
M.Sc. Engg. (CSE) Thesis

Bangla Voice Command Recognition With Context
Specific Optimization

Submitted by

Nafis Sadeq
1018052033

Supervised by
Dr. Muhammad Abdullah Adnan

Submitted to
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

February 2021

Candidate’s Declaration

I, do, hereby, certify that the work presented in this thesis, titled, “Bangla Voice Command
Recognition With Context Specific Optimization”, is the outcome of the investigation and
research carried out by me under the supervision of Dr. Muhammad Abdullah Adnan,
Associate Professor, Department of CSE, BUET.

I also declare that neither this thesis nor any part thereof has been submitted anywhere
else for the award of any degree, diploma or other qualifications.

Nafis Sadeq
1018052033

i

Acknowledgement

Firstly, all praise to almighty Allah for assisting me throughout everything.
I would like to express my sincere gratitude to my advisor Dr. Muhammad Abdullah
Adnan for the continuous support of my study and related research, for his patience,
motivation, and immense knowledge. His guidance helped me in all the time of research
and writing of this thesis. I could not have imagined having a better advisor and mentor
for my M.Sc. study.
I thank my fellow lab members, specially Sudipta Saha and Shafayat Ahmed, for the
stimulating discussions, for the sleepless nights we were working together before deadlines,
and for all the fun we have had in the last two years. I would also like to thank Samsung
R&D Institute Bangladesh for supporting our project with research grant as well as
laboratory equipment.
I thank Dr. A.B.M. Alim Al Islam, Dr. Rifat Shahriyar, Dr. Mohammad Nurul Huda
and Dr. A.K.M. Ashikur Rahman for their constructive feedback for improving my thesis
work further.
Last but not the least, I would like to thank my family: my parents, my wife, and my
sister for supporting me throughout the degree program and my life in general.

Dhaka
February 27, 2021

Nafis Sadeq
1018052033

iii

Contents

Candidate’s Declaration i

Board of Examiners ii

Acknowledgement iii

List of Figures viii

List of Tables x

List of Algorithms xii

Abstract xiii

1 Introduction 1
1.1 Research Objective . 1
1.2 Motivation . 1
1.3 Present State . 1
1.4 Problem Definition . 2
1.5 Outline of Methodology . 2

1.5.1 Corpus Resource Development . 2
1.5.2 Speech Recognition Model Development 4
1.5.3 Context Specific Optimization . 4
1.5.4 Other Improvements . 4

1.6 Our Contribution . 5

2 Literature Review 7
2.1 G2P Conversion . 7
2.2 Speech Corpus Preparation . 8
2.3 Context-specific Optimization . 9
2.4 Semi-supervised ASR Training . 10
2.5 Summary of Gap Analysis . 12

3 Linguistic Resource Preparation 13

iv

3.1 Phoneme List . 13
3.2 Text Corpus and Word Dictionary Preparation 14

3.2.1 Web Crawling . 14
3.2.2 Text Cleaning . 15
3.2.3 Text Normalization . 15
3.2.4 Domain Specific Text Corpus . 16
3.2.5 Word Dictionary . 16

3.3 G2P Training and Lexicon Preparation . 17
3.3.1 Previous Works on G2P . 18
3.3.2 Non-Trivial Cases for Transcription 18
3.3.3 Developing an Improved G2P System for Bangla Language 21
3.3.4 G2P Models . 24
3.3.5 Experimental Results . 24

4 Speech Corpus Preparation 30
4.1 Voice Command Domain Study . 30
4.2 Previously Available Speech Corpus . 31
4.3 Supervised Speech Corpus Development 31

4.3.1 Data Collection App . 32
4.3.2 Summary of Voice Command Specific Corpus 34

4.4 Corpus Generation Using Automated Transcription 34
4.4.1 Background Noise Removal . 36
4.4.2 Speaker Diarization . 37
4.4.3 Gender Detection . 37
4.4.4 Silence Based Segmentation . 37
4.4.5 Automatic Transcription Generation 38
4.4.6 Evaluation of Automatic Transcription 39
4.4.7 Summary of Transcribed Corpus 42

4.5 Synthetic Speech Generation for OOV words 42
4.5.1 Out-of-Vocabulary Word List . 42
4.5.2 TTS Model . 43
4.5.3 Speech Synthesis . 43

4.6 Speech Corpus Summary . 44

5 Speech Recognition Architecture 45
5.1 Traditional ASR System . 45

5.1.1 Speech Feature Extraction . 45
5.1.2 Acoustic Model . 46
5.1.3 Language Model . 46

v

5.1.4 Phonetic Dictionary . 46
5.1.5 Training Phase . 47
5.1.6 Decoding Phase . 47

5.2 End-to-End System . 48
5.2.1 Speech Feature . 48
5.2.2 CTC-Attention . 49
5.2.3 Language Model . 49
5.2.4 Beam Search . 51

6 Context Specific Optimization of Voice Commands 52
6.1 Related Works . 53
6.2 Our System . 54

6.2.1 System Overview . 54
6.2.2 End-to-End Architecture . 54
6.2.3 Language Model . 55
6.2.4 Beam Search . 55
6.2.5 Contextual Rescoring . 55

6.3 Contextual Corpus Management . 57
6.3.1 Contextual Corpus Generation . 57
6.3.2 On-device Model Training . 57

6.4 Dataset . 59
6.4.1 Text Corpus . 59
6.4.2 Speech Corpus . 59

6.5 Experiments . 60
6.5.1 Training Details . 60
6.5.2 Test Set . 60
6.5.3 Results . 60

7 Semisupervised Speech Recognition 63
7.1 Related Works . 64
7.2 Our System . 65

7.2.1 Baseline System . 65
7.2.2 Semi-supervised System . 66

7.3 The Inter-Domain Loss . 68
7.3.1 Encoding Procedure . 68
7.3.2 Maximum Mean Discrepancy Loss 69
7.3.3 Global Encoding Distance (GED) Loss 70

7.4 Corpus Description . 71
7.4.1 Paired Speech Corpus . 72

vi

7.4.2 Unpaired Audio Data . 72
7.4.3 Unpaired Text Data . 72

7.5 Evaluations . 73
7.5.1 Test Set . 73
7.5.2 Training Details . 73
7.5.3 Performance Comparison with External Language Model 73
7.5.4 Performance Comparison of Inter-domain Loss 76
7.5.5 Effect of CTC Weight . 76
7.5.6 Effect of Speech Text Ratio . 76
7.5.7 Effect of Supervised Loss Ratio . 77
7.5.8 Effect of Batch Size . 77

8 Evaluation of ASR System 79
8.1 Experiments on Open Domain ASR Task 79

8.1.1 Dataset . 79
8.1.2 Training Details . 79
8.1.3 Test Set . 80
8.1.4 Results . 80

8.2 Experiments on Voice Command Task . 81
8.2.1 Dataset . 81
8.2.2 Training Details . 82
8.2.3 Test Set . 82
8.2.4 Results . 82

9 Conclusion and Future Work 85
9.1 Summary of Research Work . 85
9.2 Research Outcome . 85
9.3 Future Research Direction . 86

References 87

A List of Publications 95

vii

List of Figures

3.1 Categorization of errors in critical cases, here each of the 60K, 40K, 24K, and 12K

denotes the model trained on that particular lexicon. 23
3.2 Performance Comparison on Different Error Categories 26
3.3 Comparison in terms of WER and PER 27
3.4 Word Recognition Accuracy vs Iteration 28
3.5 Phoneme Recognition Accuracy vs Iteration 28
3.6 Negative Log Perplexity vs Iteration . 29

4.1 Data Collection App . 32
4.2 Data Collection App . 35
4.3 Overview of Automated Corpus Preparation 36
4.4 Overview of Automatic Transcription . 38
4.5 Histogram for percentage of longest common consecutive word sequence

length between two transcriptions with respect to transcription from
Google Speech API . 41

4.6 Overview of our Text-to-Speech Architecture 43

5.1 Traditional ASR Overview . 46
5.2 Traditional ASR Training . 47
5.3 Traditional ASR Decoding . 48
5.4 Overview of End-to-End Architecture . 49
5.5 End-to-End Architecture . 50
5.6 RNN Language Model . 50

6.1 Contextual ASR Overview . 53
6.2 System Overview . 54
6.3 Contextual Rescoring in Client Device . 56
6.4 Rescoring System . 56
6.5 Contextual Corpus Extension . 58
6.6 On Device Model Training . 58
6.7 Effect of Context Weight w3 . 61
6.8 Effect of CTC Weight w1 . 61

viii

6.9 Effect of Language Model Weight w2 . 62

7.1 Baseline System . 66
7.2 Semi-Supervised System . 67
7.3 Overview of Encoding . 68
7.4 t-SNE Visualization of Encoded Data . 69
7.5 GED Loss . 71
7.6 Supervised Training . 74
7.7 Semi-supervised Retraining . 75
7.8 Effect of CTC Weight w1 . 76
7.9 Effect of Speech Text Ratio w2 . 77
7.10 Effect of Supervised Loss Ratio w3 . 78
7.11 Effect of Batch Size . 78

8.1 Effect of Context Weight w3 . 83
8.2 Effect of CTC Weight w1 . 84
8.3 Effect of Language Model Weight w2 . 84

ix

List of Tables

2.1 Classification of Literature on G2P . 8
2.2 Classification of Literature on corpus development 9
2.3 Classification of Literature on Contextual ASR 10
2.4 Different Approaches for Exploiting Unpaired Speech Data 11
2.5 Gap Analysis and Proposed Approach . 12

3.1 Our Phoneme Symbols with Their Corresponding IPA Symbols 14
3.2 Error classification of 30K critical cases, here each of the four rightmost

columns denotes the model trained on that particular lexicon. 21
3.3 Performance on Critical Cases . 25
3.4 Performance Comparison In General . 25
3.5 Performance comparison on different error categories. Here each of the

three rightmost columns denotes the model trained on that particular lexicon. 26
3.6 Effectiveness of critical cases. Both lexicons are of size 60K. New Lexicon

consists of 21K critical cases and 39K entries from Google lexicon. 29

4.1 Target Domain of Voice Command . 30
4.2 Smartphone Operations Included . 31
4.3 Apps Included . 31
4.4 Google’s Crowd-Sourced Speech Corpus 31
4.5 Voice Command Corpus . 35
4.6 Evaluation of Corpus by Iteration . 41
4.7 Automatically Transcribed Corpus . 42
4.8 Overall Speech Corpus . 44

6.1 Performance comparison . 61
6.2 WER for different Categories of Voice Command 62

7.1 Hyper-parameter Description . 74
7.2 Performance Comparison with Baseline . 75
7.3 Performance of Inter-Domain Loss . 76

8.1 Speech Corpus . 80

x

8.2 Evaluation of ASR performance . 81
8.3 Decoding Speed . 81
8.4 Speech Corpus . 82
8.5 Performance on Voice Command Task . 83
8.6 WER for different Categories of Voice Command 84

xi

List of Algorithms

1 Algorithm for Compressing a Dictionary or Lexicon 20
2 Comparing a Generated Lexicon (gl) with Reference Lexicon (rl) 22
3 Procedure: ocConfusion (x, y) (Checks if open close vowel confusion) . . . 23
4 Procedure: removeVowel (phoneme_sequence) 23
5 Iterative Algorithm for Transcription . 40
6 Contextual Rescoring . 57
7 Computation of the MMD loss . 70
8 Computation of the GED loss . 72

xii

Abstract

Voice command recognition task commonly involves an Automatic Speech
Recognition (ASR) system with context-specific optimization. Automatic
Speech Recognition system development involves corpus resource development
such as phoneme list, text corpus, word dictionary, phonetic dictionary, and
speech corpus. These corpus resources are used to train speech recognition
models. The performance of the speech recognition systems can be further
improved by exploiting user and device-specific contexts. Context information
for a specific smartphone user includes contact names, installed apps, songs,
media files, location, recent search history, the content of the screen user
is looking at, etc. The context information changes frequently so it is
desired that the contextual model will be updated on-the-fly within the device.
Traditional speech recognition systems usually consist of several individual
components such as an acoustic model, a language model, a pronunciation
dictionary, etc. So context-specific optimization can be achieved by tuning a
particular component like the language model. Recently, end-to-end speech
recognition architectures have been very effective in many speech recognition
tasks. Incorporating context-specific optimization with the latest end-to-end
speech recognition architectures requires a different approach. In this work, we
focus on Bangla voice command recognition. We develop an ASR system for
voice command recognition tasks and improve the performance further using
context-specific optimization. In our work, we develop each linguistic resource
in a way that considers language-specific characteristics of Bangla. We enrich
our speech corpus with both domain-specific and domain-independent speech
data. We also experiment with traditional and end-to-end speech recognition
architectures. We propose a novel approach for context-specific optimization
of voice commands. We also explore several other approaches for improving
ASR performance such as synthetic speech corpus development and semi-
supervised speech recognition.

xiii

Chapter 1

Introduction

In this section, we describe the objective of our research, motivation, problem definition, the
outline of methodology, and our contribution.

1.1 Research Objective

In this work, we focus on voice command recognition in the context of standard Bangla language.
The target domain for voice command recognition involves smartphone voice assistants, smart
car voice assistants, home appliances, and office work accessories. We develop a large
vocabulary Automatic Speech Recognition (ASR) System for Bangla language and perform
domainspecific optimization by adding domainspecific speech corpus and by exploiting on
device user context during decoding.

1.2 Motivation

Bangla is spoken by 228 million native speakers and another 37 million secondlanguage
speakers. It is the fifth most spoken native language and the seventh most spoken language
in the world. A lot of Bangla native speakers are using digital voice assistant technologies now.
So a lot of research is required to improve Bangla voice assistant systems.

1.3 Present State

Currently, there are few publicly available Bangla speech corpus that is suitable for large
vocabulary ASR. The largest speech corpus we found has around 220 hours of speech data.
We did not find any corpus resource suitable for Bangla voice command recognition. All
the previous literature on Bangla speech corpus development focus only on supervised speech
corpus development. The ASR training strategy is also focused on supervised training.

1

1.4. PROBLEM DEFINITION 2

1.4 Problem Definition

We focused on four research problems in our work. They are as follows:

Grapheme to Phoneme (G2P) Conversion ManyASR architectures use aG2P system
to map the written representation of a word to its phonetic transcription. The input of this
system is small manually verified lexicon and a list of words. The output is a lexicon that
has phonetic transcription for all words in the word list.

Automated Speech Corpus Development The input for this system will be publicly
available audio and text. The output is aligned speech corpus.

Semi-supervised ASR An ASR system is typically trained on an annotated speech corpus.
It can also exploit an unpaired text corpus in the form of a language model. The semi
supervised ASR system aims to improve the performance of the ASR further by exploiting
an unpaired audio corpus.

Context Specific Optimization The input of the system will be a set of candidate speech
transcription and user context. The output is the speech transcription that is most relevant
to the user context.

1.5 Outline of Methodology

The development of a voice command recognition system has several steps such as:

• Corpus Resource Development

• Speech Recognition Model Development

• Contextspecific Optimization

• Other improvements

1.5.1 Corpus Resource Development

ASR systems are developed based on certain linguistic resources. They include phoneme list,
text corpus, word dictionary, phonetic dictionary or lexicon, speech corpus, etc.

1.5. OUTLINE OF METHODOLOGY 3

Phoneme List

A phoneme is a symbol that represents a sound. Traditional ASR systems usually convert
acoustic signals to a sequence of phonemes. These phonemes are used to capture the
pronunciation of words rather than their written representation. The phoneme list is chosen
in a way that makes it possible to represent all pronunciations in a target language. The details
of our phoneme list are described in section 3.1.

Text Corpus

A text corpus usually refers to a collection of processed text sentences. A text corpus is
necessary for several important reasons. It is used to identify the most frequently used words in
a language. A text corpus is also used to train a language model which can significantly improve
the performance of an ASR system by providing the contextual relevance of a particular word
in a transcription. Text corpus development typically involves web crawling, text cleaning, text
normalization, etc. The details of our text corpus are described in section 3.2.

Word Dictionary

A word dictionary is a collection of words that covers the target domain for an ASR task.
Typically, the most frequently used words in a language are kept in the word dictionary. The
details of our word dictionary are described in section 3.2.

Phonetic Dictionary

The phonetic dictionary or lexicon maps the written representation of a word (grapheme
sequence) to the phonetic representation (phoneme sequence). To prepare the lexicon, we need
to have two things, a word dictionary whose phonetic transcription will be mapped and a set
of phonemes that cover all pronunciations of the target language. The phonetic dictionary can
contain 50,000 to 100,000 words, so it is very difficult to provide phonetic transcription of all
these words manually. That is why manual transcription is done for a portion of the words.
Then a Graphemetophoneme (G2P) conversion system is trained on the manually transcribed
lexicon. The rest of the words in the dictionary are transcribed using the G2P system. The
details of our phonetic dictionary can be found in section 3.3.

Speech Corpus

Speech corpus refers to a collection of audio files with corresponding text transcriptions. The
duration of each speech segment is kept under 35 seconds [1]. The speech corpus also contains
some additional information such as the gender of speakers, recording environment, etc. Speech

1.5. OUTLINE OF METHODOLOGY 4

corpus development is one of the most important tasks related to ASR system development. So
it is discussed separately in Chapter 4.

1.5.2 Speech Recognition Model Development

There are several speech recognition architectures that learn to convert speech to text by
exploiting the corpus resources. We experiment on both traditional and endtoend architectures.

Traditional ASR System

Traditional ASR system has several components such as acoustic model, language model, etc. It
has two basic steps for speech to text conversion. At first, the system absorbs the speech feature
sequence and produces a phoneme sequence that best describes the pronunciation. In the next
step, the phoneme sequences are converted to a sequence of words using the phonetic dictionary.
During this step, the language model provides important information regarding the word context
with respect to the other words in that transcription. The details of our traditional ASR system
are described in section 5.1.

End-to-end ASR System

Unlike the traditional ASR system, the endtoend system does not produce any intermediate
phoneme like representations. Rather, it directly tries to convert speech to text using a single
neural network architecture. The details of our endtoend ASR system is described in section
5.2.

1.5.3 Context Specific Optimization

Voice command recognition task commonly involves an Automatic Speech Recognition (ASR)
system with contextspecific optimization. Context information for a specific smartphone
user includes contact names, installed apps, songs, media files, location, recent search history,
the content of the screen user is looking at, etc. The performance of the voice command
recognition system can be significantly improved by exploiting the user context and device
context. Our approach for contextspecific optimization of Bangla voice command recognition
task is described in Chapter 6.

1.5.4 Other Improvements

In our work, we try to address some additional research problems such as handling outof
vocabulary word problem, the use of unpaired audio data, etc.

1.6. OUR CONTRIBUTION 5

Handling Out-of-vocabulary Problem

An ASR system may need to transcribe speech containing certain words that never occurred in
the speech corpus the system was trained on. These words are considered outofvocabulary
(OOV) words. In some cases, the presence of OOV words severely hampers the ASR
performance. In those cases, it needs to be addressed.

Semi-supervised ASR Training

Usually, ASR systems are trained on speech corpus where each speech segment is paired with
corresponding text transcription. Large unpaired text corpus can also be exploited effectively
by training a language model and incorporating language model scores with ASR model scores
during decoding time. But the current ASR architectures are unable to exploit large unpaired
audio corpus. In our work, we exploit large unpaired audio data using a semisupervised training
method. This approach is described in Chapter 7.

1.6 Our Contribution

Our contributions in this study are as follows:

• We have developed an improved lexicon that has around 100K most frequently used
Bangla words and considers critical cases for G2P conversion in Bangla language. This
lexicon can significantly improve the performance of ASR systems that depend on
lexicon.

• We have developed a Bangla Speech Corpus containing both domainindependent and
domainspecific utterances. The overall size of the corpus is 1010 hours. The domain
independent corpus contains 960 hours of data and the domainspecific corpus has 50
hours of data.

• We have developed a Bangla text corpus containing 10 million unique Bangla sentences.
A language model trained on this text corpus significantly improves the ASR performance.

• We have developed a contextannotated voice command corpus. The corpus has
1700 voice command templates and includes all necessary voice commands related to
smartphones, home appliances, automotive and office work accessories.

