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Abstract

Voice command recognition task commonly involves an Automatic Speech
Recognition (ASR) system with context-specific optimization. Automatic
Speech Recognition system development involves corpus resource development
such as phoneme list, text corpus, word dictionary, phonetic dictionary, and
speech corpus. These corpus resources are used to train speech recognition
models. The performance of the speech recognition systems can be further
improved by exploiting user and device-specific contexts. Context information
for a specific smartphone user includes contact names, installed apps, songs,
media files, location, recent search history, the content of the screen user
is looking at, etc. The context information changes frequently so it is
desired that the contextual model will be updated on-the-fly within the device.
Traditional speech recognition systems usually consist of several individual
components such as an acoustic model, a language model, a pronunciation
dictionary, etc. So context-specific optimization can be achieved by tuning a
particular component like the language model. Recently, end-to-end speech
recognition architectures have been very effective in many speech recognition
tasks. Incorporating context-specific optimization with the latest end-to-end
speech recognition architectures requires a different approach. In this work, we
focus on Bangla voice command recognition. We develop an ASR system for
voice command recognition tasks and improve the performance further using
context-specific optimization. In our work, we develop each linguistic resource
in a way that considers language-specific characteristics of Bangla. We enrich
our speech corpus with both domain-specific and domain-independent speech
data. We also experiment with traditional and end-to-end speech recognition
architectures. We propose a novel approach for context-specific optimization
of voice commands. We also explore several other approaches for improving
ASR performance such as synthetic speech corpus development and semi-

supervised speech recognition.
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Chapter 1
Introduction

In this section, we describe the objective of our research, motivation, problem definition, the

outline of methodology, and our contribution.

1.1 Research Objective

In this work, we focus on voice command recognition in the context of standard Bangla language.
The target domain for voice command recognition involves smartphone voice assistants, smart
car voice assistants, home appliances, and office work accessories. We develop a large
vocabulary Automatic Speech Recognition (ASR) System for Bangla language and perform
domain-specific optimization by adding domain-specific speech corpus and by exploiting on-

device user context during decoding.

1.2 Motivation

Bangla is spoken by 228 million native speakers and another 37 million second-language
speakers. It is the fifth most spoken native language and the seventh most spoken language
in the world. A lot of Bangla native speakers are using digital voice assistant technologies now.

So a lot of research is required to improve Bangla voice assistant systems.

1.3 Present State

Currently, there are few publicly available Bangla speech corpus that is suitable for large
vocabulary ASR. The largest speech corpus we found has around 220 hours of speech data.
We did not find any corpus resource suitable for Bangla voice command recognition. All
the previous literature on Bangla speech corpus development focus only on supervised speech

corpus development. The ASR training strategy is also focused on supervised training.

1



1.4. PROBLEM DEFINITION

1.4 Problem Definition

We focused on four research problems in our work. They are as follows:

Grapheme to Phoneme (G2P) Conversion Many ASR architectures use a G2P system
to map the written representation of a word to its phonetic transcription. The input of this
system is small manually verified lexicon and a list of words. The output is a lexicon that

has phonetic transcription for all words in the word list.

Automated Speech Corpus Development The input for this system will be publicly

available audio and text. The output is aligned speech corpus.

Semi-supervised ASR An ASR system is typically trained on an annotated speech corpus.
It can also exploit an unpaired text corpus in the form of a language model. The semi-
supervised ASR system aims to improve the performance of the ASR further by exploiting
an unpaired audio corpus.

Context Specific Optimization The input of the system will be a set of candidate speech
transcription and user context. The output is the speech transcription that is most relevant

to the user context.

1.5 QOutline of Methodology

The development of a voice command recognition system has several steps such as:

o Corpus Resource Development

Speech Recognition Model Development

Context-specific Optimization

 Other improvements

1.5.1 Corpus Resource Development

ASR systems are developed based on certain linguistic resources. They include phoneme list,

text corpus, word dictionary, phonetic dictionary or lexicon, speech corpus, etc.



1.5. OUTLINE OF METHODOLOGY

Phoneme List

A phoneme is a symbol that represents a sound. Traditional ASR systems usually convert
acoustic signals to a sequence of phonemes. These phonemes are used to capture the
pronunciation of words rather than their written representation. The phoneme list is chosen
in a way that makes it possible to represent all pronunciations in a target language. The details

of our phoneme list are described in section 3.1.

Text Corpus

A text corpus usually refers to a collection of processed text sentences. A text corpus is
necessary for several important reasons. It is used to identify the most frequently used words in
a language. A text corpus is also used to train a language model which can significantly improve
the performance of an ASR system by providing the contextual relevance of a particular word
in a transcription. Text corpus development typically involves web crawling, text cleaning, text

normalization, etc. The details of our text corpus are described in section 3.2.

Word Dictionary

A word dictionary is a collection of words that covers the target domain for an ASR task.
Typically, the most frequently used words in a language are kept in the word dictionary. The

details of our word dictionary are described in section 3.2.

Phonetic Dictionary

The phonetic dictionary or lexicon maps the written representation of a word (grapheme
sequence) to the phonetic representation (phoneme sequence). To prepare the lexicon, we need
to have two things, a word dictionary whose phonetic transcription will be mapped and a set
of phonemes that cover all pronunciations of the target language. The phonetic dictionary can
contain 50,000 to 100,000 words, so it is very difficult to provide phonetic transcription of all
these words manually. That is why manual transcription is done for a portion of the words.
Then a Grapheme-to-phoneme (G2P) conversion system is trained on the manually transcribed
lexicon. The rest of the words in the dictionary are transcribed using the G2P system. The

details of our phonetic dictionary can be found in section 3.3.

Speech Corpus

Speech corpus refers to a collection of audio files with corresponding text transcriptions. The
duration of each speech segment is kept under 35 seconds [1]. The speech corpus also contains

some additional information such as the gender of speakers, recording environment, etc. Speech



1.5. OUTLINE OF METHODOLOGY

corpus development is one of the most important tasks related to ASR system development. So

it is discussed separately in Chapter 4.

1.5.2 Speech Recognition Model Development

There are several speech recognition architectures that learn to convert speech to text by

exploiting the corpus resources. We experiment on both traditional and end-to-end architectures.

Traditional ASR System

Traditional ASR system has several components such as acoustic model, language model, etc. It
has two basic steps for speech to text conversion. At first, the system absorbs the speech feature
sequence and produces a phoneme sequence that best describes the pronunciation. In the next
step, the phoneme sequences are converted to a sequence of words using the phonetic dictionary.
During this step, the language model provides important information regarding the word context
with respect to the other words in that transcription. The details of our traditional ASR system

are described in section 5.1.

End-to-end ASR System

Unlike the traditional ASR system, the end-to-end system does not produce any intermediate
phoneme like representations. Rather, it directly tries to convert speech to text using a single
neural network architecture. The details of our end-to-end ASR system is described in section
5.2.

1.5.3 Context Specific Optimization

Voice command recognition task commonly involves an Automatic Speech Recognition (ASR)
system with context-specific optimization. Context information for a specific smartphone
user includes contact names, installed apps, songs, media files, location, recent search history,
the content of the screen user is looking at, etc. The performance of the voice command
recognition system can be significantly improved by exploiting the user context and device
context. Our approach for context-specific optimization of Bangla voice command recognition
task is described in Chapter 6.

1.5.4 Other Improvements

In our work, we try to address some additional research problems such as handling out-of-

vocabulary word problem, the use of unpaired audio data, etc.



1.6. OUR CONTRIBUTION

Handling Out-of-vocabulary Problem

An ASR system may need to transcribe speech containing certain words that never occurred in
the speech corpus the system was trained on. These words are considered out-of-vocabulary
(OOV) words. In some cases, the presence of OOV words severely hampers the ASR

performance. In those cases, it needs to be addressed.

Semi-supervised ASR Training

Usually, ASR systems are trained on speech corpus where each speech segment is paired with
corresponding text transcription. Large unpaired text corpus can also be exploited effectively
by training a language model and incorporating language model scores with ASR model scores
during decoding time. But the current ASR architectures are unable to exploit large unpaired
audio corpus. In our work, we exploit large unpaired audio data using a semi-supervised training

method. This approach is described in Chapter 7.

1.6 Our Contribution

Our contributions in this study are as follows:

« We have developed an improved lexicon that has around 100K most frequently used
Bangla words and considers critical cases for G2P conversion in Bangla language. This
lexicon can significantly improve the performance of ASR systems that depend on

lexicon.

» We have developed a Bangla Speech Corpus containing both domain-independent and
domain-specific utterances. The overall size of the corpus is 1010 hours. The domain-
independent corpus contains 960 hours of data and the domain-specific corpus has 50

hours of data.

« We have developed a Bangla text corpus containing 10 million unique Bangla sentences.

A language model trained on this text corpus significantly improves the ASR performance.

o« We have developed a context-annotated voice command corpus. The corpus has
1700 voice command templates and includes all necessary voice commands related to

smartphones, home appliances, automotive and office work accessories.

« We propose a novel approach for context-specific optimization of voice commands which

is based on multi-label topic modeling.

» We propose a novel approach for semi-supervised ASR training that can improve ASR

performance by exploiting unpaired audio data.
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« We have solved the out-of-vocabulary problem for Bangla ASR task by using synthetic

speech corpus generation.



