PREDICTION OF FINITE SPAN HYDROFOIL CHARACTERISTICS AT SHALLOW

 SUBMERGENCE USING IMAGE STABILIZING CRITERION.

A thesis submitted to the Department of Mechanical Engineering in Partial fulfilment, of the requirements for the degree of Master of Science in Mechanical Engineering.

February, 1989

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY,

RECOMMENDATION OF THE BOARD OF EXAMINERS

The Board of Examiners hereby recommends to the Department of Mechanical Engineering, BUET, Dhaka, acceptance of the thesis "PREDICTION OF FINITE SPAN HYDROFOIL CHARACTERISTICS AT SHALLOW SUBMERGENCES USING IMAGE STABILIZING CRITERION", Submitted by Debbrata paul, in partial fulfilment of the requirements for the degree of Master of Sceince in Mechanical Engineering.

February, 1989

CERTIFICATE OF RESEARCH

This is to certify that the work presented in thesis is an outcome of the investigation carried out by the author under the supervision of Dr. Md. Quamrul Islam, Department of Mechanical Engineering and Dr. Md. Refayet Ullah, Department of Naval Architecture and Marine Engineering, B.U.E.T., Dhaka.

Supervisor

Author

DECLARATION

This is to hereby declared that neither this thesis nor any part thereof has been submitted or is being concurrently submitted anywhere else for the award of any degree or diploma or for any publication.

Author

ACKNOWLEDGEMENT

With deep sincerity, the author expresses his profound indebtedness to Dr.Md.Quamrul Islam, Associate Professor , Mechanical Engineering Department and Dr.Md.Refayet Ullah,Assistant Professor, Naval Architecture and Marine Engineering Department, BUET,for their guidance, constant encouragement and invaluable suggestions in achieving every minute detail of this thesis.

The author is highly grateful to Professor Dipak Kanti Das, Professor Amalesh Chandra Mandal,Mechanical Engineering Department, BUET, for their suggestions and help. The author is also thankful to Dr. Abul Fazal Md. Saleh, Associate Professor, IFCDR, BUET, for his good advice.

The author is also indebted to Professor Mahiuddin Chowdhury, Head of the Naval Architecture and Marine Engineering Department, BUET, for providing with the microcomputer facilities of the department. Thanks are due to Mr. Abdur Rahim, Assistant Professor of the same department, BUET, for helping in microcomputer and wardstar operation.

ABSTRACT

The lift force generated by the hydrofoil elevates the craft above the water surface. So, for hydrofoil craft the prediction of foil characteristics is very important. As the foil moves beneath the water surface the free water surface is disturbed. Hence to predict the foil characteristics the free surface effect should be considered. To consider this free surface effect, it is assumed that there is a image of the hydrofoil at a distance equal to depth of submergence from the interface in the air. The total effect of body and image on the foil characteristics.is the actual characteristics of the foil.

The solution procedure involves lifting line theory and vortex lattice method. In lifting line theory the hydrofoil body is considered as a line along the span located at the quarter chord mean line. In vortex lattice method the hydrofoil body is divided into several discrete number of horseshoe vortices. A horseshoe vortex system consists of three. parts of which the bound vortex portion is lied on the lifting line and the other two are trailing vortices. to calculate the induced velocity at any point Biot-Savart law is used. For the calculation of circulation strength , the induced velocities are calculated at the body control points which are located at the three-quarter chord mean line: The lift, and drag coefficients are
calculated for the hydrofoil by considering the effect of body and image. Also the moment coefficient about the mid point of the mean camber line is calculated. For simplification of calculation, the initial free surface disturbance is assumed zero. The method of solution is based on the criterion of image stabilization hence free surface which is established using a iterative procedure. The lift, drage and moment coefficient for the hydrodoil are calculated at the final iteration. Also the free surface shape is calculated at this final stage. The existing prediction method is not an iterative one i.e., in that method the effect of free surface deflection is not considered when the foil characteristics is calculated. But the method developed is an iterative one to stabilize the free surface i.e., the effect of free surface is considered when the foil characteristics is calculated.

For the purpose of demonstration of different hydrofoil characteristics using method developed NACA 4412 and NACA 16-206 section profile data are used. NACA 4412 section profile is basically chosen for demonstration of performance at high aspect ratio i.e., equal to or above 5. Whereas NACA 16-206 section profile is basically chosen for demonstrtion of performance at low aspect ratio i.e., equal to or above $4 / 3$. NACA 4412 is a high lift profile compared with NACA 16-206 which is a low lift profile. For NACA 4412 section profile the comparison is made with available theoretical results.

CONTENTS

Page No.
RECOMMENDATION OF THE BOARD OF EXAMINERS i
CERTIFICA'IE OF RESEARCH ii
DECLARATION iii
ACKNOWLEDGEMENT iv.
ABSTRACT v
CONTENTS viii
NOTATIONS: xii
LIST OF FIGURES xiv
LIST OF TABLES xvii
CHAPTER 1 INTRODUCTION
1.0 Summary of the chapter1 :
1.1 General 2
1.2 Objectives of the present study 3.
1.3 Literature review 6
1.4 Adopted solution procedure 10
1.5 Scope of Application 13
CHAPTER 2 THEORY AND METHOD OF SOLUTION
2.0 Summary of the Chapter. 14
2.1 The Theory 14
2.2 Boundary condition 20

CHAPTER 3
3.0
3.1
3.2
3.3

CHAPTER 4

4.0	Summary of the Chapter	43
4.1	Calculation of circulation distribution	43
	on the hydrofoil surface.	

4.2 Velocity calculation 44
4.2.1 At the hydrofoil control point 44
4.2 .2 At the free surface 44

4.3 Calculation of lift, drag and moment	
	coefficients

4.4 Free surface deflection calculation. 48

CHAPTER 5 COMPUTATION METHOD
5.0 Summary of the chapter 50
5.1. Calculation method 51
5.2 Profile data used 52
5.3 Programme execution time 52

CHAPTER 6. RESULTS AND DISCUSSIONS
6.0. Summary of the chapter . 53
6.1 Presentation of calculated results 53
6.1.1. With NACA 4412 Profile data 53
6.1.2. With NACA 16-206 Profile data 65

CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS
$\begin{array}{lll}7.1 & \text { Conclusions } & 71 \\ 7.2 & \text { Recommendations } & 72\end{array}$

APPENDIX

Appendix : A Programilisting. $\quad 75$

B Hydrofoil profile data 82
C Hydrofoil profile section 84
D Typical programme execution time. 85

NOTATIONS

B	:	Breadth
b	:	Body
Cm, n	:	Influence coefficient
c	:	chord
C_{1}	:	Lift coefficient
$\mathrm{C}_{\text {Lec }}$:	Lift coefficient without free surface (i.e.,image)
$\mathrm{Cb}_{\text {D }}$:	Drag coefficient
C_{M}	:	Moment coefficient
dC_{L}	:	Lift coefficient of a strip
$\mathrm{dC}_{\text {D }}$:	Drag coefficient of a strip
dC.m	:	Moment coefficient of a strip
dSn	:	Width of a strip along span
D	:	Drag force
Fr	:	Froude number based on depth of submergence (V/Vgh)
	:	Froude number based on chord (V/Vgc)
f	:	Free surface
g	:	Acceleration due to gravity
h	:	Depth of submergence
i	:	Image
$\hat{1}$		
i	:	Unit vector in X -direction
$\hat{\jmath}$		
j	:	Unit vector in Y -direction
ко	:	Wave factor (g/V)
$\hat{\mathrm{k}}$:	Unit vector in Z direction
1	:	Lift per unit span

L	:	Total Lift force/Length
M	:	Moment of force
m	:	Number of control points
n	:	Number of strips
P	:	Pressure
r	:	Radius vector
S	:	Span
U_{∞}.	:	Free steam velocity
V	:	Total velocity
V_{x}	:	Velocity in X -direction
v_{y}	:	Velocity in Y-direction
V_{2}	:	Velocity in Z-direction
X1n, X 2 n	,	X -ordinates of bound vortex point
Xm	:	X -ordinate of control point
Y1n, Y 2 n	:	Y -ordinates of bound vortex point
Ym	:	Y -ordinate of control point
$\mathrm{Z1n}, \mathrm{Z} 2 \mathrm{n}$:	Z -ordinates of bound vortex point
Zm	:	Z-ordinate of control point
α	:	Angle of attack
Tn	:	Circulation of a strip varies along span
p	:	Density of water
ξ	:	Deflection of free water surface
中	:	Dihedral angle
δ	:	Angle of mean camber line at the control
Δ	:	Displacement
θ	:	Angle between two vectors

LIST OF FIGURES

Fig. 1.1 Definition sketch of a hydrofoil craft.

Fig. 1.2

Fig. 1. 3

Fig. 2.1

Fig. 2.2

Fig. 2.3

Fig. 3.1

Fig. 3.2

Nomenclature for calculating the velocity induced by a finite length vortex segment.

Sketch of a "typical" horseshoe vortex.

Fig. 3.3

Fig. 3.4

Fig. 3.5

Fig. 3.6

Fig. 4.1

Fig. 6.1

Fig. 6.2

Fig. 6.3

Sketch of the vector elements for the calculation of the induced velocities.

Showing a typical body control point where the induced velocity is calculated due to typical body and image bound vortex element.

Showing a typical free surface control point where the induced velocity is calculated due to typical body and image bound vortex element.

Body and image of a hydrofoil (consists of ten strips along span with undisturbed free. surface).

Hydrofoil and image with disturbed free surface.

Comparison of lift coefficient with $c / h=1$, for NACA 4412

Comparison of the ratio of lift coefficient with the free surface to with free surface for $\chi=5$, and NACA 4412 .

Comparison of the ratio of lift coefficient with the free surface to without free surface for $\chi=8$ and NACA 4412.

Fig.6.4 Variation of lift coefficient with the variation of Froude Number. (Fr*) , aspect ratio, $c=1, \quad \alpha=0$ and $\phi=0$ of NACA 4412

Fig.6.5 Chordwise variation of disturbed free surface height at the midspan of NACA $16-206$ with variation of aspect ratio

Fig. 6.6
Variation of ξ^{*} with the variation of aspect ratio of NACA 16-206 (at the midspan)

LIST OF TABLES

$\begin{aligned} & \text { Table - } 1.1 \quad \text { Comparison of Power absorbed by hydrofoil boat and } \\ & \text { displacement type ship. }\end{aligned}$

Table - 6.1 Lift drag and moment coefficient of NACA 4412 with $T=5, \quad \mathrm{C}=1, \quad \mathrm{~h}=1, \quad \mathrm{Fr} *=1, \quad \phi=0$.

