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ABSTRACT

The thesis describes a computational investigation of turbulent boundary layer in
transition from smooth to rough surface. The scope of the present computational
study is limited to numerical prediction of the flow parameters of steady two
dimensional turbulent flow over smooth to rough surface at different Reynolds
numbers. "TEACH-T", a general computer programme has been used for this

purpose.

The governing partial differential equations expressed in cartesian co-ordinate
system are discretised in a finite difference technique. A staggered arrangement
of variables has been used in conjunction with the SIMPLE algorithm. The upwind

differencing scheme is employed to evaluate the convective terms.

The time averaged governing equations of mean flow is closed using the standard

k-& turbulence model.

The surface texture of the rough portion used in experiment is simulated in the
present computation in two different ways (i) Mean height type: computational
cells of total height equal to the height of the average stone chips used in the
experiment are continuously blocked off to incorporate the rough surface into the
flow domain. (ii) Saw tooth type: computational cells are blocked off in such a way
that the blocked cells give the bottom surface a saw tooth type configuration with
the saw tooth height equal to the average stone chips height.

The prediction is in good agreement with the experimental data in the smooth
surface. Whereas, in the rough surface: for mean height type; the velocity profiles
conform with the experimental data but pressure gradient is under predicted, for
saw tooth type; pressure gradient conform with the experimental data but velocity

profile is under predicted .
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INTRODU CTION

1.1 Background

When a flow comes in contact with a surface, it forms a so called boundary layer
in the most immediate vicinity of the contact zone. For turbulent flows, a
turbulent boundary layer forms whenever the flow encounters a surface. The
knowledge about the boundary layer is of prime importance for the study of a
transport phenomenon, because transactions of shear, heat, momentum, kinetic

energy, etc., mainly take place within this zone.

The term "turbulent flows" are characterised by random,irregular,fluctuating flows
superimposed upon the main stream . According to Hinze [1975] "Turbulent fluid
motion is an irregular condition of flow in which the various quantities show a
random variation with time and space coordinates, so that statistically distinct
average values can be discerned". The fluctuation which is superimposed on the
principal motion is so complex in its details that it seems to be inaccessible to
mathematical treatment, but it must be realized that, the resulting mixing motion
is very important for the course of flow and for equilibrium of forces. These
fluctuations are mainly responsible for the large resistance experienced by
turbulent flows in pipes or other closed conduits, for drag encountered by the

ships, and airplanes, and contribute chiefly to the losses in turbomachines. On the



other hand, it enables us to achieve greater pressure increase in diffusers or along

aeroplane wings and compressor blades.

Inspite of its variety of occurrence and applications, many aspects are not yet
known about turbulent flow structure because of its almost inaccessibility of
mathematical treatment, on the contrary, laminar flow is strictly mathematical
and its governing differential equation can be written exactly and can be solved

easily by high speed and super computers.

But turbulent flow poises a different problem with the impossibility of formulating
exact boundary layer equations because of the presence of additional terms
involving the time mean of the product of fluctuating velocities known as the

Reynolds stress in the stress tensor.

However, attempts have been made to create a mathematical basis for the
investigation of turbulent motion coupled with semi-empirical formulations. These
endeavour ranges from simple mixing length hypothesis of prandtl to the solution
of conservation equations for third order correlation by Launder and Spalding
[1972] which envisaged properly dealing with the extra term mentioned above. The
success in obtaining accurate turbulent flow predictions depends on prescribing a

closed set of equations adequately accounting for the flow process.

For devising a suitable turbulence model for the complex correlations in the

governing conservation equations, certain assumptions are made which need to be



supplemented by theoretical reasoning and empirical facts which, if accurate
enough within the range of interest, will lead to correct prediction of turbulent

flows.

Though experimental study of turbulent flow is a must for its correct prediction
a full fledged experiment on turbulence is generally laborious, expensive, and very
much time consuming. So other methods of investigations are often looked for.
After the inception of high speed digital computers, numerical solution coupled
with semi-empirical result has become a useful way of dealing with turbulence. To
acquire an insight of turbulence process, computational method has gained much

importance recently.
1.2 Motivation Behind the Selection of the Study

Turbulent fluid flows are most common in engineering arena and also in nature.
Flows in water lines, oil pipelines, heat exchanger, nuclear reactors, air
conditioning system, chemical processing plants, rotating machinery, etc., are the
common example of turbulent flow over rough surface at least at higher Reynolds
numbers. The system of some of the above installations are deliberately made

rough to drive maximum economic benefits and to ensure better performance.

The change of surface roughness occurs both in engineering application and in
nature. In the day to day application, flow encounters surface roughness change

mainly due to change of new pipes for old one of different specifications. In this



cases, differential surface roughness causes development of different types of
boundary layer which causes different rate of friction loss and heat transfer co-

efficient.

Flows with dissimilar surface conditions, appear in many practical situation.
Where technological requirements impose dissimilar boundary condition, such as
in nuclear reactors, by making the surface of rod bundles rough, heat transfer rate
between the coolant and the fuel can sufficiently be increased with relatively less

increase of overall flow resistance.

In nature the change of surface roughness is frequently observed in flow through
rivers and canals while they pass through different geological structures. Since
flood alleviation schemes are the focus of much engineering works, the prediction
of the conveyance capacity, velocity distribution and boundary shear stressin such
channels is clearly important. The boundary shear stress distribution is a

prerequisite for studies on bank protection and sediment transport.

Also sudden and frequent change in roughness is found in natural terrain where
flowing wind encounters, hills, ditches, meadows, forests, villages, etc. All these
surface configurations lie within the atmospheric boundary layer of the earth's
surface. The influence of strong wind or storm on the earth surface is more
severely felt in the boundary layer and the effect depends on the nature of the
boundary layer growth rather than the free stream atmospheric air, which occurs

high above the human habitation zone.



The coastal areas of Bangladesh is hit by cyclone almost every year causing loss
of valuable lives and properties. The extent of damage can be reduced by
understanding the behaviour of boundary layer and thereby prescribing methods

of reducing the flow velocity within the atmospheric boundary layer.

It is against this background the present research work has been embarked upon.
It is aimed at studying the changes happening in the boundary layer undergoing
a sudden transition over a flat surface due to an upstanding intervention of
roughness with comparatively high roughness ratio. This is expected to be a new
type of flow situation with strong relevance to the cases of natural flows and flows
of engineering interests. The present research is expected to reveal some
important flow characteristics valuable for greater understanding of turbulent
boundary layer and turbulence structure for the flow over varying surface

roughness.

1.3 Importance of Numerical Investigation

In the recent past, the emergence of faster digital computers together with the
development of more versatile and efficient numerical solution method has led to
a substantial increase in the assembly of mathematical modelling of turbulent flow
process. Now a days, in the field of engineering design of flow related technology,
designers are looking for computational investigations to seek the optimum
design,as experiments with either model or full scale prototype are generally

laborious, expensive, and fime dependent.



In the field of aerodynamics, the role of computational prediction method is worth
mentioning. In the calculation of aerodynamic forces, experienced by space
vehicle, the full scale model can be brought under practical situation only by the

means of computational simulation.

The power of prediction enables us to operate existing equipment more safely and
efficiently. Prediction of the relevant process help us in forecasting and even
controlling potential dangers such as floods, cyclones, tides etc. These predictions

offer economic benefits and contribute to human well being.

1.4 The Problems and Objectives

It is evident from the above discussion that dissimilar surface condition is of ever
growing practical importance in the modern flow related technology. Considerable
works have been done on flow over smooth to rough surface experimentally but
comparatively a little attention has so far been focused on to predict turbulent flow

over this type of surface condition computationally.

The objective of the present research work is therefore to extend a numerical
procedure with view to developing a tool for investigating turbulent flows in the

transition zone of smooth to rough surface.



The accuracy of prediction is assessed through comparison with experimental work

of Naser [1985].

1.5 The Present Contribution

The present research study only covers the numerical investigation of the flow

parameters of steady two dimensional turbulent flow over smooth to rough surface

at different Reynolds numbers.

The specific contribution of this study are the following: Numerical Prediction of

. velocity components

b. pressure gradient and its distribution

& turbulence parameters

d. shear stress

e. boundary layer parameter

f log-law parameters

g. assessment of the quality of numerical prediction through comparison with

the experimental data.

