Dstwald de Wall power law equation

P : | static pressure ’

P ﬁimensiDnlessgsiatis;@rﬂssurﬁﬁpﬂépU§Mf_,

T . " radial-distance ... -

R : dimensionless radial distance, r/Dh

T, - outer radius--of--the inner pipe - —

R1 ' , ﬁimensionless outer radius.of the inner pipe, -r,I/Dh
T, inner radius ef the outer pipe; radius of tube

R dimensionless .nner radius of fhe vuter -pipe, r2/Dh
.ré,r ' radial distence of the maximum velocity

F&(5 dimensionless radial distance of the maximum

velocity, ré/Dhr
T | rédisl distance to the edge of the innef boundary

layer
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CHAPTER I

INTRODUCTION

o
N - —r
Tan, o1

"T&‘-.aa':r,

1.17. Entrance Reu{pn

The hydrcdynamic béﬁauiour of'é flow through a duct in the
developed region-is well known, But when a fluid enters a duct,
the.uelccity.profile changes along the axial direction from a
definite distribution at the entrance to a particular profile
far douwnstream. -The region along the axial-direction over -which
the Uelocity profile changes is known as the hydrodynamic deve-
loping region or entramce -region, In- this regionrthe-wall shear
stress is- higher than that in the deuelopéd reqgion  because of -
greater transuerse.uelocity-gradient'neaf the wall, The rate - -
of change of momentuméand-that'qf<energy“in"the axial- direction
are alsb.higher:than that in the:developed .region_.because of
the'changingryelpcity'ﬁrofile*arorg?ihefaxialﬂdirectiunTﬁ¢heseu’***
higher—wall SH@dngtréégﬁénd‘tﬁéAﬁiGHET"Tate?ofmmcmentum“tTBnSfer““'
result-in: ‘a-greater: axdal: pressure gradient.iin this ‘Tegion.

Farlier it was believed that the developing boundary layers
met - together at the end of the entranve region where the-velo-
city profile sttainedthe fully developed profile [5,13,29 etc.] .
But recen: investigatiocn in the entrance region of & pipe.shows. __.
that .aminar bt indary layers meet at the pipe axis much before
the attainment of a-fully developed profile [201 . This obser-

L

vatior. metivated to su"divide the en®> :ce region into tuo

©
]

erts: the .inlet .regicn and the . fillod recicn.. At the end of
P g C
the inlet regicn the boundary leyers meest together but the

velocity prefiles are not yet identicel. In the fil:ed region

# Numbers in the paranthesis indicate references



adjustment of the compietely viscous velocity profile takes
place until the fully developed profil: is attained at the
end of it.

-

1.2, Brnmulus and its Application

=

An annulus is formed by introducing a core through a
circular tube. The ratioc of the inner and outer radii (radius
ratia, a) is an important parameter”in addition to other
variables that determines the nature of the flow in the
apnuli, A pipe ( o = 0) and a parallel plate channel (a = 1)

are the two limiting cases of an annulus,

In indﬁstrial heat exchangers and nuclear reactors,
there are many caseé where'heat transfer begins immediately
at the entrance of the_anhulus and therefore the calcul;tion
of heat transfer coefficients for these cases reguires a
detailed knowledge of the velocity field in the entrance
region of the annulér pas#age;

1.3. Statement of ‘the Problen

—— L T Ty ——— A T e

be

Laminar flow charscteristics in the entrance region of
concentric sni-uli were studied thecretically. An integral
method was used to determine the flow cheracteristics inclu-

ding ti:e pressure distribution along the axial distance for

[

he anrnuli. Experiments were also

on of -

Foae
sl

the entrance TeEQ

performed tc compere Lhe anelyticsl results of pressure

o -

di

4]

tribution in the erntrénce regicn of a parallel plate

channel, which wes oniz of the limiting conditions of an



cnnulues, Using the analytice
Lion devived frum the integr
wes uesd to determineg flow C
gifferenticl momentum and O

region of amnuli.

fox

Cel

the entrance



CHAPTER II

LITERATURE SURVEY

2.1, Generg&

kb B L

Laminar flow of fluid can be expressed mathematically
by the continuity, momentum, and energy equétions. Since the
conservation of energy equation in differential. form and the
Navier-5Stokes EQuatiﬁns are non-linear, each individual flow
pattern has certain unigue characteristics which are associ-
ated with its initial and boundary conditions, The basic
Equations~haue—beenmanalysedwby~Tesearehers~£er—uarious flow
patterns;-but still-it is not possible to have an.exact solu-
tion of differential equations for the flow in the éntrance
region of..a .duct _due to.the. presence of_the phon-linear inertia
terms in the equations. Yet a number of literatures are
-available where this~problemihésubeenuanalysedibath”thEDré—

tically-and- experimentally -with a number.of .approximations. _

fDr“theréhirantfﬁragion&oﬁrdiﬁférﬁht:typeSHDf4ﬁUE¢S“E?QG—iUbEs:“”

perallel plete chann815 annuli ete, Van Dyke [34] listed these
methods in foUr;general'gidupsz (1) Tineatisation of inertia
terms, (ii) Integrel method, (iii) Series expahsion and (iv)
Numerical finite ¢ fference solution. Most of these methods

of solution have assumed:

(a) Negligible axial molecular transport of momentum

with respect to that of raciel trznsport,

2

. d~u i 9. ¢ . BU
1.8, E;-'? << T 9T - N )
R

(b) Pressure to be a function of axizl distance only,

i. 8. p o= plx)



(r) A flet velocity profile at the entry of the duct,

o= U
i.e u(ao, T U,

Besides, a few literatures are available which investigated
the er .rance flow experimentally. Some relevant end results
of cdifferent literatures are included in Tables 2.1, 2.2‘and

2.3,

In this chapter, the various methods of approximate

solution for the entrance flow in connection with tube,

-parallel:plate‘channel“{semi=infiniteﬂfanﬁ“annuli along with - -

some experimental investigations-are presentedi-

2.2, Boundary Layer'SDlution:-Intearalmﬂpproach_

BUUSSiWESQ:{Q]JwéS;theifiTBtTpEISOﬂ;whDTdealtymiﬁh'the
entranmce. flow through. .a tube.. Boussinesg.-represented the
axialzvelocity,. u,-in_the.entrance..region "y the Poiseuille
expression.plus a perturbatien term o obtain an” approxima-
tion .for the velocity_prefiles far from the entrance. Later,
Schiller [29] applied the integral- representation of the
pguations of motion and continuity to the boundary layers

which-develop. along=the. tube wall using a perabolic velocity

g
profile. in the boundary layer znd to the frictionless core.

The velocity profile chosen in the enirance region of the

[

~tube was a modification of the ‘oisseille scluticn in the
sense thet the tube radivs wes replaced by the boundary layer

thickness. When the boundary lsycr ithickness beceame egual

i
n

to the tube radius, the enalys pracdicted the establishment

2

of Tully develecped flow, i.e. the enc of the entrance region

and its length calculated by Shillew was X = 0.02875.



| )

Schiller's [29] procedure was repeated by Siegel [31]
for medified cubic and guertic boundery~lasyer velocity profiles
and by Bogue [3].For cubiec velocity profiles using the power

law flow. The eguation of pouer law flow:

r = m{s)"

represents Newtoniam flow when n = 1,0, Bogue included
vdu/dr as the radial momentum in the von Karman integral

method.. .. oo

' Eampbelr“and'Slattery“[SJ reported-that Schilier's
solution was not applitable for X > 0,02, Atkinson and
Go dstien f141 suggested that pressure is to bg considered -
as a function of both axial and radial distance and thﬁs an
average. value at each cross-secticn is to be calculated
Iather”thaﬂ'aSSUming“puz’pcxa”in the boundary layer.--Campbell
and Slattery-assumed-the velocity-distribution-in-the ent—-— -

rance:_:r&gion-—-.o?ffz.:a::tIJ be @asi. .=

%— =7 fory > & , x> 0 (2.1
c = ' ’
and u_ iy o= T 2 T5 = T ,
T ( hitgwﬁ‘ T+ 2 | ﬂiwg«m) for vy £ 65 x> 0 (2.2}

and usino er. rgy balanc ; they dexrived exprescions for
boundary layer thickness as & function ef axial distance,
The velocity snd the pressuze drop wess alsc obtained in

terms cf bhouncery lzyer thicknnss.



Another important integral method of solution was found
by Langhaar [18] for tube, and later by Han [16] for parallel
plate channel. Langhaar obtained a velocity profile over the
éntrance region of tubes by linearising the inertia term in
the equation of motion and writing the equation in the

following form:
2 1 3 2 |

where -B~was a function of x alone. The egn. {(2.3) was solved
analytically and the result was satisfactory except in the |
regions very near the entrance and close to the wall, since
v_was not neqligible in these fegions"and:hence there B. was

not a function of x alone.

Trag [27] linearised the momentum equation.for tube
by replacing_the,inertiamierms*byﬁuoﬁ%%,Wandﬁthe pressure

term’by.(Zv/ré)(auﬂar)f;r'. This assumption ignored the-

2 ,
contribution of .the momentum change to the pressure drop,
and -the incremental-pressure-drop-K{=) found by this method

was 1.3,

Sparrow et al [28] modified Trag's liﬁearisation method
in order to provide information relating to the flow deve-
~lopment and the pressure drop inm tube and pa:allel plate
channel, Sparrow et al aséumed the following linearised

Navier-Stokes equation:

e{x) U, %% = A (x)} + v V2 ' - ‘ | (2.4)



TABLE 2.1. Values of Incremental Pressure DrOp and Entrance Length for Tube

'
1 ' [ ‘

L

Reference

Experimental’ o
Theoretical ‘ K (e) , 38’ Remgrk;
Dorsey [ 8] Experimental ' 1.08;1ﬂ00 -
Knibbs {177 ~do- 1.27 + 8% -
. ! : i , )
Nikuradse (25] ~do~ 1,32 _ 0.0B25
Rieman [26] ~do- 1,248 + 1% -
S . - .
Schiller [29] -do- 1.32 + 10% -
L R ) .
~don- Theoretical 1.15 0.0288 Assuming a parabolic
‘ : . o velocity profile within
Wsltman and Experimental 7.2 + 10% - the boundary layer,
Kellar [3¢] S , : ‘
Atkinsan and Theoretical: 1,41 0,065
Goldstien [14]
Christiansan and -do- 1.274 0.C555 Numerical soluticn,
Lemen |6] ~ : ‘
S=la R ~dda 1.015 L= Numerical solution with
) : negligible radial flow.
Boguz [3] ~do- 1.18 0.0288 Assuming cubic velocity

profile within the boundary
layer,: -7 :




TABLE 2.1 (Contd...)

! o

Asthana [20]

O

0.075

Reference Experimzntal / - -
Theoreticar, (] .. 1 (%) e L Remaris
T D e
o . _ b _
Acussinesq (2] Thearstical } ' .. 1.24 .. 0,065 _ Perturbation method,
Collins and -H -do-; 1.33 0,061 Assuming power law flow,
Schowaiter [7] - LR Rt P Ca
Campb=1l and ~do- 1.18 0.0675 ‘Integral method assuming
Sletzery iSj : a parabolic velocity
. profile.
Langhaar [18] -do- 1.28 0,0575. Linearising the Navier-
_ Stokes equation.
Sigel [37 -do- - 1,08 0.03 ‘Assuming a cubic
: velocity profile.
g0~ -do- 1,106 0.0236 Assuming a guartic
velocity profile.
' i
Sparrow =2t al -do~ - 1:24 0.05 Using linearised
' Navier-Stokes equation.
Tomita [33] -do- . 1,22 0.0505 -
Mohanty and Pahlhausen Integral method

using a fourth-degree

-



<y

TABLE 2.2. Calculated Values of Incremental: Pressure Drop and Entrance Length for

Parallel Plate Channal .

Raference . K(e) X . ~ Remarks

Schlizhting [30] 0,602 0.01 Perturbatian method.