Table - 6.2 Lift, drag and moment coefficient of NACA 4412 with aspect ratio of 5 , unit chord and zero angle of attack and dihedral.

Table - 6.3 Lift, drag and moment coefficient of NACA 4412 with aspect ratio 8 , unit chord and zero angle of attack.

Table - 6.4 Variation in lift coefficient ratio of NACA 4412 wịh variation of Froude number (Fr*) and dihedral angle for aspect ratio 8.

Table - 6.5 Ratio of lift coefficient of NACA 4412 with aspect ratio 8, with variation of Froude number (Fr*) and : zero angle of attack.

Table - 6.6
Comparison of lift, drag and momen't coefficient of NACA 4412 with the variation of depth of submergence and number of strips with zero angle of attack and dihedral for aspect ratio 5 .

Table - 6.7

Table-6.8 Variation of lift coefficient of NACA 16-206 with variation of aspect ratio and $c=1, h=1, \quad \alpha=0$ and $\mathrm{Fr}^{*}=4.6$.

Table - 6.9
Variation of circulation along span of NACA 16-206 with variation of aspect ratio.

Table - 6.10 Comparison of chordwise variation of the disturbed free surface height at the mid span of NACA 16-206 with variaiton of aspect ratio.

The basic definition of hydrofoil and hydrofoil boat are given in this chapter. A comparison between hydrofoil boat and displacement vessel is given to show the power variation at relatively higher speed. The objectives of the present study is to predict hydrofoil characteristics at shallow submergences with some basic assumptions. Literature review describes the work done on this topic. The solution procedure is based on lifting line theory and vortex lattice method. Scope of application shows the various possible usage of hydrofoil boat in this riverine country.

1.1 GENERAL :

Hydrofoil boats make use of the same principle involved in the flight of aircraft. Hydrofoils are attached to the bottom of the ship by means of struts, and when the ship moves through the water a lift force is generated just as occurs when an aeroplane wing moves through the air. By correct adjustment of the angle of incidence of the hydrofoil the lift can be made to be just equal to the weight of the ship, which is lifted clear of the water. The resistance is there by reduced, being then only equal to the drag of the hydrofoils. So high speed can be achieved with relatively low power.

In Table 1.1 [1] [2], a comparison of power absorbed by hydrofoil
boat and displacement type ship is provided.Figure 1.2 shows the comparative performance of high-speed craft. Hydrofoil boat has been used for service in sheltered waters but it is likely that considerable problems would exist in really rough water. The definition sketch of a hydrofoil boat is given in Figure 1.1 [3].

Lifting line theory and vortex lattice method are used to solve the problem assuming the hydrofoil with arbitrary profile and plan form, flow is incompressible, inviscid and irrotational with negligible pressure above the free surface, no surface tension, depth of fluid is infinite. Also the solution procedure is based on a iterative process satisfying simultaneously both the boundary condition that the flow is tangential at the body control point and image stabilizing criterion.

FIG. 1.1 DEFINITION SKETCH OF A HYDROFOIL CRAFT.

Fig. 1.2:- Comparative performance of high-speed craft.

Table - 1.1 : Comparison of power absorbed by hydrofoil boat and displacement type ship

1.2 OBJECTIVES OF THE PRESENT STUDY:

The objectives of the present study is to develop a proper hydrofoil characteristics prediction method which will take into consideration the variation of speed of flow, angle of attack, depth of submersence and free surface effect. The calculated characteristics are to be compared with the available theoretical results to validate the method developed for prediction .

1.3 LITERATURE REVIEW

The hydrofoil. concept has been around for many decades, but much of the early development involved experimental craft and the achievement of viable craft. Eventually viable craft were built to satisfy both commercial ferry and miljtary requirements. 'This development and' involvement continued to the present day, and future prospects look promising, In general, the European and Russian craft employ surface piercing foils, where as well as providing lift, the foils contribute to craft stability at differential immersion. This provides restoring moments, either in pitch or roll. The major American developments use fully submerged fojls, which require an automatic control system to maintain the craft hull at a given height above the water surface, $1 n g e n e r a l$, the surface piercing hydrofoils are older, more established designs, whereas the fully submerged foil designs are more recent. The former are used extensively, mainly as
passenger transports, and the latter have been used both as military and commercial craft. Fully submerged foil craft are generally more complex and costs are higher, and thus whilst performance is extremely good, these higher costs have lead to difficulties in their general adoption.
H. Lamb [5] indicates in 1913 result that the resistance of a circular cylinder (represented by a doublet) moving under a free surface reaches a peak value for a Froude number (based on submergence depth) of unity. This problem has been further studied by T.H. Have lock (1936) [6]; but, from a hydrofoil stand point, consideration of a vortex is of more importance. L.N. Sretensky (1938) [5] extended the analysis to include the effect of circulation and dropped the terms specifying the circular cylinder. When the submersion was greater than three times the cylinder radius, he found that the cylinder could be effectively replaced by a vortex. This work and that by others - N.E. Kotchin for arbitrary contours, and M.V. Keldysh and M.A. Lavrentiev (1935) (7] for a wing in Russia in. the mid 1930's has been summarized by A.N.Vladimirov (1937), together with indications of experimental verification.

The keldysh and Lavrentiev (1935) and Srentensky (1938) [5] approach replaces the flow indicated in Figure $1.3 a$ by the system indicated in Fig. $\quad 1.3 b$ - of a negatively sensed vortex at the foil location, its "biplane" image located at a distance h above the nominal free surface location, together with additional terms involving Froude
number effects. These latter terms are appropriately called the "gravity image" by A.G. Strandhagen and G.R. Seikel (1957). Joseph P. Geising and A.M.O. Smith (1967) [8] adopt this image formation procedure to solve the potential flow about two dimensional hydrofoils.

FIG. 1.3: FLOW DEPICTION ABOUT FOIL NEAR FREE SURFACE.

1.4. ADOPTED SOLUTION PROCEDURE

The study is based on lifting line theory and vortex lattice method. Lifting line theory representation is that the hydrofoil is replaced by a bound vortex line located at the quarter chord location (hydrodynamic center of the foil). In vortex lattice method the hydrofoil is divided into several trapezoidal panels (also called finite elements or lattices) along the span. The individual three sided horseshoe vortices which consist of bound vortex and trailing vortex are placed in that trapezoidal panels. The bound vortex coincides with the quarter chord line of the panel (or element). To calculate the foil characteristics, control points are located at the three-quarter chord. In rigorous theoretical analysis, the vortex lattice panels are located on the mean camber surface of the wing and, when the trailing vortices leave the wing, they follow a curved path. But in many engineering applications, suitable accuracy can be obtained using linearized theory in which straight line trailing vortices extend downstream to infinity. To evaluate the induced velocity components circulation strength is required. To compute the circulation strengths of the vortices, which represent the lifting flow field of the wing, it is used the boundary condition that the surface is a streamline. That is, the resultant flow is tangential to the wing at each and every control point (which is located at the midspan of the three-quarter chord line of each elemental panel).

In this solution procedure it is assumed that there will be an image of the hydrofoil at a distance of submergence (h) from the interface when the hydrofoil is submerged to depth h. To calculate the induced velocity and circulation strength this image effect would be considered. It is assumed that there is a bound vortex line at the image on the three-quarter chord line. The addition of this bound vortex line effect with the body bound vortex line gives the actual characteristics of the hydrofoil.

To simplify the calculation firstly it is assumed that the free water surface is undisturbed which acts as a reflector. Due to the hydrofoil motion the free water surface deflection is calculated by applying Bernoulli's equation. As the free water surface is disturbed, the formed image of the hydrofoil will be distorted. This stady is based on image stabilizing criterion. To stabilize the image, it is assumed that if the free water surface is stable, the formed image will be stable.

In the image stabilizing criterion, the free - water surface deflection at the quarter chord line is considered. If this deflection rate is very small (iess than 0.1 percent) it is assumed that the free water surface is stable which is the image stabilizing criterion. A schematic diagram of the solution procedure is given below.

```
Prediction of finite span hydrofoil characteristics using image stabilizing criterion.
```

The calculation procedure involves lifting line theory, vortex lattice method, Biot-Savart law and image stabilizing criterion.

The major assumptions are : (a) Considering the hydrofoil with arbitrary profile and plan form. (b) The flow is assumed to be incompressible, inviscid and irrotational with negligible pressure above the free surface. (c) Surface tension is ignored. (d) The depth of fluid is infinite. (e) 'o stabilize the image the percentage of free water surface deflection at the quarter chord line is less than 0.1 .

Results are :
Calculation of Speed of flow
lift force, Against variation of Angle of attack
drag force \& Depth of submergence
Moment of force

Comparison with the available theoretical results to validate the developed prediction method.

1.5 SCOPE OF APPLICATION :

Our country is a riverine one and also got a long coastline. To reach a distant place in a shorter possible time a more stable and speedy. vessel is required. But from economic point of view to design a speedy displacement type vessel is costly. Because more than 90 percent of total hull resistance of a submersible vessel is frictional resistance and wave making resistance. To reduce these resistances, the concept of hydrofoil boat (a boat with a hydrofoil) emerge. The body of the hydrofoil boat is above the water surface and only the hydrofoil is under the water surface. So, the resistance is thereby reduced, being then equal to the drag of the hydrofoil. The result is that high speed is possible without using unduly large power. hydrofoil boat may be used in the following fields.
(a) Coast guard craft
(b) Rescue craft
(c) Speedy passenger craft for better river communication .

2.0 SUMMARY OF THE CHAPTER

The developed theory to predict the foil characteristics is presented in this chapter. To solve the circulation matrix equations the boundary condition used is that the flow is tangential at threequarter chord line. Method of solution based on numerical computations using the theory developed for a specific hydrofoil is described with a flow chart.

