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ABSTRACT 

 

Planned preventive maintenance with some expert system is essential for appropriate planning 

and utilization of maintenance policy effectively and efficiently. A number of preventive 

maintenance model have been developed that have identified several factors which performed 

the models by subjective means. However, these models often lack robustness due to bias and 

variance. Now, the increased availability of data opens the scope of applying machine learning 

technique to predict the maintenance requirement more accurately and cost effectively. The 

aim of this research work is to develop a planned preventive maintenance model by using 

machine learning algorithms (SVM and SVR) that can forecast the maintenance requirements 

more accurately and cost effectively. To develop the model machine reliability is considered 

and the reliability depends on various subjective and objective measures which is a data driven 

approach. The subjective and objective features of Diesel Generator (DG) have been selected 

from literature and expert opinions and the data are collected from field survey. Two separate 

feature selection methods have been used to select the best feature set to improve the model 

accuracy. Wrapper method used correlation-based features selection to rank the features and 

generate eight different feature sets following backward elimination process. Filtering method 

eliminates the insignificant features by ANOVA test and selects the significant feature sets. 

All these feature sets are generated a total 54 number of different models with different 

accuracy level. Among them the best feature set have been selected with an accuracy of 92.5% 

from Wrapper method. Finally, a regression model has developed using Support Vector 

Regression (SVR) to determine the machine reliability value. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background of the Study 

The failure of machineries, equipment’s or system not only reduced the productivity but also 

affect the quality, availability and customer service. It may even lead to safety and 

environmental problems.  The aim of maintenance management is to keep the assets (i.e. 

machineries, equipment, tools, building facilities or systems) in its good aesthetic and operating 

condition to maximize its utility with more effectively and efficiently. Proper planning and 

implementation of maintenance actions can ensure the machinery availability and reliability to 

deliver its on-time quality output with a safe working environment.  

Since 1960s, many researchers have worked on analysis and modeling of maintenance 

operations [Coria et al. 2014] and developed lots of preventive maintenance policies [Do et 

al. 2015; Caballé et al. 2014; Xiao et al. 2015; Sherwin 2000; Garg and Deshmukh 2006; 

Mabrouk et al. 2016b, El-Ferik et al. 2004]. In 1960, Barlow and Hunter have proposed a 

simple periodic replacement model with minimum repair aimed to restore the system to its 

prior state before failure [Sherwin 2000]. After that a lot of scheduled maintenance policies 

have developed from this basic time-based maintenance model [Sherwin 2000]. 

Maintenance can be planned and carried out in different ways. The three common planning 

paradigms are corrective, preventive and predictive maintenance [Alaswad and Xiang 2017]. 

The simplest and most frequently adopted approach to dealing with maintenance is corrective 

or run to failure or breakdown maintenance where the maintenance action is performed only 

after the occurrence of failures [Do et al. 2015]. This maintenance policy, or actually lack of 

policy, is common for infrequent failures or where the repair is very expensive or in case the 

system has redundancy [Alaswad and Xiang 2017], but it is also the least effective one, as the 

cost of interventions and associated downtime after failure are usually much more substantial 

than those associated with planned corrective actions taken in advance [Do et al. 2015]. 

Preventive maintenance is carried out according to a planned schedule based on time or process 

iterations in order to reduce the corrective maintenance and keep the machines at the desired 

level of quality and performance. Compared with the failure-based maintenance, scheduled 

maintenance shows that it is more positive and efficient. 
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Predicative maintenance which is also called condition-based maintenance is a positive and 

useful condition-based maintenance methodology that system’s condition can be collected 

through continuous monitoring and maintenance is performed based on an estimate of the 

health status of a piece of equipment [Do et al. 2015; Caballé et al. 2014]. It is a complex 

initiative that requires the assets to communicate their actual status in real-time with the 

integrated maintenance management system. It also requires training the plant personnel to 

operate the system as well as to interpret the analytics or data. Therefore, a high initial 

investment is associated with this condition-based maintenance. However, this type of 

maintenance is feasible for important, expensive and time sensitive machineries, equipment or 

system because of those expensive maintenance tools and system. The purpose of 

distinguishing the maintenance policy is to reduce unexpected failure and optimize the 

maintenance cost. The development of different maintenance model is an ongoing process to 

solve various real-life problems.  

In both preventive and predicative maintenance, the most important thing is to predict the 

maintenance schedule. For predicative maintenance the maintenance requirement is 

determined by continuous monitoring of the system.  But the conventional preventive 

maintenance policies have the same time interval that may easily neglect system’s reliability 

[Sherwin 2000]. As a result, the maintenance actions are performed either too often or not 

often enough. If it performed too early, although the system remains in good condition, 

maintenance cost will be much higher or if it is performed too let, although it can reduce 

maintenance actions so as to reduce maintenance cost, system reliability will be lower and more 

failure will occur, which may lead to higher breakdown cost [Sherwin 2000]. 

Thus, neither too long nor too short interval time is suitable for maintenance model [Graham 

et al. 1979]. So, without continuous monitoring the most accurate time can be predicted by 

considering the machine reliability. The machine reliability highly depends on various external 

and internal parameters of the system.  

Therefore, a model that can consider the above parameters to predict the maintenance 

requirements is needed. So that, the maintenance actions can be performed more accurately 

and cost effectively. Machine learning, an application of artificial intelligence (AI), can build 

the classification model by using supervised learning algorithms [ Lin et al. 2001]. In this 

research work machine learning algorithms (SVM & SVR) are used to develop a classification 
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model to forecast the maintenance schedule and machine reliability more effectively and 

efficiently.  

To develop the model, this research has considered various external and internal parameters of 

Diesel Generator and Boiler. Diesel Generator is widely used as a secondary or backup source 

of power in different residential, commercial buildings and industries where as Boiler is used 

for producing stream to perform various operations in industries.   

1.2 Rationale of the Study 

 

Perfect maintenance actions restore completely the system to the ’as good as new’ state. 

Optimal maintenance policies aim to provide optimal system reliability and safety performance 

at lowest possible maintenance costs. In Bangladesh, the overall understanding of maintenance 

requirement is still very low, however in industrial level it seems to perform some maintenance 

actions for crucial and time sensitive manufacturing equipment. Most of the cases the common 

practice is corrective actions except some random inspection and cleaning. So, there is a scope 

to design an optimal maintenance policy to keep the assets in its best operating condition at 

lowest possible cost.  

For most industrial plants, preventive maintenance (PM) is still a dominant maintenance policy 

as it is easy to implement and not many systems can be condition- monitored [De Jonge et al. 

2017]. In the reliability and maintenance literature, PM policies   are commonly classified as 

[Wang et al. 2018]: periodic and sequential PM. Periodic PM is executed at fixed time interval 

whereas sequential PM is implemented at intervals of unequal time lengths. Sequential PM is 

more suitable when the system requires more frequent maintenance as its ages. Currently the 

periodic and sequential maintenance requirements are determined by company standard or in-

house maintenance experience without any statistical analysis.  As a consequence, the realistic 

operating conditions of the system over time are not be taken into account. As a result, the 

maintenance actions are performed either too late or too early.  

The aim of this work is to develop an optimal preventive maintenance model. To develop the 

model, system reliability has been considered and it is a data driven approach which has 

considered the actual condition of the system to determine the maintenance requirements.   

1.3 Objectives with Specific Aims 

Determination of a maintenance policy is an important issue in optimal maintenance planning 

[Lin et al. 2001]. Researchers developed some maintenance policies and therefor developed 
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different maintenance models. However, some models are effective and some are efficient and 

most of them are case specific. In case of, traditional PM policies, it is efficient compared to 

failure-based maintenance, but not effective, because it doesn’t consider the systems 

(machineries, equipment or tools) reliability, as a result the maintenance action are performed 

either too early or too late. On the other hand, Condition Based Maintenance (CBM) is more 

effective but not efficient, because the initial investment is too high which is feasible only for 

important, expensive and time sensitive machineries. Therefore, this work aims to develop the 

robust Planned Preventive Maintenance (PPM) model by improving its effectiveness. 

The specific objectives of this research work are listed below: 

i. Development of a classification model by using Support Vector Machine (SVM) 

algorithm to predict the preventive maintenance schedule.  

ii. Development of a regression model using Support Vector Regression (SVR) 

algorithm based on prepared dataset to predict the machine reliability.   
 

1.4 Outline of Methodology 

The proposed research methodology is outlined below: 

i. Machine reliability parameters has been identified for both subjective and objective 

aspects. The parameters have been identified based on literature and expert 

opinions.  

ii. Two separate datasets have been prepared for maintenance schedule prediction and 

machine reliability prediction model development. The data has been collected 

from the field survey. Expert opinions and record keeping registers are the two 

sources of qualitative and quantitative data for predetermined features sets.  

iii. Mathematical models have been formulated for both classification and regression 

by using machine learning algorithms (SVM and SVR) to predict the maintenance 

class and machine reliability values.  

iv. The models have been implemented for two different real-life problem for Diesel 

Generator and Boiler. 

v. Features (predictor variables) have been selected by using Wrapper method and 

Filtering method to find the best subsets of features to improve the interpretability 

and accuracy of the models.  
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vi. Correlation based feature ranking has been used in Wrapper method that follows 

backward elimination process for subset generation. Whereas, ANOVA test has 

been applied for Filtering method to determine the significant features set.    

vii. The features sets have been used in these proposed models to determine the model’s 

accuracy. The predictive models have been developed with the help of MATLAB 

2018a and the best model has been selected based on the highest accuracy level.  

viii. Finally, the regression model for machine reliability have been developed by 

Support Vector Regression (SVR) which has been compared to the performance of 

Multivariate Linear Regression (MLR) models. 

 

1.5   Organization of the Thesis 

This thesis has been structured into seven chapters along with a list of references & 

appendices as follows: 

Chapter 1 consists the background of the study, research objectives, and research 

methodologies. Under introduction section, general concepts of maintenance management 

are discussed. Proper reason for the research work has been demonstrated. Finally, the 

research objectives are also outlined with some guidelines of research methodologies. 

Chapter 2 presents the literature review which includes the related literature on machine 

learning algorithms and its application in maintenance management.  

Chapter 3 represents the theoretical framework of Support Vector Machine (SVM) and its 

details, different classes and current form. Moreover, the basic theory for the Support Vector 

Regression (SVR) and Multivariate Linear Regression (MLR) algorithms are included. 

Chapter 4 formulates the models through the steps of problem identification, problem 

formulation and model development both for classification and regression. 

Chapter 5 implements the model where the formulated model for classification and 

regression are implemented in a case study on Diesel Generator. Some Boiler data is also 

used to build a classification model in a separate case study as a part of model 

implementation.  

Chapter 6 presents a discussion on results and important findings on the developed models. 

At the bottom, some comparison is placed among different models used in this thesis paper. 

Chapter 7 provides major contribution and recommendation for future work associated with 

this research work. 
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CHAPTER 2: LITERATURE REVIEW 

 

Support vector machine is one of the most robust techniques in machine learning which is 

supervised learning model with associated learning algorithms that analyzes data for 

classification and regression analysis [Cortes and Vapnik 1995]. Cortes and Vapnik [1995] 

proposed VC theory which forms SVMs as a robust prediction method, being based on 

statistical learning frameworks. In addition to performing binary classification, SVM can 

efficiently perform a non-linear classification by using kernel trick, implicitly mapping their 

inputs into high dimensional feature spaces. The original maximum-margin hyperplane 

algorithm was proposed by Vapnik in 1963 which constructed a linear classifier. However, in 

1992, Bernhard Boser, Isabelle Guyon and Vladimir Vapnik suggested a way to create 

nonlinear classifiers by applying the kernel trick [Aiserman et al. 1964]. Vapnik, Drucker et 

al. [1996] proposed an extension of SVM for regression. This method is called support vector 

regression (SVR).  

2.1 Machine Learning in Maintenance  

The increasing availability of data is changing the way decisions are taken in industry in 

important areas such as scheduling, maintenance management and quality improvement [Susto 

et al. 2015]. Machine learning (ML) approaches have been shown to provide increasingly 

effective solutions in these areas, facilitated by the growing capabilities of hardware, cloud-

based solutions, and newly introduced state-of-the-art algorithms. At the same time the 

efficient management of maintenance activities is becoming essential to decreasing the costs 

associated with downtime and defective products, especially in highly competitive advanced 

manufacturing industries such as semiconductor manufacturing. Among statistical inference-

based methods, those based on ML are the most suitable for dealing with modeling of high-

dimensional problems, such as those arising in semiconductor manufacturing where hundreds 

or thousands of physical variables (pressures, voltages, currents, flows, etc.) act on the process 

[Lenz and Barak 2013]. 

The discipline that predicts health condition and remaining useful life (RUL) based on previous 

and current operating conditions is often referred to as prognostics and health management 

(PHM). Prognostic approaches fall into two categories: model-based and data-driven 

prognostics [Gao et al. 2015]. To complement model-based prognostics, data-driven 
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prognostics refer to approaches that build predictive models using learning algorithms and 

large volumes of training data.For example, classical data-driven prognostics are based on 

autoregressive (AR) models, multivariate adaptive regression, fuzzy set theory, ANNs, and 

SVR. The unique benefit of data-driven methods is that an in-depth understanding of system 

physical behaviors is not a prerequisite. In addition, data-driven methods do not assume any 

underlying probability distributions which may not be practical for real-world applications. 

While ANNs and SVR have been applied in the area of data-driven prognostics, little research 

has been conducted to evaluate the performance of other machine learning algorithms [Sick 

2002] Schwabacher and Goebel [2007] conducted a review of data driven methods for 

prognostics. The most popular data-driven approaches to prognostics include ANNs, decision 

trees, and SVM in the context of systems health management. Cho et al. [2005] developed an 

intelligent tool breakage detection system with the SVM algorithm by monitoring cutting 

forces and power consumption in end milling processes. Linear and polynomial kernel 

functions were applied in the SVM algorithm. It has been demonstrated that the predictive 

model built by SVM can recognize process abnormalities in milling. Benkedjouh et al. [2013] 

presented a method for tool wear assessment and remaining useful life prediction using SVM. 

The features were extracted from cutting force, vibration, and acoustic emission signals. The 

experimental results have shown that SVM can be used to estimate the wear progression and 

predict RUL of cutting tools effectively. Shi and Gindy [2007] introduced a predictive 

modeling method by combining least squares SVM and principal component analysis (PCA). 

PCA was used to extract statistical features from multiple sensor signals acquired from 

broaching processes. Experimental results showed that the predictive model trained by SVMs 

was effective to predict tool wear using the features extracted by PCA [Wu et al. 2017]. In the 

area of condition monitoring and predictive maintenance, some work has been done to provide 

failure predictions using statistical and machine learning approaches. Liao [2005] presented 

reliability modeling to estimate machine failures. Sharma et al. [2018] used neural network 

classifier for condition monitoring of rotating mechanism systems. In railway applications, 

Yang et al. [2017] adopted a pattern recognition approach to classify the condition of the 

sleeper into classes (good or bad). Yang et al. [2010] proposed an approach to predict train 

wheel failures but only using one type of detectors, Wheel Impact Load Detector (WILD), 

without considering the impacts of multiple detectors. Recently, develops a logistic regression 

model to classify wheel failures based on WILD and Wheel Profile Detector (WPD). They 

claim that the classification accuracy is 90% with 10% false alarm rate. However, only two 

detectors are taken into account in that study. The problems that those papers have worked on 
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are not as complicated as what we face and none of them has addressed all the challenges we 

describe above [Li and Parikh 2014]. 

 

In this paper, a preventive maintenance model has been developed using machine-learning 

approaches to predict the maintenance requirements more accurately and cost effectively. The 

prediction will drive proactive inspections and repairs, reducing operational equipment failure. 

Feature selection is one of the core concepts in Machine learning which hugely impacts the 

performance of the models. Feature selection is the process to automatically or manually select 

those features which contribute most to prediction variables or output in which the research 

work is needed. Feature subset selection is of immense importance in the field of data mining. 

The increased dimensionality of data makes testing and training of general classification 

method difficult. Mining on the reduced set of attributes reduces computation time and also 

helps to make the patterns easier to understand [Karegowda et al. 2010]. Feature selection, 

the process of selecting a feature subset from the training examples and ignoring features not 

in this set during induction and classification, is an effective way to improve the performance 

and decrease the training time of a supervised learning algorithm [Das 2001]. Feature selection 

is considered a problem of global combinatorial optimization in machine learning, which 

reduces the number of features, removes irrelevant, noisy and redundant data, and results in 

acceptable classification accuracy [Yang et al. 2010]. Feature selection is one of the important 

and frequently used techniques in data preprocessing for data mining. Data preprocessing 

includes data cleaning, data integration, data transformation and data reduction. These data 

processing techniques, when applied prior to mining, can substantially improve the overall 

quality of the patterns mined and/or the time required for the actual mining. The goal of data 

reduction is to find a minimum set of attributes such that the resulting probability distribution 

of the data classes is as close as possible to the original distribution obtained using all attributes. 

Mining on the reduced set of attributes has additional benefits. It reduces the number of 

attributes appearing in the discovered patterns, helping to make the patterns easier to 

understand. Further it enhances the classification accuracy and learning runtime [Karegowda 

et al. 2010]. 

 

Lu et al. [2018] proposed a new feature selection model where the effects of different feature 

selection methods on model performance were compared and discussed. In their research two 

classification models including logistic regression (LGR) and support vector machine (SVM) 

were used, and two representative feature selection methods including analysis of variance 
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(ANOVA) and LGR filter were utilized to improve the performance of estimation models. The 

results showed that the model performance of LGR and SVM can be improved to a certain 

degree by all three feature selections methods. Feature selection is sometimes essential to the 

success of a learning algorithm. For example, the points out that it is not feasible to use a 

nearest-neighbors algorithm on the Internet Advertisements dataset (described later) because 

of the overabundance of features. Feature selection can reduce the number of features to the 

extent that such an algorithm can be applied [Das 2001]. In real world situations, relevant 

features are often unknown a priori. Hence feature selection is a must to identify and remove 

are irrelevant/redundant features. It can be applied in both unsupervised and supervised 

learning.  

 

The goal of feature selection for unsupervised learning is to find the smallest feature subset 

that best uncovers clusters form data according to the preferred criterion [Dy and Brodely 

2004]. Feature selection in unsupervised learning is much harder problem, due to the absence 

of class labels. Feature election for clustering is the task of selecting important features for the 

underlying clusters. Feature selection for unsupervised learning can be subdivided in filter 

methods and wrapper methods. There are strong arguments in favor of both methods. Filter 

methods are general preprocessing algorithms that do not rely on any knowledge of the 

algorithm to be used [Das 2001]. This method in unsupervised learning is defined as using 

some intrinsic property of the data to select feature without utilizing the clustering algorithm 

[Dy and Brodely 2004]. Entropy measure has been used as filter method for feature selection 

for clustering [Dash et al. 1997]. Wrapper methods wrap the feature selection around the 

induction algorithm to be used, using cross-validation to predict the benefits of adding or 

removing a feature from the feature subset used [Das 2001] Wrapper approaches in 

unsupervised learning apply unsupervised learning algorithm to each candidate feature subset 

and then evaluate the feature subset by criterion functions that utilize the clustering result [Dy. 

and Brodely 2004]. Volker Roth and Tilman Lange proposes a wrapper method where 

Gaussian mixture model combines a clustering method with a Bayesian inference mechanism 

for automatically selecting relevant features [Roth and Lange 2003]. 