Chapter 2
Literature Review

In this section, we provide a literature review for various ASR related components we worked
on such as G2P conversion, automatic Speech Corpus Generation, context-specific optimization,

semi-supervised training, etc.

2.1 G2P Conversion

The G2P system is used to find phonetic transcription for a word from its written representation.

Table 2.1 shows the summary of previous approaches for G2P conversion.

The research works for G2P in English are quite extensive. [2] use joint maximum entropy
n-gram model and conditional maximum entropy model for G2P conversion in English. [3]
utilize Recurrent Neural Network (RNN) with bi-directional LSTM (Long Short Term Memory)
for G2P and achieve 5.45% Phoneme Error Rate (PER) on CMU dictionary [4]. [5] show
comparisons among various machine learning algorithms for G2P in Burmese language. [6]
develop a joint-sequence model for G2P. Joint sequence n-gram models aim to discover joint
vocabulary consisting of graphemes and phonemes through the alignment of graphemes and
phonemes. [7,8] are other prominent works working on this model. Neural sequence to sequence

models are popular for G2P conversion. Some prominent works on such models are: [3,9-19].

Most of the works related to G2P conversion in Bangla language follow rule-based approach.
The rule-based approach of [20] provides an accuracy of 97.01% on a previously seen corpus
containing 736 words, but the system’s accuracy is 81.95% on a previously unobserved corpus
containing 8399 words. This work was extended by [21] describing 3880 rules with an
accuracy of 89.48% on another corpus. [22] discuss a rule-based approach considering several
information: parts-of-speech, subsequent context, etc. Their work describes only 21 rules and
provides an accuracy of 91.48% on a corpus of 9294 words. [23] provide a heuristic for G2P
that takes into account parts-of-speech, orthographic, and contextual information. Their work

provides 70% accuracy on a corpus containing 755 words. A prominent work for data-driven
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Literature | Language | Approach Method
[3,9-19] English | Data-driven Neural seq2seq
2] English | Data-driven maximum entropy n-gram
[6-8] English | Data-driven Joint sequence n-gram
20, 21] Bangla Rule-based Phonetic Rules
22] Bangla Rule-based Phonetic Rules, parts-of-speech,
subsequent context
Phonetic Rules, parts-of-speech,
23] Bangla Rule-based orthographic, contextual information
[24] Bangla Data-driven Neural seq2seq
[25] Bangla | Data-driven conditional random field

Table 2.1: Classification of Literature on G2P

G2P in Bangla language is by Google ( [24]). They develop a lexicon and achieve word-level
accuracy of 81.5%. [25] use conditional random field for G2P in Bangla. They report 14.88%
phoneme error rate on Google lexicon. Another line of research deals with G2P conversion for
more than one language. Such works include: [26], [27], [28], and [29].

The limitation of previous works on Bangla G2P is that most of them are rule-based. Rule-
based G2P systems are not suitable for accurate G2P conversion for large dictionary size. [24]
propose a data-driven G2P system that is trained on a manually transcribed lexicon of 37000
words. But the words in the manually transcribed lexicon are chosen according to frequency
only. We will show that significant performance improvement can be made by choosing the

words in the training set optimally.

2.2 Speech Corpus Preparation

In various languages, researchers have explored different methods for developing speech
corpus. Jang and Hauptmann [30] develop a speech corpus from captioned multimedia speech.
Lakomkin et al. [31] develop a tool to automatically construct data set for speech recognition
from YouTube videos containing transcriptions. Panayotov et al. [1] present 1000 hours of
speech corpus for English by aligning texts and audio files of audiobooks. Mansikkaniemi et
al. [32] and Helgadottir et al. [33] use similar alignment techniques to develop speech corpus
from recordings and transcriptions from parliamentary speech. Patel et al. [34] build a data

collection tool and collect around 100 hours of reading speech data in Manipuri Language.

Compared to other languages, research works on developing speech corpus for Bangla language
are quite limited. Nahid et al. [35] discuss the development of Bangla real number audio corpus.
The recordings were completed in a supervised environment and volunteers were given scripts to
read. Khan and Sobhan [36] develop a speech corpus containing only isolated words for Bangla.

All recordings were done in a laboratory. In another work of them, Khan and Sobhan [37]
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Paper Data Source Approach Approach Details | Hours
1] Audio Book 1000
[30] | Captioned Multimedia Speech 1314
[31] Captioned Youtube Speech Automated Forced Alignment 200
[32] Parliamentary speech 1550
[33] Parliamentary speech 542

Speech-to-text
[34] Telephonic speech Automated Keyword search 100
Speaker diarization
[35] Bangla real numbers 4
[36] Bangla isolated words Supervised Record read speech 375
[37] Bangla connected words 62
[38] Crowd-sourced Bangla speech | Interactive app | Record read speech 220

Table 2.2: Classification of Literature on corpus development

develop a speech corpus of connected words for Bangla. Researchers from Google [38] prepare
speech corpora for Bangla and four other languages using interactive mobile application [39].

They develop 229 hours of speech corpus for Bangla.

The limitation of the previous works on Bangla speech corpus development is that all the
previous works adopt supervised speech corpus development approach. This is not always
adequate for developing a speech corpus of the required size. Our work differs from the previous
works as none of these works deals with the automatic preparation of speech corpus in Bangla
language using existing audio and text data. We also prepare a separate domain-specific speech

corpus for Bangla voice command recognition task.

2.3 Context-specific Optimization

In various languages, researchers have used contextual information to increase the performance

of voice recognition systems. Table 2.3 shows the summary of previous approaches.

[40] present an online approach for adjusting language model (LM) weights of n-grams
corresponding to a specific context. [41] describe a composition based on-the-fly re-scoring
mechanism to employ contextual language models in a speech recognition system. [42] use
Named-Entity Recognition within the automatic speech recognition word lattice for identifying
contextually related paths. They report that their approach minimizes Word Error Rate (WER)
by 12.0% on a media playing commands data set. [43] provide a mechanism to learn contextual
information in an unsupervised manner and for building automatically contextually biased
models. [44] discuss two interpolation methods to merge contextual information with knowledge
from a general language model. [45] consider contextual information during beam search in
an end-to-end speech recognition system. [46] discuss contextual recurrent neural network

language model. They consider a contextual input vector for each word of a sentence.
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Literature | ASR Architecture Approach
[40,41] Traditional contextual LM, N-gram
o Named-Entity Recognition
[42] Traditional in Word Lattice, N-gram
[43] Traditional Unsupervised con.tex't learning,
N-gram biasing
m Traditional Merging contextual and general LMs,
N-gram
[45] End-to-end N-gram
[46] End-to-end contextual RNNLM
[47] End-to-end class based LM, N-gram

Table 2.3: Classification of Literature on Contextual ASR

[47] use class-based language models that provide contextual information during decoding in
an end-to-end speech recognition system. Moreover, [48] addresses an end-to-end ASR for low-
resource multilingual ASR context. [49] develop an end-to-end automatic speech recognition
system that is situation informed. They consider speaker gender, conversational history, etc. to
develop the situation-informed system. [50] develop an end-to-end speech recognition system

that considers dialog context.

We have not found any research work that focuses on considering contextual information for
voice command recognition in Bangla language. For other languages, all of the approaches used
are variations of n-gram based model for context detection. But the n-gram based approach is
too rigid. It is not robust to synonymous, missing, or misplaced words. All possible synonyms
and n-gram variations need to be present in the contextual corpus. It also considers a lot of
irrelevant word combinations as the contextual corpus gets bigger. We propose a multi-label
topic modeling approach for context detection which has several advantages over the n-gram
based approach. The topic modeling approach works on keywords which is more flexible and
robust than the n-gram approach. A variable number of contexts can be easily handled with

multi-label topic modeling.

2.4 Semi-supervised ASR Training

Researchers have explored different methods of exploiting unpaired speech data for speech

recognition. Table 2.4 shows the summary of previous approaches.

[51] investigate large-scale semi-supervised training to improve acoustic models for automatic
speech recognition. They provide an empirical analysis of semi-supervised training with respect
to transcription quality, data quality, filtering, etc. [52] pre-train the encoder-decoder network
with unpaired speech and text. They use a large amount of unpaired audio to pre-train the encoder

and synthesized audio from the unpaired text to pre-train the decoder. [53], [54] integrate active
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Literature | Architecture Approach
[51] Traditional Semi-supervised training, acoustic model
[53,54] Traditional active learning, semi-supervised training
[55] Traditional Multilingual data exploitation, acoustic model
[57] Traditional DNN, Graph based learning of acoustic model
[58] Traditional Sparse Auto-encoder
[59-61] Traditional | Semi-supervised learning of acoustic model, lexicon
[63,64] End-to-end Semi-supervised training with shared encoder

Table 2.4: Different Approaches for Exploiting Unpaired Speech Data

learning jointly with semi-supervised training in speech recognition system. [55] use transcribed
multilingual data and semi-supervised training to circumvent the lack of sufficient training data

for acoustic modeling. They train deep neural networks as data-driven feature front ends.

[56] use utterance-level and frame-level confidences for data selection during self-training.
They find it beneficial to reduce the disproportion in amounts of paired and unpaired data
by including the paired data several times in semi-supervised training. [57] describe the
combination of deep neural networks and graph-based semi-supervised learning for acoustic
modeling in speech recognition. [58] use a sparse auto-encoder to take advantage of both

unlabelled and labeled data simultaneously through mini-batch stochastic gradient descent.