1.6 Thesis Outline

In Chapter 2, a brief review of the investigations carried out by different
researchers in the field of turbulent flow over dissimilar surface condition is

presented.



In Chapter 3, the governing transport equations are presented. A brief review of
the different approaches to the turbulence "closure problem" is given next. Then

the chosen closure model for the present study is presented.

Chapter 4, presents the numerical solution method embodied in the present study.
After presenting the expanded form of the governing differential equations, the
discretization procedure is given. Then the differencing schemes used to evaluate
various terms in the discretized equations are discussed from the point of view of
numerical stability, accuracy and economy and accordingly choice is made. The
grid and variable arrangement and the pressure correction equation that links the
momentum and continuity equation are described next. Then, after presenting the

treatment of boundary conditions, the solution algorithm is outlined.

In chapter 5, the computational results are presented and compared with the

experimental results obtained by Naser [1985].

Finally, in Chapter 6, the main achievements of the thesis are summarized and

recommendations are made for future work.



CHAPTER-II

LITERATURE REVIEW

2.1 General

Since the identification of turbulent flow by Osborne Reynolds, the researchers
have devoted themselves to developing hypothesis, analytical methods and
experimental investigations technique for the advancement of knowledge about
turbulent flow. Recently, with the introduction of high speed digital computer.
computational investigation of turbulent flow has opened up a new dimension to
this field. A brief review of the contributions made by the worldwide researchers
on turbulent flow, which are related to the present study and play a vital role in

the development of this branch of physical science, is given below.

2.2 Literature on Turbulent Flow Over Smooth Surface

In the initial stage of research on turbulent flows, the researchers devoted
themselves mainly to the study of flow over smooth surfaces. Blasius (1913).
Stanton and Panel (1915), Schiller (1923), Hermann (1930), Nikuradse (1932), are

some of the earliest investigators who worked on turbulent flow through smooth

pipes.



Richard (1938) made some of the earliest measurements of turbulence parameters.
He measured the longitudinal and transverse components of fluctuating velocity

/ ! . .
u’ and v/ and found that rise of u’ was steep near the wall and was four times v'.

Laufer (1951) presented a detail exploration of the flow field of mean and
fluctuating quantities in a two-dimensional channel flow. He confirmed the

findings of Reichard except that rise of u’ was less near the wall.

Klebanoff (1954) measured the three fluctuating components of velocity in a
boundary layer along a smooth wall with zero pressure gradient. He noticed
isotropic behaviour of turbulence intensities near the free stream but degree of

anisotropy increased towards the wall.

Clark (1968) made an elaborate study of turbulent boundary layer in a 25.0 ft.
long, 5.0 inch. wide channel section with aspect ration 12:1. Measurements were
done at Reynolds number ranging from 10,000 to 1,30,000 based on channel half
width and the centre line velocity. Mean velocity profiles were studied in every
details and all the three fluctuating components of velocity along with frequency

spectral analysis were investigated.

Thomas and Easter (1972) measured axial velocity, friction factor and wall shear
stress in an 8.1 m. long square section duct of size 101.6 mm with the help of a
DISA hot, film pressure transducer. e correlated the friction factor with Reynolds

number as:

10



Cf 278 % BB, i iaieaei ea ke Ei (2:2.1)

The Reynolds number in the experiment varied from 0.43 X 10° to 1.90 X 10°

based on the hydraulic diameter of the duct and centre line velocity.

Patankar (1972) introduced a new dimension in the field of computational
investigation of fluid flow problem. He succeeded in the prediction of laminar and
turbulent flow through rectangular and triangular ducts using computational

investigation technique.

The first successful attempt to predict the fully developed flow in a square duct
was made by Launder and Ying (1973) with a single equation model coupled with
"algebraic stress model". They demonstrated that the mean velocity field can be
predicted fairly well by their algebraic stress model. However, no comparison of
the computation and the experiment was made on the individual Reynolds stress
component. Their innovative numerical work on the secondary flow prediction was
followed by several other studies to calculate fully developed flow in some other
non circular geometries. For example those of Aly, Trupp and Gerrard (1978) and
Gosman and Raplay (1978) for an equilateral triangular duct and Caragilescovand
Todress (1975) for triangular rod bundle. This algebraic stress model was effective
for prediction of mean flow quantities. None of this studies revealed the details of

the model performance on the local structure of turbulence.

11



(Gosman and Ideriah (1976) computed turbulent flow through duct with sudden
change in diameter and compared the result with experimental data.The

comparison showed a good agreement.

Anderson, Tannehill and Pletcher (1984) carried out investigation in the prediction

of turbulent flows and attained a great success.

Nakayama (1986) made a computational studies on turbulent flow through duct
for his doctoral thesis and presented a series of comparison between experiment
and prediction in three dimensional co-ordinate system showing good agreement

between the compared values.

2.3 Literature on Turbulent Flows Over Rough Surfaces.

The earliest researchers who paid their attention to the effects of surface
roughness on turbulent flow are Schiller (1923), Nikuradse (1930) and Streeter
(1935). Moody's (1944) works formed the basis of studying turbulent fluid motion
in relation to the surface condition. Some of the related important research works

are presented below on the flows through pipes, rectangular ducts or channels.

2.3.1 Turbulent Flow Through Rough Pipes

Nikuradse (1950) was one of the pioneer workers in the field of turbulent flow

through rough pipes. He pointed out that velocity distribution in a rough pipe

12



were progressively lowered from the smooth pipe relation as the Reynolds number
increased. He performed extensive work on sand roughened pipe flow and
formulated a volume of empirical relations between surface roughness and friction

velocity.

Clauser (1956) studied the influence of roughness on the velocity distribution for
flow through pipes. He observed a vertical shift of rough wall log-law profile from

that of smooth wall and postulated a velocity distribution near the rough wall as,

The last term on the right hand side of the equation (2.3.1) is known as the wall
function which takes into account the shift of the velocity profile from that of the

smooth wall.

Robestson (1957) utilized Nikuradese's data and put forward a relation for the

wall function as,

*
At 5 grogk 5. L. (2.3.2)
u' v

Equations (2.3.1) and (2.3.2) give,

13



M 5. 6log2+8.3. . 0. (2.3.3)
u* k

Lawn and Hamlin (1968) made detail measurements of velocity in an internally
roughened pipe. They found that flow over a fully rough surface was very much

influenced by viscosity.

Towns et al (1972) performed a comprehensive experiment on turbulent flows

through sand roughened pipes and proposed a velocity distribution of the form

M -5 751n¥* _+4.55....(2.3.4)
u* v

which agrees very well with the experimental data for yu/v > 70.

2.3.2 Turbulent Flow Through Rough Ducts and Channels

Perry and Joubert (1963) performed experiments on rough surfaces with adverse
pressure gradients to compare the results of the boundary layers with theory and
with results of zero pressure gradient flow. They used wind tunnel test section
measuring 5.5 ft.x4.25 ft.at the down stream end. Discrete rib roughness of height
0.125 inch and pitch 0.50 inch were used. They proposed a method of finding out
the position of origin of vertical distance for rough wall flow. They found that the

roughness function was independent of imposed pressure gradient.

14



Perry et al (1969) presented a detailed experimental study of turbulent boundary
layer development over rough wall in both zero and adverse pressure gradients.
The experiments were done in a wind tunnel test section of Perry and Joubert
(1963). Roughness elements were of 1/8 inch, 1/2 inch and 1 inch height and of k-
type and d-type (origin of the rough surface is located nither at the crest nor at the
roots of the roughness elements but somewhere in the middle. Different
researchers used different methods to find the origin of the rough surface. As a
result, error always existed. When the error in the origin is proportional to the
height of the roughness elements, the roughness is called k-type or sand roughness
and when the error in origin is a linear function of the distance in the downstream
direction, the roughness is called d-type roughness). Velocity profiles were
measured and wall function was determined. The skin friction was calculated from
pressure gradient measured by tapping the roughness elements and considering
their form drag. Roughness function was found to be a function of length scale w.
For k-type rough wall, w was proportional to roughness scale k and for d-type

roughness it was postulated to be proportional to boundary layer thickness.