 

In supervised learning, feature selection aims to maximize classification accuracy [Kohavi and 

John 1997]. It is easier to select features for classification/supervised learning than for 

clustering, since the classification uses class label information. Though domain experts can 

eliminate few of the irreverent attributes, selecting the best subset of features usually requires 

a systematic approach. Feature selection method generally consists of four steps described 
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below [Dash et al. 1997]. Liao et al. [2006] notes that feature selection algorithms that search 

through the space of feature subsets must address four main issues: the starting point of the 

search, the organization of the search, the evaluation of feature subsets and the criterion used 

to terminate the search. Different algorithms address these issues differently [Das 2001]. It is 

intractable to look at all possible feature subsets, even if the size is specified. Feature selection 

algorithms usually proceed greedily. They can be classified into those that add features to an 

initially empty set (forward selection) and those that remove features from an initially complete 

set (backward elimination). Hybrids both add and remove features as the algorithm progresses. 

A major problem of forward selection methods is that it is difficult for them to select sets of 

features that are good co-predictors of the class if none of these predictors is a good predictor 

of the class by itself. On the other hand, forward selection is much faster than backward 

elimination and therefore scales better to large datasets. The major approaches to the problem 

of when the greedy search should terminate are specifying the size of the feature set to be 

selected or evaluating the goodness of each feature set in some manner and stopping when 

further search results in a decrease in goodness [Das 2001]. 

Wrapper Model approach uses the method of classification itself to measure the importance of 

features set; hence the feature selected depends on the classifier model used. Wrapper methods 

generally result in better performance than filter methods because the feature selection process 

is optimized for the classification algorithm to be used. However, wrapper methods are too 

expensive for large dimensional database in terms of computational complexity and time since 

each feature set considered must be evaluated with the classifier algorithm used [Karegowda 

et al. 2010].  Wrapper methods, search through the space of feature subsets using a learning 

algorithm to inform the search. They calculate the estimated accuracy of the learning algorithm 

for each feature that can be added to or removed from the feature subset. Accuracy is estimated 

using cross validation on the training set. In forward selection, a wrapper estimates the accuracy 

of adding each unselected feature to the feature subset and chooses the best feature to add 

according to this criterion. These methods typically terminate when the estimated accuracy of 

adding any feature is less than the estimated accuracy of the feature set already selected [Das 

2001]. 

The Filter Approach actually precedes the actual classification process. The filter approach is 

independent of the learning induction algorithm computationally simple fast and scalable. 

Using filter method, feature selection is done once and then can be provided as input to different 
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classifiers. Various feature ranking and feature selection techniques have been proposed such 

as Correlation-based Feature Selection (CFS), Principal Component Analysis (PCA), Gain 

Ratio (GR) attribute evaluation, Chi-square Feature Evaluation, Fast Correlation-based Feature 

selection (FCBF), Information gain, Euclidean distance, Markov blanket filter. Some of these 

filter methods do not perform feature selection but only feature ranking hence they are 

combined with search method when one needs to find out the appropriate number of attributes. 

Such filters are often used with forward selection, backward elimination, bi-directional search, 

best-first search, genetic search and other methods [Karegowda et al. 2010]. Filter methods, 

on the other hand, select a feature set for any learning algorithm to use when learning a concept 

from that training set. The biases of the feature selection algorithm and the learning algorithm 

do not interact. The search proceeds until a pre-specified number of features is selected or some 

thresholding criterion is met [Das 2001]. Several methods have been used to perform feature 

selection, e.g., ANOVA test, genetic algorithms, branch and bound algorithms, sequential 

search algorithms, mutual information, tabu search, entropy-based methods, regularized least 

squares, random forests, instance-based methods, and least squares support vector machines 

[Yang et al. 2010]. Shaw and Mitchell-Olds [1993], has recommended that when the response 

variables have continuous distributions and the conditions are discrete, whether inherently or 

by design, then it is appropriate to analyze the data using analysis of variance (ANOVA). 

Estévez-Pérez and Vilar [2013], applied ANOVA for discrete data to analysis the air quality 

data where A nonparametric functional approach is proposed to compare the mean functions 

of k samples of curves. In practice, curves data are usually collected in a discrete form and 

hence they must be pre-processed to use purely functional techniques. 

2.2 Planned Preventive Maintenance  

A Planned Preventive Maintenance (PPM) has an significant impact for operational 

performance of machineries by extending its service life with safe and efficient operations.   

Maintenance refers to the set of necessary operations applied to a system so that it can work 

properly. Nowadays, maintenance plays an important role in most companies, which try to 

provide high quality products but minimizing the production cost [Do et al. 2015]. 

Maintenance activities performed on an industrial system can increase not only its safety, but 

also ensure its availability and correct functioning [Caballé et al. 2014]. Maintenance 

optimization and the selection of maintenance strategies play an important role in the 

effectiveness of any industrial system's operation [Alaswad and Xiang 2017].  Perfect 
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maintenance actions restore completely the system to the ’as good as new’ state [Do et al. 

2015]. Their related costs are however often high. Maintenance involves preventive and 

corrective actions carried out to retain a system in or restore it to an operating condition [Do et 

al. 2015]. 

Traditionally, these maintenance tasks were allocated based on requirements in legislation, 

company standards or in-house maintenance experience. However, in the early 1960s, authors 

as Barlow and Hunter started developing mathematical models, which aim to quantify costs 

and to find the optimum balance between the maintenance cost on one side, and the associated 

cost (benefit) on the other [Caballé et al. 2014]. Maintenance strategies regulate the different 

maintenance tasks which will be performed on systems. In general, maintenance tasks are 

classified in corrective maintenance and preventive maintenance. Corrective maintenance is 

defined as the maintenance which is required when a system has failed. Preventative 

maintenance is a maintenance planned in order to prevent the occurrence of future failures. It 

is performed when a system is still working. Preventive maintenance activities in single-unit 

systems were classified by Roth and Lange [2003] in: i) Age-based maintenance, where 

maintenance tasks are performed when the system exceeds a certain age. ii) Calendar-based 

maintenance, where maintenance tasks are performed at fixed time instants. iii) Condition-

based maintenance, where maintenance tasks are based on one or several variables which 

measure the state of the system [Xiao et al. 2016].  The state variables are monitored 

continuously or on a regular basis. The maintenance of the system is performed when some 

state variable exceeds a certain fixed level. Because of its properties, this kind of maintenance 

is widely used in the current literature [Caballé et al. 2014]. Optimal maintenance policies aim 

to provide optimum system reliability, availability and safety performance at lowest possible 

maintenance costs [Do et al. 2015]. Maintenance actions can be generally classified into two 

categories: corrective maintenance (CM) and preventive maintenance (PM) [Alaswad and 

Xiang 2017]. CM are actions performed when the system fails. The most common form of CM 

is “minimal repair”, where the state of the system after repair is nearly the same as that just 

before failure [Coria et al. 2015]. 

PM is a maintenance policy based on replacing, overhauling or remanufacturing a system at 

fixed or adaptive time intervals, regardless of its condition at the time. The periodic PM policy 

can be considered as the most common maintenance policy in which a system is preventively 

maintained at fixed time intervals, regardless of the failure history of the system [Coria et al. 
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2015]. Traditionally, PM takes the form of system overhaul or unit replacement based one 

lapsed time, which is often referred to as time-based maintenance (TBM). TBM schedules are 

typically determined based on a probabilistic model of system failure [Alaswad and Xiang 

2017]. PM policy has been considered by many researchers as one of the most studied 

maintenance policies. For most industrial plants, PM is still a dominant maintenance policy as 

it is easy to implement and not many systems can be condition- monitored [Caballé et al. 

2014]. A more comprehensive definition is: PM policy is a planned maintenance that reduces 

or eliminates accumulated system deterioration, and is executed according with planned 

schedules. In the reliability and maintenance literature, PM policies are commonly classified 

as [Sheu and Chang 2009]: periodic and sequential PM. Periodic PM is executed at integer 

multiples of some fixed time interval. On the other hand, sequential PM is implemented at 

intervals of unequal time lengths. Sequential PM is more suitable when the system requires 

more frequent maintenance as its ages, whereas periodic PM is more convenient to schedule 

[Caballé et al. 2014]. Several researchers also categorized maintenance into three groups: (1) 

corrective maintenance (CM), (2) preventive maintenance (PM) and (3) predictive maintenance 

(PdM). In such maintenance models, PM decision is however based on the system age and on 

the knowledge of the statistical information on the system lifetime [Do et al. 2015]. As a 

consequence, the realistic operating conditions of the system over time are not be taken into 

account [Do et al. 2015]. 

PdM is an advanced preventive approach where maintenance is deferred until it is actually 

needed. The objective of this approach is to monitor the system in order to detect incipient 

faults before they can cause a part to fail [Jiang et al. 2013]. This maintenance strategy has 

been implemented as condition-based maintenance in systems where certain performance 

indices are periodically or continuously monitored [Coria et al. 2015]. Condition-based 

maintenance (CBM) is a maintenance strategy that collects and assesses real-time in- 

formation, and recommends maintenance decisions based on the current condition of the 

system [Alaswad and Xiang 2017]. In recent years, condition-based maintenance (CBM) has 

received much attention in the maintenance research community. Unlike TBM policies that are 

developed based on historical failure data, CBM is a maintenance approach that emphasizes on 

combining data-driven reliability models with sensor data collected from monitored operating 

systems to develop strategies for condition monitoring and maintenance [Alaswad and Xiang 

2017]. In recent decades, research on CBM has been rapidly growing due to the rapid 

development of computer- based monitoring technologies. Research studies have proven that 
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CBM, if planned properly, can be effective in improving equipment reliability at reduced costs 

[Alaswad and Xiang 2017]. Various CBM policies have been proposed and applied for many 

industrial systems [Do et al. 2015]. 

Maintenance actions can also be performed both perfect and imperfect maintenance. In the 

literature, perfect maintenance actions (or replacement actions) which can restore the system 

operating condition to as good as new have been considered in various maintenance models 

[Barker and Newby 2009]. The implementation of “perfect” maintenance policies seems quite 

simple; however, perfect maintenance actions are often expensive [Do et al. 2015]. Imperfect 

maintenance implying that the system condition after maintenance is somewhere between the 

condition before maintenance and as good as new has grown recently as a popular issue to 

researchers as well as industrial applications [Do et al. 2015]. From a practical point of view, 

imperfect maintenance can describe a large kinds of realistic maintenance actions imperfect 

maintenance cost are usually low [Do et al. 2015]. A fixed number of allowable imperfect 

maintenance actions is introduced in maintenance models in and considered as a decision 

parameter. However, the value of this decision parameter is arbitrary chosen and they do not 

describe how the imperfect repair actions affect the deterioration evolution of the system [Do 

et al. 2015]. 

Among various reliability and maintenance models incorporating internal deterioration and 

external shocks, Degradation-Threshold-Shock (DTS) model is addressed the most with 

abundant real-world applications. Sherwin [2010] proposed an opportunistic condition-based 

maintenance policy for offshore wind turbine blades subject to stress corrosion cracking and 

environmental shocks. Peng et al [2010] applied DTS models to micro electro-mechanical 

systems (MEMS) whose failures are triggered by gradually wear and debris from shock loads. 

Ye et al. [2013] established reliability models under extreme shocks and natural graduation for 

automobile tires, laser devices and hard disks. Zhou proposed a periodic preventive 

maintenance method for leased equipment subject to competing failures [Yang et al. 2017]. 

2.3 Use of Machine Learning in Planned Preventive Maintenance 

The aim of periodic PM optimization is to determine the optimal maintenance interval Tn and 

the optimal number of maintenance actions Nn, such that the total mean cost of repairs, PM, 

and replacement activities is minimal. 
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In general, the impact of PM actions can be classified into one of the following situations: 

perfect, minimal, and imperfect. A perfect PM restores the system to the state “as good as new”. 

A minimal PM restores the system to the state that it was just before the maintenance action, 

or “as bad as old”. An imperfect PM takes the system to any state between “as good as new” 

and “as bad as old”. In practice, PM is usually imperfect. Imperfect PM has grown recently as 

a popular issue to researchers as well as industrial applications [Alaswad and Xiang 2017]. In 

order to model the impact of imperfect PM, the hazard rate function of the system under 

maintenance is generally used. Infect, the hazard rate usually is more informative about the 

underlying mechanism of failure than the other representatives of a life time distribution. For 

this reason, consideration of the hazard rate may be the dominant method for modeling 

imperfect PM. Most of the hazard rates used in imperfect PM models are based on univariate 

analysis, where the single random variable under analysis is the failure time [Ferreira et al. 

2009]. Recently, several attempts have been made to extend the concept of the univariate 

hazard rate to the multivariate analysis in order to include variables that influence the failure 

time of the system under study, for example cumulative load applied, time varying stress, and 

environmental factors. However, the hazard rate concept is somewhat difficult to extend to the 

multivariate situation and frequently the observed life time data set is not big enough in relation 

to the dimension of the hazard rate model in order to find good estimates of the model and its 

parameters.  A number of PM models have been developed in order to describe the impact of 

imperfect PM on the hazard rate of repairable systems. These PM models can be classified into 

three groups [Liao et al. 2006]: age reduction models, hazard rate models, and hybrids of both. 

Age reduction models assume that there is an effective age reduction right after a PM action, 

and that the hazard rate continues to be a function of the effective age [Dekker 1996]. The 

hazard rate models assume that right after a PM action, the hazard rate reduces to zero, and 

then increases faster than it did in the previous PM interval [Grall et al. 2002].  

The above models have made important contributions to this research field, however, in 

practice the main problem is how to take decisions or make inferences about these unknown 

age reduction and hazard rate increase factors. Numerous approaches have been proposed 

based on guessing the values of these factors by subjective means, which is fine, as long as 

there is enough expert knowledge to perform this task properly. Other approaches are based on 

estimating these factors from observed data. These statistical inference techniques are very 

good if there are sufficient data to estimate the factors accurately. However, in practice, few 

data are available in many areas of maintenance and replacement [Dekker 1996]. 
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The literature on the use of mathematical modeling for the purpose of analyzing, planning, and 

optimizing TBM is abundant. In contrast, CBM has only received increasing attention recently, 

and only a few survey papers have considered CBM models extensively. The majority of 

existing CBM survey papers limits the scope within the existing CBM survey papers limits the 

scope within the diagnostic and prognostic methods and algorithms. For example, Jardine et 

al. [2006] review recent studies and developments in CBM with emphasis on models, 

algorithms, and technologies for data acquisition and data processing. Peng et al. [2010] divide 

the prog-nostic models into four categories: physical model, knowledge- based model, data-

driven model, and combination model, and review various techniques and algorithms by this 

category. Ah- mad and Kamaruddin [2012] present an overview of time-based and condition-

based maintenance in industrial applications, and summarize the most recent condition 

monitoring techniques. Shin and Jun [2015] review CBM approach and address several aspects 

of CBM, such as definition, advantages and disadvantages elated international standards, 

procedures and techniques. De- spite the recent rapid development of sensor technology that 

facilitates CBM, there exists increasing pressure on reducing unnecessary inspection and PM 

actions and the associated costs incurred from additional data collection, documentation, and 

analysis through optimal design of CBM policies. Therefore, mathematical modeling and 

optimization of CBM has become a major concern to operations and maintenance managers, 

and a review in this particular area is now more relevant. The popularity of CBM in the research 

community and industrial applications relies heavily on the development of stochastic 

deterioration models [Alaswad and Xiang 2017]. 

Another data-driven method for prognostics is based on decision trees. Decision trees are a 

nonparametric supervised learning method used for classification and regression. The goal of 

decision tree learning is to create a model that predicts the value of a target variable by learning 

decision rules inferred from data features. A decision tree is a flowchart-like structure in which 

each internal node denotes a test on an attribute, each branch represents the outcome of a test, 

and each leaf node holds a class label. Jiaa and Dornfeld [1998] proposed a decision tree-based 

method for the prediction of tool flank wear in a turning operation using acoustic emission and 

cutting force signals. The features characterizing the AE root-mean-square and cutting force 

signals were extracted from both time and frequency domains. The decision tree approach was 

demonstrated to be able to make reliable inferences and decisions on tool wear classification. 

Elangovan et al. [2011] developed a decision tree-based algorithm for tool wear prediction 

using vibration signals. Ten-fold cross-validation was used to evaluate the accuracy of the 
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predictive model created by the decision tree algorithm. The maximum classification accuracy 

was 87.5%. The effects of machining parameters on surface microhardness and microstructure 

such as grain size and fractions using a random forests-based predictive modeling method along 

with finite element simulations. Predicted microhardness profiles and grain sizes were used to 

understand the effects of cutting speed, tool coating, and edge radius on the surface integrity 

[Wu et al. 2017]. 

2.4 Summary of Literature Review  

Throughout the review, it can be concluded that various researchers have focused on solving 

maintenance problem with various approaches. The very initial approaches were started with 

quantifying costs to find the optimum balance with other associated costs. After that several 

maintenance strategies were identified which regulate different maintenance tasks and sub 

tasks. Therefore, various maintenance policies were developed to provide optimum system 

reliability and safety at lowest possible maintenance cost. Among the all, Preventive 

Maintenance (PM) has been considered as one of the most studied maintenance policies that 

dominate most of the industrial plant till now. A number of preventive maintenance model have 

been developed that identified several factors which performed the models by subjective means 

and somewhat statistical inference techniques. Various techniques, such as probability plotting, 

moment estimation, modified moment estimation and maximum likelihood estimation (MLE) 

has been used to estimate and modeling the maintenance model. Condition-based maintenance 

(CBM) is most advanced preventive approach that received much attention in the maintenance 

research community in recent years. For several decades, Fuzzy Neural Network (FNN), ANNs 

and branch-and-bound algorithm are widely used for maintenance planning and joint 

optimization of PM and production scheduling. Furthermore, the increasing availability of data 

open the scope of applying Machine Learning (ML) approaches to deal with modeling of high 

dimensional problems. Some recent work focused on prognostic approaches that build 

predictive models using learning algorithms and large volumes of training data like classical 

data-driven prognostics are based on autoregressive (AR) models, multivariate adaptive 

regression, fuzzy set theory, ANNs, and SVR. All the previous works described in the above 

section give descriptive knowledge on maintenance planning study and all are relevant to real 

world problem. 

