
 

i 
 

 

DESIGN AND ANALYSIS OF SINGLE MODE POLYMER 

PHOTONIC CRYSTAL FIBER FOR SUPERCONTINUUM 

GENERATION 

  

 

 

 

A K M AHOSAN HABIB 

Roll No.: 1014062203 P 

 

 

 

 

MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING 

 

 

 

 

Department of Electrical and Electronic Engineering  

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY  

February 2020 

 





 

iii 
 

 

 DECLARATION 

 

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for 

the award of any degree or diploma and that all sources are acknowledged. 

 

 

 

Signature 

 

____________________________________ 

 

A K M Ahosan Habib 

Roll No.: 1014062203 P 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

 

 

 

 

 

 

 

 

 

Dedication 

 

 

 

 

 

To my Wife  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 
 

Acknowledgement 

 

First of all, I would like to thank Allah, the almighty, for giving me the ability to 

complete this thesis work. 

 

I would like to express my sincere gratitude to my supervisor, Dr. Md. Shah Alam. This 

thesis would not have been completed without his support and guidance. His constant 

encouragement gave me the confidence to carry out my work. 

 

I would like to thank all my teachers. They gave the knowledge and directions that have 

helped me throughout my life. I express my gratitude to my teachers from Bangladesh 

University of Engineering and Technology. The knowledge I learned from the classes in 

my M.Sc. level were essential for this thesis. 

 

I want to thank my friends for providing me support and encouragement. Their 

suggestions helped me in countless ways. 

 

Last but not the least; I would like to thank my parents and family members. Their 

optimism and encouragement have allowed me to overcome any obstacle that I faced. 

Their unconditional support made it possible for me to complete this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

ABSTRACT 

 

The main aim of this thesis is to design a polymer photonic crystal fiber for 

supercontinuum generation. A new hybrid polymer PCF having triangular lattice 

structure and cyclic olefin copolymer Topas as background material is proposed due to its 

broad transparency window and mature fabrication technology.  We report a non-linear 

hybrid polymer PCF with integrated silica glass layers of few nanometers at the outer 

surface of the air holes. This air-silica-polymer combination makes the PCF highly 

nonlinear i.e. exhibits an extremely high nonlinear parameter. By tailoring zero-

dispersion wavelength supercontinuum obtained in the proposed photonic crystal fiber in 

the anomalous dispersion regime. We simulated the evolution of the transverse intensity 

distribution, the nonlinear parameter γ, and the group velocity dispersion (GVD) of the 

fiber. Using a split-step Fourier method, the nonlinear Schrödinger equation is solved to 

simulate the spectral and temporal properties of the supercontinuum.  Simulation shows 

that spectrum generated by this new nonlinear fiber ranges from 500 nm to more than 

2166 nm which will be useful in the field of high performance optical coherence 

tomography (OCT) imaging systems, where a broad-band light source with high 

penetration depth and high degree of coherence with sufficient brightness are required for 

spatial resolution. The effects on supercontinuum spectra by varying peak power, pulse 

duration, length of PCF, higher order dispersion parameters are studied.  The findings are 

with the increase of input power supercontinuum becomes broader, supercontinuum 

becomes broader as the pulse duration increases and the longer the fiber length the 

broader the supercontinuum generated. Besides, the effect of higher order dispersion 

parameters up to 12th order is analyzed.   
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CHAPTER 1 

INTRODUCTION 

 

The term Photonic Crystal Fiber was first pioneered by Philip St. J. Russell in the 1990’s 

[1]. Photonic Crystal Fiber (PCF) is a kind of fiber which has a number of microscopic 

air holes throughout its entire length. Its structure is such that there is periodic refractive 

index or structural variation along its axis which makes it different from conventional 

fibers and the exploration of the great variety of possible applications have attracted huge 

interest. PCFs guide light by two mechanisms.  Photonic Band-Gap Fibers follows 

Photonic Band Gap mechanism and here the light is guided in air holes. Whereas in case 

of Holey Fiber (also called the index- guided fiber) light is guided in the solid core made 

of pure silica by modified Total Internal Reflection (mTIR) mechanism [2]. Optical fibers 

have a very broad range of applications, where they serve many purposes, such as simply 

transporting light from a source to some other device, transmitting optically encoded 

data, sensing temperature or strain in some environment, generating and amplifying laser 

light. These properties can be more easily achieved in PCFs as these fibers offer many 

degrees of freedom in their design than those of conventional optical fibers. The 

numerous structural parameters can be tailored to obtain desirable values of dispersion, 

birefringence, confinement loss bending loss etc. for particular applications.  This 

phenomenon has made this one of the most active fields of current optics research. 

 

1.1 Guidance Mechanism in Index-Guided PCF 

It is possible to use a two-dimensional photonic crystal as a fiber cladding, by choosing a 

core material with a higher refractive index than the cladding effective index. An example 

of this kind of structures is the PCF with a silica solid core surrounded by a photonic 

crystal cladding with a triangular lattice of air-holes, shown in Fig. 1.1. These fibers, also 

known as index-guiding PCFs, guide light through a form of total internal reflection 

(TIR), called modified TIR. To simplify, the idea is that in a high-index core 

microstructured optical fiber (MOF), the average refractive index of the cladding is lower 

than that of the core refractive index, leading to an equivalent geometry similar to those 
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of conventional step-index fibers. The idea behind mTIR, however, is deeper, and more 

rigorous, than this simple approach of looking at average refractive indices. We know 

that light propagating in a step-index fiber can be decomposed into modes, each of which 

is characterized by a propagation constant 𝛽, which is the component of the wave vector 

along the direction of the fiber. We saw that, depending on the magnitude of 𝛽 , waves 

are radially propagative in the core and in the cladding. The same analysis can be applied 

to the different regions of a PCF. From our discussion of a step-index fiber we already 

know that in the core, which a homogeneous region of refractive index 𝑛𝑐𝑜𝑟𝑒 = 𝑛𝑚𝑎𝑡, 

fields with  𝑛𝑒𝑓𝑓 = 𝛽 𝑘0⁄ < 𝑛𝑐𝑜𝑟𝑒 are propagative in the radial direction, and fields with 

𝑛𝑒𝑓𝑓 > 𝑛𝑐𝑜𝑟𝑒 are evanescent. In case of PCF, in the cladding region, one has to solve 

Maxwell’s equations for a periodic medium. However, an important point is that all 

solutions for Maxwell’s equations in the photonic crystal are either propagative or 

evanescent along the radial direction. The propagative solution to Maxwell’s equations 

with the largest 𝑛𝑒𝑓𝑓  is called the fundamental space-filling mode (FSM), and the 

associated value of  𝑛𝑒𝑓𝑓  is 𝑛𝐹𝑆𝑀 . By definition, no propagative fields having 𝑛𝑒𝑓𝑓 >

𝑛𝐹𝑆𝑀  exist in the cladding, which is similar to the situation of a homogeneous cladding 

for which no propagative fields having 𝑛𝑒𝑓𝑓 > 𝑛𝐶𝐿 exist. For the range 𝑛𝐹𝑆𝑀 < 𝑛𝑒𝑓𝑓 <

𝑛𝑚𝑎𝑡  propagative fields exist in the core region, which is exactly the same situation as 

we had for a step-index fiber.  

 

Fig. 1.1 Triangular lattice solid-core PCF. 

1.2 Photonic Band-gap Fiber 

If the central part of the array of air holes is replaced by a bigger hole of much larger 

diameter in comparison to the surrounding holes, then the fiber so obtained is called the 

Photonic band-gap fiber. Since here the periodicity of the structure is broken, the defect 
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so introduced causes a change in its optical properties [3]. The phenomenon that guides 

light in the fiber is photonic band-gap according to which if the frequency of the external 

light matches the band-gap frequency, the light gets trapped in the hole and thus is guided 

throughout the length of the fiber. Therefore there is no need of having a greater 

refractive index of the core. Fig. 1.2 illustrates the Photonic Band Gap Fiber showing a 

large air hole in the center surrounded by an array of air holes. 

 

 

Fig. 1.2 Photonic band-gap fiber. 

1.3 Guidance Mechanism in Photonic Band-gap Fiber 

Photonic band-gap fibers guide light at a low-index “defect” site within the photonic 

crystal lattice which forms the cladding. At a given frequency, the band gaps appear in a 

range of values of the propagation constant 𝛽  in which one would normally expect 

propagating modes, and they are surrounded at both higher and lower values of 𝛽 by 

propagating modes. Band gaps can occur for values of 𝛽 < 𝑘 (k is the vacuum wave 

vector), and so can be used to trap light in an air core. However, the range of 𝛽 > 𝑘 for 

which bandgaps occur is limited. This means that in a photonic bandgap fiber only a 

limited range of wavelengths can be expected to be guided in the hollow core. It is 

important to underline that gaps can appear for values of modal index both greater and 

smaller than unity, enabling the formation of hollow-core fibers with bandgap material as 

a cladding. These fibers, which cannot be made using conventional optics, are related to 

Bragg fibers, since they do not rely on TIR to guide light. In fact, in order to guide light 

by TIR, it is necessary a lower-index cladding material surrounding the core, but there are 

no suitable low-loss materials with a refractive index lower than air at optical frequencies 

[1]. The first PCF which exploited the PBG effect to guide light was reported in 1998 [2, 

4], and it is shown in Fig. 1.3. Notice that its core is formed by an additional air-hole in a 
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honeycomb lattice. This PCF could only guide light in silica that is in the higher-index 

material.  

 

Fig. 1.3 Cross-section of first photonic bandgap PCF with honey-comb lattice structure. 

Hollow-core guidance had to wait until 1999, when the PCF fabrication technology had 

advanced to the point where larger air-filling fractions, required to achieve a PBG for air 

guiding, became possible [2]. Notice that an air-guided mode must have ß/k < 1, since 

this condition guarantees that light is free to propagate and form a mode within the 

hollow core, while being unable to escape into the cladding. The first hollow-core PCF, 

reported in Fig. 1.2, had a simple triangular lattice of air-holes, and the core was formed 

by removing seven capillaries in the center of the fiber cross-section. By producing a 

relatively large core, the chances of finding a guided mode were improved. When white 

light is launched into the fiber core, colored modes are transmitted, thus indicating that 

light guiding exists only in restricted wavelength ranges, which coincide with the 

photonic bandgaps [2]. 

1.4 Properties and Applications of Photonic Crystal Fiber 

A huge variety of air-holes arrangements is possible in PCFs, offering a wide possibility 

to control the refractive index contrast between the core and the photonic crystal cladding 

and, as a consequence, novel and unique optical properties. Since PCFs provide new or 

improved features, beyond what conventional optical fibers offer, they are finding an 

increasing number of applications in ever-widening areas of science and technology.  

1.4.1 Solid core Fibers 

Index-guiding PCFs, with a solid glass region within a lattice of air-holes, offer a lot of 

new opportunities. These opportunities are related to some special properties of the 

photonic crystal cladding, which are due to the large refractive index contrast and the 
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two-dimensional nature of the microstructure, thus affecting the birefringence, the 

dispersion, the smallest attainable core size, the number of guided modes and the 

numerical aperture and the birefringence.  

1.4.2 Highly Birefringent Fibers 

Birefringent fibers are defined as two orthogonally polarized modes carried in a single-

mode fiber propagate at different rates, are used to maintain polarization states in optical 

devices and subsystems. The guided modes become birefringent if the core 

microstructure is deliberately made twofold symmetric, for example, by introducing 

capillaries with different wall thicknesses above and below the core. By slightly changing 

the air-hole geometry, it is possible to produce levels of birefringence that exceed the 

performance of conventional exceed the performance of conventional birefringent fiber 

by an order of magnitude. It is important to underline that, unlike traditional polarization 

maintaining fibers, such as bow tie, elliptical-core or Panda, which contain at least two 

different glasses, each one with a different thermal expansion coefficient, the 

birefringence obtainable with PCFs is highly insensitive to temperature, which is an 

important feature in many applications. An example of the cross-section of a highly 

birefringent PCF is reported in Fig. 1.4.  

 

 

Fig. 1.4 (a) the cross-section and (b) the core region of a highly 

birefringent triangular PCF. 

 

1.4.3 Dispersion Tailoring  

In PCFs, the dispersion can be controlled and tailored with unprecedented freedom. In 

fact, due to the high refractive index difference between silica and air, and to the 

flexibility of changing air-hole sizes and patterns, a much broader range of dispersion 
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behaviors can be obtained with PCFs than with standard fibers. For example, as the air-

holes get larger, the PCF core becomes more and more isolated, until it resembles an 

isolated strand of silica glass suspended by six thin webs of glass. If the whole structure 

is made very small, the zero-dispersion wavelength can be shifted to the visible, since the 

group velocity dispersion is radically affected by pure waveguide dispersion. On the 

contrary, very flat dispersion curves can be obtained in certain wavelength ranges in 

PCFs with small air-holes, that is with low air-filling fraction. As an example, a 

dispersion-flattened triangular PCF with seven air hole rings, characterized by Λ = 2.5 

µm and d = 0.5 µm, has been presented in [5]. 

1.4.4 Ultrahigh Non-linearities 

 An attractive property of solid-core PCFs is that effective index contrasts much higher 

than in conventional optical fibers can be obtained by making large air-holes, or by 

reducing the core dimension, so that the light is forced into the silica core. In this way a 

strong confinement of the guided-mode can be obtained, thus leading to enhanced 

nonlinear effects, due to the high field intensity in the core. An important example is the 

so-called supercontinuum generation, that is the formation of broad continuous spectra by 

the propagation of high power pulses through nonlinear media. The term supercontinuum 

does not indicate a specific phenomenon, but rather a plethora of nonlinear effects, 

which, in combination, lead to extreme spectral broadening. The determining factors for 

supercontinuum generation are the dispersion of the nonlinear medium relative to the 

pumping wavelength, the pulse length and the peak power. Since the nonlinear effects 

involved in the spectral broadening are highly dependent on the medium dispersion, a 

proper design of the dispersion properties can significantly reduce the power 

requirements. The widest spectra, in fact, can be obtained when the pump pulses are 

launched close to the zero dispersion wavelength of the nonlinear media. 

1.4.5 Large mode area Fibers 

By changing the geometric characteristics of the fiber cross-section, it is possible to 

design PCFs with a completely different property that is with large effective area. The 

typical cross-section of this kind of fibers, called large mode area (LMA) PCFs, consists 

of a triangular lattice of air-holes where the core is defined by a missing air-hole. LMA 
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PCFs are usually exploited for high-power applications, since fiber damage and nonlinear 

limitations are drastically reduced. In particular, LMA fibers are currently used for 

applications at short wavelengths, that is in ultraviolet (UV) and visible bands, like the 

generation and delivery of high-power optical beams for laser welding and machining, 

optical lasers, and amplifiers, providing significant advantages with respect to traditional 

optical fibers [4].  

1.4.6 Hollow core Fibers 

Hollow core PCFs have great potential, since they exhibit low nonlinearity [2] and high 

damage threshold, thanks to the air-guiding in the hollow core and the resulting small 

overlap between silica and the propagating mode. As a consequence, they are good 

candidates for future telecommunication transmission systems.  Another application is 

the delivery of high-power continuous wave (CW), nanosecond and sub-picosecond laser 

beams, which are useful for marking, machining and welding, laser-Doppler velocimetry, 

laser surgery, and terahertz (THz) generation [6].  In fact, optical fibers would be the 

most suitable delivery means for many applications, but at present they are unusable, due 

to the fiber damage and the negative nonlinear effects caused by the high optical powers 

and energies, as well as to the fiber group-velocity dispersion, which disperses the short 

pulses [6]. These limitations can be substantially relieved by considering hollow-core 

fibers. Moreover, air-guiding PCFs are suitable for nonlinear optical processes in gases, 

which require high intensities at low power, long interaction lengths and good-quality 

transverse beam profiles. Finally, the delivery of solid particles down a fiber by using 

optical radiation pressure has been demonstrated [2].  