• We propose a novel approach for contextspecific optimization of voice commands which
is based on multilabel topic modeling.

• We propose a novel approach for semisupervised ASR training that can improve ASR
performance by exploiting unpaired audio data.

1.6. OUR CONTRIBUTION 6

• We have solved the outofvocabulary problem for Bangla ASR task by using synthetic
speech corpus generation.

Chapter 2

Literature Review

In this section, we provide a literature review for various ASR related components we worked
on such as G2P conversion, automatic Speech Corpus Generation, contextspecific optimization,
semisupervised training, etc.

2.1 G2P Conversion

The G2P system is used to find phonetic transcription for a word from its written representation.
Table 2.1 shows the summary of previous approaches for G2P conversion.

The research works for G2P in English are quite extensive. [2] use joint maximum entropy
ngram model and conditional maximum entropy model for G2P conversion in English. [3]
utilize Recurrent Neural Network (RNN) with bidirectional LSTM (Long Short TermMemory)
for G2P and achieve 5.45% Phoneme Error Rate (PER) on CMU dictionary [4]. [5] show
comparisons among various machine learning algorithms for G2P in Burmese language. [6]
develop a jointsequence model for G2P. Joint sequence ngram models aim to discover joint
vocabulary consisting of graphemes and phonemes through the alignment of graphemes and
phonemes. [7,8] are other prominent works working on this model. Neural sequence to sequence
models are popular for G2P conversion. Some prominent works on such models are: [3, 9–19].

Most of the works related to G2P conversion in Bangla language follow rulebased approach.
The rulebased approach of [20] provides an accuracy of 97.01% on a previously seen corpus
containing 736 words, but the system’s accuracy is 81.95% on a previously unobserved corpus
containing 8399 words. This work was extended by [21] describing 3880 rules with an
accuracy of 89.48% on another corpus. [22] discuss a rulebased approach considering several
information: partsofspeech, subsequent context, etc. Their work describes only 21 rules and
provides an accuracy of 91.48% on a corpus of 9294 words. [23] provide a heuristic for G2P
that takes into account partsofspeech, orthographic, and contextual information. Their work
provides 70% accuracy on a corpus containing 755 words. A prominent work for datadriven

7

2.2. SPEECH CORPUS PREPARATION 8

Literature Language Approach Method
[3, 9–19] English Data-driven Neural seq2seq

[2] English Data-driven maximum entropy n-gram
[6–8] English Data-driven Joint sequence n-gram

[20, 21] Bangla Rule-based Phonetic Rules

[22] Bangla Rule-based Phonetic Rules, parts-of-speech,
subsequent context

[23] Bangla Rule-based Phonetic Rules, parts-of-speech,
orthographic, contextual information

[24] Bangla Data-driven Neural seq2seq
[25] Bangla Data-driven conditional random field

Table 2.1: Classification of Literature on G2P

G2P in Bangla language is by Google ([24]). They develop a lexicon and achieve wordlevel
accuracy of 81.5%. [25] use conditional random field for G2P in Bangla. They report 14.88%
phoneme error rate on Google lexicon. Another line of research deals with G2P conversion for
more than one language. Such works include: [26], [27], [28], and [29].

The limitation of previous works on Bangla G2P is that most of them are rulebased. Rule
based G2P systems are not suitable for accurate G2P conversion for large dictionary size. [24]
propose a datadriven G2P system that is trained on a manually transcribed lexicon of 37000
words. But the words in the manually transcribed lexicon are chosen according to frequency
only. We will show that significant performance improvement can be made by choosing the
words in the training set optimally.

2.2 Speech Corpus Preparation

In various languages, researchers have explored different methods for developing speech
corpus. Jang and Hauptmann [30] develop a speech corpus from captioned multimedia speech.
Lakomkin et al. [31] develop a tool to automatically construct data set for speech recognition
from YouTube videos containing transcriptions. Panayotov et al. [1] present 1000 hours of
speech corpus for English by aligning texts and audio files of audiobooks. Mansikkaniemi et
al. [32] and Helgadóttir et al. [33] use similar alignment techniques to develop speech corpus
from recordings and transcriptions from parliamentary speech. Patel et al. [34] build a data
collection tool and collect around 100 hours of reading speech data in Manipuri Language.

Compared to other languages, research works on developing speech corpus for Bangla language
are quite limited. Nahid et al. [35] discuss the development of Bangla real number audio corpus.
The recordings were completed in a supervised environment and volunteers were given scripts to
read. Khan and Sobhan [36] develop a speech corpus containing only isolated words for Bangla.
All recordings were done in a laboratory. In another work of them, Khan and Sobhan [37]

2.3. CONTEXT-SPECIFIC OPTIMIZATION 9

Paper Data Source Approach Approach Details Hours
[1] Audio Book

Automated Forced Alignment

1000
[30] Captioned Multimedia Speech 131.4
[31] Captioned Youtube Speech 200
[32] Parliamentary speech 1550
[33] Parliamentary speech 542

[34] Telephonic speech Automated
Speech-to-text

100Keyword search
Speaker diarization

[35] Bangla real numbers
Supervised Record read speech

4
[36] Bangla isolated words 375
[37] Bangla connected words 62
[38] Crowd-sourced Bangla speech Interactive app Record read speech 220

Table 2.2: Classification of Literature on corpus development

develop a speech corpus of connected words for Bangla. Researchers from Google [38] prepare
speech corpora for Bangla and four other languages using interactive mobile application [39].
They develop 229 hours of speech corpus for Bangla.

The limitation of the previous works on Bangla speech corpus development is that all the
previous works adopt supervised speech corpus development approach. This is not always
adequate for developing a speech corpus of the required size. Our work differs from the previous
works as none of these works deals with the automatic preparation of speech corpus in Bangla
language using existing audio and text data. We also prepare a separate domainspecific speech
corpus for Bangla voice command recognition task.

2.3 Context-specific Optimization

In various languages, researchers have used contextual information to increase the performance
of voice recognition systems. Table 2.3 shows the summary of previous approaches.

[40] present an online approach for adjusting language model (LM) weights of ngrams
corresponding to a specific context. [41] describe a composition based onthefly rescoring
mechanism to employ contextual language models in a speech recognition system. [42] use
NamedEntity Recognition within the automatic speech recognition word lattice for identifying
contextually related paths. They report that their approach minimizes Word Error Rate (WER)
by 12.0% on a media playing commands data set. [43] provide a mechanism to learn contextual
information in an unsupervised manner and for building automatically contextually biased
models. [44] discuss two interpolationmethods tomerge contextual informationwith knowledge
from a general language model. [45] consider contextual information during beam search in
an endtoend speech recognition system. [46] discuss contextual recurrent neural network
language model. They consider a contextual input vector for each word of a sentence.

2.4. SEMI-SUPERVISED ASR TRAINING 10

Literature ASR Architecture Approach
[40, 41] Traditional contextual LM, N-gram

[42] Traditional Named-Entity Recognition
in Word Lattice, N-gram

[43] Traditional Unsupervised context learning,
N-gram biasing

[44] Traditional Merging contextual and general LMs,
N-gram

[45] End-to-end N-gram
[46] End-to-end contextual RNNLM
[47] End-to-end class based LM, N-gram

Table 2.3: Classification of Literature on Contextual ASR

[47] use classbased language models that provide contextual information during decoding in
an endtoend speech recognition system. Moreover, [48] addresses an endtoend ASR for low
resource multilingual ASR context. [49] develop an endtoend automatic speech recognition
system that is situation informed. They consider speaker gender, conversational history, etc. to
develop the situationinformed system. [50] develop an endtoend speech recognition system
that considers dialog context.

We have not found any research work that focuses on considering contextual information for
voice command recognition in Bangla language. For other languages, all of the approaches used
are variations of ngram based model for context detection. But the ngram based approach is
too rigid. It is not robust to synonymous, missing, or misplaced words. All possible synonyms
and ngram variations need to be present in the contextual corpus. It also considers a lot of
irrelevant word combinations as the contextual corpus gets bigger. We propose a multilabel
topic modeling approach for context detection which has several advantages over the ngram
based approach. The topic modeling approach works on keywords which is more flexible and
robust than the ngram approach. A variable number of contexts can be easily handled with
multilabel topic modeling.

2.4 Semi-supervised ASR Training

Researchers have explored different methods of exploiting unpaired speech data for speech
recognition. Table 2.4 shows the summary of previous approaches.

[51] investigate largescale semisupervised training to improve acoustic models for automatic
speech recognition. They provide an empirical analysis of semisupervised training with respect
to transcription quality, data quality, filtering, etc. [52] pretrain the encoderdecoder network
with unpaired speech and text. They use a large amount of unpaired audio to pretrain the encoder
and synthesized audio from the unpaired text to pretrain the decoder. [53], [54] integrate active

2.4. SEMI-SUPERVISED ASR TRAINING 11

Literature Architecture Approach
[51] Traditional Semi-supervised training, acoustic model

[53, 54] Traditional active learning, semi-supervised training
[55] Traditional Multilingual data exploitation, acoustic model
[57] Traditional DNN, Graph based learning of acoustic model
[58] Traditional Sparse Auto-encoder

[59–61] Traditional Semi-supervised learning of acoustic model, lexicon
[63, 64] End-to-end Semi-supervised training with shared encoder

Table 2.4: Different Approaches for Exploiting Unpaired Speech Data

learning jointly with semisupervised training in speech recognition system. [55] use transcribed
multilingual data and semisupervised training to circumvent the lack of sufficient training data
for acoustic modeling. They train deep neural networks as datadriven feature front ends.

[56] use utterancelevel and framelevel confidences for data selection during selftraining.
They find it beneficial to reduce the disproportion in amounts of paired and unpaired data
by including the paired data several times in semisupervised training. [57] describe the
combination of deep neural networks and graphbased semisupervised learning for acoustic
modeling in speech recognition. [58] use a sparse autoencoder to take advantage of both
unlabelled and labeled data simultaneously through minibatch stochastic gradient descent.

[59] try to improve the performance of a codeswitching speech recognition system for
MandarinEnglish using semisupervised training. They apply semisupervised learning for
lexicon learning as well as acoustic modeling. Similarly, [60] and [61] use untranscribed data
for Luxembourgish & Lithuanian ASR respectively. [62] use a twostep training method to
generalize the air traffic control speech recognizer. First, a baseline speech recognition system
is trained using a paired speech corpus and it is used to transcribe publicly available unlabeled
data. The transcribed data is then filtered based on confidence scores and is used to retrain the
acoustic model.

Recently, semisupervised training has been proposed in the context of endtoend ASR. [63]
propose a shared encoder architecture for speech and text inputs that can encode both data from
their respective domain to a common intermediate domain. They combine speechtotext and
texttotext mapping by using the shared network to improve speechtotext mapping. They
propose an interdomain loss function based on Gaussian KLdivergence which represents the
dissimilarity between the encoded features of speech and text data. They later proposed an inter
domain loss function based on Maximum Mean Discrepancy [64]. In both cases, they assume
that the encoded speech features in the current minibatch are sampled from one distribution and
encoded text features in the current minibatch are sampled from a second distribution. The inter
domain loss is calculated based on the discrepancy of these two distributions. This approach has
some weaknesses. The performance of this system varies based on the chosen minibatch size.
Moreover, this approach does not take into account the variance of the current encoded features

2.5. SUMMARY OF GAP ANALYSIS 12

Research
Problem Gap Proposed Solution

Grapheme to
phoneme conversion

Conversion Mostly rule
based for Bangla, verified
lexicon for data driven
approach has words with
trivial G2P cases

Identify words with critical
G2P rules, Verify most words
automatically, Verify critical
words manually

Automated speech
corpus preparation

No work for automated cor-
pus generation in Bangla,
difficult to use forced align-
ment in Bangla

Combine speaker diarizarion,
gender detection, silence de-
tection and existing ASR sys-
tem to extend the speech
corpus, Speech synthesis for
OOV

Semi-supervised
ASR

No previous work in Bangla,
Unsupervised loss not ro-
bust enough in previous end-
to-end system

Unsupervised loss calculation
in global context

Context Specific
Optimization

No previous work in Bangla,
N-gram too rigid, Too many
irrelevant word combina-
tions

Keyword based context iden-
tification and contextual rele-
vance calculation

Table 2.5: Gap Analysis and Proposed Approach

in the global context. We solve both problems by introducing a new interdomain loss function
based on global encoding distance.

2.5 Summary of Gap Analysis

Table 2.5 shows the summary of gap analysis in the previous literature and our proposed
approach for solving the research problems. We will discuss each of the proposed approach
in detail in the following chapters.

Chapter 3

Linguistic Resource Preparation

In this chapter, we describe the preparation of different linguistic resources for the ASR system.
Traditional ASR systems use a phonetic dictionary or lexicon to map a word to its phonetic
transcription. To prepare the lexicon, we need to have two things, a word dictionary whose
phonetic transcription will be mapped and a set of phonemes that cover all pronunciations of the
target language. Typically, the most frequently used words in a language are kept in the word
dictionary. The word dictionary can contain 50,000 to 100,000 words, so it is very difficult to
provide phonetic transcription of all these words manually. That is why manual transcription
is done for a portion of the words. Then a Graphemetophoneme (G2P) conversion system
is trained on the manually transcribed lexicon. The rest of the words in the dictionary are
transcribed using the G2P system. The G2P system is also very helpful for finding grapheme
phoneme mapping of outofvocabulary words.

3.1 Phoneme List

Our Phoneme symbols are provided in Table 3.1. This table is a good reference for the 47

phoneme symbols that we have followed in this work and their corresponding International
Phonetic Alphabet (IPA) symbols. Throughout the book, we use these 47 phoneme symbols,
not the IPA symbols. There is a disagreement between linguists whether nasal vowels should
be considered as separate phonemes [65]. We added nasal vowels in our phoneme list to
differentiate between a word with its nasalized counterpart, such as the word কাঁদা(to cry) and
কাদা(mud). Here, /a/, /e/, /u/, /i/, /o/, /O/, /E/, /an/, /en/, /un/, /in/, /on/, /On/, /En/ are normal
vowels, /ew/, /ow/, /uw/, /iw/ are weak vowels, and the rest are consonants.

13

3.2. TEXT CORPUS AND WORD DICTIONARY PREPARATION 14

Ph
on

em
e

IP
A

Ph
on

em
e

IP
A

Ph
on

em
e

IP
A

Ph
on

em
e

IP
A

i i On O ̃ D ã m m
u u an ã Dh ãH r r
e e k k t t R ó

o o kh kh th th l l
E E g g d d h H

O O gh gH dh dH s s
a a c Ù p p sh S

in ĩ ch Ùh ph ph iw i
ˆun ũ j dZ b b ew e
ˆen ẽ jh dZH bh bH ow o
ˆon õ T ú N ŋ uw u
ˆEn æ̃ Th úh n n

Table 3.1: Our Phoneme Symbols with Their Corresponding IPA Symbols

3.2 Text Corpus and Word Dictionary Preparation

A text corpus is necessary for several important reasons. It is used to identify the most frequently
used words in a language. A text corpus is also used to train a language model which can
significantly improve the performance of an ASR system by providing the contextual relevance
of a particular word in a transcription. Text corpus development typically involves web crawling,
text cleaning, text normalization, etc.

3.2.1 Web Crawling

To get a hold of the contemporary usage of Bangla language, we do extensive crawling. We have
prepared a crawling tool for opendomain sentence collection. We used the scrapy framework
for the crawling tool. For every website, we created a unique spider that will crawl from that
website. We used a web app for interfacing with the crawler. The web app is built in Django.

We crawled 42 websites of various Bangla newspapers, blogs, ebook libraries, Wikipedia, etc.
covering various domains such as politics, economics, sports, drama, novel, stories, education,
entertainment, general knowledge, history, etc. We tried to cover every domain and make sure
there was very little repetition and the corpus covers most of the Bengali words we use every
day. After collecting the text corpus using WebCrawler, we parsed them into sentences. There
were around 11 million sentences after crawling.

3.2. TEXT CORPUS AND WORD DICTIONARY PREPARATION 15

3.2.2 Text Cleaning

After collecting text from the open domain, we clean the texts using our text cleaning tool. We
consider the following cases while cleaning the texts:

• Remove nonBangla Sentences.

• Remove punctuation’s and signs

• Replace it with blank space.

• Remove inconsistent lines.

• Remove duplicate lines.

• Sort sentences lexicographically.

3.2.3 Text Normalization

After cleaning the texts, we normalized those using the following rules:

• Numbers are converted to text

• If comma (,) is inside a number, will be replaced by null string, if anywhere else, will be
replaced by single space

• Handling abbreviation, such as:“েমাঃ”:“েমাহাƪদ”

• Some special numeric such as: “১ম”:“Ɨথম”,“২য়”,“িżতীয়”,

• Handling Percentage (%) sign, will be changed to: ,“শতাংশ”

• Replaced tab(s), multiple spaces with single space

• Handled decimal symbol (.), will be converted to: “দশিমক”, also the digits after decimal
symbol will be converted digitwise: so, “১২৩.০৫৬” will be converted to: “এক শত েতইশ

দশিমক শূƒ পাঁচ ছয়”

• If there is “সাল,সন” etc. after number, then it will be changed differently to capture how
we naturally convert year: for example: “১৯৭১ সােলর ২৫েশ মার্চ” will be:“উিনশ শত একাŴর

সােলর পঁিচশ েশ মার্চ”, not: “এক হাজার নয় শত একাŴর সােলর”

• If a number starts with ‘0’ (zero), digit wise change (i.e., considering it as mobile number
or number plate) so: “০১৭২৩৪৫৬” will be “শূƒ এক সাত দুই িতন চার পাঁচ ছয়”

3.2. TEXT CORPUS AND WORD DICTIONARY PREPARATION 16

• Hyphen () will mostly be ignored, but in certain situations, it will be converted to “েথেক”,
such as: “২-৩ িদন” => “দুই েথেক িতন িদন” “২১ েসেƘƧর - ২২ অেĳাবর” => “২১ েসেƘƧর েথেক ২২

অেĳাবর”

After data cleaning and data normalization, we had about 10million sentences in our text corpus.

3.2.4 Domain Specific Text Corpus

For close domain sentence collection, we tried to cover commands supported by existing voice
assistants below:

• Google Assistant

• Google Home

• Amazon Alexa

• Siri

• Bixby

• Cortana

We explored the commands supported by these voice assistants in English and tried to add their
Bangla equivalent commands in our corpus. Overall, we had 1700 unique voice command text
in our corpus. We add these sentences to our text corpus. The collected sentences were from
the following domains:

• Smartphone and Popular app commands

• Home appliance

• Office

• Automotive

3.2.5 Word Dictionary

After doing word frequency analysis of these sentences, we got around 1.7M unique Bangla
words (tokens). We counted how many times each of the unique words appeared in those
sentences. We then consider the most frequent 100K words and aim to identify the critical
cases for phonetic transcription among these most frequent words. And these words constitute
our word dictionary for Bangla language. For the voice commandspecific sentences, we add
each word to our word dictionary regardless of their frequency.

3.3. G2P TRAINING AND LEXICON PREPARATION 17

3.3 G2P Training and Lexicon Preparation

Grapheme to phoneme (G2P) conversion provides a mapping between a word and its
pronunciation. Such mapping provides the opportunity for a nonnative person to learn the
correct pronunciation of words of a foreign language. Moreover, in modern Text to Speech
(TTS) and Automatic Speech Recognition (ASR) systems, G2P conversion is an integral task.
The task of G2P conversion is generally languagespecific due to languagespecific conventions,
rules, pronunciation constraints, etc. In our work, we focus on Modern Standard Bangla. An
example of G2P conversion in Bangla language: phonetic transcription of অনুশীলন (practice) is
/o n u sh i l O n/.

The simplest means of G2P conversion is to build up a lexicon or dictionary containing the
mapping from words to their corresponding pronunciations. However, it fails to provide
pronunciations for unknown words and the inclusion of newer words increases memory
requirement. In another approach [20], there are predefined rules for the conversion of a
word to its pronunciation. Though such a rulebased approach can work for any word, the
system becomes complex when it tries to formulate rules for incorporating all irregularities of
pronunciation in a language.