Sparzc. =2t al {28] 0,65 0.008 Linearising the Navier-Stokes
equation.

Gupta {13] 0.B846 0,033 Integral method using a parabolic
velocity profile.

- ‘ ) ; . : ' .
Wang and Longwell {37] 0.7874 0.008375 Numerical solution assuming flat
. : : velocity profile at entry,
~-do- 0,7512 0,0085 Numéricélisolution assuming a

flat velocity profile at a section
far upstream from entry.

Ul



o

TABLE 2.3. Calculated

Values of Incremental Pressure Drop and Entrance Length for Apnuli

Referencs

oz rgfrp b K X RemeTks

Murakawa [22]

- .

T
[85)
3

3
0]
P
m
’....l

3
—h
o

g |

0.6% . ,, 0,64 0,052

-

0,05176
0.5 0.01
a,25 - 0.012 Using the

- ‘1
Linearised

0,10 : - ' D'q15 Navier-Stokes.

0.05 - _ 0;019 equation.

0.0205

LL
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o where e(x) and 4 (x) were functions of x only. e(x) weighs
the mean velocity Uj and A (x) includes the pressure gradient
as well as the residuél of the inertia terﬁs. To facilitate
the solution of eguation (2.4) a stretched axial coordinate
was assumed uwhen x* = fe%f) in addition to the assumptions
of no-slip boundary conditions at the duct wall and flat

| velocity profile at the entrance. e(x) was derived by
equating the pressure gradient from momentum and mechanical
energy consi?erations; Trag's [27] uelocity.solution was

equiuaientvtu-thatvofaSparrouvet-al—ﬂheh-me(x)J;_1;D.‘

Flemiﬁg and Sparrow_[107] introduced a more general
method of analysis with the eguation (2:;4) for entrance flouw
through ducts of arbitrary cross-section and then zpplied’it
to the rectangular and;triangular.ducts with the.assumptions = .

made -by -Sparrow et al '[28] ., Results for- the developmental -

characteristics™ ~ for-flouw through—parallel plate-channel- -

"aﬁﬁ“tiTﬁUiBT”ﬂUtiS”aTEWiiﬁtEd_iﬁ“TablE~2141—~ R

TRBLEuQ;d;*Deuelépmental~Chazécteristics.fat.FLom th ough
Pipe and Parzllel Plate Channel from Sparxzow et al @8]

.y Entrance length K{ w ) u /U

Dae: X X ¢ % £d
k v

Patailel plate g ggg3 0.009 0.65  1.50

channel , .

Circular Tube 0,038 0,044 1.24 2.00
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Some interesting findings were reported by Mohanty and
Asthana [20 ] for the entrance region of a smooth pipe. The
entrance region uas divided into two parts, the inlet region
and the filled region. At the end of the inlet region, the:
boundary layers met at the pipe axis but the velocity profile
vas not found to be identical to that of Poiseuille,In the |
filled region, adjustment of the completely viscous profile
took place until the Poiseuille profile was attained. The
boundary layer.equations in therinlet region .and the Navier-
Stokes eguations in the Pahlhausen integral form in the filled

region were solved using a -fourth degree velocity profiles
4 3 . .
u= I A, (x,T)¢t 1 | (2.5)

with the following boundary conditions:

I. Inlet.regiloni . - — IT, Filled regions:
u=v =20, at &= % =0 = u=v=20 at §=-r/r2 =0
u = Uc(x) u = Uc(ﬁ)
aU = taU=D tE:1-D
= 0 at £ 1.0 £ a
3% _ 4 2% _ g
3E° 3 £2

] ol - B e

-0 E=0 £=0 E_','=D

Mohanty and Asthana calculated the total length of the ent-
rance regionx_ = 0,075 while the boundary layers met at X.=0.018

from the entry.
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Schlichting [30] introduced another technigue for solving
the entrance fTlow with psriurbation series and then applied
it to the entrance region of a parallel plate channel, The
entrance region was divided imto twb zones, In the zone near
the entrance a boundary layer model was proposed which was
analogous to that of a flat plate at zero incidence in unacce-
lerated flow: &/a =.1.72V ~, , where ta' yas the ‘half width

U 4
a“ o :
of the chamnel. The boundary layer development does not.yield

similarity type velocity profiles and an--approximation was
6btainedlih"termSiniperiufhatimn;ﬁﬂriesr+In«the~aner%a}"from
the entrance,_soluiibﬁsimé:eAthained as perturbations-of -the -
fully developed- velocity profile as used by Boussinesg [2] .
The flouw deuelOpmént;throughogj?;hg entire .entrance region

was describeﬁ"by“patching,togethef«ihe-boundary layer solution
and Boussiﬁesqvtype<o$~solution¥atVSOmeiintermeﬁiete»location,:
TatéUﬁI“f32}'siﬁbiifiedhthE“Equatiﬂn*ﬁfﬁmotionﬂbyﬁﬁj
assuming:
(1) P=px)
(ii) u(o,y) = U,
- (141) f% '
(3v) an undeformed central core

and (v) a stream function such that ueloéit}AprdFilés

are almost similaz.

The velncity profile results obtaired by this method
- were in gaad coreement with those of Pfenninger [19']and
- Christisnsen #-d Lemon [B] in the region very near the tube

entrance.
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Atkinson and Goldstien [14] modified the Schlichting's

[30] method for tubes. They assumed a stream function,

n ¢
Y = - 15 U, I ['{é(x/ﬂeoh) }:] f3( £) (2.8)

where £ = (1 - rz/rg)/a(ax/ReDh)%

to obtain a boundafy layer model solution which was believed
thbe accurate upto X g 0.0006 (cf; [14] p. 3086). Like
Schlichting, this solution was then patched at X = 0.0008
with a Boussinesq [2] type of solution which was valid for
the region far from the entrance. Tﬁéir patched relationship
yielded velocity profile data which agreed with Nikuradseb[Zﬂ
centré-line data., Similarly, Punnis [24] patched a downstream

boundary layer splution to a Boussinesqg type of solution at

X = 0,0004 to obtain a solution-for tube entrance-region. -

Gupta [TB] obtained a solution for the entrance region
of a parallel plate channel by macroscopic energy balance to
all the fluid in the duct. Like Campbell and Slattery [5] he

used a boundary layer velocity profile:

U 1. (1 - %2,

Van Dyke. [34] and wilson [36] studied tws models of entry
conditions for flow through parallel platé channel: (i) uniform
 parallel flow at entry, (ii) uniform parallel flow at a section
far upstréam, with the ;hannel walls extended upstream as

streamlines, which corresponds to an infinite cascade of

equally spaced plates in a uniform oncoming stream., Using the
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Blasius flat plate boundary layer solution, Van Dyke obtained
a solution at Re = 300 for both the cases. It was fouﬁd by
Van Dyke that the velocity profile for the second case was
convex at the entry and became concéue at the centreline at

a distance X = 0.0002%9 from the entrance.

murakawa [22] obtained the velocity distribution, the
pressure drop and thé entrance length of an annulus after .
éoluing the Navier-Stokes equations in x-and r-directions
and the continuity equation with the following boundary

conditions:

u=v = 0 at the walls

C
n

Uu(r) at x = O

[
]

O(r)fd at x = «

Murakawa eliminated the pressure term by equating -the Navier-
Stokes_equations in x-and T-coordinates and derived a complex
-serieg of equatioﬁs for the velocity distribution, the pressure
drop and the entrance lgngth;'Murakéma showed that within the
radius ratio D.625 £ ag 0.99, the influence of radius ratio

on the entrance length was smaller than that of the Reynolds

number, ’ -

-

Heaton et al [15] analyzed the flouw.:in.the-entrance ..
by o ,
région ‘of annuli /the integral method used by Langhaar [18]

Lith the following boundary conditions:

u=v =0 at the wall

C
I

U at x =0
o

angd ('?; ) =0, ry <c <1y
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Heaton et al reported sclutiens for annuli of radius ratio

of 0,001, 0,02, 0.05, 0.10, 0.25 and 0,50.

Mattai [21] formulated an ordinary differential

equation by macroscopic mechanical energy balance with the

following boundary conditions:

U

v = 0 at .the wall

u = UD at x = 0

and assumiﬁg the fully deuelopéd uelocify profile within the
bdundary layérzand a constant--ratio of the Soundary layers of
. the inner'énd-the outer walls for the fully developed flow
in the entrance region. But Mattai's ordinary differential
equation could not be -solved at a rggion~uery-near to the

entrance,

2.3, Numerical Method

Eonsideringlthe axial molecular“transpdrtnof-momentum_
and pressure gradient normal to the flow, Wang and Longwell
-[37] solved the entrance flow characteristics for parallel
plate channel for two different entry’ conditions: (i) uniform
parallel flow éf the entrance and (ii) uniform parallel flouw
at a section far upstream of the entrance with the following

boundary conditions:

" Case 1 Case 11
u=v =0 at wall u=v =0 at wall
du/dy = O dufody = Oyat y = a°
L _ . x < 0O
v =0 at 'y = a v = 0 &y = 0.0
u = 1.0 L u/U, = 1.0 |
u/U, at x = O o
v =0 ' ‘ S at x = - »
v = 0 _

Ry
u/U, = 3/2(1 -_(E:%) “at
\j= o a

X =0
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After eliminating the pressure gradient terms from the momentum
equation in x and y direction, and introducing the stream

function ¥ the eguation became:

¥ d
=7 %

4 al

Y (2.7)

where Re = and 'a' was the half width of the channel.

To ensure a finite boundaries they transformed x into a new

independent variable x'i -

x! = 1-- 1/(%;c),

where ¢ was a constant with a positive value for x > 0 and a
negative value for x < 0. This transformation cbmpressed the
scale of x at large distances from the entrance for this

solution. Then both the upstream and dounstréam'regions were

transformed.-into sguares 0K vy $1' and 0 £ x' & 1,
Wang and Longwell introduced the term vorticity,

w = - VoY,

in the eguation (2.7) and solved by relaxation technigque. They
used a 10x10 grids in terms of x' and y with c = 1.2. The
"solution for the first case showed a.definite concavity in

the velocity profile near the entrance (upto X = 0.001).

The effect of axial diffusion of vorticity on flow
development in the tube was studied by Vrentas et al EES] .
A vorticity transport equation was used with no-slip boundary

conditions for tube. Te ensure a finite boundary, Vrentas et al
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.assumed a transformation of x! = tanh Tx, like Wang and
Longwell [37] where T is a parameter, which transformed the
infinite length scale, - ® £x'< » to a finite oné; - 1< x' €1,
They obtained solution for a parabolic partial differential
"eguation at high Reynolds ﬁumber where axial diffusion of
vorticity was assumed to be negligible compared with the

other terms, The solution of this ﬁarébolitwpartial differen—

tial equation was initiated at the entrance for a uniform

velocity profile with Ar/r2 = 0,05, and Ax' = i é: 5x10—4
for the first 25 steps and Ax' = 5><‘1EJ_3 for the subsequent

steps. The total_axial'preséura'drOp was-clébuléted'by
integrating the momentum éduation over the entire entrance
region of the tube.‘The.the radius was diuidéd into (N - 1)
equal divisions, which gaﬁe (N,--1) equations of stréam function
and same number of équations-of vorticity for each axial loca-
tion, and then they were soluea by tridiagonal matrix. Solutions
for the entrance length and the incremental pressure drop

K(» ) at different Reynolds number are given in Table 2.5.