1.5 Fabrication Technology of PCFs 

1.5.1 Stack and Draw (SaD) Technique 

This method introduced by Birks et al. in 1996, has become the preferred fabrication 

technique. Since it allows relatively fast, clean, low-cost, and flexible perform 

manufacture. PCF preforms are formed by stacking a number of capillary silica tubes and 

rods to form the desired air/silica structure. This way of creating the preform allows a 

high level of design flexibility as both the core size and shape as well as the index profile 

throughout the cladding region can be controlled. When the desired preform has been 
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constructed, it is drawn to a fiber in a conventional high-temperature drawing tower and 

hair-thin photonic crystal fibers are readily produced in kilometer lengths. Through 

careful process control, the air holes retain their arrangement all through the drawing 

process and even fibers with very complex designs and high air filling can be produced. 

Finally, the fibers are coated to provide a protective standard jacket that allows robust 

handling of the fibers. The final fibers are comparable to standard fiber in both robustness 

and physical dimensions and can be both striped and cleaved using standard tools. 

Though it seems that SaD is not suitable for the fabrication of more complex PCFs (like 

equiangular spiral PCFs) [7] other than hexagonal lattice PCFs, a technique has been 

proposed in [8] to adapt the standard SaD for complex structures. 

1.5.2 Extrusion Fabrication Process 

In extrusion a material is pushed or draw through a tool called die which is use to shape 

materials of desired cross-section. Extrusion process is applied to the glasses other than 

silica which are not readily available in the form of tubes. In this fabrication process a 

molten glass is forced through a die containing a suitably designed pattern of holes. 

Extrusion allows fiber to be drawn directly from bulk glass, using a fiber-drawing tower, 

and almost any structure, crystalline or amorphous, can be produced. It works for many 

materials, including polymers, and compound glasses. The structured preform of 16 mm 

outer diameter and the jacket tube are extruded. The preform is reduced in scale on a 

fiber-drawing tower to a cane of about 1.6 mm diameter in caning process. The cane is 

inserted within the jacket tube. This assembly is drawn down to the final fiber. This 

method can also be applied to other commercial glasses, including some with higher 

nonlinearity and slightly lower intrinsic loss. In particular, a tellurite PCF with an outer  

diameter of 190 μm and a core diameter of 7 μm has been realized [9]. 

 

 
Fig. 1.5 (a) Sketch of extrusion process and (b) extrusion die concepts with equal and different 

size feed holes for a target preform structure. 
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1.5.3 Filling Technology  

The optical properties of silica-air photonic crystal fiber (PCF) can be radically altered by 

filling its hollow channels with materials such as metals, polymers or semiconductors. 

Various different techniques have been used previously, including high-pressure 

chemical vapor deposition and pumping in of molten metal at high pressure. Chemical 

routes have the drawback that the end products of the reaction remain in the channels, 

often adversely affecting the optical properties. Filling with pure molten material does 

not suffer from this disadvantage, so that structures of high optical quality can readily be 

produced. In [10], the optical properties of PCFs in which one, two or more holes, 

adjacent to the core, are filled with semiconductors, glasses or metals by using a pressure 

cell technique have been reported. In Fig. 1.6, Scanning Electron Microscope (SEM) 

image of fabricated a filled channel of PCF has been shown. This filling procedure allows 

the core mode to interact strongly with the material of the wire, leading to a strong 

modification of the light transmission. 

 

 

Fig. 1.6 SEM image of a germanium-filled endlessly single-mode PCF. 

1.5.4 Sol-gel Technique for Irregular Shaped PCF Fabrication 

The sol-gel casting technique was originally developed for the production of large jacket 

tubes for optical fiber preforms and has been modified for the fabrication of 

microstructured fiber. A number of microstructured fibers fabricated using the sol-gel 

casting method, are shown in Fig. 1.7. A mold containing an array of mandrel elements is 

assembled and then filled with colloidal silica dispersed at high pH with an average 

particle size of 40 nanometers. The pH is lowered causing the sol to gel. At the wet gel 

stage, the mandrel elements are removed, leaving air columns within the gel body. The 

gel body is then treated thermo chemically to remove water, organic and transition metal 
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contaminants. The dried porous gel body is then sintered near 1600°C into viscous glass 

and subsequently drawn into fiber. The air holes are pressurized during draw to obtain the 

desired size and air-fill fraction. To maintain uniformity along the length of the preform, 

the mandrels are individually tensioned and the positioning and spacing is inspected and 

recorded with a digital camera. 

As a casting method, the sol-gel technique can fabricate any structure, which can 

be assembled into a mold. The hole size, shape and spacing may all be adjusted 

independently. By comparison, stack and draw methods are limited to closest-packed 

geometries such as triangular or honeycomb lattices and cannot easily generate circular 

patterns. Drilling methods allow adjustment of both the hole size and spacing, but are 

generally limited to a small number of holes and restricted to circular shapes. 

Furthermore, drilling of preforms leads to roughened surfaces along the air hole so that 

extra steps of etching and polishing of the inner surfaces are desired. Extrusion 

techniques provide design freedom, but are typically limited to soft glasses for which the 

material loss values are exceedingly high. Several designs such as fibers for higher 

nonlinearity, dispersion flattened designs require independent spacing, hole size or even 

non circular holes. The sol-gel casting method provides additional design flexibility that 

will be necessary for such fibers. Sol-gel casting is not without its own set of challenges. 

The mandrel elements are removed during the wet gel stage, while the gel body is still 

fragile. Removal of the mandrels at this stage places strain on the gel and for gel bodies 

with air-fill fractions >25%, cracking of the gel body is common and lowers the overall 

yield. Numerous microstructured fiber designs such as hollow core photonic band gap 

fibers or highly nonlinear fibers require air-fill fractions near 90%. To fabricate fibers 

with high air-fill fractions, the low air-fill fraction glass preforms are etched with HF 

uniformly along the length of the preform. An example of using HF etching to increase 

the air fill-fraction of a preform is shown in Fig. 1.8. Additionally, the air-fill fraction 

may be increased by pressurizing the air holes during draw. The larger design freedom, 

low-cost starting materials, dimensional precision, low material contamination and the 

ability to scale up to large preforms (> 10 km of fiber) makes this fabrication method an 

attractive approach towards high performance, low-cost microstructured fiber. 
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Fig. 1.7 Cross-sectional images of sol-gel derived microstructured fibers. a) endlessly single 

moded design, b) high delta, highly nonlinear fiber, c) dual core structure and d) circular core 

microstructured fiber. 

 

Fig. 1.8 Schematic representation of sol gel fabrication technique. 

1.6 Literature Review 

Spectral broadening and the generation of new frequency components are inherent 

features of nonlinear optics, and have been studied intensively since the early 1960s.  A 

fascinating perspective on the history of this subject has been given by Bloembergen 

(2000). This particular process known as supercontinuum (SC) generation occurs when 

narrow-band incident pulses undergo extreme spectral broadening at output. SC 

generation is a complex spectral broadening process where a narrow bandwidth pulse 

undergoes a substantial expansion through the interplay between various linear 
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phenomena such as dispersion and nonlinear phenomena such as self-phase modulation 

(SPM), cross-phase modulation (XPM), four-wave mixing (FWM), stimulated Raman 

scattering (SRS), and soliton dynamics at pump wavelength [11, 12] that occur during the 

propagation of the optical signal along the length of the waveguide.  This phenomenon 

was first discovered by Alfano and Shapiro [13, 14]. The study of the SC generation has 

gained importance since the spectrum generated has high degree of optical coherence and 

has found useful in many applications in the fields of frequency metrology, optical 

coherence tomography (OCT), molecular spectroscopy, biomedical imaging, gas sensing, 

food quality control, and early cancer cell detection [15-19].   

In the past years, numerous efforts were taken on silica fibers to produce 

broadband SC spectra. In 2000, Ranka obtained an ultra-broadband continuum in a silica 

fiber with anomalous dispersion at visible wavelengths [20]. In 2002, Dudley et al. 

reported SC generation in an air-silica MOF with nanosecond and femtosecond pulse 

pumping [21]. Thereafter, many results of SC generation in silica MOFs and photonic 

crystal fibers (PCFs) were presented [22-24]. The characteristics of PCFs that have led to 

such interest relate to their guidance properties that yield single-mode propagation over 

broad wavelength ranges, their enhanced modal confinement and therefore elevated 

nonlinearity, and the ability to engineer their group velocity dispersion [25]. The design 

freedom of PCFs has allowed SC generation to be observed over a much wider range 

than has been possible with bulk media or conventional fibers.  Alternative to silica, SC 

generation was also demonstrated using bismuth, lead silicate, fluride, and tellurite fibers 

[26-29]. Recently chalcogenide glasses have shown a number of advantages over the 

other materials mentioned above [30-36].   

So far most of the studies on supercontinuum generation using PCFs are based on 

silica and other glasses as background materials due to their low material loss, tunable 

zero dispersion wavelength and small effective areas [20], [37-41]. In addition to glass 

and other solid bulk materials [42-44], supercontinuum pulses can be created in gases 

[45], [46] and liquids [45] also. But, the reliability of the supercontinuum source suffers 

from inherent brittleness of glass materials as well as high losses in bending. Some of the 

recent studies [47-50] show that polymer based optical medium may be the good 

solutions to overcome these drawbacks, though the study of nonlinear effects in polymer 

based PCFs has not yet been demonstrated [51]. On the other hand, the unique ability of 

PCFs to host functional materials in their cladding air holes have opened the window for 
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the development of all fiber nonlinear devices [51-53]. Also, the modal properties can be 

tuned by incorporating liquid crystal, high index liquids, polymers, glasses, etc., as active 

materials inside the holes of the PCFs [50]. Taking these facts into consideration, in this 

work a single mode polymer PCF with integrated silica film is used for supercontinuum 

generation over broad spectral range and numerical simulations is also performed 

1.7 Objective of the Thesis 

This thesis is mainly focused on supercontinuum generation in polymer PCF in near-

infrared regime. To do so, the study of nonlinear pulse propagation in polymer PCF is 

essential which was not studied in earlier works. Hence, the main objective is to generate 

a broad-band supercontinuum pulse in polymer PCF for the enhancement of reliability 

and all-fiber nonlinear devices.  The objectives of this work are: 

1. To design a model of triangular lattice polymer PCF for supercontinuum 

generation which will be useful in the field of high performance OCT imaging 

systems, where a broad-band light source with high penetration depth and high 

degree of coherence with sufficient brightness are required for spatial resolution. 

2. To investigate the wavelength dependencies of single mode behavior, dispersion, 

bending loss, effective area, nonlinearity parameter, fractional power flow in 

different regions of the PCF with the variation of different structural parameters. 

3. To study numerically simulated broadband supercontinuum pulse in the polymer 

PCF. 

4. To evaluate the sensitivity of the generated supercontinuum varying fiber length, 

input power, and higher order dispersion coefficients. 

1.8 Organization of the Thesis 

This thesis is focused on supercontinuum generation in polymer PCF in near-infrared 

regime. Thesis paper is divided into the following six chapters.  

Chapter 1 (this chapter) describes general introduction about photonic crystal fiber and 

layout of this thesis. Also, the major objectives of thesis are described. 
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Chapter 2 constitutes a detailed study on polymer PCF. This chapter highlights the 

application of polymer PCF as a waveguide for terahertz pulse propagation, its 

fabrication process and the physics of various terahertz properties such as fundamental 

space-filling mode, dispersion, endlessly single mode operation, effective area, non-

linearity, bending loss, power fraction etc. 

Chapter 3 represents the results of numerical simulations of the polymer PCF made from 

High density Polyethylene (HDPE). Terahertz properties discussed in chapter 2 are 

presented and compared here with the experimental and reported works. At the end of the 

chapter, we summarize our findings. 

Chapter 4 describes general introduction to supercontinuum generation and physical 

mechanism involved. Moreover, dispersion, different non-linear phenomenon such as 

self-phase modulation, self-steeping, four wave mixing, Raman scattering, soliton fission 

etc. are also described in this chapter. Numerical modeling of supercontinuum generation 

as well as solution of generalized nonlinear Schrodinger equation using split-step method 

are also described.   

In Chapter 5 step by step design and analysis procedures to generate supercontinuum 

pulse in a hybrid polymer PCF are presented. Results of numerical simulations of 

supercontinuum generation are also presented. The effects on supercontinuum spectra by 

varying different parameters such as peak power, pulse duration, length of PCF are 

studied in this chapter.  

Chapter 6 contains some remarkable conclusions regarding the present study and 

suggestions for the future work. 
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CHAPTER 2 

POLYMER PHOTONIC CRYSTAL FIBER  

 

Our main objective is to generate broad-band supercontinuum pulse in polymer PCF in 

near-infrared region. Before proceed to supercontinuum generation, a detailed study on 

polymer PCF is essential. Besides many other applications, polymer materials e.g. 

Polycarbonate (PC), Polyethylene (PE) etc. make the PCF a promising waveguide for 

pulse propagation in THz range due to its broad transparent window and low losses at 

higher frequencies. In this chapter modal characteristics of a polymer based PCF 

designed for THz guidance are thoroughly discussed.   

2.1 Terahertz Radiation: Opportunities and Development 

The THz window of the electro-magnetic spectrum lies between the infrared band and the 

microwave band i.e. in between photonic and electronic region, and ranges in frequency 

from 0.1 to 10 THz (equivalently wavelength ranges from 3 mm – 30 µm). THz, also 

known as sub-millimeter waves or far-infrared radiation, bridging the gap between optics 

and electronics.   

In mid 1980’s with the development of sub-picosecond lasers experiments on 

coherent generation and detection of THz began. The groups at Bell laboratories and IBM 

successfully implemented the THz time-domain spectrometer [54]. This setup allows 

both amplitude and phase data to be directly obtained from the sample scans. Recent 

developments in the field of THz technology include optically induced THz sources and 

detectors [55], suitable electro-optic materials [54], and surface emitters and low-

temperature THz quantum cascade lasers [55]. High-power THz sources have also been 

demonstrated in free-electron lasers and accelerators, while remote long distance (tens of 

meters) detection via THz acoustic waves enhancement has also been realized. Several 

important discoveries and applications in science and engineering have been highlighted 

as a result of the intense studies of the THz band. 

Dynamic growth in research concerning generation and detection of THz 

radiation has contribute to understanding the physical light-matter interactions, 
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noninvasive biological imaging [54-55], as well as chemical substance finger printing 

[55] and active security scanners [56]. It has also motivated the studies of previously 

unexplored physical phenomena such as negative refraction in metamaterials (an 

artificially engineered material in which the structure influences the waves behavior 

resulting in unconventional properties of the material). The advent of increasingly 

effective techniques for nanotechnology will promote compact and portable THz 

systems. 

2.2 Photonic Crystal Fiber (PCF) as THz waveguide  

The recent progress in terahertz (THz) wave generation and detection techniques has 

generated much interest in low loss THz waveguides which are essential for the 

construction of compact THz devices and measurement systems. However, most of the 

present THz systems rely on free space propagation and processing of THz waves due to 

the virtual absence of low loss waveguides at THz frequencies. The conventional guiding 

structures such as microstrips, coplanar striplines, and coplanar waveguides fabricated on 

semiconductor substrates can support only a limited bandwidth due to their excessive 

dispersion and loss. For example, the power absorption coefficients of coplanar striplines 

and coplanar waveguides are 𝛼 = 20𝑐𝑚−1 at 1 THz [56]. Even for metallic rectangular 

waveguides, the absorption coefficient is still very high, 𝛼 = 20𝑐𝑚−1 at 0.1 THz [56]. 