Wood and Antonia (1975) conducted elaborate experiments on the turbulent
boundary layer over a d-type surface roughness similar to those used by Perry et
al (1969) with A/k=2. The boundary layer was found to satisfy self-preservation
characteristics after x/D,;=1.5. The measurementsincluded shearstress, turbulence
intensities, turbulence frequency spectra and the analysis also included roughness
function, dissipation of energy and flow visualization. Distribution of Reynolds

normal and shear stresses across the boundary layer were found closely similar

15



to those found over a smooth surface (excepting the region immediately above the

grooves).

2.4 Literature on Turbulent Flows Through Pipes, Ducts

and Channels with Change in Surface Roughness

Jacobs (1939) was the pioneer in the investigation of turbulent flow through a duct
with step change in surface roughness. le performed the study in a 60 ecm X 20
cm channel with its floor fitted with discrete rib type roughness of height 1 mm
and 8 mm pitch. He calculated the shear stress in the transition zone using the

velocity distribution obtained from Prandtl's mixing length equation.

Clauser (1956) made a similar investigation like Jacobs on a flat plate in a

constant pressure boundary layer and obtained a similar result.

Logans and Jones (1963) were the pioneer in the investigation of turbulent flow
through pipe across a transition zone of surface roughness. They used a 8.0 inch
diameter pipe, internally roughened by sand grains with r/k = 55. They reported
that the shear stress suddenly increased at the rough smooth junction and
remained constant throughout the transition zone.

Antonia and Luxton (1971) investigated the turbulent boundary layer in a
depressed change of surface roughness in a zero pressure gradient flow. The
velocity profile, shear stress and turbulence intensities were measured. They found

the growth rate of internal boundary layer similar to that of zero pressure

16



gradient boundary layer. The turbulence level was found to be high inside the
internal layer because of the large energy production near the rough wall. Antonia
and Luxton performed another experiment in the same experimental set up but
the direction of flow was reversed from rough to smooth.They measured all the
mean values of turbulence parameters. The growth rate of internal boundary layer
was found to be less than that for the smooth to rough change of surface

roughness.

Antonia and Luxton (1971) measured the flow field down stream of an upstanding
k-type roughness. The growth of the internal boundary layer was measured from
u versus y'” plot. They also measured longitudinal and transverse components of
turbulence intensities, Reynolds shear stress, frequency spectra analysis of

turbulence and auto and cross coefficients of turbulence intensities.

Carper (1972) measured turbulence intensities and co-relation co-efficient in
turbulent flow o.f air in transition from smooth to a rough wall in a two
dimensional channel of size 4.0 in.x46.5 in. Discrete rectangular ribs of height
0.281 in. and width 0.437 in. were placed at an interval of 8 inches on both the
walls of the rough section. He observed that the boundary layer developed shortly

after the surface roughness change.

Schofield (1975) made a significant study in the development of turbulent
boundary layer encountering a step change of surface roughness in strong adverse

pressure gradient. The velocity profile was found to develop quickly after the

17



roughness change, the wall shear stress adjusted quickly to the new flow

condition with comparatively less overshoot.

Islam (1976) repeated the investigation performed by Carper.Islam and Logan
reported that the removal of pressure gradient in the rough channel section did
not affect the growth rate of internal boundary layer but the overshooting of the

shear stress was reduced.

Toni and Makita (1977) measured mean velocity,turbulence intensities and shear
stress in turbulent flow of air in transition from smooth to a rough wall and vice
versa in a two dimensional channel. The channel was 1.0 m wide and 10.0cm high.
The top and bottom surfaces of the rough section were fitted with 1.5 mmx 1.5 mm
cross sectional ribs with pitch of 1.0 ¢em. Measurements were taken at Reynolds
number 3.8x10" based on channel half height and a reference velocity of 10 m/sec.
The flow near the wall was found to adjust rapidly to the change in surface
roughness, while away from the wall, the response was slow. Adjustment to the
new equilibrium condition had set in the internal boundary layer shortly after the
roughness change. The shear stress overshoots at the rough smooth junction before

returning towards the equilibrium value.

Siuru and Logan (1977) studied the effect of roughness on the turbulent flow
through pipe with change in surface roughness condition. They determined the
spread of roughness effect from the knee points in the semi-logarithmic plots of

mean velocity profiles. The inner layer and the inner sub-layer were distinguished
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from the two knee points in the plots. The growth rate of the inner layers was

found as x"”?

Ali and Islam (1982) investigated the turbulent pipe flow over a zone of step
reduction in surface roughness. It was found that the mean turbulent quantities
responded immediately to the surface change and needed more length to reach

the developed condition than the mean quantities.

Naser (1985) carried out an experiment in an 18 in.X18 in. wind tunnel with

9 ft. long rough section following a 8.5 ft long smooth section. Stone chips of an
average size of 0.625 in. was used as roughening elements. It was observed that
the flow developed at about a distance of x/D, = 5 from the rough smooth junction.
The growth of boundary layer was found to be proportional to x*'. The secondary
flow was found to increase with the increase of surface roughness. The wall
function was found to be almost proportional to the roughness Reynolds number

and almost independent of roughness height.

Uddin (1986) performed the experiment in the same tunnel of Naser (1985) but
with a shorter rough section. He carried out the experiment in two roughness
orientation, upstanding and depressed. It was observed that the flow was not fully
developed even at a distance of 5D, down stream from the smooth rough junction.
He observed a sharp drop in axial pressure in the transition zone, indicating high

dissipation of flow energy.
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CHAPTER-III

GOVERNING DIFFERENTIAL EQUATIONS

3.1 Introduction

Cartesian co-ordinate system is used for the governing differential equation in the
present study. The discretized form of the transport equations in cartesian co-
ordinate system is simple and the orthogonal grid system makes the computation

easier.

In sub-section 3.2.1, co-ordinate free form of the governing equation is presented
while in sub-section 3.2.2, the form of the governing equations adequate for use

in the present study has been presented in cartesian tensor notation.

When the governing transport equations are time averaged to by pass the
prohibitive cost of calculation of the small scale turbulent motion, there appear the
unknown Reynolds stress in the mean momentum equation. The modelling of
these terms in order to arise at a close set of governing equations is the main task
of turbulence modelling. A brief review of the different approaches to this closure
pltoblem is given in sub-section 3.3.1. The choice of the closure to be employed in

the present study and its underlying assumptions are presented in sub-section

3.3.2.



3.2 Transport Equations

3.2.1 Governing differential equations in General Co-ordinate

The coordinate free form of the equations describing conservation of mass,

momentum and scaler quantities can be expressed as:

W+V (P2 =0 ivininis (3.1)
IPY) oy, (pyxv-T) =S, .o evvn .. (3.2)
9 -
_g;b_) +V. (pdv-q) =S4 . . . . . {5.3)

Here the density p, velocity v and scaler quantity ®@ appear as the basic dependent
variables. T is the stress tensor, S the source term and q the scaler flux. For a
Newtonian fluid the stress tensor can be expressed in terms of basic dependent

variables, as:

T=f(p+§u.v.v)i+2p.l) ........ (3.4)
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where p is the pressure, u the dynamic viscosity, i the unit tensor of the second
order and D the deformation or rate of strain tensor. The flux vector is usually

given by Fourier type law:

where A is a proportionality co-efficient, sometimes called "diffusivity" or

"conductivity".

3.2.2 The form of governing differential equations adopted

for use in this study.

The governing equations for steady incompressible flow are expressed in the

general orthogonal cartesian co-ordinate system for this study. The equations are:

B (o) =0 (3.6)
il
g __op, o i Ui
axj(p“'"f) axi*axj[”( B.rj+ ax,.)] ...... (3.7)
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9
axj

where u,p, p are function of time and the relationship with average value, for

example u is obtained as follows (Bradshaw et al 1982).

. f
u=lim (¢ <) ~o 1 f B i X}l 5 s w5 (3.9)
L=t Jn,

similarly, for other variables.