These approaches are not feasible for largescale G2P conversion which is necessary for any
modern TTS or ASR system. Datadriven machine learning approaches have great potential
in such largescale G2P conversion [12]. In such an approach, a machine learning model
predicts the phoneme conversion of a grapheme, being trained on a lexicon. A predominant
work following such approach in Bangla language is by Google [24], where they train their
system using 37K words and achieve wordlevel accuracy of 81.5%. However, a system
trained on their lexicon will face several shortcomings, such as কাদা(mud) and কাঁদা(to cry) are
pronounced differently but will have the same phoneme representation in their system as: /k a
d a/. Similarly, পরী(fairy) and পিড়(to read) are pronounced differently but will have the same
phoneme representation in their system as: /p o r i/. Moreover, G2P system trained on their
lexicon performs poorly on our identified critical cases from the most frequent 100K words
(Table 3.3).

Being motivated to increase the accuracy of grapheme to phoneme conversion in Bangla
language, which will also perform well for critical inputs, we have developed a customized
and robust G2P system for Bangla language.

Our major contributions are as follows:

(i) We identify and categorize the critical cases for grapheme to phoneme (G2P) conversion
in Bangla language by analyzing the most frequent 100K words.

(ii) We enrich the training lexicon for developing a robust G2P conversion system in Bangla
language that performs much better for critical cases compared to other stateoftheart

3.3. G2P TRAINING AND LEXICON PREPARATION 18

G2P systems.

(iii) We perform phonetic transcriptions considering nasal vowels as separate phonemes.

(iv) We perform extensive simulations on a largescale dataset and show that our methodology
outperforms other stateoftheart approaches for G2P conversion in Bangla language by
providing wordlevel accuracy of 90.2%.

3.3.1 Previous Works on G2P

The research works for G2P in English are quite extensive. [2] investigate machine learning
based systems for G2P in English. They experiment with joint maximum entropy ngrammodel,
conditional maximum entropy model, etc. [3] utilize bidirectional LSTM (Long Short Term
Memory) recurrent neural network for G2P and achieve 5.45% PER on CMU dictionary [4]. [5]
show comparisons among various machine learning algorithms for G2P in Burmese language.
Joint sequence ngram models aim to discover joint vocabulary consisting of graphemes and
phonemes through the alignment of graphemes and phonemes. [6] develop a jointsequence
model for G2P. [7], [8] are other prominent works working on this model. Neural sequence
to sequence models are popular for G2P conversion. Some prominent works on such models
are: [9], [10], [11], [3], [10], [12], [3], [13], [14], [15], [16], [17], [18], and [19]. Again,
another line of research deals with G2P conversion for more than one language. Such works
include: [26], [27], [28], and [29].

Most of the works related to G2P conversion that are focused on Bangla language, follow
rulebased approach. The rulebased approach of [20] provides an accuracy of 97.01% on
a previously seen corpus containing 736 words, but the system’s accuracy is 81.95% on
a previously unobserved corpus containing 8399 words. This work was extended by [21]
describing 3880 rules with an accuracy of 89.48% on another corpus. [22] discuss a rulebased
approach considering several information: partsofspeech, subsequent context, etc. Their work
describes only 21 rules and provides an accuracy of 91.48% on a corpus of 9294 words. [23]
provide a heuristic for G2P that takes into account partsofspeech, orthographic, and contextual
information. Their work provides 70% accuracy on a corpus containing 755words. A prominent
work for datadriven G2P in Bangla language is by Google ([24]). They develop a lexicon and
achieve wordlevel accuracy of 81.5%. [25] use conditional random field for G2P in Bangla.
They report 14.88% phoneme error rate on Google lexicon.

3.3.2 Non-Trivial Cases for Transcription

We envision developing a robust G2P system that will perform reasonably well on any word
in Bangla language. A G2P system that performs well on the most frequent words, should

3.3. G2P TRAINING AND LEXICON PREPARATION 19

also do well on other words. With this motivation, we focus on increasing accuracy on the
most frequent words. Especially, we are concerned about those words that are among the
most frequent words but nontrivial or critical for phonetic transcription, i.e., current stateof
theart methodologies perform poorly on these critical words. We investigate identifying and
categorizing such nontrivial or critical cases so that future research works can give special focus
on developing methods for improving phonetic transcriptions of these critical words.

Identifying the Critical Cases for Transcription

After changing the Google lexicon (of size 60K (around)) according to our phoneme symbols
(Table 3.1), we prepare 4 versions of Google’s lexicon of size 12K, 24K, 40K, and 60K

respectively for identifying the critical cases for phonetic transcription. Algorithm 1 shows
prefix comparing algorithm that we use for compressing a phonetic lexicon or dictionary of
grapheme sequence to phoneme sequence. The algorithm matches the prefix of consecutive
words (grapheme sequence) of a sorted dictionary (sorted according to ascending order of
grapheme sequence of a word) and keeps a word (with its corresponding phoneme sequence)
only if it does not share its prefix with any other words. We run the algorithm successively 3

times, i.e., we use the destination dictionary of one iteration as the source dictionary of the next
iteration. Each iteration produces a minimized version of the basic lexicon (Google lexicon).
After 3 iterations, the dictionary does not get any more compressed. We find the phonetic
transcriptions of each of the 100K most frequent words using models trained on each of the 4
versions of Google’s lexicon (basic + 3 minimized). So, from 4 models (each model trained on a
version of the basic Google lexicon), we get 4 sets of transcriptions for the most frequent 100K
words. For most of the words (around 70K words), we observe that the phonetic transcriptions
are exactly the same in each of the 4 set. However, for the remaining 30K words (29105 words
to be exact), we observe that at least one set provides different transcription. We take these 30K
words to be the critical cases. Our intuition is that if two G2P systems: one trained on a smaller
version of the basic lexicon, and another trained on a larger version of the basic lexicon provide
the same transcription for a word, then the word is a trivial case for phonetic transcription. We
then manually verify the phonetic transcriptions of these 30K words taking help from 3 linguists
and following [66], and consider these 30K words as critical cases for phonetic transcription.

Categorizing the Critical Cases

We categorize the critical cases into 7 categories and observe the distribution of the critical
transcriptions into these 7 categories. These 7 categories capture most of the errors. The
categories are:

• Open Close Vowel Confusion: G2P system provides pronunciation as close vowel
that should be pronounced as open vowel ideally, and viceversa. For example, correct

3.3. G2P TRAINING AND LEXICON PREPARATION 20

Algorithm 1 Algorithm for Compressing a Dictionary or Lexicon
1: sd← sorted sourceDictionary
2: dd← sorted destinationDictionary
3: a.grs← grapheme sequence of lexicon
4: entry a
5: add sd[0] to dd
6: i = 1
7: while i ̸= length(sd) do
8: pw = sd[i− 1]
9: cw = sd[i]

10: if length(pw.grs) ≥ 3 & pw.grs is prefix of cw.grs then
11: continue
12: else
13: add cw to dd
14: i← i+ 1

phoneme of বয্াঙ (frog) is /b E n g/, but if the G2P system provides output /b e n g/, then it
is an error under this category as in the place of an open vowel (here, /E/), the G2P system
is giving close vowel (here, /e/).

• Inherent Vowel Confusion: G2P system does not provide inherent vowel as output
where there should be an inherent vowel ideally. For example, correct phoneme of সকাল
(morning) is /sh O k a l/, but if the G2P system provides output /sh k a l/, then it is an error
under this category as the output of G2P does not give the inherent vowel (here, /O/).

• Diphthong Confusion: G2P system does not provide falling diphthong in output where
there should be a falling diphthong ideally. Or, the system does not provide a rising
diphthong in output where there should be a rising diphthong ideally. For example, correct
phoneme of সই (friend) is /sh o iw/, but if the G2P system provides output /sh o i/, then it
is an error under this category as the output of G2P does not capture the falling diphthong
(here, /o iw/).

• s or sh Confusion: G2P system provides /s/ in phonetic transcription, where there should
be /sh/, and viceversa. For example, correct phoneme sequence of সংগঠন (organization)
is /sh O N g O Th o n/, but if the G2P system provides output /s O N g O Th o n/, then it
is an error under this category as the output of G2P gives /s/ in place of /sh/.

• s or ch Confusion: G2P system provides /s/ in phonetic transcription, where there should
be /ch/, and viceversa. For example, correct phoneme sequence of
ছাতা (umbrella) is /ch a t a/, but if G2P system provides output /s a t a/, then it is an error
under this category as the output of G2P gives /s/ in place of /ch/.

• Nasal Confusion: G2P system does not provide any nasal vowel where there should be a
nasal vowel, and viceversa. For example, correct phoneme sequence of চাঁদ (moon) is /c

3.3. G2P TRAINING AND LEXICON PREPARATION 21

Error Type 60K 40K 24K 12K
total error 6415 7222 8087 10400

Open Close Confusion (%) 32.0 30.7 34.8 23.6
Inherent Vowel Confusion (%) 28.4 36.7 32.0 40.1

s or sh confusion (%) 14.6 15.3 14.2 12.8
Dipthong confusion (%) 11.6 9.8 7.6 9.4

Other Vowel Confusion (%) 2.1 1.3 4.2 3.1
s or ch confusion (%) 0.8 0.7 0.2 0.5
Nasal Confusion (%) 0.2 0.1 0 0

Other Error (%) 10.4 5.4 7.1 10.6

Table 3.2: Error classification of 30K critical cases, here each of the four rightmost columns
denotes the model trained on that particular lexicon.

an d/, but if the G2P system provides output /c a d/, then it is an error under this category
as the output of G2P gives /a/ in place of /an/.

• Other Vowel Confusion: The G2P system provides a completely different vowel than the
corresponding vowel that should ideally be in that position of the phoneme sequence. Note
that, in the other error categories, for each position in the phoneme sequence, the generated
and ideal phonemes were somehow related. But in this category, at a specific position of
the phoneme sequence, the generated and ideal phonemes are completely different. For
example, correct phoneme sequence of অধয্বসায় (perseverance) is /o d dh o b O sh a ew/,
but if the G2P system provides output /o d dh a b O sh a ew/, then it is an error under this
category as the output of G2P gives /a/ in place of /o/ (fourth phoneme).

Algorithm 2 compares amachinegenerated lexiconwith a reference lexicon (manually verified),
where both the lexicons have the same grapheme sequences, but the corresponding phoneme
sequences may be different. This algorithm counts how many errors of each category are there
in the machinegenerated lexicon. The algorithm takes each entry of the generated lexicon and
increases the count of the corresponding error category (if an error is present there).

We train the attention mechanism based Transformer model on each of the 4 lexicons and get 4
G2P models. We find the phoneme representation of 30K critical cases using each of the 4 G2P
models. Using Algorithm 2, we count the errors of each category for each of the 4 models. We
report the results in Table 3.2 and Figure 3.1. Here, the other error denotes the errors that are
not captured by these 7 categories. We see from these results that most of the errors are under
Open Close vowel, s or sh, Diphthong, and Inherent Vowel confusions.

3.3.3 Developing an Improved G2P System for Bangla Language

We develop an improved lexicon and use two machine learningbased models trained on our
lexicon to develop an improved G2P system for Bangla language. For developing an improved

3.3. G2P TRAINING AND LEXICON PREPARATION 22

Algorithm 2 Comparing a Generated Lexicon (gl) with Reference Lexicon (rl)
1: N ← total number of entries in each lexicon
2: A,B,C,D,E, F,G are Open Close Vowel, s or sh, s or ch, Nasal, Dipthong, Other

Vowel, and Inherent confusions, respectively, all initially zero
3: H denotes other errors not captured by the 7 categories, initially zero
4: vl and wl are lists of vowels and weak vowels respectively
5: a.phs← phoneme sequence of lexicon
6: entry a
7: i← 0
8: while i ̸= N do
9: g = gl[i].phs

10: r = rl[i].phs
11: M = min(length(g), length(r))
12: j ← 0
13: while j ̸= M do
14: x = g[j]
15: y = r[j]
16: if x = y then
17: continue
18: (x, y)← sorted(x, y)
19: Total_error = Total_error + 1
20: if ocConfusion(x, y) then
21: A← A+ 1
22: else if (x, y) = (“s”, “sh”) then
23: B ← B + 1
24: else if (x, y) = (“ch”, “s”) then
25: C ← C + 1
26: else if x+ “n” = y then
27: D ← D + 1
28: else if x in wl or y in wl then
29: E ← E + 1
30: else if x in vl and y in vl then
31: F ← F + 1
32: else if removeV owel(g) = removeV owel(r) then
33: G← G+ 1
34: else
35: H ← H + 1

36: j ← j + 1

37: i← i+ 1

3.3. G2P TRAINING AND LEXICON PREPARATION 23

Algorithm 3 Procedure: ocConfusion (x, y) (Checks if open close vowel confusion)
1: ocSet← [(“O”, “o”), (“E”, “e”),
2: (“On”, “on”), (“En”, “en”)]
3: if (x, y) in ocSet then
4: return True
5: else
6: return False

Algorithm 4 Procedure: removeVowel (phoneme_sequence)
1: return phoneme_sequence removing all vowels from it

Figure 3.1: Categorization of errors in critical cases, here each of the
60K, 40K, 24K, and 12K denotes the model trained on that particular lexicon.

3.3. G2P TRAINING AND LEXICON PREPARATION 24

lexicon, we include with Google’s lexicon the manually verified 30K nontrivial or critical
entries. Also, we include the 70K entries in which all of the 4 models (trained on each of
the 4 versions of Google lexicon) unanimously agreed. Our lexicon consists of around 100K

entries.

3.3.4 G2P Models

We use Neural Sequence to Sequence models. In these models, a conditional distribution
of a sequence (here, phoneme sequence) is learned conditioned on another sequence (here,
grapheme sequence). We train two following sequencetosequence models on our lexicon for
G2P conversion:

LSTMRNN: This is a plain Sequence to Sequence model that incorporates an encoder and
decoder mechanism. A recurrent Neural Network (RNN) is usually utilized in encoder and
decoder design. For addressing the vanishing gradient problem in RNN, LongShort Term
Memory (LSTM) [67] is used. We follow [3] for implementation.

Transformer Model: Transformer Model uses attention mechanism. Attention mechanism
provides an improvement upon plain Sequence to Sequence by easing the flow of information
from source sequence to destination sequence. We follow [19] for implementation.

We show the performance of both of these models in Section 3.3.5. We observe that Transformer
Model provides higher tokenlevel accuracy (lower Word Error Rate) than LSTMRNN.

3.3.5 Experimental Results

We run extensive simulations and use two measures for evaluating the performances of the G2P
systems:

Word Error Rate (WER): For calculating Word Error Rate (WER), we use the following
formula:

WER =
E

T

where E denotes the number of words that disagree on their generated phoneme sequence and
reference phoneme sequence, and T denotes the total number of words.

Phoneme Error Rate (PER): For calculating Phoneme Error Rate (PER), we use the following
formula:

PER =
I + S +D

T

where I , S, D denote respectively the total number of insertion, substitution, and deletion
operations needed for all the words to align the generated phoneme sequence with the reference

3.3. G2P TRAINING AND LEXICON PREPARATION 25

Lexicon Model WER(%) PER(%)

Google LSTM-RNN 25.7 3.26
Transformer Model 23.6 2.71

Table 3.3: Performance on Critical Cases

Lexicon Model WER (%) PER (%)

Google LSTM-RNN 17.1 2.32
Transformer Model 14.8 1.88

Our Lexicon LSTM-RNN 10.5 1.42
Transformer Model 9.8 1.33

Table 3.4: Performance Comparison In General

phoneme sequence for each word. T denotes the total number of phonemes present in all the
words.

Our best performing model is Transformer Model. We use a batch size of 4096. Our neural
network has 3 hidden layers, each containing 256 nodes. We use a computer having 8GB RAM,
Intel Core i7 CPU, and Nvidia Geforce 1050 GPU for running all of the simulations. For each
model, we run the simulations for around 110K iterations taking around 5 hours.

Performance on Critical Cases

We report the experiment results of Google’s lexicon on critical cases in Table 3.3. We do not
report our lexicon here as critical cases are already included in our lexicon.

Performance Comparison In General

For comparing the performances of models trained on our lexicon and Google’s lexicon, we
randomly take 9000 entries from our manually verified 30K critical cases as the test set. We
use this test set for evaluating all the models. Though our actual lexicon contains these 9000
entries, we do not keep them in our lexicon while doing the experiments to fairly evaluate the
performances of the lexicons. For both lexicons, we keep 90% of the lexicon in the train set
and the remaining 10% in the validation set. Table 3.4 shows the result. Models trained on
our lexicon outperforms those trained on Google’s lexicon by a significant margin. Moreover,
Transformer Model performs better than LSTMRNN.

Figure 3.2 and Table 3.5 categorize the errors of systems trained on 3 types of lexicons
(Romanized version of our lexicon is discussed in section 3.3.5) by using Algorithm 2. Here, we
report the results of the Transformer Model only as it has been better performing than LSTM
RNN in our experiments. We observe most of the errors are related to Open Close vowel, s or
sh, Diphthong, and Inherent Vowel confusions this finding also conforms to Figure 3.1 and
Table 3.2, which were error categorization of critical cases.

3.3. G2P TRAINING AND LEXICON PREPARATION 26

Figure 3.2: Performance Comparison on Different Error Categories

Error Type Our Lexicon Romanized Lexicon Google Lexicon
Total Error 1337 1406 2961

Inherent Vowel Confusion (%) 35.6 34.5 33.8
Open Close Confusion (%) 30.1 30.4 27.9

s or sh confusion (%) 13.3 13.0 12.1
Diphthong confusion (%) 10.7 9.8 13.1

Other Vowel Confusion (%) 1.9 4.3 2.7
s or ch confusion (%) 0.3 0.2 0.2
Nasal Confusion (%) 0.2 0.43 0.6

Other Error (%) 7.9 7.4 9.7

Table 3.5: Performance comparison on different error categories. Here each of the three
rightmost columns denotes the model trained on that particular lexicon.

3.3. G2P TRAINING AND LEXICON PREPARATION 27

Figure 3.3: Comparison in terms of WER and PER

Effect of Romanization

For doing experiments on the effect of romanization on G2P conversion, we romanized all
grapheme sequences in our lexicon to prepare a romanized counterpart of our lexicon. During
romanization, each grapheme symbol in Bangla is replaced with a single English letter except
that if a consonant grapheme is not followed by a vowel grapheme, “O” was added after the
romanized symbol of that consonant as the roman symbol for ``অ'', which is usually inherently
pronounced in such cases. All the symbols used for romanization were completely disjoint to
avoid any ambiguity in the lexicon. Figure 3.3 shows the WER and PER of systems trained on 3
types of lexicons. Here, we report the results of the Transformer Model only as it has been better
performing than LSTMRNN in our experiments. Both versions of our lexicon perform better
(lower WER and lower PER) than Google’s lexicon. Also, romanization does not significantly
increase or decrease the performance.

Figures 3.4 and 3.5 show respectively the Word Recognition Accuracy (1−WER) and Phoneme
Recognition Accuracy (1−PER) with respect to number of iterations run during simulation.
Both versions of our lexicon perform better (higher Word Recognition Accuracy and higher
Phoneme Recognition Accuracy) than Google’s lexicon. Figure 3.6 shows Negative Log
Perplexity vs number of iterations. Both versions of our lexicon provide higher negative log
perplexity than Google’s lexicon.

Effectiveness of Our Identified Critical Cases

In this section, we want to establish that the improved performance of our lexicon comes not
only from the increase in the number of training samples but also due to the fact that the critical
cases identified by our novel methodology have been added as training samples. For this, we

3.3. G2P TRAINING AND LEXICON PREPARATION 28

Figure 3.4: Word Recognition Accuracy vs Iteration

Figure 3.5: Phoneme Recognition Accuracy vs Iteration

3.3. G2P TRAINING AND LEXICON PREPARATION 29

Figure 3.6: Negative Log Perplexity vs Iteration

Lexicon Model WER (%) PER (%)

Google LSTM-RNN 17.1 2.32
Transformer Model 14.8 1.88

New Lexicon LSTM-RNN 12.6 1.54
Transformer Model 11.2 1.49

Table 3.6: Effectiveness of critical cases. Both lexicons are of size 60K. New Lexicon
consists of 21K critical cases and 39K entries from Google lexicon.

prepare a new training lexicon by combining a portion of the Google lexicon with a portion
of our identified critical cases. As we have kept 9K entries from the critical cases as our test
set, we take the remaining 21K critical cases and combine them with the randomly taken 39K
entries from Google lexicon to prepare a new lexicon of size 60K. While taking entries from
the Google lexicon, we ensure that we do not take any repeated entry that has already been in
the critical cases and added to the new lexicon. We then compare the performance of this new
lexicon with the Google lexicon, both of which are of the same size (60K), on our test set. The
results are in Table 3.6. The results clearly show that even in the case of same sized lexicons,
our identified critical cases can significantly improve the performance as evidenced by the lower
WER and lower PER than those for the Google lexicon.