Recently, there have been several reports on quasioptical techniques for the efficient and 

broadband coupling of free space THz radiation into low loss waveguides such as metal, 

sapphire fiber, and plastic ribbon waveguides [57-59]. 

On the other hand, the photonic crystal fiber PCF has raised growing interest over 

the past few years since it offers the opportunity to fabricate optical waveguides with 

enhanced linear and nonlinear optical properties. For example, compared to the 

conventional optical fibers, the PCF exhibits broadband single-mode operation [60] and 

air guiding for the reduced nonlinearity and dispersion [61]. 

A typical PCF consists of a waveguiding core and a spatially distributed periodic 

cladding region. The core is formed by introducing a defect into the photonic crystal 

structure to create a localized region with optical properties different from the 

surrounding cladding region. The guiding mechanism of a PCF depends on whether the 

effective refractive index of the core is higher or lower than that of the cladding. The 
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high-index core PCF can transmit broadband THz signals while the air-core PCF can be 

used as an ultralow loss, narrow band THz waveguide. 

So far most PCFs have been fabricated from silica due to their applications in 

optical domain. However, the material loss of silica is prohibitively high at THz 

frequencies. Thus, for THz applications, low loss materials such as plastics need to be 

used.  

2.3 Materials for THz Transmission 

The first dielectric waveguide for THz guiding was proposed in the year 2000, where a 

plastic ribbon made from high density polyethylene (HDPE) of rectangular cross-section 

was used as the core and the surrounding air acted as the cladding [58]. Though the 

achieved loss was low (~1𝑐𝑚−1 over 0.1 – 3.5 THz) for 10 mm length of ribbon, 

dispersion was too high. The first circular core dielectric step index fiber for THz 

guidance was proposed in 2006 [61]. It was just a simple plastic (PE) wire of sub-

wavelength diameter (200 μm) that acted as the fiber core with the surrounding air acting 

as the cladding. This structure supports a single mode (HE11) at frequencies of up to 0.3 

THz. However, the mode confinement is poor which limits its propagation length, and the 

bending loss is also quite high. In such step index structures, the dispersion management 

is difficult as it depends primarily on material dispersion. In this context, microstructured 

fibers (PCFs) are quite promising, since light guiding is not only controlled by index 

contrast but can be easily manipulated through multi-parameters of the wave guiding 

geometry, and the total dispersion becomes a strong function of waveguide dispersion 

[62-63].  

In 2002, Han et. al. experimentally demonstrated a HDPE based solid-core 

microstructured fiber [56], whose cladding was formed by arranging air holes on HDPE 

matrix in a periodic triangular fashion. By tuning the structural parameters, both 

dispersion as well as mode confinement could be tuned appropriately. As a result, the 

structure offers single mode guidance over 0.1 – 3 THz with low loss and relatively low 

dispersion. A Teflon based solid-core microstructured fiber was fabricated and first 

demonstrated for THz guidance (over 0.1 ~ 1.3 THz) in 2004 [64]. As the Teflon is a 

very cost effective and flexible material, it can be drawn into a longer fiber length as 

compared to other polymers. Recently, COC (trade name is Topas) material based large 
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mode area (LMA) and small mode area (SMA) solid-core microstructured fibers have 

been Fabricated for THz guidance [65]. Both of the proposed fibers possess low loss (~ 

0.09 cm-1) over 0.35 ~ 0.65 THz. Moreover, the high confinement of fiber modes makes 

them less bend sensitive.  

In search of further loss reduction, researchers proposed that the insertion of a 

loss-less low-index air gap (size must be less than the decay length of the operating 

wavelength) inside the solid core can reduce the material absorption loss significantly 

[65]. In 2008, two research groups, Hassani et al. [67-68] and Atakaramians et al. [69] 

theoretically proposed a porous- core fiber (PoCF) structure for efficient THz guiding, 

where instead of one air-hole, a two-dimensional periodic array of air holes is included in 

the core region. In both cases, the PoCF structures are optimized to get maximum power 

fraction in the air holes. Recently, a plastic (Teflon)-based porous-core with a porous-

cladding fiber has been proposed [70], where air holes are arranged in hexagonal periodic 

fashion in both the core and the cladding regions.  

Apart from index guided (IG) structures, several other dielectric- based fiber 

geometries have been proposed and demonstrated. Unlike IG-fibers, light can be guided 

in the lower refractive index region of such fibers. Since the core is composed lower 

refractive index than the surrounding cladding, it allows the use of air (the best material 

for THz guidance) as the core material to further reduce the loss as well as dispersion of 

the transmitted THz wave. The fundamental guiding mechanisms in such fibers are, 

PBG-guidance, anti-resonance reflective (ARR)-guidance and sometimes simply 

reflective guidance.  

2.4 Fabrication of Polymer Microstructured Fibers 

The use of polymers to create microstructured fibers allowed a wide variety of structures 

to be constructed, which require new method for fabrication. The best-known technique 

to fabricate microstructured polymer optical fibers (mPOFs) is similar to silica glass PCF 

manufacturing technology; although in case of polymer materials this process requires 

lower temperatures. Fabrication process of mPOF consists of two steps. First one is 

creating several centimeter width preform and the second is extrusion of previously 

created perform. The lower end of preform is heated to 2000C and its diameter is reduced 

to final diameter of created fiber. In the end the polymer coating is applied to fiber. The 
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extrusion process can be continuous or batch. The former process requires that a 

monomer, an initiator and chain transfer agent are continuously put into the reactor and 

fiber is continuously withdrawn from the die. The process can be different in details 

based on the type of manufactured fiber [71]. Different techniques to create mPOFs, 

other than extrusion, are: the interfacial gel polymerization technique [61], the diffusion 

technique [72], drilling [73], and injection moulding [74]. Fabrication processes of 

mPOFs have the advantage over glass fiber manufacturing. The main reason for that is, 

apart from lower processing temperature and cheaper materials, polymer fibers are not 

restricted by close packed arrangement of circular holes, which in result hole structure is 

not restricted to hexagonal or square package (as in PCF) and allows to create different 

material modification.   

Apart from fabrication advantages compared to silica fibers, mPOFs have also 

superiority in other fiber properties. While in glass fibers possibilities for modifying the 

properties by doping are limited by high processing temperature, polymers can be 

specifically designed. Also mPOFs can be fabricated from single polymer without the use 

of dopants and as a result wider choices of polymers are available [75].    

2.5 THz Fiber Characteristics 

In this section, we provide a general overview of the characteristics of the THz 

waveguide in terms of desired optical properties. The fiber performance can be described 

in terms of its modal type, its propagation loss coefficient, and the mode dispersion 

behavior. 

2.5.1 Computation of Fundamental Space-filling Mode (FSM) 

In a photonic crystal fiber the core index is greater than the average index of the cladding 

because of the presence of the air holes. For this reason, the fiber can guide light by total 

internal reflection (TIR). If the guided light has an effective index, 𝑛𝑒𝑓𝑓,  for TIR it must 

satisfies the condition: 

 
𝑛𝑐𝑜𝑟𝑒 > 𝑛𝑒𝑓𝑓 =

𝛽

𝑘0
> 𝑛𝐹𝑆𝑀 

(2.1) 

where 𝛽 is the propagation constant, 𝑛𝑐𝑜𝑟𝑒  is the core index, and 𝑛𝐹𝑆𝑀  is the effective 

cladding index. It is sometimes referred to as the fundamental space-filling mode of the   

infinite cladding of a photonic crystal. If case of a silica fiber 𝑛𝑐𝑜𝑟𝑒 is reduced to the 
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index of silica. If the value of 𝑛𝑒𝑓𝑓 is less than 𝑛𝐹𝑆𝑀, light could be radiated from the 

core, so it is utmost important to determine the cladding effective index, 𝑛𝐹𝑆𝑀 accurately. 

Value of 𝑛𝐹𝑆𝑀  is determined by applying the full-vector finite element method 

(FEM) to the so-called elementary piece of the cladding that acts like a boundless 

propagation medium [76]. Conditions for Perfectly Magnetic Conductor (PMC) and 

Perfectly Electric Conductor (PEC) are applied to the boundary of the elementary piece. 

The elementary piece of the cladding used to compute 𝑛𝐹𝑆𝑀 is shown in Figure 2.1.  

 

 

Fig. 2.1 Elementary piece of cladding used to compute 𝑛𝐹𝑆𝑀.  

The boundary conditions used to compute 𝑛𝐹𝑆𝑀 are summarized in Table 2.1.  

Table 2.1  

Boundary conditions used to compute 𝑛𝐹𝑆𝑀. 

Boundary  

Polarization Γ1 and Γ3 Γ2 and Γ4 

PMC PEC x 

PEC PMC y 

2.5.2 Dispersion 

Dispersion is due to the different propagation speeds for each of the spectral components, 

and this causes a pulse to spread. The temporal broadening of the pulse propagating 

through a fiber can cause significant signal distortions. In general, the source of 

dispersion in fibers is not individually determined. However, the contribution to the 

Elementary piece 

boundary 

Air hole 

HDPE 

Γ2 Γ4 

Γ3 

Γ1 
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dispersion in the single-mode fiber with no birefringence is set only by the fiber’s 

material dispersion and the waveguide dispersion, as the modal and polarization mode 

dispersion are zero. Often, the fiber material is chosen from dielectrics with low 

dispersion (i.e. almost constant refractive index across the frequency range of interest).  

In the THz range, a few examples of polymers with low dispersion have been 

measured such as ultrahigh-molecular-weight polyethylene, Zeonex, and Topas. In a high 

index-guiding fiber the material dispersion is unavoidable. Therefore, to further reduce 

the overall dispersion in this fiber, not only the fiber has to be made of a low-dispersion 

dielectric, the choice of the geometry of the structure of the fiber must also be optimized 

to minimize the waveguide dispersion over a wide frequency bandwidth. Meanwhile in a 

hollow core fiber, where the material dispersion is negligible, the configuration of the 

cladding structure plays an important role in influencing the characteristics of waveguide 

dispersion.  

To quantify the dispersive behavior of the fundamental mode in a fiber, the 

propagation constant of the mode can be expanded in a Taylor series about the center 

frequency 𝜔0, 

 
𝛽(𝜔) = 𝛽0 + 𝛽1(𝜔 − 𝜔0) +

1

2
𝛽2(𝜔 − 𝜔0)2 + ⋯ 

(2.2) 

where 

 
𝛽𝑚 = (

𝑑𝑚𝛽

𝑑𝜔𝑚
)

𝜔=𝜔0

(𝑚 = 0,1,2, … ) 
(2.3) 

The parameters 𝛽1and 𝛽2 are related to the effective refractive index and its derivatives 

through the relations [12] 

 
𝛽1 =

1

𝑣𝑔
=

𝑛𝑔

𝑐
=

1

𝑐
(𝑛 + 𝜔

𝑑𝑛𝑒𝑓𝑓

𝑑𝜔
) 

(2.4) 

governs the group velocity 𝑣𝑔, of the pulse envelope in the waveguide, and 

 
𝛽2 =

𝑑

𝑑𝜔
(𝛽1) =

1

𝑐
(2

𝑑𝑛𝑒𝑓𝑓

𝑑𝜔
+ 𝜔

𝑑2𝑛𝑒𝑓𝑓

𝑑𝜔2
) 

(2.5) 

determines the temporal broadening of the pulse, better known as the group velocity 

dispersion (GVD). In the optical domain, it is often quoted in unit of 𝑝𝑠2. 𝑘𝑚−1. In this 

thesis, the GVD, 𝛽2 values for the THz fibers are quoted in ps. THz−1cm−1.  
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2.5.3 Endlessly Single-mode Fiber (ESMF) 

A photonic crystal fiber can support fundamental mode for all wavelengths or 

frequencies. This is known as the endlessly single-mode property of a PCF. To verify this 

property in the THz polymer PCF, it is important to parameterize the optical properties in 

terms of V parameter. The V parameter in the Step-index fiber is given by [77] 

 
𝑉 =

2𝜋𝑓

𝑐
𝑎√𝑛2

𝑐𝑜 − 𝑛2
𝑐𝑙 

(2.6) 

Where a is the core radius and 𝑛𝑐𝑜 and 𝑛𝑐𝑙  are core and cladding indices respectively. 

However, in case of PCF this equation is not valid because a, 𝑛𝑐𝑜 and 𝑛𝑐𝑙 are not clearly 

defined in a PCF.   By introducing a modified V parameter this problem can be solved. 

Which is given by [77] 𝑉𝑒𝑓𝑓 =
2𝜋𝑓

𝑐
𝑎𝑒𝑓𝑓√𝑛2

𝑒𝑓𝑓 − 𝑛2
𝐹𝑆𝑀 , where 𝑛𝑒𝑓𝑓  is the effective 

index of the fundamental mode, and 𝑛𝐹𝑆𝑀  is the effective cladding index known as 

fundamental space filling mode. Values of 𝑛𝐹𝑆𝑀   are determined by applying the full-

vector finite element method (FEM) to the so-called elementary piece in the cladding 

region [76]. Effective core radius  𝑎𝑒𝑓𝑓 is taken as  ᴧ √3⁄   [76].    

Since in a PCF 𝑉𝑒𝑓𝑓 tends to a constant at high frequencies, and that the limit 

decreases with decreasing hole size, if the holes are sufficiently small it is in principle 

possible that a fiber will remain single moded even at arbitrarily high frequencies [60]. In 

other words, for some high-index core PCFs, however small the wavelength is compared 

with the core size, only a single mode is guided. For example, in this study the solid-core 

THz PCF shown in Figure 3. is endlessly single mode for 𝑑 Λ⁄ < 0.65 regardless of 

𝑛𝑚𝑎𝑡 . Such fibers are called endlessly single-mode fibers (ESMF), and are one of the 

most exciting breed of photonic crystal fibers. 

The importance of ESMF is twofold. First, ESMF allow single-mode propagation 

over very broad wavelength ranges, and as we will see shortly this can be combined with 

very strong optical non-linearities, yielding the potential for non-linear interactions over 

broad wavelength ranges within the same spatial mode.    

Second, the possibility of creating an ESMF also implies that, for a given range of 

wavelengths, a solid-core PCF with an arbitrarily large core can be single mode, offering 

unprecedented possibilities. In the field of telecommunications or high-powered fiber 

lasers for example, where single-mode guidance is essential, at equal operating power 

levels larger cores result in lower power density, and thus lower non-linearities. In large-
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core fibers, light can be injected with higher power without the power density reaching 

levels at which non-linear effects become problematic - meaning that in telecom 

applications the distance between repeaters can be greatly increased, and in laser 

applications higher-powered lasers can be fabricated. Whilst PCFs have not so far been 

seriously considered for long-range telecom applications, recent demonstrations have 

used the fact that ESMF open up new single-moded wavelength ranges to multiplex 

signals across the infrared and visible spectra to yield ultra-high bandwidth transmission. 

