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Abstract 

Topologically protected edge states of quantum spin Hall (QSH) insulators have paved the way 

for dissipationless transport. In this regard, one of the key challenges is to find suitable QSH 

insulators with large bandgaps. Group IV analogues of graphene such as silicene, germanene, 

stanene, plumbene etc. are promising materials for QSH insulators due to their high spin-orbit 

coupling (SOC). Large bandgap opening may be possible in these group IV graphene analogues 

by chemical decoration. However, finding suitable chemical groups for such decoration has always 

been a demanding task. In this work, we investigate the performance of plumbene monolayer with 

–CX3 (X=H, F, Cl) chemical decoration and report very large bandgaps in the range of 0.8414 eV 

to 0.9818 eV with spin-orbit coupling, which is much higher compared to most other topological 

insulators and realizable at room temperature. The thermodynamic and electronic stabilities are 

calculated from phonon dispersion curve and quantum molecular dynamics simulation. The ℤ2 

topological invariants of the samples are calculated to confirm their topologically nontrivial 

property. The existence of edge states and topological nontrivial property are illustrated by 

investigating PbCX3 nanoribbons with zigzag edges. Lastly, the change of structural and electronic 

properties of the topological materials with strain are demonstrated to extend the scope of using 

these materials. Our findings suggest that these derivatives are promising materials for spintronic 

and future high performance nanoelectronic devices.          
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Chapter 1  

Introduction 

Topological insulators are new states of matter having a bulk bandgap like ordinary insulators and 

unique protected edge states which allow dissipationless transport [1, 2]. The edge states of 

topological insulators are protected by time-reversal symmetry which safeguards it from 

backscattering in presence of non-magnetic impurity [3]. Two-dimensional (2D) topological 

insulators are particularly fascinating due to their linear dispersion of energy band near Fermi level, 

leading to high Fermi velocity and mobility [4]. Topological insulators in the form of 2D materials, 

are called quantum spin Hall insulator, because of their similar properties to quantum Hall effect 

including spin degree of freedom. 

1.1 History and Background of Quantum Spin Hall Insulator 

The new topologically distinct electronic phase named the integer quantum Hall (QH) phase was 

discovered in 1980 AD [5]. It was shown in the discovery that Quantum Hall conductance can 

only take the values of integer multiple of  𝑒
2

ℎ
. The idea of such electronic phase was also considered 

for spin degree of freedom, where there were two QH phases with opposite spins [6]. The spin-

orbit coupling took the role of magnetic field in these types of electronic phases. These type of 2D 

materials with topological insulating property were named as Quantum Spin Hall Insulator. The 

notable properties of Quantum Spin Hall insulator is that, the edge states exist in absence of a 

magnetic field due to the presence of spin-orbit coupling, and time-reversal symmetry (TRS) 

protects the edge states against any type of non-magnetic backscattering. 
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The quantum spin Hall phenomenon was first described in graphene by Kane and Mele [6], after 

the first transport experiment in graphene was done by Novoselov et al. in 2004 AD [7] and 

subsequently quantum Hall effect of graphene was measured in 2005 AD [8]. To propose the 

existence of a QSH state, Kane and Mele followed an earlier model for graphene introduced by 

F.D.M. Haldane, where periodic magnetic field with no net flux led to a quantized Hall (QH) effect 

[9]. The Kane – Mele model indeed described two copies of the (spin-less) Haldane model such 

that spin-up electrons exhibit an anti-chiral integer QH effect and spin-down electrons show the 

chiral QH effect. The QSH effect shows a quantized spin-Hall conductance and a vanishing 

charge-Hall conductance.  

Though graphene was first proposed to be quantum spin Hall insulator theoretically but, 

HgTe/CdTe [10] and InAs/GaSb [11] heterostructures have been first experimentally proven to be 

2D topological insulators. A model of topological insulators was proposed by Bernevig, Hughes 

and Zhang (BHZ), easily achievable in experiment, in which a thin mercury telluride (HgTe) sheet 

of about 7nm is sandwiched between two sheets of cadmium telluride (CdTe) thus forming a 

quantum well of CdTe/HgTe/CdTe heterostructure as shown in Figure 1.1 (b). The known 

inverted band structure in HgTe combined with confinement to open a gap in it, resulted in the 

prediction of edge channels with quantized conductance, which were subsequently identified by 

the group of L.W. Molenkamp [12]. Here the transition from normal structure to inverted structure 

[Figure 1.1 (a) and (b)] leads to band inversion which is the cause of formation of edges states 

[Figure 1.1 (c) and (d)].   
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(a) 

 

(b) 

 

    (c) 

 

        (d) 

Figure 1.1 (a) In CdTe/HgTe/CdTe heterostructure, the normal structure when the thickness of 

HgTe layer is below 7nm, (b) inverted structure when the thickness of HgTe layer is more than 

7nm, (c) there is no existence of edge states in normal structure, (d) the demonstration of 

symmetry-protected edge states in inverted structure.  

After the experimental observation of the QSH effect in inverted HgTe QWs, it has been predicted 

that this effect occurs also in type-II semiconductor QWs made from InAs/GaSb/AlSb 

heterostructure in the inverted regime. In this QW structure, as in the HgTe/CdTe system, the QSH 

state can be observed when the Fermi level lies inside the gap. However, the bandgaps are so small 

k (Å−1) k (Å−1) 
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that topological edge states can only be found below 10 K. Also the buried edge states in these 

heterostructures, make it difficult to probe these states. But these experiments sparkled excitement 

and encouraged further experiment on topological insulators.   

1.2 Literature Review 

1.2.1 2D Quantum Spin Hall Insulators 

Research into quantum spin Hall insulating properties of 2D materials, has become an interesting 

topic after the invention of quantum spin Hall insulator. Among the mentioned 2D materials 

system, the remarkable ones are transition metal dichalcogenides (TMDC), group II-VI, III-V and 

IV hexagonal buckled graphene-analogues. A number of first-principles based research have been 

conducted on these types of materials system.  

Two-dimensional transition metal dichalcogenides, MX2 (M=Mo, W and X=S, Se, Te) shows 

topological electronic properties by external electric field [13]. Transition-metal halide MX (M = 

Zr, Hf; X = Cl, Br, and I) monolayers have also been predicted as a novel family of two-

dimensional QSH insulators [14]. MoS2, WTe2 and WSe2 have been demonstrated to show 

quantum spin Hall insulating properties [15-18]. 

Group IV, III, III-V, IV-VI graphene-analogues are particularly drawing attention due their similar 

properties to graphene. Among the group III elements phosphorene [19], Antimonene [20, 21], 

Arsenene [22-24], Bismuthene [25] have shown quantum spin Hall insulating properties. The 

group IV elements that have shown quantum spin Hall insulating properties are silicene, 

germanene and stanene. The remarkable III-V elements are GaBi [26], TlA (A=N, P, As, and Sb) 

[27, 28], III-Bi based two-dimensional materials [29] and InSb 2D compound [30]. Thus 
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hexagonal graphene-analogues of group III, IV, V and VI elements are keeping major role in the 

field of 2D topological insulators. 

Though most of these are based on first-principles simulation, but development in fabrication 

technology is paving the way for experimental realization of quantum spin Hall insulating 

properties of these types of materials system. 