Chapter 4

Speech Corpus Preparation

In this chapter, we describe our speech corpus development process. Specifically, we describe
our domain study, speech corpus development approach in a supervised environment, automatic
speech transcription approach, and synthetic speech corpus generation approach.

4.1 Voice Command Domain Study

Our primary objective was to cover all the voice assistant accessories that Bixby supports.
Moreover, we consider the future scopes and select every possible domain in which we
can recognize Bangla voice commands. We study the popular voice assistants Google
Assistant, Google Home, Amazon Alexa, Siri, Bixby, Cortana, and more. We explore them and
collect sentences from Smartphone commands (System commands, Contacts, Media Player,
Camera, Gallery, Messaging, Weather, Date, Alarm, Email, etc.), Home appliances (Smart
TV, Fridges, AirConditioners, Computers, etc.), Office work accessories (Projectors, Printers)
and Automotive navigation applications (Vehicle routing, Utility Control). For automotive, we
consider all voice commands supported by popular smart cars such as Ford Sync, Lexus Voice
Command, Chrysler UConnect, Honda Accord, and GM IntelliLink. We prepare a list of 1700
voice commands that covers the entire target domain. Table 4.1, 4.2, 4.3 show summary of our
voice command domain.

Domain Info Number of Commands
Smartphone Navigation/Operation 340

Popular Apps 190
Home Appliances 440

Office 180
Automotive 550

Total 1700

Table 4.1: Target Domain of Voice Command

30

4.2. PREVIOUSLY AVAILABLE SPEECH CORPUS 31

Included Smartphone Actions
Launch Apps basic commands

Call Texting
Camera Music

Set Alarm/ Reminder Browse
Write Notes Use Radio

Use Bluetooth Wi-Fi

Table 4.2: Smartphone Operations Included

Included Apps
Facebook Twitter
Calendar Weather

News apps Pandora
Music apps Navigation/Maps

Uber Google Play Store
YouTube Spotify

Sound Cloud Tuneln

Table 4.3: Apps Included

4.2 Previously Available Speech Corpus

We consider all publicly available Bangla speech corpus as well as prepared a speech corpus of
our own. The largest publicly available speech corpus is provided by Google [38]. Table 4.4
shows the summary of this corpus. It contains 217902 utterances from 505 speakers. Among the
speakers, 323 of them are men and 182 women. The size of the speech corpus is approximately
220 hours.

4.3 Supervised Speech Corpus Development

Different approaches for speech corpus development have been explored by the researchers. A
basic approach is to manually transcribe existing audio files. This is a very time consuming,
monotonous, and errorprone task. Transcription of onehour recording can take 3 to 5 hours or
more [68]. A comparatively faster approach is to develop an interactive mobile application that

Aspect Value
Number of Utterance 217902
Number of Speaker 505

Male Speaker 323
Female Speaker 182

Corpus Size 220 Hours

Table 4.4: Google’s Crowd-Sourced Speech Corpus

4.3. SUPERVISED SPEECH CORPUS DEVELOPMENT 32

(a) User Registration (b) Data Collection Interface

Figure 4.1: Data Collection App

prompts the user to read a particular text [39]. The user will have to start recording manually,
read the prompted text, and end recording manually. In our experience, preparing one hour’s
worth of transcribed speech takes around 2 hours in this approach.

Bangla voice commands contain a set of technical words that are missing from all publicly
available speech corpus. Also, the sentence structure of the voice commands is sometimes
different from regular Bangla sentences. So we develop a speech corpus solely containing
Bangla voice commands.

4.3.1 Data Collection App

We prepare an Android app for speech data collection following the approach by [39]. Figure
4.1 and 4.2 shows the app interface we used for speech data collection.

4.3. SUPERVISED SPEECH CORPUS DEVELOPMENT 33

User Registration

During the user registration process, we collect the following information about the current
recording session:

• User Name

• Email

• Gender

• Age

• Recording Environment

• Accent

After the registration process, the recording screen will appear.

Data Collection Interface

In the recording screen, the current sentence, current sessionid, and current sentence id will be
shown. The session id is unique to this session. The sentence id is unique to this text across all
sessions. At the bottom of the recording screen the following buttons will appear:

At the bottom of the recording screen the following components will appear:

Start Button This button is used for starting the recording. This remains disabled if
recording is running.

Stop Button This button is used for stopping the recording. This remains disabled if
recording has not started yet.

Play Button This button is used for playing the audio file related to the current sentence if it
had been recorded.

Next Button Save current recording and move to next sentence. A recorded sentence can be
found, played, and updated at any time by finding it through the gallery.

Skip Button If the user is unable to understand the current sentence, he/she can choose to
skip the sentence. A skipped sentence can be recorded anytime by finding it through the
gallery.

Auto Advance Checkbox When the user becomes comfortable with fast recording, the
autoadvance mode can be enabled using the checkbox. In autoadvance mode, the next
sentence will appear as soon as the user finishes recording the current sentence. In this
mode, the user can record up to 500 sentences in 30 minutes.

4.4. CORPUS GENERATION USING AUTOMATED TRANSCRIPTION 34

In the navigation bar, some more feature is given. Such as:

Back To Previous If any manual mistake needs to be corrected during the autoadvance
mode, this button needs to be used. This is faster than finding the sentence in the gallery.

Open Gallery Shows all sentences recorded or skipped. The recorded sentences appear in
green, the skipped sentences appear in red.

Terminate Session Used for terminating current recording session and sending information
to the server.

Gallery Interface

Gallery interface shows all sentences recorded or skipped. The recorded sentences appear
in green, the skipped sentences appear in red. Users can select any sentence to open the
corresponding recording screen. Users can play recorded audio or rerecord audio if necessary.

Data Upload

The recorded audio files are named in a particular format (session_idsentence_id.wav). This
makes it easy to find the corresponding text transcription of the audio and related speaker
information. The recorded audio is 16kHz monochannel audio files. After the user terminates
the session, all recorded audio files will be zipped together. The user can then use the data upload
interface to upload the zipped audio via email or a Google form. The email is autogenerated
and the user only needs to select the sending email address and click send.

4.3.2 Summary of Voice Command Specific Corpus

Table 4.5 shows the summary of the corpus. We are able to collect 28973 sentences from 56
speakers using this application. Among the speakers, 34 are men and 22 are women. The
size of this corpus is around 50 hours. 20 hours of speech data came from university student
volunteers who participated in our workshop. Around 30 hours of speech data were collected by
contacting NGOs who arranged data collection sessions among other volunteers. The age range
of the speakers ranges from 20 to 35 with average age around 26.

4.4 Corpus Generation Using Automated Transcrip-
tion

Figure 4.3 shows an overview of our system. We use publicly available audiobooks and TV
news recordings collected from YouTube as an audio source in our system. All our audio files

4.4. CORPUS GENERATION USING AUTOMATED TRANSCRIPTION 35

(a) Speech Gallery (b) Data Upload

Figure 4.2: Data Collection App

Aspect Value
Number of Utterance 28973
Number of Speaker 56

Male Speaker 34
Female Speaker 22

Speaker Age (Avg) 26
Corpus Size 50 Hours

Table 4.5: Voice Command Corpus

4.4. CORPUS GENERATION USING AUTOMATED TRANSCRIPTION 36

Audio Source

Background Noise
Removal

Speaker Diarization
(Speaker wise audio

folder)
Gender Detection

Silence Segment
(Limit audio

duration to 35s)

Automatic
Transcription

Speech
Corpus

Text Source

OOV Word List
Preparation

Speech Synthesis

Figure 4.3: Overview of Automated Corpus Preparation

are converted to a 16 kHz mono channel WAV file. All the audio files are equal to or less
than 30 minutes in length. We then remove the background noise of the audio files. After
that, we perform speaker diarization on the audio files to group the audio portions of the same
speaker together. We perform automatic gender detection on the audio files to identify the
gender of the speaker. We segment each of the audio files in silence intervals and ensure that
all the audio segments are less than or equal to 35 seconds. Finally, we automatically generate
transcriptions for the audio files as we do not have corresponding text for the audio files. For
generating the transcriptions with reasonable confidence, we have designed and implemented
an iterative algorithm (Algorithm 5). Details of each of the system components are described in
the following sections.

4.4.1 Background Noise Removal

It is important that we remove the background noise from the audio files for proper speech
transcription. We follow the approach described in [69] and [70]. We study the Melfrequency
cepstral coefficients (MFCC) features of the audio files for noise identification. In the beginning,
the autocorrelation coefficients of relatively higher order are extracted. Then we use Fast
Fourier transform (FFT) on the magnitude spectrum of the resultant speech signal and it is
differentiated with respect to frequency. Finally, the differentiated magnitude spectrum is
transformed into MFCClike coefficients.

4.4. CORPUS GENERATION USING AUTOMATED TRANSCRIPTION 37

4.4.2 Speaker Diarization

Speaker diarization refers to the task of grouping speech segments in an audio stream containing
multiple speakers in a way that speech segments from the same speaker form a cluster. We
follow the approach described in [71] for speaker diarization. This speaker diarization system
(see also [72], [73]) is based on the binary key speaker modelling [74].

Binary key speaker modeling provides a compact and efficient representation of speech
segments or clusters in the form of a vector. The vector captures speakerspecific features. The
classification task is carried out by computing the similarity measures between binary keys. The
proposed system obtained a Diarization Error Rate (DER) of 11.93%.

In our system, ICMC (Q transform Melfrequency cepstral coefficients) were used in place
of baseline MFCC acoustic features. For clustering, an affinity matrix is calculated from the
data points. The eigenvectors corresponding to the top eigenvalues estimated from the affinity
matrix is used as the similarity measure between data points. Then data points are clustered
according to this similarity measure. Then we smooth and denoise the data, perform eigenvalue
decomposition and sort the eigenvalues in descending order. Then we select the number of
clusters according to the value which maximizes the eigengap. The spectral clustering algorithm
often results in the estimation of a single speaker, therefore the system is configured to force the
return of two or more clusters. Then the system performs preclustered thresholding of the
eigengap between the two largest eigenvalues.

4.4.3 Gender Detection

We extract Mel Frequency Cepstrum Coefficients (MFCCs) features from the audio files. A
lot of acoustic features like peak frequency (the frequency with the highest energy), meanfun
(average of fundamental frequency measured across acoustic signal), minfun (minimum
fundamental frequency measured across acoustic signal), etc. are included in MFCC features.

We use a Gaussian Mixture Model to build the gender detection system from these extracted
features. The training dataset consists of Mozilla common voice data set. We had almost 58,000
male voice clips and 17,000 female voice clips in the train set. After training, a test data set
consisting of manually tagged Bangla audio clips are used for evaluation. The test set had 826
male and 590 female audio clips. Even though the training set and test set had completely
different languages, we achieved a recognition rate of 85% and 98% for male and female clips
respectively.

4.4.4 Silence Based Segmentation

We segment each of the audio files on silence intervals and ensure that all the audio segments
are less than or equal to 35 seconds. We use PyAudioAnalysis [75] for this task.

4.4. CORPUS GENERATION USING AUTOMATED TRANSCRIPTION 38

Figure 4.4: Overview of Automatic Transcription

We take 0.4 seconds as minimum silence length (the minimum length of the silence at which a
split may occur) and 0.0001 as silence threshold (the energy level (between 0.0 and 1.0) below
which the signal is regarded as silent).

4.4.5 Automatic Transcription Generation

As we did not have any reference text for any of the audio files, we had to automatically generate
the transcriptions. We designed and implemented an iterative algorithm for this task (Algorithm
5). This algorithm automatically transcribed processed speech data, does sanity testing, and
adds the accurate speechtext segments to the speech corpus.

This algorithm uses two speech recognition systems: one is Google Speech API and another is
our speech recognition system that has been trained on publicly available 220 hours of speech
data from Google (out of the remaining 3 hours, 2 hours for the test set, 1 hour for validation
set). We use a hybrid CTCAttention based end to end system for training our ASR [76]. The
flowchart of the automatic transcription process is given on 4.4

We observe that none of the two systems provide fully accurate performance and Google API
provides much better performance than our system. To generate transcription with reasonable
confidence, we decide to generate transcriptions using both ASR models. Our intuition is that,
for each of the audio files, if we take the longest common sequence of consecutive words
between the outputs of both the systems and take only the audio and transcription for that
matched portion, we can be confident enough about the accuracy of the transcription. However,
we cannot do this at the start because our speech recognition system was performing quite

4.4. CORPUS GENERATION USING AUTOMATED TRANSCRIPTION 39

poorly initially. So, we follow an iterative strategy where we add the Google Speech API
transcription to our speech corpus if it passes the sanity test performed by our developed ASR
system. To perform the sanity test, we generate the transcriptions of the audio files from both
of the systems. We consider the longest common sequence of consecutive words from both of
the transcriptions. We take the percentage of the length of this matched portion with respect to
the length of transcription from Google API. If this percentage value is greater than a threshold
(50%), then the speech API transcription has passed the sanity test. Even though Google API
transcription passing the sanity test still has some errors, adding these transcriptions to our corpus
increases our ASR performance due to the larger corpus size. In the second iteration, we use our
ASR trained on the extended speech corpus to perform sanity testing of the Google speech API
transcription again. Because in the first iteration, some data may have failed the sanity testing
because of the errors introduced by our own ASR. In the second iteration, more data passes the
sanity test and we add them to our speech corpus.

At each iteration, we increase the number of training data to get a better model in the next
iteration. Note that, we only try to increase the performance of our speech recognition system.
We stop iterating when the number of newly added training samples does not increase much
compared to the previous iteration. At the start of the last iteration, we delete the training samples
added at the previous iterations. Finally, for each of the audio files, we compare our transcription
with Google API transcription and we take the longest common sequence of consecutive words
between the outputs of the twomodels. We take only the audio and transcription for that matched
portion to be included in our final speech corpus. Thus, the final corpus becomes free from any
transcription error introduced by either ASR model. We only consider exact matching within
our threshold. The matching threshold of 50% is intuitive. It may be possible to improve the
algorithm by tuning this threshold. But we avoid doing that due to the computational complexity
of the iterative corpus generation algorithm.

In this approach, we exploited the performance gap between our ASR and Google Speech API
to extend the speech corpus. We refer to the corpus generated from Automatic transcription as
’Transcribed corpus’. The size of the Transcribed corpus is around 510 hours.

4.4.6 Evaluation of Automatic Transcription

Figure 4.5 shows the histogram of the percentage of the longest common sequence of
consecutive words (LCSCW). We calculate it in the following way. We calculate the LCSCW
between the transcription provided by our ASR and Google Speech API. We calculate the
percentage of LCSCW with respect to the transcription length provided by the Google Speech
API. We plot the histogram of these percentages within 10 ranges: 010%, 1020%, etc. Each
color in the graph represents a particular iteration. We can see from figure 4.5 that in the
earlier iterations, most of the LCSCW percentages are in shorter regions. Iteration 1 has the

4.4. CORPUS GENERATION USING AUTOMATED TRANSCRIPTION 40

Algorithm 5 Iterative Algorithm for Transcription
1: ot← Our ASR transcription
2: gt← Google API transcription
3: lcscw ← Longest common sequence of consecutive words
4: gc← Google speech corpus
5: oc← Our speech corpus
6: dc← Duration of train data at current step
7: dp← Duration of train data at previous step
8: dδ ← Change in duration of speech corpus
9: al← List of audio files

10: while dδ ̸= 0 do
11: Train ASR on (gc+ oc)
12: oc← {InitialCorpus}
13: dc← 0
14: for each audio in al do
15: generate ot
16: get gt
17: lcscw ← lcscw(ot, gt)

18: percentage← len(lcscw)∗100
len(gt)

19: if lcscw_percentage > 50% then
20: dc← dc+ audio duration
21: oc← oc+ gt

22: dδ ← dc− dp
23: dp← dc

24: Train ASR on (gc+ oc)
25: oc← {InitialCorpus}
26: for each audio in al do
27: generate ot
28: get gt
29: lcscw ← lcscw(ot, gt)

30: percentage← len(lcscw)∗100
len(gt)

31: if lcscw_percentage > 50% then
32: oc← oc+matched audio segments

33: return oc

4.4. CORPUS GENERATION USING AUTOMATED TRANSCRIPTION 41

Figure 4.5: Histogram for percentage of longest common consecutive word sequence length
between two transcriptions with respect to transcription from Google Speech API

Iteration Transcribed Corpus size WER (%)
1 207 hours 25.98
2 379 hours 24.25
3 426 hours 23.64
4 464 hours 23.46
5 492 hours 23.22
6 509 hours 23.08
7 512 hours 23.00

Forced alignment 507 hours 22.70

Table 4.6: Evaluation of Corpus by Iteration

highest frequency in the lower percentage area. As we add more data to the training corpus, the
performance of our ASR increases. It starts recognizing more words accurately, resulting in a
longer common consecutive word sequence length. We can see that in iteration 6 and 7, there
are more sentences with higher LCSCW percentages. Figure 4.5 shows the rightward shift of
the histogram during different iterations of algorithm 5.

Table 4.6 shows the evaluation of the corpus generated at each iteration of our algorithm. The
second column shows how many transcribed speech data were generated at that particular
iteration. We train a hybrid CTCAttention based end to end system using each corpus and
evaluate the performance of that system. We use our generated corpus at each step in addition
to the Google speech dataset for evaluation. We can also see in table 4.6 that the amount of
transcribed corpus generated at each iteration and corresponding WER reaches saturation after
only 67 iterations. One possible reason is the limited ability of the system to add variance to

4.5. SYNTHETIC SPEECH GENERATION FOR OOV WORDS 42

Aspect Value
Number of Utterance 150,000
Number of Speaker 5190

Male Speaker 2680
Female Speaker 2510

Speaker Age (Avg) 40
Corpus Size 510 Hours

Table 4.7: Automatically Transcribed Corpus

the existing training corpus. The size of the corpus after the system reaches saturation is around
510 hours. The drawback of this system is that it fails to utilize all collected audio files. But
there are two key benefits. It allowed us to transcribe 510 hours of speech data very quickly.
Also, this system is very useful in cases where the forced alignment technique cannot be used
directly (i.e., no reference text available).

4.4.7 Summary of Transcribed Corpus

Table 4.7 shows the summary of the corpus. We are able to collect around 150K sentences from
5190 speakers using this application. Among the speakers, around 2680 are men and 2510 are
women. The size of this corpus is around 510 hours. Due to the crowdsourced nature of the
speech corpus, it is difficult to estimate the age distribution of the speakers. Since most of the
transcribed speech corpus is from news anchors of popular Bangla TV channels, we tried to
estimate an age distribution from the age information of known TV anchors. The average age
for male and female TV anchors is 41.5 and 39.3 respectively. The age of the anchors ranges
from 22 to 60.

4.5 Synthetic Speech Generation for OOV words

In this section, we describe our approach for synthetic corpus generation for outofvocabulary
Bangla words.

4.5.1 Out-of-Vocabulary Word List

We first prepare a large Bangla text corpus. Our text corpus has 10 million Bangla sentences
containing 1.7 million unique words. Among these words, 56000 words occur at least once in
the speech corpus. The rest of the words are considered outofvocabulary.

4.5. SYNTHETIC SPEECH GENERATION FOR OOV WORDS 43

Figure 4.6: Overview of our Text-to-Speech Architecture

4.5.2 TTS Model

We prepare our texttospeech (TTS) system using ESPnetTTS [77]. Specifically, we use
the Tacotron 2 [78] implementation of ESPnetTTS. Figure 4.6 shows the Tacotron 2 TTS
architecture. Tacotron 2 is a Recurrent Neural Network (RNN) based sequencetosequence
network. It has a bidirectional LSTM based (BLSTM) encoder and a unidirectional LSTM
based decoder. Additionally, it uses a locationsensitive attention mechanism. In our
implementation, the encoder network has 1 layer with 512 BLSTM units. The decoder network
has 2 layers with 1024 unidirectional LSTM units in each layer.