2.5.4 Effective Mode Area 

Effective mode area is another important parameter of PCF. It is the quantitative measure 

of area that a fiber mode covers in transverse dimension. Effective mode area is the 

effective measure of area in which fundamental mode is confined during propagation of 

light in fiber. The effective mode area is expressed as [78] 

 
𝐴𝑒𝑓𝑓 =

(∬ |𝐸|2 𝑑𝑥𝑑𝑦)2

∬ |𝐸|
4

𝑑𝑥𝑑𝑦
 

(2.7) 

where E is the electric field amplitude. The integration is done not only over the core 

area, but over the whole plane. For optical nonlinearities in PCF effective mode area is 

the major parameter that is to be considered. Undesirable nonlinear impairments can be 

suppressed by large mode area in PCF. Optical nonlinearities always depend on the 

power density inside the device. Therefore, for a fixed power, the higher the effective 

area, the lower will be the effect of nonlinearities. One of the ongoing challenges in PCF 

structure designing is the design of structures having small mode areas that lead to a high 

nonlinear coefficient. Various approaches are used to obtain desired effective mode area 

like varying the size of the air holes in the cladding region, varying hole-to-hole spacing 

[80]. For a fixed pitch it is possible to increase the effective area significantly by 

narrowing the air-holes or by enlarging the pitch for a fixe 𝑑 Λ⁄  value.  

In the photonic crystal fiber structure by Ademgil et al. [80] it is clear that effective mode 

area increases steadily with the increases in wavelength. It can be also noted that with 

increasing hole to hole spacing effective mode area is increasing. This would contribute 

to increase the nonlinearities produced by power dependence refractive index.    
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2.5.5 Non-linearity 

The nonlinear effects in optical fibers mainly originate from nonlinear refraction, which 

is a phenomenon that refers to the intensity dependence of the refractive index. Nonlinear 

coefficient (𝛾) is directly proportional to nonlinear refractive index (n2) and inversely 

proportional to the effective area (Aeff). Non-linear coefficient of the analyzed PCF is 

evaluated based on the following equations [81]:  

 
𝛾 =

2𝜋𝑐𝑛2

𝜆𝐴𝑒𝑓𝑓
 

(2.8) 

Thus nonlinearity decreases with wavelength while effective mode area increases with 

wavelength Poli et al. [62] and Saitoh et al. [81].  

The high index contrast of PCFs allows the fabrication of fibers with very small 

cores [20] in which light can be confined within a cross-sectional area nearly two orders 

of magnitude smaller than in conventional PCFs. This means that for the same input 

power the power density is nearly two orders of magnitude higher. Highly non-linear 

PCFs enable the propagation of light with very strong non-linear coefficients over long 

propagation lengths, meaning that non-linear effects could now be achieved over shorter 

fiber lengths or using lower powers. But making smaller core sizes than 1 µm in diameter 

i.e. when the core is much smaller than the wavelength the evanescent tail of the mode 

grows in size and the light is less confined, so that for a given index contrast there is an 

optimum core size to maximize the non-linear effects [82]. However, the unusual 

dispersion properties of PCFs and their ability to remain single moded over very large 

ranges that really opened up entirely new possibilities, such as supercontinuum (SC) 

generation or fiber-based broadband parametric conversion. 

2.5.6 Bending Loss 

Bending can increase the attenuation of an optical fiber by two mechanisms: 

macrobending and microbending. Macrobending of an optical fiber is the attenuation 

associated with bending or wrapping the fiber. Light can leak out from a fiber when the 

fiber is bent. As the bend becomes more acute, more light leaks out. However, calculation 

of bending loss of the THz PCF cannot be performed directly. Therefore, an approximate 

analytical method is used [83] 
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𝛼 =
1

8
√

2𝜋

3

𝛬2

𝐴𝑒𝑓𝑓

1

𝛽𝛬

1

√
2
3

𝑅
𝛬

𝑉3

(𝛽𝛬)2

𝑒𝑥𝑝 (−
2

3

𝑅

𝛬

𝑉3

(𝛽𝛬)2
) 

(2.9) 

In Equation 2.9, R is the bending radius,  𝐴𝑒𝑓𝑓 is the effective area of the fundamental 

mode [78], and 

 
𝑉 = 𝛬√𝛽2 − 𝛽𝑐𝑙

2
 

(2.10) 

is the effective V parameter of the PCF [84]. The propagation constant 𝛽 is defined as 

 
𝛽 =

2𝜋𝑛𝑒𝑓𝑓

𝜆
 

(2.11) 

where 𝑛𝑒𝑓𝑓 is the effective index of the fundamental mode. 

2.5.7 Power Fraction 

The power fractions of the mode power in the fiber core which consists of the polymer 

material and some air holes can be defined as follows [85]:  

 
𝐹𝑥 =

∫ 𝑥 𝑆𝑧𝑑𝐴

∫ 𝑎𝑙𝑙 𝑆𝑧 𝑑𝐴
 

(2.12) 

where is the time average pointing vector in the z direction, the subscript x represents the 

calculated region (polymer material i.e. HDPE and cladding air-holes), and all refers to 

the region of all the parts of the THz PCF.  
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CHAPTER 3 

MODAL ANALYSIS OF POLYMER PCF 

 

3.1 Structural Details 

The cross section of a triangular THz PCF is shown in Fig.3.1. Small circles denote air 

holes and except the circles the whole region is the background material, high density 

polyethylene (HDPE) of which the refractive index is 1.528 in THz frequency region. It 

contains 4 rings, each having 6×n number of air holes (where n=1, 2, 3, 4 introduces 

number of rings). The period and the diameter of holes are represented by 𝛬  and d, 

respectively.  

 

Fig. 3.1 Cross sectional view THz PCF. 

3.2 Methods Adopted  

A single mode polymer PCF having four rings of air holes in the cladding in a triangular 

lattice will be designed using COMSOL Multiphysics version 4.2 for THz guidance. The 

diameter of all air holes in different rings will be kept equal for the simplicity of design. 

A full vector finite element method will be used to analyze various modal properties as 

functions of frequency. In all the calculations, anisotropic perfectly matched layer (PML) 

will be assumed outside the outermost ring of the air holes to reduce reflections.  

Solutions of fundamental space filling (FSM) mode, loss characteristics, nonlinearity and 

effective area, power fraction in different regions of the PCF with the variation of 

HDPE 

Air hole 

d 

𝛬 
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different structural parameters will be investigated. The proposed structure will be 

analyzed for polymer material high density polyethylene (HDPE) due to its broad 

transparency window and mature fabrication technology. 

3.3 Mode Details and Properties 

3.3.1 Field Distribution of Core Mode 

 

(a)        (b) 

Fig. 3.2 Electric field distribution of the fundamental mode of the THz PCF for 𝑑 Λ⁄ = 0.4, (a) 

for 1 THz (b) for  0.6 THz. 

Figure 3.2 shows the dominant electric-field distribution of the fundamental mode for 

frequencies 1 THz and 0.6 THz respectively when 𝑑 Λ⁄ = 0.4. The light is more strongly 

confined in the core region of the THz PCF when the frequency is 1 THz. Further 

increase in frequency enhances the modal confinement. The obtained phenomenon is 

same as reported in [56].  

 

(a)     (b) 

Fig. 3.3 Contour plot of the electric field pattern of the fundamental mode of the THz PCF for 

𝑑 Λ⁄ = 0.4, (a) for 1 THz (b) for 0.6 THz. 
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From figure 3.3 it is evident that the field pattern is dominated by minima occurring at 

the six nearest air holes but spreads out from the defect (core) and slightly interacts with 

the second ring of air holes when the frequency is 1 THz.  At 0.6 THz, field spreads out 

and interacts with the polymer (HDPE) cladding in the region beyond the first ring of air 

holes and the interaction is visible up to the fourth ring of the air holes. The calculate 

field pattern for 1 THz is in good argument with the measurement [9]. Further increase in 

frequency and 𝑑 Λ⁄  ratio confine the light absolutely in the defect (core), which is shown 

in Figure 3.4.   

 

Fig. 3.4 Contour plot of the electric field pattern of the fundamental mode of the THz PCF for 

𝑑 Λ⁄ = 0.8 at 10 THz. 

                        

(a)       (b) 

Fig. 3.5 Transverse electric field vector distributions of fundamental of the THz PCF for  𝑑 Λ⁄ =

0.4,  (a) for 1 THz (b) 0.6 THz. 

Transverse electric field vector distributions of the fundamental mode of the THz PCF 

are presented in Figure 3.5 for frequencies 1 THz and 0.6 THz respectively, when 𝑑 Λ⁄ =

0.4 . A more uniform vector pattern is noted in case of 1 THz frequency. The 

corresponding magnetic field vector distributions for the same parameters are shown in 

Figure 3.6. 
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(a)       (b) 

Fig. 3.6 Transverse magnetic field vector distributions of fundamental of the THz PCF for  

𝑑 Λ⁄ = 0.4,  (a) for 1 THz (b) 0.6 THz. 

3.3.2 Fundamental Space filling mode (FSM) 

According to sub-section 2.5.1, values of fundamental space-filling mode can be 

determined by applying the full-vector finite element method (FEM) and conditions for 

Perfectly Magnetic Conductor (PMC) and Perfectly Electric Conductor (PEC) as 

presented in Table 2.1 to the so-called elementary piece of cladding that acts like a 

boundless propagation medium [76]. Figure 3.7 shows an element division profile of the 

elementary piece. 

 

Fig. 3.7 Element division of the elementary piece. 

Γ4 Γ2 

Γ1 

Γ3 
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Fig. 3.8 Normalized electric field for fundamental space-filling mode at 2 THz and 𝑑 Λ⁄ = 0.55. 

Figure 3.8 shows the simulated normalized electric field distribution for fundamental 

space filling mode at 2 THz. As it is clear that the light is guided by the higher index 

portion i.e. HDPE and there is no light in the air hole portions of the elementary piece.  

3.3.3 Structural dependence of modal properties 

 

Fig. 3.9 Effective mode indices as a function of frequency for filling factor,  𝑓 = 0.4. 

Variations in structural parameters, especially the air hole pitch 𝛬  and the air hole 

diameter d affect the properties of the THz PCF. The ratio of 𝑑 Λ⁄  is also known as the 

air filling factor, f or simply filling factor.  Variations of the effective indices for a wide 

frequency range up to 10 THz for both the fundamental mode and fundamental space 

filling mode for 𝑑 Λ⁄ = 0.4 are shown in Figure 3.9. It can be noted that for both the 

modes the effective indices increase monotonically as the frequency increases and the 

effective index of the fundamental mode is greater than that of the space filling mode. 
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This satisfies the condition [76] 𝑛𝑐𝑜𝑟𝑒 > 𝑛𝑒𝑓𝑓 =
𝛽

𝑘0
> 𝑛𝐹𝑆𝑀 for the propagation of light in 

an index-guided PCF. 

 

Fig. 3.10 𝑛𝑒𝑓𝑓 and  𝑛𝐹𝑆𝑀 for different filling factors,  f. 

From the earlier figure it is evident that, for a specific 𝑑 Λ⁄  i.e. filling factor the effective 

index of the fundamental mode is greater than that of the space filling mode. In this case, 

varying filling factor i.e. 0.4 and 0.55 the same result is obtained and it is shown in fig. 

3.10. Hence a conclusion can be drawn that the effective index of the fundamental mode 

is greater than that of the space filling mode, regardless to the fiber parameters. The 

results obtained are same as [86].  

 

Fig. 3.11 Effective index of the Fundamental space filling mode for the THZ 

PCF with different filling factors,  f. 
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In Figure 3.11, we report the curves of indices of fundamental space filling mode (𝑛𝐹𝑆𝑀) 

as a function of frequency for different filling factors. Values of 𝑛𝐹𝑆𝑀 are determined by 

applying the full-vector finite element method (FEM) to the so-called elementary piece in 

the cladding region [76]. It is known from [86] that, the effective indices of the space 

filling mode decrease by increasing filling factor or increasing the wavelength. In this 

case, as the frequency increases indices of the space filling mode increases and decreases 

as filling factor increases.   

 

Fig. 3.12 Dispersion as a function of frequency for various filling factors,  f.  

  

Fig. 3.13 Dispersion profile for the THz PCF with Λ = 500 µm and filling factor, 𝑓 = 0.4. 
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Figure 3.12 shows  the curves of dispersion parameter β2 (ps/THz.cm) of the fundamental 

mode of the THz PCF for various 𝑑 Λ⁄  with same pitch,  Λ = 500 µm.  As it can be 

observed, with the increase of filling factor i.e. 𝑑 Λ⁄  the  positive peak increases and a 

flat dispersion profile is noticed when 𝑑 Λ⁄  decreases. Above the  ZDF each figure shows 

a flat dispersion property in the high frequency range and below the ZDF, β2 increases 

sharply as the frequency decreases and maximum reaches to near 4.975 ps/THz.cm when 

the frequency is lowest i.e. 0.2 THz.  Moreover, the demonstrated curves indicate that β2 

is negative i.e. anomalous dispersion and close to zero at broad band.  The above 

observations are fairly matched with [77], [87-89]. The flattened dispersion behavior of 

the THz PCF is presented by figure 3.13 which is comparable to [77]. 

 

Fig. 3.14 Effective Area as a function of frequency for different filling factors,  f. 

 

Fig. 3.15 Effective area as a function of wavelength for different filling factors,  f.  
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Figure 3.14 and 3.15 show the effective mode area of the fundamental mode of the THz 

PCF as a function of both frequency and wavelength for different filling factors, f. It can 

be noted that the effective mode area steadily decreasing with the increment of frequency. 

Since the confinement of fundamental mode increases as the frequency increases [56] the 

effective mode area decreases. Analyzing the effect of filling factor i.e. 𝑑 Λ⁄  on effective 

mode area it is worth mentioning that with the increase of filling factor effective mode 

area further decreased. Increase of filling factor means increasing the air hole size since 

Λ is restricted to 500 µm, the mode becomes more confined, and hence the effective area 

reduces [90]. The calculated 𝐴𝑒𝑓𝑓 of the THz PCF are comparable to those in [91].  

 

Fig. 3.16 Nonlinearity parameter as a function of frequency for various filling factors,  f.   

Variation of nonlinear coefficient as a function of frequency is presented in figure 3.16. 

As showed in Equation (2.8) the nonlinear coefficient is inversely proportional to the 

effective area, large effective mode area leads to small nonlinear coefficient [92]. The 

numerically calculated values of nonlinearity parameter of the THz PCF are close enough 

to [93].  

The frequency dependence of the bending loss is also calculated and shown in Figure 

3.17. For a small bending radius the loss is high, while it is reduced for increased bending 

radius. This is because, when the bending is increased, radius of the curvature of the bent 

portion is reduced [94]. Therefore, bending loss should be high at the lower values of 

bending radius.  
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Fig. 3.17 Bending Loss as a function of frequency for filling factor, 𝑓 = 0.55. 

 

Fig. 3.18 Bending loss as a function of bending radius for different filling factors,  f when 

frequency is restricted to 1 THz. 

Figure 3.18 is presented in favor of this argument as a function of bending radius for 

different filling factors when the frequency is restricted to 1 THz. The obtained curves 

are comparable to [95]. It is also noted that with the increase of filling factor bending loss 

tends to decrease. Increasing of filling factor means to increase the air hole diameter, 

since pitch is fixed to 500 µm. Hence confinement of mode power increased and 

therefore the loss reduces.    
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By introducing a modified V parameter [77] the endlessly single-mode property for the 

THz PCF is determined. Values of fundamental space-filling mode are determined by 

applying the full-vector finite element method (FEM) to the so-called elementary piece in 

the cladding region [76]. Effective core radius  𝑎𝑒𝑓𝑓 is taken as  ᴧ √3⁄  [76].  

 

Fig. 3.19 Normalized V parameters of the THz PCF for various filling factors,  f.    

Figure 3.19 shows the results obtained from numerical simulations of V parameter for 

various filling factors when Λ = 500 µm. The inset shows the values of filling factor f.  