[59] try to improve the performance of a code-switching speech recognition system for
Mandarin-English using semi-supervised training. They apply semi-supervised learning for
lexicon learning as well as acoustic modeling. Similarly, [60] and [61] use untranscribed data
for Luxembourgish & Lithuanian ASR respectively. [62] use a two-step training method to
generalize the air traffic control speech recognizer. First, a baseline speech recognition system
is trained using a paired speech corpus and it is used to transcribe publicly available unlabeled
data. The transcribed data is then filtered based on confidence scores and is used to retrain the

acoustic model.

Recently, semi-supervised training has been proposed in the context of end-to-end ASR. [63]
propose a shared encoder architecture for speech and text inputs that can encode both data from
their respective domain to a common intermediate domain. They combine speech-to-text and
text-to-text mapping by using the shared network to improve speech-to-text mapping. They
propose an inter-domain loss function based on Gaussian KL-divergence which represents the
dissimilarity between the encoded features of speech and text data. They later proposed an inter-
domain loss function based on Maximum Mean Discrepancy [64]. In both cases, they assume
that the encoded speech features in the current minibatch are sampled from one distribution and
encoded text features in the current minibatch are sampled from a second distribution. The inter-
domain loss is calculated based on the discrepancy of these two distributions. This approach has
some weaknesses. The performance of this system varies based on the chosen minibatch size.

Moreover, this approach does not take into account the variance of the current encoded features
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Research .

Problem Gap Proposed Solution
g;)siz\(fier;l)?nBanM(l)aSmﬂyveri%uels Identify words with critical

Grapheme to &4, G2P rules, Verify most words

phoneme conversion

lexicon for data driven
approach has words with
trivial G2P cases

automatically, Verify critical
words manually

Automated speech
corpus preparation

No work for automated cor-
pus generation in Bangla,
difficult to use forced align-
ment in Bangla

Combine speaker diarizarion,
gender detection, silence de-
tection and existing ASR sys-
tem to extend the speech

corpus, Speech synthesis for
010X

Semi-supervised

ASR

No previous work in Bangla,
Unsupervised loss not ro-
bust enough in previous end-
to-end system

Unsupervised loss calculation
in global context

Context Specific
Optimization

No previous work in Bangla,
N-gram too rigid, Too many
irrelevant word combina-
tions

Keyword based context iden-
tification and contextual rele-
vance calculation

Table 2.5: Gap Analysis and Proposed Approach

in the global context. We solve both problems by introducing a new inter-domain loss function
based on global encoding distance.

2.5 Summary of Gap Analysis

Table 2.5 shows the summary of gap analysis in the previous literature and our proposed
approach for solving the research problems. We will discuss each of the proposed approach
in detail in the following chapters.



Chapter 3
Linguistic Resource Preparation

In this chapter, we describe the preparation of different linguistic resources for the ASR system.
Traditional ASR systems use a phonetic dictionary or lexicon to map a word to its phonetic
transcription. To prepare the lexicon, we need to have two things, a word dictionary whose
phonetic transcription will be mapped and a set of phonemes that cover all pronunciations of the
target language. Typically, the most frequently used words in a language are kept in the word
dictionary. The word dictionary can contain 50,000 to 100,000 words, so it is very difficult to
provide phonetic transcription of all these words manually. That is why manual transcription
is done for a portion of the words. Then a Grapheme-to-phoneme (G2P) conversion system
is trained on the manually transcribed lexicon. The rest of the words in the dictionary are
transcribed using the G2P system. The G2P system is also very helpful for finding grapheme-

phoneme mapping of out-of-vocabulary words.

3.1 Phoneme List

Our Phoneme symbols are provided in Table 3.1. This table is a good reference for the 47
phoneme symbols that we have followed in this work and their corresponding International
Phonetic Alphabet (IPA) symbols. Throughout the book, we use these 47 phoneme symbols,
not the IPA symbols. There is a disagreement between linguists whether nasal vowels should
be considered as separate phonemes [65]. We added nasal vowels in our phoneme list to
differentiate between a word with its nasalized counterpart, such as the word @Mi(to cry) and
Fmi(mud). Here, /a/, /e/, /u/, /i/, /o/, /0O/, /E/, /an/, /en/, /lun/, /in/, /on/, /On/, /En/ are normal

vowels, /ew/, /ow/, luw/, /iw/ are weak vowels, and the rest are consonants.

13
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Table 3.1: Our Phoneme Symbols with Their Corresponding IPA Symbols

3.2 Text Corpus and Word Dictionary Preparation

A text corpus is necessary for several important reasons. It is used to identify the most frequently
used words in a language. A text corpus is also used to train a language model which can
significantly improve the performance of an ASR system by providing the contextual relevance
of a particular word in a transcription. Text corpus development typically involves web crawling,
text cleaning, text normalization, etc.

3.2.1 Web Crawling

To get a hold of the contemporary usage of Bangla language, we do extensive crawling. We have
prepared a crawling tool for open-domain sentence collection. We used the scrapy framework
for the crawling tool. For every website, we created a unique spider that will crawl from that
website. We used a web app for interfacing with the crawler. The web app is built in Django.

We crawled 42 websites of various Bangla newspapers, blogs, e-book libraries, Wikipedia, etc.
covering various domains such as politics, economics, sports, drama, novel, stories, education,
entertainment, general knowledge, history, etc. We tried to cover every domain and make sure
there was very little repetition and the corpus covers most of the Bengali words we use every
day. After collecting the text corpus using Web-Crawler, we parsed them into sentences. There
were around 11 million sentences after crawling.
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3.2.2 Text Cleaning

After collecting text from the open domain, we clean the texts using our text cleaning tool. We

consider the following cases while cleaning the texts:

« Remove non-Bangla Sentences.
» Remove punctuation’s and signs
» Replace it with blank space.

o Remove inconsistent lines.

« Remove duplicate lines.

 Sort sentences lexicographically.

3.2.3 Text Normalization

After cleaning the texts, we normalized those using the following rules:

« Numbers are converted to text

o If comma (,) is inside a number, will be replaced by null string, if anywhere else, will be

replaced by single space
« Handling abbreviation, such as:*“Tg”: “T3rr+”
o Some special numeric such as: “5YI”:“ZTW”,“Q?I”,“TQT?I?I”,
« Handling Percentage (%) sign, will be changed to: ,*“*roR=r"
« Replaced tab(s), multiple spaces with single space

« Handled decimal symbol (.), will be converted to: “w*%=”, also the digits after decimal
symbol will be converted digitwise: so, “><k9.0¢¥” will be converted to: “4F *IS (O]

o If there is “3=1,A9" etc. after number, then it will be changed differently to capture how
we naturally convert year: for example: “$54% JER T A6 will be:“TTem *1s @FTF
SACER o= T4 W67, not: “@F FSF T =[O GFEF AL

 [fanumber starts with ‘0’ (zero), digit wise change (i.e., considering it as mobile number
or number plate) s0: “054%98¢v” will be “*J=F &3 s 72 Tox b1 6 =T~
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« Hyphen (-) will mostly be ignored, but in certain situations, it will be converted to “I3<",
such as: “%-9 ™ => “2 (AF Tor e “83 THTT - {8 THRI” => “35 PIHH (WS &8

After data cleaning and data normalization, we had about 10 million sentences in our text corpus.

3.2.4 Domain Specific Text Corpus

For close domain sentence collection, we tried to cover commands supported by existing voice

assistants below:

o Google Assistant
o Google Home

e Amazon Alexa
o Siri

« Bixby

o Cortana

We explored the commands supported by these voice assistants in English and tried to add their
Bangla equivalent commands in our corpus. Overall, we had 1700 unique voice command text
in our corpus. We add these sentences to our text corpus. The collected sentences were from

the following domains:

Smartphone and Popular app commands

Home appliance
« Office

« Automotive

3.2.5 Word Dictionary

After doing word frequency analysis of these sentences, we got around 1.7M/ unique Bangla
words (tokens). We counted how many times each of the unique words appeared in those
sentences. We then consider the most frequent 100/ words and aim to identify the critical
cases for phonetic transcription among these most frequent words. And these words constitute
our word dictionary for Bangla language. For the voice command-specific sentences, we add

each word to our word dictionary regardless of their frequency.
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3.3 G2P Training and Lexicon Preparation

Grapheme to phoneme (G2P) conversion provides a mapping between a word and its
pronunciation. Such mapping provides the opportunity for a non-native person to learn the
correct pronunciation of words of a foreign language. Moreover, in modern Text to Speech
(TTS) and Automatic Speech Recognition (ASR) systems, G2P conversion is an integral task.
The task of G2P conversion is generally language-specific due to language-specific conventions,
rules, pronunciation constraints, etc. In our work, we focus on Modern Standard Bangla. An
example of G2P conversion in Bangla language: phonetic transcription of SIe<lia« (practice) is
/onushilOn/.

The simplest means of G2P conversion is to build up a lexicon or dictionary containing the
mapping from words to their corresponding pronunciations. However, it fails to provide
pronunciations for unknown words and the inclusion of newer words increases memory
requirement. In another approach [20], there are predefined rules for the conversion of a
word to its pronunciation. Though such a rule-based approach can work for any word, the
system becomes complex when it tries to formulate rules for incorporating all irregularities of

pronunciation in a language.

