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ABSTRACT
The thesis describes a computational investigation of turbulent boundary layer in

transition from smooth to rough surface. The scope of the present computational

study is limited to numerical prediction of the flow parameters of steady two

dimensional turbulent flow over smooth to rough surface at different Reynolds

numbers. "TEACH-T", a general computer programme has been used for this

purpose.

The governing partial differential equations expressed in cartesian co-ordinate

system are discretised in a finite difference technique. A staggered arrangement

ofvariables has been used in conjunction with the SIMPLE algorithm. The upwind

differencing scheme is employed to evaluate the convective terms.

The time averaged governing equations ofmean flow is closed using the standard

k-e turbulence model.

The surface texture of the rough portion used in experiment is simulated in the

present computation in two different ways (i) Mean height type: computational

cells of total height equal to the height of the average stone chips used in the

experiment are continuously blocked off to incorporate the rough surface into t.he

flowdomain. (ii) Saw tooth type: computational cells are blocked off in such a way

that the blocked cells give the bottom surface a saw tooth type configurat.ion with

the saw tooth height equal to the average stone chips height.

The prediction is in good agreement with the experimental data in the smooth

surface. Whereas, in the rough surface: for mean height type; the velocity profiles

conform with the experimental data but pressure gradient is under predicted, for

saw tooth type; pressure gradient conformwith the experimental data but velocity

profile is under predicted .
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1.1 Background

When a flow comes in contad with a surface. it forms a so called boundary layer

in the most immediate vicinity of the contact zone. For turbulent flows, a

turbulent boundary layer forms whenever the flow encounters a surface. The

knowledge about the boundary layer is of prime importance for t.he study of a

transport phenomenon, because transactions of shear, heat, momentum, kinetic

energy, etc., mainly take place within this zone.

The term "turbulent flows"are characterised by random, irregular, fluctuating flows

superimposed upon the main st.ream . According to Hinze [1975] "Turbulent fluid

motion is an irregular condition of flow in which the various quantities show a

random variation with time and space coordinates, so that st.atistically distinct

average values can be discerned". The fluctuation which is superimposed on the

principal motion is so complex in its details that it seems t.o be inaccessible to

mathematical treat.ment, but it must be realized that, the resulting mixing motion

is very important for the course of flow and for equilibrium of forces. These

fluduations are mainly responsible for the large resistance experienced by

turbulent flows in pipes or other closed conduit.s. for drag encountered by t.he

ships, and airplanes, and contribute chiefly to the losses in turbomachines. On the



other hand, it enables us to achieve greater pressure increase in diffusers or along

aeroplane wings and compressor blades.

lnspite of it.s variety of occurrence and applications, many aspects are not yet

known about turbulent flow structure because of its almost inaccessibility of

mathematical treatment, on the contrary, laminar flow is strictly mathematical

and its governing differential equation can be written exactly and can be solved

easily by high speed and super computers.

But turbulent flowpoises a different problem with the impossibility ofform ulating

exact boundary layer equations because of the presence of additional terms

involving the time mean of the product of fluctuating velocities known as the

Reynolds stress in the stress tensor.

However, attempts have been made to ereate a mathematical basis for the

investigation of turbulent motion coupled with semi-empirical formulations. These

endeavour ranges from simple mixing length hypothesis of prandtl to the solution

of conservation equations for third order correlation by Launder and Spalding

[1972]which envisaged properly dealing with the extra term mentioned above. The

success in obtaining aecurate turbulent flow predictions depends on prescribing a

closed set of equations adequately accounting for the flow process.

For devising a suitable turbulence model for the complex correlations in the

governing conservation equations, certain assumptions are made whieh need to be
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supplemented by t.heoret.ieal reasoning and empirical facts which, if accurate

enough within t.he range of int.erest, will lead to correct prediction of turbulent

flows.

Though experimental study of turbulent flow is a must for its correct prediction

a full fledged experiment on turbulence is generally laborious, expensive, and very

much time consuming. So other methods of investigations are often looked for.

After the inception of high speed digital computers, numerical solution coupled

with semi-empirical result has become a useful way of dealing with turbulence. To

acquire an insight ofturbulence process, computational method has gained much

importance reeently.

1.2 Motivation Behind the Selection of the Study

Turbulent fluid flows are most common in engineering arena and also in nature.

Flows in water lines, oil pipelines, heat exchanger, nuclear reactors, air

conditioning system, chemical processing plants, rotating machinery, etc., are the

common example of turbulent flow over rough surfaee at least at higher Reynolds

numbers. The system of some of the above installations are deliberately made

rough to drive maximum eeonomic benefits and to ensure better performance.

The change of surface roughness occurs both in engineering application and in

nature. In the day to day applieation, flow encounters surface roughness change

mainly due t.ochange of new pipes for old one of different specifications. In this

3



cases, differential surface roughness causes development of different types of

boundary layer which causes different rate of friction loss and heat transfer co-

efficient.

Flows with dissimilar surface conditions, appear in many practical situation.

Where technological requirements impose dissimilar boundary condition, such as

in nuclear reactors, by making the surface of rod bundles rough, heat transfer rate

between the coolant and the fuel can sufficiently be increased with relatively less

increase of overall flow resistance.

In nature the change of surface roughness is frequently observed in flow through

rivers and canals while they pass through different geological structures. Since

flood alleviation schemes are the focus of much engineering works, the prediction

of the conveyance capacity, velocity distribution and boundary shear stress in such

channels is clearly important. The boundary shear stress distribution IS a

prerequisite for studies on bank protection and sediment transport.

Also sudden and frequent change in roughness is found in natural terrain where

flowing wind encounters, hills, ditches, meadows, forests, villages, etc. All these

surface configurations lie within the atmospheric boundary layer of the earth's

surface. The influence of strong wind or storm on the earth surface is more

severely felt in the boundary layer and the effect depends on the nature of the

boundary layer growth rather than the free stream atmospheric air, which occurs

high above the human habitation zone.
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The coast.al areas of Bangladesh is hit by cyclone almost. every year ca using loss

of valuable lives and propert.ies. The extent of damage can be reduced by

understanding the behaviour of boundary layer and thereby prescribing methods

of reducing t.he flow velocity within the atmospheric boundary layer.

It is against this background t.he present research work has been embarked upon.

It is aimed at st.udying t.he changes happening in the boundary layer undergoing

a sudden transition over a nat. surface due to an upstanding intervention of

roughness with comparatively high roughness ratio. This is expected to be a new

type of flow situation wit.h strong relevance to the cases of natural flows and flows

of engineering int.erests. The present research is expected to reveal some

important flow characteristics valuable for greater understanding of turbulent

boundary layer and turbulence structure for the flow over varying surface

roughness.

1.3 Importance of Numerical Investigation

In the recent past, t.he emergence of faster digital computers together with the

development. of more versatile and efficient. numerical solution met.hod has led to

a substantial increase in the assembly of mathematical modelling of turbulent flow

process. Nowadays, in the field of engineering design of flow related technology,

designers are looking for computational investigations to seek the optimum

design,as experiments with either model or full scale prototype are generally

laborious. expensive, and t.ime dependent.
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In the field of aerodynamics, the role of computational prediction method is worth

mentioning. In the calculation of aerodynamic forces, experienced by space

vehicle, the full scale model can be brought under practical situation only by the

means of computational simulation.

The power of prediction enables us to operate existing equipment more safely and

efficiently. Prediction of the relevant process help us in forecasting and even

controlling potential dangers such as floods, cyclones, tides etc. These predictions

offer economic benefit.s and contribute to human well being.

1.4 The Problems and Objectives

It is evident from the above discussion that dissimilar surface condition is of ever

growing practical importance in the modern flow related technology. Considerable

works have been done on flow over smooth to rough surface experimentally but

comparatively a little attent.ion has so far been focused on to predict turbulent flow

over this type of surface condition comput.ationally.

The objective of the present research work is t.herefore to extend a numerical

procedure with view to developing a tool for investigating turbulent flows in the

transition zone of smooth to rough surface.

6



The accuracy ofprediction is assessed through comparison with experimental work

of Naser [1985].

1.5 The Present Contribution

The present research study only covers the numerical investigation of the flow

parameters of steady two dimensional turbulent flowover smooth to rough surface

at different Reynolds numbers.

The specific contribution of this study are the following: Numerical Prediction of

a. velocity components

b. pressure gradient. and its dist.ribution

c. turbulence parameters

d. shear stress

e. boundary layer parameter

f. log-law parameters

g. assessment of the quality of numerical prediction through comparison with

the experimental data.