2.1 THE THEORY

To attempt a general solution of the problem of determining a vortex system by representing a finite wing is very difficult. However, the simplified system of a horseshoe vortex is accurate enough only for certain special problems. It can be improved on the accuracy of the system by using a different representation first suggested by Lanchester, and subsequently fully analysed by Prandtl [9], in which the bound vorticity is assumed to lie on a straight line joining the quarter chord line of the, wing, known as the lifting line.

Lifting line theory provides a reasonable estimate of the lift, drag and the induced velocity for an unswept wing of relatively moderate or high aspect ratio in a subsonic stream. It is assumed that the resultant flow is to be steady, inviscid, irrotational, and incompressible. In this approach to solve the governing equation, the
continuous distribution of bound vorticity over the wing surface is approximated by a finite number of discrete horseshoe vortices of which each consists of three straight segments. The individual horseshoe vortices are placed in trapezoidal panels (also called finite elements or lattices). Hence, this procedure for obtaining a numerical, solution to the flow is termed the vortex lattice method (VLM).

The hydrodynamic centre is that point about which the section moment coefficient is independent of the angle of attack. The quarter chord location is significant since it is the theoretical hydrodynamic centre for incompressible flow about a three-dimensional hydrofoil. The bound vortex coincides with the quarter chord line of the panel (or ejement). In a rigorous theoretical analysis, the vortex lattice panels are located on the mean camber surface of the wing and, when the trailing vortices leave the wing, they follow a curved path. However, for many engineering applications, suitable accuracy can be obtained using lincarized theory in which straight line trailing vortices extend downstream to infinity. In the linearized approach the trailing vortices are aligned either parallel to the free stream or parallel to the vehicle axis.

Both orientations provide similar accuracy within the assumptions of linearized theory. In this study, it is assumed that the trailing vortices are parallel to the axis of the vehicle. Application of the boundary condition is that the flow is tangent to the wing surface at
the control point of each of the N panels provides a set of , simultaneous equations in the unknown. vortex circulation strengths. The control point of each panel is centered spanwise on the threequarter chord line midway between the trailing vortex legs.

An indication of why the three-quarter chord location is used as the control point may be seen by referring to Fig.2.1. A vortex filament whose circulation strength represents the lifting character of the section is placed at the quarter chord location. Using linearized theory it induces a velocity $V=\Gamma / 2 \pi r$, at a point C, the control point which is a distance r from the vortex filament. If the flow is to be parallel to the surface at the control point, the incidence of the surface relative to the free stream is given by

$$
\begin{equation*}
\alpha=\sin \alpha=V / U_{\infty}=\Gamma / 2 \pi \gamma U_{\infty} \tag{2.1}
\end{equation*}
$$

Now using the equaiton of lift per unit span.
$1=\frac{1}{2} \rho U_{\infty}^{2} C C_{L}=P U_{\infty} \Gamma$
using for thin foil $C_{L}=2 \pi \alpha$
$l=\frac{1}{2} \rho U_{\infty}^{2} \subset 2 \pi \alpha$

Combining the relations above.

$\stackrel{\sim}{\sim}$
FIG. 2.1: SKETCH OF A PLANER HYDROFOIL SECTION INDICATING LOCATION OF CONTROL POINT WHERE FLOW IS PARALLEL TO THE SURFACE
$\pi \rho U_{\infty}^{2} C \frac{\Gamma}{2 \pi r U_{\infty}}=\rho U_{\omega} T$
solving for $r, \quad r \quad c / 2$

Ihus it is found that the control point is at the three-quarter chord location by assuming that the bound vortex and control point are on a straight line.

To compute the circulation of a specific finite element the image effect would be considered. And this study is based on image stabilizing criterion. It is assumed that, there will be an image at a height of equal depth of the hydrfoil above the interface shown in Figure 2.2. Bound vortex line is assumed at the quarter chord line of the image. For a specific finite element the total (actual) lift is the summation of body bound vortices and image bound vortices effect. To simplify the calculation, first it is assumed that the free water surface is undisturbed. Applying Bernoulli's equation the height of the disturbed free water surface is calculated.

This solution procedure is based on the image stabilizing criterion. The image is stabilized by converging the free water surface deflection at quarter chord locaion. At the first time first iteration of deflection calculation procedure, it is assumed that the free water surface is undisturbed which acts as a reflector. As it is assumed that there will be an image at a distance h from the

FIG. 2.2 : hyorofoil and image with undisturbed free surface
interface when the hydrofoil is submerged at a depth h in water, the image is undistorted for this free water surface position. When the free water surface is deflected, the formed image also distorted. To stabilize the image different iterations are required. In this study it is assumed that, when the free water surface deflection at the quarter chord location. is less than 0.1 percent in compared to the preceeding iteration the formed image is stable, so the accuracy of this process. depends on the quarter chord location free water surface deflection.

2.2 BOUNDARY CONDITION

To compute the strengths of the vortices which represents the lifting flow field of the wing the boundary condition used is that the surface is a streamline. That is, the resultant flow is tangent to the wing at each and every control point which is located at the midspan of the three-quarter chord line of each elemental panel. If the flow is tangent to the wing, the component of the induced velocity normal to the wing at the control point balances the normal component of the free stream velocity. To evaluate the induced velocity components, the convention introduced is that the trailing vortices are parallel to the chord line, j.e. velocity in $x-$ direction)

Referring to Fig. (2.3)...... the tangency requirement yields the relation
$-V x \sin \delta \cos \left\langle p-V Y \cos \delta \sin p+V z \cos p \cos \delta+v_{\infty} \sin (\alpha-\delta) \cos \ldots=0 .\right.$.
where, $\mathcal{X}=$ Angle of attack
$\Phi=$ Dihedral angle
$\delta=$ Slope of the control point at mean camber line.

After rearrangement,it may be written in the form,
$\frac{1}{\sin (\alpha-\delta)}\left[V \times \sin \delta+v y \cos \delta \tan \phi \frac{y^{2}}{V} v z \cos \delta\right]=0_{\infty} \ldots \ldots(2 \cdot 4)$

Now for a specific wing moving at any angle with velocity U_{∞}, equation (2.4) gives N (number of strip) numebr linear equations.

In this study these linear equations are solved by Gauss Seidel [11] Matrix equation method.

FIG. 2.3 : NOMENCLATURE FOR THE TANGENCY REQUREMENT:
(a) NORMAL TO ELEMENT OF THE MEAN-CAMBER SURFACE: (b) SECTION AA : (c) SECTION BB.

2.3 METHOD OF SOLUTION

The method of solution is based on lifting line theory and vortex lattice method. The induced velocity expressions are based on BiotSavart law and involves circulation strengths of vortex elements and location of vortex elements and control points . Initially the circulation strengths are unknown and later found by solving particular equation using Gauss-Seidel [11] method.by knowing the circulation of a particular strip, the induced velocity can be calculated. For the free surface deflection calculation, the induced velocity at the free surface should be known by considering the body and image applying Bernoulli's equaiton on the free surface. To simplify the solution, first.it is assumed that the free water surface is undisturbed. When the hydrofoil moves the free water surface is disturbed. By finding this deflection rate in percentage the image stabilizing criterion is fixed which is equal to 0.1 percent. The overall method of solution is described below by a flow chart.

CHAPTER - 3

INDUCED VELOCITY DERIVATION

This chapter consists of detailed development procedure of the theory . A horseshoe vorter lattice consists of three parts, one is bound vortex and the other two are trailing vortices. The induced velocity by the bound vortex and the trailing vortex at the control point is calculated by using Biot-Sarart law. The total induced velocity at any control point is the summation of velocity induced by the body and image.

3.1. CALCULATLON OF THE INDUCED VELOCITY BY A FINITE LENGTU VORTEX SEGMENT.

To determine the flow about a vortex loop of arbitrary form, it is necessary to have a way of finding the velocities given to the fluid at various points by each of the elementary segments of which the loop is made up. Biot-Savart law relates the intensity of flow in the fluid close to a 'vorticity carrying' vortex tube to the strength of the vortex tube. In this approach the continuous distribution of bound vorticity over the wing surface is approximated by a finite number of discrete horseshoe vortices of which each consists of three straight segments to solve the governing equation.

The individual horseshoe vortices are placed in trapezoidal panels. A horseshoe vortices system consists of three segments. One segment is
bounded by two end points of the trapezoidal panel named bound vortex and the other two are trajling rortices. The relocity induced by a vortex filament of strength Γn and a length $\vec{d} /$ is given by the law of Biot-Savart [10] as

$$
\vec{d} \vec{v}=\ln (\overrightarrow{d l} \times \stackrel{\rightharpoonup}{r} \cdot) / 4 \pi \cdot \vec{r} \ldots \ldots \ldots .(3.1)
$$

From figure (3.1) the magnitude of the induced velocity is

```
dv = In Sin0 dl / 4 \pi r'.............(3.2)
```

Now to calculate the effect of each segment separately, let $A B$ be such a segment, with the velocity vector directed from A to B and let C be a point in space, whose normal distance from the line $A B$ is rp.

```
r = rp/sin 0, dl = rp cosec}\mp@subsup{}{}{2}0\mathrm{ d }0
```

Integrating between A and B to find the magnitude of the induced velocity,

$$
v=\Gamma_{n} / 4 \pi r_{p} \int_{\theta_{1}}^{\theta^{2}} \sin \theta d \theta=\Gamma_{n / 4 \pi r}\left(\cos \theta_{i}-\cos \theta_{2}\right) \ldots(3.3)
$$

Now, if the vortex filament extends to infinity in both directions, then $01=0$ and $02=\pi$.

Now, in this case, $V=\Gamma n / 2 r p \pi$

Let $\vec{r} 0, \vec{r} 1$ and $\vec{r} 2$ represent the vectors $A B, A C$ and $B C$ respectively.