TABLE 2.5. Results of Entrance Length and Incremental
Pressure Drop for Different Reynolds Number
for Pipe obtained from Vrentas et al [35]

Re . Xe K (e ) u_/u
| - - © Frd
250 - 0.0503 1.28 0,99
150 . 0.048 1.38 D.99
50 0,047 1,40 0.99

1 0.330 7.76 0,89
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Fof Re 3 250 thg boundary layer equations adequately described
the flow field. Thg concavity in the velocity profile was
absent at Re <.50, For Re > 50 it increaséd'with:Reyﬁolds,
number but egisted only in the ‘region very close to the

tube entrance. According to Vrentas et al, for louw Reynolds
number the axial vorticity term in the vorticity transport
equation should not be neglected,~since-it led to an elliptic
Ffinite difference equation. For solution of this elliptic
equatien, rectangular grids werertaken within the region

0 <t € T, and - 1 & x!' £-1. Applying the stéﬁdard cenfral
difference approximation to the first and second derivatives,
the elliptic equétions were solved with the help of implicit
iterative method. The solution was obtéined‘for 10x10 grids

in terms of O <£r $T, and - 1 <x!' L1,

Christiansen and Lemon [6] -assumed radial component of
equation_oﬁ_motion to be negligible and a uniform flouw atrthe
entrance to.predict the floy development in -the entrance
region-.of a tube. The.entrance region.of the tube was consi-
dered to comprise N concentric annuli. The momentum equation
in a flnlte difference form was written for {N + 1) cylindrical
boundaries and the (N + 1) velocities at the entrance were
known and the corresponding values at the end of the segments
were determinedrby solving the (N + 1) equations by an itera-
tive process (modified Gauss-Siedel method) for 200x200 matrix.
They derived a pressure drop ﬁodel for the entrance floQ
througﬁ the tube as:
| P - Py 13,74

2 = 7 . ' (208)
: x/ReDh : '
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Friedmann et al [12] solved the vorticity transport
equation by tHelrelaxatiDn technique over the range 0 €r €r,
and O éX‘SXe for low Reynolds number (upto 500) with a flat
velocity pro#ile at the tube entry. The entrance length Xe

found by them is listed in Table 2.6.

TABLE 2.6. Results of Entrance Length for Different Reynolds
Number for Tube Obtalned from Friedmann et al [12]

Re | | Xg | uc/uC
fd

10 0.0880 0.99

200 0.0675 . 0.99

40 | 0.0610 R 0.89

100-200 - 0,0565 0.99

300-500 0.0560 0,99

Like Wang and Longuwell [3?] , Friedmann et al [12] found
concavity in the ueiocity'profiles'néar the:entrancei For
very large values of Re the initially flat velocity profile
was maintained over a large axial length of the-tube. The
maxima in the velocity profile was then pushed near to the
tube wall. In fhe boundary layer solution, the flaﬁ ueloéity
profile in the core could be feasoﬁably.apppoximated for
higher values of Re becausé, the axial range over which the
kinked velocity brofilé existed became uanishingly'small. But
.fbr small Re, the flat velocity profile at the enfry could
not be maintained. Thus the results deviate from the solutions

of boundary layer approximation.
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2.4, Experimental JInwvestigatiaons:

A few literatures are available which describe the
exberimental results on the entrance flow of ducts. The
experimental results for incremental pressure drop by various

authors are listed in Tables2.1, 2.2, 2.3.

During 1950-53 Pfenninger {18] conducted laminar flow
experiments in the entranmce region of a tﬁbe, at high Reynolds
number and at low Mach number. Extruded aluminium alloy
straight tubes of diameters 2}56 cm and 5,08 cm for five diffe-
rent lengths ranging.ﬁrom 12.5 m to 22,8 m were used as test
tubes. Air was sucked from tﬁe atmosﬁhere through 12 damping
screens (0.12 mm wire dia., & B65% opening) of-stainless steel
and through a nozzle (contraction ratio 16) into the test
tubé by a compressor. All necessary precautions were taken to
maintain the test section free frpm any sort of disturbances.
.The mean velocity, U, and the.Reynolds number .were célculqted
from the pressure difference across the inlet nozzle and the
boundary layer measuremenfS*atfa-diStance fhrice,the tube;

diameter downstream of the entry section of the tube., The

results obtained by this experiment are listed in Table 2.7.

Atkinson et al [1] used an optical tgéhniqugrfﬁr the
~guantitative determination of velocity profiles in the entrance
region of a tube for Reyholds number'ranging from 500 to 1500.
For flow at Re = 500, the entrance léhgth'ﬁas found to be

X5 = 0.0177,

The two portions of the entrance region (viz. the inlet

and the filled region) were experimentally established by
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TABLE 2.7. Experimental Results Obtained by Pfenninger [19]

1 11 111 IV Y
x(m) 12.5  14.8 18.0 15.2' 22.8
r,(m) 0.0254 0.,0254 0.0254 0.0128 0.0254
Uﬂ(m/s) 30.50 26,66 - 25,04 51.3 30.0
Re/2 50,050 44,200 41,470 44,000 49,600
2x/t,Re 0.00972 0.0129 0.0172 0.0270 0,0181
uc/uo ' 1.304  1.348 1,397 1.504 1.41

Mohanty and Asthana [20]. Experiments-were carried out by
passing air through a 30 mm ID smooth aluﬁinium tube at

Re = i875, 2500 and 3250. The uniform velocity at the entry
was generéted by preceding the tube with a short bellmouth

"at the "end of a large settling chamber, the area of which

was 100 times larger than the tube cross-section. The velocity
was méaéured'by a 2.mm micrOpfnbé Fiatteﬁed at the tip, in
conjunction with an Askania micromanometer of sensitivity

0.01 mm Hg.
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CHAPTER III

THEQORY

3.1. General

Lamiﬁar flow for Newtonian fluid is governed by the
Navier-Stokes differential equations. The general solution
of the-non-liﬁear Navier-5tokes equations is not yet avail-
able, However, in many pradficai cases where the nqn-lineér
inertia terms do not exist, it is possible to obtain exact
solutions of the Navier-Stokes equa%ions. But for the flouw
in the entrance region of any dﬁct, the presence of  the
inertia terms, makes it difficult +to obtain .an exaﬁt selu-
tion of the Navier-Stokes equations.~Tovouercome~these

difficulties many researchers made different empirical

approximations.

3.2. Governing Equations:

By restricting the application of the equations of
motion in cylindrical coordinates [4]to the conditions such
that:

(i) the flow is independent of time,

(1i) the radial camponent of the equation of motion is

negligible,
(iii) any angular motion is negligible,
(iv) the fluid density and viscosity are constant, and

(v) the flow is independent of any .existing body force-

field,
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the equations of motion in cylindrical coordinates are
reduced to:
(v 3u/a 34/ . 193 4. 2 2
plu 3u/9x + vdu 3r) = - %% + M|z F?-(tau/ar)+ 3°u/3x (3.1)

'In cylindrical coordinates the equation of continuity is

Va(ur) . 3{ur) (3.2)

%
4..

[ :

In obtaining.the solutions of equations (3.1) and (3.2)
for flow in &n annulus entrance region:
(a) the following assumptions are made:

I. Axial molecular transport of momentum is negiigible'

. | 2 2 1 3
j.e. 08°u/fox” << T 7T (rdu/dr)

II. The pressure is a function of x and is independent of T
d.e. p=px)

{b) the following bqundary conditions are taken:
I. The velocity at the annulus entrance is uniform,
ice. ulost) =U,, vlosz) = 0.0

II. No slip condition at the wall

i.e, u=v =20, at r

T4

énd r = rz'
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3.3, Equations for Fully Developed Flow:

Ear downstream from the entrance where the inertia term

vanishes, the momentum equation (3.1) becomes,

2

2
a .
2 u/or® + % 5% - %% = constant (3.3)

H

The solution of this equation for annulus.boundary
' conditions e.g. u.= 0 at T = rj(j =1, 2) and u = U_ at
ro= T yields Lamb's fully developed velocity profile for

annulus, expressed in nondimensional parameters as: -

o. R - R% .- 2RS 1n R/R,
T =2 % —— = (3.4
c Ry —-Ry - 2-Rgln Rg/Rs 2.

The radius for -maximum velocity computed from this equation

(3,4) is:
1
- .v...‘— \2 — s
22
Rg = . |—— : (3.5)
2 1n @ -
The maximum velocity is:
- - 2 .
(€%e 1)(1 < 1n == ; )
U_/U, = —emeee 25 (3.8)
(a2 . 1) - (1 +e9lna

where U= R1/R2

The pressure drop caused by the fluid friction is:

a1 - ) X

—,-'—,2-0- = - ‘ ' , (3.7)
z PU] a - 2y . ,

in o (1 % o

A1l these equations are derived in APPENDIX-A,
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3.4, Integ;al'Method:

The fully developed velocity profile was assumed to be
.valid within the boundary layer in the entrance region of

the annulus and it was expressed as:

2 2 2

R® - R, - 2 Ry 1n R/R.
B - J
u, /U = NE (3.8)
Jex € 2 2 2
R - RS - 2R 1n R /R,
6' J (S_ 6. J
JaX S Je X Js X °
where j = 1,2 refers to parameters_associated with the inner

and outer wall boundary layers resgectiuely,by'feplacing the
radius of the maximum velocity with the radius of the boundary
layer thicknesses: Equation (3.8) becomes fuily developed
velocity profile equation when Héj;x = Rg]fd . In addition,

it satisfies the physical condition of no-slip at the wall

and zero shear at the edge of the boundary layer. Considering

the coﬁtiol.uoluﬁé ABCD- in Fig. 3,

(a) the conservatiom of mass equation is .:

T8, 15, L, :
AU =2n{ J u, rdr +J U r dr + J 'u2 r dr }
’ Ti r61 52
(b} the momentum eﬁuation is
i rdl 2
2% - Tyr Tp F Tyo r2} dx - d? A = 2np df [ Tuj dr +
T Ts _
62 "9 ' 2 .
Jor Ul dr+ J rul dr } (3.9)

rél r62
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du
where, ij =L1L§—%1 s J =1,2
I=r .

-8U dp = 2um J rdr + rdr } dx
0P T1 or TS, or
1‘61 T§» . )
+ mod { S (uf-ug)rdr + I (Ug-Ug)rdr +
I'l IS .
1
Ty
£ (u3-U2) zdr ) (3.10)
1'62

Eiimihating 'dp! from-egns. (3.9) and (3.10), and on rearran-

ging equation (3.11) given below was obtained:

T

51 5
2m U { Ty1 T - T‘”? r2} dg =21Tu{ 1[1 (Tr‘ ~rdr +
Ty : o Tey . 5
P22z g g {5 (ud-Ud) ror +
T ( or T} _% ol ‘T, Y17 Yo
8o :
r62 . 'r2 : rGl
3 3 L 3 3 2
£ ( o - Uo) rdr =+ £ (u2 "Uo) rdr - U, % 2rugdr
. i
51 P |
LS, . _7 | : I _
-u_f 20 U%dr-u_ § 2ruidr} (3.11)
o o c s S 2
81 82
Assuming,

at any x fd
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and introducing Bj = r?/rg where j = 1,2, Mattai [21] derived

: J
the following first order non-linear differential equation:

<)

d X , o 8{1 - o
f X . .

C, - 61( ; )

. a{J82'+ % (/82-1) }

g (3.12)

g

where, N L

1 - a2 .2 1 - o® 2
y = ( { :f;;——--] -a)/(1 - { = Tna }o)

21na 1no

and C,, C are functions of Al Aoeen H43'as defined in the

2
APPENDIX-B. But this first order differentiélVEQuation_cannot
be solved just frdm-the'entrénce‘be:ause (a) a singularity
exists at the entrénce i.e. X = 0 and (b) instability exists
for some distance X = X' from the entréhce, whose value is
different for different radius-ratio annuli. These two points
are exﬁléined iﬁ Fig.'S; Ta fiﬁd out. the distance X! eguation
(3.12) was modified with the assumptions that near the entrance
in the core region the Bernoulli's equation applies, i.e.

u_ E;% = - % = . Then the differential cquation (3.12) takes

the form:

%

ax

(3.13)
2 )

where SF, PF & MF are functions of B, and B,. Eguation t3413)

2.
was solved within the region of 0O< X g X' -&hd then patched
with the solution of equation (3.12).