1.6 Thesis Outline

In Chapter 2, a brief reVIew of the investigations carried out by different

researchers 111 the field of turbulent flow over dissimilar surface condition is

presented.
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In Chapter B, the governing transport equations are presented. A brief review of

the different approaches to the turbulence "closure problem" is given next. Then

t.he chosen closure model for the present study is presented.

Chapter 4, presents the numerical solution method embodied in the present study.

After presenting the expanded form of the governing differential equations, the

discretization procedure is given. Then the differencing schemes used to evaluate

various terms in the discret.ized cquations are discussed from the point of view of

numerical stability, accuracy and economy and accordingly choice is made. The

grid and variable arrangement and the pressure correction equation that links the

momentum and continuity equation are described next. Then, after presenting the

t.reatment of boundary conditions, t.he solution algorithm is outlined.

In chapter 5, the computational result.s are presented and compared wit.h the

experimental results obtained by Naser [1985].

Finally, in Chapter 6, the main achievements of the thesis are summarized and

recomn\endations arc made for future work.
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CHAPTER-II

LITERATURE REVIEW

2.1 General

Since the identification of turbulent {lowby Osborne Reynolds. the researchers

have devoted themselves to developing hypothesis. analytical methods and

experimental investigat.ions technique for the advancement of knowledge about

turbulent {low. Recently, with t.he int.roduction of high speed digital computer.

computational investigation of turbulent {lowhas opened up a new dimension to

this field. A brief review of l.he contributions made by the worldwide researchers

on turbulent flow. which are relat.ed to the present study and playa vit.al role in

the development of this branch of physical science, is given below.

2.2 Literature on Turbulent Flow Over Smooth Surface

In the initial stage of research on turbulent flows. the researchers devoted

themselves mainly to the st.udy of flow over smooth surfaces. Blasius (19131.

St.anton and Panel (1915), Schiller (1923). Hermann (1930). Nikuradse (1932). are

some of the earliest invest.igators who worked on t.urbulent flow through smooth

pipes.



({iehard ( 19:38) made some of the earliest measurements of turbulence pa rarnetprs.

He measured the longitudinal and transverse components of fluctuating velocit.y

ul and Vi and found t.hat. rise of ul was st.eep near the wall and waR four t.imes Vi.

Laufer (1951) present.ed a det.ail explorat.ion of t.he flow field of mean and

fluctuat.ing quant.it.ieR in a two-dimensional channel flow. He confirmed t.he

findingR of Reichard except t.hat. riRe of ul waR lesR near t.he wall.

Klebanoff (1954) measured t.he t.hree fluctuating components of velocity in a

boundary layer along a smooth wall wit.h zero pressure gradient. He noticed

isotropic behaviour of turbulence int.ensities near the free st.ream but degree of

anisotropy increased towards the wall.

Clark (1968) made an elaborat.e study of t.urbulent. boundary layer in a 25.0 ft.

long, 5.0 inch. wide channel section with aspect ration 12: 1. Measurements were

done at Reynolds number ranging from 10,000 to 1,30,000 based on channel half

width and t.he centre line velocity. Mean velocity profiles were studied in every

det.ails and all the three fluct.uating componentR of velocity along with frequency

spectral analysis were investigat.ed.

Thomas and Easter (1972) measured axial velocity, friction factor and wall shear

stress in an 8.1 m. long square sect.ion duet of size 10 1.6 mm with t.he help of a

DlSA hot. film pressure t.ransducer. Ill' correlat.ed the frict.ion fact.or with ReynoldR

number as:
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Cf = 0, 079 x Re -0.25 •••••••.••..••...• (2 , 2 . 1)

The Heynohls number in t.he experiment varied from 0.43 X 10" to 1.90 X 10"

based on the hydraulic diameter of the duct and centre line velocity.

Patankar (1972) introduced a new dimension in the field of computational

investigation of fluid flow problem. He succeeded in the prediction of laminar and

turbulent flow through rectangular and triangular ducts using computational

investigation technique.

The first successful attempt to predict the fully developed flow in a square duct

was ma<leby Launder and Ying (1973) with a single equation model coupled with

"algebraic stress model". They demonstrated that the mean velocity field can be

predicted fairly well by t.heir algebraic st.ress model. However, no comparison of

t.he computation and the experiment. was made on t.he individual Heynolds stress

component. Their innovative numerical work on the secondary flow prediet.ion was

followed by several ot.her studies to calculat.e fully developed flow in some ot.her

non circular geomet.ries. For example those of Ny, Trupp and Uerrard (1978) and

Gosman and Haplay (1978) for an equilateral triangular duct and Caragilescov and

Todress (1975) for triangular rod bundle. This algebraic stress model was effective

for prediction of mean flow quantities. None of this studies revealed the det.ails of

the model performance on the local structure of turbulence.

11



Gosman and lderiah (1976) comput.ed t.urbulent l10w through duel with sudden

change in diameter and compared the result with experimental data. The

comparison showed a good agreement.

Anderson, Tannehill and Pletcher (1984) carried out investigation in the prediction

of turbulenl. l10ws and attained a great success.

Nakayama (1986) made a computal.ional studies on turbulent flow through duct

for his doctora I thesis and presented a series of comparison between experiment

and prediction in three dimensional co-ordinate system showing good agreement

between the compared values.

2.3 Literature on Turbulent Flows Over Rough Surfaces.

The earliest researchers who paid their attention to the effects of surface

roughness on l.urbulent l10w are Schiller (1923), Nikuradse (1930) and Streeter

(1935). Moody's (1944) works formed the basis of studying turbulent l1uid motion

in relation to the surface condition. Some oUhe related important research works

are presented below on the l10ws through pipes, rectangular ducts or channels.

2.3.1 Turbulent Flow Through Rough Pipes

Nikuradse (1950) was one of the pioneer workers in the field of turbulent flow

through rough pipes. lIe pointed out that velocity distribut.ion in a rough pipe

12



were progressively lowen'd frol11Lhe smooth pipe relaLion a8 the Reynold8 nurnhpr

increased. He performed extensive work on sand roughened pipe flow and

form ulated a volume of empirical relations hetween surface roughness and friction

velocity.

Clauser (1956) studied the influence of roughness on the velocity distribution for

flow through pipes. He observed a vertical8hift of rough wall log-law profile from

that of smooth wall and postulated a velocity distribution near t.he rough wall as,

~ =5 , 61og 1!£.'. + 5 , 6- tl.1I , , , , . • • • • (2. 3 . 1)
14+ v U"

The last. term on the right hand side of the equation (2.3.1) is known as t.he wall

function which takes int.o account the shift of the velocit.y profile from that. of the

smooth wall.

Robestson (1957) utilized Nikuradese's data and put forward a relation for the

wall function as,

tl.1I kll' )-=5.61og--2,7 (2.3.2
ll. v

Equations (2.3.1) and (2.3,2) give,



II Y-- =5.6109 k- +8.3 (2.3.3)
/I"

Lawn and Hamlin (HJ68) made detail measurements of velocity in an internally

roughened pipe. They found that flow over n fully rough surface was very much

influenced by viscosity.

Towns et al (1972) performed a comprehensive experiment on turbulent flows

through sand roughened pipes and proposed a velocity distribut.ion of the form

~=2.751n~'4.55 .... (2.3.4)
fl. v

which agrees very well wit.h the experimental data for yu"/u > 70.

2.3.2 Turbulent Flow Through Rough Ducts and Channels

Perry and Joubert (1963) performed experiments on rough surfaces with adverse

pressure gradients to compare the result.s of t.he boundary layers with theory and

with results of zero pressure gradient flow. They used wind tunnel test section

measuring 5.5 ft.x4.25 ft.at the down stream end. Discrete rib roughness of height

0.125 inch and pitch 0.50 inch were used. They proposed a method of finding out

the position of origin of vertical distance for rough wall flow. They found that the

roughness function was inllependent of imposed pressure gradient.

14



PetTy et al (1969) preHented a detailed experimental study oflurbulent boundary

layer development over rough wall in both zero and adverse pressure gradients.

The experiments were donE' in a wind tunnel test section of Perry and .Joubert

(1963). Roughness clements were of 1/8 inch, 1/2 inch and 1 inch height and of k-

type and d-typE' (origin of the rough surface is located nither at the crest nor at the

roots of the roughness elements but somewhere in the middle. Different

researchers used different nwthods to find the origin of the rough surfnce. !lH a

result, error always existed. When the error in the origin is proportional to the

height of the roughness elements, the roughness is called k-type or sand l"OughneHs

and when the error in origin is a linear function of the distance in the downstream

direction, the roughness is called d-type roughness). Velocity profiles were

measured and waH function was determined. The skin friction was calculated from

pressure gradient measured by tapping the roughness elements an,1 eonsidering

their form drag. Roughness function was found to be a function of length seale w.