1.2.2 Group IV 2D Quantum Spin Hall Insulators 

In spite of having outstanding electrical, thermal, and mechanical properties, as well as very long 

spin diffusion lengths at high-temperature in graphene, its band gap is still very small (10-3 meV) 

[31]. 2D materials having honeycomb structure like graphene, have shown to possess remarkable 

spin-orbit coupling and linear dispersion of energy near Fermi level [32-35]. The larger spin-orbit 

coupling leads to higher bandgap in the bulk and linear dispersion of energy causes high Fermi 

velocity of electron, which makes such materials suitable for high-speed device application. Group 

IV analogues of graphene (silicene, germanene, stanene, plumbene) with notable spin-orbit 

coupling, have recently drawn noteworthy attention due to the presence of Dirac fermion in them, 

similar to graphene [32, 36-40]. Nonetheless, reported bandgap opening due to spin-orbit coupling 

in silicene (1.55 meV) [41], germanene (23.9 meV) [41], stanene (73.5 meV) [42] are not sufficient 

for room temperature operation. On the other hand, monolayer plumbene has drawn attention in 

recent time particularly due to its large bandgap opening at room temperature [43, 44]. Since, 

plumbene does not show topological nontrivial characteristics normally [38, 43], we need 

additional transformation technique of chemical decoration to have topological nontrivial 

characteristics in it and take the advantage of this large spin-orbit coupling. 
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1.2.3 Methods to Modify Spin-Orbit Coupling 

The spin-orbit coupling can be engineered if we can modify the wavefunction of the electrons 

around nucleus. Chemical decoration [43, 45-48], application of electric field [49, 50], substrate 

engineering [51] and absorption or adsorption adatoms [52, 53]  are among the few techniques that 

have been used for modification of spin-orbit coupling and topological properties in group IV 

monolayers. For the electric field method, the bandgap opening is sometimes too small to operate 

at room temperature and breakdown electric field of materials constraints the range of applied 

electric field [54]. Also, substrate engineering has the limitation of very small bandgap opening, 

and the interaction between materials and the substrate may damage the crystalline structure [43, 

51]. Moreover, doping and molecular adsorption can distort the crystal structure leading to 

difficulty in fabrication and device integration [53]. Chemical decoration is the most appealing 

method among the mentioned techniques as it offers large bandgap opening while maintaining 

structural and electronic stability of the material. So, chemical decoration in graphene analogues 

of 2D materials, has become a matter of great interest in recent times, as they have been reported 

to offer the highest bulk bandgap for topological insulators [43-45].    

1.2.4 Cause of Using Methyl Decoration 

Finding a suitable group for chemical decoration to have topological property is the main 

challenging task. It has been proven theoretically that hydrogen and halogen decoration would 

provide large bandgap [36, 43, 55]. However, experimental works have been reported showing 

plasma hydrogenation and fluorination of materials rapidly increase defects and disorders [56, 57]. 

Therefore, alkyl and alkyl halide decoration of silicene, germanene, stanene and plumbene are 

suitable alternatives as such decoration may provide bandgap comparable to that of hydrogenation 

and halogenation without noticeably increasing the defects and disorders [46, 58, 59]. Methyl 
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derivatives among alkyl groups have shown preferable result in silicene, germanene, stanene and 

other 2D materials with hexagonal honeycomb structure similar to graphene [4, 60-62]. For 

example, methyl decorated silicene, germanene and stanene have shown quantum spin Hall effect 

at 25% [62], 12% [61] and 4% [4] strain, respectively. However, integrating them into devices 

using external strain is a very complex process. Quantum spin Hall effect in methyl decorated 

silicene, germenane and stanene suggest that it is worth exploring the behavior of methyl decorated 

plumbene (PbCH3), that has remained unexplored, as of yet. 

1.3 Role of Quantum Spin Hall Insulators in Magnetic Circuits 

Quantum spin Hall insulators are being considered to be used in magnetic circuits, as they can 

apply high spin-orbit torque and produce pure spin current. The high spin-orbit torque can be used 

to alter the state of magnetization of the particular magnet. The spin current can shift the domain 

wall in magnets to change the direction of spin of electrons. So, quantum spin Hall insulators are 

encouraging the use of magnet in logic purpose. 

1.3.1 Generation of Spin Current 

Charge current is the net flow of charge per unit time through any cross-sectional area. Spin current 

is net flow of spin per unit time. In conventional current, the spins of electrons are oriented in 

different directions, so the net spin flow is zero as shown in Figure 1.2 (a) and (b). So to produce 

net spin current, we will have to polarize these electrons in any particular direction. This can be 

done by filtering the charge current through any magnetic materials but as most of the magnetic 

materials are non-conducting so it is difficult to obtain this type of filter. But, it is possible to obtain 

pure spin current along the edge of quantum spin Hall insulators. Along the edge of quantum spin 
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Hall insulators, electrons with opposite spin flow in opposite directions (Figure 1.2 (c)). So there 

is a net flow of spin along the edges resulting in a spin current as presented in Figure 1.2 (d). 

 

(a) 

 

No net flow of spin  

 

(b) 

 

(c) 

 

(d) 

Figure 1.2 (a) The spins are polarized in different directions in normal current flow, (b) So the 

net flow of spin is zero, (c) the edges states in quantum spin Hall insulator, (d) the net flow of 

spin. 

If topological insulator is magnetically doped then it is possible to obtain quantum anomalous Hall 

effect where only spin of one kind flows through the edge. The spin current in quantum anomalous 

Hall insulator can be used to move the domain wall in an easy-axis magnet as shown in Figure 

1.3. Domain wall is the transition between different magnetic moments. Now, if spin current is 

flown from left source in Figure 1.3 then it will apply a momentum to electrons in the magnetic 

material. So the magnetic domain wall will shift to the right [63, 64]. Thus, flowing of spin current 

from left to right, it is possible to change the polarization state of magnetic domain through the 

shift of the domain wall. 
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Figure 1.3 The movement of domain wall in an easy-axis magnet due to the momentum exerted 

by spin current. The direction of the flow of spin from source determines the state of 

magnetization of the easy-axis magnet. 

1.3.2 Generation of Spin-Orbit Torque 

Magnetic circuit is specially drawing attention due to its non-volatility and low power consumption 

[65-69]. The different states of magnets are used for different values in logic operation. To change 

the states of magnet, we will have to change the state of polarization of the magnet. This can only 

be obtained by applying high spin-orbit torque to the polarization state of the magnet. This can be 

achieved by creating an interface between topological insulator and magnetic materials. The use 

of topological insulators is particularly useful here, as the electrons in topological insulators can 

apply high spin-orbit torque (orbital momentum due to spin-orbit coupling is associated with spin 

angular momentum). So, the applied momentum due to spin here is more than ℏ
2
 [70].  

 

(a) 



10 
 

 

(b) 

Figure 1.4 (a) Change of polarization states of magnetic domains by applying torque using 

topological insulators. The magnetic domains in magnetic materials are orienting themselves in 

the direction parallel to that of edge spins of topological insulators, (b) Change of polarization 

states due to the change of the spin current.   

The change of polarization states of a magnet with the help of application of spin-orbit torque 

using topological insulators is shown in Figure 1.4 [71]. The magnetic domain at interface of 

topological insulator and magnetic materials, is taking the direction of spin of the topological 

insulators, as the electron spin on topological materials is applying a net torque on the magnetic 

materials. Thus forming an interface of a magnetic materials with topological insulator, it is 

possible to alter the polarization direction of the magnetic domains of the magnetic material, 

depending on the direction of applied torque. There are many ways in which the magnets can be 

manipulated through topological insulators. Thus topological insulators will play a major role in 

future spintronic devices based on magnet. 
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1.4 Objective of the Thesis 

The objectives of this work are: 
 
1. To explore the electronic and thermodynamic stability of methyl and trihalogenomethyl 

decorated plumbene monolayers, and find the amount of bandgap opening due to spin-orbit 

coupling (SOC) in these materials. 

2. To find out the 2 topological invariant of these materials, and check whether they exhibit strong 

quantum spin Hall insulating property or not. 

3. To investigate the existence of edge states in hydrogen-passivated nanoribbons of methyl and 

trihalogenomethyl decorated plumbene monolayers, and find out the topological nontriviality of 

the materials analyzing their bandstructures.   

4. To observe the effect of strain on structural and electronic properties of these materials. As strain 

is one of parameters to engineer wavefunction of electron, so through the application of strain, it 

is possible to change the electronic properties.  