 

 



18 
 

CHAPTER 3: THEORETICAL FRAMEWORK 

 

In machine learning, Support Vector Machines (SVMs) is a relatively new computational 

supervised learning model for classification and regression analysis by using associated 

learning algorithm for analyzing input data.  It was introduced by Vapnik in 1995 [Cortes and 

Vapnik 1995].  

3.1 Support Vector Machines (SVMs) 

SVM were originally designed for binary classification, but now it can efficiently perform 

nonlinear or multi-class classification by using kernel trick. The basic idea in the SVM is to 

map the original input data into a high dimensional dot product space called a feature space in 

order to find a hyper-plane which can separate the two classes. The optimal hyper-plane is 

found by exploring the optimization theory and respecting insights provided by the structural 

learning theory.  

3.1.1 Binary Classification using SVM 

The aim of SVM is to create a line or hyper plane between two sets of data for classification. 

Figure 3.1 shows how to classify a series of points into two different classes of data, class I 

(Triangular) and class II (Circular). The attempt of SVM is to create a boundary line denoted 

by a solid line between the two different classes and organized in such a way that the dotted 

lines margin is maximized. The SVM tries to orient the boundary such that the distance 

between the boundary and the nearest data point in each class is maximal. The boundary is then 

placed in the middle of this margin between the two points. The nearest data points are used to 

define the margins and are known as Support Vectors (SVs) represented by green circle and 

square. Once the SVs are selected, the rest of the feature sets can be discarded, since the SVs 

have all the necessary information for the classifier. 

Let’s consider a training dataset S is given as (Xi, Yi) where Xi denotes the input points for i = 

1,….., N. and Yi is the corresponding desired output {-1, 1} for classification model. Each 

point Xi belongs to one of the classes with label yiϵ{1,-1}. φ be the kernel function which maps 

the data from the input space Rn to the feature space F. The goal is to find a hyper-plane which 

divides S, in a way that the same level points are on the same side of the hyper-plane while 

maximizing the distance between the two classes. Let’s wφ(x)+b is the hyper-plane that 

discriminate data in the feature space and the decision function is  
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f(x) = sign (wφ (x)) + b                                                                                                           (3.1) 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the hyper-plane with minimum error and also the maximum margin is found as the 

optimum hyper-plane by the SVM. Margin is defined as the distance of the closest data point 

to the hyper-plane. The cost function ψ(w) =0.5(w.w) should be minimized with a view to 

maximize the margin subject to the constraint in Equation (n). Using Lagrange multiplier 

method, this constraint optimization problem is solved and the decision function is obtained as 

in equation 3.2.  

 

𝑦 = sign [∑ 𝛼𝑖αi
0 (φ(𝑥𝑖) × φ(𝑥𝑗)) + bl

i∈sv ]                                                     (3.2) 

 

where α is the result of the constrained optimization problem and SV denotes the support 

vectors. 

 

3.1.2 Nonlinear Support Vector Machine 

 

In the last section, all data set considered are linear. However, to deal with more general 

decision surfaces, Kernel transformation is used to nonlinearly transform the data set 𝑥1, 𝑥2, … 

…, 𝑥𝑚 ∈ 𝒳 into high-dimensional feature space. For linear separation in the feature space map 

𝜙: 𝑥𝑖 → 𝑥𝑖
∗is used.  

Cover’r theorem characterizes the number of possible linear separations of m points in an N- 

dimensional space. If m < N + 1, then 2𝑚 is possible. According to this Theorem number of 

separation can be given by 2∑ (
𝑚 − 1

𝑖
)𝑁

𝑖=1  [Berge 1957]. 

With the increase in the number of N, the number of elements is the sum increases. So, it can 

Class I 

Class II 

Support Vector 

Support Plane 

Hyper Plane 

Figure 3.1: Binary classification using SVM  
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be said that the number of separations increases with the increase in dimensionality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.2: Mapping non-linear data into higher dimensional feature space 

 

In Figure 3.2 (a) nonlinear data is shown and in Figure 3.2 (b) those data are transferred to 

higher dimensional feature space and separating it by a hyperplane.  

In order to make equation 3.3  suitable for a general decision surface, < 𝑥, 𝑥𝑖 > is substituted 

by < 𝜙(𝑥), 𝜙(𝑥𝑖) > in higher dimensional space. As this substation is computationally 

expensive, a positive kernel is used to make the calculation easier. 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑊(𝛼) = ∑𝑚 𝛼 − 
1 
∑𝑚 ∑𝑚 𝛼 𝛼 𝑦 𝑦 < 𝜙(𝑥), 𝜙(𝑥 ) > 

𝑖=1    𝑖 2 𝑖=1 𝑗=1     𝑖    𝑗   𝑖   𝑗 𝑖 

 
∀ 𝛼𝑖 ∈ ℝ𝑚 

(3.3) 

𝑓(𝑥) = 𝑠𝑔𝑛(∑𝑚 𝛼𝑖 𝑦𝑖 < 𝜙(𝑥), 𝜙(𝑥𝑖) > +𝑏) 
𝑖=1 

(3.4) 

 
(< 𝜙(𝑥), 𝜙(𝑥𝑖) >) = 𝑘(𝑥, 𝑥𝑖) 

 
(3.5) 

 

 
Using this transformation of equation 3.5 into previous equation, a new decision function can 

be obtained as following equation 3.6. 

 

𝑓(𝑥) = 𝑠𝑔𝑛(∑𝑚 𝛼𝑖 𝑦𝑖𝑘(𝑥, 𝑥𝑖) + 𝑏) 
𝑖=1 (3.6) 

 

 

 

 

(a) (b) 

R2 R3 

𝜑: R2 → R3 
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Now to calculate threshold value b, implying to KKT conditions [Schölkopf et al. 2002] to 

the Eq., 𝛼𝑖> 0 following formulation can be obtained 

 
 

∑𝑚 𝛼𝑖 𝑦𝑖𝑘(𝑥𝑗, 𝑥𝑖) + 𝑏 = 𝑦𝑗 
𝑖=1  (3.7) 

 

 

So, the threshold value can be obtained as following equation 3.8.    

  
 

𝑏 = 𝑦𝑗 − ∑𝑚 𝛼𝑖 𝑦𝑖𝑘(𝑥𝑗, 𝑥𝑖) 
𝑖=1 (3.8) 

 
 

There are some popular forms of Kernel functions. Some of them are given by following 

equation 3.9, 3.10, 3.11 and 3.12 [Giroti et al. 2018] 

 
Polynomial Kernel Classifier with a degree of d 
 
 

𝑘(𝑥, 𝑥𝑖) =< 𝑥, 𝑥𝑖 >𝑑 (3.9) 

 

 
Gaussian Kernel 

 

𝑘(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (
−‖𝑥−𝑥𝑖‖

2

2𝜎2 )                                                                                                           (3.10) 

                                           

 
Radial basis function classifier with Gaussian Kernel of width c>0 

 

𝑘(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (
−‖𝑥−𝑥𝑖‖

2

𝑐
)                                                                                                            (3.11)                                                                                                                                                                           

 
Sigmoid kernel 
 
 

𝑘(𝑥, 𝑥𝑖) = tanh(ℬ < 𝑥, 𝑥𝑖 > +𝒞)                                                                                                
 
 
Where ℬ > 0 and 𝒞 ∈ ℝ 

   (3.12) 
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3.1.3 Multi Class Support Vector Machines (SVMs) 

The support vector machine is inherently a binary classifier where the class levels can take only 

two values: 1 and -1. However, many real-world problems, we found more than two classes. 

How to effectively extend the multi-class classification is still an on-going research issue. But 

several methods have been proposed where typically we construct a multi-class classifier by 

combining several binary classifiers.  

There are two min strategies widely used for extending a binary classifier to be employed for 

a multi-class application: i) One-against-one and ii) One-against-all  

In one-against-one strategy, the multi class problem constructs k(k-)/2 binary classification 

problems, where k is the number of classes. Now considering the data from one class against 

the data from another class as a binary classification task a k(k-1)/2 classifiers are designed for 

each problem.  

In one-against-all approach, it constructs k SVM model where k is the number of classes. K 

binary classifiers are designed considering the data of one class against all other remaining data 

from other classes as a binary classification problem. 

Beside these two strategies, there is another approach called Direct Acyclic Graph Support 

Vector Machine (DAGSVM) which is inherently a multi-class classifier. Its training phase is 

the same as one-against-one method by solving k(k-1)/2 binary SVM. However, in one-against-

one approach (K (K-1)/2), its needs to be designed more binary classifiers comparing with one-

against-all (K). The earliest used implementation for SVM multi-class classification is 

probably the one-against-all method.  

Since the SVM classification problem is a multi-class support vector machine problem; it can 

be formulated by using One-Against-All method. In this method it constructs k SVM models 

where k is the number of class; The ith SVM is trained with all of the examples in the ith class 

with positive labels, and all other examples with negative labels.  

Thus, given l training data (𝑥1, 𝑦1), … . . , (𝑥𝑙 , 𝑦𝑙),  

Where, 𝑥𝑖 ∈  𝑅𝑛, 𝑖 = 1,… . , 𝑙 and 𝑦𝑖 ∈ {1,… . . , 𝑘} is the class of 𝑥𝑖, the ith SVM soled the 

following problem in equation 3.13.  
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min
𝑤𝑖,𝑏𝑖,𝜉𝑖  

            
1

2
(𝑤𝑖)𝑇𝑤𝑖 + 𝐶 ∑ 𝜉𝑗

𝑖𝑙
𝑗=1                                                                                  (3.13) 

Subject to,(𝑤𝑖)
𝑇
𝜑(𝑥𝑗) + 𝑏𝑖 ≥ 1 − 𝜉𝑗

𝑖              𝑖𝑓𝑦𝑗 = 𝑖, 

                 (𝑤𝑖)
𝑇
𝜑(𝑥𝑗) + 𝑏𝑖 ≤ −1 + 𝜉𝑗

𝑖           𝑖𝑓𝑦𝑗 ≠ 𝑖, 

                   𝜉𝑗
𝑖 ≥ 0,    𝑗 = 1, … . , 𝑙, 

Where the training data 𝑥𝑖 are plotted to a high dimensional space by function 𝜑 and 𝐶 is the 

penalty parameter. 

 

Minimizing  (
1

2
) (𝑤𝑖)𝑇𝑤𝑖 means that we would like to maximized2/‖𝑤𝑖‖, the margin between 

two groups of data.  

When data are not linear separable, there is a penalty term 𝐶 ∑ 𝜉𝑗
𝑖𝑙

𝑗=1  which can be reduced the 

number of training error. The basic concept behind SVM is to search for a balance between the 

regularization term (
1

2
) (𝑤𝑖)𝑇𝑤𝑖 and the training error. 

After solving (n), there are k decision functions in equation 3.14: 

 

(𝑤𝑙)𝑇𝜑(𝑥) + 𝑏𝑙  

. 

. 

. 

                                                                      (𝑤𝑘)𝑇𝜑(𝑥) + 𝑏𝑘                                                          (3.14)  

  

We say x is in the class which has the largest value of the decision function in equation 3.15. 

Class of   

𝑥 = arg max
𝑖=1,…𝑘

((𝑤𝑖)𝑇𝜑(𝑥) + 𝑏𝑖)                                                                                               (3.15)                      

 

Practically, it is used to solve the dual problem of (n) whose number of variables is the same 

as the number of data in (n). Hence k, l-variable quadratic programming problems are solved.  
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Figure 3.3 represents the visual of 5-flod cross validation to estimate the expected error leave-

one-out method can be used. The leave-one-out method is defined by leaving out one of the 

training examples and use remaining for training the model and using the left-out training set 

for testing the model. This procedure is repeated until all training examples are used to test the 

accuracy of the model. This procedure averages the error generated from all texting set. 

 

 

Figure 3.3: 5-Fold Cross-validation of Training Data Set 

 
3.2 Support Vector Regression (SVR) 

SVR is an extension of SVM because is follows almost all principles of SVM classification. A 

new type of loss function called 𝜀−insensitivity los function introduced by Vapnik used to 

perform regression in the high dimension feature space. The loss function defines the degree 

of penalty when the estimated value deviates from the real value. This 𝜀− insensitive function 

defines a tube: inside the tube, there is no penalty for deviation; while outside of the tube, a 

penalty occurs for any deviation. e defines the size of this tube which is used to balance the 

accuracy of approximation and the computational complexity. The model complexity can also 

be reduced by minimizing‖𝑤‖2. This can be described by introducing slack variables 𝜉𝑖 and 

𝜉𝑖
∗ where 𝑖 = 1,… . . , 𝑛 to measure the deviation of training sample outside 𝜀−sensitive zone. 

The objective function and constraints for SVR are in equation 3.16.  

Min 
1

2
 ‖𝑤‖2 + 𝐶 ∑ (𝑛

𝑖=1 𝜉𝑖 + 𝜉𝑖
∗)                                                                                                     (3.16) 

Subject to; 𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

                   𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖
∗ 

                𝜉𝑖 ≥ 0, 𝜉𝑖
∗ ≥ 0. 𝑖 = 1,2,3, … . , 𝑛 
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This optimization problem can transform into the dual problem by including a dual set of 

Lagrange multiplier; which is in equation 3.17.  

max  𝑊(𝛼, 𝛼∗) = −𝐶 ∑(𝛼𝑖 + 𝛼𝑖
∗) + ∑(𝛼𝑖

∗ − 𝛼𝑖)𝑦𝑖

𝑛

𝑖=1

𝑛

𝑖=1

                                                               

−
1

2
∑ (𝛼𝑖

∗ − 𝛼𝑖)

𝑛

𝑖,𝑗=1

(𝛼𝑗
∗

− 𝛼𝑗)〈𝑥𝑖 , 𝑥𝑗〉                                                                                                                         (3.17) 

 
Subject to,  

∑(

𝑛

𝑖=1

𝛼𝑖 + 𝛼𝑖
∗) = 0 

αi
∗, αi ∈ [0, C], 𝑖 = 1,2,3, … . . , 𝑛 

In dual problem, kernel function 𝐾〈𝑥𝑖, 𝑥𝑗〉 is used to substitute 〈𝑥𝑖, 𝑥𝑗〉. The desired regression 

function is then represented in equation 3.18. 

𝑓(𝑥) = ∑ (𝛼𝑖
∗ − 𝛼𝑖)𝐾〈𝑥𝑖, 𝑥𝑗〉

𝑛
𝑖=1 + 𝑏                                                                                      (3.18) 

SVM generalization performance depends on a good setting of kernel parameters C, 𝜖 and 

kernel parameters. 

The following equation is used to evaluate the performance of the proposed model. Mean 

Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), relative Root Mean Squared 

Error (rRMSE) and Mean Squared Error (MSE) are used. Formulas of these evaluation 

measures are shown in the following equations 3.19, 3.20, 3.21 and 3.22 respectively. 

 

MAPE = 100
∑ |

𝐴−𝑃

𝐴
|𝑛

𝑖=1

𝑛
                                                                                                                       (3.19) 

 

MAE =
1

𝑛
∑

|𝐴−𝑃|

𝐴

𝑛
𝑖=1                                                                                                                            (3.20)  

 

rRMSE = √1

𝑛
∑ (

𝐴−𝑃

𝐴
)
2

𝑛
𝑖=1                                                                                                                (3.21) 
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MSE =
1

𝑛
∑ (𝐴 − 𝑃)2𝑛

𝑖=1                                                                                                                     (3.22) 

 

Here, A stand for actual value and P stand for predicted value of machine and n is the number 

of samples. To calculate all these measures, a 5-fold cross validation method can be used. 

3.3 Multivariate Linear Regression (MLR) 

Regression is a statistical measurement-based predicting method for estimating the 

relationships among variables. It’s also used to evaluate the impacts of independent variables 

on dependent variables. Its outcome is based on the given input. 

Linear regression is the simplest technique use to predict the relationship between a sclar 

dependent variable y and one explanatory or independent variables which is represented by X.  

In many applications, there are more than one explanatory or independent variable that 

influences the response and this process is called multiple linear regressions. Multiple 

regression method is used for obtaining the relation between several independent variables and 

a dependent variable. The multiple linear regression model is just an extension of the simple 

linear regression model and represented as following equation 3.23. 

 

         𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑘𝑥𝑘 + 𝜀                                                                    (3.23)                          

 

Where  

 𝑦 = an observed value of the response variable for a particular observation in the population 

𝛽
0
 = the constant term 

𝛽
𝑘
 = the coefficient for the kth explanatory/independent variable 

𝑥𝑘 = a value of the kth explanatory variable for a particular observation  

𝜀 = the residual for the particular observation in the population  

For the research work, predicting the reliability of machine is a multiple linear regression 

problem with 5 (k=5) independent or explanatory variable and one response or dependent 

variable y. the number of observations is n. So, the problem can be formulated by the following 

equation 3.24.  
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                    𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖            𝑖 = 1,…… . . , 𝑛                                      (3.24) 

 

Let,                     𝑦 =

[
 
 
 
 
 
   𝑦

1
   

𝑦
2
.
.
.

𝑦
𝑛 ]

 
 
 
 
 

                      𝑋 =

[
 
 
 
 

   

1
1
.
..
1

  

𝑥11
𝑥21

.

..
𝑥𝑛1

  

𝑥12
𝑥22

.

..
𝑥𝑛2

  

.

.
 
  
.

  

.

.
 
  
.

  

.

.
 
  
.

  

𝑥1𝑘
𝑥2𝑘

.

..
𝑥𝑛𝑘

   

]
 
 
 
 

   

                           𝛽 =

[
 
 
 
 
 
 
   𝛽1   

𝛽2
.
.
.

𝛽𝑛 ]
 
 
 
 
 
 

,                      𝜀 =

[
 
 
 
 
 
   𝜀1   
𝜀2
.
.
.
𝜀𝑛 ]

 
 
 
 
 

 

 

Where, 𝑦(𝑛×𝑘) = Matrix of response variable 

             𝑥(𝑛×𝑘) = Matrix of predictor variables 

             𝛽(𝑛×𝑘) = Matrix of coefficient  

             𝜀(𝑛×𝑘) = Matrix of error 

Solving the equation 3.24 mentioned above is based on least square method so that least square 

data fitting is a data fitting that estimates the coefficients (β) by minimizing the total value of 

the second power of deviations (E). In other words, least square data fitting is the same as the 

answer that minimizes the numerical product of E'E=ΣE². In order to solve the equation 3.24, 

it can be done as in following equation 3.25, 3.26.  

𝑥′. 𝑦 = (𝑥′. 𝑥)𝛽                                                                                                                    (3.25)                                                                                                                        

𝛽 = (𝑥′. 𝑥)/𝑥′. 𝑦                                                                                                                  (3.26)                                                                                                                

Three different criteria are used in order to evaluate the effectiveness of model and its ability 

to make precise prediction. These are Coefficient of Determination (R2), Root Mean Square 

Error (RMSE) and Maximum Error are presented in equation 3.27, 3.28, 3.29 respectively.  