For k-type rough wall, w was proportional to roughness scale k and for d-type

roughness it was postulated to be proportional to boundary layer thiekness.

Wood and Antonia (1975) conducted elaborate experiments on the turbulent

boundary layer over ad-type surfaee roughness similar to those used by Perry et

al (1969) with fJk=2. The boundary layer was found to satisfy self-preservation

eharacteristies afterx/D,,= 1.5. The measurements ineluded shear stress, turbulence

intensities, turbulenee frequency spectra and the analysis also ineluded roughness

function, dissipation of energy and flow visualization. Distribution of Reynolds

normal and shear stresses across the boundary layer were found elosely similar
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to those found over a smooth surface (excepting the region immediately above the

grooves).

2.4 Literature on Turbulent Flows Through Pipes, Ducts

and Channels with Change in Surface Roughness

Jacobs (193!J) was the pioneer in the investigation of turbulent. flow through a duct

with step change in surface roughness. lIe performed the study in a 60 cm X 20

cm channel with its floor fitted with discrete rib t.ype roughness of height 1 mm

and 8 mm pit.ch. He calculated the shear stress in the transition zone using the

velocity dist.ribution obt.ained from Prandtl's mixing length equation.

Clauser (1956) made a similar invest.igation like Jacobs on a flat. plate III a

const.ant pressure boundary layer and obtained a similar result.

Logans and Jones (1963) were the pioneer in t.he investigation of turbulent. flow

through pipe across a transition zone of surface roughness. They used a 8.0 inch

diameter pipe, int.ernally roughened by sand grains with r1k = 55. They report.ed

t.hat. t.he shear stress suddenly increased at. t.he rough smoot.h junction and

remained constant throughout the transit.ion zone.

Antonia and Luxton (1971) investigated the turbulent boundary layer in a

depressed change of surface roughness in a zero pressure gradient flow. The

velocity profile, shear stress and t.urbulence int.ensit.ies were measured. They found

t.he growt.h rate of int.ernal boundary layer similar to that of zero pressure
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gradient boundary layer. The turbulence level was found to be high inside the

internal layer because of the large energy production near the rough wall. Antonia

and Luxton performed another experiment in the same experimental set up but

t.he direction of flow was reversed from rough t.osmoot.h.They measured all the

mean values of turbulence parameters. The growth rat.e of internal boundary layer

was found to be less than that for the smooth to rough change of surface

roughness.

Antonia and Luxt.on (1971) measured t.heflow field down st.ream of an upstanding

k-type roughness. The growth of the internal boundary layer was measured from

u versus yltl plot. They also measured longitudinal and transverse components of

turbulence intensities, Heynolds shear stress, frequency spectra analysis of

turbulence and auto and cross coefficients of t.urbulence int.ensities.

Carper (lB72) measured lurbulenee int.ensit.ies and co-relation co-efficient in

t.urbulent flow of air in transition from smooth t.o a rough wall in a t.wo

dimensional channel of size 4.0 in.x4G.5 in. Discrete rectangular ribs of height

0.281 in. and width O.4:n in. were placed at. an int.erval of 8 inches on both the

walls of t.he rough section. He observed that the boundary layer developed shortly

after the surface roughness change.

Schofield (1975) made a significant. study in t.he development of turbulent

boundary layer encount.ering a st.ep change of surface t'<JUghnr'Hsin strong adver'se

pressure gradient. The velocit.y profile was found to develop quickly after t.he
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roughness ehange, the wall shear stress adjusted quickly to the new flow

condition with eomparatively less overshoot.

Islam (1976) repeated the investigation performed by Carper.Islam and Logan

reported that the removal of pressure gradient in the rough channel seetion did

not affect the growth rate of internal boundary layer but the overshooting of the

shear stress was reduced.

Toni and Makita (1977) measured mean velocity,turbulenee intensities and shear

stress in turbulent flow of air in transition from smooth to a rough wall and vice

versa in a two dimensional ehannel. The channel was 1.0 m wide and 1O.0em high.

The top and bottom surfaces of the rough section were fitted with 1.5 mmx 1.5 mm

cross sectional ribs with 'pitch of 1.0 em. Measurements were taken at Reynolds

number 3.8xlO' based on channel half height and a referenee velocity of 10 m/see.

The flow ncar the wall was found to adjust rapidly to the change in surface

roughness, while away from the wall, the response was slow. Adjustment to the

new equilibrium condition had set in the internal boundary layer shortly after the

roughness change. The shear stress overshoots at the rough smooth junction before

returning towards the equilibrium value.

Siuru and Logan (1977) studied the effed of roughness on the turbulent flow

through pipe with change in surface roughness condition. They determined the

spread of roughness effed from the knee points in the semi-logarithmic plots of

mean velocity profiles. The inner layer and the inner sub-layer were distinguished
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from the two knee points in the plots. The growth rate of the inner layers was

found as xu."

Ali and Islam (1982) investigated the t.uruulent. pIpe flow over a zone of step

reduction in surface roughness. It. was found that the mean turbulent. quantities

responded immediately to the surface change and needed more length to reach

the developed condition t.han the mean quantities.

Naser (1985) carried out an experiment in an 18 in.Xl8 in. wind tunnel with

9 ft.. long rough section following a 8.5 ft long smooth section. Stone chips of an

average size of 0.625 in. was used as roughening elements. It was observed that

the flow developed at auout a distance of xlD, =0 5 from the rough smooth junction.

The growth of boundary layer was found to be proport.ional to x"". The secondary

flow was found to increase with the increase of surface roughness. The wall

function was found to be almost proportional to t.he roughness Reynolds numher

and almost independent. of roughness height..

Uddin (1986) performed the experiment. in t.he same t.unnel of Naser (1985) but

wit.h a short.er rough section. He carried out. t.he experiment. in t.wo roughness

orientat.ion, upstanding and depressed. 11.was observed that. t.he flow was not fully

developed even at a distance of 5D, down stream from the smooth rough junction.

He observed a sharp drop in axial pressure in the t.ransition zone, indicating high

dissipation of flow energy.
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CHAPTER-III

GOVERNING DIFFERENTIAL EQUATIONS

3.1 Introduction

Cartesian co-ordinate system is used for the governing differential equation in the

present study. The discret.ized form of t.he t.ransport equations in cartesian co-

ordinate system is simple and t.he orthogonal grid system makes the computation

easier.

In sub-section 3.2.1, co-ordinate free form of l.he governing equation iRpresent.ed

while in sub-section 3.2.2, the form of the governing equations adequat.e for use

in t.he present. study has been present.ed in cart.esian t.ensor not.at.ion.

When t.he govermng transport equationR are time averaged to by paSR t.he

prohibit.ive cost of calculation of the Rmall seale turbulent motion, there appear the

unknown Heynolds stress in t.he mean momentum equation. The modelling of

these terms in order to arise at a close set of governing equations is the main task

of turbulenee modelling. A brief review of the different approaches to thiR closure

problem is given in sub-seetion 3.3.1. The choice of the closure t.obe employed in

the present study and it.s underlying assumptions are presented in sub-seetion

3.3.2.



3.2 Transport Equations

3.2.1 Governing differential equations in General Co-ordinate

The coordinate free form of the equations describing conservation of mass,

momentum and scaler quantities can be expressed as:

EE. -at +v. (pv)-O (3.1)

a (pv) .t7 ( -n -8 ()Ot + v. pvxv - v' . . • . . • • •• 3. 2

a(~tcj») +V. (pcj)v-q) =8>1>" ..•. (3.3)

Here the density p, velocity v and scaler quantity <1Jappear as the basic dependent

variables. T is the stress tensor, S the source term and q the scaler flux. For a

Newtonian fluid the stress tensor can be expressed in terms of basic dependent

variables, as:

T=-(p+ ~f.lV.V)j+2f.lD (3.4)
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where p is the pressure, fl the dynamic ViRcosity, i the unit tenRor or the second

order and D the deformation or rate of strain tensor. The flux vector is usually

~iven by Fourier type law:

q=A V<Jl. . . . . . . . . . . . (3. 5 )

where 'A.is a proportionality co-efficient, sometimes called "diffusivity" or

"conductivity".

3.2.2 The form of governing differential equations adopted

for use in this study.

The govermng equations for steady incompressible flow are expressed in the

general orthogonal cartesian eo-ordinate system for this study. The equations are:

aax. (pu)=O (3.6)
J
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where u,p, p are function of time and the relationship with average value, for

example u is obtained as follows (Bradshaw et al 1982).