Then $r p=\mid \stackrel{\rightharpoonup}{r} 1 \times \vec{r} 2 Y$ no.
$\operatorname{Cos} \theta 1=\overrightarrow{r o} \vec{r} 1 / \operatorname{ror}, \overrightarrow{\operatorname{ros}} \theta 2=\overrightarrow{\mathrm{ro}}, \overrightarrow{\mathrm{r}} 2 / \mathrm{ro} \mathrm{r} 2$
and consider unit vector is $\vec{r} 1 \times \vec{r} 2 /|\vec{r} 1 \times \vec{r} 2|$

Substituting these expressions into equation (3.3) and noting that the direction of the induced velocity is given by the unit vector $(\vec{r} 1 \times \vec{r} 2)$ / $\vec{r} 1 \times \vec{r} 21$ yields,
$\vec{V}=\{\ln /\{x\}\{(\vec{r} 1 \times \vec{r} 2) / \stackrel{\rightharpoonup}{r} 1 \times \vec{r} 21\}\{\overrightarrow{r o},(\vec{r} 1 / r 1-\vec{r} 2 / r 2)\} \ldots(3.4)$

This is the basic expression for the calculation of the induced velocity by the horse shoe vertices in the vortex lattice method.

3.2. VELOCITY INDUCED BY BOUND VORTEX PORTION OF HORSESHOE SYSTEM

Equation (3.4) is used to calculate the velocity that is induced at a general point in space (X, Y, Z) by the horseshoe vortex shown in Figure 3.2 . This horseshoe vortex may be assumed to represent that for a typical wing panel.Segment $A B$ represents the bound vortex portion of the horseshoe system and coincides with the quarter chord line of the panel element. For the bound vortex segment AB,
$\vec{r}_{0}=\overrightarrow{A B}=(X 2 n-X 1 n) \hat{i}+(Y 2 n-Y 1 n) \hat{j}+(Z 2 n Z 1 n) \hat{k}$ $\vec{r} 1=(X-X \ln) \hat{i}+(Y-Y 1 n) \hat{j}+(Z-Z 1 n) \hat{k}$.
$\stackrel{\rightharpoonup}{r} 2=(X-X 2 n) \hat{i}+(Y-Y 2 n) \hat{j}+(Z-Z 2 n) \hat{k}$
using equation (3.4) to calculate the velocity induced at some point $C(X, Y, Z)$ by the vortex filament $A B$ (shown in Figs. 3.2 and 3.3), it is seen that
$\vec{v}_{A B}=\Gamma_{n} / 4 \pi\{$ FaclAB\}(FaciAB\}$\ldots \ldots$. (3.5)
where, $\{\mathrm{Fac} \cdot 1 \mathrm{AB}\}=|\overrightarrow{\mathrm{r}} 1 \times \overrightarrow{\mathrm{r}} 2 \nmid /|\overrightarrow{\mathrm{r}} 1 \times \overrightarrow{\mathrm{r}} 2|$
and $\{\text { Fac } 2 \mathrm{AB}\}^{\circ}=\{(\overrightarrow{\mathrm{ro}} \cdot \overrightarrow{\mathrm{r}} 1 / \mathrm{r} 1)-(\overrightarrow{\mathrm{r}} \mathrm{O} \cdot \overrightarrow{\mathrm{r}} 2 / \mathrm{r} 2)\}$

FIG. 3.2: SKETCH OF A. "TYPICAL" hORSESHOE VORTEX.

The cross product of $\vec{r} 1$ and $\overrightarrow{\mathrm{r} 2}$ vector is
$\vec{r} 1 \times \vec{r} 2=\{(Y-Y 1 n)(Z-Z 2 n)-(Y-Y Z n)(Z-Z \ln)\} \hat{i}-(X-X 1 n)(Z-Z 2 n)-(X-$ $X 2 n)(Z-Z-1 n)\} \hat{j}+(X-X 1 n)(Y-Y 2 n)-(X-X 2 n)(Y-Y(n)\} \hat{k}]$

The magnitude of this cross product is
$\mid r 1 \quad \therefore r 2\}^{2}=\left[\{(Y-Y 1 n)(Z-Z 2 n)-(Y-Y 2 n)(Z-Z 1 n)\}^{2}+\{(X-X 1 n)(Z-Z 2 n)-(X-\right.$ $\left.X 2 n)(Z-Z 1 n)^{2}+((X-X 1 n)(Y-Y 2 n)-(X-X 2 n)(Y-Y 1 n)\}^{2}\right]$.

Thus. \{ Fac1AB\} becomes,
$\{\operatorname{Fac} 1 A B\}=\{1(Y-Y 1 n)(Z-Z 2 n)-(Y-Y 2 n)(Z-Z 1 n)] \hat{j}-[(X-X 1 n)(X-Z 2 n)$. $(X-X 2 n)(Z-Z 1 n)] \hat{j}+\{(X-X 1 n)(Y-Y 2 n)-(X-X 2 n)(Y-Y 1 n)\} \hat{k}\} /\{((Y-$ $\left.Y 1 n)(Z-Z 2 n)-(Y-Y 2 n)(Z-Z 1 n)]^{2}+(X-X 1 n)(Z-Z 2 n)-(X-X 2 n)(Z-Z 1 n)\right]^{2}+$ $\left.[(X-X 1 n)(Y-Y 2 n)-(X-X 2 n)(Y-Y 1 n)]^{2}\right\}$

Using the principle of dot product of vector \{ Fac 2AB\} becomes,
$\{$ Fac $2 A B\}=(1(X 2 n-X 1 n)(X-X 1 n)+(Y 2 n-Y 1 n)(Y-Y 1 n)+(Z 2 n-Z 1 n)(Z-$ $Z(n) 1 / \sqrt{\left[(X-X \ln)+(Y-Y(n)+(Z-Z 1 n)]^{2}\right.}-[(X 2 n-X 1 n)(X-X 2 n)+(Y 2 n-$ $Y(n)(Y-Y 2 n)+(Z 2 n-Z 1 n)(Z-Z 2 n) 1 / \sqrt{\left.(X-X 2 n)+(Y-Y 2 n)+Z-Z 2 n)]^{2}\right\}}$

Using the above relationships equation (3.5) can be written as,
$V A B=(\Gamma n / 4 X),\{F a c i A B\}\{F a c$ 2AB\}$\ldots(3.5)$
$=(\Gamma n / 4 \pi)\{((Y-Y 1 n)(Z-Z 2 n)-(Y-Y 2 n)(Z-Z 1 n)] \hat{i}-[(X-X 1 n)(Z-Z 2 n)-(X-$ $X 2 n)(Z-Z 1 n)] \hat{j}+[(X-X 1 n)(Y-Y 2 n)-(X-X 2 n)(Y-Y 1 n)] \hat{k}\} /\{[(Y-Y 1 n)(Z-Z 2 n)-$ $(Y-Y 2 n) \cdot(Z-Z 1 n)]^{2}+[(X-X 1 n)(Z-Z 2 n)-(X-X 2 n)(Z-Z 1 n)]^{2}+[(X-X 1 n)(Y$ $\left.\left.-Y 2 n)-(X-X 2 n)(Y-Y 1 n)]^{2}\right\}\right\} \quad\{(X 2 n-X 1 n)(X-X 1 n)+(Y 2 n-Y 1 n)(Y-$ $Y(n)+(Z 2 n-Z 1 n)(Z-Z 1 n)] / \sqrt{\left[(X-X 1 n)^{2}+(Y-Y 1 n)^{2}+(Z-Z 1 n)^{2}\right]}-$
$((X 2 n-X 1 n)(X-X 2 n)+(Y 2 n-Y 1 n)(Y-Y 2 n)+(Z 2 n-Z 1 n)$
$(Z-Z 2 n)\rfloor / \sqrt{\left.\left[(X-X 2 n)^{2}+(Y-Y 2 n)^{2}+(Z-Z 2 n)^{2}\right]\right\} \ldots . . .(3.6)}$

Let,

$$
\begin{aligned}
& C=[(Y-Y 1 n)(Z-Z 2 n)-(Y-Y 2 n)(Z-Z 1 n)] \\
& D=[(X-X 1 n)(Z-Z 2 n)-(X-X 2 n)(Z-Z 1 n)] \\
& E=[(X-X \ln)(Y-Y 2 n)-(X-X 2 n)(Y-Y 1 n)] \\
& F=(\cdot X 2 n-X 1 n)(X-X 1 n)+(Y 2 n-Y 1 n)(Y-Y 1 n) \\
& +(\dot{Z} 2 n-Z 1 n)(Z-Z 1 n) J \\
& \mathrm{G}=[(X 2 n-X 1 n)(X-X 2 n)+(Y 2 n-Y 1 n)(Y-Y 2 n)+ \\
& (Z 2 n-21 n)(Z-22 n) \\
& H=\sqrt{(X-X 1 n)^{2}+(Y-Y 1 n)^{2}+(Z-Z 1 n)^{2}} \\
& p=\sqrt{(X-X 2 n)^{2}+(Y-Y 2 n)^{2}+(Z-Z 2 n)^{2}}
\end{aligned}
$$

Thus equation (3.6) becomes with these substitutions $\left.\vec{V}_{A B}=\left(\Gamma_{n} / 4 \pi\right)(i \hat{i} \hat{i}-D \hat{j}+E \hat{K}] /\left(C^{2}+D^{2}+V^{2}\right)\right\}\{F / H-$ G/P J.........(3.7)

3.3 VELOCITY 1 NDUCED BY TRAILING VORTEX OF HORSESHOE SYSTEM

To calculate the velocity induced by the filament that extends from A to ∞, let us first calculate the velocity induced by the collinear, finite length filament that extends from A to D. Since $\overrightarrow{r o}$ is in the direction of the vorticity vector,

$$
\begin{aligned}
& \vec{r}_{0}=\overrightarrow{D A}=(X 1 n-X 3 n) \hat{i} \\
& \overrightarrow{\mathrm{r}} 1=(X-X 3 n) \hat{i}+(Y-Y 1 n) \hat{j}+(Z-Z 1 n) \hat{k} \\
& \vec{r} 2=(X-X 1 n) \hat{i}+(Y-Y 1 n) \hat{j}+(Z-Z 1 n) \hat{k}
\end{aligned}
$$

as shown in Fig.(3.4). Thus the induced velocity is
$\vec{V}_{A D}=\Gamma n / 4 \pi\{$ Fac 1 AD$\}\{$ Fac 2 AD$\}$
where,

$$
\begin{aligned}
\{\text { Fac } 1 A D\}= & (Z-Z \ln) \hat{j}+(Y \ln -Y) \hat{k} /\left((Z-Z 1 n)^{2}+(Y \ln -Y)^{2} \mid x(X 3 n-X 1 n)\right. \\
\{\text { Fac } 2 A D\}= & (X 3 n-X 1 n)\left((X 3 n-X) / \sqrt{\left.(X-X 3 n)^{2}+1 Y-Y 1 n\right)^{2}+(Z-Z 1 n)^{2}+}\right. \\
& (X-X 1 n) \sqrt{(X-X 1 n)^{2}+(Y-Y 1 n)^{2}+(X-Z 1 n)^{2}}
\end{aligned}
$$