  

𝑅2 = 1 −
∑(𝑦𝑜𝑏𝑠 − 𝑦𝑝𝑟𝑒)

2

∑𝑦𝑜𝑏𝑠
2 −

∑𝑦𝑝𝑟𝑒
2

𝑛  

                                                                                                                       (3.27) 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑝𝑟𝑒 − 𝑦𝑜𝑏𝑠)

2𝑛
𝑡=1

𝑛
                                                                                                                   (3.28) 

𝑀𝑎𝑥 (𝐸) = 𝑚𝑎𝑥|𝑦𝑝𝑟𝑒 − 𝑦𝑜𝑏𝑠|                                                                                            (3.29) 

Where  𝑦𝑝𝑟𝑒 is predicted machine reliability and  𝑦𝑜𝑏𝑠 is observed machine reliability and n is 

the number of data. 

3.4 Feature (Subset) Selection Method 

There are three types of feature subset selection approaches: filters, wrappers, and embedded 

approaches which perform the features selection process as an integral part of a machine 

learning (ML) algorithm 

Feature selection method generally consists of four steps shown in Figure 3.4 described below 

(a) Generate candidate subset: The original feature set contains n number of features, the 

total number of competing candidate subsets to be generated is 2n, which is a huge number 

even for medium-sized n. Subset generation is a search procedure that produces candidate 

feature subsets for evaluation based on a certain search strategy. The search strategy is broadly 

classified as complete (e,g. Breadth first search, Branch & bound, beam search, best first), 

heuristic (forward selection, backward selection, forward and backward selection), and random 

search (Las Vegas algorithm (LVW), genetic algorithm (GA), Random generation plus 

sequential selection (RGSS), simulated annealing (SA)). 

(b) Subset evaluation function to evaluate the subset generated in the previous step (generate 

candidate subset) by using filter or wrapper approach. Filter and Wrapper approach differ only 

in the way in which they evaluate a subset of features. The filter approach is independent of 

the learning induction algorithm. Wrapper strategies for feature selection use an induction 

algorithm to estimate the merit of feature subsets. Wrappers often achieve better results than 

filters due to the fact that they are tuned to the specific interaction between an induction 

algorithm and its training data.  

(c) Stopping Condition: Since the number of subsets can be enormous, some sort of stopping 

criterion is necessary. Stopping criteria may be based on a generation procedure/ evaluation 

function. Stopping criteria based on generation procedure include: 
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• Whether a predefined number of features are selected  

• Whether a predefined number of iterations reached.  

Stopping criteria based on an evaluation function can be:  

• Whether addition (or deletion) of any feature does not produce a better subset  

• Whether an optimal subset according to some evaluation function is obtained. 

(d) Validation procedure: To check whether the feature subset selected is valid. Usually the 

result of original feature set is compared with the feature selected by filters/wrappers as input 

to some induction algorithm using artificial/real-world datasets. Another approach for 

validation is to use different feature selection algorithm to obtain relevant features and then 

compare the results by using classifiers on each relevant attribute subset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original Feature Set 

Generate Candidate 

Subset 

Subset Evaluation 

Stopping 

Condition 

Best Feature Set 

Validation 

No  

Yes  

Figure 3.4: Steps for feature selection 
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3.4.1 The Filter Approach for Feature Selection 

The filter approach actually precedes the actual classification process. The filter approach is 

independent of the learning induction algorithm, computationally simple fast and scalable. 

Using filter method, feature selection is done once and then can be provided as input to different 

classifiers. Various feature ranking and feature selection techniques have been proposed such 

as Correlation-based Feature Selection (CFS), Principal Component Analysis (PCA), Gain 

Ratio (GR), Chi-square Feature Evaluation, Markov blanket filter. Such filters are often used 

with forward selection, backward elimination, other methods. The authors have used decision 

tree consist of original feature set selection, feature subset selection and induction algorithms 

as filter approach to provide the relevant features as input to neural network classifier.  

3.4.2 The Wrapper Approach for Feature Selection 

Wrapper model approach shown in Figure 3.5 uses the method of classification itself to 

measure the importance of features set; hence the feature selected depends on the classifier 

model used. Wrapper methods generally result in better performance than filter methods 

because the feature selection process is optimized for the classification algorithm to be used. 

However, wrapper methods are too expensive for large dimensional database in terms of 

computational complexity and time since each feature set considered must be evaluated with 

the classifier algorithm used. 
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Heuristic Approach) 
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Figure 3.5: Wrapper approach for feature selection 
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CHAPTER 4: MODEL FORMULATION 

 

Many residential and industrial electromechanical systems suffer from inevitable failure due to 

complex degradation processes and environmental condition. These unpredicted and 

unexpected failures may cause several consequences, including massive production losses, 

high repair costs and safety issues for personnel and environment. In Bangladesh, most of the 

cases in residential systems prefer corrective maintenance due to lack of maintenance 

knowledge and the inertia of advance expenses. Industrial system manages and tries to adopt 

some maintenance policies which are limited to inspection, cleaning and some replacement 

without proper plan and guidance. As a result, the benefit of planned maintenance is still out 

of reach due to a proper maintenance model.  

Many maintenance models have been developed that helps to decrease the unexpected failure 

and reduce high operational cost. Among them some are effective, some are efficient and most 

of them are case specific. In case of traditional preventive maintenance policies, it is efficient 

than failure-based maintenance, but not effective, because it doesn’t consider the systems 

reliability, as a result the maintenance actions is performed either too early or too late. On the 

other hand, in condition-based maintenance, it is more effective but not efficient, because the 

initial investment is too high which is feasible only for important, expensive and time sensitive 

machineries. 

Considering this research gap, there is a scope to improve the traditional preventive 

maintenance model by improving its effectiveness. Without initial investment, the 

effectiveness can be improved by considering the systems reliability before predicting any 

maintenance requirements. The system reliability highly depends on various external and 

internal parameters of the system. This research work has considered Diesel Generator and 

Boiler as the system to develop the model. 

4.1 Problem Formulation and Model Development 

The purpose of this research work is to develop a planned preventive maintenance (PPM) 

model that can forecast the maintenance requirements more accurately and cost effectively. To 

develop this model machine reliability has been considered and the reliability value has been 

determined by analyzing qualitative and quantitative data. Various external and internal 

parameters of the machines will be selected based on the expert opinions and the relevant 
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literature of that particular machine. The data will be collected based on these parameters to 

prepare the dataset. Machine learning algorithm will be used to formulate the problem.  

A sequential framework has been designed which is shown in Figure 4.1 to develop and 

implement the models. The framework consists of four steps describe below:  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

4.2 Feature Identification and Selection  

To develop the model, following features are identified and considered based on the experts’ 

opinions and reviewing the literatures.  

i. Mean Time Between Failure (MTBF): The average period between system 

breakdowns. 

ii. Mean Time to Repair (MTTR): The amount of time required to repair a system and 

restore it to fully functionality.  

iii. Downtime (DT): The periods when a system is unavailable 

Feature Identification 

Feature Selection 

Generate Feature Subsets 

Wrapper Method 

& Filtering 

Method  

Models Development using 

SVM & SVR Algorithms 

Models Evaluation  

Step 1 

Step 2 

Step 3 

Step 4 

Figure 4.1: Flow chart of the current research 
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iv. Machine Age (MA): The Completed amount of time of a system from its installation.   

v. Machine Room Environment (MRE): The overall surrounding conditions round the 

machine where it is located.  

vi. Average Operating Time (AOT): The average working period of a system. 

vii. Manufacturer (M): The Company that produces the machines or system.  

viii. Periodic Maintenance Practice (PMP): The types of maintenance actions are 

performed and its frequency.  

ix. Alternative Machine (AM): The availability of backup or alternative source to 

maintain the services.   

The above predictive features which have been identified earlier does not have same impact 

with its output variables. So, the impacts of each features on output variables are significant 

for model development. The selection of best feature subsets which is more significant is 

important to improve the model accuracy and interpretability of the model. The following two 

methods has been used for feature selection.  

In this method the feature subsets are generated based on heuristics method (Forward Selection, 

Backward Selection, Forward & Backward Selection).  This model uses the method of 

correlation-based feature selection to measure the importance of feature sets. The correlations 

of each feature with its output variable are determined by using data analysis tool pack of 

Microsoft Excel. Therefore, the features are ranked based on their correlation value from higher 

to lower. Finally, Backward elimination process are followed to generate probable feature sets.  

In this method the feature subsets are generated based on Single Factor ANOVA test.  

Microsoft Excel data analysis tool pack is used to perform the single factor ANOVA test and 

determined the F and p-value for each feature. The insignificant features are identified based 

on their p-value.  Avoiding the insignificant features, the desired feature subset has been 

obtained.  

4.3 Model Development and Evaluation 

Two separate models have been developed based on the selected feature sets. The first model 

is maintenance schedule prediction which is a classification problem and have been developed 

by using Support Vector Machine (SVM) algorithm. The second model is machine reliability 

prediction model development which is a regression problem and has been developed by using 

Support Vector Regression (SVR) algorithm. 
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4.3.1 Maintenance Schedule Prediction Model Development with Support Vector 

Machines (SVM) 

The predetermined parameters has been used as an input variable which is called predictor 

variables are symbolized as followed. This predictor variable has been used to develop the 

maintenance schedule prediction model using SVM algorithm.  

List of input variables: 

Mean Time Between Failure (MTBF)  (𝑥1) 

Mean Time Between Repair (MTBR)  (𝑥2) 

Downtime (DT)  (𝑥3) 

Machine Age (MA)  (𝑥4) 

Machine Room Environment (MRE)  (𝑥5) 

Average Operating Time (AOT)   (𝑥6) 

Manufacturer (M)    (𝑥7) 

Periodic Maintenance Practice (PMP)   (𝑥8) 

Alternative Machine (AM)   (𝑥9) 

Let’s X be the input feature vector. So, 

𝑋 = 

[
 
 
 
 
 

 
x1

x2

x3

...
x𝑛]

 
 
 
 
 

 

Where, n = 9 

And W be the weight vector. So,  

𝑊 =

[
 
 
 
 
 
 
𝑤1

𝑤2

𝑤3

.

.

.
𝑤𝑛]

 
 
 
 
 
 

 

Where, n = 9 
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The output variable which is called dependent variable y has five classes which is shown in 

Table 4.1 that indicates the planned preventive maintenance (PPM) periodicity is a multi-class 

support vector machine problem.  

 

 

Maintenance Type Description 

Class-I Monthly A-Check, Half-yearly B-Check and Yearly C-Check 

Class-II 
Daily A-Check, after running 300 hours B-Check and  

After running 840 hours C-Check 

Class-III 
Weekly A-Check, after running 300 hours B-Check and Yearly 

C-Check 

Class-IV 
Daily A-Check, after running 300 hours B-Check and  

Yearly C-Check 

Class-V 
Weekly A-Check, after running 300 hours, B-Check and 

after running 840 hours C-Check 

 

Since the SVM classification problem is a multi-class support vector machine problem; it can 

be formulated by using One-Against-All method. In this method it constructs k SVM models 

where k is the number of class; in this classification problem we found 5 different classes. The 

ith SVM is trained with all of the examples in the ith class with positive labels, and all other 

examples with negative labels.  

Thus, given l training data (𝑥1, 𝑦1), … . . , (𝑥𝑙 , 𝑦𝑙),  

Where, 𝑥𝑖 ∈  𝑅𝑛, 𝑖 = 1,… . , 𝑙 and 𝑦𝑖 ∈ {1,… . . , 𝑘} is the class of 𝑥𝑖, the ith SVM soled the 

following problem in equation 4.1.  

min
𝑤𝑖,𝑏𝑖,𝜉𝑖  

            
1

2
(𝑤𝑖)𝑇𝑤𝑖 + 𝐶 ∑ 𝜉𝑗

𝑖𝑙
𝑗=1                                                                                               (4.1) 

Subject to,(𝑤𝑖)
𝑇
𝜑(𝑥𝑗) + 𝑏𝑖 ≥ 1 − 𝜉𝑗

𝑖              𝑖𝑓𝑦𝑗 = 𝑖, 

                 (𝑤𝑖)
𝑇
𝜑(𝑥𝑗) + 𝑏𝑖 ≤ −1 + 𝜉𝑗

𝑖           𝑖𝑓𝑦𝑗 ≠ 𝑖, 

                   𝜉𝑗
𝑖 ≥ 0,    𝑗 = 1, … . , 𝑙, 

Where the training data 𝑥𝑖 are plotted to a high dimensional space by function 𝜑 and 𝐶 is the 

penalty parameter. 

Table 4.1. Maintenance Class and Description 
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Minimizing  (
1

2
) (𝑤𝑖)𝑇𝑤𝑖 means that we would like to maximized 2/‖𝑤𝑖‖, the margin between 

two groups of data.  

When data are not linear separable, there is a penalty term 𝐶 ∑ 𝜉𝑗
𝑖𝑙

𝑗=1  which can be reduced the 

number of training error. The basic concept behind SVM is to search for a balance between the 

regularization term (
1

2
) (𝑤𝑖)𝑇𝑤𝑖 and the training error. 

After solving (n), there are k decision functions: 

 

(𝑤𝑙)𝑇𝜑(𝑥) + 𝑏𝑙  

. 

. 

. 

(𝑤𝑘)𝑇𝜑(𝑥) + 𝑏𝑘 

 

We say x is in the class which has the largest value of the decision function in equation 4.2

  

Class of  𝑥 = arg max
𝑖=1,…𝑘

((𝑤𝑖)𝑇𝜑(𝑥) + 𝑏𝑖)                                                                                     (4.2)                            

 

Practically, we solve the dual problem of (n) whose number of variables is the same as the 

number of data in (n). Hence k, l-variable quadratic programming problems are solved.  

The whole model has been formulated using MATLAB 2018a software package. 

The maintenance schedule prediction model will be selected based on the accuracy level.  The 

model that has the highest accuracy level among all models will be selected for further analysis 

and evaluation. The selected model will be evaluated by analyzing Confusion Matrix Parallel 

Coordination Plot and receiver operating characteristic curve or ROC Curve.  

4.3.2 Machine Reliability Prediction Model Development with Support Vector Regression 

(SVR) 

SVR is an extension of SVM because is follows almost all principles of SVM classification. A 

new type of loss function called 𝜀−insensitivity los function introduced by Vapnik used to 

perform regression in the high dimension feature space. The loss function defines the degree 
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of penalty when the estimated value deviates from the real value. This 𝜀− insensitive function 

defines a tube: inside the tube, there is no penalty for deviation; while outside of the tube, a 

penalty occurs for any deviation. e defines the size of this tube which is used to balance the 

accuracy of approximation and the computational complexity. The model complexity can also 

be reduced by minimizing‖𝑤‖2. This can be described by introducing slack variables 𝜉𝑖 and 

𝜉𝑖
∗ where 𝑖 = 1,… . . , 𝑛 to measure the deviation of training sample outside 𝜀−sensitive zone. 

The objective function and constraints for SVR are in equation 4.3.  

Min 
1

2
 ‖𝑤‖2 + 𝐶 ∑ (𝑛

𝑖=1 𝜉𝑖 + 𝜉𝑖
∗)                                                                                                       (4.3) 

 

Subject to; 𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

                   𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜉𝑖
∗ 

                𝜉𝑖 ≥ 0, 𝜉𝑖
∗ ≥ 0. 𝑖 = 1,2,3, … . , 𝑛 

This optimization problem can transform into the dual problem by including a dual set of 

Lagrange multiplier; which is in equation 4.4.  

max  𝑊(𝛼, 𝛼∗) = −𝐶 ∑ (𝛼𝑖 + 𝛼𝑖
∗) + ∑ (𝛼𝑖

∗ − 𝛼𝑖)𝑦𝑖
𝑛
𝑖=1

𝑛
𝑖=1                                                                              −

1

2
∑ (𝛼𝑖

∗ − 𝛼𝑖)
𝑛
𝑖,𝑗=1 (𝛼𝑗

∗ − 𝛼𝑗)〈𝑥𝑖, 𝑥𝑗〉                                                                                                                 (4.4) 

 

Subject to,  

∑(

𝑛

𝑖=1

𝛼𝑖 + 𝛼𝑖
∗) = 0 

αi
∗, αi ∈ [0, C], 𝑖 = 1,2,3, … . . , 𝑛 

In dual problem, kernel function 𝐾〈𝑥𝑖, 𝑥𝑗〉 is used to substitute 〈𝑥𝑖 , 𝑥𝑗〉. The desired regression 

function is then in equation 4.5.  

𝑓(𝑥) = ∑ (𝛼𝑖
∗ − 𝛼𝑖)𝐾〈𝑥𝑖 , 𝑥𝑗〉

𝑛
𝑖=1 +

𝑏                                                                                                                                                                               (4.5) 

SVM generalization performance depends on a good setting of kernel parameters C, 𝜖 and 

kernel parameters. 

The following equation is used to evaluate the performance of the proposed model. Mean 

Absolute Error (MAE), relative Root Mean Squared Error (rRMSE) and Mean Squared Error 
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(MSE) are used. Formulas of these evaluation measures are shown in the following equations 

4.6, 4.7 and 4.8 respectively. 

 

MAE =
1

𝑛
∑

|𝐴−𝑃|

𝐴

𝑛
𝑖=1                                                                                                                               (4.6) 

rRMSE = √1

𝑛
∑ (

𝐴−𝑃

𝐴
)
2

𝑛
𝑖=1                                                                                                                   (4.7) 

MSE =
1

𝑛
∑ (𝐴 − 𝑃)2𝑛

𝑖=1                                                                                                                        (4.8) 

Here, A stand for actual value and P stand for predicted reliability of machine and n is the 

number of samples. To calculate all these measures, a 5-fold cross validation method is used. 

The software packages MATLAB 2018a has been used in this study for the development of 

SVR model. 
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CHAPTER 5: MODEL IMPLEMENTATION 

 

In order to implement the model, a real-life example has been considered as a case study in the 

context of Bangladesh. Diesel Generator (DG) is a complex electromechanical system widely 

used in residential and industrial building as a primary or secondary power supply units has 

been considered to implement the model. The research work has been performed on the basis 

of collected data from various residential and commercial office building of Dhaka city and 

some industrial building in the surrounding of Dhaka city. Although the needs, uses and 

maintenance practices of Diesel Generator (DG) are quite different for this different category 

projects however there are some growing needs and scope to improve the current practices for 

all the projects.  Proper maintenance plan can enhance the expected productivity and services 

by ensuring the safety and environmental hazards.   