3.3 Turbulence modelling

3.3.1 Introduction

Since "Turbulent fluid motion is an irregular condition of flow in which the various
quantities show a random variation with time and space (Hinze, 1977). Therefore,
the full Navier - stokes equation are required for an exact mathematical model.
However, as is well known, the turbulent velocity fluctuation are characterized by
small time and length scales. The governing equations must be solved with
appropriately small mesh sizes and time steps to resolve these fluctuations. In the
context of present day computer speed and storage capacity, this requirement
cannot be satisfied.

To by pass the direct calculations of small scale turbulence, in most engineering
applications the predictions of turbulent flows are based mainly on the time
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averaged transport equations. The time averaging process consists of expressing
each variable through its mean value @ and fluctuating component @

(Schlichiting, 1979), as:

P B+ s v o5 i 5w s (3.10)

If the fluctuations in density and laminar viscosity are assumed to be negligibly
small which is usually justified in non-reacting and non-buoyant flows, the
decomposition (like equation 3.10) of the dependent variables of equations (3.6),
(3.7) and (3.8) into time-averaged and fluctuating components ,gives the following

set of equations.

@ romy -
-B;J(puj) =00 e e (3.11)
2 o iry=9 e P, 0 [, M, Wy cu
axj(pu_,-,u,-) ax( pu;;) ﬁx_i+§j[ "71+6x,-]+s' ..... (3.12)
9 (o) =9 (- 9 (9
axj(pujd)) axj( pﬁﬁhaxj( % axj)+S¢ ....... (3.13)
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These equations are similar to their instantaneous counterparts (Kqs.(3.6),
(3.7).(3.8)), except for the appearance of the second order co-relations in the

momentum and scaler equations,i.e in the former -

—plu;

which represents the turbulent Reynolds stresses; and in the latter there appear

the turbulent scaler fluxes:

_paﬁ

Because of the presence of the turbulent Reynolds stresses and scaler fluxes, the
system of equations (Egs.(3.11),(3.12),(3.13)),do not constitute a close set.
Additional equations are therefore required to relate them directly to the mean
quantities or determined from their own transport equations. This process of

closing the set of equations is known as turbulence modelling.

The available turbulence models are :

(1) KEddy viscosity models
(11) Reynolds stress model

(ni)  Large eddy simulations.
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(i) Kddy Viscosity Model

This class of models employ Boussinesq's (1877) concept of eddy viscosity. Here,
a Newtonian type of constitutive equation is used between the turbulent stresses
and the corresponding mean flow strain rates. FFor the general Reynolds stress

tensor, the Boussinesq's assumption gives:

ou,,

ou; Ou;
+ L —_—
T axk

“P"iujzur(aj &,

)_%50_(“ +pk) . ... (3.14)

Where p, is the eddy viscosity, §; ( §; = 1 for i=j and §;; = 0 for all other values)

is the Kronecker delta and k is the turbulent kinetic energy defined as:

Through p, the turbulence viscosity is expressed in terms of quantities which are
either known or can be calculated. The most fundamental construction in this
regard was Prandtl's (1925) postulation of eddy viscosity, being proportional to the
product of a length scale and a velocity scale. The eddy viscosity models differ with
respect to the choice and the method of obtaining the respective length and

velocity scales.
In "zero-equation" model the turbulent velocity-scale i1s directly related to the

magnitude of mean shear as in Prandtl's (1925) mixing length hypothesis and the

length scale 1s empirically prescribed.
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In typical "one-equation" turbulence models, a transport equation for turbulent
kinetic energy is solved to obtain the turbulence velocity-scale and the length-scale
is prescribed by empirical functions. For example Norris and Reynolds (1975)
proposed a "one equation” model for use in the viscous sub-layer as well as in the
fully turbulent regions. However "one-equation" models are difficult to be used in
the complex shear flows, because the length scale distribution is not easy to

prescribe over the whole flow domain (Launder and Spalding [1972]).

In "two-equation" models a transport equation for a length-scale related variable
is solved in conjunction with the transport equation for the turbulent kinetic
energy,thereby allowing transport effects on the turbulence length-scale to be
accounted for. Different workers adopted different length-scale related variables
eg. Kolmogorov [1942], Harlow-Nakayama [1968], Jones and Launder [1972],
Spalding [1967], Ng-Spalding [1972]. Among these, the rate of turbulence energy
dissipation e(=k"*/1)) is favoured partly because of the easy with which its exact
transport equations can be derived from the Navier-Stokes equation, and partly
of the fact that e appears directly as an unknown in the equation for turbulent
kinetic energy. Reviews of the eddy viscosity models can be found in Launder and

Spalding [1972], Bradshaw [1978], and Bradshaw [1981].

(ii) Reynolds Stress Models

These model discard the generalized Boussinesq hypothesis of equation (3.14) and

directly employ modelled transport equation for the Reynolds Stress Components.
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In the process of deriving these transport equations, higher order co-relations
appear as extra unknowns (Reynolds [1976], Rodi [1980] and Gibson [1989]). To
close the system of equations at the stress tensor level, the unknown higher co-
relations are approximated in terms of other determinable quantities (Rotta
[1951], Lumley [1972], Launder et al [1975] and Gibson et al [1981]), resulting in
six transport equations, one for each of the stress components. A length-scale

equation is also needed, making the total seven equations.

Although the Reynolds Stress Models offer greater potential generality and
accuracy, the requirement of solving the above mentioned seven equations make
these rank low from the point of view of economy. In addition to being
computationally expensive, they sometimes have not proved to be superior to
simpler, less expensive models when applied to complex flows (Thompson [1983],
El-Tahry [1984]). Further details about Reynolds stress model can be found in

(Reynolds [1976], Rodi [1980] and Gibson [1989]).

(iii) Large Eddy Simulation (LES)

This is a completely different line of approach for turbulence modelling. In this
method the governing equations are averaged over a spatial volume of the order
or larger than the sizes of the computational mesh. Then the dependent variables
are replaced by their spatially-averaged and fluctuating components. As a
consequence, equations similar to (3.11-3.13) result, but more complicated

counterparts of the Reynolds stress terms appear in the equations. However, in
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this way motion with scales larger than the mesh sizes can be captured
automatically by solving the averaged equations and only the "subgrid" scale
motions require modelling. The "subgrid" scale Reynolds stress are modelled,
usually using the viscosity concept, as a function of the resolvable scale field. Since
the small scales are believed to be more universal in character, they are far more
easily modelled than the large scale motions (see for example: Kwak et al [1975]
and Clark et al [1979]). The large eddy simulation approach is currently being
primarily used to test and develop the time averaged turbulence models described
above (Bradshaw [1978], Rody [1988]). Although LES is expensive and still in the
developing stage, the promising result already obtained (e.g. Kaned and Leslie,
1983), suggest that it may in due course assume the stature of the main tool for

engineering analysis.

3.3.2 Turbulence Model for the Present Study

Despite the greater potential of the Reynolds stress models the over riding
demands of economy nominates the standard K-¢ model (Launder and Spalding
1972) in which the unknown Reynolds stress are expressed by means of gradient
transport hypothesis where the fluxes are assumed proportional to the gradients

of mean flow properties. The constant of proportionality is p,.

According to gradient transport hypothesis (Hinge [1959]).

Reynolds Stress:
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— ou;  du;
"P“:“jzux(gl_*gj) ........ (3.16)

j i
u, turns out to be a function of turbulence energy k and its dissipation rate e via

T cppk"‘/s where k and ¢ are derived from their own transport equations.

For steady turbulent flow, the modelled form of the k - equation and e - equations

used in the present study are:

k-equation

g- equation

9 L0 (Bgde) .o €gc o€
aj(pufs) ach( 3, axj)+C€l -G-C,p SRR (3.18)

Where G is the rate of production of turbulent kinetic energy defined as:

ou; ou;
P,
ax; ax;

ou;

G=p,( y
]

) e §3+19)

For two dimensional steady plane flow, the equation (3.19) can be written as:

o\ 2 ou , 0 ‘
G_“'[Z(_axt")”z(%yv’z‘(?;‘“g;)z] HSGe e e (3.20)

Where, S, covers additional generation term whose effects are small except for
flows of non-uniform properties. For present prediction this term is omitted and
S.; given by (ideriah [1975]).

Where pe=p +p,
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The values of the empirical constants (C, C,,, C,,, 0, ©,) used in the study taken

from Launder & Spalding [1974] and given in table 3.1.