Letting $X 3$ go to \propto, the first term of $\{F a c 2 A D\}$ goes to 1.0 . Therefore, the velocity induced by the vortex filament which extends from A to ∞ in a positive direction parallel to the X axis is given by

FIG. 3.3: SKETCH OF THE VECTOR ELEMENTS FOR THE CALCULATION OF THE INDUCED VELOCIties.

$$
\begin{aligned}
& V A \infty=(\Gamma n / 4 \pi)\left\{(Z-Z 1 n) \hat{j}+(Y 1 n-Y) \hat{k} /\left((Z-Z 1 n)^{2}+(Y 1 n-Y)^{2}\right)[1.0+\right. \\
& (X-X \ln) / \sqrt{\left.(X-X 1 n)^{2}+(Y-Y 1 n)^{2}+(Z-Z 1 n)^{2}\right] \ldots(3.8)}
\end{aligned}
$$

Similarly, the velocity induced by the vortex filament that extends from B to ∞ in a positive direction parallel to the X-axis is given by
 $\left(1.0+(X-X 2 n) / \sqrt{(X-X 2 n)^{2}+(Y-Y 2 n)^{2}+(Z-Z 2 n)^{2}}\right] \ldots$ (3.9).
3.4. EXPRESSIONS FOR TOTAI INDUCED VELOCITY AI THE CONTROL POINTS OF THE HYDROFOIL.

The total velocity induced at a particular control point (Km, Mm, Km) by the horseshoe vortex representing one of the surface element and its related image is
$V m, n=(V A B+V A+V B \quad$ body $+(V A B+V A+V B$)image...(3.10)

Using equation $(3.6),(3.8) \&(3.9)$ the total induced velocity may
be calculated using equation(3.10) as follows represented as follows

$$
\begin{aligned}
& \left.\overrightarrow{v i m}_{\mathrm{V}}^{\mathrm{n}}=(\Gamma \mathrm{n} / 4 \pi) \operatorname{COS} \hat{\mathrm{i}} / \mathrm{T}+\hat{\mathrm{j}}(\mathrm{CC}-\mathrm{DS} / \mathrm{T})+(\operatorname{LSS} / \mathrm{T}+\mathrm{DD}) \hat{\mathrm{k}}\right\} \\
& =(\Gamma n / 4 \pi),\{\hat{i} U+\hat{j} v+\hat{k} w\} \ldots(3.11)
\end{aligned}
$$

where,

$$
\begin{aligned}
& U=C S / T \\
& V=C C-D S / T \\
& W=E S / T+D D \\
& Q=(Z-Z 1 n)^{2}+(Y 1 n-Y)^{2} \\
& R=(Z-Z 2 n)^{2}+(Y 2 n-Y)^{2} \\
& S=F / H-G / P \\
& T
\end{aligned}=C^{2}+D^{2}+E^{2} .
$$

From equation (3.11) it is seen that the X, Y and Z component of induced velocity are the coefficients of \hat{i}, \hat{j} and \hat{k} respectively. Assuming these components are,

```
VX= = TnCS/4\piT
VY = \Gamman (CC - DS )/ & तT
VZ =' 
```

Yields equation (3.10).

$$
\vec{v}_{m, n}=\hat{i} V X+\hat{j} v Y+\hat{k} V Z \quad \ldots
$$

The total velocity induced at some point (X, Y, Z) by the horseshoe vortex representing one of the surface elements (ie., for nth panel) is the sum of the components given in equation (3.6), (3.8) and (3.9). Let the point (X, Y, Z) be the control point of the m th panel, which will be designated by the coordinates ($X m, Y m$, $Z m$). The velocity induced at the m th control point by the vortex representing the nth panel (both body and image) will be designated as Um, n. Examining equation $(3.6),(3.8)$ and (3.9) it is seen that -

$$
\begin{equation*}
\vec{V}_{m}, n=\cdot \vec{C} m, n b \Gamma n+\stackrel{\rightharpoonup}{C} m, n i \Gamma_{n} \tag{3.13}
\end{equation*}
$$

where the influence coefficient $C m, n b$ and $C m, n i$ depends on the geometry of the nth horseshoe vortex and its image distance from the control point of the moth panel. Since the governing equation is linear, the velocities induced $b y$ the $2 N$ vortices are added together to obtain an expression for the total induced velocity at the m th control point.

$$
\begin{equation*}
\stackrel{\rightharpoonup}{V}_{\mathrm{m}}=\left(\stackrel{\rightharpoonup}{\mathrm{C}} \mathrm{~m}^{\mathrm{n}} \mathrm{nb}+\overrightarrow{\mathrm{C}}_{\mathrm{m}}, \mathrm{ni}\right) \Gamma_{\mathrm{n}} \tag{3.14}
\end{equation*}
$$

FIG. 3.4 : SHOWING A TYPICAL BODY CONTROL POINT WHERE THE induced velocity is calculated due to typical bOOY AND MAGE BOUND VORTEX ELEMENT.

3.5 EXPRESSIONS FOR TOTAL INDUCED VELOCITY AT THE FREE SURFACE :

As this approach is based on image stabilizing criterion, it. is assumed that when the hydrofoil is at a depth h, there will be an image at a distance $2 h$ from the hydrofoil in the air which is shown in figure 3.4. Figure 3.5 shows a hydrofoil with body and free surface control point. Like on the hydrofoil it is assumed that there will be a bound vortex line on the image at the quarter chord mean line. But the control points line are remained on the body as before. To compute the total induced velocity at a point on the free surface say A, the effect of body bound vortices (point B) and image bound vortices (point 1) would be summed. It is clear that the coordinates of image bound vortices vary from the body only by the Z-coordinates. To ease the calculation, first it is assumed that the free surface is undisturbed. So the Z-coordinate of the image bound vortices is $2(h-$ Z1n).

Let the point (X, Y, Z) be a point at the free surface which will be designated by the coordinates (Xf, Yf, Zf). The velocity induced at the fth point of the free surface by the vortex representing the nth panel will be designated as vf, n. Examining equation (3.13), it can be seen that,

$$
\begin{equation*}
\vec{V}_{\mathrm{f}}^{\mathrm{f}} \mathrm{n}=\overrightarrow{\vec{C} f, n b \Gamma_{n}+\stackrel{\rightharpoonup}{C f}, n i \Gamma_{n}} \tag{3.15}
\end{equation*}
$$

FIG. 3.5: SHOWING A TYPICAL FREE SURFACE CONTROL POINT WHERE THE INDUCED VELOCITY IS CALCULATED DUE TO TYPICAL BODY and image bound voriex element.

FIG. 3.6 BODY AND IMAGE OF A HYDROFOIL (CONSISTS OF TEN STRIPS ALONG SPAN) WITH UNDISTURGED FREE SURFACE

Where the influence coefficient $\overrightarrow{\mathrm{C}} f, \stackrel{\rightharpoonup}{n} b$ and $\overrightarrow{\mathrm{C}} \mathrm{f}, \mathrm{ni}$ depend on the geometry of the nth horseshoe vortex and its image distance from the free surface control point. Since the governing equation is linear, the velocities induced by the $2 N$ vortices are added together to obtain an expression for the total induced velocity at the mth control point which is.

$$
\overrightarrow{v f}=\sum_{n=1}^{N} \operatorname{In}(\vec{C} f, n b+\vec{C} f, n i) \ldots \ldots \ldots(3.16) .
$$

The formed circulation matrix using Biot-Savart law and vortex lattice method. is solved to satisffy the necessary boundary conditions to find circulation distribution. The induced velocity is' then calculated at the hydrofoil control points. The induced velocity at free surface is also calculated to find the free surface deflection . The convergence of the free surface deflection rate is the image stabilizing criterion. Because the image will be stable, if the free surface is stable.After the convergence of the solution the calculation of different hydrofoil characteristics are carried out.

4.1. CALCULATION OF CIRCULATION DISTRIBUTJON ON THE HYDROFOIL SURFACE

To calculate the induced velocity on the hydrofoil surface, circulation value is required. Equation(3.12) and (3.13) give the relation of circulation and inducd velocity. The right hand side of equation (3.13) possesses unknown circulation. Equation (2.4) forms N number of equations containing N number unknown circulation . Using Gauss-Seidel [11] method these equations are solved to find circulation.
4.2.1 AT THE HYDROFOIL CONTROL POINI

At the hydrofoil control point the induced velocity can be written using equation (3.14) as

$$
\begin{aligned}
& \vec{v}_{\mathrm{V}}=\sum_{n=1}^{N} \operatorname{Tn}\left(\vec{C}_{\mathrm{C}}, n b+\overrightarrow{\mathrm{C}}_{\mathrm{m}}, n i\right) \quad \ldots \ldots \ldots(4.1) \\
& \text { where, } \\
& m \text { stands hydrofoil control point } \\
& \text { b stands body and } \\
& \text { i. stands image }
\end{aligned}
$$

4.2.2 AT THE FREE SURFACE

$$
\begin{aligned}
& \text { At any point of the free surface the induced velocity can be written } \\
& \text { using equation (3.16), as } \\
& \overrightarrow{v f}=\sum^{N} \operatorname{rn}(\stackrel{\rightharpoonup}{\mathrm{Cf}}, \mathrm{nb}+\overrightarrow{\mathrm{Cf}}, \mathrm{ni}) \\
& \mathrm{n}=1
\end{aligned}
$$

- where	f stands free surface
.	b stands body and
	$i \quad$ stands image.

LIFT COEFELCIENX

Using Kutta-Joukorski theorem to determine the lift force per unit span can be written as

$$
L=\int \Gamma_{n}\left(U_{\infty}+V_{x}\right) \ldots(4.3)
$$

Jo get total lift coefficient of that elemental section, equation (4.3) can be multiplied by the width of the section (USn) which is equal to the span length divided by the number of strips.