In this research work, both qualitative and quantitative data has been collected by considering 

the subjective and objective manner of the machines. This data has been used to determine the 

machine condition by calculating its reliability value. These reliability values actually 

determine the maintenance requirements to develop the planned preventive maintenance 

schedule. So, the parameters selection and data collection are significantly important to develop 

the model. Expert opinions and literature on this particular machine have been used to select 

the parameters. Several projects were visited to collect the data. Quantitative data were 

acquired from the machine reading and record keeping registers. Project engineers, machine 

operators, building managers and experts were asking for qualitative data.  

5.1 Maintenance Classification Model Formulation for Diesel Generator   

In this work, maintenance schedule prediction involved two steps process, where the first step 

is to classify the maintenance requirements. For this purpose, a maintenance classification 

model has been developed by implementing Support Vector Machine (SVM). To develop the 

maintenance classification model, following features shown in Table 5.3 has been identified. 

Therefore, Support Vector Machine (SVM) has been trained using the dataset in Table 5.2 

which contains historical data collected from the field survey. The features in Table 5.3 have 

been used to train SVM so that it can predict the maintenance requirements of any future 

machines. The standard checklist for Diesel Generator (DG) and the frequency of maintenance 

are given below. 
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A-Check:  

Frequency of A-Check: Daily, Weekly or Monthly 

Checklist for A-Check 

1. Oil level, Coolant level, Gauge valve level 

2. Radiator water level, Battery Voltages 

3. Blower condition, All connection tight or not 

4. Self-start, Voltage in all three phases, pf, Speed Governor 

4.  Check for any leakage 

5. Cleanliness of DG set 

B-Check: 

Frequency of B-Check: After Running 300 Hours or After 6 Months; which become earlier 

Checklist for B-Check 

1. Check/ Change lube oil filter, Fuel filter 

2. Check/ Change Air filter, Bypass filter  

3. Check/ Change Water Separator,  

4. Change the oil 

5. Radiator cleaning with chemical 

C-Check 

Frequency of B-Check: After Running 840-1500 Hours or After 1Year; which become earlier 

Checklist for B-Check 

1. All steps of B Check 

2. Check/ Change of Air filter (If needed) 

3. Check/Change of other filters mentioned in B Check 
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4. Change of gasket of chambers 

5. Radiator Cleaning 

6. Check pollution level 

Based on the above checklist and maintenance frequency, experts classify the maintenance 

requirements into five classes which is given below Table 5.1.  

 

Table 5.1: Maintenance Classes for Maintenance Schedule Prediction Model Development  

 

Class 

 

Dataset Output 

 (Y) 

Definition 

Class-I 1 

Monthly A-Check, 

Half-yearly B-Check,  

Yearly C-Check 

Class-II 2 

Daily A-Check,  

After running 300 hours; B-Check,  

After running 840 hours; C-Check 

Class-III 3 

Weekly A-Check,  

After running 300 hours; B-Check,  

Yearly C-Check 

Class-IV 4 

Daily A-Check,  

After running 300 hours; B-Check,  

Yearly C-Check 

Class-V 5 

Weekly A-Check,  

After running 300 hours; B-Check,  

After running 840 hours, C-Check 

 

 

For identifying a classification model which can predict the maintenance requirements based 

on the above-mentioned features different SVM models are checked by using MATLAB 

toolbox. Those models are given below. 
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i. Linear SVM- Uses linear Kernel  

ii. Quadratic SVM- Uses quadratic Kernel  

iii. Cubic SVM- Uses cubic Kernel  

iv. Fine Gaussian SVM- Uses Gaussian Kernel with Kernel scale (√(No of features))⁄4  

v. Medium Gaussian SVM- Uses Gaussian Kernel with Kernel scale √(No of features)  

vi. Coarse Gaussian- Uses Gaussian Kernel with Kernel scale (√(No of features))*4  

 

 

Table 5.2: Training Dataset Sample for Maintenance Schedule Prediction Model 

Development 

 

Machine Features (X) 
Output 

(Y) 

 

DG 
MTBF MTTR DT MA MRE AOT M PMP AM  

MP X1 X2 X3 X4 X5 X6 X7 X8 X9 

DG-1 9M 3 L 5 VP 30 1 VP A 1 

DG-2 5M 11 H 10 VP 105 2 VP A 2 

DG-3 4M 13 H 15 VP 115 3 P  NA 2 

DG-4 10M 14 M 2 G 40 1 VP A 1 

DG-5 5M 11 H 13 VP 120 1 M NA 2 

DG-6 7M 7 M 7 P 50 4 P A 3 

DG-7 9M 2 L 2 M  35 2 VP A 1 

DG-8 4M 12 H 17 P 130 2 P NA 2 

DG-9 6M 8 M 8 P 70 3 VP A 3 

DG-10 9M 1 L 1 G 25 2 P A 1 

DG-11 2M 14 M 9 P 50 1 VP NA 4 

DG-12 11M 4 M 1 VG 45 3 M A 1 

DG-13 4M 15 H 9 VP 80 1 VP NA 2 

DG-14 9M 5 L 4 VP 30 2 VP A 1 

DG-15 9M 5 L 2 G 45 1 M NA 1 

DG-16 5M 20 H 10 VP 105 2 P NA 2 

DG-17 10M 4 L 3 M 20 1 M A 1 

DG-18 8M 9 H 5 P 75 3 VP A 5 

DG-19 6M 6 M 9 P 70 1 VP A 3 

DG-20 11M 5 L 5 VG 20 1 M NA 1 
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Machine Features (X) 
Output 

(Y) 

 

DG 

MTBF MTTR DT MA MRE AOT M PMP AM  

MP X1 X2 X3 X4 X5 X6 X7 X8 X9 

DG-21 1M 15 L 2 M 35 3 VP NA 4 

DG-22 6M 6 M 9 P 65 2 VP A 3 

DG-23 11M 3 M 2 G 40 1 M A 1 

DG-24 5M 12 H 13 VP 105 5 VP NA 2 

DG-25 9M 3 L 5 VG 30 1 VP A 1 

DG-26 10M 2 L 5 M 35 1 M A 1 

DG-27 4M 11 H 12 VP 110 3 VP NA 2 

DG-28 11M 2 L 3 M 35 1 VP A 1 

DG-29 7M 10 H 7 P 60 4 VP NA 3 

DG-30 8M 9 M 6 P 80 2 VP A 5 

DG-31 4M 13 H 20 VP 135 1 P A 2 

DG-32 7M 8 L 6 P 50 2 M NA 3 

DG-33 5M 12 H 5 VP 115 1 M A 2 

DG-34 11M 3 L 2 VG 25 1 VP A 1 

DG-35 4M 14 H 25 P 125 5 P NA 2 

DG-36 7M 6 M 7 P 65 1 G A 3 

DG-37 2 7 H 10 P 120 2 M NA 5 

DG-38 9M 4 L 2 G 40 1 M A 1 

DG-39 4M 9 H 11 P 90 4 VP A 2 

DG-40 7M 10 M 8 P 60 3 P A 3 

 

5.3 Feature Selection and Model Development for Diesel Generator  

Table 5.2 represents the training dataset for all features. In this stage the subsets of above 

features will be selected using wrapper method and filtering method. 

In Wrapper Method the feature subsets has been generated based on heuristics method 

(Forward Selection, Backward Selection, Forward & Backward Selection).  This model has 

been used the method of correlation-based feature selection to measure the importance of 

feature sets. The correlations of each feature with its output variable are determined by using 
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data analysis tool pack of Microsoft Excel. The negative sign represents the negative 

correlation while the positive sign represents positive correlation of the features with its output 

variable. The higher the values are, the higher the correlation of the features with the output 

variable. Therefore, the features has been ranked based on their correlation value from higher 

to lower.  

 

Table 5.3: Correlation of Features with Output Variables 

  

Features Correlation  

(Person’s r) 

Ranking 

Mean Time Between Failure (MTBF)  -0.58 1 

Mean Time to Repair (MTTR)  0.43 2 

Downtime (DT)  0.37 5 

Machine Age (MA)  0.30 7 

Machine Room Environment (MRE)  -0.39 4 

Average Operating Time (AOT)  0.40 3 

Manufacturer (M)  0.12 9 

Periodic Maintenance Practice (PMP)  -0.23 8 

Alternative Machine (AM)  -0.32 6 

 

 

The following subsets has been selected using Backward Elimination process with the help of 

the ranking determined in Table 5.3. 

Subset -1: {X1, X2, X3, X4, X5, X6, X7, X8, X9}   

Subset -2: {X1, X2, X3, X4, X5, X6, X8, X9} 

Subset -3: {X1, X2, X3, X4, X5, X6, X9} 

Subset -4: {X1, X2, X3, X5, X6, X9} 

Subset -5: {X1, X2, X3, X5, X6} 

Subset -6: {X1, X2, X5, X6} 

Subset -7: {X1, X2, X6} 

Subset -8: {X1, X2} 
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In Table 5.4 the accuracy of different SVM models are given according to their subset. Five-

fold cross validation has been used to determine the accuracy of the models. For all subset, six 

SVM models are checked to find the model which has the highest accuracy level. 

 

Table 5.4: Prediction Accuracy Level of a Model Based on Wrapper Method 

 

Subset Model No SVM Type Accuracy (%) 

 

 

 

Subset-1 

 

Model-1 Linear SVM 86.3% 

Model-2 Quadratic SVM 83.8% 

Model-3 Cubic SVM 85% 

Model-4 Fine Gaussian SVM 16.3% 

Model-5 Medium Gaussian SVM 86.3% 

Model-6 Coarse Gaussian 77.5% 

 

 

 

Subset-2 

 

Model-7 Linear SVM 86.3% 

Model-8 Quadratic SVM 85% 

Model-9 Cubic SVM 86.3% 

Model-10 Fine Gaussian SVM 18.8% 

Model-11 Medium Gaussian SVM 85% 

Model-12 Coarse Gaussian 86.3% 

 

 

 

Subset-3 

 

Model-13 Linear SVM 87.5% 

Model-14 Quadratic SVM 87.5% 

Model-15 Cubic SVM 88.8% 

Model-16 Fine Gaussian SVM 41.3% 

Model-17 Medium Gaussian SVM 87.5% 

Model-18 Coarse Gaussian 87.5% 

 

 

 

Subset-4 

 

Model-19 Linear SVM 87.5% 

Model-20 Quadratic SVM 87.5% 

Model-21 Cubic SVM 88.8% 

Model-22 Fine Gaussian SVM 51.2% 

Model-23 Medium Gaussian SVM 87.5% 

Model-24 Coarse Gaussian 86.3% 

 

 

Model-25 Linear SVM 87.5% 

Model-26 Quadratic SVM 87.5% 
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Subset-5 

 

Model-27 Cubic SVM 88.8% 

Model-28 Fine Gaussian SVM 55% 

Model-29 Medium Gaussian SVM 87.5% 

Model-30 Coarse Gaussian 87.5% 

 

 

 

Subset-6 

 

Model-31 Linear SVM 88.8% 

Model-32 Quadratic SVM 90. 0% 

Model-33 Cubic SVM 92. 5% 

Model-34 Fine Gaussian SVM 91.3% 

Model-35 Medium Gaussian SVM 88.8% 

Model-36 Coarse Gaussian 88.8% 

 

 

 

Subset-7 

 

Model-37 Linear SVM 90.0% 

Model-38 Quadratic SVM 91. 0% 

Model-39 Cubic SVM 91. 0% 

Model-40 Fine Gaussian SVM 67.5% 

Model-41 Medium Gaussian SVM 90.0% 

Model-42 Coarse Gaussian 88.8% 

 

 

 

Subset-8 

 

Model-43 Linear SVM 90.0% 

Model-44 Quadratic SVM 91. 0% 

Model-45 Cubic SVM 90.0% 

Model-46 Fine Gaussian SVM 81.3% 

Model-47 Medium Gaussian SVM 88.8% 

Model-48 Coarse Gaussian 86.3% 

 

 

Table 5.5 has drawn a comparison among the subsets based on their accuracy level for all 

model. From this table it can be visualized the highest accuracy for each subset.  Table 5.6 

illustrates a comparison among the best accuracy level model (s) developed is each subset. 

Finally, it has been observed in Table 5.6 that subset-6, model-33 has the best accuracy level 92.5 

% among all subsets determined in Wrapper method.  
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Table 5.5: Comparison Among Subset’s Based on Accuracy Level  

 

SVM Type Subset-

1 

Subset- 

2 

Subset- 

3 

Subset-

4 

Subset- 

5 

Subset-

6 

Subset- 

7 

Subset-

8 

Model: 

(1-6)  

Model: 

(7-12) 

Model: 

(13-18) 

Model: 

(19-24) 

Model: 

(25-30) 

Model: 

(31-36) 

Model: 

(37-42) 

Model: 

(43-48) 

Linear 

SVM 

86.3% 86.3% 87.5% 87.5% 87.5% 88.8% 90.0% 90.0% 

Quadratic 

SVM 

83.8% 85% 87.5% 87.5% 87.5% 90. 0% 91. 0% 91. 0% 

Cubic 

SVM 

85% 86.3% 88.8% 88.8% 88.8% 92. 5% 91. 0% 90.0% 

Fine 

Gaussian 

SVM 

16.3% 18.8% 41.3% 51.2% 55% 91.3% 67.5% 81.3% 

Medium 

Gaussian 

SVM 

86.3% 85% 87.5% 87.5% 87.5% 88.8% 90.0% 88.8% 

Coarse 

Gaussian 

77.5% 86.3% 87.5% 86.3% 87.5% 88.8% 88.8% 86.3% 

 

 

 

Table 5.6: Comparison Among Models Based on Best Accuracy Level of Each Subset 

 

Subset Highest Accuracy Model Accuracy 

Subset-1 Model-1 & Model-5 86.3% 

Subset-2 Model-7, Model-9 & Model-12 86.3% 

Subset-3 Model-15 88.8% 

Subset-4 Model-21 88.8% 

Subset-5 Model-27 88.8% 

Subset-6 Model-33 92. 5% 

Subset-7 Model-38, Model-39  91. 0% 

Subset-8 Model-44 91. 0% 
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In Filtering Method the feature subsets are generated based on single factor ANOVA test.  

Microsoft Excel data analysis tool pack is used to perform the single factor ANOVA test and 

determined the F and p-value for each feature. Table 5.7 illustrates the results with decision 

where three features are not significant as their p-values is more than 0.05.  Avoiding these 

three insignificant features, the desired feature subset is given below.  

 

Table 5.7: Feature Selection Using Filtering Method 

 

 

Feature 

ANOVA  

Decision F  p-value 

Mean Time Between Failure (MTBF)  225.41 0 Significant 

Mean Time to Repair (MTTR)  122.38 0 Significant 

Downtime (DT)  19.94 0 Significant 

Machine Age (MA)   83.23 0 Significant 

Machine Room Environment (MRE)  2.62 0.1072 Not Significant 

Average Operating Time (AOT)   268.02 0 Significant 

Manufacturer (M)   1.62 0.2048 Not Significant 

Periodic Maintenance Practice (PMP)  2.66 0.1048 Not Significant 

Alternative Machine (AM)  114.04 0 Significant 

 

 

 

Selected Features’ Set {X1, X2, X3, X4, X6, X9} 

 

In Table 5.8 The prediction accuracy of different SVM models are given according to the 

selected subset. Five-fold cross validation has been used to determine the accuracy of the 

models. Six SVM models are checked to find the model which has the highest accuracy level. 

Finally, it has been observed in Table 5.8 that Model-49, 51 and 53 has the highest accuracy 

level 88.8%.  
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Table 5.8: Prediction Accuracy Level of a Model Based on Filtering Method 

 

Feature Set Model No SVM Type Accuracy (%) 

 

{X1, X2, 

X3, X4, X5, 

X6, X9} 

 

Model-49 Linear SVM 88.8% 

Model-50 Quadratic SVM 87.5% 

Model-51 Cubic SVM 88.8% 

Model-52 Fine Gaussian SVM 55.5% 

Model-53 Medium Gaussian SVM 88.8% 

Model-54 Coarse Gaussian 87.5% 

 

 

 

5. 4 Model Selection and Evaluation 

 

In this section the best model has been selected based on their accuracy level. In Wrapper 

method there were eight subsets among them subset 6 selected based on the highest accuracy 

level of its Model-33. On the other hand, in a single subset determined in Filtering method 

which has six different models.  

 

Table 5.9: Comparison Between Wrapper Method & Filtering Method 

 

 

SVM Type 

Accuracy (%) 

Wrapper Method Filtering Method 

{X1, X2, X5, X6} {X1, X2, X3, X4, X6, X9} 

Linear SVM 88.8% 88.8% 

Quadratic SVM 90. 0% 87.5% 

Cubic SVM 92. 5% 88.8% 

Fine Gaussian SVM 91.3% 55.5% 

Medium Gaussian SVM 88.8% 88.8% 

Coarse Gaussian 88.8% 87.5% 
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Table 5.9 illustrate a comparison between Wrapper method & Filtering method with its 

different models. Finally, it is observed that Model-33 in Wrapper method has the best accuracy 

level 92.5% with a training time of 0.50145 Seconds at a speed of 2200 observations per second 

in Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Accuracy of Selected Model-33 from Subset-6 

As Model-33 has best accuracy level, the model is studied further in different perspectives. The 

following Table 5.10 has shown class wise prediction accuracy and error level which is drawn 

from the confusion matrix of the selected Model-33.    

 Table 5.10: Class Wise Accuracy and Error Level of the Selected Model 

 

Class True Positive Rate False Negative Rate 

Class-I 94% 6% 

Class-II 96% 4% 

Class-III 93% 7% 

Class-IV 50% 50% 

Class-V 67% 33% 
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Figure 5.2 represent the confusion matrix of the selected Model-33, where it can be seen that 

for class one, 30 sample fallen in true class as it is predicted and only 2 sample fallen incorrectly 

which should fall in class 3, so that the sample 94% correctly belonging in class one.   Similarly, 

for class two and three the accuracy is 96% and 93% respectively.  But class four belonging 

only 2 samples where the true positive rate is 50%. Finally, class five represents 67% true 

positive rate with 33% false negative rate.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Confusion Matrix for Selected Model-33 
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In Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6, scatter plots are given which reflects the 

correlation between different feature which is very important for overall model accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Scatter Plot for MTBF versus MTTR 

 

 

Figure 5.3: Scatter Plot for MTBF versus MTTR 

In Figure 5.3, when data points are presented with respect to Mean Time between Failure 

(MTBF) and Mean Time to Repair (MTTR) they are easily separable. So, it is clear that these 

two features have a greater impact on maintenance prediction.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Scatter Plot for MTBF versus AOT 
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From Figure 5.4 it can be observed that when data points are presented with respect to Mean 

Time between Failure (MTBF) and Average Operating Time (AOT), they are also easily 

spreadable and has a positive impact on output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Scatter Plot for MTTR versus AOT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Parallel Coordinate Plot for all Features 
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Figure 5.5 illustrates that when data points are plot in a two-dimensional space with respect to 

Mean Time to Repair (MTTR) and Average Operating Time (AOT), These features can 

separate the classes in a better way. 