Equations (3.12) and (3.13) were solved by Simpson's

Integration formula with an initial.value df 82 = 1.0001 at
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X =0.0 and with an increment AB, = 0,01 till R =

_ 2 s, = s, °
This computation required 3-5 minutes of CPU time (depending

upon the radius ratio) on the IBM 370/115 machine,

3.5, Differential Method:

3.5.1. Eguatiens and Boundary fonditions

Equations (3.1) and (3.2) were solved numerically
with the assumptions I and II\and the boundary conditions
I and II (given on page 25). A model for pressure gradient
was developed form the Integral method and was used for this

calculation.

3,5.2, Calculation Technigue

An explicit finite difference technigue of the
DuFortﬁFrankelwfgjitype was -applied-here to:-the momentum - - -
equation (3.1) and the continuity equation (3.2) along with
the assumptions I & II and the boﬁﬁdaryAconditiDns I & I1
to calculate the velocity development and the radial uelo;ity
decay in the entrance région. Thé approximations used for
the derivatives in this methdd with fﬁe truncation errors are
giuen'in APPENDIX-C. The Finite Bifference grid used for the
computation is shown in Fig. 3. A FORTRAN-IV computer program
was developed ﬁolsolue-these equations for uniform grid
‘spacings in the x- and r- directions. The programme documen-

tation + and the list are furnished in APPENDIX-F.

von Neumann's [23] method of stability analysis

with first order error was applied to the momehtum eguation
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and found to generate a stability constraint as given in

APPENDIX=-D,

The DuFort-Frankel [8] technigue requires informatioﬁ
from two previous stations for the calculation to proceed
in the stream-wise direction. Since the initial condition
u/U_ = 1.0 at X = D, gives information only at the first
station, a direct explicit method was used to start the
saluﬁion; which requires information only at the previous
station. Then the solution was proéeeded by the DuFort-

Frankel method from the third station.

The grid spacings in the x- and r- directions were
chosen to be uniform, dividing the hydraulic radius into 50
equal divisions td attain the conuergenﬁe of the solution.
For.a stable calculation a ratio of grig Spécings,AR/Ax = 1000

was used,

The finite différence gquatiDns for the'continhity and
the momentum are given in APPENDIX-C for both the DuFort-

Frankel scheme and the direct explicit scheme.

The computation reported here for one station did not
require more than one second of CPU time on the IBM 370/115

computer.
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CHAPTER IV

THE EXPERIMENTAL SET=UP AND THE EXPERIMENT

4.17. General

Most of the experimental inuestigations for laminar
entrance flow which appeared in the litergture are for the
circular tube, It is shown that the tube and the parallel
plate channel are the two limiting conditions of an annulus.
There are a few papers published with tﬁe experimental
results for laminar entrancé flow through fhe tube, One of
the aims of the present investigation was to find out the
préssure drop experimentallyﬂih;theTantrance region of é

parallel plate channel.

4.2, Experimental Facilities

Laminar flow was produced by inducting air through a
parallei plate~chanﬁel—from an—infinite-surroundihg. A-blouwer
of capacity 12,5 cfm at 80 .mm HZD'heéd was us;d to induct
air. The inlet.side of the blower was connected with a wooden
driverging channel -made of 6 mm thick perspex sheet. S5ix
aluminium angles were glued (using Araldite) to the upper
plate of the channel to keep it straight. The sketch of the
éxperimental set-up is shown in Fig. 2. To avoid side effects
on the flow an aspect ratio (= breadth/depth) of 97 was chosen,
and this was considered to be two dimensional. The sides of
the channel were made leaQ proof by using scotch tape over the
joints. A number 0?'1/15 inch diameter holes were dfilled at

the mid-section of the upper plate at different axial locations.
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The pressure was measured by using a Micromanometer of Flow
Corp, USA, having é'sensitiuity cf deﬁD1 inch of manometric
liquid. Measurements were taken at different Reynolds number,
e.g. 610, 1067, 1234 and 1600 obtained by regulating the
delivery side of the blower. In order to verify the para-
llelism of the flow a smoke jet was generated in the channel
and the stream-lines were observed. The stream-lines were

found to be reasonably straight and parallel confirming the

‘parallelism of the flow as shouwn in_Figs.T&(a)-14(§3-

The uncertainty of the meaéurements are functions of
variations of fhé:ambient temperature and pressure, the
specific gravity of ‘the manometric liquid and the accuracy
of the manometric readings. It was found to be less than
+ 2.5%., The uncertainty of #hé measurements for nen-dimensicnal

pressure drop is discussed in .APPENDIX-E.
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CHAPTER V

RESULTS AND DISCUSSION

5.1. General

Laminar flow properties in the entrance fegion of an
annulus were calculated both by the Integral method and the
Finite Difference method., The pressure gradient used in the

second method was obtained from the result of the Integral

- method. The solution by the Integral method was obtained by

assuming_full?ﬁﬂeueloped velocity profile within the bqundary
layer and a constant ratio of the inner to the outer boundary
layer thicknesses. Pressure.dfnp in the entrance region of a
parallel plate channel -was found experimentally, The analy-.
tical results for pressure drop obtained from the Integral
method were extended to compare with the experimental ones.
A1l calculations for both the Integral and the Finite.Diffe—
rence technigue 'were carried out by assuming a flat velocity

profile at the entry.

This chapter presents the .results--of -entrance flow
characteristics for five different radius ratio annuli
(e« = D.01, 0,05, 0,10, 0.25 and 0.50) along with their compa-

risons,

5.2. Pressure drop

A pressure drop model:

P - P ap X + K(X) = 4X coth(RXB+x); 17: (5.1)

- - 4
0 = (Fx)¢g 0eXsX

= (g x v k(=5 x> x,
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was proposed and the values of the constants were found by

fitting the equation (5.1) with the results obtaned from

dP dpP

the Integral method.X, is the distance, X, where . (HYJXF(EY)fd‘

The values of A and B for different radius ratio annuli are

presented in Table 5.1.

TABLE 5.1. Values of A & B of Pressure Drop Equation (5.1)
for Different Radius Ratio Annuli
o A B RMS error %
0.01 0.18581 0.42928 1,042
0.05 0.187486 0.43155 1,155
0.10 0.18693 0.43108 1,305
0.15 0.18548 0.42944 1.487
0,20 0.18357 8,42729 1.718
0.25 0.180817 - - 0.42434- 1.999. ---
0730 0.178089 0.42128 2.307
0.35 0.17704 0.41928 2,563 -
0.40 0.17616 0.41728 2,838
0.45 0.17613 0.41579 - 3.098
0.50 0.17714 0. 41491 .3.339

The development of incremental pressure drop K(X) for

different radius ratio annuli was shown in Fig. 6, As may be

seen from Fig. B, the incremantal pressure drop developments

“fpr o = 0.50 and o = 1 are approximately the same, But the

curves for a - 0.01 and a = 0.0 are not close to each other.
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Fhis significant difference between the incremental pressure
drops.for very small ¢ and a = 0 may be attributed to the
different physical boundary conditions prevailing near the
centre for the tuwo cases, For uery small values of @ the
uelooity is zero near the centre whereas for o = 0 it is

near the maximum. In the case of higher radius-ratio (o » 0.50)
the effect of the curvature of the inner and the outer pipes
.of an annulus on the flow becomes negligible and hence leads

to a single pressure drop curve -for 0,5 £ o £ 1.0,

The experimental results for pressure droplin the entrance
region for flow through a parallel plate channel at Reynolds
number, Re = 609, 1066, 1234 and 1588 are-shoun in Fig. e
Very close to the entrance and at low Reynolds nunber, the
results deviated from the curve of egation (5.1) for a= 0.5

because of the fact that in the region very close to the

entrance the - derluatlue (
o EES :
I 2—(r ) and the pressure gradients in the radial direction

2 )—is- not negligible relative to--

were not small [3?] . For small Reynolds number a concave-
velocity distribution (a L > 0) in the central portion

. o ar :
existed very near (X = 0,001) for Re = 300 the entrance [12,37]

These deviations may be attributed to the assumptions of neg-
ligible axial momentum transport with respect to radiel momentum
transport and a constant ueloc1ty in- the central portlon near
the entrance, Howeuer, at a dlstence far from the entrance the
experimental points are close to the present theoretical

CuUurve,
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5.3, Velocity Distribution:

The results from the Finite Difference methoa for the
axial and radial Gelocity profiles for different radius ratio
annulir(a = 0301, 0.05, 6,10, 0.25 & 0.50) are presented in’
Figs. B(a);B(e) and 10(a)-10(e) respectively. The velocity
.prnfiles based on the fully developed flouw, which were used
in the Integral method are also presented in Figs. B(a)-B(e)

' for comparison. As may be seen fram Fiés; 8(a)-8(e), there
exists a difference between the Qelocity profiles obtained
from the Finite Difference technigue and that from the
Integral sclution. This difference is prominent near the

entrance and near to the walls,

The finite difference results predicted that the velocity
profile in the entrance region was parabolic within the boun-
dary layer but not of the same degree as that of the fully
deuelapedwpiofile.-The,uelocity profile was not. symmetrical
R - R1*:

: Ry =Ry
0.5) of the annulus,.- The velocity..close to the inner pipe

with respect to the centre-of--the hydrauliclradius‘(

was higher ‘than thét close toc the outer pipe for the same
distance from the uall.rBut thisrskeuness of the velocity
profile towards the inner wall decreased as the radius ratio
of annulus increased, The skewness ﬁf thé raﬂius of the
maximum velocity with respect to the centre of the hydraulic
radius is éiuen in Table 5.2. Thé variation of core radius

along the aXialfdistance—is shown in Fig. 13.

The results for axial variatioen of core velocity obtained

by the Finite Difference method and that of Heaton et al [15]
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TABLE 5,2. Skewness of the Core Radius with respect to
the Centre of the Hydraulic Radius of Different
Radius Ratio Annuli

o 1 - ;Ra
(R,I + (R2- R1)/2)
At far downstream At end of Inlet region
0.01 L4,63% 15.68%
\0.05 22.28% 10,86%
0.10 O 15.7% 6.55%
0.25 | 6.96% ' S 2.4%
0.50 1.93% 1.33%

are shown in Fig. 9. It can be seen. from Fig. 8 that the
résults_of Heaton et al deviate from that of the Finite
Difference solution in the region near to the entrance
because of the assumption of negligible radial velocity made

by them.

The variation of the outer and inner wall shear stresses
for the five radius ratio annuli considered are plotted in
Figs. 11(a)-11(j). In Figs. 11(a)-11(e), the stresses were
nondimensionalised by the shearastress at fhe outer wall of
the fully developed flow and in Figs. 11(f)-11(j), by the
respective stresses of the fully developed flow. The relative
difference of the shear stress at the inner wall with that

at the outer wall can be observed in Figs. 11{a)-11(e). The
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stresses obtained from the Integral method are shown in
Figs. 11(f)-11(j) and they deviate significantly from those
obt ained by the Finite Difference method. This deviation is

due to the assumed velocity profile for the Integral method,

The results for radial velocity at different axial
locations for different radius ratioc annpuli are plotted in
Figs. 10(a)-10(e). The radial velocity caused by the accele-
ration of the fluid in the entrance region decayed along the
downstream gradually. The magnitude of the radial velocity
was small compared to the axial component. The radial velocity
" was also influenced by the radius ratio. For small radius
ratio annuli { o < 0.01) tEE'radial velocity decayed mofe
guickly near the innerx Qall than the outer wall. And at
higher radius ratio annuli ( &« 3 0,50) the radialruelocities

originating from the tuwo walls are almost similar.

5.4, Length of the Entrance: Region

After the deueiUpment ﬁf the boundary layer. under the
accelerating core, the final adjustment of the completely
viscous velocity profile to the fully developed solution
marks the end of the entrance region. Shingo {(cf. [20])iden-
tified the boundary layer region as the 'in;et region' and

the fully viscous region as the 'filled region'.