𝑉𝑒𝑓𝑓 is normalized to π. The proposed THz PCF is an endlessly single mode waveguide 

up to 3 THz and when filling factor is less than 0.65, a single-mode property up to 10 

THz is noticed. The THz PCF can support only a single mode over a broad spectral range 

that can be used in situations where several wavelengths are required in the same fiber, 

such as in frequency-doubling applications [9]. In simulation it is noticed that, even for 

larger values of 𝑑 Λ > 0.65⁄ , the fiber behaves as endlessly single moded, and this is for 

two reasons. First, the cut-off wavelength of the second mode can be shorter than any 

realistic wavelength that will be used in the fiber. Second, even when there are a few 

higher-order modes, in many circumstances their propagation constants are substantially 

different from those of the fundamental mode, meaning coupling between fundamental 

and higher-order modes due to micro-bends or other perturbations is close to impossible. 

This means that if light is injected in the fundamental mode of the fiber it will stay in the 

fundamental mode, which is not the case for lower contrast index fibers. Experimentally, 
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it is relatively easy to couple most of the light into the fundamental mode rather than 

higher-order modes. 

  

Fig. 3.20 Power fraction in cladding air-holes as a function of frequency for different filling 

factors,  f.     

 

Fig. 3.21 Power fraction in HDPE as a function of frequency for different filling factors,  f.     

The power fraction of the mode power in the fiber core which consists of the polymer 

material and some air holes is determined using Equation (2.12). Figure 3.20 and 3.21 

illustrate the fractional power in the cladding air holes and in the polymer material i.e. 

HDPE respectively as a function of frequency for different filling factors. As it is noted 

that, power fraction in cladding air-holes is reducing slowly with the increase of 
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frequency, while the opposite case occur for polymer material. In case of cladding air-

holes power fraction increase as the filling factor increases. Since increment in filling 

factor means the diameter of air-hole is increased, and comparatively more power will be 

available in the air-holes. More power in air-holes confirms lower power in polymer 

material. Hence, again an opposite scenario in case of increasing filling factor is noticed. 

Both the effects are demonstrated in Figure 3.22. 

 

Fig. 3.22 Power fraction in both HDPE, and cladding air-holes as a function of frequency for 

different filling factors,  f.     
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CHAPTER 4 

THEORIES OF SUPERCONTINUUM GENERATION 

 

Supercontinuum (SC) generation in photonic crystal fiber (PCF) is a very hot research 

topic, and quite a number of theoretic and experimental investigations have been reported 

in recent years [20], [96, 97]. The interaction of intense (high power) pulses with a 

nonlinear optical medium such as Photonic Crystal Fiber (PCF) with high nonlinearity 

and suitable dispersion characteristics can lead to considerable broadening of the pulse 

spectrum at the end of the medium. The resulting spectrum can exceed several hundreds 

of nanometers, which is commonly referred to as supercontinuum (SC). When a pump 

laser with defined initial characteristics propagates through a length of fiber, the 

nonlinear processes in an optical fiber occur. The main nonlinear effects involved in the 

SC generation process include self-phase modulation (SPM), four-wave-mixing (FWM) 

or modulation instability (MI), Raman scattering, and the Soliton related effects (Soliton 

formation, Soliton propagation and break-up, Soliton self-frequency shift (SSFS), 

dispersive wave generation, Soliton or dispersive wave trapping. The parameters of the 

input pump laser and the properties of the fiber itself determine what kind of nonlinear 

effect would take place and the form of the output. Different conditions would result in 

distinct SC generation processes. In order to control the SC generation progress, not only 

the parameters of the pump source (pump wavelengths, pulse duration, and the pump 

power level) but also the properties of fiber (the material of fiber, geometry parameters) 

should be carefully considered. The conjunction of an optimized pump source with the 

matched fiber could yield the desired SC. Theoretically there are countless lasers that 

could be used as the pump sources. However, the available pump lasers are limited in 

practice, especially for the purpose of engineering. While the properties of the fiber, 

especially the dispersion property, also have notable influence on the SC generation 

progress. Thus designing a fiber to match a given pump source is more like a feasible 

solution [98].  

 Up to now, femtosecond, picosecond or even the continuous wave (CW) lasers 

have been used as the SC pumps. The femtosecond laser-pumped SC usually exhibits a 

broadband continuum range due to the high pulse peak power and short pulse duration, 
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while the system of the femtosecond pump source itself is complex [99]. The CW-

pumped SC could obtain a high average power and high spectral power density output 

[40]. However, compared with the pulse-pumped SC, the CW-pumped SC has a 

relatively narrow spectral range. In fact, the picosecond fiber laser is an ideal SC pump 

source. On the one hand its high pulse peak power is helpful for exciting the nonlinear 

effects [101, 101].  The widest spectra are obtained when the pump pulses are launched 

close to the zero-dispersion wavelength. Supercontinuum generation, first observed in 

1970 by Alfano and Shapiro in bulk borosilicate glass [13, 14]. The characteristics of 

PCFs that have made it a potential candidate for SC generation relate to their freedom in 

design, guidance properties that yield single-mode propagation over broad wavelength 

ranges sometimes referred to as endlessly single mode operation, their enhanced modal 

confinement i.e. small effective area, and therefore elevated nonlinearity, and the ability 

to engineer their group velocity dispersion.   

4.1 Conventional light source and Supercontinuum Source 

Supercontinuum light can be best described as ‘broad as a lamp, bright as a laser’. 

Incandescent and fluorescent lamps, such as those made from tungsten halogens or 

xenon, provide a very broad spectrum, typically 400 nm to 1700 nm, but the intensity is 

limited to the quality of the filament or the efficiency of the gas excitation. Furthermore, 

as the light is not spatially coherent, coupling the light into the fiber is a challenging 

affair, resulting in a low-power, and low brightness source with mediocre beam quality. 

Lasers on the other hand have high spatial coherence and very high brightness, which 

enables optimum coupling to a fiber and outstanding single-mode beam quality. 

However, lasers are usually monochromatic, and thus if more than one wavelength is 

required extra lasers a specific wavelengths are required to cover a broad spectrum. A 

supercontinuum source bridges this gap, providing an ultra-broadband white-light 

spectrum but with single mode beam characteristics and excellent pointing stability and 

the brightness of a laser.  

4.2 Applications of Supercontinuum Source 

1. The most straight-forward application for supercontinuum sources is a 

replacement for the common, and often tungsten-based, white-light sources used 
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in many characterizations setups like interferometer-based dispersion 

measurements, broadband attenuation characterization and numerous spectroscopy 

and microscopy setups. The major disadvantage to all incandescent sources is the 

low brightness, which is determined by the filament temperature (black body 

radiation).  Sources with higher output power utilize larger filaments with same 

brightness and the power that can be coupled to a single-mode fiber is therefore 

the same. Moreover, the efficiency of light coupling from the filament to the fiber 

is generally low, resulting in only a small fraction of the light being available in 

the fiber. The supercontinuum source solves both the brightness and coupling 

issue and it is possible to create sources with the spectral width of a tungsten lamp 

and the intensity of a laser.  

2. One of the most important applications of the SC sources is the optical coherence 

tomography (OCT). OCT requires has smooth spectra that variations of less than 

10 dB since spectral gap can affect the image quality and the measurement 

precision.  The spectral region between 1200 and 1500 nm is particularly 

important for the OCT as they provide high penetration depth in the biological 

tissue. The SC source obtained in PCFs with slow pulses around 1060 nm are 

particularly promising for the OCT, because the large flat spectrum mainly 

generated by SRS is very stable and can be filtered in order to select the desired 

wavelength range. Furthermore, high-output power density enables the ability to 

measure reflections from very weak reflectors. 

3. One of the most important applications of SC to the field of telecommunications 

is the design of multi-wavelength sources for ultra-broadband wavelength-

division-multiplexed (WDM) systems based on spectral slicing of SC generated 

by a single laser. By slicing the broad spectrum of the supercontinuum into 

hundreds of channels, and utilizing an optical time domain multiplexing (OTDM) 

technique for each channel, transmission bandwidth of terahertz can be achieved 

[101].  

4. Another applied field of SC is pulse compression and short pulse generation. 

When a fiber is pumped in the anomalous dispersion regime with a narrow-

spectrum laser, a series of short, low intensity solitons generated. On the other 

hand, nonlinear temporal compression has been for a long time a well-known 

technique for generating ultra-short pulses [102]. In this technique, the spectrum 
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of the signal is first nonlinearly broadened, and the chirp is then eliminated by a 

dispersion-compensating element. 

4.3 Physics of Spectral Broadening  

The techniques to generate supercontinuum in optical fibers are roughly divided into two 

categories. One is spectrum broadening by the pulse compression using soliton effects in 

an anomalous dispersion fiber. Another is the spectrum broadening by the accumulation 

of frequency chirping caused by optical Kerr effects in a normal dispersion fiber.   

The most common way to generate broadband SC in PCF using femtosecond 

pump pulses is to select a PCF with a zero dispersion wavelength (ZDW) which falls just 

below the laser wavelength. Because the dispersion is anomalous at the pump 

wavelength, the supercontinuum is dominated by soliton dynamics i.e. soliton-related 

propagation effects. The most importance of these in the initial stages is the soliton 

fission process, whereby a pulse with sufficient peak power to constitute a higher-order 

soliton is perturbed and breaks up into a series of lower-amplitude sub-pulses. Each of 

these pulses is, in fact, a constituent fundamental soliton. A higher-order soliton is a 

particular class of solution of the non-linear Schrodinger equation (NLSE) representing a 

bound state of N fundamental solitons [12, 103]. Such solutions propagate in a complex 

manner consisting of both spectral and temporal variations. The process is then followed 

by the Raman shifting of solitons and the associated generation of dispersive waves from 

each ejected fundamental soliton due to the effect of higher-order dispersion. It is the 

phase-matching condition that determines the spectral position of dispersive wave. 

Afterwards, the soliton self-frequency shift extends the broadening to the infrared side of 

the spectrum while trapped dispersive waves into short-wavelength region. Recent 

numerical studies by Travers et al. [103, 104], and Mussot et al. [105] have provided 

further insight into this dynamics, and explicitly demonstrated that four-wave mixing 

and/or Raman scattering dominate the initial steps of SC generation with long pulses, 

leading to symmetrical broadening of the pump spectrum. Subsequent soliton formation 

and breakup which are subject to the peak power and dispersion values takes place, and 

Raman self-scattering can then lead to a long-wavelength soliton continuum. However, 

soliton dynamics are extremely sensitive to pump pulse fluctuations. Small fluctuations in 

the pump amplitude or phase from shot to shot can cause significant fluctuations in 
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spectral intensity and phase of the resulting supercontinuum. These fluctuations are 

averaged out over thousands of pulses when viewing the spectrum on a spectrometer, so 

the spectrum may appear smooth, but in reality there may be large deviations from this 

average in each pulse. This fluctuation in spectral intensity and phase translates into loss 

of spectral coherence. Spatial coherence is usually found to be very high, particularly 

when the source involves a single-mode fiber. On the other hand, the high spectral 

bandwidth suggests the very low nature of the temporal coherence [106]. 

 

4.4 Mechanisms responsible for Supercontinuum Generation 

The physical processes behind the supercontinuum generation in fibers can be very 

complex, depending particularly upon the chromatic dispersion and length of the fiber 

which we are using, the pulse duration, the initial peak power and wavelength of the 

pump. When the femtosecond pulses are used, the spectral broadening can be caused by 

self-phase modulation. In the dispersion the combination of self-phase modulation and 

dispersion can lead to Soliton solution dynamics, including the split-up of higher-order 

solitons into large number of multiple fundamental solitons (soliton fission). For pumping 

with picoseconds, ultra shot or nanosecond pulses, Raman scattering and four- wave 

mixing can be important. Supercontinuum generation is even possible with continuous-

wave beams, when using small laser beams in long fibers; Raman scattering and four-

wave mixing are very important in that regime.  

4.4.1 Self-Phase Modulation  

An interesting manifestation of the intensity dependence of the refractive index in 

nonlinear optical media occurs through self-phase modulation (SPM), a phenomenon that 

leads to spectral broadening of optical pulse [12] arising from the intensity dependent 

refractive index. 

 𝑛 = 𝑛0 + 𝑛2𝐼 (4.1) 

where 𝑛0 the linear refractive index and 𝑛2 is is the nonlinear index. The higher intensity 

portions of the optical pulse gives a higher refractive index when compared with that of 

the lower intensity portions when it travels through the fiber. In fact time varying signal 

intensity produces a time varying refractive index in the medium that has an intensity 
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dependent refractive index. The leading edge will experience a positive refractive index 

gradient (𝑑𝑛 𝑑𝑡)⁄  and trailing edge a negative index gradient (−𝑑𝑛 𝑑𝑡)⁄ . This temporal 

variation in refractive index changes results in a temporally varying phase change. Since 

this nonlinear phase change is self-induced and the nonlinear phenomenon responsible 

for it called as the self-phase modulation (SPM). Different parts of the pulse undergo 

different phase shift because of the intensity dependence of phase fluctuations. This 

results in the frequency chirping. The rising edge of the pulse finds that the frequency 

shift in the upper side whereas the trailing edge of the pulse finds that the frequency shift 

in the lower side. Hence the effect of the self-phase modulation is to broaden the 

spectrum of the pulse, keeping the temporal shape (time domain) unchanged. The 

broadening of the spectrum without any change in temporal distribution in case of self-

phase modulation while in case of dispersion, there is broadening of the pulse in time 

domain and spectral contents are unaltered. In other words the SPM by itself leads only to 

chirping, regardless of the pulse shape. It is the dispersion that is responsible for pulse 

broadening. The SPM induced chirp modifies the pulse broadening effect of dispersion 

after propagating a distance L can be written as follows [12]. 

 
∅𝑁𝐿

𝑆𝑃𝑀 =
2𝜋𝐿

𝜆
𝑛2𝐼(𝑡) 

(4.2) 

The corresponding phase shift is [12] 

 
𝛿𝑁𝐿

𝑆𝑃𝑀 = −
𝑑

𝑑𝑡
(∅𝑁𝐿

𝑆𝑃𝑀) = −
2𝜋𝐿

𝜆
𝑛2

𝑑𝐼(𝑡)

𝑑𝑡
 

(4.3) 

4.4.2 Soliton formation 

4.4.2.1 Fundamental Soliton 

Soliton refers to the special kinds of wave packets that can propagate undistorted over 

long distances i.e. invariance along fiber length or follow a periodic evolution pattern. A 

fundamental soliton is an optical pulse which can propagate in a dispersive medium with 

a constant shape of the temporal intensity profile without any temporal broadening as is 

usually caused by dispersion. There are four parameters determine the nature of soliton. 

They are amplitude, frequency, position, and phase. In case of fundamental (first-order 

soliton) soliton the phase term can be dropped because a constant absolute phase has no 

physical significance. If a hyperbolic secant pulse, whose width 𝑇0 and the peak power 𝑃0 
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is launched inside an ideal lossless fiber, the pulse will propagate undistorted without 

change in shape for arbitrarily long distance. It is the feature of the fundamental soliton 

that makes them attractive for optical communication system [12]. The peak power 𝑃0 

required to support the fundamental soliton is 

 
𝑃0 =

⎸𝛽2 ⎸

𝛾𝑇0
2 ≈

3.11⎸𝛽2 ⎸

𝛾𝑇2
𝐹𝑊𝐻𝑀

 
(4.4) 

where the full width half maximum (FWHM) of the soliton is defined using 𝑇𝐹𝑊𝐻𝑀 =

1.76𝑇0, and 𝛽2 is the GVD parameter. 