These approaches are not feasible for large-scale G2P conversion which is necessary for any
modern TTS or ASR system. Data-driven machine learning approaches have great potential
in such large-scale G2P conversion [12]. In such an approach, a machine learning model
predicts the phoneme conversion of a grapheme, being trained on a lexicon. A predominant
work following such approach in Bangla language is by Google [24], where they train their
system using 37K words and achieve word-level accuracy of 81.5%. However, a system
trained on their lexicon will face several shortcomings, such as ¥™i(mud) and F(to cry) are
pronounced differently but will have the same phoneme representation in their system as: /k a
d a/. Similarly, *Si(fairy) and *f%(to read) are pronounced differently but will have the same
phoneme representation in their system as: /p o r i/. Moreover, G2P system trained on their
lexicon performs poorly on our identified critical cases from the most frequent 100K words
(Table 3.3).

Being motivated to increase the accuracy of grapheme to phoneme conversion in Bangla
language, which will also perform well for critical inputs, we have developed a customized

and robust G2P system for Bangla language.

Our major contributions are as follows:

(1) We identify and categorize the critical cases for grapheme to phoneme (G2P) conversion

in Bangla language by analyzing the most frequent 100K words.

(i) We enrich the training lexicon for developing a robust G2P conversion system in Bangla

language that performs much better for critical cases compared to other state-of-the-art
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G2P systems.
(i11)) We perform phonetic transcriptions considering nasal vowels as separate phonemes.

(iv) We perform extensive simulations on a large-scale dataset and show that our methodology
outperforms other state-of-the-art approaches for G2P conversion in Bangla language by

providing word-level accuracy of 90.2%.

3.3.1 Previous Works on G2P

The research works for G2P in English are quite extensive. [2] investigate machine learning
based systems for G2P in English. They experiment with joint maximum entropy n-gram model,
conditional maximum entropy model, etc. [3] utilize bi-directional LSTM (Long Short Term
Memory) recurrent neural network for G2P and achieve 5.45% PER on CMU dictionary [4]. [5]
show comparisons among various machine learning algorithms for G2P in Burmese language.
Joint sequence n-gram models aim to discover joint vocabulary consisting of graphemes and
phonemes through the alignment of graphemes and phonemes. [6] develop a joint-sequence
model for G2P. [7], [8] are other prominent works working on this model. Neural sequence
to sequence models are popular for G2P conversion. Some prominent works on such models
are: [9], [10], [11], [3], [10], [12], [3], [13], [14], [15], [16], [17], [18], and [19]. Again,
another line of research deals with G2P conversion for more than one language. Such works
include: [26], [27], [28], and [29].

Most of the works related to G2P conversion that are focused on Bangla language, follow
rule-based approach. The rule-based approach of [20] provides an accuracy of 97.01% on
a previously seen corpus containing 736 words, but the system’s accuracy is 81.95% on
a previously unobserved corpus containing 8399 words. This work was extended by [21]
describing 3880 rules with an accuracy of 89.48% on another corpus. [22] discuss a rule-based
approach considering several information: parts-of-speech, subsequent context, etc. Their work
describes only 21 rules and provides an accuracy of 91.48% on a corpus of 9294 words. [23]
provide a heuristic for G2P that takes into account parts-of-speech, orthographic, and contextual
information. Their work provides 70% accuracy on a corpus containing 755 words. A prominent
work for data-driven G2P in Bangla language is by Google ( [24]). They develop a lexicon and
achieve word-level accuracy of 81.5%. [25] use conditional random field for G2P in Bangla.

They report 14.88% phoneme error rate on Google lexicon.

3.3.2 Non-Trivial Cases for Transcription

We envision developing a robust G2P system that will perform reasonably well on any word

in Bangla language. A G2P system that performs well on the most frequent words, should
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also do well on other words. With this motivation, we focus on increasing accuracy on the
most frequent words. Especially, we are concerned about those words that are among the
most frequent words but non-trivial or critical for phonetic transcription, i.e., current state-of-
the-art methodologies perform poorly on these critical words. We investigate identifying and
categorizing such non-trivial or critical cases so that future research works can give special focus

on developing methods for improving phonetic transcriptions of these critical words.

Identifying the Critical Cases for Transcription

After changing the Google lexicon (of size 60K (around)) according to our phoneme symbols
(Table 3.1), we prepare 4 versions of Google’s lexicon of size 12K, 24K, 40K, and 60K
respectively for identifying the critical cases for phonetic transcription. Algorithm 1 shows
prefix comparing algorithm that we use for compressing a phonetic lexicon or dictionary of
grapheme sequence to phoneme sequence. The algorithm matches the prefix of consecutive
words (grapheme sequence) of a sorted dictionary (sorted according to ascending order of
grapheme sequence of a word) and keeps a word (with its corresponding phoneme sequence)
only if it does not share its prefix with any other words. We run the algorithm successively 3
times, i.e., we use the destination dictionary of one iteration as the source dictionary of the next
iteration. Each iteration produces a minimized version of the basic lexicon (Google lexicon).
After 3 iterations, the dictionary does not get any more compressed. We find the phonetic
transcriptions of each of the 100K most frequent words using models trained on each of the 4
versions of Google’s lexicon (basic + 3 minimized). So, from 4 models (each model trained on a
version of the basic Google lexicon), we get 4 sets of transcriptions for the most frequent 100 K
words. For most of the words (around 70K words), we observe that the phonetic transcriptions
are exactly the same in each of the 4 set. However, for the remaining 30 X" words (29105 words
to be exact), we observe that at least one set provides different transcription. We take these 30/
words to be the critical cases. Our intuition is that if two G2P systems: one trained on a smaller
version of the basic lexicon, and another trained on a larger version of the basic lexicon provide
the same transcription for a word, then the word is a trivial case for phonetic transcription. We
then manually verify the phonetic transcriptions of these 30 X' words taking help from 3 linguists

and following [66], and consider these 30/ words as critical cases for phonetic transcription.

Categorizing the Critical Cases

We categorize the critical cases into 7 categories and observe the distribution of the critical
transcriptions into these 7 categories. These 7 categories capture most of the errors. The

categories are:

e Open Close Vowel Confusion: G2P system provides pronunciation as close vowel

that should be pronounced as open vowel ideally, and vice-versa. For example, correct
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Algorithm 1 Algorithm for Compressing a Dictionary or Lexicon

— = =

,_.
D2

sd <— sorted sourceDictionary
dd < sorted destinationDictionary
a.grs <— grapheme sequence of lexicon

entry a

add sd[0] to dd
1=1
while i # length(sd) do

pw = sd[i — 1]

cw = sd|i

if length(pw.grs) > 3 & pw.grs is prefix of cw.grs then
continue

else
add cw to dd

14—1+1

phoneme of M8 (frog) is /b E n g/, but if the G2P system provides output /b e n g/, then it
is an error under this category as in the place of an open vowel (here, /E/), the G2P system

is giving close vowel (here, /e/).

Inherent Vowel Confusion: G2P system does not provide inherent vowel as output
where there should be an inherent vowel ideally. For example, correct phoneme of J<FTel
(morning) is /sh O k a1/, but if the G2P system provides output /sh k a 1/, then it is an error
under this category as the output of G2P does not give the inherent vowel (here, /O/).

Diphthong Confusion: G2P system does not provide falling diphthong in output where
there should be a falling diphthong ideally. Or, the system does not provide a rising
diphthong in output where there should be a rising diphthong ideally. For example, correct
phoneme of 312 (friend) is /sh o iw/, but if the G2P system provides output /sh o i/, then it
is an error under this category as the output of G2P does not capture the falling diphthong

(here, /o iw/).

s or sh Confusion: G2P system provides /s/ in phonetic transcription, where there should
be /sh/, and vice-versa. For example, correct phoneme sequence of 313+ (organization)
is /sh O N g O Th o n/, but if the G2P system provides output /s O N g O Th o n/, then it

is an error under this category as the output of G2P gives /s/ in place of /sh/.

s or ch Confusion: G2P system provides /s/ in phonetic transcription, where there should
be /ch/, and vice-versa. For example, correct phoneme sequence of

29T (umbrella) is /ch a t a/, but if G2P system provides output /s a t a/, then it is an error
under this category as the output of G2P gives /s/ in place of /ch/.

Nasal Confusion: G2P system does not provide any nasal vowel where there should be a

nasal vowel, and vice-versa. For example, correct phoneme sequence of 5 (moon) is /c
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Error Type 60K | 40K | 24K | 12K
total error 6415 | 7222 | 8087 | 10400
Open Close Confusion (%) 32.0 | 30.7 | 34.8 | 23.6
Inherent Vowel Confusion (%) | 28.4 | 36.7 | 32.0 | 40.1
s or sh confusion (%) 14.6 | 15.3 | 14.2 | 12.8
Dipthong confusion (%) 116 | 98 | 7.6 9.4
Other Vowel Confusion (%) 21 | 1.3 | 4.2 3.1

s or ch confusion (%) 08 | 0.7 | 0.2 0.5
Nasal Confusion (%) 0.2 | 0.1 0 0
Other Error (%) 104 | 54 | 7.1 | 10.6

Table 3.2: Error classification of 30K critical cases, here each of the four rightmost columns
denotes the model trained on that particular lexicon.

an d/, but if the G2P system provides output /c a d/, then it is an error under this category
as the output of G2P gives /a/ in place of /an/.

o Other Vowel Confusion: The G2P system provides a completely different vowel than the
corresponding vowel that should ideally be in that position of the phoneme sequence. Note
that, in the other error categories, for each position in the phoneme sequence, the generated
and ideal phonemes were somehow related. But in this category, at a specific position of
the phoneme sequence, the generated and ideal phonemes are completely different. For
example, correct phoneme sequence of ST (perseverance) is /0 d dh o b O sh a ew/,
but if the G2P system provides output /o d dh a b O sh a ew/, then it is an error under this
category as the output of G2P gives /a/ in place of /o/ (fourth phoneme).