. ( 1 f.t
, du=lJ.In 1,-(2) -'a-- II (X"X2'X)) I (3.9)

I, -12 "

similarly, for other variables.

3.3 Turbulence modelling

3.3.1 Introduction

Since "Turbulent fluid motion is an irregular condition of flow in which the various

quantities show a random variation with time and space (Hinze, 19177). Therefore,

the full Navier - stokes equation are required for an exact mathematical model.

However, as is well known, the turbulent velocity fluctuation are charae!.eri"ed by

small time and length scales. The governing equations must be solved with

appropriately small mesh si"es and time steps t.oresolve these !1uctuations. In the

context of present day computer speed and storage capacit.y, this requirement

cannot be satisfied.

To by pass t.he direct calculations of small scale turbulence, in most engineering

applicat.ions the predictions of turbulent flows are based mainly on t.he time
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averaged transport equations. The time averaging process consist.s of expressing

each variable through it.s mean value ([>' and fluctuating component <1>'

(Schlichiting. J 979). as:

<P ~(j)+<p1 . . . . . . . . . . . . (3 . 10)

If the fluctuat.ions in densit.y and laminar viscosity are assumed to be negligibly

small which is usually just.ified in non-reacting and non-buoyant flows. the

decomposition (like equation 3.10) of the dependent variables of equations (3.6).

(3.7) and (3,8) into t.ime-averaged and fluctuating components ,gives the following

set of equations.

;. (pll) =0 (3.11)
J

a - a a ~aq,,,_ (pll}I» = ,,_ (-puj(j») + ,,_ ( -a) +S~ (3.13)
""'j ""'j ""'j a~ ~j
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These equations are similar to their instantaneous counterpart.s (Eqs.(il.6),

(3.7),(3.8), except. for t.he appearance of t.he second order co-relat.ions in t.he

momentum and scaler equations,i.e in t.he former -

which represent.s t.he t.urbulent Heynolds st.resses; and in t.he latter there appear

t.he t.urbulent scaler fiuxes:

-pI/jill

Because of t.he presence of the t.urbulent. Reynolds stresses and scaler fiuxes, t.he

system of equations (Eqs.(3.11),(3.12),(3.13»,do not constitute a close set.

Additional equations are therefore required to relate them directly to the mean

quantities or determined from t.heir own transport equations. This process of

closing t.he set of equations is known as turbulence modelling.

The available turbulence models are:

(i) Eddy viscosity models

(ii) Reynolds stress model

(iii) Large eddy simulat.ions.
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(i) Eddy Viscosity Model

This class of models employ Boussinesq's (1877) concept of eddy viscosity. Here,

a Newtonian type of constitutive equation is used bet.ween the turbulent stresses

and the corresponding mean flow strain rates. For the general Reynolds stress

tensor, t.he Boussinesq's assumption gives:

Where III is the eddy viscosity, Oii ( Oij = 1 for i=j and 0,; = 0 for all other values)

is the Kronecker delt.a and k is the turbulent kinet.ic energy defined as:

k- 1~ (3)- Zll I' . . . . . . . . 15

Through Ill. the turbulence viscosity is expressed in terms of quantities which are

either known or can be calculat.ed. The most fundamental construction in this

regard was Prandtl's (1925) postulation of eddy viscosity, being proport.ional t.o t.he

product of a length scalE' ami a velocity scale. The eddy viscosi\.y models differ with

respect to t.he ehoice and t.he me\.hod of ohtaining t.he respeet.ive leng\.h and

veloeity scales.

In "zero-equation" model the turbulen\. veloei\.y-scale is direct.ly related \.0 \.he

magnit.ude of mean shear as in Prandt.l's (1925) mixing lengt.h hypot.hesis and \.he

length scale is empirically preserilwd.
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In typical "one-equation" turbulence models, a transport equation for turbulent

kinetic energy is solved to obtain the turbulence velocity-scale and the length-scale

is prescribed by empirical functions. For example Norris and Reynolds (1975)

proposed a "one equation" model for use in the viscous sub-layer as well as in the

fully turbulent regions. However "one-equation" models are difficult. to be used in

the complex shear flows, because the length scale distribution is not easy to

prescribe over the whole flow domain (Launder and Spalding IHJ72]).

In "two-equation" models a transport equation for a length-scale related variable

is solved in conjunction with the transport equation for the turbulent kinetic

energy, thereby allowing transport effects on the turbulence length-scale to be

accounted for. Different workers adopted different length-scale related variables

ego Kolmogorov [W42], Harlow-Nakayama 11968], Jones and Launder 11972],

Spalding [1967], Ng-Spalding [1972]. Among these, the rate of turbulence energy

dissipation e(=k'lf2/I,) is favoured partly because of the easy with which its exact

transport equations can be derived from the Navier-Stokes equation, and partly

of the fact that e appears directly as an unknown in the equation for turbulent

kinetic energy. Reviews of the eddy viscosity models can be found in Launder and

Spalding [1972], Bradshaw [1978], and Bradshaw [1981J.

(ii) Reynolds Stress Models

These model discard the generalized Boussinesq hypothesis of equation (3.14) and

directly employ modelled transport equation [or the Reynolds Stress Components.
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In the process of deriving these transport equations, higher order co-relations

appear as extra unknowns (Reynolds [1970], Rodi [1980J and Gibson [1989]). To

close the systcm of equations at the stress tcnsor level, the unknown higher co-

relations are approximated in terms of other determinable quantities (HoLLa

[1951], Lumley 11972),Launder et al[19751 and Gibson et al [1981]), resulting in

six transport equations, one for each of the stress components. A length-scale

equation is also needed, making the total seven equations.,

Although the Heynolds SlresH Models offer greater potential generality and

accuracy, the requirement of solving the above mentioned seven equations make

these rank low frol1l the point of view of economy. In addition t.o being

computationally expensive, they sometimes have not proved t.o be superior t.o

simpler, less expensive models when applied to complex flows (Thompson [19831,

EI-Tahry [1984]). Further details about Reynolds stress model can be found in

(Heynolds [1976], Rodi [19801 and Gibson [1989]).

(iii) Large Eddy Simulation (LES)

This is a completely different line of approach for turbulence modelling. In this

method the governing equations are averaged over a spatial volume of the order

or larger than the sizes of the computational mesh. Then the dependent variables

are replaced by their spatially-averaged and fluctuating components. As a

consequence, equations similar to (3.11-3.13) result, but more complicated

counterparts of the Reynollis stress terms appear in the equat.ionH. However, in
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this way moLion with seales larger than the mesh SIzes can be captured

automatically by solving the averaged equations and only the "subgrid" scale

motions require modelling. The "subgrid" scale Reynolds stress are modelled,

usually using the viscosity concept, as a function of the resolvable scale field. Since

the small scales are believed to be more universal in character, they are far more

easily modelled than the large scale motions (see for example: Kwak et al [1975]

and Clark et al [1979]). The large eddy simulation approach is currently being

primarily used to test and develop the time averaged turbulence models described

above (Bradshaw [19781. Rody [1988]). Although LES is expensive and still in the

developing stage, the promising result already obtained (e.g. Kaned and Leslie,

1983), suggest that it may in due course assume the stature of the main tool for

engineering analysis.

3.3.2 Turbulence Model for the Present Study

Despite the greater potential of the Reynolds stress models the over riding

demands of economy nominates the standard K-e model (Launder and Spalding

1972) in which the unknown Reynolds stress are expressed by means of gradient

transport hypothesis where the fluxes are assumed proportional to the gradients

of mean flow properties. The constant of proportionality is !1,.

According to gradient transport hypothesis (Ilinge [1959]).

Reynolds Stress:
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__ Ollj Ollj) (
-PIl/lrll'(-a +,,_ 3.16)

'Xj lJ..\i

P, turns out t.obe a function of turbulence energy k and its dissipation rate e via

P, = c"pk"/e where k and c are derived from t.heir own transport equations.

For steady turbulent. £low,the modelled form of the k - equation and e - equations

used in the present study are:

k-equation

e- equation

o k) 0 Il<.ff ak) G,,_(pllj =",;(--,,_ + -P€ .
<M.j <M.j Ok <M.j

(3.17)

Where G is the rat.e of production of turbulent kinetic energy defined as:

G= (all; + Ollj) allj
Ilt a "- ,,_ ....

tj <M.; <M.j
(3.19)

For two dimensional steady plane £low, the equation (3.19) can be written as:

Where, Sr: covers addit.ional generation term whose effects are small except for

£lowsof non-uniform properties. For present prediction this term is omitted and

Sr: given by (icleriah [1975]).