4.4.2.2 Higher-Order Soliton 

Whereas fundamental solitons are usually fairly stable, higher-order solitons can break up 

into fundamental solitons under the influence of various effects, such as higher-order 

dispersion, Raman scattering etc. As the pulse propagate along the longitudinal direction 

(z-direction) of the fiber, it first contracts to a fraction of its original width, splits into two 

distinct pulses after some interval, and finally merges again to recover the shape at the 

end of the soliton period. The temporal and spectral changes result from an interplay 

between the SPM and GVD effects. The SPM generates a frequency chirp such that the 

leading edge of the pulse is red-shifted (a spectral shift towards higher wavelengths i.e. 

lower energy and frequency), while its trailing edge is blue shifted (a spectral shift 

towards lower wavelengths i.e. higher energy and frequency) from the central frequency.   

Anomalous GVD contracts the pulse as the pulse if positively chirped. Only the 

central portion of the pulse contracts because the chirp is nearly linear only over that part. 

However, as a result of substantial increase in the pulse intensity near the central part of 

the pulse, the spectrum changes significantly. Newly generated frequencies move towards 

the pulse center, so the pulse is compressed [12, 107].  In the case of a fundamental 

soliton (N=1), GVD and SPM balance each other in such a way that neither the pulse 

shape nor the pulse spectrum changes along the fiber length.  The soliton order is given 

by 𝑁2 = 𝐿𝐷 𝐿𝑁𝐿⁄  where 𝐿𝐷 and 𝐿𝑁𝐿 are the characteristic dispersive and nonlinear length 

scales. A fundamental soliton has soliton order N = 1, the dispersion length and nonlinear 

length are equal. 

In the case of higher-order solitons, SPM dominates initially but GVD soon catches up 

and leads to pulse contraction. Higher order solitons have N > 1, and in that case SPM 
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and dispersion are not exactly balanced. Unlike fundamental solitons they do not 

maintain their temporal and spectral shape during propagation, and instead periodically 

split and recombine over a distance known as the soliton period  𝑧0 = (𝜋 2)𝐿𝐷⁄  . The 

splitting of higher-order solitons is known as soliton fission. Such soliton fission process 

plays a crucial role in the process of supercontinuum generation in PCFs.    

4.4.3 Stimulated Raman scattering  

Stimulated Raman scattering (SRS) is an important nonlinear process that can turn optical 

fibers into broadband Raman amplifiers and tunable Raman lasers. It can also severely 

limit the performance of multichannel lightwave systems by transferring energy from one 

channel to the neighboring channels. Stimulated Raman Scattering is a photon-phonon 

interaction. The energy from an intense pump beam is shifted to lower frequencies 

(Stokes waves) through scattering from vibrational modes of the material molecules. 

Shifting of energy to higher frequencies (anti-Stokes waves) can also occur but is less 

efficient. It can be described quantum mechanically as scattering of a photon of energy 

ħωp by a molecule to a lower frequency photon with energy ħωst.  

 2𝜔𝑝 → 𝜔𝑎𝑠 + 𝜔𝑠𝑡 (4.5) 

where ωp, ωas and ωst being the frequency of the pump, anti-Stokes, and Stokes photons, 

respectively. In silica glass Raman scattering can occur over a broad range of frequency 

shifts, because the amorphous nature of the material means the molecular vibrational 

frequencies form a continuum. 

4.4.4  Four wave-mixing (FWM) 

In the anomalous GVD region of the material, a nonlinear effect called four wave mixing 

(FWM) can occur. It is the general name for many different processes arising from the 

interplay of dispersion and third order nonlinearity where frequency components 𝜔1, 𝜔2, 

and 𝜔3 existing in the pulse interaction with each other generating new frequencies 𝜔4 =

± ω1 ±  ω2 ± ω3 . Four-wave mixing processes are important in supercontinuum 

generation. One special case of four-wave mixing processes is modulation instability 

(MI) [12], where Waves with frequencies 𝜔  and 𝜔 ±  φ  interact producing spectral 

sidebands. Temporarily this corresponds to a break up of wave-form into train of pulses.  
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4.4.5  Higher Order Dispersion Parameter 

It’s well known that dispersion has a major impact in the performance of optical fiber 

systems, particularly when femtosecond pulses are propagated in the fiber core. For such 

ultrashort pulses, it has been recognized that the exact evaluation of the higher order 

dispersion coefficients is very important for the correct modeling. The dispersion 

coefficient is related to the refractive index and group velocity, 𝑣𝑔 through the relation  

[107]:  

 
𝐷(𝜆) =

𝑑𝛽1

𝑑𝜆
 

(4.6) 

where 𝛽1 = 𝑛𝑔 𝑐⁄ , is the inverse group velocity,  𝑛𝑔 the group index, λ the wavelength, 

and c the speed of light. It is known that [12] 

 
𝛽1 =

1

𝑣𝑔
=

𝑛𝑔

𝑐
=

1

𝑐
(𝑛 + 𝜔

𝑑𝑛

𝑑𝜔
) 

(4.7) 

now,  

 𝑑𝑛

𝑑𝜔
=

𝑑𝑛

𝑑𝜆

𝑑𝜆

𝑑𝜔
 

(4.8) 

and 

𝜔 =
2𝜋𝑐

𝜆
 

therefore, 

 𝑑𝜔

𝑑𝜆
=

𝑑

𝑑𝜆
(

2𝜋𝑐

𝜆
) = −

2𝜋𝑐

𝜆2
 

 

(4.9) 

Using (4.9) in Equation (4.8) 

 𝑑𝑛

𝑑𝜔
=

𝑑𝑛

𝑑𝜆

𝑑𝜆

𝑑𝜔
=

𝑑𝑛

𝑑𝜆
(−

𝜆2

2𝜋𝑐
) = −

𝜆2

2𝜋𝑐

𝑑𝑛

𝑑𝜆
 

(4.10) 

then from Equation (4.7), we get, 

 
𝛽1 =

1

𝑐
(𝑛 + 𝜔

𝑑𝑛

𝑑𝜔
) =

1

𝑐
(𝑛 − 𝜔

𝜆2

2𝜋𝑐

𝑑𝑛

𝑑𝜆
) 

 

(4.11) 

Thus, using (4.11) in (4.6) we have, 

𝐷(𝜆) =
𝑑𝛽1

𝑑𝜆
=

𝑑

𝑑𝜆
[
1

𝑐
(𝑛 − 𝜔

𝜆2

2𝜋𝑐

𝑑𝑛

𝑑𝜆
)] =

1

𝑐
[

𝑑

𝑑𝜆
(𝑛 − 𝜆

𝑑𝑛

𝑑𝜆
)] 
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=
1

𝑐
[
𝑑𝑛

𝑑𝜆
−

𝑑

𝑑𝜆
(𝜆

𝑑𝑛

𝑑𝜆
)] 

=
1

𝑐
[
𝑑𝑛

𝑑𝜆
− (𝜆

𝑑2𝑛

𝑑𝜆2
+

𝑑𝑛

𝑑𝜆
)] 

=
1

𝑐
[
𝑑𝑛

𝑑𝜆
− 𝜆

𝑑2𝑛

𝑑𝜆2
−

𝑑𝑛

𝑑𝜆
] 

 
𝐷(𝜆) =

𝑑𝛽1

𝑑𝜆
= −

𝜆

𝑐

𝑑2𝑛

𝑑𝜆2
 

 

(4.12) 

Equation 4.12 is strictly valid for a material medium; however, it is a common approach 

to substitute the material refractive index by the effective index for a non-homogeneous 

medium to calculate dispersion parameter. However, even if the material dispersion is 

taken into account during the calculation of the effective index at each wavelength, 

different results are obtained if the dispersion coefficient is calculated by substituting the 

material index by the effective index, as expressed by the formula [90]:    

 
𝐷(𝜆) = −

𝜆

𝑐

𝑑2𝑅𝑒(𝑛𝑒𝑓𝑓 )

𝑑𝜆2
 

(4.13) 

where Re [neff] is the real part of the effective refractive index. The dispersion obtained 

using Equation 4.13 is comprised of both material and waveguide dispersion since 

Sellmeier’s equation is considered while calculating of the effective refractive index of 

the propagating mode.   

In this work, using Equation 4.13, we calculate the dispersion and obtained the 

zero dispersion wavelength, and used these calculated values to obtain higher order 

dispersion coefficients that are used in the nonlinear Schrödinger equation for the 

simulation of the supercontinuum evolution.  After calculating the dispersion curve, the 

group velocity dispersion parameter and higher order dispersion terms, we use the 

calculated data to model the supercontinuum generation using the generalized nonlinear 

Schrödinger equation (GNLS). Since the inclusion of higher-order derivatives coming 

from the Taylor expansion of the propagation constant may lead to instabilities for some 

particular choice of the fiber and pulse parameters, we also investigated how the 

inclusion of higher order dispersion coefficients affect the evolution of the 

supercontinuum spectrum.  In case of propagation of ultra-short pulses higher order 

dispersion terms are also needed in order to have a more accurate model, in particular, 

those concerning with supercontinuum generation.  
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The higher order dispersion terms are calculated from [12, 107]:  

 
𝛽𝑛 =

𝑑𝛽𝑛−1

𝑑𝜔
 

(4.14) 

Second order dispersion can be calculated using Equation 4.14: 

𝛽2 =
𝑑𝛽1

𝑑𝜔
=

𝑑

𝑑𝜔
[
1

𝑐
(𝑛 + 𝜔

𝑑𝑛

𝑑𝜔
)] 

=
1

𝑐
(

𝑑𝑛

𝑑𝜔
+ 𝜔

𝑑2𝑛

𝑑𝜔2
+

𝑑𝑛

𝑑𝜔
) 

=
1

𝑐
(2

𝑑𝑛

𝑑𝜔
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𝑑2𝑛

𝑑𝜔2
) 

Using Equation 4.10: 
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1

𝑐
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𝛽2 = −

𝜆2

2𝜋𝑐2
(2

𝑑𝑛

𝑑𝜆
− 𝜆

𝑑2𝑛

𝑑𝜆2
) 

(4.15) 

Similarly, the third order dispersion (TOD) can be obtained as [108]  

𝛽3 =
𝑑𝛽2

𝑑𝜔
=

𝑑

𝑑𝜔
[
1

𝑐
(2

𝑑𝑛

𝑑𝜔
+ 𝜔

𝑑2𝑛

𝑑𝜔2
)] 

=
1

𝑐
[

𝑑

𝑑𝜔
(2

𝑑𝑛

𝑑𝜔
+ 𝜔

𝑑2𝑛

𝑑𝜔2
)] 

=
1

𝑐
(2

𝑑2𝑛

𝑑𝜔2
+ 𝜔

𝑑3𝑛

𝑑𝜔3
+

𝑑2𝑛

𝑑𝜔2
) 

=
1

𝑐
(3

𝑑2𝑛

𝑑𝜔2
+ 𝜔

𝑑3𝑛

𝑑𝜔3
) 
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 Using Equation 4.10 

  

=
1

𝑐
[3 (−

𝜆2

2𝜋𝑐

𝑑𝑛

𝑑𝜆
)

2

+ 𝜔 (−
𝜆2

2𝜋𝑐

𝑑𝑛

𝑑𝜆
)

3

] 

=
1

𝑐
[3

𝜆4

4𝜋2𝑐2

𝑑2𝑛

𝑑𝜆2
− 𝜔

𝜆6

8𝜋3𝑐3

𝑑3𝑛

𝑑𝜆3
] 

=
1

𝑐
[3

𝜆4

4𝜋2𝑐2

𝑑2𝑛

𝑑𝜆2
−

𝜆5

4𝜋2𝑐2

𝑑3𝑛

𝑑𝜆3
] 

 
𝛽3 = −

𝜆4

4𝜋2𝑐3
[−3

𝑑2𝑛

𝑑𝜆2
+ 𝜆

𝑑3𝑛

𝑑𝜆3
] 

(4.16) 

The terms 𝛽4 and higher orders can be likewise determined simply by taking the first 

derivative of the immediate previous value of β with respect to 𝜔.  

4.4.6 Nonlinearity Coefficient 

Nonlinear coefficient of PCF represents very important parameter during SCG analysis. 

Nonlinear coefficient (𝛾) is directly proportional to nonlinear refractive index (n2) and 

inversely proportional to the effective area (Aeff). Non-linear coefficient of the analyzed 

PCF is evaluated based on the following equations [81]:  

 
𝛾 =

2𝜋𝑛2

𝜆𝐴𝑒𝑓𝑓
 

(4.17) 

where 𝜆  is the pumping wavelength and it is taken as 1100 nm, 𝑛2  is the nonlinear 

refractive index and it is 2.7×10-20 m2/W for silica, and for polymer Topas 15×10-20 m2/W 

[109]. The effective mode area is expressed as [78] 

 
𝐴𝑒𝑓𝑓 =

(∬ |𝐸|2 𝑑𝑥𝑑𝑦)2

∬ |𝐸|
4

𝑑𝑥𝑑𝑦
 

(4.18) 

where E is the electric field amplitude. The integration is done not only over the core 

area, but over the whole cross-sectional domain. An important consequence of a small 

effective mode area is that the optical intensities for a given power level are high, so that 

nonlinearities become important. Also, small mode areas are usually the consequence of 

strong guiding, where bend losses and other effects of external disturbances are weak. 

The non-linearity can be achieved in any fiber is limited by its mode confinement. 

Significant higher values of 𝛾 can be achieved by combining tight mode confinement 

with the use of non-silica glasses with greater intrinsic material non-linearity coefficients 

than silica.   
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4.5 Numerical Model of Supercontinuum  

The supercontinuum generation process can be studied by solving the generalized 

nonlinear Schrodinger equation (GNLSE). It is important to incorporate dispersive effects 

and Raman scattering as accurately as possible. After generalizing it further including 

higher order dispersion parameters, the resulting equation can be expressed as [38]  

 𝜕𝐴(𝑧, 𝑡)

𝜕𝑧
+

𝛼

2
𝐴(𝑧, 𝑡) − ∑ 𝑖𝑘+1

𝛽𝑘

𝑘!
𝑘≥2

𝜕𝑘𝐴(𝑧, 𝑡)

𝜕𝑡𝑘

= 𝑖𝛾 (1 +
𝑖

𝜔0

𝜕

𝜕𝑡
)  

× [𝐴(𝑧, 𝑡) ( ∫ 𝑅(𝑡′)|𝐴(𝑧, 𝑡 − 𝑡′)|2𝑑𝑡′

∞

−∞

))] 

 

 

 
 

 

 

(4.19) 

where A (z, t) is the slowly varying envelope of the electric field of the optical pulse, 𝛼 

represents the photonic crystal fiber loss which can be neglected since only a short length 

of PCF is used,  𝛽𝑘  are the fiber dispersion coefficients at carrier frequency (center 

frequency) 𝜔0, and 𝛾 is the nonlinear coefficient and 𝐴𝑒𝑓𝑓 is the fiber effective area. k 

represents the order up to which dispersive effects are included. In this work we 

determine dispersion parameters from β2 to β12 at pumping wavelength. The nonlinear 

response function can be written as [38]   

 𝑅(𝑡) = (1 − 𝑓𝑅 )𝛿(𝑡) + 𝑓𝑅ℎ𝑅 (t) (4.20) 

which includes both instantaneous electronic and delayed Raman contributions, with 𝑓𝑅 is 

the experimentally evaluated contribution of the molecular resonances to the nonlinear 

refractive index n2 known as fractional Raman contribution and ℎ𝑅 (t) is the analytical 

form of response function termed as the delayed Raman response function and can be 

expressed as [38] 

 
ℎ𝑅 (𝑡) =

𝜏1
2 + 𝜏2

2

𝜏1𝜏2
2

𝑒
−

𝑡
𝜏2 sin

𝑡

𝜏1
 

(4.21) 

𝜏1 and 𝜏2 are Raman period and Raman lifetime and the inverse of these parameters give 

the phonon frequency and bandwidth of the Lorentzian line, respectively.  As an 

example, parameters (𝜏1, 𝜏2, and  fR ) of Silica PCF are summarized in Table 4.1. 
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Table 4.1 

Parameters of Silica PCF [12], [38] 

𝜏1  12.2 fs  

𝜏2 32 fs    

𝑓𝑅  0.18    

Supercontinuum generation dynamics can be roughly divided in four categories 

depending on the properties of the input pulse [12]. The first distinction is between 

pumping in the anomalous or normal GVD regime of the fiber. Typically the pulses are 

created in the anomalous GVD regime since it produces the broadest bandwidth [12]. The 

second distinction is between short and long input pulses. In this context, short means 

shorter than a picosecond pulse and long pulses can be in the range of picoseconds to 

nanoseconds or even a continuous wave.   