Figs. 12(a)-12(e) show the growth of the boundary layers
with the axial distance for five radius ratio annuli (¢ = 0.01,
0.05, 0,10, 0,25,& 0,50). The boundary layers obtained from

the Integral method met at the core radius of the annulus
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at the end of the entrance region. The assumptions of the
velocity profile based on the fullf developed profile and the
constant ratio of the inner and the outer wall layer growth
for the Integral solutién'failed to predict the tuwo distinct
regions (viz. the inlet and the filled region) which were
experimentally found by Mohanty and Asthana [20] for flow
through a smooth pipe. The existence of'these two regions for
flow through an annulus was established by the Finite‘Diffe-
rence method. In the inlet .region, at the edge of the boundary
layer (QU/3R) = 0 and (82U/8R2)C = 0, For nﬁmerical computa-
tion of the boundary layer thickness it was assumed that at
the edge of the boundary layerlIBU/BR | = 0,01, and the length
of the inlet region was defined as the distance from the
entrance where (azu/8R2)C ® - 2,0; based on the assumption
U/UC = 0.99399. Also the lenéth of the entfance region was
defined as the distance from the entrance where the average
value of the viscous term (i.e. Vzu) of the Navier-Stokes
equation reaches 101% of that-df the fully developed value. .
Since in the entrance regidn,rthé core yelocity developes

to its fully developed value asymptotically, most of the
resaarcﬁers [5,8,13,20,28,37 etc.] assumed the entrance length
as the distance from the entrance to the point where the core
velocity reaches 99% of its fully developed value. Murakawa
[22] defined this entrance length for annular passage as the
distance where the developing velocity profile matched with
that of the fully developed Dﬁe. In the present investigation,

calculation of the length of the entrance region was done by
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considering an average viscous property change to its fully
developed value instead of the development of the axial
velocity at a ﬁarticﬁlar radius, The computed values of the
lengths of the Inlet region and the Entrance region are

listed in Table 5.3,

TABLE 5.3. Results of the Lehgths of the Inlet and the

Entrance Region for Different Radius Ratio

. Annuli
o X X U /Y, RMS of (U-U. )
at X ' at X,
0,01 0.0G0285 0.10 0.995 0.00075
0.05 0.00255 0.030 0,986 0.00213
0.10  ©0.0024 - 0.0165 0,982 . 0.00253
0.25 . .0.0023 - 0.0125  __0.99 0.00147
0,40 0.00225 0,07 20 0.992 0.00108
0.50 0.,0022 - 0,0115 0,9865 - 0,00155

In the Finite Difference calculations, the cumulative
RMS error of the U, at each station of calculation did not’

exceed 0.,00025.
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CHAPTER VI

CONCLUSTONS

Laminar flow characteristics in the entrance region of
annuli were obtained both by the Integral method and the
DuFort-Frankel type of Finite Difference method for a flat
velocity profile at the entry. The solution by the Integral
method was obtained by assuhing fully developed velocity
profile within the bounﬁary layer, and a constant ratio 5f
the inner to the outer boundary layer thicknesses at any
axial distance in the entrance region. The results for the
pressure drop by this method were compared with the existing
analyfical results for flow through pipe and parallel plate
channel. The result for the pressure drép_for a = 0.5
obtained by. this method was in good égreement with that of

the ex15t1ng results for parallel plate channel (o = 1 ).

The pressure gradient obtained by the Integral method
was used in the Finite Difference method. The results
obtalned by the Finite Difference method for velocity profile
within the boundary layer and the ratlo of the inner to the
, outer wall layers didrnot'agree with the assumptions for
velocity profile and the boundary layer thickness méde for
the Integral method. The axial velocity profile in the
entrance region changed with axial distance to its fully
deuéloped profile at a distance far into the dounstream. The
radial velocity ﬁomponent was caleuléted to be small compared
with the axial velocity, and it decayed with the axial dist-
ance. Such decay of radial velocity was expected and the nature

of decaying was found to be a function of radius ratio,



43

The growth of the boundary layers obtained by the Finite
Difference methbd yielded two distinct zones of the entrance
region, uii. (i) the Inlet region and (ii) the Filled region,
which were also reportéq earlier by Mohanty and Asthana [20]
fﬁr flow through a smooth pipe. Boundary layers met together
at the end of the Inlet region but the velocity profile
changed with axial distance and achieved a fully developed

profile at the end of the Filled region.

The asymmetry of thejuélocity-prafile.near the entry
was sTall~but-gréddallywincreaSed along the axial distance
to its fully developed-natures For annuli- with radius ratio,

o = 0.5, this asymmetry was found to be small.

The length of the entrance region was calculated on
the basis of the viscous term of the momentum eguation rather

than the development of the core uelocity;

Considering the flow tharacteristics in the entrance
region-obtained in this work and the existing fully developed
flow'parémeters,“it:can be.inferred-that the effect of the

radius ratio on‘thé'flow is very small for D.S < o £ 1.0.

The pressure distribution in the entrance region of a
parallel platé channel -{aspect ratiorof 97) was investigated
experimentally at four.aifferent Reynolds numbers, Re = 608,
1066, 1234 and 1588, The analytical results for pressure droﬁ
from the Integral method were extended to compare with the
experimental ones and they were found to be in good agreement
at higher Reynolds number except in the region near to the

entrance.
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APRENDIX-A

- EQUATIONS FOR FULLY-DEVELOPED FLOW

A.1. Velocity Eguation

~ Laminar flow is governed by the Navier-Stokes eguations
and the continuity equation., In cylindrical coordinate the
Navier-Stokes equation for an incompressible Newtonian fluid

for the developed region is:

19 (8uy _13p _, .
= &= (r = } = = E% = k = constant . - (A1)

k2. ,
us=-gr % G1 in Tt + G2 (A.2)

Where G, and G,.gre constants to be evaluated with the

" boundary conditions:

%

u=~0at = Ty j =1,2 refers to the inner and

outer walls respectively.

ou
or

H
]

at r = Ts

U
c

u

Then equation (A.1) becomes after substituting the values of

81 and GZ

| k2 2 .02 |
Uy =g (r® - T -2rgln r/rj) (A.3)
at ' r = Tg
k ; 2 2 2
u. =7 (ré - Ty - 2ry 1n rB/rj) ~AA.4)



Dividing equation (A.3) by equation (A.4)

- ng in r/rj

e N N

- 2r§ 1n rs/rj

A.2. Radius .of Maximum Uelopity, Ts

B4

(A.5)

To evaluate G, and G, in equation (A.2) the follouwing

boundary conditions are assumed:

u =0, at ¢ = T, and at r = T,
Then
Kk 2 :
0= 7 (r1 + G1ln r1 + G2)
and 0 = % (rg + G1ln T, + 62)

Equating the R.H.S terms of egns, -(A.B)& (A.7),

rz'— £2
PRE.
ﬂr1r2

2 2
T, In T, - T, In r,

)

and G, = % (
‘ ln ./t
1 Z

Substituting these values in egn. (A.2).

2 2
T, - T, r1 in I, - T, iln r1

In r,]/r2 | in r1/r2

(A.B)

(A.7)
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2 2
K =2 2 T2 2
or, u =7 {T - Ths (= 1)ln r + The (¢“1n r, - ln_r1)] (A.8)
At T = rg » du/3r = 0
r2 a2 1
. au _k 2 . -
* ot r 4 (Zré - T in © ) =0
2 |
A= 1 3
or, rg = T, ( === )% (A.9)
A.3. Maximum .Velocity, UC
At T = Ts s U o= UC
Then from equation (A.Bj
r2 I2
K 2 2 2z ‘ 2 2
U, = 3 {rg - Thgle’- 1)in rg + agleln T, - 1n )}
Putting T = T (dz -1 4
9 Is 2 )2
ln o
T 32 1
k172 2 2 2 = (A, 10)
UC--Z[_lna{(a - 1) - 1n o - (a” -1) 1n lnaz}:l

- I
2

The flow rate, Q = 2y J urdr
T
1

where u is given in equation (A.8)
After integrating,

2

_ _3kK 2 2 2 g - 1 2
o= —g= (r2—r1)r2[__lna '("’““)}



B6

Then the average velocity, U0

2 .
_ 0 . k2 o -1 2
U, = diom =gy { o - (1 + 00))} (A.11)
Tr(rz—r,t

Dividing eqgn. (A.10) by egn. (A.11), and after simplification,

a2-1

(a2 -1) {1-1n( 2) - 1n G }
In

U /Uy = (A.12)
(6 - 1) - (1 + o) 1n q

A.4, Pressure Drop

From eqgn. (H.11)

19 e o
H dx -~ - 5 5
T ((]. -1 -1 - a2)
2 in o
F ® 8 'UD H
or, f Op —oj dx
% r2(a~‘2-1 -1 a2)
2 1na .
D pDhUD .
Putting T, = TG and Re = T
2 X
=
. p - By 64 (1 ) Re Dh
e 5 = > (A,13)
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APPENDIX-B

INTEGRAL TECHNIGUE

Mattai's eguation

The functions of A's, C1 & 52 defined by Mattai [2ﬂ are:

1 - B1 + 1n 81

1 - B5 + 1In B

2 2
. . B, 812' . .
z-8, +% - = +B, (B -~ 1n By) 1n B,
5 8,° 8,°
T - Byt g - =t 82(82 - 1n 82) ln B,
. gy
7 3,2 24,3 1 3 2
5 - 28, ~ 28,7 + B, 7. —+ B,(3 - 38, + B,%)In 8, + B,
3 2
(- =8, + lnB1)ln B,
. L4
7 3.2 2,3 =2 2
- - 2B, - 8,7 + 3 B;" - 47+ By (3 - 5 By + B5)1n B, * B,
3 7.
(- 58,4+ ln 8,) 1n” 8,
' 3
B
11 3 2 1
-G—-Z)B1+-2-B1 --3—-"]-1[181
11 32 B23
£ - 3B, + 3 B,°- 5=+ 1n B,
- 1 ,
= (-j + —g-z-)/n2
= 4(1- B%) + B, 1nB
2 ( 1 1
= 1(1 --B2) + B,ln B
2 2 2 2
- - 3+ 3B, - B2 4+ 1/B
=T 17 71 1
- - 3+ 38, - B2 + 1/B
= 2 2 2



15

16

17

1B

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

I

a2(1 - B )2 B.A

1 2

2

(1

B

2)

2

By

Ay

2 .
‘-(1 - 81) + 2(81 - 1)1n B, - 1n 81

-1 - 82)2 + 2

(s,

- 1)ln B

(1 - 51)3 + 3 [(1 - 81)%-

2

2

- 1n"B

B,1nB

(1 - 82)3 + 3 [(1 - 92)2 ;

(- 8,

1

lenB

1] lnB1 + (3 + 1nB

2

o 2 3
}/B
+ 3A11/A1 + 3AL/AC 4 A/ A )/ 1

2 3
(- B, + 3A, /R, + 3R, /8 + Ag/AD)/B,

Ao/ (B, A12)
Ag/ (B, A22)

2
2(1 - -« )8182R1A2/A15

_qz

1
2 A4 Rop * 3 Rog B

21

+

o

2

Aop

3 2y 0 4
{1 = 81 )+ a(B1 - 1) - 21n B,

{1 - Bg) + 4(B, - 1) - 2 1nB

2

[-2(8, - 1) + (n, F\zﬁ-/ﬁ\,l):l /a,

[2(32 - 1) - Aoy “27/A2] /R,

3Aq9 [A1/A11 - ”9] /R,

3R [Az/”12 - A10] /A,

‘ 2
3A3(A18/A3 - 2A9)/n1

3A4 (H17/A4 -2

%

Ao

)/ A

2
2

A

23

1

88

)1n281

2
2] 1nB, - (3 + 1n82)1n 82



34

35

36

37

38

39

40

41

42

43

Ag

Ag (A g/Ag - 3R, 0)/AR,

(-1 + A

3
(Ryg/Rg - 3Ag)/A,

3

(- 1 + A

1

/8,

..1.