Algorithm 2 compares a machine-generated lexicon with a reference lexicon (manually verified),
where both the lexicons have the same grapheme sequences, but the corresponding phoneme
sequences may be different. This algorithm counts how many errors of each category are there
in the machine-generated lexicon. The algorithm takes each entry of the generated lexicon and

increases the count of the corresponding error category (if an error is present there).

We train the attention mechanism based Transformer model on each of the 4 lexicons and get 4
G2P models. We find the phoneme representation of 30K critical cases using each of the 4 G2P
models. Using Algorithm 2, we count the errors of each category for each of the 4 models. We
report the results in Table 3.2 and Figure 3.1. Here, the other error denotes the errors that are
not captured by these 7 categories. We see from these results that most of the errors are under

Open Close vowel, s or sh, Diphthong, and Inherent Vowel confusions.

3.3.3 Developing an Improved G2P System for Bangla Language

We develop an improved lexicon and use two machine learning-based models trained on our

lexicon to develop an improved G2P system for Bangla language. For developing an improved
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Algorithm 2 Comparing a Generated Lexicon (gl) with Reference Lexicon (rl)

1: N < total number of entries in each lexicon

N

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

37:

A B,C,D,E, F,G are Open Close Vowel, s or sh, s or ch, Nasal, Dipthong, Other
Vowel, and Inherent confusions, respectively, all initially zero
H denotes other errors not captured by the 7 categories, initially zero
vl and wl are lists of vowels and weak vowels respectively
a.phs < phoneme sequence of lexicon
entry a
140
while i # N do
9 = glli].phs
r = rl[i].phs
M = min(length(g), length(r))
7+ 0
while j # M do
x = g[j]
y =rlj]
if x =y then
continue
(x,y) < sorted(z,y)
Total error = Total error +1
if ocCon fusion(z,y) then
A—A+1
else if (z,y) = (“s”, “sh”) then
B+ B+1
else if (z,y) = (“ch”, “s”) then
C+—C+1
else if v + “n” =y then
D+ D+1
else if x in wl or y in wl then
E+—E+1
else if z in vl and y in vl then
F+—F+1
else if removeVowel(g) = removeVowel(r) then
G+—G+1
else
H+— H+1
JjJ+1
1 1+1
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Algorithm 3 Procedure: ocConfusion (z,y) (Checks if open close vowel confusion)

ocSet + [(“O”, “0”), (“E”, “e”),
(“On”, “on”), (“En”, “en”)]
if (z,y) in ocSet then
return True
else
return False

Algorithm 4 Procedure: removeVowel (phoneme_sequence)

1: return phoneme_sequence removing all vowels from it

Categorization of Errors in Critical Cases

4500
B 60K
40001 B 40K
B 24K
3500 B 12K
=}
5 3000
(e}
(@]
S
W
(0]
£
[
C
(o]
e
o

Open Close s orsh s or ch Other vowel Nasal Dipthong Inherent Other error

vowel confusion confusion confusion confusion confusion vowel
confusion confusion

Figure 3.1: Categorization of errors in critical cases, here each of the

60K,40K,24K,and 12K denotes the model trained on that particular lexicon.
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lexicon, we include with Google’s lexicon the manually verified 30/ non-trivial or critical
entries. Also, we include the 70K entries in which all of the 4 models (trained on each of
the 4 versions of Google lexicon) unanimously agreed. Our lexicon consists of around 100/

entries.

3.3.4 G2P Models

We use Neural Sequence to Sequence models. In these models, a conditional distribution
of a sequence (here, phoneme sequence) is learned conditioned on another sequence (here,
grapheme sequence). We train two following sequence-to-sequence models on our lexicon for

G2P conversion:

LSTM-RNN: This is a plain Sequence to Sequence model that incorporates an encoder and
decoder mechanism. A recurrent Neural Network (RNN) is usually utilized in encoder and
decoder design. For addressing the vanishing gradient problem in RNN, Long-Short Term
Memory (LSTM) [67] is used. We follow [3] for implementation.

Transformer Model: Transformer Model uses attention mechanism. Attention mechanism
provides an improvement upon plain Sequence to Sequence by easing the flow of information

from source sequence to destination sequence. We follow [19] for implementation.

We show the performance of both of these models in Section 3.3.5. We observe that Transformer
Model provides higher token-level accuracy (lower Word Error Rate) than LSTM-RNN.

3.3.5 Experimental Results

We run extensive simulations and use two measures for evaluating the performances of the G2P

systems:

Word Error Rate (WER): For calculating Word Error Rate (WER), we use the following

formula:

WER = £
T
where £ denotes the number of words that disagree on their generated phoneme sequence and

reference phoneme sequence, and 7" denotes the total number of words.

Phoneme Error Rate (PER): For calculating Phoneme Error Rate (PER), we use the following

formula:
I+S+D

T

where I, S, D denote respectively the total number of insertion, substitution, and deletion

PER =

operations needed for all the words to align the generated phoneme sequence with the reference
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Lexicon Model WER(%) | PER(%)
Goosl LSTM-RNN 25.7 3.26
oosle Transformer Model 23.6 2.71

Table 3.3: Performance on Critical Cases

Lexicon Model WER (%) | PER (%)
Google LSTM-RNN 17.1 2.32
Transformer Model 14.8 1.88
Our Lexicon LSTM-RNN 10.5 1.42
Transformer Model 9.8 1.33

Table 3.4: Performance Comparison In General

phoneme sequence for each word. 7' denotes the total number of phonemes present in all the

words.

Our best performing model is Transformer Model. We use a batch size of 4096. Our neural
network has 3 hidden layers, each containing 256 nodes. We use a computer having 8GB RAM,
Intel Core 17 CPU, and Nvidia Geforce 1050 GPU for running all of the simulations. For each

model, we run the simulations for around 110K iterations taking around 5 hours.

Performance on Critical Cases

We report the experiment results of Google’s lexicon on critical cases in Table 3.3. We do not

report our lexicon here as critical cases are already included in our lexicon.

Performance Comparison In General

For comparing the performances of models trained on our lexicon and Google’s lexicon, we
randomly take 9000 entries from our manually verified 30K critical cases as the test set. We
use this test set for evaluating all the models. Though our actual lexicon contains these 9000
entries, we do not keep them in our lexicon while doing the experiments to fairly evaluate the
performances of the lexicons. For both lexicons, we keep 90% of the lexicon in the train set
and the remaining 10% in the validation set. Table 3.4 shows the result. Models trained on
our lexicon outperforms those trained on Google’s lexicon by a significant margin. Moreover,
Transformer Model performs better than LSTM-RNN.

Figure 3.2 and Table 3.5 categorize the errors of systems trained on 3 types of lexicons
(Romanized version of our lexicon is discussed in section 3.3.5) by using Algorithm 2. Here, we
report the results of the Transformer Model only as it has been better performing than LSTM-
RNN in our experiments. We observe most of the errors are related to Open Close vowel, s or
sh, Diphthong, and Inherent Vowel confusions - this finding also conforms to Figure 3.1 and

Table 3.2, which were error categorization of critical cases.
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Performance Comparison on Different Error Categories

3500
EEm Our Lexicon
@ Our Lexicon Romanized
3000+ EEE Google Lexicon
2500
€
S
+ 20001
e
]
[}
& 15001
&
E
1000
5001
0! : = H] ‘ :
Total Open Close s orsh sorch Other Nasal Dipthong Inherent  Other
phoneme vowel confusion confusion vowel confusion confusion vowel error
error  confusion confusion confusion
Figure 3.2: Performance Comparison on Different Error Categories
Error Type Our Lexicon | Romanized Lexicon | Google Lexicon
Total Error 1337 1406 2961
Inherent Vowel Confusion (%) 35.6 34.5 33.8
Open Close Confusion (%) 30.1 30.4 27.9
s or sh confusion (%) 13.3 13.0 12.1
Diphthong confusion (%) 10.7 9.8 13.1
Other Vowel Confusion (%) 1.9 4.3 2.7
s or ch confusion (%) 0.3 0.2 0.2
Nasal Confusion (%) 0.2 0.43 0.6
Other Error (%) 7.9 7.4 9.7

Table 3.5: Performance comparison on different error categories. Here each of the three
rightmost columns denotes the model trained on that particular lexicon.
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Figure 3.3: Comparison in terms of WER and PER

Effect of Romanization

For doing experiments on the effect of romanization on G2P conversion, we romanized all
grapheme sequences in our lexicon to prepare a romanized counterpart of our lexicon. During
romanization, each grapheme symbol in Bangla is replaced with a single English letter except
that if a consonant grapheme is not followed by a vowel grapheme, “O” was added after the
romanized symbol of that consonant as the roman symbol for “=”, which is usually inherently
pronounced in such cases. All the symbols used for romanization were completely disjoint to
avoid any ambiguity in the lexicon. Figure 3.3 shows the WER and PER of systems trained on 3
types of lexicons. Here, we report the results of the Transformer Model only as it has been better
performing than LSTM-RNN in our experiments. Both versions of our lexicon perform better
(lower WER and lower PER) than Google’s lexicon. Also, romanization does not significantly

increase or decrease the performance.