So the section lift coefficient

$$
d C_{L}=L \cdot \operatorname{dSn} /\left(A p U_{\infty}^{2}\right) 1 / 2 \ldots \ldots(4.4)
$$

where,
A is the area of the elemental section. with the help of equation (4.3), equation (4.4) can be written, as

$$
d C_{L}=\rho \Gamma n\left(U_{\infty}+V_{x}\right) d S_{n} / \rho A U_{\infty}^{2} \cdot 1 / 2
$$

by rearranging it can be written as,

$$
\begin{equation*}
d c_{L}=2 \operatorname{Tn}\left(U_{\infty}+V x\right) / C \cdot U_{\infty}^{2} \tag{4.5}
\end{equation*}
$$

45

The total inf coefficient of the hydrofoil is the arithmetic average of the summation of section lift coefficients.
i.e., $\quad q_{i}=\left(\sum_{n=1}^{N} \mathrm{dc}_{L}\right) 1 /$ Nstrip $\ldots \ldots .(4.6)$

DRAG COEFFICIENT :

The total drag force experienced by the hydrofoil is

$$
\begin{equation*}
\mathrm{D}=\int_{\mathrm{VZ}} \quad \Gamma_{\mathrm{n}} \mathrm{dSn} \tag{4.7}
\end{equation*}
$$

The section drag coefficient

$$
\begin{equation*}
\mathrm{dC}_{\mathrm{D}}=\mathrm{D} /\left(\rho_{\left.\mathrm{A} \mathrm{U}_{\infty}^{2} / 2\right)}\right. \tag{4.8}
\end{equation*}
$$

yields,

$$
\begin{aligned}
d C_{D} & ={ }_{2} P_{V z} \Gamma_{n d S n} / P \mathrm{dSn} \mathrm{c} \mathrm{u}_{\infty}^{2} \quad \ldots \ldots .(4.9) \\
d c_{D} & =2 \vee z \Gamma_{n} / C \cdot U_{\infty}^{2}
\end{aligned}
$$

Arithmetic average of the summation of section drag coefficient gives the total drag coefficient. Mathematically.
$C_{B}=1 / N \operatorname{strip}\left(\sum_{n=1}^{N}{d C_{D} \cdot n}\right)$
. (4.11)

MOMEN' COEFFICIENT:

Like lift and drag coefficient section moment coefficient is
$d_{j}=d C_{L}\left((X M Y-X 1 n) \cos \alpha-(Z 1 n-Z M Y) \sin \alpha+d_{B}((Z 1 n-Z M Y)\right.$ $x \cos \alpha+(X M Y-X 1 n) \sin \alpha$
where, $X M X$ is X coordinate and $Z M Y$ is z coordinate at the mid point of the mean foil section.

To get the total moment coefficient, the summation of section moment coefficient is to be divided by the number of strips.
i.e., $C_{M}^{\prime}=(1 / N \operatorname{strip})\left(\sum_{n=1}^{N} \mathrm{dC}_{M}\right) \quad \ldots . .(4.13)$
4.4 FREE SURFACE DEFLECTION CALCULATION :

The formed image with the hydrofoil and disturbed surface are shown in the Fig. 4.1. Applying Bernoulli's equation for steady flow on the surface $Z=h$, assuming is deflection of the disturbed surface.

$$
\frac{P_{\infty}}{\rho}+\left[\left(v_{\infty}+v x_{s}\right)^{2}+v^{2} y_{s}+v^{2} z_{s}\right]+g(h+\xi)=\frac{P_{\infty}}{\rho}+\frac{v_{\infty}^{2}}{2}+g \cdot h \cdots \cdot \cdot(4 \cdot h)
$$

After rearrangement, to find it may be written as,

$$
\varphi_{\rho}=-\left[u_{\alpha} v x_{s}+\frac{1}{2}\left(v^{2} x_{s}+v^{2} y_{s}+v^{2} z_{s}\right)\right] / g \cdots(4 \cdot 15)
$$

FIG. 4.1: HYOROFOIL AND IMAGE WITH DISTURBED FREE SURFACE.
最

CHAPTER-5

COMPUTATION METHOD

5.0 SUMMARX OF THE CHAPTER

This chapter describes the calculation procedure using the theory developed and computer programming. Two section profiles are used for calculation given in Appendix [B] and [C]. The calculation procedure is shown by computer programming flow chart. The required CPU time for various runs are given in Appendix [D].

5.1 CALCULATION METHOD

The. flow chart of computer programing is shown in the next page. The Computer programme listing is provided in Appendix [A].

Start

t
Read chord, span, no. of strips, coordinates of bound vortex and control points, velocity, angles (flow, dihedral and at the control point of mean camber line) and no. of maximum iterations allowed.

Established free surface shape with zero free surface deflection(Yo, Calculate induced velocity in terms of unknown circulations at the control points of the hydrofoil, considering the effect of body and image to form a ($N x N$) matrix equation

Solve the (NXN) matrix equation to calculate circulation

Calculate induced velocity

Calculate lift drag and moment coefficient

Computer programming flow chart.

$$
5.2
$$

The acceptance of any developed theory lies with how it compares with available theoretical and experimental predictions. As some theoretical results related to NACA 4412 and NACA 16-206 [12] profile are available, these section profiles are chosen for present investigation. The related section profiles with offset data are given in Appendix $[B]$ and $[C]$.

5.3. PROGRAMME EXECUTION TIME

The calculation using present method developed is based on computer programming and the idea about the total programme execution time is required. For the present programme the execution time varies and depends on the number of iterations necessary to have the result. In Appendix [D] the virtual and total CPU time required for the programme execution is given for different number of iterations.

I'o validate the theory developed the obtained results using theory developed should be compared with different available results. For comparisons the available theoretical results and obtained results for NACA 4412 are given in Table 6.1 to 6.6 \& Figure 6.3 to 6.5. The results of NACA $16-206$ are given in Table 6.7 to 6. 10 .

6.1 PRESENTATION OF CALCULATED RESULTS

6.1.1 WLIH NACA 4412 PROFILE DATA

I'he comparisons of different hydrofoil characteristics calculated using existing theory and theory developed for NACA 4412 section profile are qiven in jable 0.1 to 6.f. The comparison in graphical form are shown in Figure 6.3 to 6.5 . In Fig. 6.3 it is seen that the existing theoretica] results [Ref. 13] are for infinite aspect ratio (i.e., 2-bimensional). But the results of theory developed are for finite aspect ratio (i.e. 3-1)imensional). From this Figure it is seen that, lift coeficient increases with the increment of aspect ratio. So, the variation of lift coefficient between the existing theory and the theory developed may be acceptable.

Figure 6.2 and 6.3 show the comparison in ratio of lift coefficient (with free surface to without free surface), with variation in aspect ratio and Froude number (Fr*). From Fig 6.2 for aspect ratio five it is seen that as the Froude No. (Fr.*) increases, the variation between the two theories decreases and at Froude No. $(\mathrm{Fr} *)=2.236$, the two theories compares very close. From Figure 6.3 for aspect ratio eight , it is seen that as the Froude No. (Fr*) increases the variaion between the two theories decreases and at Froude No. (Fr.*) $=2$, the two theories again compares very close.

Figure 6.4 shows the variation of lift coefficient with the variation of Froude Number (Fr*) From this curve it is seen that abrupt variation occurs between the range of Froude Number (Fr*) one and two . The change of lift coefficient within Froude Number. (Fr*) one is very small. The same Figure shows the variation with aspect ratio eight. The pattern of the two curres is similar.But for aspect ratio eight the variation of lift coefficient within Froude Number (Fr*) one is relatively large than that of aspect ratio five.

Table 6.1 : Lift, drag and moment coefficient of NACA 4412 with

$$
\lambda=5, \quad \mathrm{C}=1, \quad \mathrm{~h}=1, \quad \mathrm{Fr} *=1, \quad \phi=0
$$

| with $\alpha=0$ | 0.33562 | -0.0303236 | 0.835254 |
| :--- | :---: | :---: | :---: | :---: |
| without | 0.3785 | \cdots | |

with	$\alpha=5$	0.645765	-0.115881	0.159066
wi thout		0.739268	-0.131499	0.182118
with	$\alpha=10$	0.947029	-0.254097	0.223975
without		1.09378	-0.28837	0.25888

```
l'able - 6.2. : Lift,drag and moment coefficient of NACA 4412
                                    with aspect ratio 5 , unit chord
                                    and zero angle of attack and dihedral
```

Image	Flow.	Froude	1 fft	Drag	Moment
condition	Condition	number (Fr)	coeffici.-	coeffici-	coefficient
			ent	ent	.
			C_{L}	C_{0}	C_{M}
with	, $\mathrm{h}=20$	0.5	0.378264	-0.0343873	0.0947191
	$h=5$	1	0.374828	-0.0340750	0.0938586
with	$h=1.25$	2	0.344173	-0.312882	0.0861824
	$\mathrm{h}=1$	2.236	0.333537	-0.0303212	0.0835191
without			0.3785	-0.0344088	0.0947481

$$
0.3785 \quad-0.0344088 \quad 0.0947481
$$

Table - 6.3: Lift, drag and moment coefficient of NACA 4412 with aspect ratio 8, unit chord and zero angle of attack.

Image	Flow	Froude	Lift	Drag	Moment
Condition	Condition	Number	coeffi-	coefficient	coefficient
	$\phi=0$	0.5	0.437083	-0.039.7344	0.109489

Without \qquad
$\Phi=30$
$0.437077 \cdot-0.0397338 \quad 0.109444$

$\phi=0$	0.436585	-0.0397892	0.109321
$h=20 \quad \ldots$			
	0.436579	-0.0396886	0.109321

$\phi=0 \quad 0.430207 \quad-0.0391079 \quad 0.107722$ $h=5 \ldots \ldots \ldots$.... 1
with

$$
\varphi=30
$$

$\begin{array}{lll}0.430191 & -0.039108 & 0.10772\end{array}$
\qquad
\square
$\phi=0$
2
$0.392056-0.0356411$
0.0981708
$11=1.25$ \qquad

$$
\phi=30
$$

$0.391715-0.0356101 \quad 0.0980853$
$-\quad$.

$$
\varphi=0 \quad 2.236 \quad 0.380201 \quad-0.0345209 \quad 0.0952024
$$

$h=1.0$ \qquad
$\phi=30$
$0.379733-0.0345208$
0.0950851

Table - 6.1 : Variation in lift coefficient ratio of NACA 4412 with variation of Froude number (Fr*) and dihedral angle for aspect ratio 8.