3

oF Aap + Rg)/RyBy = 178,

5 t Azz f Agg)/ (Ay B,)-1/8,

Ag +'&2“?(1 - 51)2 B2”2} /{ A15(1'91)} *

{ & (1 - 8,)° “1%{1/51 + ”9} /Ris

1/8, + Aig - {281({48252A1} /-{A15(1-82)} - {a2(1-81)282A2g

%1/52 ¥ ”10} /Pys

ATS/AT - 1/B1 - 2Ag

A14/HB - 1/32 - 2A1D

| 2 ’ 1

- (a [2)Ropho,(Rgg + Rag) +2Rpqfy g + 0
, | |

@/ Ry Asg + (Rp/2)Rp Agg + (Ry,/2)RpR3g-RyqR03

= A

24

= Ay

(

(A

A42

43

+ 2!3&:25 ASB)-/(A28 + AZQ)

+ 2R Rzg)/(Ayg + Ayg)

2

A

40

A

22

89
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B.3. Modified Mattai's eguation

Near the entrance, it can be assumed that in the core

region the Bernoulli's eguation holds good,

: aL :
: c _ 1 d . - derivati
i.e. Uc_ﬁg_ = 5 _E% and using Mattai's [2ﬂ erivation
for U,
dA
%8 . 24 . .
Ox PUg f24 —Tx (B.1)

The momentum balance eguation is:

T
: : -T2
oo . . 2 2y dp _d 2
2 [TTM T, + T 32] - (r2 - r1) 8% = Iz [ prfu rdf]
o 2 : f,
Shear force term (SF) Pressure force Change of momentum
term (PF) term (MF)

Now, from Mattai [21]

The Shear force term, (SF)

N
| —
1
—
E
LEY
H
—
3
~
E
N
H
N
[ I
]
N
1
|
=
-
+
=
N
| I

The Pressure force term (PF):

Substituting eqn. (B.1) and using Mattai derivation for

Pau g, F term i
T e pressure force term in the momentum balance equation
becomes,
dA ~ dB dB
2 2 2 24 2 2 2 1 2
pUS By (15 - 1) =g = Plg T3 (1 - a%) [ASB Ix t Pag dx]

3/2 d8,,

and since d51/dg =r-iy/®(81/82) —



~t

. 2 2 .2 . 2 y 3/2
.*. Pressure force term (PF) = pUO IS A24(1- )[: = (81/82)
a8,
JE‘38“]‘39] ar- (B.3)
Change of momentum term (MF):
T
2,2 ? dr = U2 2 A 2 n
S ol i u- rdr = DH— c ¥ 22 = Tp Noz { then from [21]
~
2 2 d 2 2
WF o= pUS T5 g Ao, (@TAny - Aps)
aut 2 2 2 v
G | P2e (9%Rgp - Apg)
2 2 d - d 2 4 m
= B0 (0F == Ay, mgp Rpg) +2A5,( 0TRyy - Rpg) a7 Aoy L
' i
dB dB., 1?'
a2 2 i 2 2 2 !
= 85,0 0R,0 Aoy =gy = Agq Aoz ) 2Rg( ety - Aoz) 3
. F"“;.
. . i.l“‘::
dB dB A
e ol o2 g
35 ot Pzg X S | |
T . 3/2 .
=R | Auofer (B4/85) - Ayqhyg + 20 0% Aypmhyg)
Y / ¥? / s
. Y (8,./8.) Ae. + A ‘] d8.,/dx
{ . e 38 39)f 9°2 | N
2 3/2 2
= A%, |- Yo (8,/8) Aughon = Paqhpz + 20 a%Agp= Ays)

3/2 ' ds'z
{" £ (8,/8,)  Azg + rq39}] —Ix



«'+ The change of momentum term,

3/2

2 2 2 |
= PG T, Ay ["Y“ (8,/85) Asohoo-h

3/2 dB.,
(8,/8,) Azg ¥ Azs}] T

Now dividing all the three terms by pU

B,-1 B, - 1 1
1). S5F = —EB—— {— ] + 2 g =

pUDrg A1 s
) 2 U - 8(1-&)2
Since —y— =
U r - REDh
o 2

~2) PF. H§3 = A24(1- uz)-{- v/ a (51/5

3/2
3) mF, dB,/dx = A,, [ - ya(B,/85)

v 3/2 '
{-— - (81/82) Agg + A

Then the momentum balance equation is

Shear force term + Pressure force term

g2
Aoo+2( aA, iRo2) ey
41723 @ App=fpz/q=t 0

“(B.4)

2 2
o T2 PAoys one gets

16(1-0)% §  By-1  By-i
..- + ,q

ReDh-

)3/2 A + A EEE
2 38 38 dx

L+2(a’A

AgqRost 22

Asohon- -A

, d82
39 dx

Rl
.

23)

= Change of momentum term

(B.5)

3

P



APPENDIX-C

FINITE-ODIFFERENCE TECHNIQUE

C.%t. General

93

A standard explicit finite-differénce technique requires

very small streamwise steps to satisfy the stability criterion.

The DuFort-Frankel methodllﬁj was found to be stable and was

used here. The standard explicit scheme was used as a starting

method for the DuFort-Frankel procedure which requiréé infor-

mation from the two previous streamwise stations.

The finite-differénce problem domain is usually established

by letting AX and AR be small increments of the coordinates

X and R and considering all the variables as existing on the

finite set of points X = iAX, R = jAR where i and j are integers.

The dependent variables are expanded in Taylor series.

The basiec variables are made non-dimensional by using the

7;6ilowihgutfén§é5rﬁé£ion:

12
X = x/ReDh, u = U/Uo’ P = p/3p Uo s
R = =/0, V = v.Re/U Re = D U /v,

O’

Introducing the above transformations in equatiaons (3.1)

anﬂ (3.2):

the continuity equation becomes:

3 (UR) a(vR) _ g
%" TR T

and the momentum equation becomes:

| 2
U 3U . 3P .13, aU 1 32U
Use+ V=5 =- %357+ meR5R) * e ax2

(C.1)

i 8
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Since the axial transport of momentum was assumed to be

negligible the momentum equation can be written as:

sU  BU _ . 3P . 1.3(s 23U
U?Y + Vs = - 2 gy ¢t ﬁgﬁ(ﬁ TR ) : (C.2)

C.2. Finite Difference Equations for the DuFort-Frankel Scheme

C.2.1. The Continuity Egquation

Taylor's expansion about half a grid in the r-direction
[
and one grid in the x-direction leads to:

AR

. ) .. 2
U(i+1, j+1) = U(i,j+5)+AX ux + = U +- 5 {{Aax) U,
AR 2 ) 3
+ AX R-er + (—5—) urr} + 0(A )7 (€.3)

U(i-1, j+1)

. oo AR N 2
U{i,T+3) - AXU  + = U +72{ (ax) U

- AXAR U+ (...g.ﬂ_)z urr}; 0(s>) ()

U(i+1,3) = U(i,J+%)é+ AX U - é% ur + % {(Ax)2 U,
- AXBR U . (48 )2 u__ 1+ o (c.5)

U(i-1,?) = U(i,T+3) - BX U - ERu_+ 4 {(ax)?° U,

"+ AXAR‘UX + (=

. -urr} + U(A3) A (C.8)



85

Subtracting equations (C.8) from (C.4) and (C.5) from (C.3),
and then adding the differences
U(i41,3+1)+U0(i+1)-U(i-1,3+1)=U(i=1,3)

(4o )

i,j+s 44X
Subtracting expansions for V as in equations (C.3) and (C.5)

v(i+t, j+1) - v(i+1, 3) (.8)
- C.
isj"'% - AR ' -

r bl

(55 )

Using approximations (C.7) and (C.8) in the continuity equation

(C,1), the finite difference equation becomes: - -

R(3) + R{j+1) UCi+1, 3+1) + U(i+1,3) - U(i-1,3+#1) - U(i-1,3)

2 ‘ LAY

R(3+1) U(i+1,3+1) - R(F) u(i+1, -3)
+ _

AR = 0 (c.9)

C.2,2. The Momentum Equation

Taylor's expansion of U about one grid in the r-direction

leads to:

1]

U(1,3+1) = U(5,5) + AR U_ + (LaR)2 u__ + 0(ad) (c.10)

U(i’j"T)

U(i,3) - AR U_ +-(4aR)% U_. +_U(A3) (C.11)

Subtracting egns. (C.11) from (C.10)

u{i, j+t) - Ui, j-1) :
(%%) 2 o + 0(a%) (C.12)

i3 © 2AR

+ 0(-/.\) (c.7)

I
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Similarly, expansion of U about one grid in the direction

yields:

U(i+1,3) - u(i-1,3)

(%% ) - + 0(a%) - (C.13)

i, - 20X

Taylor's expansion of U about half a grid spacing in the

r-direction yields:

U(i,+4) = U(1,3) + $8R U_ + $(38R)7 u__ + O (&%) (C.14)
U(i,3-) = U(i,3) - $8R U_ +5(48R)% U__ + O (a%) (C.15)
aU ’ .

(24 1 .o .. .
oR i,j = ﬁ{u(l’J"'Z) - U(ls,]'2)} = | ([3016)
Similarly,

.9 U A ol aU

' (Re= )} = e { (RES) - (R=% ) }

TBR TR 77y 5 AR OR"5 544 3R 75 5.4

oT,

{_i (RBH )’ - 3R R{3)+R(j+1) %% )

oR AR 7Ty 8 2 R, 54

R(j}+R(j-1) S U
(gﬁ)

2 i,j-2

} - (C,17)
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Using expansions similar to equations (C.14) and (C.15) one

may write:

(32U i u(i, j+1) - u({;j) . 0(s2) (c.18)
R ‘i,jq+% AR
(C.18)
U U(isj) - U(i)j'1)' a 2)
(gﬁ ) ] = + (A
Ly J=2 AR
Writing the following expansions for U:
bl
. . . . | 2 3 '
UCi+1, 3) = U4, 340X U +2(Ax)° U+ o(A”) : (C.19)
. , . . | 2 3 :
U(i-1,3) = U(i,j) - AX u, +3{ AX) U+ o(a~) (c.29)
Adding egns. (C.19) and (C.20):
. , . . . | 2 4
Ui, j) = 3 UG+1,3) + U(i-1, j) - z(aX)° U+ 0(a™) (c.21)

Assuming Uxx to be negligibly small compared to Urr’ and dsing

egns. (C.21) and (C.18) in egn. (C.17):

EL N

1,]

R(3)+R(j-1)

ZEﬁ

1

0.5 {U(i+1,j)+U(i=1,3)} - U(i,j-1)

|

é(j)+R(j+1) u(i,j+1)-0.5 {U(i+1,j)+u(i-1,j)}

2 AR

+0(a)  (cC.22)

2

AR
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Using equations (C.22), (C.13) and (C.12) in eguation (C.2)

U(itt,3)-U(i=1,35) Ui, 541)-U(L,3~1)
Ui, j) + v(i, i) +—— =.. 3 dP/dX
2AX JAR

. [.R(j)+R(j+1) Ui, +1)-0.5 {U(i+1,3)+U(i-1,3)}
+ .
R{j) AR

2 AR

B

R(j)+R(3-1) 0.5 {U(i+1,j)+u(i-1,j)}-u(i,j~1) -
- '] (C.23)
2 AR

C.3 Direct Expliecit Scheme

.The finite-difference Equafions for this scheme were used to
start the DufFort-Frankel method. These equations can be derived

by the standard method:
The continuity .equation is:

R(L)+R(3+1)  U(i+1, 341)+U(i+1,3)-U(1, j+1)-U(4L, -1)

2 20X

" R(F+1IU(E+T, 3+ ) - R(j) U(i+1,3)

AR

The momentum eguation is:

U(i+1,3)-U(i,3) u(i,3)-u(i,j-1)
u{i, i) + v(i,]) = - 3 dP/dX
AX AR : :
o R(j+1)+R(]) U(i,j+1) - U(i,3)
* RU3IER [
2 AR

R(j)+R(3-1) | u(i,j) - U(i,j-1)]

2 I AR
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APPENDIX-D

STABILITY ANALYSIS OF THE MOMENTUM EQUATION

The finite-difference solution should.ensure that:

i) the finite difference representation is consistent.

ii) due to the particular method of solution, round-eff
errors or errors from any source are not amplified

or allowed to grow in subseguent steps in the solution.