1.5 Overview of the Thesis 

Chapter 1 mentions the historical background of quantum spin Hall insulators and literature review 

of research on 2D quantum spin Hall insulators. The application of quantum spin Hall insulators 

in magnetic circuits are also shown followed by objective of the thesis.  

Chapter 2 presents details about different structures of the materials system and the simulation 

methodology that has been used in this thesis. It also presents the idea of spin-orbit coupling, and 

how the phenomenon of quantum spin Hall effect is related to spin-orbit coupling. The parameters 

used for density functional theory (DFT) simulation are also discussed in this chapter.   
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Chapter 3 provides the results of structural and electronic simulation, and topological properties 

that are obtained in these materials. The cause of having those properties are briefly explained in 

this chapter, and different types of data and their values are justified. 

Chapter 4 discusses the conclusion and the future scope of research on these types of materials 

system. 

 

 

 Theory and Simulation Method   
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Chapter 2 

Theory and Simulation Method 

2.1 Methodology and Modeling 

Topologically insulating phases were proposed theoretically at first and after that these were 

observed experimentally. For theoretical proposition of these types of materials, numerical 

simulation of their electronic and structural properties is necessary. 

The electronic and structural properties of novel materials can be found by numerical simulation 

in First-Principles simulation methods. As these methods are not based on any external parameters, 

so it is suitable for proposing novel materials. Density Functional Theory (DFT) simulation has 

become particularly popular among first-principles based simulations, because of its accuracy with 

experimental results and less computational cost [72, 73]. The first experimental works on Bismuth 

Chalcogenide (Bi2X3, X=Se, Te) TIs have been supported by DFT simulations [74]. Other 

properties of different topological materials obtained from DFT-based calculations, have been 

verified in experiments [75-77]. Thus DFT-based numerical simulations are keeping motivating 

to predict new topological materials. 

Here, we have performed density functional theory (DFT) based first-principles calculations using 

Synopsys Quantumwise ATK simulation package [78]. QuantumATK is a complete atomistic 

simulation toolkit developed and supported by world leading atomic-scale modeling experts. 

2.1.1 Density Functional Theory Calculation 

The many-body properties in real materials system can be formulated in DFT, if exchange-

correlation functional is known. The Hamiltonian of many-body Schrodinger equation of a 
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practical material system with interacting electrons and nuclei after Born-Oppenheimer 

approximation can be written as –  

 
Ĥ = − ∑ [

ℏ2

2me
∇ri

2 + Vext(ri)] +

i

1

2
∑

e2

|ri − rj|i≠j

+ EII 
  (2.1) 

Where, Vext(r) = ∑
ZIe2

|r−RI|I   is the external potential due to the nuclei located at RI, 

EII is the classical interaction of the nuclei with each other.  

In Born-Oppenheimer approximation, the nuclei are considered as stationary due to its larger mass 

compared to electrons, so the kinetic energy term due to nuclei is omitted. It is difficult to obtain 

wavefunction of electron from Hamiltonian of Equation (2.1), when the number of electrons and 

nuclei is more, as it contains the coulomb interaction potential term between them. This problem 

can be solved if we can modify the Hamiltonian to a single particle Hamiltonian. This is done in 

Density Functional Theory simulation, based upon a proof by Hohenberg and Kohn (1964) [79] 

that many-body ground-state wavefunction can be expressed as a functional of ground-state 

electron density. The ground-state electron density can also be expressed as a functional of ground-

state energy. Subsequently, Kohn and Sham (1965) [80] states that Hamiltonian of noninteracting 

electrons can be formulated keeping the ground-state electron density unchanged. The effective 

single particle Kohn-Sham Hamiltonian is –  

 
ĤKS = −

ℏ2

2me
∇r

2 + VKS
[n]

(r) 
  (2.2) 

Where, Kohn-Sham potential VKS
[n]

(r) is functional of electron-density n(r) and, 

 VKS
[n](r) = Vext(r) + VH

[n]
(r) + VXC

[n]
(r)   (2.3) 

where, 
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VH

[n](r) = e2 ∫
𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑3𝑟′ 

  (2.4) 

is the Hartree potential, modeling the electron repulsion potential. 

 
VXC

[n](r) =
𝛿𝐸𝑋𝐶[𝑛]

𝛿𝑛(𝑟)
 

  (2.5) 

is the exchange-correlation potential, which encodes nonclassical many-body effects.  

The eigensolution of the single particle Kohn-Sham Hamiltonian is – 

 ĤKS|𝜓𝑖⟩ = 𝐸𝑖|𝜓𝑖⟩   (2.6) 

The ground-state solution is constructed finding N lowest eigenvalues and the charge density is 

given by –  

 
n(r) = ∑|𝜓𝑖(𝑟)|2

𝑁

𝑖=1

 
  (2.7) 

The charge density is then used in Equations (2.4) and (2.5) to re-construct the Hamiltonian 𝐻̂𝐾𝑆 

and the process is iterated to obtain 𝑛(𝑟) and 𝑉𝐾𝑆
[𝑛]

(𝑟). 

In DFT, the exchange-correlation energy is approximated by different methods. In Local density 

approximation (LDA) [81], the exchange-correlation energy per electron of the interacting electron 

gas at point r is approximated by that of the homogeneous electron gas with the same density as 

the interacting electron gas. It is simplest approximation to exchange-correlation functional, Exc. 

The Local density approximation of exchange correlation functional has the form –  

 
EXC

[𝑛]
(r) = ∫ 𝑛(𝑟)𝜖𝑋𝐶(𝑛(𝑟)) 𝑑3𝑟   (2.8) 
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where  εxc
hom(n) is the exchange-correlation energy density of the homogeneous electron gas with 

density n. A wide range of properties for atoms, molecules and solids can be successfully described 

by the LDA, in spite of its simple local form.  

As the LDA approximates the energy of the true density by the energy of a local constant density, 

it fails in situations where the density undergoes rapid changes such as in molecules. An 

improvement to this can be made by considering the gradient of the electron density, the so-called 

GGA [82]. The GGA improves on the LDA by using the gradient of electron density in addition 

to its value, and has the form –  

 
EXC

[𝑛]
(r) = ∫ 𝑛(𝑟)𝜖𝑋𝐶(𝑛(𝑟)) 𝐹𝑋𝐶(𝑛, |∇𝑛|)𝑑3𝑟   (2.9) 

where  εxc
hom(n) is the exchange-correlation energy density of the homogeneous electron gas with 

density n, and 𝐹𝑥𝑐 is dimensionless. The most popular functional for the GGA is the 

parameterization of Perdew-Burke-Ernzerhof (PBE). 

Both LDA and GGA have been successfully employed to calculate and predict the topologically 

nontrivial properties in topological insulators in very good agreement with the experimental 

findings. However GGA-PBE functional is commonly used compared to functional in LDA 

method due to its more accuracy.  

In order to assess more accurately the electronic band structure parameters such as the bandgap, a 

hybrid functional has been employed. Hybrid functional approximates exchange correlation 

energy functional in DFT by incorporating a portion of exact exchange from Hartree-Fock theory 

with the rest of the exchange-correlation energy from other sources. The exact exchange energy 

functional is expressed in terms of the Kohn-Sham orbitals rather than the density, so it is termed 

an implicit density functional. Exchange correlation, Exc is approximated in HSE06 hybrid 
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functional by separation of electron interaction in the exchange energy into short-range and long-

range part. This method generally gives more accurate bandstructure than that of GGA-PBE 

method but computationally expensive. 

Also, to consider only the effect of valence electrons, different types of pseudopotential are 

considered as core electrons do not play much role in properties of materials and increase 

computational cost [83]. By pseudopotential, the attraction of electrons to nucleus, that is 𝑉𝑒𝑥𝑡(𝑟𝑖) 

is modeled by an effective potential 𝑉𝐼(|𝑟 − 𝑟𝐼|). To implement the DFT-code in software, 

different basis-sets such as plainwave basis-set or linear combination of atomic orbitals (LCAO) 

are considered. In case of plainwave basis-set, the wavefunctions of electrons are considered as 

plainwave. On the other hand, in case of LCAO, the electrons are localized as atomic orbitals.     