Where Pdr = P + Pt
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S - 2 (iN all)2 (3 21)
G- - 3"llt ay + ax ,,', ... ,. .

The values of t.he empirical const.ants (C", C", C'2' Gk• G,) used in t.he study taken

from Launder & Spaldin{:;11974]and given in t.able 3.1.

Table 3.1: The values of empirical co-efficient in the k-E model

0,09 1.44 1.92 1.0 1.3

Near wall region

In the standard high Reynolds number k-E model, the steep gradient.s prevailin{:;

in the viscosity affected near wall region are not resolved in t.he Numerical

Calculations; rather they are past by placing the first grid point away from the

wall and outside the viscous sub-layer. where the flow is sufficiently t.urbulent and

the velocity is linked to the wall shear stress by the logarithmic law of the wall.

In the derivation of the logarithmic velocity distribution law, it is assumed that:

(i) the shear stress across the layer is constant; (ii) the length scale increases

linearly with the distance from the wall such that 1, a. ky and (iii) the rate of

production (G) of turbulence energy balances its rate of dissipation, E.Under the

couette flow condition, the log law is given by:
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.!i.= kl1ny+A (3.22)
u,

Where A is a function of the wall roughness, u, the friction velocity defined as u,

= (t)p)".o where tw is the wall shear stress and Kis known as von kerman constant

(K=0.4187).
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CHAPTER-IV

NUMERICAL S.LUTIeN

4.1 Introduction

In this chapter t.he numerical solution procedure of the governing differential

equations present.ed in t.he previous chapter is described.

In section 4.2, the governing equations for t.wodimensional problems are written

in the expanded form suitable for discretisation.

In section 4.4, the differencing schemes used to evaluate various terms

(convect.ion, diffusion and source terms) are discussed from the point of view of

numerical stability, accuracy and economy and accordingly a choice is made for the

present study.

Section 4.5 describes the overall solution procedure.First the grid and variable

arrangement used are presented then the pressure correction equation which links

the momentum and continuity, is described.The treatment of the boundary

condit.ion is discussed next. Finally. the solution algorit.hm is presented.



4.2 Expanded Form of Governing Differential Equations

For the sake of easier manipulation, the eompad i(Jrms of the goverl1lng

differential equations (given in the previous chapter) are rewritten here for steady

two dimensional case as

continuity equation:

a aili (pII) , By (pv) =0, .. , , , , ... , , . , ... (4,1)

u-momentum equation:

a ( 2) a ap a2rt a211-a pll +;h,(pIIV) =--a +11."(-+-)""",, (4,2)x VJ ~ '" ax2 By2

v-momentum equation:

General differential equation:

a a<jl a aq, _ax (pll<jl-r~ ax); By (pv<jl-r~ By) -s~, .... , (4,4)

4.3 The method of discretization

The governing differential equations can be discretized in many ways. An over

view of the discretization method for the numerical solution of the fluid flow
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problems is given by Pi\TANKAI1 (l!J80l. In the presenL sLudy Lhe finite volume

approach, as described by Gosman et al (l!JG9) and others, is adopted. In Lhis

approaeh, Lhe governing different.ial equaLions are discretized by integrat.ing t.hem

over a finiLe number of eontrol volumes or eompuLaLional eell8. inlo which the

solut.ion domain are divided. A t.ypical computational cell is shown in Fig. 3.1.

Typical discret.ized t.ransport. equat.ion (e.g. eq. 4.4) will t.ake t.he following

quasilinear form.

Where, the anb are eoefficient.s mult.iplying t.he values of <1>at. t.he neighbouring

nodes surrounding the central node P. The number of neighbour depends on t.he

int.erpolat.ion pract.ice or differencing scheme used. The anh cont.ains combined

eonveet.ion and diffusion cont.ribution at. the eontrol volume faees, i.e.

a" is the coefficient of <1>"given by:

and band c are obtained by linearizing the source term as follows.

The source t.erm (right hand terms of the eqn. 4.4.) are evaluated by integrating

the volumetric source s. over t.he volume of the computational cell and expressed

as:
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where, c stands for the constant part of the source term while b is the coefficient

of (I>p and often a funclion of <l>p'

Since the direct solution methods (i.e. matrix inversion) reqture very large

computer st.orage and time and since the governing transport. equations are non

linear, (the discretised governing transport equations are seemingly linear but ap

being the function of <I'p makes them virt.uaJiy nonlinear) the discretised equations

are solved using the SIMPLE algorithm of Patanker and Spalding 119721by

repeated sweeps of a line-by-line application of the Tri-Diagonal Matrix Algorithm

(TDMA) (Patanker [1980]).

4.4 Differencing Scheme

4.4.1 Choice of Differencing Schemes

The stability of the numerical algorithm and the accuracy of the solution obtained

both depend on the type of interpolation practices or differencing schemes used.

The solution of the discretized equations (4.5) should satisfy the following

important properties of the exact solution:
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(i) The flux that leaves a cell throu~h a partieular cell must be identieal to the

flux that enters the next eell through their common faee.

(ii) The conservation prineiple must be ensured i.e. the net transport of (\.l

across the solution domain boundaries should equal total production or

consumption by inte~ral sources.

(iii) The co-efficient of resulting algebraic equations must be always ofthe same

sign, to ensure diagonal dominance of the co-efficient matrix (i.e.when the

matrix of the coefficients of these equations is written, all the non zero

coefficients align themselves along three diagonals of the matrix).

(iv) The sources must be treated in a speeial manner. So as to reduce the

occurrence of unbounded solutions of problems which are source dominated.

In general the sourc", should b", linearized with a negative slope, to avoid

violation of rule above (see Patankar [1972]).

(v) To be consistent with the differential equation, the co-efficient ap must obey

the relation given by equation (4.7) in the absence of source and boundary

conditions.

(vi) Since all iterative sehemes are prone to divergence, the finite difference

equations must obey certain criteria to ensure convergence.
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The Scarborou(:(h criteria IS one such rule. A sufficient condition for

convergence is that

Jar all equations

and < 1 for at least one equation.

These are basic desired properties expected of a differencing scheme. The optimum

differencing schemes must be stable and highly efficient.

4.4.2 Brief Review of Some Differencing Schemes

In this subsection the differencing schemes used to evaluate convected cell-face

value of the dependent variable in t.erms of surrounding nodal values are

discussed and final choice is made for the present study.

(i) Central differencing schemes (CDS): If a piece wise-linear profile of <!J

is assumed between P and E (see Fi(:(.a.G), the cell face value <I>. is given by:

where f" is a linear interpolation factor defined as:
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Here L'.XI' and L'.XE are the cell dimensions along x coordinate for P and E cells

(see Fig. 3.] and 3.6).

In this schcme al~ and aN are always negative and if the convection process

dominates this can cause the whole coefficient anb to assume negative value. As a

result the scarborough criteria fails and produce unbounded solutions (Spalding

[]972], Rathby & Torrance [1974]). At high Peelet number the CDS also violates

the transportive property by employing downstream nodes in expressions given

above. For these reasons application of CDS is limited to low Reynolds number

problems.

(ii) JJpwind diffcrcllchlK.-Schcm.!LilJDS);The upwind differencing scheme

(Runchal & Wolfshtein [1969]) recognizes that the weak point in the

preliminary formulation is the assumption that the convected property (I>n

at the interface is the average of (1)[.; and <1.>1' and it prOJlose a bet.l.er

prescription. The formulation ofthe diffusion t.erm is left. unchanged but. t.he

convention term is calculated from the following assumption.

The value of <I.> at. an int.erface (See Fig. 3.7) is equal to the value of (I> at the

grid point of the upwind side of the faces.

Thus <1.>,. <1.>1' if fn > 0
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= <ll,.: if f. < 0

In this scheme all t.he coefficient.s contributing t.o al' are always non-negative. As

a result Scarborough eritcria is satisfied. UDS also sati"fie" the property of

t.ransportiveness, and t.hus the boundedness of the solut.ion is guaranteed.

In t.erms of Taylor Series Truncation Error (TSTE) analysis, the UDS is first order

approximat.e.

If t.he flow direclion is not. aligned with one set of grid lines a nd if there is a steep

gradient of dependent variables in t.he direclion normal to the flow, the use of

UDS results severe numerical smearing, as if much stronger diffusion process

were present in the flow than actually is the case, this additional diffusion is

called the "false" diffusion. It. is zero if angle between flow and grid lines is 0" or

90" and maximum when 45". "False" diffusion originates from t.he fact that

interpolation is performed along t.he grid lines rather than the streamlines. The

question of false diffusion a ttains importance only in case of large Peelet numbers,

sinee at small peclet numbers, the real diffusion is relatively large (see for det.ailed

discussion Patanker [1980J and Lai [1982]).