The first point is called the consistency condition [11]
which can be studied by expanding the depehdent variables in
Taylor's series expansions in a manner such that the difference
between the partial differenfial eguations and the finite
difference represéntation can be observed [11] . This difference
is known as truncation error of the eguations; and if it vanishes
in the limit as the mesh size is shrunk, the finite difference

representation is said te be consistent.

The second point is called the stability condition. In
dealing with the stability and conuergence,vthe ideas of wvon

Neumann [23] were used.

Let the error gromth in U be'§d and according to Numann

it was expressed in. the first harmonic by:

(D,1)

With the error, the velocities cahnged to:
U(Li,541)vU(i,3+1) + &6(i,j+1)
U(i,3-1)vU(i,j~1) - 8(i,3-1) _ (D+2)

U(i+1,3) v U(i+1,3) + 8(i+1,3)
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and

B1(R+ R) iB2X

(i, j+1) Ae e

I

: (D.3)
B, (R- R) iB2X

§{(i,j-1) Ae e

et cetra.

Substituting egns. (D.2) in eguation (C.23) and then substracting

egn. (2.23),

Ui, i) { 8(i+1,35) + 5(1—1,j)} + EiiLil.{§(i,j+1)+ §(i,3-19}

2L X 7hR
] AR §(i+1,3) - 6(i-1,3) o
TOE [.(1 + or(3) - . + 8,300
(S( 1".) _ 6(._1’.) .
-G - ?%%3)) { e - e, 6(i,j—1)}] (Dif)
B1AR

Substituting egn. (D.3) in egn. (D.4), using &= e

and rearranging,

2 4 AE + B, = O (0.5)
where
u(i, j)/ax
\ AD = .
v, i) o1
R (AR)2 2 R(3)OR
and v(i,j)/aR + 1/(ar)? - 1/{2R(j)AR}
=

U(i,3)/AR - 1/(8R)® - 1/12R(3)4R)

The roots of egn. (D.5) are:

£=-n/2+ Y (AO/2)2 - B, | (D.6)
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According to von Newmann the stability condition,

e < 1 - (D.7)

AD A0 2

- 5> + (z2)° - B, & 1 where Ay <0 _ (D.8)
Ho AD 2

- - ( -— ) - B, » -1 wuwhere A > 0 (D.8)

AO_Z RG
(En) - B, €1 + 5=
A, 2 Ag. o e
or, (== ) =By &1 + A+ (=)
or, { - A, - By ) £ 1 (D.10)

Using expressions OFHAD and Bo in egn.(D.10) and rearranging,

AR 2v{i,j) - 1/r(3)

X .
AX U(isj)

- 2vu(i,3) + 1/R(3)

u(i, )

Since U(i,j) is aluways positive,

ag . |- 2v(i,3) + 1/R(5)

> : (D.11)
X U(i,3)

The stability constraint given by the equation (D.11) determines

the grid spacing in the x and r directions.
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APPENDIX-E

UNCERTAINTY ANALYSIS

The uncertainty of the measurements of the pressure drop
is influenced by the variations of the ambient temperature and

pressure, the sp.gr. of the manometric liguid and the accuracy

" of the manometric readings.

E.1. Uncertainty of Measurement of Sp.Gr. of the Manometric Liquid

The sp.gr. of the manometric liguid was measured by the
using -the Archimedes -principle at 20°C. The sensitivity of the
balance scale was 0.0001 gm and the volume of the plumate was

Y

2 ml + 0,0001 ml,

. . Mass - m .
Since Qanlty D = w5 T
.30 _1 _0D
**3m. v o om
and 92 - & - .2
Sv vl - v

. a0 2 8D 2
.°. Uncertainty, wY-_{gﬁ w_ )< o+ (?? wu) }

where W and w ~are the uncertainties of mass and volume

measurements respectively, Then, after evaluating,
W -
L = 0.013%

E.2. Uncertainty of Pressure Drop Measurements

: Y
The non-dimensional pressure drop P = 2p . h WL

%Dug ma air

where h__ is the manometric reading in head of manometric liquid
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and y . and y,.. are.the densities of the manometric liquid

and air respectively.

-

p
at
But Yair = T Tat, where pat and Tat are the pressure and
temperature of the ambient air. - ;
Then, P = hma Yma R Tat/pat
Dif ferentiating,. )
R T
aP at
Lo = v = P/h
ahma ma Pat‘ ma
aP ' R T
=-h Coat .
Yna ma p T p/Yma
. at :
3P 3 v -
o1 hm;maR/pat = P/T¢
at
.a—-—-p = - : - 2 = -
apatrr.:whma Yma'R Tat/pat p/pat
.- U'm- taintve W = { (ap i 2 ('—uf'—aj )2 :
« « dncertain y'“’“‘wp'*“ <\ W ﬁi: .BYma.A Yma R
: ‘ ma ma. :
. I
. 2 - 2
v @F 0 07 s Gy w07
at at at  at
w W , w w il
Wp Pna 2 Ymai2 ., laty2 Pat 2 42
or, = = (( 227+ (=224 (=274 (=7
ma Yma at at
where Wy w ,'wT and Wh are the uncertainties of the
ma Yma at at

manometric reading, the sp.gr. of manometric liguid, the atmos-
pheric temperature and the étmosgheric pressure respectively.

The values for wp/P were computed and they did not exceed + 2.5%.
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APPENDIX F

COMPUTER PROGRAMME

Two computer nrogrammes, INMETH and FIMETH, written
in the FORTRAN-IV language, were developed based on the
Integral method and the Finite Difference method respectively,

Lists of the programmes along with the definition of the

variables used in the programmes are listed belouw.

F.1. Programme Documentation of INMETH

Variable Pefinition -
BB 82 for fully developed flouw
BBB B,| for fully -developed flow -
BT value of B, at which eagns. (3.12)
and (3.,13) should be patched
DPRE : AP
H : ABZ
2RES - . Pressure, . .
0 Radivs:ratio —. ..
RD1 R61
RDZ _ R52
SHEART . T /T
w W1fd
T
SHEARZ w2/Tw2
uu T
id

X Axial distance, X
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F.2 Programme Listing of INMETH

ru)r‘;\

THRMAETH AJ

BIMEN RS H;,lhfﬂl lHHi
Fﬂﬂiﬂ! \f10ﬁu) XX GO0
EED O, S (R, U=, E )
K] [URMAT{ &DH503)
READCE 432 UL,
N LAY IRRO Y,
(2 n(l»
FTERILRT Y,
13 lnhﬂul- ADTH R
po &eo =i, 2

CCRADTUS RATIO ="', 044,72

"u" 9%,
“SHE AR

H 0,016
B2 =1,00001
BO SO0 N=j , 2o00

[ I

Y YSRT et B DERIET (R Y GAMAS Yo § =D
[¢10F: 3

PpAR €
- c

™ Ba=iis iy

BOHNDARY LAYER THICKUESS Ti FHE

N W P I I ER S D R I Y SV R BB
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ey s

[ PR AT

AL

6

TerAl T H
F b TH
TR TH
T ¥
TN T
THMELTH
THIFTH
TRHETH
1H
T

INEFETH
IHMI\H

INHFIH
TRl TH
THMLTH
YRMFTH
THMETH
iNh!TH

M TH
THHETH
TRMETH

TN
Tkl 7 H
LR ME T
TRIME TH
TRt TH
NIRIERRE
Tidml 1
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THHETH
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THMETH
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THHE TH
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[EARER
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TLTNTY RGOTO B0
FTLYAONDE, DI, LERE
PR VAR PR Y A L I SR VAP R I S
EHEAEI DT BN, NI ', Ti4. )
AR G FY DTS VR I R AP AP 19 10 TN L I A T O B Ve
GOSN, RiALYY Y
(R BCED VA
STLE.8) GO Ta 3
BETA=AZ4024 701, Q- p ) ¥ D a s 20 -m23) -

T AN RS Bt B (T A2 A2 )

{3, GYRETA, M d
SY, P MIOMN GOk
R+
‘l:T/ﬂ A {

FaCTOR ! DA, PFNGY CORFC FACTOR DA77

L8 YR ARA R RTT L SHEN, SR A

ot al e RET A

LTn

GOoTn o

FUHEMAT O/, 408, NY 4 730
OobL LEASTOREOLNT)
CONT T

Tl 114
TAlm TH
THiE {14
THMLTH
T 11
LHEETH
THMETH
INMETH
THEIITH
Tl TH
TeAr T
TolAE TH
THAETH
THMETH
THEIMTH
TR TH
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THHETH
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TRMIETI
TRMETH
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T H

Ti4
TH
TH
T TH
THFFTH
THMETH
THMETH
THMETH
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THMYCTH
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TMHIETH
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THMETIH
TRMETH
THMFTH
TNEHETH
THMETH
Tk TH
TNMLETY
THIFITTH
THRETH
TR T
| Mt IH
1Hm T
Tidint 1
Tidie rid
TR
Titl
Tifid Tk
THOFT
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Programme Documentation of FIMETH

Variale

DPRES
DX
oy
RD

p

PRESFD =

SHEAR -

T1FD

T2FD

U
v
UAVE

UFD

Definitation

Constants of egn. (5.1)
(gp/dX)

Increment af X
Increment of R

Rs

Radius ratio _ .. ._

(dp/dX)
£d

T /T
W Yeg
T .
w1fd

T

W2y

Axial velocity, U -
Radial-—velocity, -\
y ;
o) :

(Uc/uo)fd
Axial distance,” X -

radial distence, R ...
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DGR
0037
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G043
GO44
Q045
Gda
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DATHA
DATH

DT,

DT A
DiaTé

WRITE
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Programme Listing of FIMETH

L(]MM(IT

4 FIMETH :I

viEeR) e 4

v’(.J,

W e YY) -
(AJFX!'AHH—}())H)

CCOSH R ARTHH (XS~
Fo, e, I/nmﬁi LIRAAT, 0.4
X,DXJM/O,OJ % :
nyt, A LOBOOTE & 08001, 0, 000010,
; LOEOET, Jawiﬁf

/B(J.‘L‘Lf\/ .