Table 3.1: The values of empirical co-efficient in the k-¢ model

0.09 144 192 10 13

Near wall region

In the standard high Reynolds number k-¢ model, the steep gradients prevailing
in the viscosity affected near wall region are not resolved in the Numerical
Calculations; rather they are past by placing the first grid point away from the
wall and outside the viscous sub-layer, where the {low is sufficiently turbulent and
the velocity is linked to the wall shear stress by the logarithmic law of the wall.
In the derivation of the logarithmic velocity distribution law, it is assumed that:
(i) the shear stress across the layer is constant; (ii) the length scale increases
linearly with the distance from the wall such that I, a ky and (iii) the rate of
production (G) of turbulence energy balances its rate of dissipation, €. Under the

couette flow condition, the log law is given by:
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Where A is a function of the wall roughness, u, the friction velocity defined as u,
= (1,/p)"" where 1, is the wall shear stress and K is known as von kerman constant

(K=0.4187).

32



CHAPTER-IV

NUMERICAL S®LUTI®N

4.1 Introduction

In this chapter the numerical solution procedure of the governing differential

equations presented in the previous chapter is described.

In section 4.2, the governing equations for two dimensional problems are written

in the expanded form suitable for discretisation.

In section 4.4, the differencing schemes used to evaluate various terms
(convection, diffusion and source terms) are discussed from the point of view of
numerical stability, accuracy and economy and accordingly a choice is made for the

present study.

Section 4.5 describes the overall solution procedure.First the grid and variable
arrangement used are presented then the pressure correction equation which links
the momentum and continuity, is described.The treatment of the boundary

condition is discussed next. IFinally, the solution algorithm is presented.



4.2 Expanded Form of Governing Differential Equations

For the sake of easier manipulation, the compact forms of the governing
differential equations (given in the previous chapter) are rewritten here for steady
two dimensional case as

continuity equation:

d

, 9 -
a(pr&)la—y(pv) Dy ssmamamawueyan vs (4.1)

u-momentum equation:

9 (oun) v 2 (puv) - B 4y (P, Pu
= (pu?) + T (puv) ax+|~"gﬁ‘( 6x2+ ) (4.2)
v-momentum equation:
d d _ 9 9%y . d?v
a(puvh?y(pvz)— Emeﬁ(aghéy—z ........... (4.3)
General differential equation:
9 1,90, 9 1,9, _
ax(pucb Ty ax)+6y(pv¢ P¢6y) Sgre v (4.4)

4.3 The method of discretization

The governing differential equations can be discretized in many ways. An over

view of the discretization method for the numerical solution of the fluid flow
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problems is given by PATANKAR (1980). In the present study the finite volume
approach, as described by Gosman et al (1969) and others, is adopted. In this
approach, the governing differential equations are discretized by integrating them
over a finite number of control volumes or computational cells, into which the
solution domain are divided. A typical computational cell is shown in Fig. 3.1.
Typical discretized transport equation (e.g. eq. 4.4) will take the following

quasilinear form.

(a,~0) §,=) aybptc. . ...... (4.5)

Where, the a,, are coefficients multiplying the values of ® at the neighbouring
nodes surrounding the central node P. The number of neighbour depends on the
interpolation practice or differencing scheme used. The a_ contains combined

convection and diffusion contribution at the control volume faces, i.e.

and b and c are obtained by linearizing the source term as follows.

The source term (right hand terms of the eqn. 4.4.) are evaluated by integrating
the volumetric source s, over the volume of the computational cell and expressed

as:



—f s4dv=b,+c

where, ¢ stands for the constant part of the source term while b is the coefficient

of ® and often a function of .

Since the direct solution methods (i.e. matrix inversion) require very large
computer storage and time and since the governing transport equations are non
linear, (the discretised governing transport equations are seemingly linear but a_
being the function of ®, makes them virtually nonlinear) the discretised equations
are solved using the SIMPLE algorithm of Patanker and Spalding [1972] by
repeated sweeps of a line-by-line application of the Tri-Diagonal Matrix Algorithm

(TDMA) (Patanker [1980]).

4.4 Differencing Scheme

4.4.1 Choice of Differencing Schemes

The stability of the numerical algorithm and the accuracy of the solution obtained
both depend on the type of interpolation practices or differencing schemes used.
The solution of the discretized equations (4.5) should satisfy the following

important properties of the exact solution:
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(1)

(11)

(111)

(1v)

(v)

(vi)

The flux that leaves a cell through a particular cell must be identical to the

flux that enters the next cell through their common face.

The conservation principle must be ensured i.e. the net transport of @
across the solution domain boundaries should equal total production or

consumption by integral sources.

The co-efficient of resulting algebraic equations must be always of the same
sign, to ensure diagonal dominance of the co-efficient matrix (i.e.when the
matrix of the coefficients of these equations is written, all the non zero

coefficients align themselves along three diagonals of the matrix).

The sources must be treated in a special manner. So as to reduce the
occurrence of unbounded solutions of problems which are source dominated.
In general the source should be linearized with a negative slope, to avoid

violation of rule above (see Patankar [1972]).
To be consistent with the differential equation, the co-efficient a, must obey
the relation given by equation (4.7) in the absence of source and boundary

conditions.

Since all iterative schemes are prone to divergence, the finite difference

equations must obey certain criteria to ensure convergence.
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The Scarborough criteria is one such rule. A sufficient condition for

convergence is that

b-b ;a""’ | <1, for all equations
p

and < 1 for at least one equation.

These are basic desired properties expected of a differencing scheme. The optimum

differencing schemes must be stable and highly efficient.
4.4.2 Brief Review of Some Differencing Schemes

In this subsection the differencing schemes used to evaluate convected cell-face
value of the dependent variable in terms of surrounding nodal values are

discussed and final choice is made for the present study.

(i) Central differencing schemes (CDS): If a piece wise-linear profile of ®

is assumed between P and E (see Fig. 3.6), the cell face value ®_ is given by:

b=l b, (1) o (4.8)

where £, is a linear interpolation factor defined as:
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Axp

JpF———

Xp+Axg

Here AX, and AX; are the cell dimensions along x coordinate for P and E cells

(see Fig. 3.1 and 3.6).

In this scheme a; and a, are always negative and if the convection process
dominates this can cause the whole coefficient a,, to assume negative value. As a
result the scarborough criteria fails and produce unbounded solutions (Spalding
[1972], Rathby & Torrance [1974]). At high Peclet number the CDS also violates
the transportive property by employing downstream nodes in expressions given
above. For these reasons application of CDS is limited to low Reynolds number

problems.

(ii) Upwind differencing scheme (UDS): The upwind differencing scheme

(Runchal & Wolfshiein [1969]) recognizes that the weak point in the
preliminary formulation is the assumption that the convected property @,
at the interface is the average of ®; and ®, and it propose a better
prescription. The formulation of the diffusion term is left unchanged but the

convention term is calculated from the following assumption.

The value of ® at an interface (See Fig. 3.7) is equal to the value of @ at the

grid point of the upwind side of the faces.

Thus b, = @,iff >0
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= duiff, <0

In this scheme all the coefficients contributing to a, are always non-negative. As
a resull Scarborough criteria is satisfied. UDS also satisfies the property of

transportiveness, and thus the boundedness of the solution is guaranteed.

In terms of Taylor Series Truncation Error (TSTE) analysis, the UDS is first order

approximate.

If the flow direction is not aligned with one set, of grid lines and if there is a steep
gradient of dependent variables in the direction normal to the flow, the use of
UDS results severe numerical smearing, as if much stronger diffusion process
were present in the flow than actually is the case, this additional diffusion is
called the "false" diffusion. It is zero if angle between flow and grid lines is 0" or
90° and maximum when 45°. "False" diffusion originates from the fact that
interpolation is performed along the grid lines rather than the streamlines. The
question of false diffusion attains importance only in case of large Peclet numbers,
since at small peclet numbers, the real diffusion is relatively large (see for detailed

discussion Patanker [1980] and Lai [1982]).