Table -f. 5 : Ratio of lift cooficiono of NACA dil2 with aspect ratio 8 with the variation of Froude number (Fr*) and zero angle of attack.

* 0 stands for dihedral $=0$ 30 stands for dihedral $=30$

Table - 6.6 : Comparison of lift, drag and moment coefficient of NACA 4412 with the variation of depth of submergence and numebr of strips with zero angle of attack and dihedral for aspect ratio 5.

Depth.of	Number of	Froude No.	Lift	Drag	Moment
submer-	strip	(Fr*)	coefficient	coefficient	coeffi-
gences			CL	CD	cient CM
	4		0.355288	-0.0322986	0.088965
1.0	8		0.337859	-0.0307142	0.0846015
	10		0.333537	-0.0303212	0.0835191
	12		0.330525	-0.0300477	0.0827966
	4	,	0.400992	-0.0364535	0.100410
	8		0.37993	-0.0345389	0.0951363
5	10		0.374828	-0.0340750	0.0938586
	12		0.37123	-0.033748	0.0929576

FIG. 6.2 : COMPARISON OF THE RATIO OF LIFT COEFFICIENT WITH the free surface to without free surface for $\lambda=5$ AND NACA 4412 .

FIG. 6.3 : COMPARISON OF THE RATIO OF LIFT COEFFICIENT WITH the free surface to without free surface for $\lambda=8$ AND NACA 4412 .

6.1.2.

The different hydrofoil characteristics calculated using NACA 16-206 section profile are given in Table 6.7 to 6.10 . Table 6.7 shows the variation of lift, drag and moment coefficient with aspect ratio. It is seen that as the aspect ratio increases the lift coefficient increases and if the aspect ratio increases six times, the lift coefficient increases near about two d half times. Table 6.8 shows the ratio of lift coefficient (with free surface to without free surface. From this table it is seen that as the aspect ratio increases six times, the ratio decreases near about twelve percent. This is because the rate of increment of lift coefficient. without free surface is more than that of with free surface with the increment of aspect ratio. Table 6.9 shows the spanwise distribution of circulation with the variation of aspect ratio. From this table it can be seen that the circulation is maximum at the mid span and minimum at the end span. and the variation is smooth. The same pattern follows for all types of aspect ratio. The spanwise variation in magnitude of circulation occurs with variation in aspect ratio and the increase in circulation occurs due to increase in aspect ratio. Table 6.10 shows the chordwise variation in distribution of free surface height at the midspan. Figure 5.6 shows the graphical form of Table 6.10 for different aspect ratios. For convinence of plotting Table 6.10 with non-dimensional form is given in Figure 5.7

	of NACA and $C=$	$206 \text { with var }$ $\mathrm{h}=1, \quad \alpha=$	ation of aspe 0 and $\mathrm{Fr}^{*}=4.6$	ct ratio
Image	Aspect	Lift	Drag	Moment
condition	ratio	Coefficient	Coefficient	Coefficient
without.	1.3333	0.0441226	-0.000990256	0.0110328
	5	0.0935867	-0.0021004	0.0234013
	8	0.10812	-0.00242658	0.0270352
With	1.3333	0.0426558	-0.000957338	0.010666
	5	0.0838583	-0.00188206	0.0209687
	8	0.096029	-0.00215522	0.024012

Table-6.8 : Variation of lift Coefficient of NACA 16-206 with variation of aspect ratio and $C=1$, $\mathrm{h}=1, \quad \alpha=0$, and Fr* $=4.6$

Ratio of lift coefficient
Aspect ratio (λ)
1.3333
$C_{1} C_{2 \infty}$
.9667562
.8960493
.8881705

FIG 6.5 CHORDWISE VARIATION OF OHSTURBED FREE SURFACE HEIGHT AT THE MIDSPAN OF NACA $16-206$ WIIH VARIATION OF ASPECT RATIO
$\xi^{*}=\frac{\Pi U_{x}}{K_{0}} \cdot \frac{1}{r_{m s}} \cdot \frac{1}{s}$
($\mathrm{r} \mathrm{ms}=\dot{r}$ at midspan)

$$
\begin{array}{ll}
\circ & \lambda=1.33 \\
\square & \lambda=5.00 \\
\Delta & \lambda=8.00
\end{array}
$$

FIG. 6.6 VARIATION OF ξ^{*} WITH THE VARIATION OF ASPECT RATIO OF NACA 16-206 (AT THE MIDSPAN)

CHAPTER-7

\%. 1 CONCLUSIONS

The present method developed the computational procedure includes use of Biot-Savart Law for the calculation of induced velocity, vortex lattice method is used to approximate the hydrofoil and image stabilizing criterion is used for the convergence of the solution. Image stabilizing criterion also stabilized the free water surface. In vortex lattice method the number of strips into which the hydrofil to be divided bears some importance in the accuracy of the predicted result. In the present calculation the number of strips are taken as ten for all calculations and all the strips are of equal width. If the numebr of strips are relatively small, error arises in predicted hydrofoil characteristics and usually predicts less. Again due to end effect the given convergence criterion does not satisfy for more number of strips. For the difficulty arises in satisfying this convergence criterion many existing methods use the first solution without performing any convergence test.

The method developed is used to predict differnt characteristics of hydrofoils with variation in geometry and operation. As the theoretical results of NACA 4412 are available, so this section profile is used for comparison with different aspect ratio, such as five and eight. The comparison gives good results. Another section profile such as NACA. $16-206$ is used for prediction of different characteristics with different aspect ratio such as four by three,
five and eight. In one case the later section profile is used for a relatively small aspect ratio such as $1 / 3$. This is done to observe the foil characteristics of nearly squared shape.

The developed computer programme has some limitations. The main drawback is in satisfying the given convergence criterion. The given convergence criterion does not satisfy for very high froude number (Fr*) because in very high froude number (Fr*) the depth of submergence is comparatively very $l o w$ and the disturbed free surface height is relatively large.
3. 2 [ECOMMENDATIONS

Followings are the recommendations for future work regarding the prediction of hydrofoil characteristics.

The detailed flow field near the hydrofoil can be predicted with proper extension of the calculation. The method developed can be extended for exact lifting surface and lifting body solution with proper modifications.

REFERENCES

1. Brian Russell,'Hydrofoil', Small ships, Chris wilbur, January/ February, 1983.
2. Hatch G.N. 'Creative Naval Architecture', K.D. Jroup, 1971 .
3. 'Ihomas C. Gillmer \& Bruce Johnson, 'Introduction to Naval Architecture,' E.\& F.N. spon Ltd., 1982.
4. F.H.Todd,'chapter V1I- Resistance and Propulsion', Principles of Naval Architecture, John. P. Comstrck, Society of Naval Architecture and Marine Engineers, Newrork, 1967.
5. Robertson, J.M.'Hydrodynamics in theory and application', 1965
6. Solvesen, N., 'On Higher-order theory for submerg'ed two-dimensioal bodies, Journal of Fluid Mechanics, vol. 38, No. 2, 1969.
7. Daniel K. ai, 'The detailed flow field near a hydrofoil of finite span at shallow submergences", Topics in ocean Engineering, charles J. Bretschneider, Ciulf rublishing Company, 1969.
8. Joseph P. Geising and A.M.O. Smith, 'Potential flow about two dimensional hydrofoils', Journal of Fluid Mechanics, Vol. 28, NO. 1, 1967.
9. Clancy, L.J., 'Aerodynamics', Sir Isaac Pitman and Sons Ltd. (Great Britan), 1975 .
10. John J. Bertin \& Michael . Smith, 'Aerodynamics for Engineers ’, Prentice Hall Inc. U.S.A. 1979.
11. James B. Scarborough, 'Numerical Mathematical Analysis', fth edition, Oxford ard lB Publishing Co. Ltd., 1966.
12. Ira H. Abbott \& Albert E.Von Doenhoff,' Theory of wing sections', Dover publications, Inc, New York, 1959.
13. Tefsuo Nishiyama, 'study on submerged Hydrofoils', 60th Anniversary series, The society of Naval Architects of Japan, Volume 2, 1972.
XBC, Y UC, ZBC ARE THE CD-DPOINATES GF BDOY EDUTROL POINTS

FIRडT CURill
X $2, Y Z, Z \angle$ ARI: TIE CJ-MPDINATES OF OHUND VGRTEX POINTS AT THE
SECOND CJR'I?

NUHUER JF STRIP UILL Br :HAXI:US: FIFTEEN(15) FOR THIS READY

FVELUC REPPLSEITS THE SPRED OF RLOD
FAVZLE PEPRESEVTS THE AIGLE OF ATTACK

CAVGLE AEPRESENTS THE SLIPE TF MENY CAMOFP I.IHR AT CONTROL POINT,

DI促NSIU：X！3こ（15），Y！3C（15），236（15）．
 ； $\mathrm{X}(16), Y(16), i(14), \mathrm{X} 1(16), Y(16), 21(15)$.

：

UU 52 J

WRITE（子，13）J，天！
LIF 00560°
LIF0057．

LIF00580
COMTINUま
LIFOO590

LIF00600 篍

I＿IFOO610

C NRITE RiGULTS I！U！IT ，
WRITE（3，こ！）
PI＝4．0\％A！Aン（1．：）
NらF＝NうTマI「！ 1
LIFO0620
LIF00630，

FREE SURTACL JHA：ITJTTALTRATTON！

DU $8 \cdot 14=1$ ，次
0J $64 \quad N=1.5$
$J=N-1$
$J J=1-1$
ZCI $(M, V)=0 .!$
$X F(: 1, N)=0.25 \div C: 1) P!\div F(\square \wedge T(J)$

69 COVTINUE
LIF00640
LIF00650 盢
LIFOO660荧
LIF00670，然
LIF00680
LIF00690
LIF00700
LIF 00710 箱
LIFOO720，
LIF00730
LIF00740，
$"$ LIF00750
，LIF00760
LIF007．70
LIFOO780

68 CUNTI NUL

SLIFO0790
LIF．00800
－LIF008 10
LI F $0,0820^{\circ}$
LIF00830
LT F0， 8.40%
LI F0， 850.