If we consider the anomalous GVD regime and short pump pulses, the spectral 

broadening arises from soliton dynamics. If N≥1, the high-order solitons are first 

broadened spectrally and compressed temporally. Then perturbations such as high-order 

dispersion and stimulated Raman scattering break the pulse into N distinct solitons. 

Similarly, a dispersive wave is generated through resonant transfer of energy across the 

zero-dispersion wavelength. As the fundamental solitons propagate, they shift to longer 

wavelengths through the Raman soliton self-frequency shift. The bandwidth of the pulse 

can still be broadened when the generated Raman soliton and dispersive waves couple 

through cross-phase modulation, which results in additional frequency components. 

Regarding pulses in the anomalous dispersion regime but with longer duration, the 

dominating effect in the pulse broadening is modulation instability which corresponds to 

the generation of spectral four-wave mixing parametric sidebands. The modulation 

instability breaks the initial pulse into many temporal sub-pulses. After that, the spectral 

broadening happens in the same way as with the fundamental solitons. However, if the 

pump pulse is too far in the anomalous GVD regime, the spectral broadening is reduced 

because the modulation instability dynamics do not generate wide enough bandwidth to 

seed dispersive wave transfer into the normal GVD regime. 

For short subpicosecond pulses in the normal GVD regime, the spectral 

broadening arises from the interaction of self-phase modulation and the normal GVD of 
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the fiber. That process leads to significant temporal broadening and thus a decrease of the 

peak power of the pulse, and therefore nonlinear effects only occur at the first few 

centimeters of propagation in the fiber. However, if the pump pulse is near the anomalous 

GVD regime, spectral content can be transferred into the anomalous region after the 

initial broadening. Following that the broadening is affected by soliton dynamics.  Longer 

pump pulses and continuous radiation in the normal GVD regime broaden mostly through 

four-wave mixing and Raman scattering. The pumping wavelength affects the emphasis 

of these two mechanisms. Near the zero-dispersion wavelength four-wave mixing 

becomes more important, and if the broadening overlaps with the zero-dispersion 

wavelength, soliton dynamics can again contribute to the spectral broadening. The main 

mechanisms in the supercontinuum pulse creation with different types of input pulses are 

summarized in Table 4.2. 

Table 4.2 

Main processes affecting the supercontinuum generation with short and long input pulses 

in the normal and anomalous GVD regimes 

GVD Pulse Processes 

anomalous Short Soliton dynamics, dispersive waves 

anomalous long Modulation Instability (MI), Soliton dynamics 

normal Short SPM, Soliton dynamics 

normal long FWM, Raman scattering, Soliton dynamics 

In the simulations used in this thesis, the input pulses are of the form of  

𝐴(0, 𝑡) = 𝑁√𝑃0 sech (𝑡
𝑇0

⁄ ) 

where P0 is the peak power of the input pulse and T0 is the pulse width related to the full 

width at the half maximum of the pulse through 𝑇𝐹𝑊𝐻𝑀 1.763⁄ . In addition to P0 and T0, 

the propagation distance in the fiber has been varied. The order of the solitons 

𝑁 =
𝛾𝑃0𝑇0

2

|𝛽2|
 

 is determined by both fiber and pulse parameters. If N>1, the higher order soliton 

dynamics determine the pulse broadening [12].    

The photonic crystal fiber loss which can be neglected since only a short length of 

PCF is used. Thus we have: 
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 𝜕𝐴(𝑧, 𝑡)

𝜕𝑧
− ∑ 𝑖𝑘+1

𝛽𝑘

𝑘!
𝑘≥2

𝜕𝑘𝐴(𝑧, 𝑡)

𝜕𝑡𝑘

= 𝑖𝛾 (1 +
𝑖

𝜔0

𝜕

𝜕𝑡
)  

× [𝐴(𝑧, 𝑡) ( ∫ 𝑅(𝑡′)|𝐴(𝑧, 𝑡 − 𝑡′)|2𝑑𝑡′

∞

−∞

))] 

 

 

 
 

 

 

(4.22) 

4.6 Solution of Generalized Nonlinear Schrodinger Equation Using 

Split Step Fourier Method 

The GNLS Equation 4.22 is a nonlinear partial differential equation that does not 

generally have any analytic solutions except for some specific case. A numerical 

approach is therefore often necessary for an understanding of the nonlinear effects in 

optical fibers. Split-Step Fourier Method is an extensive way to solve the pulse 

propagation problem in nonlinear dispersive media. This method is based around 

separating the dispersive and nonlinear components of the equation from one another. 

This assumes that over a very small distance these components may be assumed to be 

independent. So the nonlinear Schrödinger equation, including higher order dispersion, 

self-steepening, and Raman scattering, is expressed as: 

 𝜕𝐴(𝑧, 𝑡)

𝜕𝑧
= ∑ 𝑖𝑘+1

𝛽𝑘

𝑘!
𝑘≥2

𝜕𝑘𝐴(𝑧, 𝑡)

𝜕𝑡𝑘
+ 𝑖𝛾 (1 +

𝑖

𝜔0

𝜕

𝜕𝑡
)  

× [𝐴(𝑧, 𝑡) ( ∫ 𝑅(𝑡′)|𝐴(𝑧, 𝑡 − 𝑡′)|2𝑑𝑡′

∞

−∞

))] 

 

 

 

(4.23) 

Writing the Eq. (4.23) in the following form: 

 𝜕𝐴(𝑧, 𝑡)

𝜕𝑧
= (𝐷̂ + 𝑁̂)𝐴(𝑧, 𝑡) 

(4.24) 

where  

 
𝐷̂  = ∑ 𝑖𝑘+1

𝛽𝑘

𝑘!
𝑘≥2

𝜕𝑘𝐴(𝑧, 𝑡)

𝜕𝑡𝑘
 

(4.25) 

 

 

𝑁̂ =
𝑖

𝐴(𝑧, 𝑡)
 𝛾 (1 +

𝑖

𝜔0

𝜕

𝜕𝑡
)  × [𝐴(𝑧, 𝑡) ( ∫ 𝑅(𝑡′)|𝐴(𝑧, 𝑡 − 𝑡′)|2𝑑𝑡′

∞

−∞

))] 

 

(4.26) 

 𝐷̂  is a differential operator that accounts for dispersion and absorption and 𝑁̂  is a 

nonlinear operator that governs the effect of fiber nonlinearities on pulse propagation. In 
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general, dispersion and nonlinearity act together along the fiber length. But, following 

approximation is made in the split-step Fourier method: Within a small propagation 

distance, the dispersive and nonlinear effects act on the pulse independently. In the 

simulations presented in this work, we take three steps to describe the pulse propagation 

over one segment from 𝑧 to 𝑧 + ℎ. In the first step, dispersion effects act alone from 𝑧 to 

𝑧 + ℎ/2 and 𝑁̂ = 0; in the second step, the nonlinear effects are included in the middle of 

the segment, and they act alone from 𝑧 to 𝑧 + ℎ; in the third step, dispersion effects act 

alone from 𝑧 + ℎ/2 to 𝑧 + ℎ.  Mathematically this procedure can be expressed by Eq. 

(4.27):    

 
𝐴(𝑧 + ℎ, 𝑡) ≈ exp (

ℎ

2
𝐷̂) exp (∫ 𝑁̂(𝑧′)

𝑧+ℎ

𝑧

𝑑𝑧′) exp (
ℎ

2
𝐷̂) 𝐴(𝑧, 𝑡) 

(4.27) 

 Under further simplification of the integral, Eq. (4.27) is replaced by 

 
𝐴(𝑧 + ℎ, 𝑡) ≈ exp (

ℎ

2
𝐷̂) exp (

ℎ

2
[𝑁̂(𝑧) + 𝑁̂(𝑧 + ℎ)]) exp (

ℎ

2
𝐷̂) 𝐴(𝑧, 𝑡) 

(4.28) 

To evaluate the exponential operator exp (
ℎ

2
𝐷̂) we apply the following formula: 

 
exp (

ℎ

2
𝐷̂)  𝐴(𝑧, ℎ) = 𝐹𝑇

−1 {𝑒𝑥𝑝 [
ℎ

2
𝐷(−𝑖𝜔)] 𝐹𝑇[𝐴(𝑧, ℎ)]} 

(4.29) 

where 𝐹𝑇 stands for Fourier-transform operation, 𝐷(−𝑖𝜔) is the Fourier transform of 𝐷̂, 

and ω is the frequency in the Fourier domain. Using the same method, we obtain the 

electric field 𝐴(𝑧 + ℎ, 𝑡) at propagation distance 𝑧 + ℎ as Eq. (4.30) 

 
 𝐴(𝑧 + ℎ, 𝑡) = 𝐹𝑇

−1 {𝑒𝑥𝑝 [
ℎ

2
𝐷(−𝑖𝜔)] 𝐹𝑇[𝑋(𝑧, ℎ)]} 

(4.30) 

where 

 
 𝑋(𝑧, ℎ) = exp (

ℎ

2
[𝑁̂(𝑧) + 𝑁̂(𝑧 + ℎ)]) 𝐹𝑇

−1 {𝑒𝑥𝑝 [
ℎ

2
𝐷(−𝑖𝜔)] 𝐹𝑇[𝐴(𝑧, ℎ)]} 

 

(4.31) 

Two difficulties arise when we evaluate the electric field 𝐴(𝑧 + ℎ, 𝑡). First, 𝑁̂(𝑧 + ℎ) in 

the expression of 𝑋(𝑧, ℎ) is unknown, since it is a function of electric field 𝐴(𝑧 + ℎ, 𝑡). 

Second, the integral term in Eq. (4.26), which represents the delayed Raman scattering, is 

hard to evaluate directly.  To solve the first problem, we employ an iterative method 

𝑁̂(𝑧 + ℎ) in the expression of 𝑋(𝑧, ℎ) is initially replaced by 𝑁̂(ℎ) to estimate 𝐴(𝑧 +

ℎ, 𝑡), which can be used to evaluate 𝑁̂(𝑧 + ℎ). Knowing the value of 𝑁̂(𝑧 + ℎ), we can 

calculate the new value of 𝐴(𝑧 + ℎ, 𝑡) . The second problem can be settled by using 

convolution theory. The integral term in Eq. (4.26) is therefore expressed as: 
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∫ 𝑅(𝑡′)|𝐴(𝑧, 𝑡 − 𝑡′)|2𝑑𝑡′

∞

−∞

= ∫ 𝑅(𝑡′)|𝐴(𝑧, 𝑡 − 𝑡′)|2𝑑𝑡′

𝑡

0

 

= 𝑅(𝑡) ∗ |𝐴(𝑧, 𝑡)|2 

= 𝐹𝑇
−1{𝐹𝑇[𝑅(𝑡)]. 𝐹𝑇[|𝐴(𝑧, 𝑡)|2]} 

where 𝑅(𝑡) ∗ |𝐴(𝑧, 𝑡)|2) is convolution of 𝑅(𝑡) , |𝐴(𝑧, 𝑡)|2) called Raman convolution.  
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Chapter 5 

SUPERCONTINUUM GENERATION IN HYBRID 

POLYMER PCF 

 

5.1 Design of Hybrid Polymer PCF 

Though the combination of glasses with polymer photonic crystal fibers (PCFs) is a 

difficult and challenging task due to their different thermo-mechanical material properties 

[116], in this work we, make an endeavor for the supercontinuum generation in polymer 

photonic crystal fiber based on simulation technique for the first time to the best of 

knowledge. We report a hybrid polymer PCF with integrated silica glass layers of few 

nanometers at the outer surface of the air-holes. The integration of silica glass with 

polymer makes the polymer PCF nonlinear and provides a possibility to study the 

nonlinear pulse propagation in fiber and also to generate supercontinuum pulse.  

We investigated supercontinuum generation using a hexagonal PCF structure. 

Figure below illustrates the cross sectional view of the hybrid PCF (H-PCF). It contains 4 

rings, each having 6×n number of air holes (where n=1, 2, 3, 4 introduces number of 

rings).  

The parameters used for the PCF are: pitch Λ =2.1 µm, and different 𝑑 Λ⁄   ratios 

i.e. 0.5, 0.6, and 0.7 that give air hole diameters d=1.05 µm, 1.26 µm, and 1.47 µm 

respectively. It will be later clear that, with the increase in filling factor i.e. 𝑑 Λ⁄   the 

mode confinement enhanced and hence modal effective area decrease significantly and 

corresponding nonlinearity parameter increased. Since highly nonlinear medium is the 

prime requirement for supercontinuum generation, we make the selection of 𝑑 Λ⁄   ratio 

such that maximum nonlinearity is achieved. For this case, the maximum nonlinearity can 

be obtained selecting 𝑑 Λ⁄   ratios as 0.7 and for this specific ratio diameter of all air holes 

in different rings kept equal throughout the simulation process for supercontinuum 

generation, which makes the design simple and will reduce fabrication complexity.  
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(a) 

 

(b)  

Fig. 5.1 (a) Cross sectional view of hybrid polymer PCF (HP-PCF), (b) A single air hole with 

silica glass layer. 

5.2 Results and Discussion 
 

For the proposed hybrid polymer PCF structure wavelength dependent dispersion, 

corresponding zero dispersion wavelength, effective mode area, nonlinearity parameter, 

and higher order dispersion coefficients are calculated. From the dispersion curve shown 

in Figure 5.2, it can be seen that the two zero dispersion wavelengths are found for each 

curve having a peculiar 𝑑 Λ⁄  ratio. It is also noticeable that, zero dispersion wavelengths 

are completely at different locations. For higher 𝑑 Λ⁄  the zero dispersion wavelengths 

shift broader both in left and right positions and provides a flat region where the slope 

variation is negligible. The zero dispersion wavelengths for 𝑑 Λ⁄ = 0.7, found  at 960 nm 
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and 1750 nm for this structure and the pumping wavelength is chosen in the anomalous 

dispersion region in between two zero dispersion wavelengths and that  is 1100 nm.  

 

Fig. 5.2 Dispersion as a function of wavelength for different filling factors,  f. 

As it can be observed, the zero dispersion wavelength is different from [107]. However, 

since even a slight change in the hole size and the lattice pitch lead to significant changes 

in the dispersion, we did not make any attempt to match the data from the [107] by 

adjusting the fiber structural dimensions.   