(iii) Linear upwind differencing scheme (LUDS): In the Linear upwind

differencing scheme the convected cell-face values are obtained by linear
extrapolation from the two closest upstream neighbour nodes on the same

coordinate line (See Ifigure 3.8).
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D, = D, + (D, - by) (1-f); for £, >0

= Oy + (O - Pppfy; for f, <0

In this scheme negative coefficients appear at the distant nodes violating the
Scarborough criteria. However, the LUDS does satisfy both the properties of
conservativeness and transportiveness and in terms of TSTE it is second order
accurate; hence unless boundedness problems arise the LUDS can produce much

higher level of accuracy than the UDS under the same circumstances.

Among the other available schemes are the Skew upwind differencing scheme
(SUDS) (Rathby [1976]) and Quadratic upwind differencing scheme (QUDS)

(Leonard [1979]).

SUDS suffers less from the numerical diffusion problem but is considerably more
complex. The QUDS is suitable for implementation in general two-dimensional
applications but is computationally more expensive than LUDS; and LUDS is

more suitable for iterative solution methods (Peric [1985]).

For the present study the UDS has been adopted.

41



4.5 Solution Procedure

4.5.1 Grid & Variable Arrangement

In the present study, the numerical solution is accomplished on a variably spaced
staggered mesh [see for example Caretto et al (1972), Patankar (1980)], in which
the scaler quantities (including pressure, density, viscosity, k & ¢) are defined at
the centre and the normal velocities at cell faces, as shown in Fig. 3.5. It has the
advantage that the variables u,v, p are stored such that the pressure gradients
which drive the velocities u & v are easy to evaluate and moreover the velocities

are located where they are needed for the calculation of convective flux.

4.5.2 Calculation of Pressure

The pressure gradient forming part of the source term in the momentum equations
are to be obtained before the velocity field is calculated and it is the pressure field

through which the continuity equation is satisfied.

The SIMPLE method of Patanker and spalding [1972] is used in the present study
to obtain pressure. The differential equations presented in section 4.2 can be

expressed in the following discretised form.



[(pU), - (pU) JAy+[(pV),~(pV) ] Ax=0...... (4.9)

au,=2a, ., b+ (Pp-Pp)A,. oo oo (4.10)

a,V,=Y (a,Vy) +b+ (P,-Py)A,. ... .. (4.11)

(a,~b) §,=)" @b tC. . . . (4.12)

The solution method consists of following stages

A guessed pressure field p’ is used to obtain a preliminary set of U and V from

the following equations

a," =28,y b+ (Pp-Pe)Ag. . oo .. (4.13)

anVn*=Eauqub*+b+(Pp*_PN*)An ..... (4.14)

where, the superscript * on U and V indicates that these are based on an

estimated pressure field p.
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The starred velocity U” and V™ will in general not satisfy the continuity equation

(4.9) but will produce a net mass source M, for the point P. This 1s defined by

M,=[(pU*") -~ (pU") ,JAy+ [ (pV") - (pV*)JAx. ... (4.15)

Now our aim is to correct the pressure and velocity so as to eliminate this mass
source: For this, let us propose that a corrected value P is obtained from the

following equations.

p=p«+p

where, p’ is called the pressure correction. The corresponding velocity corrections

f . . . .
u’ and v’ are obtained, in similar manner as:

_ /
U, = Ut u

V,=V, +V

substituting 4.13 from 4.10 we have

aeﬁe=xanbdnb+ (pP_pE)Ae """"" (4 : 16)

Dropping the term Za, u',, from the above equation for computational convenience,

equation (4.16) becomes

ae’ze: (pngE)Ae
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li,=d, (pp—Pg) , where, dﬁ%

(4

Equation 4.16 is the velocity correction. Hence the corrected velocily equations

becomes
u,=u, +d, (P;{ -P{) ... .. (4.17)

Similarly we can write

V=V, +d,(PJ-P{) . ... (4.18)

Substituting the above velocity correction equations (4.17 and 4.18) into continuity

equations (4.9), we have discretised equations for P

a,P)=agP{+a Pl vayPi+aP{+b. . .. (4.19)

4.6 Boundary Conditions

The forms of boundary conditions encountered in the present study and their

implementations are described below
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(1) Inlet boundaries: The values of all the variables at the inlet boundaries are
usually explicitly specified, from experimental data, or are obtained from

analysis and estimation.

(i1)  Outlet Boundaries: At outlet of the computation domain at large Re, upwind
difference renders specifications of variables unimportant (in the absence
of recirculation). It is usual practice to assume zero gradient in the direction

of flow and the exit velocities are obtained from mass balance.

(111)) Impermeable Wall: Near the wall the local Reynolds number becomes very
small and the turbulence model applicable at high Reynolds number
becomes inadequate. Both the fact and the steep variation of properties

near the wall necessitates special attention for the grid nodes close to walls.

4.6.1 On the basis of wall boundary conditions

Wall boundary conditions are embodied in the governing transport equations in

the following ways:

(a) Equations of Mean Motion

At the solid walls the velocities are set to zero, satisfying the no slip condition.
The boundary layer that develops near the wall can be conceived to be made up

of three zones (Hinze [1959]).
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Y* <5 viscous sub layer
5<Y"'< 30 buffer layer

30 < Y"' internal layer

defined according to the dimensionless distance Y' given by Y =pu, y/p

Where y is the normal distance from the wall and u, is the friction velocity defined

0.5

as u, = (1, / p)" here 1, is the wall share stress.
Generally close to the wall, a one dimensional cuette flow analysis is made and the
momentum equation can be reduced to a particularly simple non dimensional form

as follows (Gosman et al 1978).

T=(p+p,) du

Bey du’
- T418) 22
T Boody*

For,y*<11.63; —tf«cl, t=1,, then, u*=y

+
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For,y‘>11.63;%>1,t=tw

and p = p k y pu, (Hinze, 1959)
then u" = 1/k log, (Ey")
where u' = u/u,

K = von kerman constant (0.4187)

E = integral constant

In the standard k- € model (Launder and Spalding, 1972) the wall affected region

is bridged by logarithmic law of the wall.
(b)  Equations of Turbulence Energy and Energy Dissipation

The wall treatment for k- and ¢ - equations are to be formulated on the basis of
local equilibrium condition that the local rete of production of turbulence is

balanced by its dissipation rate e.

(I)  The turbulence energy equation (eq.3.17) reduces to a simple form that
yields expression for both the shear stress 1 = 1, and the dissipation rate € within
the buffer and viscous sub-layer

production = dissipation
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v A e vielding. k=
thus, -uv & €:yielding  k

o] =

pC,

and the & modified from the k balance as

3 1 d
fedv=c" T2y Y with
v yp

u'=y',for,y's11.63

u*z%loge(Ey*) for,y*>11.63

(i1) e equation reduces to

_ k=
Ce, =Ce, 3
4
0.,
_ k?
thus, o = i

'y

(Ce,—Cc,) Cy
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4.6.2 Incorporation of wall boundary condition

(a) Momentum equation

(1) Tangential velocity:

Tangential velocity u, for a node next to the wall as shown in Fig. 3.9 is obtained
from usual momentum balance and the coefficient a, 1s set to zero in the finite
difference equation. The correct shear force expression is incorporated via source
treatment. The momentum source for tangential velocity component adjacent to

the south wall is calculated as

Sszrsﬁxcw = ueﬂéxcw(up-us)/yp

where 6x,, is the area of cell ,y, is the normal distance from cell centre to the wall

and p .y is the effective viscosity,can be expressed as

Beg=Wifor,y*<11.63

1 1

a2 X +
Por=PCy Kpwk — for,y*>11.63
ef Ftp Ppw log(Ey,,)
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1 1
with, y, =c," p Kpw %ﬂ

where k= (k, +k,)/2

pw

S, is then linearized as equation S=S +S ®, where S, and 5, represent the implicit

and explicit contribution respectively.

Sp = prﬂéxew/yp

Sll Moy Wy 6Xow/‘yp

(ii)  Normal velocity: For velocity normal to a wall ,no special wall treatment is

necessary.
(b) Turbulence Energy K

Kp shown in fig 3.10 is obtained from usual k-balance but, since the turbulence
energy falls to zero at the wall, there is no contributing flux from the wall: hence,
a, is set to zero without insertion of any modified form for it. The generation term
G in the K-equation reduces to a much simplified form which is further modified
by noting that it can be expressed in terms of wall shear stress. The source for the

K-balance, s, =(G-pe), is evaluate as follows.