2.1.2 Parameters and Methodology Used 

The geometry of plumbene monolayer has been optimized using Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) optimization algorithm [84]. Structural relaxation is 

implemented until force on each atom becomes less than force tolerance and stress on crystal cell 

is less than stress error tolerance. In this regard, the linear combination of atomic orbitals (LCAO) 

calculator is used with generalized gradient approximation (GGA) – Perdew-Burke-Ernzerhof 

(PBE) exchange correlation method [85]. The self-consistent field (SCF) simulation is continued 

until it reaches the accuracy of iteration control tolerance. The Brillouin zone is sampled by using 

9×9×1 Gamma centered Monkhorst Package [86]. The vacuum distance is set to 30Å which is 

sufficient to avoid interaction between two parallel layers. Spin-orbit coupling is included in the 

calculation using non-collinear spin-orbit interaction method [87] and SG15-SO pseudopotential 

[88]. The parameters and their values used in the simulations are given in Table. 2-1. To validate 

the parameters of our simulation method, we have recalculated the bandstructures of these 
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materials system with HSE06 hybrid-functional [89]. The use of HSE06 hybrid-functional gives 

more accurate results which can be compared with the results obtained using GGA-PBE 

functional.  

Table. 2-1 Parameters and their values used in structural and electronic calculation of Pb and 

PbCX3 monolayer crystal cells. 

Parameter Value 

Force tolerance 0.01 eV/ Å 

Stress error tolerance 0.001 eV/ Å3 

k-point sampling 9×9×1 

Pseudopotential (SOC) SG15-SO 

Density mesh cut-off 125 Hartree 

Iteration control tolerance 10-5 eV 

Pseudopotential (without SOC) PseudoDojo 

Damping factor 0.1 

 

Next, we have decorated the plumbene monolayer sheet with –CX3 (X = H, F, Cl) groups and 

repeated the geometry optimization process using the same procedure. The bandstructure and 

partial density of states (PDOS) for each case of the decorated structures without and with spin-

orbit coupling are calculated to find out the properties of the monolayers as well as orbital analysis 

of the materials.   
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2.1.3 Plumbene Monolayer Structure 

The 2D materials can be built experimentally from their bulk structure by cleaving or exfoliation, 

or by their direct growth using different types of chemical vapor deposition (CVD) technology 

[90, 91]. Here, we have prepared a 2D plumbene nanosheet by cleaving the bulk crystalline 

plumbene cell, whose top view and side view along with crystal unit cell have been shown in 

Figure 2.1.  

 

(a) 

 

 

(b) 

Figure 2.1 (a) A monolayer nanosheet of plumbene after cleaving bulk crystalline plumbene 

cell. (b) Side view of the nanosheet showing buckling height () and Pb−Pb bond distance (d1).  

It is evident from Figure 2.1 that the lead atoms of plumbene monolayer are arranged in corrugated 

structure rather than flat structure of graphene. The cause of this corrugated structure is the 

hybridization of lead atoms between sp2 and sp3 [92]. 𝛿 is the vertical distance between atoms of 

the upper layer from that of the lower layer and d1 is length of Pb−Pb bond. This type of corrugation 

virtually arranges the atoms into two layers in the thinner structure, so sometimes they are referred 

as bilayer of atoms instead of monolayer.  
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2.1.4 Methyl Decorated Plumbene Monolayer  

After preparing the plumbene monolayer, next it is decorated with methyl (-CX3, X = H, F, Cl) 

groups. The methyl groups can be easily obtained from organic alkane by chemical reaction [93]. 

Each lead atom of the monolayer is decorated with a single monovalent methyl group. The top and 

side views of the decorated structures have been shown in Figure 2.2 (a) and (c).   

 

(a) 

 

(b) 

 

(c) 

Figure 2.2 (a) Methyl decorated plumbene monolayer (top view) showing the unit cell with 

hexagonal crystal lattice, (b) Brillouin zone of the hexagonal crystal lattice with high symmetry 

points G, M, K, and (c) Side view of methyl decorated plumbene monolayer showing the Pb−Pb 

bond length (d1), Pb−CX3 bond length (d2), buckling height (). 
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All the three groups used in decoration, methyl, trifluoromethyl and trichloromethyl are arranged 

in same pattern in the decorated plumbene monolayers with slight angle difference between the 

bonds. But in all the cases inversion symmetry is maintained in the single unit crystal cell of these 

materials. 

The unit crystal cell has been marked by shadow. The Brillouin zone of the crystal unit cell is 

shown in Figure 2.2 (b). From the Brillouin zone, we see a number of crystal symmetry points 

like G, M, K which keep a significant role in determining the topological invariant of quantum 

spin Hall insulator [94]. 

2.2 Determination of Electronic and Thermodynamic Stability 

2.2.1 Calculation of Formation Energy 

 

Figure 2.3 The methyl groups become attached to lead atoms of plumbene monolayer to form 

methyl decorated plumbene monolayer. The total energy of the methyl decorated plumbene 

monolayer should be less than the total energy of plumbene monolayer and isolated methyl 

groups to make the structure electronically stable.  
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In order to verify electronic stability of the decorated structures, the formation energy (E) of each 

structure has been calculated from Equation (2.10). 

 ∆E = E(PbCX3) − E(Pb) − E(CX3) ,       (2.10) 

where E(PbCX3) and E(Pb) are the total energy of decorated and pristine plumbene nanosheet, 

respectively and E(CX3) is the chemical energy of methyl and trihalogenomethyl groups. The 

crystal cells for calculating the energies are shown in Figure 2.3. 

2.2.2  Phonon Dispersion Curve 

We have found the phonon dispersion curves of the crystal cells to determine the thermodynamic 

stability of each of the decorated monolayers. The phonon dispersion curves are obtained using 

CASTEP module in Materials Studio Software. The GGA-PBE functional is also used in this case 

and the pseudopotential used is OTFG ultrasoft. The frequency curve in phonon dispersion curve 

is found along every crystal momentum point. Analyzing phonon dispersion curve, it is possible 

to justify the material for its application at room temperature [95].     

2.2.3 Molecular Dynamics Simulation 

The molecular dynamics simulation has been done to show the method of chemical decoration in 

plumbene monolayer as well electronic and thermodynamic stabilities. This has been done in 

Quantumwise ATK using NPT Berendsen methodology. As there is no existing interaction 

potential for this novel system of materials, so we have performed the total quantum mechanical 

molecular dynamics simulation. The initial frame of the nanoribbon taken for molecular dynamic 

simulation is shown in Figure 2.4.  

It is periodic along A direction of the lattice cell and the periodicity has been considered for 

computational efficiency. The time step between each frame of the molecular dynamic simulation 
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is 1femtosecond. The duration of molecular dynamics simulation is taken enough to observe the 

process of formation of bond and thermal vibration clearly. 

 

Figure 2.4 Initial frame for molecular dynamics simulation of PbCH3 monolayer. The CH3 

groups are released to become attached to lead atom sites.  

2.3 Quantum Spin Hall Insulators 

2.3.1 Spin-Orbit Coupling and Bandgap Opening 

Spin-orbit coupling is the interaction between magnetic field felt by an electron due to its orbital 

motion and magnetic moment due to its spin orientation [96]. An electron circles an atomic 

nucleus, as viewed from the frame of reference of the nucleus. From the electron’s frame of 

reference, the nucleus is circling the electron as shown in Figure 2.5 (a). The circling nucleus 

produces a loop of current around the electron. The loop of the current produces a magnetic field 

whose magnitude and direction depends on the charge of nucleus and the direction of motion of 

electron. The magnetic field due to orbital motion interacts with magnetic moment due to spin of 

electron which gives rise to spin-orbit coupling. 
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(a) 

 

(b) 

Figure 2.5 (a) An electron circles an atomic nucleus, as viewed from the frame of reference of 

the nucleus, from the electron’s frame of reference, the nucleus is circling it. The magnetic field 

experienced by the electron as a result, is directed upward from the plane of the path of motion. 