Figures 3.4 and 3.5 show respectively the Word Recognition Accuracy (1—WER) and Phoneme
Recognition Accuracy (1—PER) with respect to number of iterations run during simulation.
Both versions of our lexicon perform better (higher Word Recognition Accuracy and higher
Phoneme Recognition Accuracy) than Google’s lexicon. Figure 3.6 shows Negative Log
Perplexity vs number of iterations. Both versions of our lexicon provide higher negative log
perplexity than Google’s lexicon.

Effectiveness of Our Identified Critical Cases

In this section, we want to establish that the improved performance of our lexicon comes not
only from the increase in the number of training samples but also due to the fact that the critical

cases identified by our novel methodology have been added as training samples. For this, we
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Figure 3.4: Word Recognition Accuracy vs Iteration
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Figure 3.6: Negative Log Perplexity vs Iteration

Lexicon Model WER (%) | PER (%)
Google LSTM-RNN 17.1 2.32
Transformer Model 14.8 1.88
New Lexicon LSTM-RNN 12.6 1.54
Transformer Model 11.2 1.49

Table 3.6: Effectiveness of critical cases. Both lexicons are of size 60K. New Lexicon
consists of 21K critical cases and 39K entries from Google lexicon.

prepare a new training lexicon by combining a portion of the Google lexicon with a portion
of our identified critical cases. As we have kept 9K entries from the critical cases as our test
set, we take the remaining 21K critical cases and combine them with the randomly taken 39 K
entries from Google lexicon to prepare a new lexicon of size 60/ . While taking entries from
the Google lexicon, we ensure that we do not take any repeated entry that has already been in
the critical cases and added to the new lexicon. We then compare the performance of this new
lexicon with the Google lexicon, both of which are of the same size (60 K’), on our test set. The
results are in Table 3.6. The results clearly show that even in the case of same sized lexicons,
our identified critical cases can significantly improve the performance as evidenced by the lower
WER and lower PER than those for the Google lexicon.



Chapter 4
Speech Corpus Preparation

In this chapter, we describe our speech corpus development process. Specifically, we describe
our domain study, speech corpus development approach in a supervised environment, automatic

speech transcription approach, and synthetic speech corpus generation approach.

4.1 Voice Command Domain Study

Our primary objective was to cover all the voice assistant accessories that Bixby supports.
Moreover, we consider the future scopes and select every possible domain in which we
can recognize Bangla voice commands. We study the popular voice assistants - Google
Assistant, Google Home, Amazon Alexa, Siri, Bixby, Cortana, and more. We explore them and
collect sentences from Smart-phone commands (System commands, Contacts, Media Player,
Camera, Gallery, Messaging, Weather, Date, Alarm, Email, etc.), Home appliances (Smart
TV, Fridges, Air-Conditioners, Computers, etc.), Office work accessories (Projectors, Printers)
and Automotive navigation applications (Vehicle routing, Utility Control). For automotive, we
consider all voice commands supported by popular smart cars such as Ford Sync, Lexus Voice
Command, Chrysler UConnect, Honda Accord, and GM IntelliLink. We prepare a list of 1700
voice commands that covers the entire target domain. Table 4.1, 4.2, 4.3 show summary of our

voice command domain.

Domain Info Number of Commands
Smartphone Navigation/Operation 340
Popular Apps 190
Home Appliances 440
Office 180
Automotive 550
Total 1700

Table 4.1: Target Domain of Voice Command

30
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Included Smartphone Actions
Launch Apps basic commands
Call Texting
Camera Music
Set Alarm/ Reminder Browse
Write Notes Use Radio
Use Bluetooth Wi-Fi

Table 4.2: Smartphone Operations Included

Included Apps
Facebook Twitter
Calendar Weather
News apps Pandora

Music apps | Navigation/Maps

Uber Google Play Store
YouTube Spotify
Sound Cloud Tuneln

Table 4.3: Apps Included

4.2 Previously Available Speech Corpus

We consider all publicly available Bangla speech corpus as well as prepared a speech corpus of
our own. The largest publicly available speech corpus is provided by Google [38]. Table 4.4
shows the summary of this corpus. It contains 217902 utterances from 505 speakers. Among the
speakers, 323 of them are men and 182 women. The size of the speech corpus is approximately
220 hours.

4.3 Supervised Speech Corpus Development

Different approaches for speech corpus development have been explored by the researchers. A
basic approach is to manually transcribe existing audio files. This is a very time consuming,
monotonous, and error-prone task. Transcription of one-hour recording can take 3 to 5 hours or

more [68]. A comparatively faster approach is to develop an interactive mobile application that

Aspect Value
Number of Utterance | 217902
Number of Speaker 505
Male Speaker 323
Female Speaker 182
Corpus Size 220 Hours

Table 4.4: Google’s Crowd-Sourced Speech Corpus
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Figure 4.1: Data Collection App

prompts the user to read a particular text [39]. The user will have to start recording manually,
read the prompted text, and end recording manually. In our experience, preparing one hour’s

worth of transcribed speech takes around 2 hours in this approach.

Bangla voice commands contain a set of technical words that are missing from all publicly
available speech corpus. Also, the sentence structure of the voice commands is sometimes
different from regular Bangla sentences. So we develop a speech corpus solely containing

Bangla voice commands.

4.3.1 Data Collection App

We prepare an Android app for speech data collection following the approach by [39]. Figure

4.1 and 4.2 shows the app interface we used for speech data collection.
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User Registration

During the user registration process, we collect the following information about the current

recording session:
o User Name
o Email
« Gender
o Age
« Recording Environment
» Accent

After the registration process, the recording screen will appear.

Data Collection Interface

In the recording screen, the current sentence, current session-id, and current sentence id will be
shown. The session id is unique to this session. The sentence id is unique to this text across all

sessions. At the bottom of the recording screen the following buttons will appear:

At the bottom of the recording screen the following components will appear:

Start Button This button is used for starting the recording. This remains disabled if

recording is running.

Stop Button This button is used for stopping the recording. This remains disabled if

recording has not started yet.

Play Button This button is used for playing the audio file related to the current sentence if it

had been recorded.

Next Button Save current recording and move to next sentence. A recorded sentence can be

found, played, and updated at any time by finding it through the gallery.

Skip Button If the user is unable to understand the current sentence, he/she can choose to

skip the sentence. A skipped sentence can be recorded anytime by finding it through the
gallery.

Auto Advance Checkbox When the user becomes comfortable with fast recording, the
auto-advance mode can be enabled using the checkbox. In auto-advance mode, the next
sentence will appear as soon as the user finishes recording the current sentence. In this

mode, the user can record up to 500 sentences in 30 minutes.
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In the navigation bar, some more feature is given. Such as:

Back To Previous If any manual mistake needs to be corrected during the auto-advance

mode, this button needs to be used. This is faster than finding the sentence in the gallery.

Open Gallery Shows all sentences recorded or skipped. The recorded sentences appear in
green, the skipped sentences appear in red.

Terminate Session Used for terminating current recording session and sending information

to the server.

Gallery Interface

Gallery interface shows all sentences recorded or skipped. The recorded sentences appear
in green, the skipped sentences appear in red. Users can select any sentence to open the

corresponding recording screen. Users can play recorded audio or re-record audio if necessary.

Data Upload

The recorded audio files are named in a particular format (session_id-sentence id.wav). This
makes it easy to find the corresponding text transcription of the audio and related speaker
information. The recorded audio is 16kHz mono-channel audio files. After the user terminates
the session, all recorded audio files will be zipped together. The user can then use the data upload
interface to upload the zipped audio via email or a Google form. The email is auto-generated

and the user only needs to select the sending email address and click send.

4.3.2 Summary of Voice Command Specific Corpus

Table 4.5 shows the summary of the corpus. We are able to collect 28973 sentences from 56
speakers using this application. Among the speakers, 34 are men and 22 are women. The
size of this corpus is around 50 hours. 20 hours of speech data came from university student
volunteers who participated in our workshop. Around 30 hours of speech data were collected by
contacting NGOs who arranged data collection sessions among other volunteers. The age range

of the speakers ranges from 20 to 35 with average age around 26.

4.4 Corpus Generation Using Automated Transcrip-

tion

Figure 4.3 shows an overview of our system. We use publicly available audiobooks and TV

news recordings collected from YouTube as an audio source in our system. All our audio files
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Aspect

Value

Number of Utterance

28973

Number of Speaker

26

Male Speaker

34

Female Speaker

22

Speaker Age (Avg)

26

Corpus Size

50 Hours

Table 4.5: Voice Command Corpus
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Figure 4.3: Overview of Automated Corpus Preparation

are converted to a 16 kHz mono channel WAV file. All the audio files are equal to or less
than 30 minutes in length. We then remove the background noise of the audio files. After
that, we perform speaker diarization on the audio files to group the audio portions of the same
speaker together. We perform automatic gender detection on the audio files to identify the
gender of the speaker. We segment each of the audio files in silence intervals and ensure that
all the audio segments are less than or equal to 35 seconds. Finally, we automatically generate
transcriptions for the audio files as we do not have corresponding text for the audio files. For
generating the transcriptions with reasonable confidence, we have designed and implemented
an iterative algorithm (Algorithm 5). Details of each of the system components are described in

the following sections.