(1) Calculation of G altered by noting

and 1, = pg (U, - U/ Y,



fp, @+— Ydvetg (u,-uy) Lii
Y

(1)  Calculation of pe altered by noting

3

2 2
(kPZ _ksz ) u-;g_v
Yp

T slw

fpedv pCy

u'=y" for y" <11.63

= 1/k log, (Ey") for y' > 11.63.
(c) Energy Dissipation Rate e

In wall-flows, unlike k which falls to zero at the wall, ¢ reaches its highest value
(much higher than in a free stream) at the wall. This makes e-balance for a cell
extending upto a wall very difficult as we are ignorant on how to modify a, in
such cases. It is due to this shear ignorance that we adopt a fixed value for e,
(irrespective of y,) based on ‘equilibrium' relation. g, is incorporated as usual

through way of b and c.

T alw
mfu

€,=¢, k,

» /Ky

(d) Pressure Correction

At boundaries where the normal velocity is prescribed, the finite difference

equation for local pressure correction must be defined so that this velocity is not



changed i.e. p/ is zero. This is done, for example the cell adjacent to a 'south’ wall

by setting as = 0.

4.7 Solution Algorithm

Now the important operation in the order of their execution are

(1)

(11)

(iid)

(iv)

(v)

(vi)

Initialise all field values by an initial guess

Solve momentum equations and obtain u” and v

Solve the pressure correction equation to obtain p’ and calculate p by adding

p top

Calculate u, v from their starred values using velocity correction formula

Solve the discretized equation for other variables (such as turbulent

quantities) If they influence the flow field through fluid properties, source

terms etc.

Treat the corrected pressure p as a new guessed pressure p*, return to step

(ii) and repeat the whole procedure until a converged solution is obtained.
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In the present study, the convergence criterion is that the sum of the normalized

absolute residuals at all computational nodes, defined

R¢"=EN| (a;—b (r-1) ) ¢}£r—1) _Eaurbd)’s;—l) —¢ (r-1) |/N_f

should fall below a specified level

R, < 10°

Here N is the total number of nodes, r the iteration counter and N; the

normalization factor.
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CHAPTER-V

PRESENTATION OF RESULTS AND COMPARISON WITH

EXPERIMENT

5.1 Introduction

In this chapter, the results of the numerical prediction of turbulent flow over
smooth to rough surface obtained by the numerical method described in Chapter-4
are presented and compared with the measurements of Naser [1985]. To simulate
the same rough surface used in the experiment by Naser [1985] two different types
of roughness configuration are employed in the calculation domain i.e. (i) uniform
plain surface with step up height equal to roughness height 1.59 cm (average
roughness height used in the experiment), (ii) saw tooth type rough surface with
tooth height 1.59 cm (average roughness height used in the experiment) Standard
k-¢ model incorporated with upwind differencing scheme is used in the
computation. Analysis of the flow structure is carried out at four different
Reynolds numbers (Reynolds number is defined as Re = pU D,/u, where p is the
density of the fluid, U is the axial centre line velocity of the flow, D, is the width
of the test section and p is the dynamic viscosity of the fluid). Effects of the
different roughness configuration on the computational flow field are presented.
Turbulence energy and energy dissipation rate are presented for clear

understanding of flow development at different Reynolds numbers.



5.2 Flow Configuration

The steady and incompressible turbulent flow geometry considered here was the
subject of a detailed experimental investigation performed by Naser [1985]. The
geometry and dimension of the test section is shown in Fig.1. The flow
measurements were performed for four different Reynolds number over the smooth
to rough surface with average stone chips of hight 1.59 em. The effect of the side
walls on the core region of the flow, specially the two-dimensional vertical plane
passing through the centre line, was found to be negligible (Naser [1985]). Hence
calculation were carried out on a two dimensional plane representing a vertical
plane passing through the centre line of the duct. The surface texture of rough
portion used in the experiment, is simulated in the present computations in two
different ways i.e. (i) on the bottom surface of the calculation domain five cells of
total height of 1.59 cm (equal to the height of the average stone chips used in the
experiment to make rough surface) are blocked off to incorporate the rough surface
into the flow domain at a distance of 2.59m from the inlet; (ii) on the bottom
surface, at a distance of 2.59m from the inlet, cells are blocked off in such a way
that the blocked cells give the bottom surface a shape of saw tooth type

configuration with the maximum saw tooth height 1.59 cm.

5.3 Domain of Solution and Computational Grid

The solution domain shown in Fig.2(a) & Fig.2(b) is bounded by the inlet plane,

exit plane and the top and bottom wall. The entire computational domain is
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divided into 50 vertical grid lines and 144 horizontal grid lines. The grid
distribution in the calculation domain is uniform in the x-direction (horizontal)
and non uniform in the y-direction (vertical). The mesh is contracted near the
bottom all over the whole calculation domain such that the ratio between the two

successive steps in space is constant and equal to 1.15.

5.4 Boundary Conditions

The treatments of the walls, the inlet and the outlet applied in the present study
has already been presented in Section 4.6. In the following, the specification of the
boundary values at the inlet form the experimental data are outlined and finally

the treatment of the exit boundary is described.

5.4.1 Inlet Conditions

The uniform velocity distributions across the inlet section were obtained from the
measured mass flow rates of Naser [1985]. Turbulent energy and energy

dissipation rates are calculated from the following formula.

K=0.030%: i saniasns (5.1)
3
s k2
6—.0—91 --------- (5.2)



5.4.2 Outlet Condition

It is already outlined in section 4.6 that, in the absence of recirculation and at
large Reynolds numbers, specification of variables at the outlet of the calculation

domain is obtained by assuming a zero gradient in the flow direction.

5.6 Grid Dependence Test

To obtained a solution independent of the number and spacing of the grid nodes,
grid dependence test is performed. The test was done at Reynolds numbers 2.127
X 10° for two grid sizes: 30 X 50 and 50 X 72, for smooth surface. Each time close
spacing was maintain at the bottom wall, where rapid changes of the flow
variables occur. For this test, predicted u-velocity profiles at various axial location
was compared with measured values of Naser [1985]. The predictions for both the
grid sizes are in close agreement with the measurements and hence the solution

is independent for any grid sizes.

5.6 Presentation of Results and Comparison with

Experiment

The flow parameters are presented here with the duct hydraulic diameter (D)) as
the characteristic length.The centre line velocity at each section of the duct has

been taken as characteristic velocity.
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The mean flow characteristics has been calculated at four different Reynolds
numbers viz. Re=2.127x10", 5.76x10°, 7.98x10° 9.57x10" based on the hydraulic
diameter of the duct and mean centre line axial velocity over the smooth surface.
The calculations and comparisons include mean axial velocity profiles, pressure

gradient along the wall, wall shear stress and log-law parameters.

Mean Velocity Profile

The mean velocity profiles of flow over the smooth surface for different Reynolds
numbers are shown in Fig 4.1 along with the experimental results. The mean
velocity profile over the entire diameter of the duct for smooth surface at a
distance x/D,=-0.83, (x measured from smooth rough junction) at Reynolds number
5.76x10° is plotted in Fig. 4.2. The vertical distances for the velocity profiles are
calculated from the smooth wall. The velocity profiles are in quite good agreement
with the experimental values and indicate the attainment of self- preservation
characteristics. However, some disagreements are observed at the top of the
boundary layer, where the computational result under predicts the velocity. This
disagreement is more pronounced at the highest Reynolds number (9.57x10%),

where the maximum deviation 1s 4.0%.

The mean axial velocity profiles, calculated over the rough surface using two types
of rough texture, are shown in Fig. 4.3 along with the experimental results. The
vertical distances for velocity profiles are calculated from the top of the rough

surface. The velocities are non-dimensionalised by the free stream velocity of the
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respective sections and distances are by the duct diameter. The profiles show a
gradual development of boundary layer with axial distance and the trend indicates
that the flow attains development at x/D ,=5.5. The computational results obtained
with mean-height rough texture are in reasonably good agreement with the
experimental data,whereas the results obtained with saw-tooth rough texture are
in good agreement only at the smooth-rough junction (x/D,=0.0), but gradually
deviates further from the experimental values in the down stream direction. This
discrepancy reaches at its maximum at x/D =5.5. At x/D,=5.5, the experiment and
the mean-height results show that the boundary layer is developed, whereas the

saw-tooth results show a developing trend.