(iii) Linear upwind diffex..enci!lg scheme (LUDS): In the Linear upwind

differencing scheme t.he conve<:Ledcell-face values are obtained by linear

extrapolation frolll the two closest upstream neighbour nodes on the same

coordinate line (See Figure a.8).
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<1'0 = <1'1' + «I'" - <I>\\') (I-f\\,); for f,.> 0

for f < 0
"

In this scheme negative coefficients appear at the distant nodes violating the

Scarborough criteria. However, the LUDS does satisfy both the properties of

conservativeness and transportiveness and in terms of TSTE it is second order

accurate; hence unless boundedness problems arise the LUDS can produce much

higher level of accuracy than the UDS under the same circumstances.

Among the other available schemes are the Skew upwind differencing scheme

(SUDS) (Rathby [1976]) and Quadratic upwind differencing scheme (QUDS)

(Leonard [1979]).

SUDS suffers less from the numerical diffusion problem but is considerably more

complex. The QUDS is suitable for implementation in general two-dimensional

applications but is computationally more expensive than LUDS; and LUDS is

more suitable for iterative solution methods (Peric [1985]).

For the present study the UDS has been adopted.



4.5 Solution Procedure

4.5.1 Grid & Variable Arrangement

In the present study, the numerical solution is accomplished on a variably spaced

staggered mesh [see for example Caretta et.al (1972), l'atanltar (l!J80)], in which

the scaler quantities (including pressure, density, viscosity, It & e) are defined at

the centre and the normal velocities at cell faces, as shown in Fig. 3.5. It has the

advantage that the variables u,v, p are stored such that the pressure gradients

which drive the velocities u & v are easy to evaluate and moreover the velocities

are located where they are needed for the calculation of convective flux.

4.5.2 Calculation of Pressure

The pressure gradient forming part of the source term in the momentum equations

are to be obtained before the velocity field is calculated and it is the pressure field

through which the continuity equat.ion is satisfied.

The SIMPLE method ofPatanker and spalding [1972Jis used in the present. st.udy

t.o obt.ain pressure. The differential equat.ions present.ed in section 4.2 can be

expressed in the following discret.ised form.
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[(pU).-(pU)wjl1y' [(pV).-(pV).ll1x=O (4.9)

The solution method consists of following stages

A guessed pressure field p. is used to obtain a preliminary set of U and V from

the following equations

where, t.he superscript. * on U and V indicates that these are based on nn

estimat.ed pressure field p•.
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The starred velocity l( and V. will in general not satisfy the continuity equation

(4.9) but will produce a net. mass source Mp for the point P. This is defined by

Now our aim is to correct the pressure and velocity so as to eliminate t.his mass

source: For this, let us prOpOl'lethat a corrected value P is obtained from the

following equations.

- + Ip - p. p

where, pi is called t.he pressure correction. The corresponding velocity corrections

u' and Vi are obtained, in similar manner as:

v" = V; + V

substituting 4.13 from 4.10 we have

Dropping the term Lanbu'nbfrom the above equat.ion for computational convenience,

equation (4.16) becomes
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Equation 4.16 is the velocity correetion. J1en(~e t.he correc!.ed velocity equat.ions

becomes

Similarly we can write

Substituting the above velocity correction equations (4.17 and 4.18) into continuity

equations (4.9), we have discretised equat.ions [or pi

4.6 Boundary Conditions

The forms of boundary condit.ions encountered 111 the present study and their

implementations are described below

~5



(i) Inlet boundaries: The values of all the variables at the inlet boundaries are

usually explicitly specified, from experimental data, or are obtained from

analysis and estimation.

(ii) Outlet Boundaries: At outlet of the computation domain at large Re, upwind

difference renders specifications of variables unimportant (in the absence

of recirculation). It is usual praetice to assume zero gradient in the direction

of flow and the exit velocities are obtained from mass balance.

(iii) Impermeable Wall: Near the wall the local Reynolds number becomes very

small and the turbulence model applicable at high Reynolds number

becomes inadequate. Both the fact and the steep variation of properties

near the wall necessitates special attention for the grid nodes close to walls.

4.6.1 On the basis of wall boundary conditions

Wall boundary conditions are embodied in the governing transport equations in

the following ways:

(a) Equations of Mean Motion

At the solid walls the velocitiE's are set to zero, satisfying the no slip condition.

The boundary layer that develops near the wall can be conceived to be made up

of three zones (Hinze [19591).
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y+ < 5 viscous sub layer

5 < Y+< 30 buffer layer

30 < Y+int.ernal layer

defined according t.o the dimensionless dist.ance Y+given by Y+= p u, y I Jl

Where y is t.he normal dist.ance from the wall and u, is the friction velocity defined

as u, = (Tw I p)o."here Tw is the wall share stress.

Generally close to the wall, a one dimensional cuette flowanalysis is made and the

momentum equation can be reduced to a particularly simple non dimensional form

as follows (Gosman et al 1978).

For. y' ,;11.63; 11'<1., "'w' then, u +"y+
11

47



For, y '> 11 , 63 ; ~:>- 1, , ", w
11

and p = p k y p, (I1im;e, 19(9)

where u' = ulu,

K = von kerman constant (0.4187)

E = integral constant

In the standard k- c model (Launder and Spalding, 1972) the wall affected region

is bridged by logarithmic law of the wall.

(b) Equations of Turbulence Energy and Energy Dissipation

The wall treatment for k- and c - equations are to be formulated on the basis of

local equilibrium conditioll that the local ret.e of produetion of turbulence is

balanced by its dissipation rate c.

(1) The turbulence energy equation (eq.3.17) reduces to a simple form that

yields expression for both the shear st.ress, = '", and t.he dissipation rate c within

the buffer and viscous sub-layer

production = dissipation
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th/lS, -/IV dd/l=€ :yielding, k =-'-y 1
pc~ 2

and the e modified from the k balance as

3 1

f edv=c .•k "2/1 ' dv , with
v ~ yP

/I < =y • .Jor, y ',; 11 . 63

/1'= ~lOge(Ey') ;for,y'>11.63

(ii) e equation reduces to

k2
th/ls, u.=-----,

(c., -c.,) c~.•
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4.6.2 Incorporation of wall boundary condition

(a) Momentum equation

(i) Tangential velocit.y:

Tangential velocity u" for a node next to t.hewall as shown in Fig. 3.9 is obt.ained

from usual JIlomentuJll balHnee and the eoeJlieient a, is set. to zero in t.he finit.e

difference equation. The correct shear force expression is incorporat.ed via souree

treatment.. The momentum source for tangential velocity component adjacent to

the south wall is calculat.ed as

where oXew is the area of cell,y" is the normal distance from cell centre to the wall

and /lefT is the effective viscosity,can be expressed as

1 1
4k2k YpllerPC~ 'PW +

log (Eyp)
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1 1

'/ '- -. v22Ewit I, Yp -C~ Pp"pw I!

where k"w= (k" +kw)/2

Ss is then linearized as equation S=S"+S,,<D,,where S" and S" represent the implicit

and explicit contribution respectively.

(ii) Normal velocity: For velocity normal to a wall ,no special wall treatment is

necessary.

(b) Turbulence Energy K

Kp shown in fig 3.10 is obtained from usual k-balance but, since the turbulence

energy falls to zero at the wall, there is no contributing flux from the wall: hence,

as is set to zero without insertion of any modified form for it. The generation term

G in the K-equalion reduces to a much simplified form which is further modified

by noting that it can be expressed in terms of wall shear stress. The source for the

K-balance. Sk =(G-pe). is evaluate as follows.

(i) Calcula tion of G altered by noting

and t, = lI.n (U" - U,)/ Y"
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f " ( au I UV) ?dv"t (u -II ) UV
vrt at iJy S p S Yp

(ii) Calculation of pe altered by not.ing

u+= y+ for y' < 11.63

= 11k log" (Ey+) for y' > Il.G3.

(c) Energy Dissipation Rate e

In wall-flows, unlike k whieh falls to zero at the wall, e reaches its highest value

(much higher than in a free stream) at t.he wall. This makes e-balanee for a cell

extending upto a wall very difficult. as we are ignorant on how to modify a, in

such eases. It is due to t.his shear ignoranee t.hat. we adopt a fixed value for e"

(irrespective of y+) based on 'equilibrium' relation. e" IS incorporated as usual

t.hrough way of band c.