4.4.1 Background Noise Removal

It is important that we remove the background noise from the audio files for proper speech
transcription. We follow the approach described in [69] and [70]. We study the Mel-frequency
cepstral coefficients (MFCC) features of the audio files for noise identification. In the beginning,
the auto-correlation coefficients of relatively higher order are extracted. Then we use Fast
Fourier transform (FFT) on the magnitude spectrum of the resultant speech signal and it is
differentiated with respect to frequency. Finally, the differentiated magnitude spectrum is

transformed into MFCC-like coefficients.
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4.4.2 Speaker Diarization

Speaker diarization refers to the task of grouping speech segments in an audio stream containing
multiple speakers in a way that speech segments from the same speaker form a cluster. We
follow the approach described in [71] for speaker diarization. This speaker diarization system

(see also [72], [73]) is based on the binary key speaker modelling [74].

Binary key speaker modeling provides a compact and efficient representation of speech
segments or clusters in the form of a vector. The vector captures speaker-specific features. The
classification task is carried out by computing the similarity measures between binary keys. The

proposed system obtained a Diarization Error Rate (DER) of 11.93%.

In our system, ICMC (Q transform Mel-frequency cepstral coefficients) were used in place
of baseline MFCC acoustic features. For clustering, an affinity matrix is calculated from the
data points. The eigenvectors corresponding to the top eigenvalues estimated from the affinity
matrix is used as the similarity measure between data points. Then data points are clustered
according to this similarity measure. Then we smooth and denoise the data, perform eigenvalue
decomposition and sort the eigenvalues in descending order. Then we select the number of
clusters according to the value which maximizes the eigengap. The spectral clustering algorithm
often results in the estimation of a single speaker, therefore the system is configured to force the
return of two or more clusters. Then the system performs pre-clustered thresholding of the

eigengap between the two largest eigenvalues.

4.4.3 Gender Detection

We extract Mel Frequency Cepstrum Coefficients (MFCCs) features from the audio files. A
lot of acoustic features like peak frequency (the frequency with the highest energy), meanfun
(average of fundamental frequency measured across acoustic signal), minfun (minimum

fundamental frequency measured across acoustic signal), etc. are included in MFCC features.

We use a Gaussian Mixture Model to build the gender detection system from these extracted
features. The training dataset consists of Mozilla common voice data set. We had almost 58,000
male voice clips and 17,000 female voice clips in the train set. After training, a test data set
consisting of manually tagged Bangla audio clips are used for evaluation. The test set had 826
male and 590 female audio clips. Even though the training set and test set had completely
different languages, we achieved a recognition rate of 85% and 98% for male and female clips

respectively.

4.4.4 Silence Based Segmentation

We segment each of the audio files on silence intervals and ensure that all the audio segments

are less than or equal to 35 seconds. We use PyAudioAnalysis [75] for this task.
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Figure 4.4: Overview of Automatic Transcription

We take 0.4 seconds as minimum silence length (the minimum length of the silence at which a
split may occur) and 0.0001 as silence threshold (the energy level (between 0.0 and 1.0) below

which the signal is regarded as silent).

4.4.5 Automatic Transcription Generation

As we did not have any reference text for any of the audio files, we had to automatically generate
the transcriptions. We designed and implemented an iterative algorithm for this task (Algorithm
5). This algorithm automatically transcribed processed speech data, does sanity testing, and

adds the accurate speech-text segments to the speech corpus.

This algorithm uses two speech recognition systems: one is Google Speech API and another is
our speech recognition system that has been trained on publicly available 220 hours of speech
data from Google (out of the remaining 3 hours, 2 hours for the test set, 1 hour for validation
set). We use a hybrid CTC-Attention based end to end system for training our ASR [76]. The

flowchart of the automatic transcription process is given on 4.4

We observe that none of the two systems provide fully accurate performance and Google API
provides much better performance than our system. To generate transcription with reasonable
confidence, we decide to generate transcriptions using both ASR models. Our intuition is that,
for each of the audio files, if we take the longest common sequence of consecutive words
between the outputs of both the systems and take only the audio and transcription for that
matched portion, we can be confident enough about the accuracy of the transcription. However,

we cannot do this at the start because our speech recognition system was performing quite
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poorly initially. So, we follow an iterative strategy where we add the Google Speech API
transcription to our speech corpus if it passes the sanity test performed by our developed ASR
system. To perform the sanity test, we generate the transcriptions of the audio files from both
of the systems. We consider the longest common sequence of consecutive words from both of
the transcriptions. We take the percentage of the length of this matched portion with respect to
the length of transcription from Google API. If this percentage value is greater than a threshold
(50%), then the speech API transcription has passed the sanity test. Even though Google API
transcription passing the sanity test still has some errors, adding these transcriptions to our corpus
increases our ASR performance due to the larger corpus size. In the second iteration, we use our
ASR trained on the extended speech corpus to perform sanity testing of the Google speech API
transcription again. Because in the first iteration, some data may have failed the sanity testing
because of the errors introduced by our own ASR. In the second iteration, more data passes the

sanity test and we add them to our speech corpus.

At each iteration, we increase the number of training data to get a better model in the next
iteration. Note that, we only try to increase the performance of our speech recognition system.
We stop iterating when the number of newly added training samples does not increase much
compared to the previous iteration. At the start of the last iteration, we delete the training samples
added at the previous iterations. Finally, for each of the audio files, we compare our transcription
with Google API transcription and we take the longest common sequence of consecutive words
between the outputs of the two models. We take only the audio and transcription for that matched
portion to be included in our final speech corpus. Thus, the final corpus becomes free from any
transcription error introduced by either ASR model. We only consider exact matching within
our threshold. The matching threshold of 50% is intuitive. It may be possible to improve the
algorithm by tuning this threshold. But we avoid doing that due to the computational complexity

of the iterative corpus generation algorithm.

In this approach, we exploited the performance gap between our ASR and Google Speech API
to extend the speech corpus. We refer to the corpus generated from Automatic transcription as

"Transcribed corpus’. The size of the Transcribed corpus is around 510 hours.

4.4.6 Evaluation of Automatic Transcription

Figure 4.5 shows the histogram of the percentage of the longest common sequence of
consecutive words (LCSCW). We calculate it in the following way. We calculate the LCSCW
between the transcription provided by our ASR and Google Speech API. We calculate the
percentage of LCSCW with respect to the transcription length provided by the Google Speech
API. We plot the histogram of these percentages within 10 ranges: 0-10%, 10-20%, etc. Each
color in the graph represents a particular iteration. We can see from figure 4.5 that in the

earlier iterations, most of the LCSCW percentages are in shorter regions. Iteration 1 has the
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Algorithm 5 Iterative Algorithm for Transcription
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DO
@

ot < Our ASR transcription
gt < Google API transcription
lescw <+ Longest common sequence of consecutive words
gc < Google speech corpus
oc < Our speech corpus
dc < Duration of train data at current step
dp < Duration of train data at previous step
dd < Change in duration of speech corpus
al < List of audio files
while dd # 0 do
Train ASR on (gc + oc)
oc < {InitialCorpus}
dec <+ 0
for each audio in al do
generate ot
get gt
lescw <« lescw(ot, gt)
percentage — —zen(gzi?;z)*loo
if lcscw__percentage > 50% then
dc < dc + audio duration

oc < oc+ gt
dd < dc — dp
dp < dc

: Train ASR on (gc + oc)
. oc < {InitialCorpus}
: for each audio in al do

generate ot

get gt
lescw < lescw(ot, gt)
len(lescw)+100
len(gt)
if lcscw percentage > 50% then

oc < oc + matched audio segments

percentage <—

: return oc
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Figure 4.5: Histogram for percentage of longest common consecutive word sequence length
between two transcriptions with respect to transcription from Google Speech API

Iteration Transcribed Corpus size | WER (%)
1 207 hours 25.98
2 379 hours 24.25
3 426 hours 23.64
4 464 hours 23.46
5 492 hours 23.22
6 509 hours 23.08
7 512 hours 23.00
Forced alignment 507 hours 22.70

Table 4.6: Evaluation of Corpus by Iteration

highest frequency in the lower percentage area. As we add more data to the training corpus, the
performance of our ASR increases. It starts recognizing more words accurately, resulting in a
longer common consecutive word sequence length. We can see that in iteration 6 and 7, there
are more sentences with higher LCSCW percentages. Figure 4.5 shows the rightward shift of
the histogram during different iterations of algorithm 5.

Table 4.6 shows the evaluation of the corpus generated at each iteration of our algorithm. The
second column shows how many transcribed speech data were generated at that particular
iteration. We train a hybrid CTC-Attention based end to end system using each corpus and
evaluate the performance of that system. We use our generated corpus at each step in addition
to the Google speech dataset for evaluation. We can also see in table 4.6 that the amount of
transcribed corpus generated at each iteration and corresponding WER reaches saturation after

only 6-7 iterations. One possible reason is the limited ability of the system to add variance to
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Aspect Value
Number of Utterance | 150,000
Number of Speaker 5190

Male Speaker 2680
Female Speaker 2510
Speaker Age (Avg) 40
Corpus Size 510 Hours

Table 4.7: Automatically Transcribed Corpus

the existing training corpus. The size of the corpus after the system reaches saturation is around

510 hours. The drawback of this system is that it fails to utilize all collected audio files. But

there are two key benefits. It allowed us to transcribe 510 hours of speech data very quickly.