Figure 5.6 demonstrates the parallel plot of all features which reflects how each feature has an 

impact on the classification model. In Figure 5.6 blue lines, red lines, yellow lines and orange 

lines respectively represent four different maintenance prediction classes. The areas between 

the features, where these lines are easily separable have a greater impact on the classification 

model compared to other features. All parameters are standardized h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Parallel Coordinate Plot for Selected Model-33 

In Figure 5.7 the parallel plot in Figure 5.6 is modified by keeping only four features those are 

Mean Time between Failure (MTBF), Mean Time to Repair (MTTR), Machine Room 

Environment (MRE) and Average Operating Time (AOT) which was selected in Subset-6 can 

separate the classes in a better way.  
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Figure 5.8: ROC Curve for Selected Model-33 

Figure 5.8 Represent the ROC curve to quantify the performance of the classifier.  The 

illustration shows that the curve hugs the upper left corner of the plot means a very good 

classification capability of the model. From the figure the true positive rate is 0.99 whereas the 

false positive rate is only 0.08. The Area under the Curve (AUC) is 0.95 that cover the 

maximum area of the curve which also represent the better performance of the model.   

5.4 Machine Reliability Calculation of Diesel Generator through SVR 

Machine reliability is the availability of the machine for a specific period of time is a significant 

thing to know for maintenance management. The probability of failure or breakdown of a 

machine depends on the reliability of the machine and it can be determined in different ways. 

Here a model is developed by using Support Vector Regression (SVR) to know the reliability 

value of the machine. 

In this research, Machine reliability will be calculated considering the same parameters used 

in classification. A regression model is developed by implementing Support Vector Regression 

(SVR). To develop the regression model, Support Vector Regression (SVR) is trained using 

the historical data collected from the field survey.  To develop the model a training dataset is 

used which is given as a sample in Table 5.11 and the complete dataset is given in Appendix 

B. 
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Table 5.11: Sample Dataset for Machine Reliability Prediction Model Development 

 
Machine Features (X) Output (Y) 

 

DG 
MTBF MTTR DT MA MRE AOT M PMP AM Machine 

Reliability X1 X2 X3 X4 X5 X6 X7 X8 X9 

DG-1 9M 3 L 5 VP 30 1 VP A 0.76 

DG-2 5M 11 H 10 VP 105 2 VP A 0.59 

DG-3 4M 13 H 15 VP 115 3 P  NA 0.54 

DG-4 10M 14 M 2 G 40 1 VP A 0.88 

DG-5 5M 11 H 13 VP 120 1 M NA 0.48 

DG-6 7M 7 M 7 P 50 4 P A 0.55 

DG-7 9M 2 L 2 M  35 2 VP A 0.74 

DG-8 4M 12 H 17 P 130 2 P NA 0.45 

DG-9 6M 8 M 8 P 70 3 VP A 0.56 

DG-10 9M 1 L 1 G 25 2 P A 0.76 

DG-11 2M 14 M 9 P 50 1 VP NA 0.67 

DG-12 11M 4 M 1 VG 45 3 M A 0.76 

DG-13 4M 15 H 9 VP 80 1 VP NA 0.62 

DG-14 9M 5 L 4 VP 30 2 VP A 0.77 

DG-15 9M 5 L 2 G 45 1 M NA 0.81 

DG-16 5M 20 H 10 VP 105 2 P NA 0.58 

DG-17 10M 4 L 3 M 20 1 M A 0.74 

DG-18 8M 9 H 5 P 75 3 VP A 0.55 

DG-19 6M 6 M 9 P 70 1 VP A 0.60 

DG-20 11M 5 L 5 VG 20 1 M NA 0.76 

DG-21 1M 15 L 2 M 35 3 VP NA 0.73 

DG-22 6M 6 M 9 P 65 2 VP A 0.62 

DG-23 11M 3 M 2 G 40 1 M A 0.77 

DG-24 5M 12 H 13 VP 105 5 VP NA 0.52 

DG-25 9M 3 L 5 VG 30 1 VP A 0.87 

DG-26 10M 2 L 5 M 35 1 M A 0.73 
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5.4.1 Feature Selection and Model Development for Regression 

In this stage the subsets of above features has been selected using Wrapper method and 

Filtering method. 

In Wrapper method the feature subsets has been generated based on heuristics method (Forward 

Selection, Backward Selection, Forward & Backward Selection).  This model has been used 

the method of correlation-based feature selection to measure the importance of feature sets. 

The correlations of each feature with its output variable are determined by using data analysis 

tool pack of Microsoft excel. Therefore, the features has been ranked based on their correlation 

value from higher to lower.  

Table 5.12: Correlation of Features with Output Variable 

 

Features Correlation  

(Person’s r) 

Ranking 

Men Time Between Failure (MTBF)  0.71 4 

Mean Time to Repair (MTTR)  -0.67 6 

Downtime (DT) -0.78 2 

Machine Age (MA) -0.75 3 

Machine Room Environment (MRE)  0.69 5 

Average Operating Time (AOT) -0.82 1 

Manufacturer (M) -0.52 7 

Periodic Maintenance Practice (PMP) 0.27 9 

Alternative Machine (AM) 0.38 8 

 

The following subsets has been selected using Backward Elimination process with the help of 

the correlation values of the features determined in the Table 5.12 

Subset -1: {X1, X2, X3, X4, X5, X6, X7, X8, X9} 

Subset -2: {X1, X2, X3, X4, X5, X6, X7, X9} 

Subset -3: {X1, X2, X3, X4, X5, X6, X7} 

Subset -4: {X1, X2, X3, X4, X5, X6} 

Subset -5: {X1, X3, X4, X5, X6} 

Subset -6: {X1, X3, X4, X6} 

Subset -7: {X3, X4, X6} 

Subset -8: {X3, X6} 
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Table 5.13: Prediction Accuracy Level of a Model Based on Wrapper Method 

 

Subset Model No SVM Type MAE R squared 

 

 

 

Subset-1 

 

Model-1 Linear SVM 0.049129 0.69 

Model-2 Quadratic SVM 0.052711 0.64 

Model-3 Cubic SVM 0.057799 0.58 

Model-4 Fine Gaussian SVM 0.097849 0.07 

Model-5 Medium Gaussian SVM 0.048901 0.68 

Model-6 Coarse Gaussian 0.047874 0.71 

 

 

 

Subset-2 

 

Model-7 Linear SVM 0.049739 0.70 

Model-8 Quadratic SVM 0.056578 0.60 

Model-9 Cubic SVM 0.064677 0.37 

Model-10 Fine Gaussian SVM 0.08882 0.20 

Model-11 Medium Gaussian SVM 0.047962 0.71 

Model-12 Coarse Gaussian 0.047495 0.72 

 

 

 

Subset-3 

 

Model-13 Linear SVM 0.048437 0.71 

Model-14 Quadratic SVM 0.053679 0.66 

Model-15 Cubic SVM 0.061253 0.55 

Model-16 Fine Gaussian SVM 0.087982 0.21 

Model-17 Medium Gaussian SVM 0.047404 0.71 

Model-18 Coarse Gaussian 0.047147 0.72 

 

 

 

Subset-4 

 

Model-19 Linear SVM 0.054736 0.64 

Model-20 Quadratic SVM 0.057737 0.63 

Model-21 Cubic SVM 0.07308 0.37 

Model-22 Fine Gaussian SVM 0.081908 0.29 

Model-23 Medium Gaussian SVM 0.058341 0.61 

Model-24 Coarse Gaussian 0.053877 0.67 

 

 

 

Subset-5 

 

Model-25 Linear SVM 0.056505 0.62 

Model-26 Quadratic SVM 0.0597 0.60 

Model-27 Cubic SVM 0.096682 -1.27 

Model-28 Fine Gaussian SVM 0.075384 0.34 

Model-29 Medium Gaussian SVM 0.056526 0.64 

Model-30 Coarse Gaussian 0.05238 0.69 
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Subset Model No SVM Type MAE R squared 

 

 

 

Subset-6 

 

Model-31 Linear SVM 0.059029 0.61 

Model-32 Quadratic SVM 0.068886 0.48 

Model-33 Cubic SVM 0.12 -3.22 

Model-34 Fine Gaussian SVM 0.066269 0.47 

Model-35 Medium Gaussian SVM 0.057951 0.62 

Model-36 Coarse Gaussian 0.053516 0.68 

 

 

 

Subset-7 

 

Model-37 Linear SVM 0.053756 0.66 

Model-38 Quadratic SVM 0.056682 0.55 

Model-39 Cubic SVM 0.055249 0.62 

Model-40 Fine Gaussian SVM 0.055317 0.62 

Model-41 Medium Gaussian SVM 0.052763 0.67 

Model-42 Coarse Gaussian 0.052388 0.68 

 

 

 

Subset-8 

 

Model-43 Linear SVM 0.052749 0.66 

Model-44 Quadratic SVM 0.051662 0.66 

Model-45 Cubic SVM 0.056045 0.45 

Model-46 Fine Gaussian SVM 0.051226 0.65 

Model-47 Medium Gaussian SVM 0.048997 0.69 

Model-48 Coarse Gaussian 0.052964 0.67 

 

In Table 5.13 represents the machine reliability based on Mean Absolute Error (MAE) and R 

squared value for different SVM models for different subsets. Five-fold cross validation has 

been used to determine the accuracy of the models. For all subset, six SVM models has been 

checked to find the model which has the highest accuracy level.  

Mode- l2 from subset-2 and Model -18 from Subset-3 represents highest R Squared value 0.72 

among all the models. Therefore, these two models are independently selected from Wrapper 

method for further comparison with the best model which will be selected from Filtering 

method.   
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In Filtering Method single factor ANOVA test has been performed by using Microsoft excel 

data analysis tool pack. Table 5.14 illustrates the results with decision where one feature is not 

significant as the its p-values is more than 0.05.  Avoiding this insignificant feature, the desired 

feature subset is given below.  

Selected Features’ Set {X1, X2, X3, X4, X5, X6, X7, X8} 

Table 5.14: Feature Selection Using Filtering Method  

 

 

Feature 

ANOVA  

Decision F  p-value 

Mean Time Between Failure (MTBF)  407.02 0 Significant 

Mean Time to Repair (MTTR)  181.80 0 Significant 

Downtime (DT) 148.08 0 Significant 

Machine Age (MA) 129.84 0 Significant 

Machine Room Environment (MRE)  118.70 0 Significant 

Average Operating Time (AOT) 279.14 0 Significant 

Manufacturer (M) 107.09 0 Significant 

Periodic Maintenance Practice (PMP) 137.58 0 Significant 

Alternative Machine (AM) 0.8179 0.3671 Not Significant 

In Table 5.15 demonstrate the Mean Absolute Error (MAE) and R squared value for different 

SVM models. The higher the R square values the higher the machine reliability. Five-fold cross 

validation has been used to determine the accuracy of the models.  

Table 5.15: Prediction Accuracy Level of a Model Based on Filtering Method 

 

 

Feature Set Model No SVM Type MAE R squared 

 

{X1, X2, 

X3, X4, X5, 

X6, X7, 

X8} 

 

Model-49 Linear SVM 0.048868 0.69 

Model-50 Quadratic SVM 0.051393 0.67 

Model-51 Cubic SVM 0.058005 0.58 

Model-52 Fine Gaussian SVM 0.096651 0.08 

Model-53 Medium Gaussian SVM 0.048602 0.69 

Model-54 Coarse Gaussian 0.047077 0.72 
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Mode- 54 represents highest R Squared value 0.72 among all the models generated in Filtering 

method. Therefore, this model is selected to compare with previously selected two model in 

Wrapper method. 

5.4.2 Model Selection and Evaluation 

Table 5.15 drawn a comparison among three different model with a view to select the best one. 

First two model were selected from Wrapper method and the last model was selected from 

Filtering method. These entire three models were chosen based on their higher R square value. 

Table 5.16 illustrates the same R square value for all the three models. Therefore, these three 

models have different Mean Absolute Error (MAE) value.  Model-54 has the lowest MAE 

value with the same R square value. Hence Model-54 has selected for further analysis.  

Table 5.16: Comparison Between Wrapper Method & Filtering Method 

 

Model SVM 

Type 

Wrapper Method Filtering Method 

Subset-2 

Subset-3 

{X1, X2, X3, X4, X5, X6, X7, 

X8} 

RMSE MSE MAE R 

squared 

RMSE MSE MAE R 

squared 

Model

-12 

Coarse 

Gaussian 

0.0588 0.003

4 

0.0474

95 

0.72 - - - - 

Model

-18 

Coarse 

Gaussian 

0.0587 0.003

4 

0.0471

47 

0.72 - - - - 

Model

-54 

Coarse 

Gaussian 

- - - - 0.0628 0.003

9 

0.047

077 

0.72 

 

 

Figure 5.9 illustrates the result for selected model-54 where the R-Square value is 0.72 and the 

Mean Absolute Error is 0.047077 which is lower than other two models in Wrapper method, 

therefore selected for further analysis. The figure also shows the Residual Plot for true response 

where a trend is clearly visualized.  
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Figure 5.9: Selected Model-54 from Filtering Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Residual Plot for Selected Model-54 

In Figure 5.10 it can be seen that the residuals and predicted response are shown in a residual 

plot. The points in this plot are randomly dispersed around the horizontal axis. Most of the 

residual values are close to zero means the greater accuracy of the prediction. The points are 

pretty systematically distributed and slightly cluster towards the middle of the plot. Since the 

residual plot shows a fairly random pattern, indicating a decent fit to the data for a linear model.     
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Figure 5.11: Response Plot for Selected Model-54 

Figure 5.11 illustrate the response plot where the X axis represent the sample number and Y 

axis represent the reliability value. The difference between the true values and predicted values 

are clearly visible by the blue and yellow dots respectively. Most of the cases the position of 

this two-color points are very close and sometimes it’s overlapped each other.  So, the response 

plots demonstrate the greater accuracy of the model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Predicted vs Actual for Selected Model-54 
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Figure 5.12 shows the relationship between true response and predicted response. Some points 

are fallen over the line where some are very close to the line and Most of the points are around 

the line. Very little amounts are out of the line. So, the overall true response and predicted 

response is very close therefore the model good enough for linear regression.  

5.5 Machine Reliability Calculation for Diesel Generator through MLR 

Regression is a statistical measurement based predicting method for estimating the 

relationships among variables. In this problem there are nine explanatory variables with one 

response variable. These multiple explanatory variables influence response variables since it is 

a multi variate linear regression problem. Table 5.17 represents the impact of explanatory 

variables on response variable by performing the regression in Microsoft office excel data 

analysis tool pack.  Only four features among all the nine features seems significant based on 

their p-value.  

Table 5.17: Feature Selection Using p- value 

 

Feature p-value Decision 

Mean Time Between Failure (MTBF)  0.00 Significant 

Mean Time to Repair (MTTR)  0.1386 Not Significant 

Downtime (DT) 0.1958 Not Significant 

Machine Age (MA) 0.1142 Not Significant 

Machine Room Environment (MRE)  0.0498 Significant 

Average Operating Time (AOT) 0.0418 Significant 

Manufacturer (M) 0.0892 Not Significant 

Periodic Maintenance Practice (PMP) 0.00 Significant 

Alternative Machine (AM) 0.2444 Not Significant 

 

Table 5.18 illustrate the performance of the model with three different features set. Regression 

are performed for all these three different features set by using Microsoft Office Excel Data 

Analysis Tool pack and their results are shown in Table. It is very clear from the Table 5.18 

that the previously selected features set in ANOVA test produces better result compare to other 

feature sets. This is the validation that the regression model is developed with the right feature 

set.  
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Table 5.18: Performance Measure for three Different Feature Sets 

 

Performance 

Parameter 

All Features Significant 

Features  

Selected Features 

(ANOVA test) 

Multiple R 0.8959 0.8455 0.8959 

R Square 0.72 0.7148 0.72 

Adjusted R Square 0.7772 0.6996 0.7802 

Standard Error 0.0555 0.0645 0.0551 

 

In Table 5.17 the second column considered all the nine features where the third column has 

considered only four significant features from Table 5.16. The final column has been selected 

from filtering method by performing ANOVA test. From this comparison a same r square value 

with different standard error is found and the final column represents the better results because 

of its lower standard error.  

Table 5.19 represents a comparison between Support Vector Regression (SVR) and 

Multivariate Linier Regression (MLR). Same dataset has been used for performing and 

measuring this result. Support Vector Regression (SVR) has been performed by using the 

software MATLAB 2018a where as Microsoft office excel data analysis tool pack has been 

used for Multivariate Linier Regression (MLR). The r square value for both SVR and MLR is 

same but the Mean Absolute Error (MAE) is lower for SVR. Therefore, SVR performing better 

than MLR.  

 

Table 5.19: Comparison between SVR and MLR 

 

Performance 

Parameter 
SVR MLR 

R-SQUARE  0.72 0.72 

MSE 0.0039 0.7802 

MAE 0.0470 0.0551 
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5.6 Maintenance Schedule Prediction Model Development for Boiler 

A well and organized planned preventive maintenance program avoid unnecessary downtime 

and costly repairs. In case of hazardous machineries like boiler it is also essential for safety 

reasons. The reason behind that Boiler is an enclosed vessel in which the water is heated and 

that provides a means for combustion and transfers heat to water until it becomes hot water or 

steam. The hot water or steam under pressure is then usable for transferring the heat to a 

process. When water is boiled into steam its volume increases about 1,600 times, producing a 

force that is almost as explosive as gunpowder. This causes the boiler to be extremely 

dangerous equipment and should be treated carefully. Therefore, it is essential to develop a 

well-planned maintenance program to avoid unnecessary accident, downtime and costly repair. 

In Bangladesh boiler is widely used in various industries for several purposes. But the 

maintenance and inspection of boiler is always invisible due to lack of awareness and 

ignorance. Several other reasons are also associated with it such as lack of skilled manpower 

and others. For this reason’s boiler explosion is a common means in industrial factories 

specially the textiles and garments. The explosion can be reduced by developing and 

maintaining an appropriate maintenance plan. The detection of maintenance requirement can 

easily be identified by developing a model using Machine Learning technique.   

5.6.1 Maintenance Classification Model Formulation  

Maintenance classification model for boiler can be formulated by using machine learning 

technique which is Support Vector Machine (SVM). To develop the model it is needed to 

identify the predictor variables and response variable which is identified as follows.  

5.6.1.1 Data Collection, Description and Model Formulation  

To develop the maintenance classification model for boiler the data was collected from the site 

survey. Both qualitative and quantitively data were collected during the survey according to 

the predefined predictor variables which is also called features variable. The quantitively data 

were found from the respective gauges and meter or display of the of the boiler and the 

qualitative data were found from the expert’s opinions and literature.  

The data were collected based on the predefined predictor variables and response variables. 