        

     (a)                             (b) 

 

(c)  

Fig. 5.3 Electric filed distributions at 1100 nm when filling factor (a) 0.5  (b) 0.6 (c) 0.7. 
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Figure 5.3 shows the dominant electric-field distribution of the fundamental mode at the 

pumping wavelength i.e. 1100 nm for different 𝑑 Λ⁄  ratios. The light is more strongly 

confined in the core region of the hybrid polymer PCF when the filling factor i.e.  𝑑 Λ⁄ =

0.7.  

 

Fig. 5.4 Effective area as a function of wavelength for different filling factors,  f.  

 

Fig. 5.5 Nonlinearity parameter as a function of wavelength for different filling factors,  f.  

 

The effective area and the corresponding nonlinearity parameter are displayed in Figure 

5.4 and 5.5. As it can be observed, with the increase in filling factor i.e. 𝑑 Λ⁄   the modal 

effective area decrease significantly and corresponding nonlinearity parameter increased, 

and maximum nonlinearity is achieved when the filling factor is 0.7.  

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Wavelength [µm]

E
ff

e
c
ti

v
e
 a

re
a
 [

µ
m

2
]

 

 

f=0.5

f=0.6

f=0.7

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Wavelength [µm]

N
o

n
li

n
e
a
ri

ty
 [

W
-1

k
m

-1
]

 

 

f=0.5

f=0.6

f=0.7



 

61 

 

By taking 1100 nm as the pumping wavelength, we calculate higher order dispersion 

parameters. Fig. 5.6 to Fig. 5.16 show the calculated GVD dispersion parameters starting 

from β2 to β12. It is clear that the values that increase as the order of the dispersion 

parameter is higher [107]. 

 

Fig.5.6 2nd order dispersion (GVD) parameter. 

 

 

 

Fig.5.7 3rd order dispersion parameter. 
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Fig. 5.8 4th order dispersion parameter. 

 

Fig. 5.9 5th order dispersion parameter. 

 

Fig. 5.10 6th order dispersion parameter. 
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Fig. 5.11 7th order dispersion parameter. 

 

Fig. 5.12 8th order dispersion parameter. 

 

Fig. 5.13 9th order dispersion parameter. 
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Fig. 5.14 10th order dispersion parameter. 

 

Fig. 5.15 11th order dispersion parameter. 

 

Fig. 5.16 12th order dispersion parameter. 
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The values used in simulation process are summarized in Table 5.1 and 5.2. 

 

Table 5.1 

Simulation parameters for proposed hybrid polymer PCF 

 

Parameters Value Remarks 

Zero dispersion wavelengths 960 nm & 1750 nm Using eq. (4.13)  

 

Pumping Wavelength 

 

1100 nm 

Is arbitrarily chosen in between 

zero dispersion wavelengths and 

at anomalous dispersion regime 

Effective area at 1100 nm, Aeff  4.002 µm2 Using eq. (4.18) 

Nonlinearity parameter at 1100 

nm, γ 

 0.142 W-1m-1 Using eq. (4.17) 

 

 

Length of fiber 

 

 

5 cm, 10 cm, 30 cm 

Chosen such that fiber length 

must be larger than dispersion 

length LD, and nonlinear length 

LNL, in order for the dispersive 

and nonlinear effects to broaden 

the inlet pulse [66] 

FWHM of the input pulse, 

TFWHM 

50 fs, 100 fs, 150 fs we have used hyperbolic secant 

pulse as input pulse. The 

envelope of the input pulse 

is 𝐴(0, 𝑡) = 𝑁√𝑃0 sech (𝑡
𝑇0

⁄ ) , 

where P0 is the peak power of 

the input pulse and T0 is the 

pulse width related to the full 

width at the half maximum of 

the pulse through𝑇𝐹𝑊𝐻𝑀 1.763⁄ . 

Peak power of the input pulse 5 kW, 10 kW, 20 kW we have used hyperbolic secant 

pulse as input pulse with peak 

power of 1 kW, 5 kW, 10 kW, 

and 20 kW respectively. 
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Table 5.2 

Higher order dispersion coefficients for proposed hybrid polymer PCF at pumping 

wavelength, 𝜆=1100 nm 

 

Dispersion Coefficients Value Remarks 

β2 -3.09×10-3 ps2/m  

 

 

 

 

Calculated using eq. (4.14) 

β3 0.09469×10-3 ps3/m 

β4 -0.0001375×10-3 ps4/m 

β5 3.05×10-10 ps5/m 

β6 -9.2 ×10-13 ps6/m 

β7 3.538×10-15 ps7/m 

β8 -1.666×10-17 ps8/m 

β9 9.344×10-20 ps9/m 

β10 -6.115×10-22 ps10/m 

β11 4.597×10-24 ps11/m 

β12  -3.921×10-26 ps12/m 

 

In simulation we have used hyperbolic secant pulse as input pulse with peak power of 1 

kW, 5 kW, 10 kW, and 20 kW respectively. The envelope of the input pulse is 𝐴(0, 𝑡) =

𝑁√𝑃0 sech (𝑡
𝑇0

⁄ ), where P0 is the peak power of the input pulse and T0 is the pulse 

width related to the full width at the half maximum of the pulse through 𝑇𝐹𝑊𝐻𝑀 1.763⁄ . 

The order of the solitons is determined by both fiber and pulse parameters [12].  

𝑁2 =
𝛾𝑃0𝑇0

2

|𝛽2|
 

If N>1, the higher order soliton dynamics determine the pulse broadening [12].  

From Figure 5.17 (d), it is seen that by using peak power 20 kW and TFWHM = 28.4 fs 

observed spectral broadening is about 1666 nm from 499 nm to 2166 nm, and by using 

peak power of 10 kW, and 5 kW, obtained spectral broadening about 1252 nm (Fig. 

5.17c), and  892.8 nm (Fig. 5.17b) respectively. In the above cases, only 15 cm long PCF 

is employed. From the results it is evident that with the increase of peak power 

supercontinuum becomes broader.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5.17 Spectral and temporal broadening in 15 cm long HP-PCF with TFWHM as 28.4 fs, and 

peak power (a) 1 kW (b) 5 kW (c) 10 kW (d) 20 kW.  
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(a) 

 

(b) 

 

(c) 

Fig. 5.18 Spectral and temporal broadening in 15 cm long PCF using peak power as 10 kW and 

(a) TFWHM = 50 fs (b) TFWHM = 100 fs (c) TFWHM = 150 fs 

The effect of varying pulse duration, TFWHM on broadening is also shown in Figure 5.18 

by using peak power of 10 kW and fiber length of 15 cm. We have analyzed spectral 

broadening by using TFWHM as 50 fs, 100 fs and 150 fs, respectively. From the results it is 
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seen that as TFWHM increases, supercontinuua becomes broader.  A wide SC spectrum 

occurs due to combined actions of self-phase modulation, Raman effect, and soliton 

fission. Broadband SC finds extensive applications in optical sensing, ultrafast pulse 

generation, spectroscopy, optical coherence tomography etc. [12, 38]. This is summarized 

in Table 5.3. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.19 Spectral and temporal broadening using peak power as 10 kW, TFWHM  as 28.4 fs and (a) 

fiber length = 5 cm (b) fiber length = 10 cm (c) fiber length = 30 cm. 
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A given N order soliton can be broken up into N fundamental solitons due to different 

nonlinear processes like higher order dispersion, self-steepening, and stimulated Raman 

scattering [12]. Centre frequencies of the resulting fundamental solitons continuously 

shift toward the smaller frequencies i.e. longer wavelengths (red side) of the spectrum as 

a result of the self-frequency shift induced by Raman scattering process and nonsolitonic 

radiations result in a broadening on the blue side of the spectrum [103]. As a consequence 

supercontinuum is generated when the nonlinear length (LNL) and the dispersion lengths 

(LD) satisfy the conditions LNL <LD and LNL <L [12]. L is the length of PCF.    

Generally speaking, the longer the fiber length, the broader the supercontinuum 

generated, so a suitable length is to be chosen. However, the fiber length z must be larger 

than dispersion length (LD) and nonlinearity length (LNL) in order for the dispersive and 

nonlinear effects to broaden the inlet pulse [12]. Under such conditions, initially, self-

phase modulation leads to a symmetric spectral broadening of the optical pulse, after 

which the requirement for phase matching conditions is fulfilled, and then soliton fission 

occurs, and finally, the self-frequency shift and nonsolitonic radiations processes broaden 

the spectral components on both sides of the spectrum, as a consequence of which a 

supercontinuum is generated. Figure 5.19 (a), (b) and (c) satisfies the above statement but 

an intensity variation is noticed as the fiber length is increasing.  

 

The effects of higher order dispersion coefficients on pulse broadening are also studied. 

For a certain input power addition of higher order dispersion coefficients makes the 

supercontinuua broader but further increase in input power makes the supercontinuua 

much broader when only 2nd and 3rd order coefficients are added. Hence, it can be 

concluded that for a wider supercontinuum only the 2nd and 3rd order dispersion 

coefficients are significant. The whole scenario is summarized in Table 5.4. 
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Table 5.3 

Summary of Simulation Results 

 

Parameters fixed 

for simulation 

 

Varying 

parameters 

Spectral Broadening  Total 

Broadening  

Remarks  

from to 

Fiber length 15 

cm and pulse 

duration 28.4 fs 

 

Input power  

1 KW 

863 nm  1370 nm 506 nm with the 

increase of 

input power 

supercontinuum 

becomes 

broader 

 

5 KW 727 nm  1620 nm 892 nm 

10 KW 545 nm  1797 nm 1252 nm 

20 KW 499 nm  2166 nm 1666 nm 

Fiber length 15 

cm and input 

power 10 KW 

 

Pulse 

duration 50 fs 

510 nm  1800 nm 1289 nm supercontinuum 

becomes 

broader as the 

pulse duration 

increases   

100 fs 505 nm 2025 nm 1519 nm 

150 fs 499 nm 2128 nm 1628 nm 

input power 10 

KW and pulse 

duration 28.4 fs 

  

 

Fiber length  

5 cm 

666 nm 1711 nm 1044 nm the longer the 

fiber length, the 

broader the 

supercontinuum 

generated 

10 cm 602 nm 1751 nm 1149 nm 

30 cm 500 nm 1882 nm 1381 nm 
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(a) 

 
(b) 

 
(c) 

Fig. 5.20 Spectral and temporal broadening using peak power as 1 kW, TFWHM  as 28.4 fs, fiber 

length 5 cm and dispersion coefficients including (a) 2nd and 3rd order (b) 2nd order to 6th order (c) 

2nd order to 12th order. 
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(a) 

 
 

(b) 

 

 

(c) 

Fig. 5.21 Spectral and temporal broadening using peak power as 10 kW, TFWHM  as 28.4 fs, fiber 

length 5 cm and dispersion coefficients including (a) 2nd and 3rd order (b) 2nd order to 6th order (c) 

2nd order to 12th order. 
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(a) 

 

(b) 

 

 

(c) 

Fig. 5.22 Spectral and temporal broadening using peak power as 1 kW, TFWHM  as 28.4 fs, 

fiber length 15 cm and dispersion coefficients including (a) 2nd and 3rd order (b) 2nd order 

to 6th order (c) 2nd order to 12th order. 



 

75 

 

 

(a) 

 
(b) 

 

 

(c) 

Fig. 5.23 Spectral and temporal broadening using peak power as 10 kW, TFWHM  as 28.4 fs, fiber 

length 15 cm and dispersion coefficients including (a) 2nd and 3rd order (b) 2nd order to 6th order 

(c) 2nd order to 12th order. 
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Table 5.4 

Summary of effects of higher order dispersion coefficients on pulse broadening  

 

Parameters 

fixed for 

simulation 

 

Varying 

parameters 

Spectral 

broadening 

when input 

power  

1 KW 

Spectral 

broadening 

when input 

power  

10 KW 

Spectral 

broadening 

when input 

power  

20 KW 

Remarks 

Fiber length  

5 cm and  

pulse 

duration 

28.4 fs  

When 2nd 

and 3rd order 

dispersion 

coefficients 

added 

466 nm  

(from 884 

nm to 1351 

nm) 

1092 nm 

(from 726 

nm to 1819 

nm) 

1507 nm 

(from 670 

nm to 2178 

nm) 

 

For a certain 

input power 

addition of 

higher order 

dispersion 

coefficients 

makes the 

supercontinuua 

broader but 

further increase 

in input power 

makes the 

supercontinuua 

much broader 

when only 2nd 

and 3rd order 

coefficients are 

added. Hence, 

it can be 

concluded that 

for a wider 

supercontinuum 

only the 2nd and 

3rd order 

dispersion 

coefficients are 

significant. 

When 2nd to 

6th order 

dispersion 

coefficients 

added 

467 nm 

(from 879 

nm to 1347 

nm) 

 1030 nm 

(from 670 

nm to 1700 

nm)  

1382 nm 

(from 507 

nm to 1890 

nm) 

 

When 2nd to 

12th  order 

dispersion 

coefficients 

added 

471 nm 

(from 876 

nm to 1348 

nm) 

1050 nm 

 (from 670 

nm to 1720 

nm) 

1438 nm 

(from 506 

nm to 1995 

nm) 
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CHAPTER 6 

CONCLUSIONS 

 

6.1 Conclusions of the Work 

We have designed and analyzed a novel hybrid polymer PCF which allows us to generate 

wideband supercontinuum spectra of more than 1600 nm with a pump wavelength of 

1100 nm in anomalous dispersion region. We proposed here a non-linear hybrid polymer 

PCF with integrated silica glass layers of few nanometers at the outer surface of the air 

holes and optimizes both the parameters of pump source (pump wavelengths, pulse 

duration, and the pump power level) and fiber properties (the material of fiber, geometry 

parameters) at chosen pump wavelength by varying the pitch and diameter of air-holes. 

Using pump pulses at a wavelength of 1100 nm with a peak power and pulse duration of 

20 kW and 28.4 fs, respectively, we obtained a supercontinuum spectra covering a 

wavelength range from 500 nm to beyond 2166 nm. Such an ultra-broadband 

supercontinuum spectra is expected to have profound applications in high performance 

optical coherence tomography (OCT) imaging systems where a coherent and broadband 

light source with sufficient brightness and penetration depth is required.   

The evolution of supercontinuum generation was investigated with the variations 

of fiber length, peak powers, and pulse duration. It has been found that with the increase 

of peak power supercontinuum becomes broader. An increased spectral broadening can 

be achieved when an increment in pulse duration is made. The longer the fiber length, the 

broader the supercontinuum generated but there is a variation in intensity level as the 

fiber length is increased.  

The effects of higher order dispersion coefficients on pulse broadening are also 

studied. For a certain input power addition of higher order dispersion coefficients makes 

the supercontinuum broader but further increase in input power makes the 

supercontinuum much broader when only 2nd  and 3rd  order coefficients are added. 

Adding of 4th to upper order coefficients have no effect on supercontinuum at all. Hence, 

it can be concluded that for a wider supercontinuum only the 2nd and 3rd order dispersion 

coefficients are significant. 
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6.2 Future Scope of work  
  

The next step in this line of research would be mainly experimental. The results from the 

simulations need to be verified. The numerical model can be improved. A better Raman 

response function could be employed. Higher order Symmetrized Split Step Fourier 

Method could be introduced for more accurate results. We have analyzed SC generation 

by using anomalous dispersion regime. In future it will be of great interest to analysis of 

SC generation by selecting pumping region at normal dispersion regime. It is also 

interesting to use other geometry like spiral PCF, square PCF etc. and in the further 

investigation as a host material different polymers can be used. With the advancements in 

the fabrication techniques we are quite optimistic that the proposed PCF can be 

fabricated. After fabricating such structure, the numerical results may be verified 

experimentally that can strengthen the findings. 
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