The interaction between the electron’s spin magnetic moment and this magnetic field leads to 

the phenomenon of spin-orbit coupling, (b) Energy level splitting of an orbital due to spin-orbit 

coupling. 

Due to spin-orbit coupling the energy level is split between electrons with up and down spin by 

the amount of 2𝜇𝐵 [97] shown in Figure 2.5 (b), which is the cause of bandgap opening in group 

IV graphene analogue materials. Where, 𝜇 = the magnetic moment due to spin of electron and B 

= magnetic field felt by electron due to its orbital motion. 

Thus, spin-orbit coupling increases in a group with the increase of atomic number Z, as the field 

B depends on the amount of charge in nucleus. So, in case of group IV graphene analogues, spin-

orbit coupling increases as we go from top to bottom of the column. As a result, bandgap opening 

due to spin-orbit coupling increases as we move in that order. 
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2.3.2 Spin Hall Effect 

Hall Effect is the phenomenon of building up of electrons on two sides of a material perpendicular 

to both the direction of the motion of charge and magnetic field, discovered by Edwin Hall in 1879 

AD [98]. This happens due to magnetic force felt by charge which is given by Lorentz force, 𝐹𝑚 =

𝑞𝑣̅ × 𝐵̅. This occurs until the electric field force felt by an electron due to separation of charge is 

equal to the magnetic field force faced by it as shown in Figure 2.6 (a).  

 
(a) 

 
(b) 

 

 
(c) 

Figure 2.6 (a) The deposition of charges on two opposite sides perpendicular to both magnetic 

field and direction of motion of charge is due to Hall effect, (b) The increase of magnetic field 

leads to quantized conductance leading to quantum Hall effect, (c) The circling of electrons with 

up and down spins in two opposite directions leads to two edge states which is called quantum 

spin Hall effect.  
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Now, if the magnitude of magnetic field is very high, then electrons will not buildup at edges, 

rather they will move in small circles in the material, as magnetic field faced by electron is 

changing every moment due to change of its velocity. So, the electrons will become localized 

moving in small circles. But electrons at the edges will bounce through the edge and form 

dissipationless edge channels [Figure 2.6 (b)] which is known as quantum Hall effect [9].  

 

(a) 

 

(b) 

Figure 2.7 (a) The change of Hall resistance and Longitudinal magneto-resistance with change 

of magnetic field. The hall resistance increases linearly with magnetic field at first, but with 

increase of magnetic field it becomes quantized. (b) The longitudinal magneto-resistance 

remains constant irrespective of applied magnetic field at first, but at high magnetic field it 

becomes zero with some spikes at the time of transient. 
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The Hall resistance which is ratio of transverse voltage to longitudinal current is linear with applied 

magnetic field at low range but with the increase of magnetic field it is quantized as shown in 

Figure 2.7 (a). The longitudinal magneto-resistance becomes zero with transient spikes at time of 

change of quantized levels [Figure 2.7 (a)]. The problem in quantum Hall effect is that a large 

external magnetic field is required to build and maintain such dissipationless edge channels. 

But, in materials with large spin-orbit coupling, the magnetic field faced by electrons due to orbital 

motion acts like this magnetic field, and electrons with up and down spin move in small circles in 

opposite directions as demonstrated in Figure 2.6 (c). As a result, two dissipationless edge 

channels due to up and down spin electrons are formed at edges which move in opposite directions 

preserving time-reversal symmetry [99]. This is called quantum spin Hall effect, as spin of 

electrons is playing the major role in the formation of these type of edge states. 

2.3.3 Time-Reversal Symmetry 

 

Figure 2.8 Topologically protected edge states due to time-reversal symmetry which determines 

the direction of motion of electron from its spin. If an electron wants to change its direction of 

motion, then it will have to change its spin, as spin uniquely determine the direction of motion. 
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Topological insulators have bulk bandgap like ordinary insulator and unique edge states protected 

by time-reversal symmetry [100]. Time-reversal symmetry allows the electrons with up and down 

spins to move in a particular direction along edges in quantum spin Hall insulators without 

scattering as shown in Figure 2.8.  Due to time-reversal symmetry, an electron with up spin 

moving left-to-right, if faces any impurity, will not be able to move right-to-left, because if it wants 

to do so, then it will have to change its spin directly to down, which is not possible. So, electron 

along edge states of a quantum spin Hall insulators are protected against scattering from any non-

magnetic impurity. This type of behavior prevents topological insulators from joule heating. 

2.3.4 Z2 Topological Invariant 

A very important point about QSH phase is that, it is nontrivial. In that context, Kane and Mele 

further introduced a topological Z2 invariant which characterizes a state as a trivial or nontrivial 

band insulator. Further studies of the robustness of the formed edge state proved both analytically 

and numerically that the nontrivial state is robust to both weak interactions and the extra spin-orbit 

coupling terms that mix spin-up and spin-down electrons.  

Z2 topological invariant in 2D materials differentiates between trivial insulator from quantum spin 

Hall insulator. There are two values of Z2 = 0 or 1 for 2D topological insulators, which indicate 

trivial insulator or quantum spin Hall insulator respectively [94]. In 3D there are 4 values of Z2 

topological invariant, which differentiates between strong, weak topological insulator and trivial 

insulator [101]. In 2D materials, if edge states are protected by time-reversal symmetry that they 

are of Z2 topological invariant 1. The electrons are not allowed to scatter back by impurity as the 

only scattering angle here is 180 degree Figure 2.9 (a). So, there is no joule heating because of 

absence of scattering. 



29 
 

 
(a) 

 
(b) 

Figure 2.9 (a) Edge states in quantum spin Hall insulators showing the spin of electrons, (b) 

Surface states in 3D topological insulators with spin of electrons. 

In 3D materials, it is possible to scatter at angles other than 180 degree [102] as electrons on the 

surface states have the opportunity to move any direction due to scattering as shown in Figure 2.9 

(b). So, there are 4 values of Z2 topological invariant [94], differentiating between weak and strong 

topological insulators. 

2.4 Determination of Topological Nontriviality 

To find the topological nontriviality of the decorated structures, we have determined the ℤ2 

topological invariant. The crystal cells of methyl decorated plumbene monolayers follow inversion 

symmetry. That means, the positions of all the atoms in the crystal cell are symmetric about the 

symmetry center [Figure 2.10].  

 

Figure 2.10 Crystal unit cell of methyl decorated plumbene monolayer (PbCX3) showing 

inversion symmetry. Each atom has its image about the point of inversion symmetry.  
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For the crystal cell of a 2D topological insulator with inversion symmetry, topological invariants 

can be calculated from the symmetry of the Bloch function at four special Brillouin zone points 

given by Equation (2.11). 

 Γi=(n1,n2) =
1

2
(n1b1 + n2b2) ,       (2.11) 

where bi are the reciprocal lattice vectors and ni = 0, 1. For our case, the four special Brillouin zone 

points are G(0,0), M(0,0.5), M(0.5,0), M(0.5,0.5). These four points are time reversal invariant 

momentum (TRIM) points for 2D materials. The topological invariant can be calculated from the 

symmetry functions at the TRIM point, based on Kramer’s theorem [103]. 

Now, assuming i,n be the n-th occupied Bloch function at i point, the symmetry function can be 

calculated from the Equation (2.12), because of having inversion symmetry in the crystal structure 

of PbCX3. ⟨ψi,n|Θ|ψi,n⟩ represents the parity of n-th band at i TRIM point. Its value becomes −1 

or +1 depending on whether the band is of odd or even parity. The number of Kramer’s pair is 

indicated by this number.   