After getting the data it is organized according to the following means.  
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The aim of this work is to develop of maintenance schedule prediction model for boiler to 

predict the maintenance requirement more accurately. So, it is essential to identify the features 

which is highly correlated with the maintenance of the boiler. The explosion of boiler depends 

on the variation of following parameters. So, the proper operation and maintenance of this 

parameters can reduce the explosion and ensure the efficiency of the boiler. 

Operating Load: Operating load is the varying load of a boiler which is defined based on the 

required output over its maximum capacity. It’s generally represents in percentage and may 

varies from hour to hour. When a boiler operates at its maximum rated capacity, it is referred 

to as maximum load.  

Steam Pressure: Steam pressure is the generated pressure when the water is heated to produce 

the required steam. Every boiler belongs a maximum steam pressure where a maximum 

operating pressure is fixed in safety valve.   

Water Level: The level of water in a steam boiler is another key parameter that must be 

carefully controlled, to ensure good quality steam is produced safely, efficiently and at the 

correct pressure. Normally boilers are designed in such a way that normal water level (NWL) 

provides sufficient space for steam velocity. Therefor normal operating water level (NOWL) 

is the desired condition during the operation of a boiler. However, the lack of supervision and 

discontinuity of water supply might cause water level go under low level point and cause 

explosions. 

Boiler Pressure: Boiler pressure is such an important parameter that must maintain in a range 

and despite that that boiler can stop working due to the pressure is too low or too high. The 

ideal pressure for your boiler is usually between 1 and 2 bars. If the boiler pressure is below 1, 

that means low pressure. This could be because the lost water from the heating system. If the 

pressure gauge goes above 2, that usually means it’s too high that may need to bleed the 

radiator. 

Water Temperature: Water temperature is also significant to generate quality steam as well as 

ensuring safely operation of boiler by avoiding overheating. The average setting for a hot water 

boiler is 180°F. This provides the appropriate level needed for most cold weather temperatures. 

If the temperature setting is manual, the higher limit of temperature is 210°F and its suggested 

to remain down at 190°F. Once a boiler starts to go over 212°F, it may face serious problems. 
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The response variables of this model are the maintenance classes which is formed by the 

compilation of maintenance checklist and action plan. The checklist is developed based on the 

literature search and expert opinions. The checklist of boiler maintenance is given below which 

will be used to formulate the maintenance classes.  

Daily Checklist 

1. Blow Down 

2. Water Controller Test 

3. Softener Regeneration 

4. Gauge Glass Test 

5. Clean All Boiler Room 

6. Water Pressure 

7. Gas Press Check/ Fuel 

8. Steam Pressure Check 

9. Feed Water Tank Level Check 

 

Weekly Checklist 

1. Check Firing Rate Control 

2. Check Air Modulation Motor Controls 

3. Check Air Damper 

4. Check Water level switch 

5. Check Air Pressure Switch 

6. Check Ignition Systems 

7. Check Fuel Valves Pilot Flame & Main Flame 

8. Check Combustion Satiety Controls Flame Failure Sensor 

9. Check Flame Signal Strength 

10. Check Feed Pump 

11. Check Feed Pump Flow Meter 

12. Check Gas Pressure 
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Monthly Checklist 

1. Check Gas Pressure Valve 

2. Check Steam Pressure Switch 

3. Check Safety Pressure Switch 

4. Check Gauge Glass 

5. Check Blow Down Valve 

6. Check Water level Sensor  

7. Check Main Steam Stop Valve 

8. Check Header Steam Pressure 

9. Check Fuel, Vent, Stack, or Outlet damper 

10. Check Combustion Air 

11. Check Low Draft Fan, Air Pressure & Damper 

12. Check High & Low Gas Pressure Interlocks 

13. Check Low Oil Pressure Interlocks 

14. Check Air Compressor Oil Level 

15. Check Feed Water Modulation Valves 

16. Check Low Cutoff Controller 

17. Check High Cutoff Controller 

Yearly Checklist 

1. Boiler De- Scaling 

2. Tube Carbon Cleaning 

3. Fire Sail Change or Repair 

4. Safety Valve Pressure testing or repair 

5. Economizer De- Scaling  

6. Boiler Automation Controlling system & Electronics system 

7. Pre-Heater  

8. Super Heater 

9. Condenser 

10. Condenser water pump 

11. Feed water pump 

12. Feed water tank 

13. Chemical treatment process 
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14. Main Steam stop valve  

15. Boiler Blow Down Valve  

16. Burner 

17. FD Fan or Blower 

18. Boiler inside inspection 

Two types of action plan are performed for boiler maintenance. The first action plan is to 

increase the boiler pressure when the boiler pressure suddenly dropped due to water leak causes 

no what water or water lost from the system and another reason is bleeding the radiator which 

occur when radiator fails to heat up the water. In that case action plan, one is performed to 

increase the boiler pressure. 

Action Plan 1:  

1. Check around the pipes 

2. Check boiler for water or damp patches  

3. Check radiators 

4. Repressurize Boiler 

• Turn off the boiler and allow it to cool. 

• Find the filling loop, or attach it to boiler. 

• Make sure the boiler pressure gauge is seen while using the filling loop. 

• Open the valves on both sides to let water into your system. 

• Wait until the pressure gauge reaches 1.5 bar then close each valve, one after the 

other. 

• Switch the boiler back on and, if need, press the reset button. 

• Don’t forget to remove the filling loop if it’s an attachment. Be careful in case 

there’s any water left in it. 

5. If the pressure drops again 

6. Look for gas register engineer 
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The second action plan is to reduce the boiler pressure when the boiler pressure increased due 

to recently added water to the system for low pressure. The following action are suggested to 

reduce the boiler pressure to fix it to its desired level. 

Action Plan 2: 

1. Bleed the radiator which is lets some of the water out  

2. If bleeding radiators doesn’t work, one of the boiler parts could be faulty 

3. Contact a Gas Safe Registered engineer to investigate 

4. Check for temperature increase issues and fix it 

Now the maintenance class can be drawn by compiling the above maintenance checklist and 

action plans. The Table 5.20 contains the maintenance class for the maintenance schedule 

prediction model development. 

Table 5.20: Maintenance Class for Maintenance Schedule Prediction 

Sl. No. Maintenance Class Description 

 

1 

 

Class 1 

Daily Check 

Weekly Check 

Monthly Check 

Yearly Check 

2 Class 2 Class 1 & Action Plan 1 

3 Class 3 Class 1 & Action Plan 2 

 

Maintenance schedule prediction model for boiler is formulated by using Support Vector 

Machine (SVM) algorithm. To formulate the model four predictor variables and three response 

variables has been identified. The data were collected from the field survey and finally a data 

set is prepared to formulate the model. Table 5.21 represents the dataset for this model 

development. 
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Table 5.21: Sample Dataset for Maintenance Schedule Prediction Model Development 

Machine 
Features  

(X) 

Output  

(Y) 

Boiler 

Operating 

Load (%) 

Maintenance 

Class 

Water 

Level 

Boiler 

Pressure 

(Bar)  

Water 

Temperature 

(F) 
Maintenance 

Class 

X1 X2 X3 X4 X5 

Obs. 01 50 4.5 0 1.2 170 3 

Obs. 02 70 6.5 0 1.4 175 1 

Obs. 03 75 6.8 1 1.4 190 2 

Obs. 04 55 5.2 2 1.9 180 3 

Obs. 05 85 8.3 0 1.4 185 1 

Obs. 06 80 7.8 0 1.5 180 1 

Obs. 07 70 6.2 0 1.3 170 1 

Obs. 08 45 4.1 2 2.2 165 3 

Obs. 09 40 3.7 2 1.3 160 3 

Obs. 10 65 5.8 0 1.4 175 1 

Obs. 11 85 8.9 1 0.7 205 2 

Obs. 12 45 4 0 1.9 185 3 

Obs. 13 85 7.8 0 1 190 1 

Obs. 14 45 3.8 0 1.8 155 3 

Obs. 15 90 8.5 0 0.9 195 2 

Obs. 16 85 7.8 0 1.4 180 1 

Obs. 17 50 4.8 1 0.8 160 3 

Obs. 18 75 6.5 0 1.9 170 1 

Obs. 19 70 6.4 1 1.5 190 2 

Obs. 20 80 7.4 1 1 195 2 

 

The dataset in Table 5.21 contains five predictor variables which is defined earlier. Water level 

is the most significant parameters that can affect the other parameters directly and indirectly. 

In this dataset for Water Level, 0 represent the normal operating water level (NOWL), where 

2 represent above the normal operating water level (NOWL) and 1 represent below the normal 

operating water level (NOWL). 
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Now the correlation of each predictor variables with the response variable are identified by 

using data analysis tool pack of Microsoft excel which is shown in Table 5.22. The negative 

sign represents the negative correlation while the positive sign represents positive correlation 

of the features with its output variable. The higher the values are, the higher the correlation of 

the features with the output variable. Therefore, the features are ranked based on their 

correlation value from higher to lower. 

Table 5.22: Correlation of Predictor Variable with Response Variables 

Features Correlation  

(Person’s r) 

Ranking 

Operating Load (%) -0.58 2 

Steam Pressure (Bar) -0.54 3 

Water Level 0.70 1 

Boiler Pressure (Bar) 0.18 4 

Water Temperature (F) -0.11 5 

 

Table 5.22 represents that all the features are significantly correlated with its response variable 

therefore considered for model development.   

For identifying a prediction model which is can predict the maintenance requirements based 

on the above-mentioned features different SVM models are checked by using MATLAB 

toolbox 2018 a. Those models are:  

i. Linear SVM- Uses linear Kernel  

ii. Quadratic SVM- Uses quadratic Kernel  

iii. Cubic SVM- Uses cubic Kernel  

iv. Fine Gaussian SVM- Uses Gaussian Kernel with Kernel scale  

v. Medium Gaussian SVM- Uses Gaussian Kernel with Kernel scale  

vi. Coarse Gaussian- Uses Gaussian Kernel with Kernel scale  
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Table 5.23: Accuracy of the Developed Model 

Feature 

Set 

Model No SVM Type Accuracy  

(%) 

 

{X1, X2, 

X3, X4, 

X5} 

 

Model-01 Linear SVM 86.0% 

Model-02 Quadratic SVM 80.0% 

Model-03 Cubic SVM 84.0% 

Model-04 Fine Gaussian SVM 62.0% 

Model-05 Medium Gaussian SVM 82.0% 

Model-06 Coarse Gaussian 70.0% 

 

5.6.1.2 Model Selection and Evaluation 

Table 5.23 has shown the accuracy level of the developed model considering the predetermined 

significant feature sets. From all this developed model, Model 01 in Linear SVM represents 

the highest accuracy level which is 86.0%. Therefore, this model is considered for further 

analysis.  

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Accuracy Level of the Selected Model 01 
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Table 5.24: Class Wise Accuracy and Error Level of the Selected Model 

 

Class True Positive Rate False Negative Rate 

Class-I 93% 7% 

Class-II 81% 19% 

Class-III 86% 14% 

 

The Table 5.24 has shown class wise prediction accuracy and error level which is drawn from 

the confusion matrix of the selected Model 01. Now the confusion matrix for Model-01 which 

is given in Figure 5.14 where it can be seen that for class one, 14 sample fallen in true class as 

it is predicted and only 1 sample fallen incorrectly which should fall in class 1, so that the 

sample 93% correctly belonging in class one.   Similarly, for class two and three the accuracy 

is 81% and 86% respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Confusion Matrix of the Selected Model 01 
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Figure 5.15: Parallel Coordinate Plot for all Features 

 

Figure 5.15 demonstrates the parallel plot of all features which reflects how each feature has 

an impact on the classification model. In Figure 5.15 blue lines, red lines and yellow lines 

respectively represents three different maintenance prediction classes. The areas between the 

features, where these lines are easily separable have a greater impact on the classification model 

compared to other features. 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: ROC Curve of the Selected Model 01  

 

 

 



77 
 

Table 5.25: ROC Curve Comparison for Three Classes 

Particulars Class 1 Class 2 Class 3 

True Positive Rate 0.93 0.81 0.86 

False Positive Rate 0.09 0.10 0.03 

AUC 0.95 0.89 0.98 

 

Figure 5.16 Represents the ROC curve to quantify the performance of the classifier.  The 

illustration shows that the curve hugs the upper left corner of the plot means a very good 

classification capability of the model. Table 5.25 has drawn the data from the ROC curve for 

all the three classes, now for class 1, 2 and 3 the true positive rate is 0.93, 0.81 and 0.86 

respectively whereas the false positive rate is only 0.09, 0.10, and 0.03 respectively. The Area 

under the Curve (AUC) is also 0.95, 0.89 and 0.98 that cover the maximum area of the curve 

which also represents the better performance of the model.   
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CHAPTER 6: RESULT AND DISCUSSION 

 

6.1. Maintenance Schedule Prediction through Support Vector Machine (SVM) 

The Machine Learning (ML) approach for predicting the maintenance requirements by using 

an effective preventive maintenance model is implemented for Diesel Generator (DG) and 

Boiler in Chapter 5. Analyzing various external and internal parameters, an effective Planned 

Preventive Maintenance (PPM) model needed to be developed that can forecast the 

maintenance requirements in advance.  

Several subjective and objective features were identified initially. Then the features have been 

screened based on their impact on the output to develop and select the best model. Two 

structured method were followed to select the best features set. The first one is Wrapper method 

that generate eight different subsets by using backward elimination process based on the 

correlation of features to its output. The second one is Filtering method that select a feature set 

by eliminating insignificant features through ANOVA test. Each individual feature set generate 

six different model with different accuracy level when it run in MATLAB 2018a. Therefore, a 

total of 54 different models have been generated which is shown in Table 6.1. 

Table 6.1: Comparison Among all Developed Models   

 

SVM 

Type 

Wrapper  

Method 

Filt. 

Met. 

Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8  

Model: 

(49 -

54) 

Mod.: 

(1-6)  

Mod.: 

(7-12) 

Mod.: 

(13-18) 

Mod.: 

(19-24) 

Mod.: 

(25-

30) 

Model: 

(31-36) 

Mod.: 

(37-42) 

Mod.: 

(43-48) 

Linear 

SVM 

86.3% 86.3% 87.5% 87.5% 87.5% 88.8% 90.0% 90.0% 88.8% 

Quadratic 

SVM 

83.8% 85% 87.5% 87.5% 87.5% 90. 0% 91. 0% 91. 0% 87.5% 

Cubic 

SVM 

85% 86.3% 88.8% 88.8% 88.8% 92. 5% 91. 0% 90.0% 88.8% 

Fine 

Gaussian 

SVM 

16.3% 18.8% 41.3% 51.2% 55% 91.3% 67.5% 81.3% 55.5% 

Medium 

Gaussian 

SVM 

86.3% 85% 87.5% 87.5% 87.5% 88.8% 90.0% 88.8% 88.8% 

Coarse 

Gaussian 

77.5% 86.3% 87.5% 86.3% 87.5% 88.8% 88.8% 86.3% 87.5% 
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Table 6.2 is a simplified representation of the previous table. In this table the best models are 

picked for each subset based on their accuracy level. Model-33 form subset-6 in Wrapper 

Method, represent the highest accuracy level 92.5% among all the models. Therefore, this 

model has been selected and various analysis were performed through Scatter Plot, Confusion 

Matrix, Parallel Coordination Plot and ROC Curve.  

Table 6.2: Prediction Accuracy Comparison for Selected Models  

Method  Subset Highest Accuracy Model Accuracy 

 

 

 

 

Wrapper 

Method 

Subset-1 Model-1 & Model-5 86.3% 

Subset-2 Model-7, Model-9 & Model-12 86.3% 

Subset-3 Model-15 88.8% 

Subset-4 Model-21 88.8% 

Subset-5 Model-27 88.8% 

Subset-6 Model-33 92. 5% 

Subset-7 Model-38, Model-39  91. 0% 

Subset-8 Model-44 91. 0% 

Filtering Method Model-49, Model-51 & Model-53 88.8% 

 

6.2. Machine Reliability Prediction through Regression  

Machine reliability consideration is an important factor for accurate prediction of maintenance 

requirements. The machine reliability highly depends on various external and internal 

parameters of the machine which is considered in previous section for maintenance prediction 

model development. In this section the machine reliability value is developed by using Support 

Vector Regression (SVR). Finally, a comparison is drawn between the Support Vector 

Regression (SVR) and Multivariate Linier Regression (MLR) to understand the model 

effectiveness.  

In Support Vector Regression (SVR), two structural methods has been followed to develop and 

select the best model as performed in previous section for maintenance prediction model 

development. The Wrapper method used backward elimination process to generate eight 

subsets and each subset has six different models when it run in MATLAB 2018a. Filtering 

method generated only one subset by eliminating the insignificant feature and these also have 

six different models.  
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Table 6.3 illustrates a comparison among different models to select the best one. In Wrapper 

method the best model is selected form each subset to compare with the model represented 

from Filtering method. Model -12 and Model-18 from Wrapper method has highest R square 

value which is same with the Model-54 from Filtering method. These three models have same 

R square value 0.72 but different Mean Absolute Error (MAE) value. Model-54 from Filtering 

method represent the lowest Mean Absolute Error (MAE) therefore selected as the best model. 

Various analysis has been performed through Residual Plot, Response Plot and Predicted 

Response vs True Response.  

Table 6.3: Comparison Among Probable Reliability Prediction Models 

Method  Subset SVM Type Model MAE R 

squared 

 

 

 

 

Wrapper 

Method 

Subset-1 Model-6 Coarse Gaussian 0.047874 0.71 

Subset-2 Model-12 Coarse Gaussian 0.047495 0.72 

Subset-3 Model-18 Coarse Gaussian 0.047147 0.72 

Subset-4 Model-24 Coarse Gaussian 0.053877 0.67 

Subset-5 Model-30 Coarse Gaussian 0.05238 0.69 

Subset-6 Model-36 Coarse Gaussian 0.053516 0.68 

Subset-7 Model-42 Coarse Gaussian 0.052388 0.68 

Subset-8 Model-47 Medium Gaussian SVM 0.048997 0.69 

Filtering Method Model-54 Coarse Gaussian 0.047077 0.72 

 

Table 6.4 represents a comparison between Support Vector Regression (SVR) and Multivariate 

Linier Regression (MLR). Same dataset has been used for performing and measuring this 

result. Support Vector Regression (SVR) has been performed by using the software MATLAB 

2018a where as Microsoft office excel data analysis tool pack is used for Multivariate Linier 

Regression (MLR). The r square value for SVR and MLR is same. But the Mean Absolute 

Error (MAE) is lower for SVR than MLR. Therefore, SVR is preforming better than MLR.   

Table 6.4: Comparison between SVR and MLR 

 

Performance 

Parameter 
SVR MLR 

R-SQUARE  0.72 0.72 

MSE 0.0039 0.7802 

MAE 0.0470 0.0551 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusion 

This research presents a noteworthy contribution to develop a classification model by using 

Support Vector Machine (SVM) algorithms to predict the preventive maintenance schedule. 