3 3

€p=c:kp2/kyp

(d) Pressure Correction

At. boundaries where the normal veloeity is prescribed, the finite difference

c<[uat.ionfor loeal pressure correetion must. be defined so that. this vcloeity is not
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changed i.e. pi is zero. This is done, for example the cell adjacent to a 'south' wall

by setting as = o.

4.7 Solution Algorithm

Now the important operation in the order of their execution are

(i) Initialise all field values by an initial guess

(ii) Solve momentum equations and obtain u' and v'

(iii) Solve the pressure correction equation to obtain pi and calculate p by adding

pi to p'

(iv) Calculate u, v from their starred values using velocity correction formula

(v) Solve the discretized equation for other variables (sueh as turbulent

quantit.ies) If they influence the flow field through fluid properties, source

terms etc.

(vi) Treat the corrected pressure p as a new guessed pressure p*, return to st.ep

(ii) and repeat the whole procedure until a converged solution is obtained.
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In the present study, the convergence criterion is that the sum of the normalized

absolute residuals at all computational nodes, defined

should fall below a specified level

R' < 10.3~

Here N is the total number of nodes, r the iteration counter and Nr the

normalization factor.
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CHAPTER-V

PRESENTATION OF RESULTS AND COMPARISON WITH

EXPERIMENT

5.1 Introduction

In t.his chapt.er, the results of the numerical prediclion of turbulent now over

smooth t.orough surface obtained by the numerical method described in Chapter-4

are presented and compared with the measurements of Naser [1985]. To simulate

the same rough surface used in the experiment by Naser [1985J two different types

of roughness configuration are employed in the calculation domain i.e. (i) uniform

plain surface with st.ep up height equal to roughness height 1.59 cm (average

roughness height used in the experiment), (ii) saw tooth type rough surface with

tooth height 1.59 cm (average roughness height. used in the experiment) Standard

k-e model incorporated wit.h upwind differencing scheme is used in the

computation. Analysis of the flow structure is carried out at four different

Reynolds numbers (Reynolds number is defined as Re = pU D/fl, where p is the

density of t.he fluid, U is the axial centre line velocity of the flow, D, is the widt.h

of the test seclion and fl is the dynamic viscosity of the fluid). Effecls of the

different roughness configuration on the computat.ional flow field are presented.

Turbulence energy and energy dissipation rate are presented for clear

underst.anding of flow development at different Reynolds numbers.



5.2 Flow Configuration

The steady and incompreRsible turbulent flow geometry considered here was the

subject of a det.ailed experimental investigation performed by Naser [1985J. The

geometry and dimension of the test section is shown in Fig.1. The flow

measurements were performed for four different Reynolds number over t.hesmooth

to rough surface wit.h averag<' RUmechipR of hight 1.59 cm. The efTpe!.of t.he Ride

walls on the core region of the flow, specially the two-dimensional vertical plane

passing through the centre line, was found to be negligible (Naser [19851). lIence

calculation were carried out on a two dimensional plane representing a vertical

plane passing through the centre line of the duct. The surface texture of rough

portion used in the experiment, is simulated in the present computations in two

different ways i.e. (i) on the bottom surface of the calculation domain five cells of

total height of 1.59 cm (equal to the height of the average stone chips used in the

experiment t.omake rough surface) are blocked offto incorporate the rough surface

into the flow domain at a distance of 2.59m from the inlet; (ii) on t.he bottom

surface, at. a distance of 2.59m from the inlet., cells are blocked off in such a way

t.hat the blocked cells give the bottom surface a shape of saw tooth type

configuration with the maximum saw toot.h height. 1.59 cm.

5.3 Domain of Solution and Computational Grid

The solut.ion domain shown in Fig.2(a) & Fig.2(b) is bounded by the inlet plane,

exit plane and the top and bot.t.omwall. The entire comput.at.ional domain is

56



divided into 50 vertical ~rid lines and 1,1'1horizontal grid lines. The grid

distribution in the calculation domain is uniform in the x-direction (horizontal)

and non uniform in t.he y-direction (vertical). The mesh is contracted near the

bottom all over the whole calculation domain such that the rat.io between t.he t.wo

successive st.eps in space is const.ant. and equal t.o 1.15.

5.4 Boundary Conditions

The t.reat.ment.s of t.he walls. t.he inlet. and the outlet. applied in t.he present. study

has already been present.ed in Sect.ion 4.6. In t.he following. t.he specificat.ion oft.he

boundary values at. the inlet. form t.he experiment.al dat.a are outlined and finally

the t.reat.ment. of t.he exit. boundary is described.

5.4.1 Inlet Conditions

The uniform velocit.ydistributions across t.he inlet. section were obt.ained from t.he

measured mass flow rat.es of Naser [19851. Turbulent. energy and energy

dissipat.ion rat.es are calculat.ed from t.he following formula.

K=0.03u2 •••••••••• (5.1)
3

k2E=--I (5.2)
.09.

57



5.4.2 Outlet Condition

It. is already outlincd in f;cct.ion 4.G t.hat., in t.he absence of recirculat.ion and at

large Reynolds numbers. specification of variables at. the outlet of the calculation

domain is obtained by assuming a zero gradient. in the flow direction.

5.5 Grid Dependence Test

To obtained a solution independent of the number and spacing of the grid nodes,

grid dependence test is performed. The test was done at Heynolds numbers 2.127

X 10" for two grid sizes: 30 X 50 and 50 X 72, for smooth surface. Each time close

spacing was maint.ain at the bottom wall, where rapid changes of the flow

variables occur. For this test., predicted u.velocity profiles at various axiallocat.ion

was compared with measured values of Naser 11985J. The predict.ions for hot.h t.he

grid sizes are in close agreement with the measurements and hence t.he solutiOJl

is independent for any grid sizes.

5.6 Presentation

Experiment

of Results and Comparison with

The flow parameters are presented here with the duct hydraulic diameter (D,) as

t.he characteristic length.The centre line velocity at each section of the duct has

been taken as characteristic velocity.
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The mean Dow charaderisLics has been caIeulated at four different Reynolds

numbers viz. Re=2.127xlO", 5.76x 10", 7.98x 10", 9.57x lO" based on the hydraulic

diameter of t.he duet and mean cent.re line axial velocity over the smoot.h surface.

The caleulat.ions and comparisons include mean axial velocit.y profiles, pressure

gradient. along t.he wall, wall shear st.ress and log-law paramet.ers.

Mean Velocity Profile

The mean velocit.y profiles of Dowover t.he smoot.h surface for different Reynolds

numbers are shown in Fig 4.1 along with the experiment.al results. The mean

velocit.y profile over t.he entire diamet.er of the duct for smoot.h surface at a

dist.ance xlD,=-0.83, (xmeasured from smooth rough junction) at.Reynolds number

5.76x 10" is plotted in Fig. ,1.2.The vert.ical distances for the velocit.y profiles are

calculat.ed from t.he smoot.h wall. The velocity profiles are in quit.e gooe!agreement.

wit.h t.he experimental values and indicat.e the attainment of self- preservation

characteristics. However, some disagreements are observed at t.he top of the

boundary layer, where t.he comput.ational result under predicts t.he velocity. This

disagreement is more pronounced at t.he highest. Reynolds number (9.57xlO"),

where the maximum deviation is 4.0%.

The mean axial velocit.yprofiles, calculat.ed over the rough surface using two types

of rough text.ure, are shown in Fig. 4.3 along with the experimental results. The

vertical (iist.ances for velocit.y profiles are calculat.ed from the t.op of the rough

surface. The velocities are non-dimensionalised by t.he free st.ream velocit.yof t.he. .
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respect.ive sections and distances are by t.he duet, diamet.er. The profiles show a

gradual development of boundary layer with axial distance and the trend indicates

that the flowattains development. at.xlD,=5.5. The comput.at.ional reRultRobtained

wit.h mean-height rough t.exture are in reasonably good agreement with t.he

experiment.al dat.a,whereas t.he reRttlts obtaine,t wit.h saw-t.oot.hrough t.exture are

in good agreement only at. t.he smooth-rough junction (xlD,=O.O), but gradually

deviates furt.her from t.he experiment.al values in t.he down stream direction. This

discrepancy reaches at its maximum at. xlD,=5.5. At xlD,=5.5, the experiment. and

the mean-height results show that t.he boundary layer is developed, whereas the

saw-tooth results show a developing trend.