 δi = Πn√⟨ψi,n|Θ|ψi,n⟩ ,      (2.12) 

Once symmetry functions at each Brillouin zone points are found, then topological invariant 𝜈 can 

be determined from Equation (2.13). The value of 𝜈 is 0 or 1, depending on the value of the product 

term.  

 (−1)ν = Πi=1
4 δi .     (2.13) 

If the value of 𝜈 is 0, then the material is topologically trivial insulator and if the value is 1, then 

the material is quantum spin Hall insulator.  
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2.5 Formation of Nanoribbon 

To prove the existence of edge states and topological nontriviality, we have simulated nanoribbons 

(nanosheet with finite width) with zigzag edge pattern and obtained their bandstructures. The 

nanoribbon is periodic along x axis as shown in Figure 2.11. The edge dangling bonds are 

passivated by H atoms. The width of the nanoribbon along Y axis is 160 Å, which is sufficient to 

avoid the interaction between edge states.  

 

(a) 

          

(b) 

Figure 2.11 (a) PbCH3 nanoribbon along zigzag direction. The dangling bond at the edge are 

passivated by hydrogen. (b) Top-view of the nanoribbon. 
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The Brillouin zone of the nanoribbon is sampled using 9×1×1 Gamma centered Monkhorst 

Package and the density mesh cutoff for the nanoribbon is set to 50 Hartree in this case. The 

nominal GGA-PBE functional is also used. The spin-orbit coupling effect is taken using the non-

collinear spin-orbit coupling method. The structure for simulation is taken in such a way that only 

the minimum periodic part along x-direction is considered. 

2.6 Application of Strain 

In order to investigate the change of electronic properties with strain, we apply uniform biaxial 

strain to the crystal cell. Keeping the cell relaxed in C direction, the lattice parameter is reduced in 

A and B directions to apply compressive strain, and increased to apply tensile strain. This method 

of applying strain is generally used in studying the effect of strain on materials.  

 

(a) 

 

(b) 

Figure 2.12 The method of applying strain to monolayer crystal cell. (a) Crystal cell after 

application of compressive strain, (b) Crystal cell after application of tensile strain. 
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Figure 2.12 shows the method of applying strain to the crystal cell. If the lattice parameter of the 

crystal cell without applying any strain is 𝑎𝑜 and lattice parameter after applying strain is 𝑎 then 

the amount of strain is 𝑠 =
𝑎−𝑎𝑜

𝑎𝑜
. Whether it is compressive or tensile strain depends on the sign of 

s. Then the atoms in the crystal cell is optimized after applying strain to have relaxed positions. 

After self-consistent simulation, the atoms take the relaxed positions.    

The parameters used in geometry optimization and electronic properties calculation using strain 

are almost similar to that of the parameters used for normal optimization and electronic properties 

calculation.  Results and Topological Properties  

 Results and Topological Properties 

Theory and Simulation Method   
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Chapter 3 

Results and Topological Properties  

3.1 Optimized Cells and Crystal Parameters  

3.1.1 Optimized cells 

The crystal cell of plumbene monolayer which is obtained by cleaving lead bulk structure, is 

decorated with methyl group after geometry optimization. Figure 3.1 shows the geometry 

optimized crystal lattice cell of PbCH3 monolayer.  

 

Figure 3.1 Crystal unit cell of methyl decorated plumbene monolayer (PbCH3) after geometry 

optimization. The unit cell contains two lead atoms and two methyl groups. 

The cell is periodic along A and B directions. A 30 Å vacuum distance is set along C direction so 

that adjacent monolayers do not interact with each other. The buckling height () and Pb−CX3 
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bond length (d2) can be measured exactly from the relaxed coordinates of atoms in the crystal unit 

cell. 

3.1.2 Crystal parameters  

The results of geometry optimization and bandstructure calculation of methyl (CH3) and 

trihalogenomethyl (CX3) decorated plumbene nanosheets are summarized in Table. 3-1. It can be 

seen from the table, the buckling height (0.8863 Å) of the methyl (CH3) substituted plumbene 

monolayer is higher compared to that of H-decorated monolayer (0.7781 Å) due to more dominant 

+I inductive effect of (CH3) which assists in effective hybridization of  and  orbitals. This also 

increases the mechanical stability of the methyl decorated plumbene monolayers. 

Table. 3-1 Crystal lattice parameters (a) Pb−Pb bond length (d1), Pb−CX3 bond length (d2), 

buckling height (1), Energy bandgap with spin-orbit coupling (Eg), the formation energy (E) and 

Z2 topological invariant for different PbCX3 monolayers. 

 

The buckling height suddenly decreases in case of –CCl3 group due to more electronegativity of 

the group which attracts the π electrons towards it, and thus weakening the coupling between π 

and σ orbitals. The electronic stability of the structures is ensured from their formation energy ∆E 

using the Equation (2.10) in chapter 2, and the values obtained for PbCH3, PbCF3 and PbCCl3 are 

Monolayer a(Å) d1(Å) d2(Å) (Å) Eg (SOC) eV/atom ℤ𝟐 

Pb 4.92845 3.02 - 1.0071 0.3229 - 0 

PbCH3 5.07407 3.06 2.31 0.8863 0.9818 −1.3001 1 

PbCF3 5.12554 3.06 2.37 0.7904 0.9692 −2.42002 1 

PbCCl3 5.7454 3.34 2.40 0.406 0.841386 −1.70637 1 
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−1.3001eV/atom, −2.42002eV/atom and −1.70637 eV/atom respectively. The negative values of 

the formation energies indicate that there will be no phase separation between lead atoms (Pb) and 

methyl groups (CX3) in PbCX3.  

3.2 Determination of Electronic and Thermodynamic Stability 

3.2.1 Phonon Dispersion Curve 

The thermodynamic stability is ensured from phonon dispersion curves of the decorated structures 

shown in Figure 3.2. The presence of no branch in the negative frequency region indicates that 

methyl, trifluoromethyl and trichloromethyl plumbene monolayer would be stable at room 

temperature.  

 

(a) 

 

(b) 

 

(c) 

Figure 3.2 Phonon dispersion curves showing no branch in the negative frequency region and 

thermodynamic stability at room temperature. (a) PbCH3 monolayer, (b) PbCF3 monolayer and 

(c) PbCCl3 monolayer. 
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3.2.2 Molecular Dynamics Simulation 

The electronic and thermodynamic stability are also checked from molecular dynamics simulation 

[Figure 3.3]. Figure 3.3 (a) and (c) show the initial and stable stages, respectively of molecular 

dynamics simulation for PbCH3 nanoribbon. The nanoribbon is periodic in the direction 

perpendicular to the page. The CH3 groups are placed at a distance of 3.53 Å from the plumbene 

nanoribbon at the initial step. Figure 3.3 (b) shows the position of the atoms when the kinetic 

energy is maximum. From Figure 3.3 (c), we observe that CH3 groups nicely become attached 

with the lead atom sites and there is no broken bond at room temperature when stable structures 

are formed. Figure 3.3 (d) shows the change of kinetic energy with respect to time for PbCH3 

materials.  

 

Time=0 ps 

(a) 

 

Time=0.054 ps 

(b) 

 

Time=0.454 ps 

(c) 

 

(d) 
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Figure 3.3 (a) The initial step (time = 0 ps) of molecular dynamics simulation of a PbCH3 

nanoribbon. It is periodic perpendicular to the page. (b) The stage of molecular simulation where 

CH3 particles attain maximum kinetic energy (time = 0.054 ps), (c) The stable structure with no 

broken bond at room temperature (time=0.454 ps) and (d) Variation of system energy and 

temperature with respect to time. Red points, labelled as 1, 2 and 3, on the kinetic energy curve 

correspond to the position of the frames shown in (a), (b) and (c), respectively.  

We see that the kinetic energy of the particles initially increases, and after forming the bonds, the 

system energy becomes stable where the atoms periodically oscillate without breaking any bond. 