Machine reliability is an important factor that deals with various objective and subjective 

measures and it becomes quite difficult to address through existing maintenance practices, 

whereas, this factor plays an important role for predicting maintenance schedule.  

i. The proposed classification model developed by implementing SVM is capable to 

address the limitation of existing models in a cost-effective manner, which is a major 

contribution of this work.  

ii. Feature selection is one of the unique and major steps that has followed in this research. 

All subjective and objective features do not have same impacts on its output, therefore 

defining the correlation of features with its output and selecting the best combination is 

important to improve the model accuracy.  

iii. The machine reliability values are determined by using a regression model which is 

developed by using Support Vector Regression (SVR). The same features which are used 

in classification model are also used for regression model development. Here the 

predictor variable or output is the reliability of the machine.  

iv. Finally, the model which is developed by using SVR are compared with Multivariate 

Linear Regression (MLR) for validation and it is very clear that the Regression model is 

developed with the right feature set.  

7.2 Future Work  

For future research work, this thesis can be developed by incorporating the following 

considerations.  

i. In this research, to develop the Planned Preventive Maintenance (PPM) model, nine 

different subjective and objective features were selected from expert opinion and 

literature. In future some other features like Machine Availability, Maintainability, 

Cost of Failure etc. can be included to improve the model accuracy. 

ii. For feature selection in Filtering method and Wrapper method, ANOVA test and 

Correlation-based Feature Selection (CFS) technique were used respectively. In 
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future most robust technique like Principal Component Analysis (PCA) and Markov 

Blanket Filter can be used for Filtering method. For Wrapper method Genetic 

Algorithm and Radian Basis Function (RBF) can be used.  

iii. The research is carried out with a moderate number of sample size. A bigger sample 

would probably enhance more the quality and reliability of the research.  
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Appendix: A 

Training Dataset for Maintenance Schedule Prediction Model Development: 

Machine Features (X) 
Output 

(Y) 

 

DG 
MTBF MTTR DT MA MRE AOT M PMP AM  

MP 
X1 X2 X3 X4 X5 X6 X7 X8 X9 

DG-1 9M 3 L 5 VP 30 1 VP A 1 

DG-2 5M 11 H 10 VP 105 2 VP A 2 

DG-3 4M 13 H 15 VP 115 3 P  NA 2 

DG-4 10M 14 M 2 G 40 1 VP A 1 

DG-5 5M 11 H 13 VP 120 1 M NA 2 

DG-6 7M 7 M 7 P 50 4 P A 3 

DG-7 9M 2 L 2 M  35 2 VP A 1 

DG-8 4M 12 H 17 P 130 2 P NA 2 

DG-9 6M 8 M 8 P 70 3 VP A 3 

DG-10 9M 1 L 1 G 25 2 P A 1 

DG-11 2M 14 M 9 P 50 1 VP NA 4 

DG-12 11M 4 M 1 VG 45 3 M A 1 

DG-13 4M 15 H 9 VP 80 1 VP NA 2 

DG-14 9M 5 L 4 VP 30 2 VP A 1 

DG-15 9M 5 L 2 G 45 1 M NA 1 

DG-16 5M 20 H 10 VP 105 2 P NA 2 

DG-17 10M 4 L 3 M 20 1 M A 1 

DG-18 8M 9 H 5 P 75 3 VP A 5 

DG-19 6M 6 M 9 P 70 1 VP A 3 

DG-20 11M 5 L 5 VG 20 1 M NA 1 

DG-21 1M 15 L 2 M 35 3 VP NA 4 

DG-22 6M 6 M 9 P 65 2 VP A 3 

DG-23 11M 3 M 2 G 40 1 M A 1 

DG-24 5M 12 H 13 VP 105 5 VP NA 2 

DG-25 9M 3 L 5 VG 30 1 VP A 1 

DG-26 10M 2 L 5 M 35 1 M A 1 

DG-27 4M 11 H 12 VP 110 3 VP NA 2 

DG-28 11M 2 L 3 M 35 1 VP A 1 

DG-29 7M 10 H 7 P 60 4 VP NA 3 

DG-30 8M 9 M 6 P 80 2 VP A 5 

DG-31 4M 13 H 20 VP 135 1 P A 2 

DG-32 7M 8 L 6 P 50 2 M NA 3 

DG-33 5M 12 H 5 VP 115 1 M A 2 

DG-34 11M 3 L 2 VG 25 1 VP A 1 

DG-35 4M 14 H 25 P 125 5 P NA 2 

DG-36 7M 6 M 7 P 65 1 G A 3 

DG-37 2 7 H 10 P 120 2 M NA 5 

DG-38 9M 4 L 2 G 40 1 M A 1 

DG-39 4M 9 H 11 P 90 4 VP A 2 

DG-40 7M 10 M 8 P 60 3 P A 3 
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Machine Features (X) 
Output 

(Y) 

 

DG 
MTBF MTTR DT MA MRE AOT M PMP AM  

MP 
X1 X2 X3 X4 X5 X6 X7 X8 X9 

DG-41 5M 16 H 9 VP 85 5 M NA 2 

DG-42 9M 5 L 3 M 15 1 P A 1 

DG-43 5M 20 H 11 VP 110 5 VP NA 2 

DG-44 9M 5 L 2 VP 45 3 P A 1 

DG-45 4M 20 H 10 VP 95 1 VG NA 2 

DG-46 9M 3 L 4 M 30 2 VP A 1 

DG-47 9M 4 L 5 VG 40 1 M A 1 

DG-48 4M 15 H 12 VP 100 3 VP NA 2 

DG-49 10M 5 L 5 VG 45 3 M A 1 

DG-50 6M 7 M 9 P 70 1 VP A 3 

DG-51 9M 4 L 5 VG 35 2 G A 1 

DG-52 4M 13 M 17 VP 75 5 M NA 2 

DG-53 10M 5 L 1 G 25 1 VG A 1 

DG-54 4M 11 H 6 VP 80 5 G NA 2 

DG-55 9M 4 M 7 P 70 3 P NA 1 

DG-56 9M 3 M 4 G 45 1 P A 1 

DG-57 5M 14 H 25 VP 135 5 M A 2 

DG-58 4M 15 H 18 VP 100 1 P NA 2 

DG-59 10M 4 L 1 M 20 2 G A 1 

DG-60 7M 6 M 7 P 65 1 P NA 3 

DG-61 15M 5 L 2 VP 40 3 M A 1 

DG-62 4M 17 H 14 VP 135 2 VP NA 2 

DG-63 7M 10 M 7 P 65 3 G NA 3 

DG-64 9M 4 M 2 M 45 1 P A 1 

DG-65 4M 9 M 12 VP 95 1 VP NA 2 

DG-66 9M 3 L 5 G 30 2 G A 1 

DG-67 7M 6 M 6 P 70 1 G NA 3 

DG-68 9M 2 L 1 VP 35 2 P A 1 

DG-69 6M 8 L 8 P 55 2 M NA 3 

DG-70 3 7 M 8 P 60 1 VP A 3 

DG-71 4M 13 H 10 VP 130 5 M A 2 

DG-72 5M 16 M 9 VP 85 2 VP NA 2 

DG-73 9M 2 L 2 M 20 3 VG A 1 

DG-74 4M 16 H 13 VP 125 2 VP A 2 

DG-75 4M 20 M 15 VP 75 5 VP A 2 

DG-76 5M 12 M 20 VP 110 1 M NA 2 

DG-77 10M 3 L 3 M 15 2 VG A 1 

DG-78 4M 17 H 9 VP 95 1 P A 2 

DG-79 7M 6 M 6 P 55 1 M NA 3 

DG-80 11M 1 L 1 G 15 3 G A 1 
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Appendix: B 

Training Dataset for Machine Reliability Prediction Model Development: 

Machine Features (X) 
Output 

(Y) 

 

DG 
MTBF MTTR DT MA MRE AOT M PMP AM Machine 

Reliability 
X1 X2 X3 X4 X5 X6 X7 X8 X9 

DG-1 9M 3 L 5 VP 30 1 VP A 0.76 

DG-2 5M 11 H 10 VP 105 2 VP A 0.59 

DG-3 4M 13 H 15 VP 115 3 P  NA 0.54 

DG-4 10M 14 M 2 G 40 1 VP A 0.88 

DG-5 5M 11 H 13 VP 120 1 M NA 0.48 

DG-6 7M 7 M 7 P 50 4 P A 0.55 

DG-7 9M 2 L 2 M  35 2 VP A 0.74 

DG-8 4M 12 H 17 P 130 2 P NA 0.45 

DG-9 6M 8 M 8 P 70 3 VP A 0.56 

DG-10 9M 1 L 1 G 25 2 P A 0.76 

DG-11 2M 14 M 9 P 50 1 VP NA 0.67 

DG-12 11M 4 M 1 VG 45 3 M A 0.76 

DG-13 4M 15 H 9 VP 80 1 VP NA 0.62 

DG-14 9M 5 L 4 VP 30 2 VP A 0.77 

DG-15 9M 5 L 2 G 45 1 M NA 0.81 

DG-16 5M 20 H 10 VP 105 2 P NA 0.58 

DG-17 10M 4 L 3 M 20 1 M A 0.74 

DG-18 8M 9 H 5 P 75 3 VP A 0.55 

DG-19 6M 6 M 9 P 70 1 VP A 0.60 

DG-20 11M 5 L 5 VG 20 1 M NA 0.76 

DG-21 1M 15 L 2 M 35 3 VP NA 0.73 

DG-22 6M 6 M 9 P 65 2 VP A 0.62 

DG-23 11M 3 M 2 G 40 1 M A 0.77 

DG-24 5M 12 H 13 VP 105 5 VP NA 0.52 

DG-25 9M 3 L 5 VG 30 1 VP A 0.87 

DG-26 10M 2 L 5 M 35 1 M A 0.73 

DG-27 4M 11 H 12 VP 110 3 VP NA 0.47 

DG-28 11M 2 L 3 M 35 1 VP A 0.72 

DG-29 7M 10 H 7 P 60 4 VP NA 0.66 

DG-30 8M 9 M 6 P 80 2 VP A 0.72 

DG-31 4M 13 H 20 VP 135 1 P A 0.58 

DG-32 7M 8 L 6 P 50 2 M NA 0.69 

DG-33 5M 12 H 5 VP 115 1 M A 0.47 

DG-34 11M 3 L 2 VG 25 1 VP A 0.83 

DG-35 4M 14 H 25 P 125 5 P NA 0.44 

DG-36 7M 6 M 7 P 65 1 G A 0.74 

DG-37 2 7 H 10 P 120 2 M NA 0.65 

DG-38 9M 4 L 2 G 40 1 M A 0.81 

DG-39 4M 9 H 11 P 90 4 VP A 0.51 

DG-40 7M 10 M 8 P 60 3 P A 0.60 
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Machine Features (X) 
Output 

(Y) 

 

DG 
MTBF MTTR DT MA MRE AOT M PMP AM Machine 

Reliability  
X1 X2 X3 X4 X5 X6 X7 X8 X9 

DG-41 5M 16 H 9 VP 85 5 M NA 0.54 

DG-42 9M 5 L 3 M 15 1 P A 0.73 

DG-43 5M 20 H 11 VP 110 5 VP NA 0.47 

DG-44 9M 5 L 2 VP 45 3 P A 0.74 

DG-45 4M 20 H 10 VP 95 1 VG NA 0.74 

DG-46 9M 3 L 4 M 30 2 VP A 0.67 

DG-47 9M 4 L 5 VG 40 1 M A 0.77 

DG-48 4M 15 H 12 VP 100 3 VP NA 0.41 

DG-49 10M 5 L 5 VG 45 3 M A 0.70 

DG-50 6M 7 M 9 P 70 1 VP A 0.67 

DG-51 9M 4 L 5 VG 35 2 G A 0.75 

DG-52 4M 13 M 17 VP 75 5 M NA 0.47 

DG-53 10M 5 L 1 G 25 1 VG A 0.81 

DG-54 4M 11 H 6 VP 80 5 G NA 0.57 

DG-55 9M 4 M 7 P 70 3 P NA 0.60 

DG-56 9M 3 M 4 G 45 1 P A 0.72 

DG-57 5M 14 H 25 VP 135 5 M A 0.47 

DG-58 4M 15 H 18 VP 100 1 P NA 0.61 

DG-59 10M 4 L 1 M 20 2 G A 0.80 

DG-60 7M 6 M 7 P 65 1 P NA 0.65 

DG-61 15M 5 L 2 VP 40 3 M A 0.76 

DG-62 4M 17 H 14 VP 135 2 VP NA 0.44 

DG-63 7M 10 M 7 P 65 3 G NA 0.68 

DG-64 9M 4 M 2 M 45 1 P A 0.73 

DG-65 4M 9 M 12 VP 95 1 VP NA 0.65 

DG-66 9M 3 L 5 G 30 2 G A 0.79 

DG-67 7M 6 M 6 P 70 1 G NA 0.59 

DG-68 9M 2 L 1 VP 35 2 P A 0.73 

DG-69 6M 8 L 8 P 55 2 M NA 0.66 

DG-70 3 7 M 8 P 60 1 VP A 0.64 

DG-71 4M 13 H 10 VP 130 5 M A 0.49 

DG-72 5M 16 M 9 VP 85 2 VP NA 0.67 

DG-73 9M 2 L 2 M 20 3 VG A 0.75 

DG-74 4M 16 H 13 VP 125 2 VP A 0.56 

DG-75 4M 20 M 15 VP 75 5 VP A 0.45 

DG-76 5M 12 M 20 VP 110 1 M NA 0.61 

DG-77 10M 3 L 3 M 15 2 VG A 0.76 

DG-78 4M 17 H 9 VP 95 1 P A 0.50 

DG-79 7M 6 M 6 P 55 1 M NA 0.68 

DG-80 11M 1 L 1 G 15 3 G A 0.77 
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Appendix: C 

Feature Details:  

 

Features  Feature Details Feature Type Representation 

 

X1 

 

Men Time Between Failure 

(MTBF)  

 

Quantitative  

 

Months  

 

X2 

 

Mean Time to Repair (MTTR)  

 

Quantitative 

 

Hours 

 

X3 

 

Downtime (DT)   

 

Qualitative 

Low (L) 

Medium (M) 

High (H) 

 

X4 

 

Machine Age (MA)   

 

Quantitative 

 

Years  

 

 

X5 

 

 

Machine Room Environment 

(MRE)  

 

 

Qualitative  

Very Poor (VP) 

Poor (P) 

Moderate (M) 

Good (G) 

Very Good (VG) 

 

X6 

 

Average Operating Time (AOT) 

 

Quantitative 

 

Hours Per Month  

 

 

X7 

 

 

Manufacturer (M)   

 

 

Qualitative 

1. Very Good (VG) 

2. Good (G) 

3. Moderate (M) 

4. Poor (P) 

5. Very Poor (VP) 

 

 

 

X8 

 

 

Periodic Maintenance Practice 

(PMP)  

 

 

Qualitative 

Very Poor (VP) 

Poor (P) 

Moderate (M) 

Good (G) 

Very Good (VG) 

 

X9 

 

Alternative Machine (AM)  

 

Qualitative 

Available (A) 

Not Available (NA) 
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Appendix: D 

 

Training Dataset for Maintenance Schedule Prediction Model Development for Boiler 

Machine 
Features  

(X) 

Output  

(Y) 

Boiler 

Operating 

Load (%) 

Steam 

Pressure 

(Bar) 

Water 

Level 

Boiler 

Pressure 

(Bar) 

Water 

Temperature 

(F) 
Maintenance 

Class 

X1 X2 X3 X4 X5 

Obs. 01 50 5 2 2 175 3 

Obs. 02 70 6.5 0 1.4 175 1 

Obs. 03 90 8.5 0 0.9 200 2 

Obs. 04 60 6 2 2 185 3 

Obs. 05 75 6.8 1 1.4 190 2 

Obs. 06 55 5.2 2 1.9 180 3 

Obs. 07 85 8.3 0 1.4 185 1 

Obs. 08 65 6.3 2 1.8 190 3 

Obs. 09 80 7.8 0 1.5 180 1 

Obs. 10 70 6.2 0 1.3 170 1 

Obs. 11 45 4.1 2 2.2 165 3 

Obs. 12 40 3.7 2 1.3 160 3 

Obs. 13 90 8.8 1 0.8 200 2 

Obs. 14 65 5.8 0 1.4 175 1 

Obs. 15 65 6.1 2 1.9 165 3 

Obs. 16 85 8.9 1 0.7 205 2 

Obs. 17 45 4 0 1.9 185 3 

Obs. 18 85 7.8 0 1 190 1 

Obs. 19 45 3.8 0 1.8 155 3 

Obs. 20 90 8.5 0 0.9 195 2 

Obs. 21 75 8 2 0.8 200 2 

Obs. 22 85 7.8 0 1.4 180 1 

Obs. 23 80 7.5 0 1.7 175 1 

Obs. 24 50 4.8 1 0.8 160 3 

Obs. 25 75 6.7 1 1.2 155 2 
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Machine 
Features  

(X) 

Output  

(Y) 

Boiler 

Operating 

Load (%) 

Steam 

Pressure 

(Bar) 

Water 

Level 

Boiler 

Pressure 

(Bar) 

Water 

Temperature 

(F) 
Maintenance 

Class 

X1 X2 X3 X4 X5 

Obs. 26 90 8.5 1 0.9 195 2 

Obs. 27 75 6.5 0 1.9 170 1 

Obs. 28 55 4.6 1 1.9 165 3 

Obs. 29 70 6.4 1 1.5 190 2 

Obs. 30 80 7.6 0 1.3 155 1 

Obs. 31 80 7.4 1 1 195 2 

Obs. 32 85 7.9 1 1.1 195 2 

Obs. 33 50 4.5 0 1.2 170 3 

Obs. 34 85 8.9 1 0.8 165 2 

Obs. 35 50 4.4 2 2.1 160 3 

Obs. 36 35 5.5 1 0.9 200 2 

Obs. 37 75 9.1 0 0.8 210 2 

Obs. 38 95 9 0 0.9 205 2 

Obs. 39 55 7.7 0 1.1 160 1 

Obs. 40 50 4.3 2 0.9 165 3 

Obs. 41 75 6.9 0 1.1 170 1 

Obs. 42 85 4.7 1 1.1 150 2 

Obs. 43 70 7.4 1 0.9 195 2 

Obs. 44 80 6.6 0 1.2 190 1 

Obs. 45 75 8.5 0 0.9 195 2 

Obs. 46 70 7.4 0 1.8 170 1 

Obs. 47 75 6.8 1 1.3 155 2 

Obs. 48 85 5.7 0 1.5 180 1 

Obs. 49 85 8.5 0 0.7 205 2 

Obs. 50 90 8.3 0 0.8 165 2 

 