4.5.3 Speech Synthesis

Speech synthesis is done in the following manner. First, our TTS model takes an input text
sequence and generates log Mel filter bank feature sequence. Then log Mel filter bank feature
sequence is converted to a linear spectrogram. Finally, the GriffinLim algorithm [79] is applied
to the spectrogram to generate audio.

We use outofvocabulary words as input for our texttospeech system. We refer to the corpus
generated from Speech synthesis as ’Synthesized Corpus’. The size of the Synthesized corpus
is around 450 hours.

4.6. SPEECH CORPUS SUMMARY 44

Aspect Google Voice Transcribed Synthesized Total
Command

Num of Utt 217902 28973 150,000 1.64M 2M
Num of Speaker 505 56 5190 1 5752
Male Speaker 323 34 2680 N/A 3037

Female Speaker 182 22 2510 N/A 2714
Speaker Age (Avg) N/A 26 40 N/A 38.75

Size (Hours) 220 50 510 450 1230

Table 4.8: Overall Speech Corpus

4.6 Speech Corpus Summary

Table 4.8 shows the summary of our entire speech corpus. The overall size of the corpus is
around 1230 hours and the number of speakers is 5752.

Chapter 5

Speech Recognition Architecture

In this chapter we describe the speech recognition architectures we used for our work. We
experiment on both traditional and endtoend architectures.

5.1 Traditional ASR System

For our traditional ASR, we use the traditional HiddenMarkovModel (HMM) based ASR recipe
provided by Kaldi ASR engine. It has three main components: the acoustic model, language
model and the phonetic dictionary. We use Mel Frequency Cepstral Coefficents (MFCC) as our
speech feature. Figure 5.1 shows the overview of a traditional ASR system.

5.1.1 Speech Feature Extraction

During feature extraction, each audio is split into a frame of 25 millisecond. Then MFCC
feature is extracted from each audio frame. Melfrequency cepstral coefficients (MFCCs)
are coefficients are derived from a type of cepstral representation of the audio clip. In this
representation, the frequency bands are equally spaced on the mel scale, which approximates
the human auditory system’s response more closely than the linearlyspaced frequency bands
used in the normal cepstrum. MFCCs are commonly derived from an audio frame as follows:

• Taking the Fourier transform of the speech audio frame. Audio frame duration is 25
millisecond in our case.

• Mapping the powers of the spectrum obtained above onto the mel scale, using triangular
overlapping windows. The overlapping window duration is 10 millisecond for our work.

• Taking the logs of the powers at each of the mel frequencies.

• Taking the discrete cosine transform of the list of mel log powers.

45

5.1. TRADITIONAL ASR SYSTEM 46

Figure 5.1: Traditional ASR Overview

• The MFCCs are the amplitudes of the resulting spectrum.

5.1.2 Acoustic Model

The acoustic model provides a probability for a speech feature to originate from different
phonemes or subphonemes. We use Gaussian Mixture Model (GMM) as our acoustic model.
We have 47 phonemes in our phoneme list. Each phoneme is composed of three subphonemes.
So there are 141 subphonemes in total. For a particular speech feature, GMM provides the
probability of this feature to originate from each of the 141 subphonemes.

5.1.3 Language Model

The language model provides the probability of a word of a sequence given other nearby words.
It can be very useful when the pronunciation is not very clear or when there are multiple
candidate words sounding similar. The language model improves the ASR performance by
providing some contextual relevance of a candidate word and removes ambiguities. We use
trigram based language model in our work. It is separately trained on our Bangla text corpus
mentioned in section 3.2.

5.1.4 Phonetic Dictionary

The phonetic dictionary provides the maps the phonetic transcription of word to its written
representation. We use the phonetic dictionary described in section 3.3. It has phonetic
transcription for around 100K most frequent Bangla words.

5.1. TRADITIONAL ASR SYSTEM 47

Figure 5.2: Traditional ASR Training

5.1.5 Training Phase

Figure 5.2 shows the training phase of the ASR system. A textspeech pair is taken by the
system. Each text is a sequence of words. Each word is replaced by its corresponding
phonetic transcription in the lexicon. Each phoneme is then replaced by three corresponding sub
phonemes. On the other hand, MFCC feature sequence is extracted from the speech. Then sub
phoneme sequence andMFCC feature sequence is aligned together. This alignment information
is used by the GMM model that learns predict the underlying subphoneme probabilities by
looking at the MFCC feature. Subphoneme to subphoneme transition probabilities are also
learned and used by the HMM as state transition probabilities.

5.1.6 Decoding Phase

Figure 5.3 shows the decoding phase of the ASR system. It is based on Hidden Markov Model
(HMM). HiddenMarkovModel is a statisticalMarkovmodel in which the system beingmodeled
is assumed to be a Markov process with unobservable hidden states. HMM assumes that there is
another observable process whose behavior depends on the hidden process. The goal is to learn
about the hidden process by observing the observable process.

In the context of speech recognition, the observable states are MFCC feature sequence. The
hidden states are the subphonemes. The probability of a hidden state (subphoneme), given the
observable state (MFCC feature) is modeled by Gaussian Mixture Model. This model as well
as the hidden State transition probabilities (subphoneme to subphoneme) is learned during
the training phase as described in the previous section. These two probabilities along with the
language model probabilities are used by the viterbi decoder during decoding phase.

5.2. END-TO-END SYSTEM 48

Figure 5.3: Traditional ASR Decoding

5.2 End-to-End System

The endtoend system does not use any phonetic representation at an intermediate step. It
directly tries to predict the grapheme sequence from speech feature sequence. Therefore, a
phonetic dictionary is not required by the endtoend models. Figure 5.4 shows the overview
of our endtoend ASR. It has an encoder unit with Bidirectional Long Short Term Memory
(BLSTM) Units, a Connectionist Temporal Classification (CTC) unit and an attention based
decoder. We also incorporate a Recurrent Neural Network (RNN) based language model with
this system using shallow fusion.

5.2.1 Speech Feature

For each audio frame, we use 40MFCC features along with their first and secondorder temporal
derivatives. This gives us 120 features per frame. The size of audio frame is 25 millisecond.
MFCC feature extraction is already described in section 5.1.1.

5.2. END-TO-END SYSTEM 49

Output

Speech

Hybrid
CTC-Attention

Beam Search Language Model

Figure 5.4: Overview of End-to-End Architecture

5.2.2 CTC-Attention

Our EndtoEnd architecture is based on the work of [76]. It is shown in Figure 5.5. We use
hybrid of CTC and attention mechanism. CTC and attention encoder networks share the same
Bidirectional Long Term Memory Units (BLSTM). The encoder network had 4 layers with 320
BLSTM cells in each layer. The linear project layer has 320 cells. It is followed by each BLSTM
layer. The decoder network has 1 layer. It has 320 unidirectional LSTM cells. The shared
encoder absorbs the input sequence into hidden states and the attention decoder generates the
letter sequence. The CTC network also contributes in picking the best possible letter sequence
by providing the align scores between speech features and letter sequence.

During decoding with beam search, both attention scores and CTC scores are combined in the
following manner. Let p(on) be the probability of output label on at position n, given previous
out labels and w1 be the CTC weight.

log phyb(on) = w1 log p
ctc(on) + (1− w1) log p

att(on) (5.1)

Here CTC weight w1 is a hyperparameter that needs to be tuned.

5.2.3 Language Model

The language model is trained on a large Bangla Text corpus. We experiment with both word
level and characterlevel Recurrent Neural Network (RNN). For wordlevel RNN, we use 1
hidden layer with 1000 LSTM cells. Most frequent 65000 Bangla words are considered in our
vocabulary. For character level RNN, we use 2 hidden layers with 650 LSTM cells each.

5.2. END-TO-END SYSTEM 50

Figure 5.5: End-to-End Architecture

Figure 5.6: RNN Language Model

5.2. END-TO-END SYSTEM 51

5.2.4 Beam Search

We use shallow fusion technique to combine the language model scores into the EndtoEnd
system [80]. Let, b be the width of beam search and v be the vocabulary size. At each step of
beam search, b partial hypotheses are maintained by the system. In the next beam search step,
each of these b hypotheses is extended by each of the tokens in the vocabulary. The total number
of candidates becomes bv. For each of these candidates, the following score is calculated.

log p(on) = log phyb(on) + w2 log p
lm(on) (5.2)

Here, p(on) be the probability of output label on given the previous output labels, phyb(on) be
the score from hybrid CTCattention system, plm(on) be the language model score and w2 be
the language model weight. After calculating scores for each of the bv candidates, the top b

candidates are considered for the next beam search step. The language model weight w2 is a
hyperparameter that needs to be tuned.

Chapter 6

Context Specific Optimization of
Voice Commands

Voice command recognition task commonly involves an Automatic Speech Recognition (ASR)
system with contextspecific optimization. Context information for a specific smartphone user
includes contact names, installed apps, songs, media files, location, recent search history, the
content of the screen user is looking at, etc. Figure 6.1 shows the overview of contextspecific
optimization of ASR system. This context information changes frequently so it is desired that
the contextual model will be updated onthefly within the device.

Some notable work on contextual speech recognition include [43], [44], [46], [47], [50], etc.
Google has incorporated contextual information with their stateoftheart speech recognition
system [40], [42], [41] and more recently with EndtoEnd speech recognition system [45]. All
of the approaches used by Google are variations of ngram based model for context detection.
We propose a multilabel topic modeling approach for context detection which has several
advantages over the ngram based approach. Ngram based approach is too rigid. It is not robust
to synonymous, missing, or misplaced words. All possible synonyms and ngram variations
need to be present in the contextual corpus. The topic modeling approach works on keywords
which is more flexible and robust than the ngram approach. A variable number of contexts can
be easily handled with multilabel topic modeling.

Our contribution in this work is the following.

• We propose multilabel topic modeling based contextual rescoring for Bangla Voice
Command recognition

• We consider a wide range of Bangla voice commands (for smartphone, home appliances,
automobiles, etc.)

• Our rescoring system achieves WER of 12.8% when provided the context accurately. It
outperforms all other existing voice command recognition systems in Bangla.

52

6.1. RELATED WORKS 53

Figure 6.1: Contextual ASR Overview

6.1 Related Works

In various languages, researchers have used contextual information to increase the performance
of voice recognition systems. [40] present an online approach for adjusting language model
weights of ngrams corresponding to a specific context. [41] describe a composition based on
thefly rescoring mechanism to employ contextual language models in a speech recognition
system. [42] useNamedEntity Recognitionwithin the automatic speech recognitionword lattice
for identifying contextually related paths. They report that their approach minimizesWord Error
Rate (WER) by 12.0% on amedia playing commands data set. [43] provide amechanism to learn
contextual information in an unsupervised manner and for building automatically contextually
biased models. [44] discuss two interpolation methods to merge contextual information with
knowledge from a general language model. [45] consider contextual information during beam
search in an endtoend speech recognition system. [46] discuss contextual recurrent neural
network language model. They consider a contextual input vector for each word of a sentence.
[47] use classbased language models which provide contextual information during decoding in
an endtoend speech recognition system. Moreover, [48] addresses an endtoend ASR for low
resource multilingual ASR context. [49] develop an endtoend automatic speech recognition
system that is situation informed. They consider speaker gender, conversational history, etc. to
develop the situationinformed system. [50] develop an endtoend speech recognition system

6.2. OUR SYSTEM 54

Figure 6.2: System Overview

that considers dialog context. We have not found any research work that focuses on considering
contextual information for voice command recognition in Bangla language.

6.2 Our System

In this section, we describe our system in details.

6.2.1 System Overview

We use EndtoEnd ASR in our system. We use shallow fusion technique similar to the system
described by [80] to incorporate the language model with the EndtoEnd architecture. Scores
from CTCAttention and language model are combined during beam search to generate a set of
candidate hypotheses. Then we apply contextual rescoring on these candidates using Labeled
LDA.

6.2.2 End-to-End Architecture

Our EndtoEnd architecture is based on the work of [76]. We use hybrid of CTC and attention
mechanism. CTC and attention encoder networks share the same Bidirectional Long Term
Memory Units (BLSTM). The encoder network had 4 layers with 320 BLSTM cells in each
layer. The linear project layer has 320 cells. It is followed by each BLSTM layer. The decoder
network has 1 layer. It has 320 unidirectional LSTM cells. For each audio frame, we use 40
MFCC features along with their first and secondorder temporal derivatives. This gives us 120
features per frame. The shared encoder absorbs the input sequence into hidden states and the
attention decoder generates the letter sequence.

6.2. OUR SYSTEM 55

During decoding with beam search, both attention scores and CTC scores are combined in the
following manner. Let p(on) be the probability of output label on at position n, given previous
out labels and w1 be the CTC weight.

log phyb(on) = w1 log p
ctc(on) + (1− w1) log p

att(on) (6.1)

6.2.3 Language Model

The language model is trained on a large Bangla Text corpus. We experiment with both word
level and characterlevel Recurrent Neural Network (RNN). For wordlevel RNN, we use 1
hidden layer with 1000 LSTM cells. Most frequent 65000 Bangla words are considered in our
vocabulary. For character level RNN, we use 2 hidden layers with 650 LSTM cells each.

6.2.4 Beam Search

We use shallow fusion technique to combine the language model scores into the EndtoEnd
system [80]. Let, b be the width of beam search and v be the vocabulary size. At each step of
beam search, b partial hypotheses are maintained by the system. In the next beam search step,
each of these b hypotheses is extended by each of the tokens in the vocabulary. The total number
of candidates becomes bv. For each of these candidates, the following score is calculated.

log p(on) = log phyb(on) + w2 log p
lm(on) (6.2)

Here, p(on) be the probability of output label on given the previous output labels, phyb(on) be
the score from hybrid CTCattention system, plm(on) be the language model score and w2 be
the language model weight. After calculating scores for each of the bv candidates, the top b

candidates are considered for the next beam search step.

6.2.5 Contextual Rescoring

We use Labeled LDA for contextual relevance detection [81]. Regular LDA is an unsupervised
algorithm that is not suitable for multilabel topic modeling. Unlike regular LDA, Labeled LDA
allows the incorporation of a set of predefined topics. In our case, we consider each candidate
sentence as a document and each contextual tag as a topic. We use label depth of 8 which is
equal to the length of our contextual tags. We do not apply any dictionary pruning. Alpha and
beta priors are set 0.1 and 0.01 respectively. Here, alpha represents documenttopic density and
beta represents topicword density. We use a set of 37 contextual tags. We run training for 20
iterations.

6.2. OUR SYSTEM 56

Figure 6.3: Contextual Rescoring in Client Device

Figure 6.4: Rescoring System

Figure 6.3, 6.4 illustrates the context specific rescoring approach we used. After beam search,
we have b candidates (assuming beam width of b) with their corresponding scores. First, we
normalize the scores. Then, we apply topic modeling on each candidate. The output is a
realvalued vector of length 37(i.e. the number of context tags). Each value represents the
relevance of the sentence to that particular context. If the detected context matches with any of
the ondevice contexts, a bias is added to this candidate’s score. Added bias is proportional to
contextual relevance. We use a context weight w3 to tune the contextsensitivity of the system.

6.3. CONTEXTUAL CORPUS MANAGEMENT 57

Algorithm 6 Contextual Rescoring
1: e2e← Scores from End-to-End system
2: rv ← Contextual relevance vector
3: cl← Current device contexts
4: w3 ←Weight of contextual bias
5: normalize(e2e)
6: for each c ∈ candidateList do
7: rv = LabeledLDA(c)
8: for each r ∈ rv do
9: if r > threshold and r ∈ cl then

10: e2e[c] = e2e[c] + r × w3

11: output← Candidate with maximum e2e score

6.3 Contextual Corpus Management

6.3.1 Contextual Corpus Generation

We prepare a list of voice command templates from our domain study. These command
templates contain entity tags. An example of a command template is ‘<contact> েক কল কেরা'

(Call <contact>). Here, <contact> is an entity tag. We have a list of 1700 voice command
templates containing around 20 entity tags. The entity tags include contact names, app names,
number, time & date, song, artist, writer, book, place, movie, actor, food, gadget, team, player,
company, etc.

Figure 6.5 shows the contextual corpus generation process in user device. Whenever the user
adds a new contact, all the command templates containing the entity tag <contact> are populated
with the new contact name, and all the new sentences are added to the contextual text corpus.
Similarly, when the user downloads a new song, all the command templates containing the
entity tag <song> are populated and new sentences are added to the contextual text corpus. The
contextual annotation of the newly formed sentences depends on the contextual annotation of the
command template. Thus the contextual corpus gradually grows depending on the activity of the
user. The labeled LDA system is periodically trained on the updated corpus. The personalized
corpus of a particular user is fairly small, containing a few thousand sentences. It is possible to
train the labeled LDA on a midrange smartphone within a minute.

6.3.2 On-device Model Training

The information used for contextual model training is user’s private information such as contact
list, app list, list of songs, previous search history, location data, etc. So we need to perform the
contextual model training on client device to protect privacy (illustrated in figure 6.6). Therefore,
we consider the complexity of training the labeled LDAbased system on the client device.

6.3. CONTEXTUAL CORPUS MANAGEMENT 58

Figure 6.5: Contextual Corpus Extension

Figure 6.6: On Device Model Training

The main resource requirement of the labeled LDA training is the memory requirement. To be
specific, the memory is mainly required to keep track of the topic distribution over document
and word distribution over topic. So the memory requirement is dependent on the number of
topics, the number of keywords, and the number of documents in the training set. Currently,
the number of topics (i.e. contextual tags) is 37 and the number of relevant voice command
keywords is around 2000. We do not expect these two parameters to grow larger because we
already performed an elaborate domain study for voice commands. The memory requirement
can only grow with the number of documents (i.e. context annotated voice commands) in the
client device. For a typical user, we estimated the number of contacts, app lists, media list, etc.
to estimate the size of the contextual corpus. We consider how many of our voice commands
are associated with a particular entity tag, the number of possible values for each entitytag for
estimating the size of the contextual corpus.

6.4. DATASET 59

For example, let us assume there are 500 people in the user’s contact list and there are 20 voice
command templates with the entity tag <contact>. That means the contextual corpus will have
500 × 20 or 1000 voice commands related to this entity tag. We perform similar calculations
for each possible entity tag. According to our estimation, the contextual corpus size can vary
between 40,000 to 60,000 sentences for a typical user. So contextual model training will take
a few megabytes of smartphone memory. This is not a big overhead because nowadays even
midrange smartphones have around 4 to 8 GB of RAM. Moreover, we can easily perform the
model training at a time of the day when the user is usually inactive. If the size of the contextual
corpus grows beyond our estimate, then we can easily reduce the size based on recency and
frequency. For example, if a user downloads 10,000 songs in a device. We do not need to keep
all the songs in our contextual corpus. We will only keep the songs user has listened to recently
or frequently.

6.4 Dataset

6.4.1 Text Corpus

The text corpus was prepared after extensive crawling from various popular Bangla websites.
We crawl from around 42 websites and collect 10 million sentences. After collection of raw
sentences, we use text cleaning to remove nonBangla sentences, punctuation, alphanumeric
characters, inconsistency, duplicates from the collected text. Later, we normalize these
sentences. We convert numbers to text, handle abbreviations, manage special numeric
expressions in Bangla, normalize decimal point & percentage symbol, consider contact numbers,
date, etc. We also add 1700 voice command specific texts collected from our domain study.

6.4.2 Speech Corpus

We consider all publicly available Bangla speech corpus as well as prepared a speech corpus of
our own. The largest publicly available speech corpus is provided by Google [38]. It contains
217902 utterances from 505 speakers. Among the speakers, 323 of them are men and 182
women. The size of the speech corpus is approximately 220 hours. We also use our own open
domain Bangla speech corpus. This corpus has around 150,000 utterances from 5190 speakers.
There are 2680 make speakers and 2510 female speakers. The size of the speech corpus is
approximately 510 hours. Overall, our open domain Bangla speech corpus has around 730
hours of speech data.