Simulations are repeated for CF3 and CCl3 groups, and the corresponding energy curves and the 

final stable stages are shown in Figure 3.4. Figure 3.4 (a) shows the energy curve for molecular 

dynamics simulation of PbCF3 nanoribbon. From it we see that, the structure comes to a stable 

position at around 0.3 ps which is larger compared to that of PbCH3 nanoribbon. The final relaxed 

structure with no breaking of bond has been shown in Figure 3.4 (b). From energy curve of 

molecular dynamic simulation of PbCCl3 nanoribbon in Figure 3.4 (c), we see that the stable 

position is formed around 0.22 ps which is less than that of PbCF3 nanoribbon but larger than that 

of PbCH3 nanoribbon.   

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.4 (a) The energy curve for molecular dynamics simulation of PbCF3 nanoribbon. The 

curve shows the gradual stable state of the nanoribbon, (b) The final stable nanoribbon showing 

no breaking of bond at room temperature, (c) the energy curve for MD simulation of PbCCl3 

nanoribbon, (d) The final stable nanoribbon of PbCCl3 showing no breaking of bond at room 

temperature.   

The final stable structure of PbCCl3 nanoribbon without no breaking of bond has been shown in 

Figure 3.4 (d). 

We have also simulated the structural and electronic property of tribromomethyl plumbene 

(PbCBr3) and triiodomethyl plumbene (PbCI3) monolayers, but due to the lack of any definite 

stable geometric structure, and phase separation between plumbene and (CBr3, CI3), these 

materials have not been further considered for verification of topological properties. 

3.3 Bandstructures and Partial density of states 

3.3.1 Bandstructure 

The bandstructure and partial density of states (PDOS) are calculated to observe the effect and 

origin of spin-orbit coupling. Figure 3.5 (a) and (b) show the bandstructure of PbCH3 monolayer 

crystal without and with spin-orbit coupling respectively.  
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(a) 

 

 

 

 

 

(b) 

Figure 3.5 (a) Bandstructure of the PbCH3 monolayer showing the contribution of Pb px,y and 

Pb pz orbitals in forming the bands without spin-orbit coupling, (b) Bandstructure of the PbCH3 

monolayer with spin-orbit coupling. 

 

(a) 

 

(b) 

Figure 3.6 (a) Bandstructure of PbCF3 monolayer without and with spin-orbit coupling, (b) 

Bandstructure of PbCCl3 monolayer without and with spin-orbit coupling. 

SOC 
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The bandgap obtained for PbCH3 taking the spin-orbit coupling into account is 0.9818 eV. The 

large bandgap for such a room temperature thermodynamic stable material is promising for 

quantum spin Hall insulator. The contribution of Pb px,y and Pb pz orbitals to each band of PbCH3 

are shown in colored red and green circles from which we see that the main contributions to 

valence and conduction bands near Fermi level are due to Pb px,y orbitals. 

Similar phenomena of the bandgap opening occurs for PbCF3 and PbCCl3 monolayer crystals, and 

the bandgaps obtained for PbCF3 and PbCCl3 with spin-orbit coupling are 0.9692eV and 0.8414eV 

respectively as shown in Figure 3.6 (a) and (b). These range of bandgap are enough for room and 

high temperature application, as it is much higher than thermal energy of electron at room 

temperature (0.0259eV). 

3.3.2 Verification of Bandgap with Hybrid Functional 

 

(a) 

 

(b) 

Figure 3.7 Bandstructures without and with spin-orbit coupling employing HSE06 functional. 

(a) PbCH3 monolayer (b) PbCF3 monolayer. 

To verify our simulation method, we have recalculated the electronic structures of PbCH3 and 

PbCF3 monolayers employing HSE06 functional. The bandstructures calculated for PbCH3 and 
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PbCF3 monolayers without and with spin-orbit coupling are shown in Figure 3.7. The bandgaps 

obtained for PbCH3 and PbCF3 monolayers using this method are found to be 1.2623eV and 

1.2498eV respectively. As GGA-PBE is known to underestimate the bandgaps, the bandstructures 

obtained from HSE06 functional are consistent with those obtained from GGA-PBE.   

3.3.3 Partial Density of States  

The partial density of states shows the contribution of atomic orbitals to the bandgap. Observing 

the contribution of orbitals from partial density of states in Figure 3.8 (a) and (b), we see that when 

spin-orbit coupling is introduced, the degeneracy of Pb px,y orbitals causes the bandgap opening 

near Fermi level. The lower bands are due to the contribution from Pb pz orbital. The partial density 

of states in PbCF3 monolayer without and with spin-orbit coupling are shown in Figure 3.8 (c) 

and (d) respectively. 

 

(a) 

 

 

 

 

 

 

(b) 

SOC 
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(c) 

 

 

 

(d) 

Figure 3.8 (a) Partial density of states showing the contributions of Pb s, Pb px,y and Pb pz 

orbitals without spin-orbit coupling in PbCH3 (b) Partial density of states with spin-orbit 

coupling. From the figures, it is seen that the major contribution to the bands near to Fermi level 

is due to Pb px,y orbitals. (c) Partial density of states without spin-orbit coupling in PbCF3, (d) 

Partial density of states with spin-orbit coupling in PbCF3. 

3.4 Topological Invariant and Orbital Analysis 

3.4.1 Topological Invariant  

The effect of spin-orbit coupling leads to the formation of edge states and these edge states will 

have to be topologically protected against backscattering. The robustness of these edge states 

against backscattering is determined from topologically invariant property. Thus, to find the 

robustness of the edge states, we have calculated the topological ℤ2 invariant of the each 

monolayer. For example, if we consider PbCH3 monolayer, there are 4 valence electrons in the 

outer shell of Pb, C and 1 valence electron in hydrogen. Hence, the total number of valence 

SOC 
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electrons in each crystal lattice shell is 2 × ( 4 + 4 + 3 × 1 ) = 22. By calculating the , ,| |
i n i n

     

at the 2mth occupied band, we have found the symmetry function δi at each symmetry points 

G(0,0), M(0,0.5), M(0.5,0) and M(0.5,0.5). As values of , ,| |
i n i n

     at the 2m−1th and 2mth 

bands are same due to spin degeneracy, the product of 
, ,| |

i n i n
     at the 2m−1th and 2mth 

bands 
2

, ,
2 1

| |
m

i n i n

m

 



 
   

 
  is essentially the same as the value of , ,| |

i n i n
     at the 2mth band. 

Then, the topological invariant is calculated using equation (4), as shown in Table. 3-2 and the ℤ2 

topological invariant with  indicates the topological nontriviality. 

Table. 3-2 Parities of 11 occupied spin-degenerated bands and symmetry functions at each 

symmetry points. The even and odd parities are represented by + and – signs. 

i , ,| |
i n i n

     of 2mth occupied band i 

(0,0) − − + +  − + − + − + − + 

(0.5,0) + − + − + − + − + − + − 

(0,0.5) + − + − + − + − + − + − 

(0.5,0.5) + − + − + − + − − + + − 

PbCH3  ℤ2 topological invariant  

 

3.4.2 Orbital Analysis 

To get a clear understanding of the origin of bandgap and topological nontriviality, we have 

presented the methodical band evolution at G point for PbCH3 in Figure 3.9. Analyzing the 

bandstructure and partial density of states in Figure 3.5 and Figure 3.8, we have done an orbital 

analysis to investigate the origin of topological characteristics. From partial density of states 



45 
 

(PDOS) of PbCH3 in Figure 3.8, we see that the Pb s and Pb px,y orbitals dominate the valence and 

conduction bands near the Fermi level. When chemical bonding is formed between Pb−Pb atoms, 

then effect of crystal field splitting creates bonding states and anti-bonding states for the s and px,y 

orbitals, which we have denoted with s   and 
, ,

x y
p  , where + and − represent the parities of 

the corresponding state respectively. As displayed in Figure 3.9, the bands near the Fermi level 

are due to 
, ,

x y
p   in absence of spin-orbit coupling (SOC). When the spin-orbit coupling is 

included in the calculation, the degeneracy of the level splits into 
, , 3 / 2

x y
p   states with a total 

angular momentum j=3/2 and 
, , 1 / 2

x y
p   with a total angular momentum j = 1/2, creating an 

energy gap at the G point. Similar analysis can be done and same conclusion can be drawn for 

PbCCl3 and PbCF3.     

