BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA L-3/T-2 B. Sc. Engineering Examinations 2018-2019
Sub: MATH 381(Fourier Analysis, Harmonic Function, Complex Variable and Laplace Transforms)
Full Marks: 240
Time: 2 Hours
USE SEPARATE SCRIPTS FOR EACH SECTION
The figures in the margin indicate full marks.
Symbols used have their usual meaning.

SECTION-A

There are FOUR questions in this section. Answer any THREE.

1. (a) Prove that, $\sqrt{2}|z| \geq|\operatorname{Re}(z)|+|\operatorname{Im}(z)|$, where, z is a non-zero complex number
(b) Describe locus of points z that satisfy $\operatorname{Re}\left(\frac{1}{z}\right) \leq \frac{1}{2}$.
(c) Find the bilinear transformation that maps distinct points $z_{1}=1, z_{2}=0, z_{3}=$ -1 onto the points $w_{1}=i, w_{2}=\infty, w_{3}=1$.
2. (a) Show that $u(x, y)=\frac{y}{x^{2}+y^{2}}$ is harmonic in some domain and find a harmonic conjugate $v(x, y)$ such that $f(z)=u+i v$. Also express $f(z)$ in terms of z.
(b) Evaluate $\int_{C}\left(x^{2}-i y^{2}\right) d z$ along the straight lines from $z=1+i$ to $z=1+8 i$ and then along a line parallel to y-axis from $z=1+8 i$ to $z=2+8 i$.
3. (a) Evaluate $\oint_{C} \frac{\cos z}{z\left(z^{2}+8\right)} d z$, where, C denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$.
(b) Give two Laurent series expansions in powers of z for the function $f(z)=\frac{1}{z^{2}(1-z)}$ and specify the regions in which those expansions are valid.
4. Evaluate the following integral by contour integration:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x \tag{40}
\end{equation*}
$$

SECTION-B

There are FOUR questions in this section. Answer any THREE.
5. (a) Find the Fourier sine series expansion of the function $f(x)=x(x-2)$ defined over the interval $0<x<2$. Also, sketch the graph of the function.
(b) Find the Fourier cosine integral formula of $f(x)=(1-x) e^{-2 x}$ for $x \geq 0$.
6. (a) Find the Fourier sine transform of $f(x)=\left\{\begin{array}{lr}2 x, & 0<x<1 / 2 \\ x-1, & 1 / 2<x<1 \\ 0, & x>1 .\end{array}\right.$
(b) If the values of a potential function on the boundary of a circle of radius 4 cm are given by $v(\theta)=\sin \theta$, find the potential at any interior point of the circle.
7. (a) Find the steady temperature inside a solid sphere of unit radius if one hemisphere of its surface is kept at temperature zero and the other at temperature $F(\theta)=\cos \theta$.
(b) Use convolution theorem to evaluate $L^{-1}\left\{\frac{1}{s^{2}(s+1)^{2}}\right\}$.
8. (a) Use Laplace transform to evaluate: $\int_{0}^{x} x^{2} J_{0}(x) J_{1}(x) d x$.
(b) Solve the following differential equation by using Laplace transform:

$$
\begin{equation*}
t X^{\prime \prime}(t)+X^{\prime}(t)+4 t X(t)=0 \tag{20}
\end{equation*}
$$

$$
\text { where } X(0)=3, X^{\prime}(0)=0 .
$$