PLEFA AL IR O

'

e LG DO (PR Yian, B
(PSRRI A BT T IR I A o L B
FYEDLOG R

) ---(I-.Ile I-"FH!I P =2, 0uRDHETEDLOGIRIARS ) /D RN -Fi o[ -2 QD

11|I)

¥ .Ul;(I\D/i-U
SRS I tRD AR YDA CRDURD =R 5 -2 OsRDY R DL OG (RD /R YY)

2L ORED R R

DaRDAR2IFUFDALRDARD RN RT--2, 00 RDAEDaDLAGLRD /R2) )

FOZYUFED, UT, U0, TN, T2FD, RD

RHARE Y"iHD‘("(I"! i
DO2 JX=2M

T, IR =1 . 001

Vi, o .G

DO MK L3

Dk, i0=0.0

VIR, §)=0.6

LB DL G E ) 3 - DO Ol 3 ) /0 C g
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Gasa  BOI
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Ooas BOQ
GO&T  BH0
DO&E

(o

o @
1SNt}
Qanz

oXo k=g o]
DO

0§00

NES S-S 1 b BRI AN O .
VKX, MM e L0 .
WL T =1

Sanld DL eub T 0 0L CRD AT )
Qe e L Ol e i Bl D, CRDATRED
Poase, un . fnnh

RS

T0-d s

IRERE EE S (D RLISR I I
A0, LTy Clsde - [Pl =%, Gt s 06 (AR Y Y ATONS T # LD
L0 TO 800

HEi0, 10

G

I AP e D DO R
W TH: FORINLHHE, 1)

Col bl STRES QUYL U0, 1, 1arn a0, M, DY)
CALL STMSUNCEGUNT Y RN ey i, 400

Gl MISEDSORE DY, M, 10,V

FOUNT=1
ne 4 =11

KOUNT =K OUNT +1

WIS =K+

KYm=X DR/ 2,
CROUNTLGT . DY XXX
SN ARS S

23 /TANSOHUIFD

Y

TTECA, 104y MOUNT X, I
DS MA=D, M
R EI ATl

FExQLS/UCKE, MAY L CHFD, MA)
LR UK, M) s DX AU R, Ma sy

CY (M +7 UMAE) ) v (ERE
DEANCKE, M) /Y (M) 2

MAar-U KL, Maz))
FADY DY
SKESNIN D]

J & z

MWV =MV -1

V=Y OMV T )RV O MV ) /Y TRV

YAMNMIAY (MY D DY /4, G/ (MY ) /DX

Kzl (KEA MV U KPS MV D =R, MV - U GOF, MV )
VIKES BV =V i-Varv3

TEEVOKES MY LLTLOOLGIVIKES MV im0, 0

LAY MY -N) 4 6,7
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[

€ ainv

0108
ai29 16
£ 813
0137 99y
943

C
¢

20
C

21

UKD MV D MV LECRE L

114

CONT TR .
MK =M MY -
DO By

(R

Y OMVIB Y O MV AT UMY

FOHVAIAY (MY 2 ) RDY /4, 077 (MR /A ThX

CKE G, MY Y UK, MYy =L CKE, MV 3~ MV
VORETE MV = L 1 VO VIS
wﬁjrﬁt3,1w$)HUQ,MV3,Vﬂi,Vﬂ?,vﬂﬁ,VfHﬂi,MVR),V(KEi,ﬂV?),UtHPi,MUE),

TEOVONES , MY2)  GT. 8,00 VOKEd M
CONT TR

HRTTIECR, 103)

DO ATER R ETER

Y=Y LRNVI=T 1))/ 0.5

LI VO KW D)Y /0.6
W E,903> WORN Y LU KW VRIS VDY BIERAF  RY
Call, STRESCKQUNT, UL, 400, TFD, T2ZFD,KEY , M, DY)

CALl STHSUNCKOUNT , DY, M, MF4 B, R2,KET)

CONTTHLUE

KL =0T o

DOOfe MR, M

UCs, A=, MM
VT, MM =V IR, MM)
U3, MM Y= U O 0UNT, MM
(2, MM =Y OOUNT, MHD

IFCKOUNT VER.14S GO TO 20

TFOKOUNT . GTo44 CANDLUKOUNT LT L 29 0600 T0 32
TECKOUNT RG24 GO T0O 2

TEAKOUNT . CT 29 CANDLUKOUNT LT ASIE0 70 23
TF(EQURT.ER.IS)Y G0 T0 24 °
IF(HOUNT.GT .35 ANDLKOUNT. LT 450 &0 TO 25
TFCKOUNT (EQ. 45) GO T 26
TELAKOUNT L GT. 4%  AND L KOUNT LT,
TFCKQUNTLER. 250460 TO 28
IFCROUNT.GT. 2501 ANDLKOUNTLILT.2601) 0 T 2%
TFCKOUNT L EQL2404I6G0 TO 40

IFCEOUNT.GT.26010G0 TO 41 .
GO TO 19

DR={DX+DX1 /2.0

160 TO 27

7 DXX=DXY

GOOT0 4w
DX=DXA
= 1§
GO To %
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0i8a-

2189
01%0
[CRRR

0152
0193
04574
0995
0176
DieT
01%a
19y
Q20
QU

N

23

40

41

1%

12

DX (NXAADXI o0 0
DXX=DX2

GOTO Y

DR=DX3

DX X=DX2

GOTG 59
DY={DX2+NXAY 0
DXX=DX3

GO TH 8

DX=DXE

DX X=X

G 19

DX EDXEIEDYAY /00
DXY=DX4

GO T 49

DX=liX 4

DEX=DX4

GO TO 4%
DA=(DXA+DXE) /2,0
DX¥=DXS

GO TO 9

SINE
Gib TO 47

DX (DXFEDRED 2.0
DX¥=hXa

GO TA 39

DX=0X

BEX=DXA

DO 44 Te=n NE
KOLNTY=ICOLINT +1
TEml-g - :

RES (XD
ATLUPRESEDY PREFS=FRESFD

DOV i =2,

i SO, a1, D /2005DK

POY L, ¥ (T, Ja D =0T, LY /2. /DY
YOLLD Y Oy yan 0T VL -0 Sag (T, .00 )
YOIReY CLD s (A ST, -1 T, 5.0
=UDE-UDA) SYCN) /2 0/DY ALY

JOT, A0 /2. 0/D%4+5 . 0/DY/NY

el bYy, D)= Cclnd —URIUns) Auubha
e, 2) LT ury UCLTT,; .
TECUCITI, 2 KR UL UClT) 3 =1{T, X&)
CORTTNUE




-

-

cia

Cidl AVECH, PT L, NI Dy g e DR RS AT 460
RIS I SO} VEM

AT -4

VA VO, D o O Ay (o

ACARDGES D N I e R § DT I I TR V0 G I AR L D G 00 OV £ X I
VATIT,O0 =i =il O D)4y T DY /Y (RS /8.0 /DK

FEOVOTLE, g1 0,00 VOl Jn=0,9
TECYCID) -y i3, 14,14
CORTTHUE

ARy

VO, N NY CAURY /Y

IO I I T AT I . I VR b J I o I Y S T G I R b

DA VDO2CY AR Y CAZ DY RDY Y (U2 /8. 6/DX
Py BT 000NV OTTT 020, 0

CONTINUE
CONTTRUE

Wiy F, 01 XKOUNT, X, PRIFR
WRITECE, $0:)

DO 46 =1, MP

s, M) U N, M

U2, IMy=udTyT, dmd

VO, UMY =V ONE, LMD

V2, M) =NOTET, M)

TEOUNT= N

TF CICHIMT LR 36
TEOEOUNT L GT .Y TR FOXN--DATD
TFOKOUNTLGE . 3T ANDLKNUNT LT A7) IKOUNT=40xXN-&
LFOKOUMT . EQLAETY TROINT= 0%~ 4
TFCROUNT.GT .67 TKOUNT=20%N-%4
IF(KOUNT O LELTIKOUNTY GO T 2§%7%

WRTTECT, 191 )KDUNT, X, FRES, RMY, RMIU

WRTTE(R, 1602)

DO i KM=, HEi

UGRAF=LOTIY , KH) /0. 025
UDEMT=U 0, KM -UCT1T, KM)
RY=(Y(KM)-Y{i)) /0.5

WRITE (R, 103) YOUM) , UCITE  KMY , VITTT, KM, UGRAF ,RY , UDEVT
CaLL STRES(KOUNT, UT, U0, TIFD, T25D, TT1 .M, DY)

AL STHMSONCKOUNT, DY, M, MPF1 , 1Y ,R2, 1112

CALL VISCOS(RY, DY, M, ITT,v)

N7 +1

TF{ALET.A.004)50 TO 555
LOT F9F



=

F04  FORMAT O/, 20, FULLY DEY

S ORI D L RGO AR )
AR PO AT AN LONRDB DD A6 CRDARD)
SO RD D

3L 000 .

DO B0 -, M

YO

RY= (Y (TG K9 370,05

TECR-1DY34, 39,
LA, TOY = Ooibe- e a2 g =2 L OWED» RDADLOGORATNd D) ACONS Tl D

=R N2, DAL DG CRATE Y ACONN DR D
FORIR, UG, TCY L RY

. SOOIy e un, Ti8en, ¥2rn,
Call, STMSONCKOUNT, BY, M, M, R LR

i, M, DY)
SR

AL, /)
SR, CUAVAME 0¥, (Rl g 3 AL
ROTTO=", 014,75
SAIKCETATION= TR - 2,
RHS DEVTATTON (OFF UAVE=', 14,7, 3%, 'RMS
MAYT O/ 0%, YD 80X, CUAVAVE D 48X, T LT
LRI ) A CR2=RIY L 10X, T BEVD-U)

FORMAT C2X, 704X, Di4.7))
SR

[ND
SURROUTINE STRES CKOUNT ,UT,UD, TAFD, T2FN, T171, 1, DY)
TNPLICET RE

COMMON

N

05 THAT (7, 10X, " Y/DH
100 ! o L RADTUS
01 THTT

iy

]l

SiaLT,
LLbiaLy
EANAVE A 0X, TUGEAT,

R

iR

103

o, U =]
HEARS =04, 0¥ CTTL, 200111, 30/ 2.0DY/TilrD

SHENE

- A ol L, M) AR /DY SYEFD
TaLH

LA SUL
T, M) /10
DOIKOUNT, SHEART , ¥
200 FORMATO/ 22X, STATION=", 15, "5
L4077, " Tall PR DA
RETURN
END

, TALUA, Fald
=, 014.7,  SHEANR

AdUNEED MEDIORYITY PROFILE FOR RS /bF=",Di4a, 7,

o DiALT, T TALY s,



[

gLy SUBEOUTINE 4SGN(KHUHT,DY,H,HP1.H1n??,111)
! B TMPLTINLT REGLAG(A-H, 0-2)
) COMMON Yerpmy U 41, 205D

AN f Oy (DYDY RUCTTL, )
S| ni+4.0MY(K)$DYMU(TII,K)¥M"
2 0RY CDEDYRUCITT, J) %]

4, 0uY (DY RIFCTTE, K%l

LAY (Y aDY (I,

B1) h T4, OXY (KIRDYHUCTII, KD

L I AC IR 0]

iRy SEL0

iR Y/ R0

NT, T, AL, UAVE
TIDNT',IS,QX,'ﬁLFﬁ:',Dﬂda?,Px,‘HETﬁ:',DiA,?,?X,

0306
030L7

( :
LD - - _
SUNEOUTTHE  AVE (M, TIT, SUM, DY, 1, K2, KOURT, RS, RASU, R
-

0314
03153
~ 0316 103
L eaiv
LR
0319

; 2L 0Ny Oy UL, K
S=S+4,0xY (L ys0CTTT, L)
FEHDY /R0 (R2NRI - %)

fof

CiLO=-UAYEI X L O-1IAITY d
DEWRECSUMY A CKOUNT =45
AOARDNET RS HM S
AT C2%, "ETATTON= ", 15
=1, DAL T,BX, AL
LN

0, TCURLLAT TVE Ridy NE




.

o~

=

T VISCOYCRT, DY, M, T, V)

b, )

Py, 0, 20T
5LEaR) BV 160)

NN N RN BB A th et ]

JE SO Iy T L) AT DY

z U1/Y(!)ehu»

bh DR DIUE

IJVf A2 =Dll3
= =AY .

3, | S0, 0T, A DU L, DR, DIV, w1, 40

LUZDY YA X, DY OYDU/RY Y /Y X, TN SUAVEY S
15 FﬂhVﬁT(’x TOAN, DAY

0373 EHD
SEND FRTNT
wREETY

! "'i;fijr;&
5@0 5% N
\)

e At

10

AT (-4 )

DD, DRAVE

UMY
1,;4 LDV OLLD)
5 L2, 0DV KD
D‘:F("V( ")\T)"f"“') R R PAC G AP TR SO I S I, S o]
LN ET meE

45 FORMATC/BX,ST=' D14, 7,5, ' SAVE=", D14, 7)
25 WHATE /5K, 51 LLEs Dia“v,ﬁx,‘DDﬁVF“"Din*?p
5 FORMAT (/7 7% (iR 32 (- 43,3 0%, HZUAVE ", 14,

LAY L A0X, TDADY (D



	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138