 

Figure 3.9 The orbital analysis of PbCH3 at G(0,0) point, which shows that contribution of s 

and px,y atomic orbitals to bands near Fermi level. The bandstructure formation is mainly due to 

crystal field splitting and spin-orbit coupling. 
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3.5 Analysis of Nanoribbon 

The presence of edge states and topological invariant can be clearly observed if we construct a 

semi-infinite PbCH3 sheet and investigate its bandstructure. We simulate the semi-infinite 

nanoribbons of each materials as shown in Figure 3.10 (a). The nanoribbon has edges in the zigzag 

direction and the dangling bonds at the edges are passivated by hydrogen atoms. Figure 3.10 (b) 

shows the corresponding bandstructure of PbCH3 nanoribbon. Here, there are two symmetry points 

Z and X in the Brillouin zone of the nanoribbon due to its periodicity along A direction. We see 

from the bandstructure that the nanoribbon is insulating in the bulk except there is a pair of edge 

states along the edges which is observed by the presence of certain bands in the bandgap region. 

The contribution of spins to the edge states at bandgap region can be obtained from Kramer’s 

theorem which states that every time reversal invariant momentum (TRIM) is doubly degenerate.   

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.10 (a) PbCH3 nanoribbon along zigzag direction. The dangling bonds at the edges are 

passivated by hydrogen. The blue and red colors arrows represent the edge states due to up and 

down spin respectively. (b) Bandstructure of zigzag PbCH3 nanoribbon showing odd number of 

band passing through Fermi level which proves the Z2 topological invariant of 1. The red color 

band corresponds to the bands due to edge states. (c) Bandstructure of zigzag PbCF3 nanoribbon. 

(d) Bandstructure of zigzag PbCCl3 nanoribbon.  

3.5.1 Determination of Topological Invariant 

The Topological invariant of the edge states can be calculated from the number of bands that are 

crossing Fermi level from Γ to X point. From Figure 3.10 (b), (c) and (d), we see that the number 

of bands crossing Fermi level from Γ to X point is 1 which is an odd integer. So, it can be told that 

the edge states are protected by time-reversal symmetry.  
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3.5.2 Determination of Fermi velocity 

The Fermi velocity obtained for electrons in PbCH3 nanoribbon is 7.38 × 105 ms-1 as calculated 

from Figure 3.10 (b) using the formula 
f

E v k , suggests its possible application in high speed 

electronics. Same phenomena were observed in the bandstructures of PbCF3 and PbCCl3 

nanoribbons in Figure 3.10 (c) and Figure 3.10 (d). 

3.6 Change of Properties with Strain 

3.6.1 Stability and Change of Bandgap 

In order to investigate the stability of the materials and change of properties with the change of 

strain (±4%), we have shown the variation of bandgap and formation energy versus strain. From 

Figure 3.11 (a), we see that the bandgap of PbCH3 decreases gradually with the increase of strain 

and increases upto compressive strain of 4%. The formation energies in the negative region, shown 

by Figure 3.11 (b), ensures the electronic stability of the materials under strain. The bandgap vs 

strain curve of PbCF3 is almost linear in the total range of strain. It has been previously discussed 

that bandgap opens mainly due to p-p orbital splitting with spin-orbit coupling. Thus, the reason 

behind the strain-dependent variation of bandgaps can be found from orbital analysis. Figure 3.11 

(c) shows that the p-p orbital splitting decreases with compressive strain and increases with the 

increase of tensile strain, and the bandgaps follow the trend accordingly. We have not applied 

strain more than 4% because beyond that it leads to structural deformation. Thus, changing the 

strain in methyl and trihalogenomethyl decorated plumbene monolayer, topological insulators with 

much higher bandgap may be obtained. 
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(a) 

 

(b) 

 

(c) 

Figure 3.11 (a) The change of bandgap (Eg) taking the effect of spin-orbit coupling (SOC) with 

change of strain, (b) the change of formation energy  with strain. The negative values of 

formation energies ensure electronic stability. (c) The orbital analysis of PbCH3 at G(0,0) point 

for different percentages of strain, which shows that contribution of s and px,y atomic orbitals to 

bands near Fermi level. The amount of splitting in p-p orbitals is changed as shown by the dotted 

lines. 
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3.6.2 Change of Bond Length 

The buckling height increases with increase of application of compressive strain. The change of 

buckling height and Pb-Pb bond distance with change of strain is shown in Figure 3.12. 

 

Figure 3.12 Change of buckling height (𝛿) and Pb−Pb (d1) bond distance in PbCH3 crystal cell 

with application of tensile and compressive strain. There is almost no change shown in the 

Pb−CH3 atoms. 

Table. 3-3 shows the change of different types of bond length with change of strain. We see that 

buckling height (𝛿1) increases in case of all the monolayer crystal cells with application of 

compressive strain and it decreases with application of tensile strain. The Pb−Pb bond length (𝑑1) 

decreases with application of compressive strain and increases with tensile strain. The 
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Table. 3-3 Change of different types of bond lengths with the change of strain 

Å Å Å

0.8863 0.7904 0.406 3.06 3.06 3.34 2.31 2.37 2.40

 

 



52 
 

Chapter 4 

Conclusion and Future Works 

4.1 Conclusion 

We have predicted a new family of methyl and trihalogenomethyl decorated plumbene 

monolayers, as large bandgap quantum spin Hall insulators, showing excellent topological 

property at room temperature. The electronic and thermodynamic stabilities of these materials have 

been checked from phonon dispersion curve and molecular dynamics simulation, making its place 

for room temperature application. Orbital analysis shows that the bandgap opening is mainly due 

to p−p band splitting caused by spin-orbit coupling. The ℤ2 topological invariant confirms the 

robustness of edge states against backscattering that is protected by time-reversal symmetry. The 

presence of bands in the bandgap region of the bandstructure obtained by simulating nanoribbons, 

further confirms the presence of edge states and its topological nontriviality. We have also seen its 

structural stability against externally applied strain, which enhances the possibility of obtaining 

topological insulators with higher bandgaps using strain. These findings demonstrate that the 

methyl and trihalogenomethyl decorated Pb films may be good QSH platforms for the design of 

topological electronic devices, spintronics and dissipationless electronic transport. 

4.2 Future Works 

We have proved methyl and trihalogenomethyl decorated plumbene monolayers as quantum spin 

Hall insulators. We think, there is still some scope of novel research on these type of materials 

system.  
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1. To investigate whether methyl decorated plumbene monolayers can be used as channel materials 

in transistor. Though in quantum spin Hall insulators, there is vanishing charge-conductance but 

it can be avoided if the time-reversal symmetry is broken using magnetic impurity leading to 

quantum anomalous Hall effect. These materials can be used as channel materials due to their high 

electron mobility.  

2. To evaluate the performance of methyl decorated plumbene monolayers in generating spin 

current and applying spin-orbit torque. As magnetic circuit offers low-power electronic devices, 

so these materials can be used to generate large spin current. These materials can also be used to 

change magnetization of a materials, as these can apply a high spin-orbit torque.   

3. To find out the layer-dependent properties and performance of these materials against defects 

and impurities. Edge states of quantum spin Hall insulators are protected by time-reversal 

symmetry. Also there is difficulty in growing monolayer materials, so the performance of these 

materials with change of layer can be investigated. 

4. The methodology used here can be projected to find 3D topological insulators. 3D topological 

insulators are particularly fascinating due to high spin-orbit torque. 
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