Axial Pressure Gradient;

The distribut.ion of wall st.atic pressure in the axial direction are shown in Fig. 4.4

along with experimental data. The curves show three distinct regions, the first

straight. line port.ion represents t.he smoot.h wall pressure gradient. The second

portion shows a sudden jump followed by a sharp decrease in t.he transition zone

associated wit.h t.he accelerat.ed flow. The sharp decreaRe is due t.o the sudden

decrease in flow area by t.he presence of roughness configurat.ion. Aft.er a certain

distance downstream, the pressure gradient. takes a new equilibrium value for the

rough surface. In the equilibrium zone of the rough surface the slope of the

pressure gradient curve is much higher than that. for t.he smooth section. ThiR is

due to higher frictional and ot.her resist.ances.
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The predictions show good agreement with the measurements of Naser [1985] in

the smooth section but discrepancies are evident in the rough sections. In the saw-

tooth type rough surface the discrepancies are within t.he accept.able range but. in

the mean-height type rough surface, pressure gradients are highly under

predicted. This is due to the fact t.hat mean-height type rough surface under

predicts t.he shear stress.

Friction Factor

The wall shear stress presented in the form of friction factor for the smooth

surface is determined from the axial pressure gradient in t.he smooth section of t.he

duct. If the wall shear stress is assumed to be uniform throughout the perimeter

of the duct, t.hen the simple force balance provides.

The friction co-officiants obt.ained from the relat.ion

(5.4)
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are plotted in Fig. 4.5 along wit.h the measurement of Naser 119851and ot.her

researchers. The predicted friction co-effieient.s for smoot.h surface are in good

agreement. wit.h t.he measurement.s.

The met.hod of calculation of shear stress and frietion coefficient is followed from

the experimental study of Naser [1985].

The friction co-efficient. calculat.ed for two types of rough surfaces are plotted in

Fig. 4.6 along wit.h t.hose of other researchers. The curves show a sharp difference

between the friction co-efficient obtained by saw t.oot.h t.ype rough surface and

mean height. type rough surfaces. This is due t.othe fact that the pressure gradient

for saw toot.h type rough surface is much higher, conforming wit.h the experiment.

Whereas for the mean height. t.ype, t.he pressure gradient is much lower t.han t.hat.

obtained in t.he experiment.. This is already explained earlier wit.h reference t.oFig.

4.6.

The predicted frict.ion co-efficient. for saw t.oot.h t.ype rough surface is in good

agrement. wit.h t.he measured data whereas, high discrepancy is evident. for t.he

mean height. t.ype rough surface.

Log-Law Profiles

The universal velocit.yprofiles over t.he smoot.h surface are shown in Fig. 4.7. along

wit.h t.he measured dat.a of Naser (1985). The mean velocit.yand t.he wall distance
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are normalised by u.k 1 (lJp)""1 and v/u* resped.ively. The strai~ht line nature and

parallelism of the two profiles (xlD, = -1.167. - 0.25) show that the flow is

developed bdore meet.in~ t.he rough surface. The lo~arit.hmie velo(:ity profiles for

the rough surfaces are shown in Fig. 4.8a and 4.8b for Reynolds number Re = 9.57
X 10" at x/D, = !j.5 along wit.h experiment.al values. The nature of the curves show

that the flow is almost developed. The log low profiles for the rough surface shows

a vertieal shift from the smoot.h wall profiles for t.he same Reynolds number flow.

This is termed as the "wall function" of the rough surface and are found to

increase wit.h t.he roughness Heyonlds number ku*/u.

The log-law profiles for smooth surface conforms with the experiment.al data. But

the pre dieted values for rough surface deviate from the measured data. The

deviation from measured data for saw tooth type rough surface is due to the fact

that the mean velocity profile for saw tooth type rough surface does not conform

with the experimental dat.a, and for mean height. t.ype rough surface. pressure

gradient is highly under predicted.

5.7 Discussion

Two dimensional steady incompressible flow has been sim ulated for the prediction

of turbulent. boundary layer in t.ransition from smooth t.o rough surface. The

results obtained have been presented in the previous section. Standard k - gmodel

incorporated with upwind differencing scheme has been used for the calculation

of flow characteristics. The simulation of rough Rurfaee haRbeen carried out in two
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different ways mentioned in previous section. The predications of flow field for

smooth surface are in quite good agreement with the measured dat.a. However, t.he

disagreement.s which are still there, may be due t.o the fact that the grids

considered for finite-differenee solution has not. been sufficient enough 1.0 resolve

the gradients of the flow parameters to reveal all the minute details of the flow

field.

But the predicted flow characteristics for rough surface indicate discrepancies with

the measured data. It may be mentioned here. that the rough surface used for

comput.ation are of1.wodifferent geomet.rical configurat.ions, namely (i) regular Raw

tooth type and (ii) mean height type. The discrepancies between the predicted and

measured data may be due to the following reasons;

None of the two rough models represents the exact. rough surfaee creat.ed

by randomly organised irregular stone chips used in t.he experiment..

The randomly orient.ed irregular stone chips used in t.he experiment

disperse the flow in an irregular fashion. This could not be incorporated and

simulated in the flow calculat.ion.

The irregular stone chips used in the experiment, redistributes the flow in

the three-dimensional space whereas the regular saw tooth type rough

t.exture merely giveRthe two-dimensional effect of the roughness element.R.
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In the experiment sllJall vortiees are formed in between the stone ehips.

Energy required to drive these small vortices are obtained form the mean

flow, resulting in higher shear stress. This could not be reproduced in the

calcula tion.

Mean height types simulation may be considered as smooth ~urface with a

jump; but the experimenlal rough surfaee has been quite different from the

assumed system.

In the rough section, where t.he steep pressure gradients and the minute

details of the flow near the solid wall influences t.he over all flow

characteristics. k-1:model is inadequate for satisfactory simulation.

In the derivation of t.he logarithmic veJoeity distribution law, it iRnRRumed

that

(a) Shear stress across the layer is constant.

(b) The length scale increases linearly with the distance from the wall.

(c) The rate of production of turbulent energy balances its rate of

dissipation.
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None of the above mentioned assumptions are valid in the near rough wall

regIOn.

Computer storage limitations restriets the use of fine meshes III the

calculation domain.

All the desirable characteristics contributing to numerical accuracy can not

bemaintained simultaneously throughout the whole calculation domain due

to complex geometry of rough texture.

If all the above mentioned limitations are overcome, then the computation will

reproduce the results obtained by the measurements.
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CHAPTER-VI

SUMMARY AND CONCLUSIONS

6.1 General

In this Chapter. the main findings and achievements of the present computational

study, made with respect to the objective set in Chapter-I, are presented and the

scope of extension and development of the present study are suggested. in Section

6.2, the summary of main findings and achievement are presented and the

suggestions for future work are given in section 6.3. The flow parameters predicted

for two entirely different types of rough texture, viz (i) saw tooth type, (ii) mean

height type, following a smooth surfaee provides reasonably acceptable predictions.

6.2 Summary of Main Findings and Achievements

(a) The boundary layer thiekness increases over the rough surface.

(b) The wall shear stress increases with the increase of surfaces roughness. The

increase of wall shear stress for saw tooth type rough surfaee is much

higher than the mean height type.



(c) The axial mean veloeity profile is in good agreement for mean height type

rough surface, while the shear stress in good agreement with the

experimental dat for saw tooth type model of surface roughness.

(d) The static pressure shows a sharp jump at the rough smooth junction,

followed by a steep decrease in the flow direction over the rough surface.

(e) The full details of the boundary layer development in transition from

smooth to rough surface can not be reproduced by employing log-law or two-

dimensional simulated rough texture.

6.3 Suggestions for Future Work

(i) The same prediction can be carried out with large number of fine grids

which may reproduce more accurate result in details obtained by the

experiment.

(ii) Higher order schemes (e.g. LUDS, Quick scheme) can be used to have

better accuracy in t.his type of prediet.ion.

(iii) To take account of t.he three-dimensional effect in the rough portion of the

flow domain, three-dimensional calculation simulating the exact rough

texture can be carried out.

(v) To obtain better results, turbulence models capable of handling this type of

complicated flow can be used (e.g. Reynolds stress models, Large eddy

simulation).
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(vi) Similar study can be made with different types of roughness configurations.

(vii) Investigation can be made with modified (e.g. two-layer model: employ one-

equation model in the near-wall region anll the standard k-E model in the

core region of the flow) wall treatment.
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APPENDIX-A

Structure of the Mathematical foundation

I Conservation Transpor\ Source

i law law law
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I
I
I Differential equations
I
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Finite difference

equations

IF
Solution algorithm

Com puter programme

Predictions
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APPENDIX-B

The overall structure of TEACH - T

MAIN
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DATA
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