Bangla voice commands contain a set of technical words that are missing from all publicly
available speech corpus. Also, the sentence structure of the voice commands is sometimes
different from regular Bangla sentences. So we develop a speech corpus solely containing

6.5. EXPERIMENTS 60

Bangla voice commands. We prepare an Android app for speech data collection following the
approach by [39]. We are able to collect 28973 sentences from 56 speakers using this application.
Among the speakers, 34 are men and 22 are women. The size of this corpus is around 50 hours.

6.5 Experiments

6.5.1 Training Details

First, we train the hybrid CTCattention based EndtoEnd system with our 780 hour speech
corpus described above. The RNN based language model was trained with our Bangla text
corpus containing 10 million sentences. The training of the EndtoEnd system takes around 72
hours and training of the RNN based language model takes around 18 hours. All experiments
are done on a desktop with core i7 CPU, 16 GB RAM, Nvidia RTX 2070 GPU.

6.5.2 Test Set

Our test set contains 2000 voice command utterances with 7 speakers. We manually annotated
the context for these utterances to prepare a context annotated test set. We refer to it as positive
test set. We also randomly annotate context of these utterances to prepare a negative test set.
the purpose of the negative test set is to test whether the system’s performance is affected with
inaccurate context information.

6.5.3 Results

Table 6.1 shows Phoneme Error Rate (PER), Word Error Rate (WER) and Sentence Error Rate
(SER) of our system in different setup. In our test set, the system using the character level
RNN language model performs significantly better than the system using the word level RNN
language model. The difference in performance is especially significant when test utterances
contain outofvocabulary words. 700 out of 2000 test utterances contain one or more outof
vocabulary words. For these utterances, WER was 26.6% and 46% for charRNN and word
RNN respectively. We tried larger wordRNN networks such as 2 layer, 1000 LSTM cells and
2 layer, 2000 LSTM cells. Overall WER were 27.2% and 26.9% respectively. Our rescoring
method outperforms trigram based contextual rescoring method.

The performance of our system for different voice command categories can be found in table 6.2.
In particular, regular system commands are recognized with very high accuracy (WER 7.6%)
because they contain no outofvocabulary words. Highest WER (19.2%) is found in the case
of random queries because they often contain outofvocabulary and outofdomain input.

6.5. EXPERIMENTS 61

Language Rescoring PER WER SER
Model (%) (%) (%)

Word-RNN
None 6.9 27.9 44.9

Trigram 6.4 25.7 42.4
LLDA 6.0 23.8 40.3

Char-RNN
None 4.5 16.7 28.4

Trigram 3.9 14.1 25.3
LLDA 3.7 12.8 22.8

Table 6.1: Performance comparison

Context Weight

W
ER

10

12

14

16

18

20

22

24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WER on Positive Set WER on Negative Set

Figure 6.7: Effect of Context Weight w3

CTC Weight

W
ER

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5

Figure 6.8: Effect of CTC Weight w1

6.5. EXPERIMENTS 62

Language Model Weight

W
ER

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 6.9: Effect of Language Model Weight w2

Category WER
Regular 7.6System Commands
Numbers 9.2
Contacts 12.4

Place 13.5
Date 15.7and Time

Media 12.7
Random 19.2Queries

Table 6.2: WER for different Categories of Voice Command

Figure 6.7 shows the WER of the system for different values of context weight w3 (algorithm
6). For the positive set, WER decreases upto w3 = 0.3 then it starts to increase again. For
the negative set, WER remains largely unaffected upto w3 = 0.3 then it starts to increase
almost linearly. For the experiment shown in Figure 6.7, we use CTC weight 0.3 and char
RNN language model with weight 0.5. Figure 6.8 and 6.9 shows the hyperparameter tuning on
validation set for CTC weight w1 (equation 6.1) and language model weight w2 (equation 6.2)
respectively. We found best results using CTC weight 0.3 and language model weight 0.5.

Chapter 7

Semi-supervised Speech Recognition

An annotated speech corpus is an essential component for the development of an automatic
speech recognition system (ASR). Speech corpus is a collection of audio files with
corresponding text transcriptions. Manually developing a speech corpus of required size is
a time consuming and monotonous task. It also requires some prerequisites like a recording
environment, clear utterance, and additional information such as gender of speakers, etc. For
achieving a large vocabulary continuous speech recognition we need approximately several
hundred to few thousands of hours of speech corpus. Semisupervised training can be a useful
solution to tackle the hurdles related to speech corpus development. Semisupervised training
can provide us a way to exploit a huge collection of publicly available text as well as audio
resources to improve the performance of an ASR.

In this work, we focus on improving an endtoend speech recognition system for Bangladeshi
Bangla using semisupervised training. There are very few publicly available large speech
corpora for Bangladeshi Bangla. Google released 229 hours of speech corpus for Bangladeshi
Bangla [38]. But there are huge amounts of publicly available news audio files, audiobooks,
recordings in Youtube and other media sources. There are a lot of text sources too like news
websites, blogs, ebooks, etc. Considering the abundance of unpaired audio and text data for
Bangla language, a semisupervised training method that can exploit both unpaired audio and
text is very useful. Proper use of the unpaired data along with existing paired speech corpus can
boost the performance of the Bangla ASR system.

Different researchers have tried different ways of incorporating this unlabelled, unannotated
data for speech recognition. Our approach is similar to the approach used by [63]. We utilize
an intermediate representation of speech and text data using a shared encoder network for semi
supervised training of the ASR system. Our contributions in this work are as follows:

• We propose a novel interdomain loss function based on global encoding distance (GED
loss) of speech and text data.

63

7.1. RELATED WORKS 64

• Our proposed Global Encoding Distance (GED) loss for interdomain features performs
better than both the Gaussian KLdivergence loss proposed in [63] and Maximum Mean
Discrepancy (MMD) loss proposed in [64]. Our loss function is more meaningful and
intuitive in the context of unpaired audio and text data. The performance of the GED loss
is more robust to minibatch size compared to Gaussian KLdivergence and MMD loss.

• To our best knowledge, this is the first work on Bangla language that incorporates semi
supervised training into deep learning based endtoend ASR architecture.

• Using our semisupervised training, we are able to exploit 1000 hours of unpaired
audio data and 800K unpaired Bangla sentences. Our experiments show that our semi
supervised training with GED loss achieves WER of 31.9%, outperforming both the
baseline endtoend system with an external language model and semisupervised method
with MMD loss.

7.1 Related Works

Researchers have explored different methods of semisupervised training for speech recognition.
[51] investigate largescale semisupervised training to improve acoustic models for automatic
speech recognition. They provide an empirical analysis of semisupervised training with respect
to transcription quality, data quality, filtering, etc. [52] pretrain the encoderdecoder network
with unpaired speech and text. They use a large amount of unpaired audio to pretrain the encoder
and synthesized audio from the unpaired text to pretrain the decoder. [53], [54] integrate active
learning jointly with semisupervised training in speech recognition system. [55] use transcribed
multilingual data and semisupervised training to circumvent the lack of sufficient training data
for acoustic modeling. They train deep neural networks as datadriven feature front ends.

[56] use utterancelevel and framelevel confidences for data selection during selftraining.
They find it beneficial to reduce the disproportion in amounts of paired and unpaired data
by including the paired data several times in semisupervised training. [57] describe the
combination of deep neural networks and graphbased semisupervised learning for acoustic
modeling in speech recognition. [58] use a sparse autoencoder to take advantage of both
unlabelled and labeled data simultaneously through minibatch stochastic gradient descent.

[59] try to improve the performance of a codeswitching speech recognition system for
MandarinEnglish using semisupervised training. They apply semisupervised learning for
lexicon learning as well as acoustic modeling. Similarly, [60] & [61] use untranscribed data
for Luxembourgish & Lithuanian ASR respectively. [62] use a twostep training method to
generalize the air traffic control speech recognizer. First, a baseline speech recognition system
is trained using a paired speech corpus and it is used to transcribe publicly available unlabeled

7.2. OUR SYSTEM 65

data. The transcribed data is then filtered based on confidence scores and is used to retrain the
acoustic model.

Recently, semisupervised training has been proposed in the context of endtoend ASR. [63]
propose a shared encoder architecture for speech and text inputs that can encode both data from
their respective domain to a common intermediate domain. They combine speechtotext and
texttotext mapping by using the shared network to improve speechtotext mapping. They
propose an interdomain loss function based on Gaussian KLdivergence which represents the
dissimilarity between the encoded features of speech and text data. They later proposed an inter
domain loss function based on Maximum Mean Discrepancy [64]. In both cases, they assume
that the encoded speech features in the current minibatch are sampled from one distribution and
encoded text features in the current minibatch are sampled from a second distribution. The inter
domain loss is calculated based on the discrepancy of these two distributions. This approach has
some weaknesses. The performance of this system varies based on the chosen minibatch size.
Moreover, this approach does not take into account the variance of the current encoded features
in the global context. We solve both problems by introducing a new interdomain loss function
based on global encoding distance.

7.2 Our System

In this section, we describe our baseline endtoend architecture as well as semisupervised
architecture.

7.2.1 Baseline System

Our baseline system is an endtoend ASR system based on the work of [76]. The architecture
is shown in Figure 7.1. CTC and attention networks are combined in this architecture. Both
networks share an encoder network. The shared encoder network has 6 layers of Bidirectional
Long Short Term Memory (BLSTM) units. Each layer has 320 BLSTM units. A linear
projection layer is connected to each BLSTM layer. The linear projection layer consists of
320 units. The decoder has 1 layer of unidirectional LSTM units. The number of LSTM units
in this layer is 300. The scores from the attention network and the CTC network are combined
during decoding. Let p(ct) be the probability of output label ct at position t, given previous
output labels and let w be the CTC weight.

log p(ct) = w log pctc(ct) + (1− w) log patt(ct) (7.1)

As for the audio feature, we use 40Melfrequency cepstral coefficients (MFCC) per audio frame.
We also consider their first and secondorder temporal derivatives. So, we have 120 speech

7.2. OUR SYSTEM 66

Output

Speech

Hybrid
CTC-Attention

Beam Search Language Model

Figure 7.1: Baseline System

features per audio frame. These features are fed to the shared encoder and the attention decoder
generates the character sequence.

We use a Recurrent Neural Network (RNN), based language model, in shallow fusion [80] with
the baseline endtoend architecture. We use both character level and word level RNN in our
experiments. The character level RNN has 2 layers of LSTM, with each layer having 650 LSTM
units. The wordlevel RNN has 1 hidden layer and this layer has 1000 LSTM units. For the word
level RNN, we use most frequently used 65000 Bangla words as our vocabulary set.

7.2.2 Semi-supervised System

Our semisupervised endtoend speech recognition system for Bangla is based on the work
of [63]. The semisupervised architecture is shown in Figure 7.2. We use a shared encoder
that encodes speech and text input sequences into a common intermediate domain. Speech
feature sequences and text character sequences are very different in length. Also, speech features
are continuousvalued vectors while text characters are discrete. We use a pyramid BLSTM
network that performs subsampling on the speech feature sequence. The subsampling process
shortens the length of the speech feature sequence. We use an embedding layer that converts the
text character ids to continuous domain vectors. Thus, the speech and the text inputs become
compatible with each other and they are both passed through a shared encoder containing
BLSTM units.

Our encoder network has 6 layers of BLSTM cells. The size of each layer is 320 units. The
decoder network has 1 layer of LSTM cells. The size of this layer is 300 units. First, this
architecture is trained in a supervised manner using the paired speech corpus. Then, we perform

7.2. OUR SYSTEM 67

Text
Input

Speech
Input

Decoder

Encoder

Pyramid BLSTM

Text
Output

Inter Domain
Loss

Embedding

Figure 7.2: Semi-Supervised System

retraining using both paired and unpaired corpus. We use 3 different loss to guide semi
supervised retraining. They are the following:

Speech-to-text loss This is a conventional speechtotext loss during supervised learning,
which consists of a negative loglikelihood of the groundtruth text given by the encoded
speech features. This loss is the combination of CTC and attention loss similar to the
baseline system. We denote this loss as Lsup. The calculation of speechtotext loss is
shown in Equation 7.2. We use CTC weight w1 to control the relative importance of CTC
and attention loss.

Text-to-text auto-encoder loss This is the negative loglikelihood that the encoder
decoder architecture can reconstruct the output text from an unpaired text corpus. We
denote this loss as Lae

Inter-domain loss This is the dissimilarity between distributions of the encoded speech
features and the encoded text features. We use global encoding distance as a measurement
for our interdomain loss. We denote this loss as Lid. More on this is described in section
7.3.

Lsup = w1Lctc + (1− w1)Latt (7.2)

Luns = w2Lid + (1− w2)Lae (7.3)

7.3. THE INTER-DOMAIN LOSS 68

 Speech Text

Pyramid BLSTM Embedding

Shared Encoder

Intermediate Domain

Figure 7.3: Overview of Encoding

Ltot = w3Lsup + (1− w3)Luns (7.4)

Equation 7.3 shows how the text autoencoder loss and the interdomain loss are combined to
generate the unsupervised loss. We use speech text ratio parameter w2 to control the relative
importance of the text autoencoder loss and the interdomain loss. Then both the supervised
loss Lsup and the unsupervised loss Luns are combined to calculate the total loss Ltot (shown
in Equation 7.4). Here, w3 is the supervised loss ratio which controls the relative importance
between the supervised and the unsupervised loss.

7.3 The Inter-Domain Loss

In this section, we describe our proposed interdomain loss function.

7.3.1 Encoding Procedure

First, we preprocess the speech and text data in a way that they become compatible with each
other. We reduce the length of the speech data by performing subsampling with a pyramid
BLSTM unit. We also transform the text sequences into a continuous domain vector with an
embedding layer. The preprocessed speech and text data are then absorbed by an encoder
unit. The output of the encoder unit is considered as the interdomain representation of the
speech and text data. The overview of the encoding process is shown in Figure 7.3. Figure 7.4
shows the visualization of the encoded data using tdistributed stochastic neighbor embedding
(tSNE) [82].

7.3. THE INTER-DOMAIN LOSS 69

Figure 7.4: t-SNE Visualization of Encoded Data

7.3.2 Maximum Mean Discrepancy Loss

Here, we describe the MMD loss proposed by [64] and some of its limitations. A minibatch is
formed by sampling the encoded features from unpaired speech and text data. All encoded
speech features in this minibatch are considered to be from one underlying distribution.
Similarly, all encoded text features from this minibatch are considered to be from another
underlying distribution. Then Maximum Mean Discrepancy between these two distributions
is calculated. A similar MMD calculation is repeated for the paired minibatch. Then the inter
domain loss is calculated by combining the MMD loss from the paired and the unpaired set, as
shown in Algorithm 7.

This approach has some limitations because the distribution assumption is made only
considering the unpaired data in the current minibatch. This loss calculation lacks the knowledge
about global distribution, density, and variance of the unpaired data. Also, assuming a
distribution based on the current minibatch makes the system unstable with respect to changing
batch size. In other words, the system is not guaranteed to converge to the optimal solution for
all minibatch sizes.

7.3. THE INTER-DOMAIN LOSS 70

Algorithm 7 Computation of the MMD loss
1: N ← Number of samples
2: D ← dimension of encoded vector
3: HSP ← encoded speech, paired minibatch
4: HTP ← encoded text, paired minibatch
5: HSU ← encoded speech, unpaired minibatch
6: HTU ← encoded text, unpaired minibatch
7: HSP ∈ RNsp×D, HTP ∈ RNtp×D

8: HSU ∈ RNsu×D, HTU ∈ RNtu×D

9: function Loss(HSP , HTP , HSU , HTU)
10: lp = MMD(HSP , HTP)
11: lu = MMD(HSU , HTU)
12: return lp+ lu

13: function MMD(HS, HT)

14: ms =
Ns∑
i=1

Ns∑
j=1

D∑
k=1

HS
i,kH

S
j,k

15: mt =
Nt∑
i=1

Nt∑
j=1

D∑
k=1

HT
i,kH

T
j,k

16: ks =

Ns∑
i=1

Ns∑
j=1

exp (
D∑

k=1

HS
i,kH

S
j,k−ms)

N2
s

17: kt =

Nt∑
i=1

Nt∑
j=1

exp (
D∑

k=1
HT

i,kH
T
j,k−mt)

N2
t

18: ks,t =

Ns∑
i=1

Nt∑
j=1

exp (
D∑

k=1
HS

i,kH
T
j,k−

ms
2

−mt
2
)

NsNt

19: return ks + kt − 2ks,t

7.3.3 Global Encoding Distance (GED) Loss

We have found that a significant performance gain can be made by exploiting the global
distribution and variance of the encoded unpaired data. We precalculate the encoding for our
entire unpaired dataset in every epoch and generate a representative matrix X for our unpaired
set. X is calculated as follows. A set of neighboring points are repeatedly sampled from the
encoded unpaired data. A representative mean is calculated for these neighboring points. X is
the concatenation of all such neighboring means. Here,X ∈ RNx×D whereNx is the number of
representative means andD is the dimension of an encoded feature. The representative mean is
used to reduce the size of the matrix X . This matrix X now functions as a global representing
matrix for the unpaired set. Now the global encoding distance for an encoded vector vi with
respect to X is defined as follows:

di = GED(vi|X) =
Nx

min
j=1
∥ei − vi∥ (7.5)

Here, ei is the ith row of the matrixX (ei ∈ R1×D) and it represents the ith representing mean of

7.4. CORPUS DESCRIPTION 71

Figure 7.5: GED Loss

the unpaired set.The global encoding distance for four sample points is shown in Figure 7.5. For
each point, the global encoding distance is the distance from this point to the closest representing
mean in matrix X . The pseudocode for calculating interdomain loss based on global encoding
distance is shown in Algorithm 8.

Unlike MMD loss, our proposed loss function captures the dissimilarity between the encoded
speech and text features with respect to the global representing matrix X . In addition to
capturing the dissimilarity between the data in current minibatch, GED based loss also captures
the variance of the encoded data in the global context. This system is less likely to suffer from
any potential shortsightedness introduced by the assumption based on a few samples within a
minibatch. Also, our system is more likely to converge to the optimal solution for any given
minibatch size.

7.4 Corpus Description

In this section, we describe the corpus used for our experiments.

7.4. CORPUS DESCRIPTION 72

Algorithm 8 Computation of the GED loss
1: N ← Number of samples
2: D ← dimension of encoded vector
3: HSP ← encoded speech, paired minibatch
4: HTP ← encoded text, paired minibatch
5: HSU ← encoded speech, unpaired minibatch
6: HTU ← encoded text, unpaired minibatch
7: HSP ∈ RNsp×D, HTP ∈ RNtp×D

8: HSU ∈ RNsu×D, HTU ∈ RNtu×D

9: function Loss(HSP , HTP , HSU , HTU)

10: lsp =
Nsp∑
i=1

GED(H i
SP |X)

11: ltp =
Ntp∑
i=1

GED(H i
TP |X)

12: lsu =
Nsu∑
i=1

GED(H i
SU |X)

13: ltu =
Ntu∑
i=1

GED(H i
TU |X)

14: return lsp+ltp+lsu+ltu
Nsp+Ntp+Nsu+Ntu

7.4.1 Paired Speech Corpus

We use the corpus provided by [38] as our paired speech corpus. This corpus has around 229
hours of annotated speech data. The total number of utterances is around 217902 and the number
of speakers is 505.

7.4.2 Unpaired Audio Data

The news recordings from a lot of Bangladeshi TV channels are available in the public domain.
We mostly use these public domain news recordings as our audio source. After crawling the
data, we split the audio files based on silence. We use 0.5 seconds as minimum silence duration
and 0.0001 (between 0.0 and 1.0) as silence energy threshold. After silence based segmentation,
we discard all audio files shorter than 3 seconds and longer than 9 seconds. Encoding audio files
in the intermediate domain becomes easier when all audio files have a similar duration. After
this, we have 1000 hours worth of unpaired audio corpus.

7.4.3 Unpaired Text Data

We use Bangla newspaper websites for preparing unpaired text corpus. We crawl around 40
Bangla websites. We use text cleaning on the collected data to remove nonBangla symbols,
punctuation, special characters, etc. We then perform text normalization. We convert all

7.5. EVALUATIONS 73

numbers to their textual form, elaborate abbreviations, convert dates, etc. We apply the same
text normalization on the text transcription of the paired dataset to maintain homogeneity among
paired and unpaired corpus. After text cleaning and normalization, we discard all Bangla
sentences that have fewer than 4 or greater than 10 words. Our text corpus has around 800K
Bangla sentences.