Axial Pressure Gradient

The distribution of wall static pressure in the axial direction are shown in Fig. 4.4
along with experimental data. The curves show three distinct regions, the first
straight line portion represents the smooth wall pressure gradient. The second
portion shows a sudden jump followed by a sharp decrease in the transition zone
associated with the accelerated flow. The sharp decrease is due to the sudden
decrease in flow area by the presence of roughness configuration. After a certain
distance downstream, the pressure gradient takes a new equilibrium value for the
rough surface. In the equilibrium zone of the rough surface the slope of the
pressure gradient curve is much higher than that for the smooth section. This is

due to higher frictional and other resistances.
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The predictions show good agreement with the measurements of Naser [1985] in
the smooth section but discrepancies are evident in the rough sections. In the saw-
tooth type rough surface the discrepancies are within the acceptable range but in
the mean-height type rough surface, pressure gradients are highly under
predicted. This is due to the fact that mean-height type rough surface under

predicts the shear stress.

Friction Factor

The wall shear stress presented in the form of friction factor for the smooth
surface is determined from the axial pressure gradient in the smooth section of the
duct. If the wall shear stress is assumed to be uniform throughout the perimeter

of the duct, then the simple force balance provides.

The friction co-officiants obtained from the relation
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are plotted in Fig. 4.5 along with the measurement of Naser [1985] and other
researchers. The predicted friction co-efficients for smooth surface are in good

agreement with the measurements.

The method of calculation of shear stress and friction coefficient is followed from

the experimental study of Naser [1985].

The friction co-efficient calculated for two types of rough surfaces are plotted in
Fig. 4.6 along with those of other researchers. The curves show a sharp difference
between the friction co-efficient obtained by saw tooth type rough surface and
mean height type rough surfaces. This is due to the fact that the pressure gradient
for saw tooth type rough surface is much higher, conforming with the experiment.
Whereas for the mean height type, the pressure gradient is much lower than that
obtained in the experiment. This is already explained earlier with reference to Fig.

4.6.
The predicted friction co-efficient for saw tooth type rough surface is in good
agrement with the measured data whereas, high discrepancy is evident for the

mean height type rough surface.

Log-Law Profiles

The universal velocity profiles over the smooth surface are shown in Fig. 4.7. along

with the measured data of Naser (1985). The mean velocity and the wall distance
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are normalised by u* [(t,/p)”] and v/u* respectively. The straight line nature and
parallelism of the two profiles (x/D, = -1.167, - 0.25) show that the flow is
developed before meeting the rough surface. The logarithmic velocity profiles for
the rough surfaces are shown in Fig. 4.8a and 4.8b for Reynolds number Re = 9.57
X 10" at x/D, = 5.5 along with experimental values. The nature of the curves show
that the flow is almost developed. The log low profiles for the rough surface shows
a vertical shift from the smooth wall profiles for the same Reynolds number flow.
This is termed as the "wall function" of the rough surface and are found to

increase with the roughness Reyonlds number ku*/u.

The log-law profiles for smooth surface conforms with the experimental data. But
the predicted values for rough surface deviate from the measured data. The
deviation from measured data for saw tooth type rough surface is due to the fact
that the mean velocity profile for saw tooth type rough surface does not conform
with the experimental data, and for mean height type rough surface, pressure

gradient is highly under predicted.

5.7 Discussion

Two dimensional steady incompressible flow has been simulated for the prediction
of turbulent boundary layer in transition from smooth to rough surface. The
results obtained have been presented in the previous section. Standard k - e model
incorporated with upwind differencing scheme has been used for the calculation

of flow characteristics. The simulation of rough surface has been carried out in two
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different ways mentioned in previous section. The predications of flow field for
smooth surface are in quite good agreement with the measured data. However, the
disagreements which are still there, may be due to the fact that the grids
considered for finite-difference solultion has not been sufficient enough to resolve
the gradients of the flow parameters to reveal all the minute details of the flow

field.

But the predicted flow characteristics for rough surface indicate discrepancies with
the measured data. It may be mentioned here, that the rough surface used for
computation are of two different geometrical configurations, namely (1) regular saw
tooth type and (ii) mean height type. The discrepancies between the predicted and

measured data may be due to the following reasons;

- None of the two rough models represents the exact rough surface created

by randomly organised irregular stone chips used in the experiment.

- The randomly oriented irregular stone chips used in the experiment
disperse the flow in an irregular fashion. This could not be incorporated and

simulated in the flow calculation.

- The irregular stone chips used in the experiment, redistributes the flow in

the three-dimensional space whereas the regular saw tooth type rough

texture merely gives the two-dimensional effect of the roughness elements.
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In the experiment small vortices are formed in between the stone chips.
Energy required to drive these small vortices are obtained form the mean
flow, resulting in higher shear stress. This could not be reproduced in the

calculation.

Mean height types simulation may be considered as smooth surface with a
jump; but the experimental rough surface has been quite different from the
assumed system.

In the rough section, where the steep pressure gradients and the minute
details of the flow near the solid wall influences the over all flow

characteristics. k-¢ model is inadequate for satisfactory simulation.

In the derivation of the logarithmic velocity distribution law, it is assumed

that

(a) Shear stress across the layer is constant.

(b)  The length scale increases linearly with the distance from the wal

() The rate of production of turbulent energy balances its rate of

dissipation.
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None of the above mentioned assumptions are valid in the near rough wall

region.

- Computer storage limitations restricts the use of fine meshes in the

calculation domain.
. All the desirable characteristics contributing to numerical accuracy can not
be maintained simultaneously throughout the whole calculation domaindue

to complex geometry of rough texture.

If all the above mentioned limitations are overcome, then the computation will

reproduce the results obtained by the measurements.
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CHAPTER-VI

SUMMARY AND CONCLUSIONS

6.1 General

In this Chapter, the main findings and achievements of the present computational
study, made with respect to the objective set in Chapter-1, are presented and the
scope of extension and development of the present study are suggested. In Section
6.2, the summary of main findings and achievement are presented and the
suggestions for future work are given in section 6.3. The flow parameters predicted
for two entirely different types of rough texture, viz (1) saw tooth type, (11) mean

height type, following a smooth surface provides reasonably acceptable predictions.

6.2 Summary of Main Findings and Achievements

(a) The boundary layer thickness increases over the rough surface.

(b)  The wall shear stress increases with the increase of surfaces roughness. The

increase of wall shear stress for saw tooth type rough surface is much

higher than the mean height type.



(c)

(d)

(e)

6.3

(i1)

(111)

(v)

The axial mean velocity profile is in good agreement for mean height type
rough surface, while the shear stress in good agreement with the

experimental dat for saw tooth type model of surface roughness.

The static pressure shows a sharp jump at the rough smooth junction,

followed by a steep decrease in the flow direction over the rough surface.

The full details of the boundary layer development in transition from
smooth to rough surface can not be reproduced by employing log-law or two-

dimensional simulated rough texture.

Suggestions for Future Work

The same prediction can be carried out with large number of fine grids
which may reproduce more accurate result in details obtained by the
experiment.

Higher order schemes (e.g. LUDS, Quick scheme ) can be used to have
better accuracy in this type of prediction.

To take account of the three-dimensional effect in the rough portion of the
flow domain, three-dimensional calculation simulating the exact rough
texture can be carried out.

To obtain better results, turbulence models capable of handling this type of
complicated flow can be used (e.g. Reynolds stress models, Large eddy

simulation).
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(vi)  Similar study can be made with different types of roughness configurations.
(vil) Investigation can be made with modified (e.g. two-layer model: employ one-
equation model in the near-wall region and the standard k-¢ model in the

core region of the flow) wall treatment.
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Fig. 3.6: Schematic presentation of CDS
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APPENDIX-A

Structure of the Mathematical foundation
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The overall structure of TEACH - T
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