 IHE IMAび
－LI FOO 07,0
LIFOO880，
LIFOO 890
LI F00900
UU． $55 \quad I L=1,41$ Tr？
WRITE（Y，3e）1／

CALCULATIUN JF IMOUCFD VFLOCITV AT THE MOMY CONTROL POINTS

LIF00910
LIF00920
LIF00930
LIFOO940．
NI＝1 FDR BUJY
$N I=2$ FOR IMAS！
DU $50 \mathrm{M}=1$ ，NSTRIM
DJ $57 \mathrm{~N}=1$ ，NJTRI！
$\operatorname{VXI}(M, i d)=0.0$
$V Y I(M, N)=0.0$
$V Z 1(M, V)=0.0$
$A(M, N)=J . U$
57 CUNTINUE
56 CUVTIRUE
UU $58: 1=1$ ，WSTRI！
$X(M)=X!C(M)$
$Y(M)=Y I ; C(1)$
$L(M)=23 C(: 1)$

うう＇ノ $i=1$ ，りまT \therefore I
$X 1(v)=X i s)(j)$
$Y 1(N)=Y 心 1(1)$
$X \angle(v)=X 32(1)$
$Y 2(v)=Y 32(i)$
（1） $1,0: \mathrm{NI}=1,2$

$\angle 1(v)=2 i s 1(v)$
$22(v)=232(\because)$
Gं 10 t 2
Z1（iN）＝2．0：（DEPTH＋ZCI（1！，2））－2：1（v）
LZ（N）＝2．J：（DEPT：1＋ZC！（11＋1，2））－7？（：1）

$D(M, i d)=((X(\because)-X 1(1)) \div(7 .(M)-2 ?(i l)))-\left(\left(X(M)-X_{2}(N)\right) \div(7(M)-21(N))\right)$

$F(4, N)=(X 2(i)-,X 1(1 f)):(X(9)-X 1(1))+(Y 2(N)-Y 1(N)):(Y(M)-Y \perp(N))+$
if $(22(N)-Z 1(N)):(2(1)-Z 1(1))$
$G(M, 1)=(X 2(: 1)-X 1(1)):(X(Y)-Y ?(!))+(\vee 2(N)-Y(1: N)) \div(Y(M)-Y 2(N))+4$ \＃（22（：1）－21（：1））：（i（：i）－2．？（il））
$f(M, N)=50 R T((X(\because)-X 1(H)) \div 2+(Y(!)-Y)(\cdots)) \div \% 2+(Z(M)-Z 1(N)) \leqslant \approx 2)$

$R(M, V)=(Z(M)-Z 2(1)): 52+(Y 2(N)-Y(\cdots))+\infty 2$
$S(M, N)=(F(M, V) / A(\cdots, i))-(F(M, N) / D(1, N))$

VX1（in，ij）$\left.=V \times 1\left(i 1,{ }^{\prime}\right)+1\right)(4, \cdots)$

VZ1（：1，$N)=V 21(\because, \cdot 1)+A(1, n)$

CuvTliU：
59 Cuvtiaje
58 CUNTINJご

JJ $03 \quad \mathrm{i}=1$ ，坆「？
$B(I)=r V_{i L} L J$
63 CJVTIHJL

LIFO1490
LIFO1500
LIFO1510
．－．．．LIFO1520

M＝NSJRIP
LIFOI 530
LIFO1540
63 CJVIINU
LIFO1550
－－－－－－－－ーーー－ー－ LIFO1560

CALL SULVE（A，ن，$\because, \times 3)$
かんITこ（つ，ころ）
UU 64 $1=1$＋NJTRI！
WRIIE（！），24）1，X3（1）
LIFO1110
－LIFOL120
＋－LIFO1130
LIFO1140
LIFOL150
－ㄴIFO1160
LIFO1170
LIFO1180
LIFOL190
LIFO1200
LIFO1210
ㄴ．LIFO1220
LIFO1 230
＊LIFO1240
LIFO1 250
LIFO1 260
CIFO1270，
ELIFOIZ80－
LIFOI290
＂LIF01300
1．LIFO1310
LLIFO1320
LIFO1330 + ＋+ LIFO1340

－LIFO1380．
LIFO1＇400
－LIFOI410
LIFO1420
LIFO1430
－LIFO1440
LIFO1450
IFO1460
LIFO1460
LIFO1470
:
w
 AND INUJCi＿U VELICCITY RAISIJATIM AT BGIYY COMTROL POINTS．
$C L=0.0$
$C U=0.0$
こM＝U．リ
CMSL（4331－L02）In

NRITE（7，25）
U0 65 $M=1$ ，NSTRIP
$v \times 2(x)=0.0$
VYZ（M）＝0．＇
VZ2（：4）＝0．0
UJ G：$\because=1$ ，HSTRIP
$V \times 2(14)=V X_{2}(4)+\times 3(1+) \div V \times 1(1,1,1)$
VY2（4）$=$ VY己 $2(4)+X 3(4): V Y_{1}(9, N)$

CUVTINJE

WRI TE（ヲ，2ら）：CL，CL，CUY，C＇IY
$C L=C L+C L Y$
しU $=$ CD $+C$ UY
CH＝C：T＋C：Y
65 Cuvtiinue
CLニこん／VらTRI？
CU＝CU／NST？IP

NRITE（？，27）CL，この，Cツ
US 67 H＝1，iJSTPIP
WRITE（9，2i3）$i, V X_{2}(4), V Y 7(1), V 7 ?(1)$
Cuvlinde
CALCULATIJN OF IMDUCED YRINCITV AT THF FPFF SURFACE CONT

N1＝ 1 FOR JUOY
N1＝2 FOR I UAご：
OU $73 \mathrm{~L}=1,5$
DU 74 ， $4=1, V S F$
$X(Y)=X F(\because, L)$
$Y(M)=Y F(1, L)$
$Z(M)=2 F(Y, L)$
VXi（ $\%, L)=U .0$
$V Y S(M, L)=0.3$
$\operatorname{VLS}(i 1, L)=(0 .!)$
（J）$i ;: \lambda=1, \downarrow j!? 11$
X1（id）$=\times 31$（iv）
$Y 1(N)=Y 31(M)$
$X 2(: d)=X 32(1)$
$Y<(V)=Y 32(N)$
U 70 － $1=1, \therefore$

GU rid 73
$22(y)=2.0 \%(0 G P T H+Z C I(N+1,2))-7 \cap, 2(1)$

 ：（22（H）－21（N））：$=(2(:+1)-22(1))$

76 covtinue
75 EJvTinje：
74 EJVTIHEL
73 covelinue

Uu 32 H＝1，1j5
にしし（i1）＝には1＊い）
ن」 $33 \mathrm{~L}=1$ ，；

ZF（4，L）＝JEPTH＋ZCI（4，I）

cuvilidue

```
M,LI+
```


טנ $34 \quad: 1=1,1$ it

cuvtialue
［u is s $1=1, \mathrm{j}, \mathrm{F}$

85 CJJTI：JJ．

Gil J 87

IF（IZ．EJ． 41 TER）：HRITE（כ，40）IZ
55 CUivrIiNu：
10 1リア：Al（cllu．j）
11 FURAAT（1天）
12 FJRMAT（3F7．i）
13 トリマイAT（う「こ！。「）

 そ1し（・ーリ）

 ；＇v2く＝＇，i（13．6）

 \＃E13．0，ذ
FURツAT（टT1U．！

LIF02760
LIFO2770
LIFO2780
LIFO27901
LIFO2800
LIFO2810 LIFO2820
WIF02830＂
LIFO2840
LIFO2850

LIFO2860
LIFO2870 ＇LIF02880！ L＇IF02890 FIF02900

40 FJスソAT（／5x，＇SOLJTINI
41 FJ． 1 A「I／jx，

LIF02940

LIF03000

TION
 END

SUBRDUTINE SJLVE（A， $3,4, \times 3)$
（）IAENLIUN $A(15,15), 3115), \times 3(15)$
$A M=11$
0U 10 i $K=1,114$
$K P=K+1$
L＝く
Uリ 1 J2 $1=$ Kロ，！
IF（ABSIA（1，K））．LF．ABS（：（I．，Y））「，T＇J 102
$\mathrm{L}=1$
cuvirive
1F（L－长） $105,105,107$
－ 03 リJ $104 \quad J=k, \because$
．$A J=A(K, J)$
$A(K, J)=A(L, J)$
$A(L, J)=A J$
$A B=B(K)$
$B(K)=B(L)$
$B(L)=A \mathrm{~A}$
ELEMINATI：U NPOCES5
－105 UU lu？ $1=k!$ ，＇4
トAC＝A（I，K）／A（K，K）
A（I，K）＝リ．U
DU $106 \mathrm{~J}=\mathrm{K} P$ ，リ
106 a $(1, J)=A(I, J)-1: A C: A(K, J)$
101 B（I）＝J（i）－1．A（OS（Y）
SULUTIU：\＆．3＾CK SUSSTITUTI Oiは
$x \exists(: 1)=\mathrm{B}(: 1) / \wedge(: 1,1)$
$\mathrm{I}=\mathrm{M}-\mathrm{I}$
$108 \quad 12=1+1$
SUM＝0．0
טJ $10 \% \mathrm{~J}=12,4$

$x B(I)=\left(B(i)-\dot{J} \mathrm{~J}_{i}\right) / A(I, I)$
$1=1-1$
1F（1）110，110：1：13
110 RETURN
ENU

APPENDIX-B

HYDROFOLL DATA

Table : Section Profile data of NACA 4412.

Station X (\% of chord) $\quad Z$ ordinate (\% of chord)

Upper surface Lower surface Mean Surface

Table : Section profile data of NACA 16-206.

APPENDIX-C

APPEND $1 \times-D$

Table : Variation of CPU time in second with number of iterations completed.

Virtual
Total

5
6
7
14.49
18.76
24.81
30.82
19.12
23.31
30.06
36.65
35.72
39.83
43.68
46.81