7.5 Evaluations

In this section, we describe the experimental results.

7.5.1 Test Set

We separate 2000 utterances from the Google speech corpus as our test set. The test set has 5
speakers and covers various domains.

7.5.2 Training Details

At first, we train the CTCattention network with the paired speech corpus. It takes around 10
hours in our setup. Then we retrain the model using the unpaired speech and text corpus along
with the paired corpus. It takes around 20 hours. All experiments are performed on a hardware
with a Core i7 processor, 16 GB Memory, NVIDIA GeForce GTX 1070 GPU. The important
hyperparameters of our system are shown in Table 7.1.

The training graph for the initial supervised training is shown in Figure 7.6. In this step, the
system learns to minimize the CTC and the attention loss, effectively minimizing the supervised
speech to text loss. The training graph for the retraining stage is shown in Figure 7.7. In this step,
the system learns to minimize the text autoencoder loss, as shown in Figure 7.7. The CTC and
attention loss do not go through a big change in the retraining step because they have already
been minimized. The interdomain loss is calculated in an unsupervised manner, so the loss
graph for the interdomain loss does not fluctuate as much as the other loss terms throughout
retraining.

7.5.3 Performance Comparison with External Language Model

To maintain fairness, we use the same unpaired text corpus to train the RNN language model
in the baseline ASR model and the semisupervised model. The only difference is, the semi
supervised model exploits the additional unpaired audio corpus. The RNN language model is
used in shallow fusion with the baseline endtoend system. Table 7.2 compares the Phoneme

7.5. EVALUATIONS 74

Parameter Value
Initialization Uniform Distr

Encoder layers 6
Encoder layer size 320 (BLSTM)

Encoder projection layer size 320
Decoder layers 1

Decoder layer size 300 (LSTM)
Learning Rate 0.5

Batch size 24
CTC weight 0.3

Speech text ratio 0.1
Supervised loss ratio 0.9

Table 7.1: Hyper-parameter Description

0 20000 40000 60000 80000 100000 120000 140000
Training Iterations

0

10

20

30

40

50

60

70

80

Lo
ss

Supervised Loss
CTC Loss
Attention Loss

Figure 7.6: Supervised Training

7.5. EVALUATIONS 75

0 20000 40000 60000 80000 100000 120000 140000
Training Iterations

0

20

40

60

80
Lo

ss
CTC Loss
Attention Loss
Interdomain Loss
Text Autoencoder Loss

Figure 7.7: Semi-supervised Retraining

Model Language PER WER SER
Type Model (%) (%) (%)

Baseline
None 12.6 37.0 64.6
Word 12 33.8 60.2
Char 11.4 32.5 58.5

Semi-supervised
None 11.3 31.9 58
Word 11.6 30.5 55.5
Char 11.4 28.9 52.6

Table 7.2: Performance Comparison with Baseline

Error Rate (PER), Word Error Rate (WER), and Sentence Error Rate (SER) of our system with
the baseline system with an external language model.

When we do not use any language model, the baseline endtoend system achievesWER of 37%.
Adding a wordlevel RNN language model improves the WER to 33.8%. The best accuracy
in the baseline setup is achieved by the character level RNN where the WER is 32.5%. The
character level RNN performs better than the word level RNN probably due to the presence of
outofvocabulary words in the test set. The semisupervised endtoend system that exploits
unpaired audio and text data outperforms all baseline setup and achieves WER of 31.9%. Using
language model for decoding, the performance of the semisupervised system improves further
to 28.9%.

7.5. EVALUATIONS 76

Inter-Domain PER WER SER
Loss (%) (%) (%)

Guassian KL 11.9 34.0 60.8
MMD 11.4 32.7 59.1
GED 11.3 31.9 58

Table 7.3: Performance of Inter-Domain Loss

0.0 0.1 0.2 0.3 0.4 0.5
CTC Weight w1

30

32

34

36

38

40

42

44

W
or

d
Er

ro
rR

at
e

Trend
Actual

Figure 7.8: Effect of CTC Weight w1

7.5.4 Performance Comparison of Inter-domain Loss

Table 7.3 shows the performance of the semisupervised system for different interdomain loss.
Our proposed interdomain loss based on global encoding distance achieves WER of 31.9% and
SER of 58%, outperforming both Gaussian KL and MMD loss.

7.5.5 Effect of CTC Weight

Figure 7.8 shows the effect of the CTC weight w1 (Equation 7.2) on the performance of our
system. We found the best results when using CTC weight of 0.3. The tuning of the hyper
parameters is performed on a separate validation set.

7.5.6 Effect of Speech Text Ratio

Figure 7.9 shows the effect of the speech text ratio w2 (Equation 7.3) on the performance of our
system. We found the best results when using speech text ratio of 0.1.

7.5. EVALUATIONS 77

0.0 0.1 0.2 0.3 0.4 0.5
Speech Text Ratio w2

30

31

32

33

34

35

36

W
or

d
Er

ro
rR

at
e

Trend
Actual

Figure 7.9: Effect of Speech Text Ratio w2

7.5.7 Effect of Supervised Loss Ratio

Figure 7.10 shows the effect of the supervised loss ratio w3 (Equation 7.4) on the performance
of our system. We found the best results when using supervised loss ratio of 0.9.

7.5.8 Effect of Batch Size

Figure 7.11 shows the performance of the semisupervised system with respect to batch size.
The performance of the semisupervised system with MMD loss decreases with smaller batch
sizes. Our proposed GED loss is more robust to batch size and more likely to converge to the
optimal solution even for small batch size.

7.5. EVALUATIONS 78

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Supervised Loss Ratio w3

30

31

32

33

34

35

36

37

38
W

or
d

Er
ro

rR
at

e
Trend
Actual

Figure 7.10: Effect of Supervised Loss Ratio w3

34.6

32.9
32.7

32.4

31.9 31.9

Batch Size

W
or

d
E

rr
or

 R
at

e

30

31

32

33

34

35

12 18 24

MMD GED

Figure 7.11: Effect of Batch Size

Chapter 8

Evaluation of ASR System

In this chapter, we evaluate our ASR system on open domain and voice command specific
Bangla ASR tasks.

8.1 Experiments on Open Domain ASR Task

8.1.1 Dataset

Text Corpus

The text corpus was prepared after extensive crawling from various popular Bangla websites.
We crawl from around 42 websites and collect 10 million sentences. After collection of raw
sentences, we use text cleaning to remove nonBangla sentences, punctuation, alphanumeric
characters, inconsistency, duplicates from the collected text. Later, we normalize these
sentences. We convert numbers to text, handle abbreviations, manage special numeric
expressions in Bangla, normalize decimal point & percentage symbol, consider contact numbers,
date, etc.

Speech Corpus

Table 8.1 shows the summary of our speech corpus for open domain ASR task. We use 220
hours of Google speech corpus, 510 hours of transcribed and verified speech corpus and 450
hours of synthesized speech corpus. The overall size of the corpus is around 1180 hours.

8.1.2 Training Details

First, we train the hybrid CTCattention based EndtoEnd system with our speech corpus
described above. The RNN based language model was trained with our Bangla text corpus

79

8.1. EXPERIMENTS ON OPEN DOMAIN ASR TASK 80

Aspect Google Transcribed Synthesized Total
Num of Utt 217902 150,000 1.64M 2M

Num of Speaker 505 5190 1 5696
Male Speaker 323 2680 N/A 3003

Female Speaker 182 2510 N/A 2692
Size (Hours) 220 510 450 1180

Table 8.1: Speech Corpus

containing 10 million sentences. The training of the EndtoEnd system takes around 120 hours
and training of the RNN based language model takes around 18 hours. All experiments are done
on a desktop with core i7 CPU, 16 GB RAM, Nvidia RTX 2070 GPU.

8.1.3 Test Set

Our test set contains 13000 open domain utterances separated from our speech corpus. We do
not consider synthetic speech for test set. There are 35 speakers in the test set. Because the
utterances of the test set are collected from publicly available sources, the signal to noise ratio
(SNR) of the test set varies a lot. According to our estimation, the worst, best, mean and median
of SNR from crowdsourced speech data are 2.1, 57.8, 15.1, 12.6 respectively.

8.1.4 Results

We use two different models for evaluating each speech corpus. As our first model, we use
traditional HMMGMM based recipe from Kaldi [83]. HMMGMM based system requires a
lexicon that contains the phonetic transcriptions for all words in the vocabulary. The same
lexicon was used for evaluating both speech corpora. We use our previously developed lexicon
[84]. The lexicon contains 95000 transcribed Bangla words. An Ngram based language model
is used with HMMGMM based model.

As our second model, we use a deep learningbased end to end speech recognition system that
uses a hybrid of CTC and Attention mechanism. We follow the approach of [76]. We use four
BLSTM layers in the encoder network. The number of BLSTM cells in each layer is 320. Each
BLSTM layer is connected to a linear projection layer with 320 units. The decoder network
has 1 layer with 300 unidirectional LSTM units. We use a Recurrent Neural Networkbased
language model in shallow fusion with the CTCAttention network. We use word level RNN.
The RNN has 1 layers with 1000 LSTM units in each layer. We get the best performance when
using CTC weight 0.3 with the language model weight 0.5.

Table 8.2 shows the performance of the ASR system for different combination of training
datasets and models. Best performance is achieved when we use both transcribed and
synthesized corpus along with Google’s dataset. For example, when using CTCAttention

8.2. EXPERIMENTS ON VOICE COMMAND TASK 81

Train Set Model LM WER (%)

Google HMM-GMM N-gram 30.95
CTC-Attention RNN 26.0

Google HMM-GMM N-gram 27.20
+Transcribed CTC-Attention RNN 23.0

Google HMM-GMM N-gram 31.40
+Synthesized CTC-Attention RNN 26.6

Google+ HMM-GMM N-gram 24.38
Transcribed+Synthesized CTC-Attention RNN 20.2

Table 8.2: Evaluation of ASR performance

Beam Width Decoding Speed (WPM) WER
8 108 24.3
12 77 21.2
16 72 20.2
20 54 19.5

Table 8.3: Decoding Speed

network, the combined corpus achieves WER of 20.2%. This system outperforms the same
model trained on Google’s dataset only, which shows WER of 26.0%. When we use
Google+Transcribed corpus the WER is 23.0%. This shows the effectiveness of our iterative
corpus generation approach. When use Google+Synthesized corpus, the system actually
performs even worse than the system trained on Google corpus alone. Possibly, it happens
because the size of synthesized corpus is larger than Google corpus. The overwhelming size of
the synthesized corpus leads to excessive bias. But presence of synthesized corpus improves the
ASR performance when we use all three corpus combined.

Table 8.3 shows the decoding speed of the endtoend ASR system (+RNNLM) with respect
to a changing beam width. Beam width can be used to find appropriate compromise between
decoding speed and ASR accuracy.

8.2 Experiments on Voice Command Task

8.2.1 Dataset

Text Corpus

We use the same text corpus mentioned in 8.1.1. We also add 1700 voice command specific
texts collected from our domain study.

8.2. EXPERIMENTS ON VOICE COMMAND TASK 82

Aspect Google Voice Command Transcribed Total
Num of Utt 217902 28973 150,000 396875

Num of Speaker 505 56 5190 5751
Male Speaker 323 34 2680 3037

Female Speaker 182 22 2510 2714
Size (Hours) 220 50 510 780

Table 8.4: Speech Corpus

Speech Corpus

Table 8.4 shows the summary of our speech corpus for voice command recognition task. We use
220 hours of Google speech corpus, 510 hours of transcribed and verified speech corpus and 50
hours of voice command corpus. The overall size of the corpus is around 780 hours.

8.2.2 Training Details

First, we train the hybrid CTCattention based EndtoEnd system with our speech corpus
described above. The RNN based language model was trained with our Bangla text corpus
containing 10 million sentences. The training of the EndtoEnd system takes around 72 hours
and training of the RNN based language model takes around 18 hours. All experiments are done
on a desktop with core i7 CPU, 16 GB RAM, Nvidia RTX 2070 GPU.

8.2.3 Test Set

Our test set contains 2000 voice command utterances with 7 speakers. We manually annotated
the context for these utterances to prepare a context annotated test set. We refer to it as positive
test set. We also randomly annotate context of these utterances to prepare a negative test set.
the purpose of the negative test set is to test whether the system’s performance is affected with
inaccurate context information.

8.2.4 Results

Table 8.5 shows Phoneme Error Rate (PER), Word Error Rate (WER) and Sentence Error Rate
(SER) of our system in different setup. In our test set, the system using the character level
RNN language model performs significantly better than the system using the word level RNN
language model. The difference in performance is especially significant when test utterances
contain outofvocabulary words. 700 out of 2000 test utterances contain one or more outof
vocabulary words. For these utterances, WER was 26.6% and 46% for charRNN and word
RNN respectively. We tried larger wordRNN networks such as 2 layer, 1000 LSTM cells and

8.2. EXPERIMENTS ON VOICE COMMAND TASK 83

Language Rescoring PER WER SER
Model (%) (%) (%)

Word-RNN
None 6.9 27.9 44.9

Trigram 6.4 25.7 42.4
LLDA 6.0 23.8 40.3

Char-RNN
None 4.5 16.7 28.4

Trigram 3.9 14.1 25.3
LLDA 3.7 12.8 22.8

Table 8.5: Performance on Voice Command Task

Context Weight

W
ER

10

12

14

16

18

20

22

24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WER on Positive Set WER on Negative Set

Figure 8.1: Effect of Context Weight w3

2 layer, 2000 LSTM cells. Overall WER were 27.2% and 26.9% respectively. Our rescoring
method outperforms trigram based contextual rescoring method.

The performance of our system for different voice command categories can be found in table 8.6.
In particular, regular system commands are recognized with very high accuracy (WER 7.6%)
because they contain no outofvocabulary words. Highest WER (19.2%) is found in the case
of random queries because they often contain outofvocabulary and outofdomain input.

Figure 8.1 shows the WER of the system for different values of context weight w3 (algorithm
6). For the positive set, WER decreases upto w3 = 0.3 then it starts to increase again. For
the negative set, WER remains largely unaffected upto w3 = 0.3 then it starts to increase
almost linearly. For the experiment shown in Figure 8.1, we use CTC weight 0.3 and char
RNN language model with weight 0.5. Figure 8.2 and 8.3 shows the hyperparameter tuning on
validation set for CTC weight w1 (equation 6.1) and language model weight w2 (equation 6.2)
respectively. We found best results using CTC weight 0.3 and language model weight 0.5.

8.2. EXPERIMENTS ON VOICE COMMAND TASK 84

CTC Weight

W
ER

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5

Figure 8.2: Effect of CTC Weight w1

Language Model Weight

W
ER

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 8.3: Effect of Language Model Weight w2

Category WER
Regular 7.6System Commands
Numbers 9.2
Contacts 12.4

Place 13.5
Date 15.7and Time

Media 12.7
Random 19.2Queries

Table 8.6: WER for different Categories of Voice Command

Chapter 9

Conclusion and Future Work

In this chapter, we provide a summary of our research work, related outcomes, and future
research direction.

9.1 Summary of Research Work

We performed research on traditional as well as stateoftheart Endtoend speech recognition
architectures. We developed a web application and Android application related to the corpus
buildup system. We developed a web crawler, text cleaner, text normalizer, word frequency
analysis tool, GraphemetoPhoneme conversion tool for our ASR. We have developed an
improved lexicon that has around 100Kmost frequently usedBanglawords and considers critical
cases for G2P conversion in Bangla language. We were able to generate a text corpus with
10 million Bangla sentences, We proposed an efficient method for automated speech corpus
development and developed a speech corpus with 1010 hours of annotated speech. We solved
the outofvocabulary problem of Bangla ASR system using synthetic speech data generation.
We proposed a novel approach for contextspecific optimization of voice commands which is
based on multilabel topic modeling. We have proposed a novel semisupervised ASR training
method for exploiting unpaired audio data effectively.

9.2 Research Outcome

The outcomes of our study are as follows:

• An improved lexicon that has around 100K most frequently used Bangla words and
considers critical cases for G2P conversion in Bangla language.

• An efficient data collection tool for speech corpus development.

85

9.3. FUTURE RESEARCH DIRECTION 86

• A Bangla Speech Corpus containing both domainindependent and domainspecific
utterances. The overall size of the corpus is 1010 hours.

• A Bangla text corpus containing 10 million Bangla sentences.

• A context annotated voice command corpus. The corpus has 1700 voice command
templates and includes all necessary voice commands related to smartphones, home
appliances, automotive and office work accessories.

• A novel approach for contextspecific optimization of voice commands which is based on
multilabel topic modeling.

• A novel semisupervised ASR training method for exploiting unpaired audio data
effectively.

9.3 Future Research Direction

In the future, we need to find more effective ways of learning from unpaired speech data. More
advanced semisupervised or fully unsupervised ASR training approaches need to be explored.
Another important research direction would be multimodal speech recognition such as audio
visual ASR. It may be possible to improve the ASR performance significantly by exploiting the
available visual cues such as speaker lip movement or body language.

References

[1] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an asr corpus based on
public domain audio books,” in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5206–5210, IEEE, 2015.

[2] S. F. Chen, “Conditional and joint models for graphemetophoneme conversion,” in
Eighth European Conference on Speech Communication and Technology, 2003.

[3] K. Yao andG. Zweig, “Sequencetosequence neural net models for graphemetophoneme
conversion,” arXiv preprint arXiv:1506.00196, 2015.

[4] air. https://svn.code.sf.net/p/cmusphinx/code/branches/cmudict/
cmudict-0.7b, 2015.

[5] Y. K. Thu, W. P. Pa, Y. Sagisaka, and N. Iwahashi, “Comparison of graphemetophoneme
conversion methods on a myanmar pronunciation dictionary,” in Proceedings of the 6th
Workshop on South and Southeast Asian Natural Language Processing (WSSANLP2016),
pp. 11–22, 2016.

[6] M. Bisani and H. Ney, “Jointsequence models for graphemetophoneme conversion,”
Speech communication, vol. 50, no. 5, pp. 434–451, 2008.

[7] J. R. Novak. https://github.com/AdolfVonKleist/Phonetisaurus, 2012.

[8] J. R. Novak, N. Minematsu, and K. Hirose, “Failure transitions for joint ngram models
and g2p conversion.,” in INTERSPEECH, pp. 1821–1825, 2013.

[9] R. Caruana, “Multitask learning,”Machine learning, vol. 28, no. 1, pp. 41–75, 1997.

[10] S. Jiampojamarn, G. Kondrak, and T. Sherif, “Applying manytomany alignments
and hidden markov models to lettertophoneme conversion,” in Human Language
Technologies 2007: The Conference of the North American Chapter of the Association
for Computational Linguistics; Proceedings of the Main Conference, pp. 372–379, 2007.

[11] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, pp. 3104–3112, 2014.

87

https://svn.code.sf.net/p/cmusphinx/code/branches/cmudict/cmudict-0.7b
https://svn.code.sf.net/p/cmusphinx/code/branches/cmudict/cmudict-0.7b
https://github.com/AdolfVonKleist/Phonetisaurus

REFERENCES 88

[12] K. Rao, F. Peng, H. Sak, and F. Beaufays, “Graphemetophoneme conversion using
long shortterm memory recurrent neural networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference on, pp. 4225–4229, IEEE,
2015.

[13] C. Schnober, S. Eger, E.L. D. Dinh, and I. Gurevych, “Still not there? comparing
traditional sequencetosequencemodels to encoderdecoder neural networks onmonotone
string translation tasks,” arXiv preprint arXiv:1610.07796, 2016.

[14] Y. Tsvetkov, S. Sitaram, M. Faruqui, G. Lample, P. Littell, D. Mortensen, A. W. Black,
L. Levin, and C. Dyer, “Polyglot neural language models: A case study in crosslingual
phonetic representation learning,” arXiv preprint arXiv:1605.03832, 2016.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–
778, 2016.

[16] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[17] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. Viégas,
M. Wattenberg, G. Corrado, et al., “Google’s multilingual neural machine translation
system: enabling zeroshot translation,” arXiv preprint arXiv:1611.04558, 2016.

[18] S. Toshniwal and K. Livescu, “Jointly learning to align and convert graphemes to
phonemeswith neural attentionmodels,” in Spoken Language TechnologyWorkshop (SLT),
2016 IEEE, pp. 76–82, IEEE, 2016.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems, pp. 5998–6008, 2017.

[20] A. B. Mosaddeque, N. UzZaman, and M. Khan, “Rule based automated pronunciation
generator,” 2006.

[21] F. Alam, S. M. Habib, and M. Khan, “Bangla text to speech using festival,” in Conference
on Human Language Technology for Development, pp. 154–161, 2011.

[22] J. Basu, T. Basu, M. Mitra, and S. K. D. Mandal, “Grapheme to phoneme (g2p) conversion
for bangla,” in Speech Database and Assessments, 2009Oriental COCOSDA International
Conference on, pp. 66–71, IEEE, 2009.

REFERENCES 89

[23] K. Ghosh, R. V. Reddy, N. Narendra, S. Maity, S. Koolagudi, and K. Rao, “Grapheme
to phoneme conversion in bengali for festival based tts framework,” in 8th international
conference on natural language processing (ICON), Macmillan Publishers, 2010.

[24] A. Gutkin, L. Ha, M. Jansche, K. Pipatsrisawat, and R. Sproat, “Tts for low resource
languages: A bangla synthesizer.,” in LREC, 2016.

[25] S. A. Chowdhury, F. Alam, N. Khan, and S. R. Noori, “Bangla grapheme to phoneme
conversion using conditional random fields,” in Computer and Information Technology
(ICCIT), 2017 20th International Conference of, pp. 1–6, IEEE, 2017.

[26] F. Mana, P. Massimino, and A. Pacchiotti, “Using machine learning techniques for
grapheme to phoneme transcription,” in Seventh European Conference on Speech
Communication and Technology, 2001.

[27] Y.B. Kim and B. Snyder, “Universal graphemetophoneme prediction over latin
alphabets,” in Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pp. 332–343,
Association for Computational Linguistics, 2012.

[28] A. Deri and K. Knight, “Graphemetophoneme models for (almost) any language,” in
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1, pp. 399–408, 2016.

[29] B. Milde, C. Schmidt, and J. Köhler, “Multitask sequencetosequence models for
graphemetophoneme conversion,” Proc. Interspeech 2017, pp. 2536–2540, 2017.

[30] P. J. Jang and A. G. Hauptmann, “Improving acoustic models with captioned multimedia
speech,” in Proceedings IEEE International Conference on Multimedia Computing and
Systems, vol. 2, pp. 767–771, IEEE, 1999.

[31] E. Lakomkin, S. Magg, C. Weber, and S. Wermter, “Ktspeechcrawler: Automatic
dataset construction for speech recognition from youtube videos,” arXiv preprint
arXiv:1903.00216, 2019.

[32] A. Mansikkaniemi, P. Smit, M. Kurimo, et al., “Automatic construction of the finnish
parliament speech corpus.,” in INTERSPEECH, pp. 3762–3766, 2017.

[33] I. R. Helgadóttir, R. Kjaran, A. B. Nikulásdóttir, and J. Gud́hnason, “Building an asr corpus
using althingi’s parliamentary speeches.,” in INTERSPEECH, pp. 2163–2167, 2017.

[34] T. Patel, D. Krishna, N. Fathima, N. Shah, C. Mahima, D. Kumar, and A. Iyengar, “An
automatic speech transcription system for manipuri language,” Show and Tell Session in
INTERSPEECH, Hyderabad, 2018.

REFERENCES 90

[35] M. M. H. Nahid, M. Islam, B. Purkaystha, M. S. Islam, et al., “Comprehending
real numbers: Development of bengali real number speech corpus,” arXiv preprint
arXiv:1803.10136, 2018.

[36] M. F. Khan and M. A. Sobhan, “Construction of large scale isolated word speech corpus
in bangla,” Global Journal of Computer Science and Technology, 2018.

[37] M. F. Khan and M. A. Sobhan, “Creation of connected word speech corpus for bangla
speech recognition systems,” Asian Journal of Research in Computer Science, pp. 1–6,
2018.

[38] O. Kjartansson, S. Sarin, K. Pipatsrisawat, M. Jansche, and L. Ha, “Crowdsourced speech
corpora for javanese, sundanese, sinhala, nepali, and bangladeshi bengali,” in Proc. The
6th Intl. Workshop on Spoken Language Technologies for UnderResourced Languages,
pp. 52–55, 2018.

[39] T. Hughes, K. Nakajima, L. Ha, A. Vasu, P. J. Moreno, and M. LeBeau, “Building
transcribed speech corpora quickly and cheaply for many languages,” in Eleventh Annual
Conference of the International Speech Communication Association, 2010.

[40] P. Aleksic, M. Ghodsi, A. Michaely, C. Allauzen, K. Hall, B. Roark, D. Rybach, and
P. Moreno, “Bringing contextual information to google speech recognition,” in Sixteenth
Annual Conference of the International Speech Communication Association, 2015.

[41] K. Hall, E. Cho, C. Allauzen, F. Beaufays, N. Coccaro, K. Nakajima, M. Riley, B. Roark,
D. Rybach, and L. Zhang, “Compositionbased onthefly rescoring for salient ngram bi
asing.” https://static.googleusercontent.com/media/research.google.com/
en//pubs/archive/43816.pdf, 2015.

[42] L. Velikovich, I. Williams, J. Scheiner, P. Aleksic, P. Moreno, and M. Riley, “Semantic
lattice processing in contextual automatic speech recognition for google assistant,” Proc.
Interspeech 2018, pp. 2222–2226, 2018.

[43] A. H. Michaely, M. Ghodsi, Z. Wu, J. Scheiner, and P. Aleksic, “Unsupervised context
learning for speech recognition,” in 2016 IEEE Spoken Language Technology Workshop
(SLT), pp. 447–453, IEEE, 2016.

[44] J. Scheiner, I. Williams, and P. Aleksic, “Voice search language model adaptation using
contextual information,” in 2016 IEEE Spoken Language Technology Workshop (SLT),
pp. 253–257, IEEE, 2016.

[45] I. Williams, A. Kannan, P. Aleksic, D. Rybach, and T. N. Sainath, “Contextual speech
recognition in endtoend neural network systems using beam search,” in Proc. of
Interspeech, 2018.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43816.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43816.pdf

REFERENCES 91

[46] T. Mikolov and G. Zweig, “Context dependent recurrent neural network language model,”
in 2012 IEEE Spoken Language Technology Workshop (SLT), pp. 234–239, IEEE, 2012.

[47] Z. Chen, M. Jain, Y. Wang, M. L. Seltzer, and C. Fuegen, “Endtoend contextual
speech recognition using class language models and a token passing decoder,” in ICASSP
20192019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6186–6190, IEEE, 2019.

[48] J. Cho, M. K. Baskar, R. Li, M. Wiesner, S. H. Mallidi, N. Yalta, M. Karafiat, S. Watanabe,
and T. Hori, “Multilingual sequencetosequence speech recognition: architecture, transfer
learning, and language modeling,” in 2018 IEEE Spoken Language Technology Workshop
(SLT), pp. 521–527, IEEE, 2018.

[49] S. Kim, S. Dalmia, and F. Metze, “Situation informed endtoend asr for chime5
challenge,” 2018.

[50] S. Kim and F.Metze, “Dialogcontext aware endtoend speech recognition,” in 2018 IEEE
Spoken Language Technology Workshop (SLT), pp. 434–440, IEEE, 2018.

[51] Y. Long, Y. Li, S. Wei, Q. Zhang, and C. Yang, “Largescale semisupervised training in
deep learning acoustic model for asr,” IEEE Access, vol. 7, pp. 133615–133627, 2019.

[52] Z. Fan, S. Zhou, and B. Xu, “Unsupervised pretraing for sequence to sequence speech
recognition,” arXiv preprint arXiv:1910.12418, 2019.

[53] T. Drugman, J. Pylkkonen, and R. Kneser, “Active and semisupervised learning in asr:
Benefits on the acoustic and language models,” arXiv preprint arXiv:1903.02852, 2019.

[54] D. Yu, B. Varadarajan, L. Deng, and A. Acero, “Active learning and semisupervised
learning for speech recognition: A unified framework using the global entropy reduction
maximization criterion,” Computer Speech & Language, vol. 24, no. 3, pp. 433–444, 2010.

[55] S. Thomas, M. L. Seltzer, K. Church, and H. Hermansky, “Deep neural network
features and semisupervised training for low resource speech recognition,” in 2013 IEEE
international conference on acoustics, speech and signal processing, pp. 6704–6708, IEEE,
2013.

[56] K. Veselỳ, M. Hannemann, and L. Burget, “Semisupervised training of deep neural
networks,” in 2013 IEEEWorkshop on Automatic Speech Recognition and Understanding,
pp. 267–272, IEEE, 2013.

[57] Y. Liu and K. Kirchhoff, “Graphbased semisupervised acoustic modeling in dnn
based speech recognition,” in 2014 IEEE Spoken Language Technology Workshop (SLT),
pp. 177–182, IEEE, 2014.

REFERENCES 92

[58] A. K. Dhaka and G. Salvi, “Sparse autoencoder based semisupervised learning for phone
classification with limited annotations,” in Proc. GLU 2017 International Workshop on
Grounding Language Understanding, pp. 22–26, 2017.

[59] P. Guo, H. Xu, L. Xie, and E. S. Chng, “Study of semisupervised approaches to improving
englishmandarin codeswitching speech recognition,” arXiv preprint arXiv:1806.06200,
2018.

[60] K. Veselỳ, C. Segura, I. Szöke, J. Luque, and J. Cernockỳ, “Lightly supervised vs. semi
supervised training of acoustic model on luxembourgish for lowresource automatic speech
recognition.,” in Interspeech, pp. 2883–2887, 2018.

[61] R. Lileikytė, A. Gorin, L. Lamel, J.L. Gauvain, and T. FragaSilva, “Lithuanian broadcast
speech transcription using semisupervised acoustic model training,” Procedia Computer
Science, vol. 81, pp. 107–113, 2016.

[62] L. Šmídl, J. Švec, A. Pražák, and J. Trmal, “Semisupervised training of dnnbased acoustic
model for atc speech recognition,” in International Conference on Speech and Computer,
pp. 646–655, Springer, 2018.

[63] S. Karita, S.Watanabe, T. Iwata, A. Ogawa, andM.Delcroix, “Semisupervised endtoend
speech recognition,” in Proc. Interspeech, pp. 2–6, 2018.

[64] S. Karita, S. Watanabe, T. Iwata, M. Delcroix, A. Ogawa, and T. Nakatani, “Semi
supervised endtoend speech recognition using texttospeech and autoencoders,” in
ICASSP 20192019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6166–6170, IEEE, 2019.

[65] B. Barman, “A contrastive analysis of english and bangla phonemics,” Dhaka University
Journal of Linguistics, vol. 2, no. 4, pp. 19–42, 2009.

[66] J. Chowdhury, ed., Adhunik Bangla Ovidhan. Bangla Academy, Dhaka 1000: Bangla
Academy, 2016.

[67] S. Hochreiter and J. Schmidhuber, “Long shorttermmemory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[68] T. J. Hazen, “Automatic alignment and error correction of human generated transcripts
for long speech recordings,” in Ninth International Conference on Spoken Language
Processing, 2006.

[69] A. Dev and P. Bansal, “Robust features for noisy speech recognition using mfcc
computation from magnitude spectrum of higher order autocorrelation coefficients,”
International Journal of Computer Applications, vol. 10, no. 8, pp. 36–38, 2010.

REFERENCES 93

[70] S. Ravindran, D. V. Anderson, and M. Slaney, “Improving the noiserobustness of mel
frequency cepstral coefficients for speech processing,” Reconstruction, vol. 12, p. 14,
2006.

[71] J. Patino, H. Delgado, and N. Evans, “The eurecom submission to the first dihard
challenge,” in Proc. INTERSPEECH, vol. 2018, pp. 2813–2817, 2018.

[72] J. Patino, H. Delgado, N. Evans, and X. Anguera, “Eurecom submission to the albayzin
2016 speaker diarization evaluation,” Proc. IberSPEECH, 2016.

[73] J. Patino, H. Delgado, R. Yin, H. Bredin, C. Barras, and N. W. Evans, “Odessa at albayzin
speaker diarization challenge 2018.,” in IberSPEECH, pp. 211–215, 2018.

[74] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,”
in Advances in neural information processing systems, pp. 849–856, 2002.

[75] T. Giannakopoulos, “pyaudioanalysis: An opensource python library for audio signal
analysis,” PloS one, vol. 10, no. 12, 2015.

[76] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hybrid ctc/attention
architecture for endtoend speech recognition,” IEEE Journal of Selected Topics in Signal
Processing, vol. 11, no. 8, pp. 1240–1253, 2017.

[77] T. Hayashi, R. Yamamoto, K. Inoue, T. Yoshimura, S. Watanabe, T. Toda, K. Takeda,
Y. Zhang, and X. Tan, “Espnettts: Unified, reproducible, and integratable open source
endtoend texttospeech toolkit,” arXiv preprint arXiv:1910.10909, 2019.

[78] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang,
R. SkerrvRyan, et al., “Natural tts synthesis by conditioning wavenet on mel spectrogram
predictions,” in 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4779–4783, IEEE, 2018.

[79] N. Perraudin, P. Balazs, and P. L. Søndergaard, “A fast griffinlim algorithm,” in 2013
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 1–4,
IEEE, 2013.

[80] T. Hori, S. Watanabe, Y. Zhang, and W. Chan, “Advances in joint ctcattention based end
toend speech recognition with a deep cnn encoder and rnnlm,” in Proc. of Interspeech,
2017.

[81] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning, “Labeled lda: A supervised
topic model for credit attribution in multilabeled corpora,” in Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing: Volume 1Volume 1,
pp. 248–256, Association for Computational Linguistics, 2009.

REFERENCES 94

[82] L. v. d. Maaten and G. Hinton, “Visualizing data using tsne,” Journal of machine learning
research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[83] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann,
P. Motlicek, Y. Qian, P. Schwarz, et al., “The kaldi speech recognition toolkit,” tech. rep.,
IEEE Signal Processing Society, 2011.

[84] S. S. Shubha, N. Sadeq, S. Ahmed, M. N. Islam, M. A. Adnan, M. Y. A. Khan, and M. Z.
Islam, “Customizing graphemetophoneme system for nontrivial transcription problems
in bangla language,” inProceedings of the 2019Conference of the North AmericanChapter
of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pp. 3191–3200, 2019.

Appendix A

List of Publications

1. Nafis Sadeq, Nafis Tahmid Chowdhury, Farhan Tanvir Utshaw, Shafayat Ahmed,
Muhammad Abdullah Adnan. Improving EndtoEnd Bangla Speech Recognition with
Semisupervised Training Findings of the Association for Computational Linguistics:
EMNLP 2020.

Link: https://www.aclweb.org/anthology/2020.findingsemnlp.169

2. Nafis Sadeq, Shafayat Ahmed, Sudipta Saha Shubha, Md. Nahidul Islam, Muhammad
Abdullah Adnan. Bangla Voice Command Recognition in EndToEnd System using
Topic Modeling Based Contextual Rescoring Proc. of the 45th IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020), Barcelona,
Spain, May 48, 2020.

ICASSP is the a top conference on Speech and Acoustics with h5index 80

Link: https://ieeexplore.ieee.org/document/9053970

3. Shafayat Ahmed∗, Nafis Sadeq∗, Sudipta Saha Shubha∗, Md. Nahidul Islam, Muhammad
Abdullah Adnan and Mohammad Zuberul Islam. Preparation of Bangla Speech Corpus
from Publicly Available Audio & Text Proc. of the 12th International Conference on
Language Resources and Evaluation (LREC 2020), Paris, France, May 1116, 2020.
∗ Authors contributed equally

Link: http://www.lrecconf.org/proceedings/lrec2020/pdf/2020.lrec1.811.pdf

LREC is top conference is Computational Linguistics with h5index 45

4. Sudipta Saha Shubha, Nafis Sadeq, Shafayat Ahmed, Md. Nahidul Islam, Muhammad
Abdullah Adnan, Md. Yasin Ali Khan and Mohammad Zuberul Islam. Customizing
GraphemetoPhoneme System for NonTrivial Transcription Problems in Bangla
Language. In Proceedings of the 2019 Conference of the North American Chapter of

95

https://www.aclweb.org/anthology/2020.findings-emnlp.169
https://ieeexplore.ieee.org/document/9053970
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.811.pdf

96

the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers) (pp. 31913200).

NAACL is top conference is Computational Linguistics with h5index 61

Link: https://www.aclweb.org/anthology/N191322

https://www.aclweb.org/anthology/N19-1322

Generated using Postgraduate Thesis LATEX Template, Version 1.03. Department of
Computer Science and Engineering, Bangladesh University of Engineering and Technology,

Dhaka, Bangladesh.

This thesis was generated on February 28, 2021 at 12:29am.

97

	Candidate's Declaration
	Board of Examiners
	Acknowledgement
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Introduction
	Research Objective
	Motivation
	Present State
	Problem Definition
	Outline of Methodology
	Corpus Resource Development
	Speech Recognition Model Development
	Context Specific Optimization
	Other Improvements

	Our Contribution

	Literature Review
	G2P Conversion
	Speech Corpus Preparation
	Context-specific Optimization
	Semi-supervised ASR Training
	Summary of Gap Analysis

	Linguistic Resource Preparation
	Phoneme List
	Text Corpus and Word Dictionary Preparation
	Web Crawling
	Text Cleaning
	Text Normalization
	Domain Specific Text Corpus
	Word Dictionary

	G2P Training and Lexicon Preparation
	Previous Works on G2P
	Non-Trivial Cases for Transcription
	Developing an Improved G2P System for Bangla Language
	G2P Models
	Experimental Results

	Speech Corpus Preparation
	Voice Command Domain Study
	Previously Available Speech Corpus
	Supervised Speech Corpus Development
	Data Collection App
	Summary of Voice Command Specific Corpus

	Corpus Generation Using Automated Transcription
	Background Noise Removal
	Speaker Diarization
	Gender Detection
	Silence Based Segmentation
	Automatic Transcription Generation
	Evaluation of Automatic Transcription
	Summary of Transcribed Corpus

	Synthetic Speech Generation for OOV words
	Out-of-Vocabulary Word List
	TTS Model
	Speech Synthesis

	Speech Corpus Summary

	Speech Recognition Architecture
	Traditional ASR System
	Speech Feature Extraction
	Acoustic Model
	Language Model
	Phonetic Dictionary
	Training Phase
	Decoding Phase

	End-to-End System
	Speech Feature
	CTC-Attention
	Language Model
	Beam Search

	Context Specific Optimization of Voice Commands
	Related Works
	Our System
	System Overview
	End-to-End Architecture
	Language Model
	Beam Search
	Contextual Rescoring

	Contextual Corpus Management
	Contextual Corpus Generation
	On-device Model Training

	Dataset
	Text Corpus
	Speech Corpus

	Experiments
	Training Details
	Test Set
	Results

	Semi-supervised Speech Recognition
	Related Works
	Our System
	Baseline System
	Semi-supervised System

	The Inter-Domain Loss
	Encoding Procedure
	Maximum Mean Discrepancy Loss
	Global Encoding Distance (GED) Loss

	Corpus Description
	Paired Speech Corpus
	Unpaired Audio Data
	Unpaired Text Data

	Evaluations
	Test Set
	Training Details
	Performance Comparison with External Language Model
	Performance Comparison of Inter-domain Loss
	Effect of CTC Weight
	Effect of Speech Text Ratio
	Effect of Supervised Loss Ratio
	Effect of Batch Size

	Evaluation of ASR System
	Experiments on Open Domain ASR Task
	Dataset
	Training Details
	Test Set
	Results

	Experiments on Voice Command Task
	Dataset
	Training Details
	Test Set
	Results

	Conclusion and Future Work
	Summary of Research Work
	Research Outcome
	Future Research Direction

	References
	List of Publications