Also, this system is very useful in cases where the forced alignment technique cannot be used

directly (i.e., no reference text available).

4.4.7 Summary of Transcribed Corpus

Table 4.7 shows the summary of the corpus. We are able to collect around 150K sentences from
5190 speakers using this application. Among the speakers, around 2680 are men and 2510 are
women. The size of this corpus is around 510 hours. Due to the crowd-sourced nature of the
speech corpus, it is difficult to estimate the age distribution of the speakers. Since most of the
transcribed speech corpus is from news anchors of popular Bangla TV channels, we tried to
estimate an age distribution from the age information of known TV anchors. The average age
for male and female TV anchors is 41.5 and 39.3 respectively. The age of the anchors ranges
from 22 to 60.

4.5 Synthetic Speech Generation for OOV words

In this section, we describe our approach for synthetic corpus generation for out-of-vocabulary

Bangla words.

4.5.1 Out-of-Vocabulary Word List

We first prepare a large Bangla text corpus. Our text corpus has 10 million Bangla sentences
containing 1.7 million unique words. Among these words, 56000 words occur at least once in

the speech corpus. The rest of the words are considered out-of-vocabulary.
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Figure 4.6: Overview of our Text-to-Speech Architecture

4.5.2 TTS Model

We prepare our text-to-speech (TTS) system using ESPnet-TTS [77]. Specifically, we use
the Tacotron 2 [78] implementation of ESPnet-TTS. Figure 4.6 shows the Tacotron 2 TTS
architecture. Tacotron 2 is a Recurrent Neural Network (RNN) based sequence-to-sequence
network. It has a bi-directional LSTM based (BLSTM) encoder and a unidirectional LSTM-
based decoder. Additionally, it uses a location-sensitive attention mechanism. In our
implementation, the encoder network has 1 layer with 512 BLSTM units. The decoder network
has 2 layers with 1024 unidirectional LSTM units in each layer.

4.5.3 Speech Synthesis

Speech synthesis is done in the following manner. First, our TTS model takes an input text
sequence and generates log Mel filter bank feature sequence. Then log Mel filter bank feature
sequence is converted to a linear spectrogram. Finally, the Griffin-Lim algorithm [79] is applied

to the spectrogram to generate audio.

We use out-of-vocabulary words as input for our text-to-speech system. We refer to the corpus
generated from Speech synthesis as *Synthesized Corpus’. The size of the Synthesized corpus
is around 450 hours.
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Aspect Google Voice Transcribed | Synthesized | Total
Command

Num of Utt 217902 28973 150,000 1.64M 2M
Num of Speaker 505 56 5190 1 5752
Male Speaker 323 34 2680 N/A 3037
Female Speaker 182 22 2510 N/A 2714
Speaker Age (Avg) | N/A 26 40 N/A 38.75
Size (Hours) 220 50 510 450 1230

Table 4.8: Overall Speech Corpus

4.6 Speech Corpus Summary

Table 4.8 shows the summary of our entire speech corpus. The overall size of the corpus is
around 1230 hours and the number of speakers is 5752.



Chapter 5
Speech Recognition Architecture

In this chapter we describe the speech recognition architectures we used for our work. We

experiment on both traditional and end-to-end architectures.

5.1 Traditional ASR System

For our traditional ASR, we use the traditional Hidden Markov Model (HMM) based ASR recipe
provided by Kaldi ASR engine. It has three main components: the acoustic model, language
model and the phonetic dictionary. We use Mel Frequency Cepstral Coefficents (MFCC) as our

speech feature. Figure 5.1 shows the overview of a traditional ASR system.

5.1.1 Speech Feature Extraction

During feature extraction, each audio is split into a frame of 25 millisecond. Then MFCC
feature is extracted from each audio frame. Mel-frequency cepstral coefficients (MFCCs)
are coefficients are derived from a type of cepstral representation of the audio clip. In this
representation, the frequency bands are equally spaced on the mel scale, which approximates
the human auditory system’s response more closely than the linearly-spaced frequency bands

used in the normal cepstrum. MFCCs are commonly derived from an audio frame as follows:

Taking the Fourier transform of the speech audio frame. Audio frame duration is 25

millisecond in our case.

o Mapping the powers of the spectrum obtained above onto the mel scale, using triangular

overlapping windows. The overlapping window duration is 10 millisecond for our work.
» Taking the logs of the powers at each of the mel frequencies.

« Taking the discrete cosine transform of the list of mel log powers.

45
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Figure 5.1: Traditional ASR Overview

o The MFCCs are the amplitudes of the resulting spectrum.

5.1.2 Acoustic Model

The acoustic model provides a probability for a speech feature to originate from different

phonemes or sub-phonemes. We use Gaussian Mixture Model (GMM) as our acoustic model.

We have 47 phonemes in our phoneme list. Each phoneme is composed of three sub-phonemes.

So there are 141 sub-phonemes in total. For a particular speech feature, GMM provides the

probability of this feature to originate from each of the 141 sub-phonemes.

5.1.3 Language Model

The language model provides the probability of a word of a sequence given other nearby words.

It can be very useful when the pronunciation is not very clear or when there are multiple
candidate words sounding similar. The language model improves the ASR performance by
providing some contextual relevance of a candidate word and removes ambiguities. We use
trigram based language model in our work. It is separately trained on our Bangla text corpus

mentioned in section 3.2.

5.1.4 Phonetic Dictionary

The phonetic dictionary provides the maps the phonetic transcription of word to its written
representation. We use the phonetic dictionary described in section 3.3. It has phonetic

transcription for around 100K most frequent Bangla words.
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Figure 5.2: Traditional ASR Training

5.1.5 Training Phase

Figure 5.2 shows the training phase of the ASR system. A text-speech pair is taken by the
system. FEach text is a sequence of words. Each word is replaced by its corresponding
phonetic transcription in the lexicon. Each phoneme is then replaced by three corresponding sub-
phonemes. On the other hand, MFCC feature sequence is extracted from the speech. Then sub-
phoneme sequence and MFCC feature sequence is aligned together. This alignment information
is used by the GMM model that learns predict the underlying sub-phoneme probabilities by
looking at the MFCC feature. Sub-phoneme to sub-phoneme transition probabilities are also

learned and used by the HMM as state transition probabilities.

5.1.6 Decoding Phase

Figure 5.3 shows the decoding phase of the ASR system. It is based on Hidden Markov Model
(HMM). Hidden Markov Model is a statistical Markov model in which the system being modeled
is assumed to be a Markov process with unobservable hidden states. HMM assumes that there is
another observable process whose behavior depends on the hidden process. The goal is to learn

about the hidden process by observing the observable process.

In the context of speech recognition, the observable states are MFCC feature sequence. The
hidden states are the sub-phonemes. The probability of a hidden state (sub-phoneme), given the
observable state (MFCC feature) is modeled by Gaussian Mixture Model. This model as well
as the hidden State transition probabilities (sub-phoneme to sub-phoneme) is learned during
the training phase as described in the previous section. These two probabilities along with the

language model probabilities are used by the viterbi decoder during decoding phase.
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Figure 5.3: Traditional ASR Decoding

5.2 End-to-End System

The end-to-end system does not use any phonetic representation at an intermediate step. It
directly tries to predict the grapheme sequence from speech feature sequence. Therefore, a
phonetic dictionary is not required by the end-to-end models. Figure 5.4 shows the overview
of our end-to-end ASR. It has an encoder unit with Bi-directional Long Short Term Memory
(BLSTM) Units, a Connectionist Temporal Classification (CTC) unit and an attention based
decoder. We also incorporate a Recurrent Neural Network (RNN) based language model with

this system using shallow fusion.

5.2.1 Speech Feature

For each audio frame, we use 40 MFCC features along with their first and second-order temporal

derivatives. This gives us 120 features per frame. The size of audio frame is 25 millisecond.

MFCC feature extraction is already described in section 5.1.1.



5.2. END-TO-END SYSTEM

49

i Speech ;

\4

Hybrid
CTC-Attention

4k

\d e

~

[ Beam Search D | Language Model J
J =
!

i Output ;

Figure 5.4: Overview of End-to-End Architecture

5.2.2 CTC-Attention

Our End-to-End architecture is based on the work of [76]. It is shown in Figure 5.5. We use
hybrid of CTC and attention mechanism. CTC and attention encoder networks share the same
Bidirectional Long Term Memory Units (BLSTM). The encoder network had 4 layers with 320
BLSTM cells in each layer. The linear project layer has 320 cells. It is followed by each BLSTM
layer. The decoder network has 1 layer. It has 320 unidirectional LSTM cells. The shared
encoder absorbs the input sequence into hidden states and the attention decoder generates the
letter sequence. The CTC network also contributes in picking the best possible letter sequence

by providing the align scores between speech features and letter sequence.

During decoding with beam search, both attention scores and CTC scores are combined in the
following manner. Let p(o,,) be the probability of output label o, at position n, given previous
out labels and w; be the CTC weight.

logphyb(on) = w; log p““(0,) + (1 — wy) log p™(0,,) (5.1)

Here CTC weight w; is a hyper-parameter that needs to be tuned.

5.2.3 Language Model

The language model is trained on a large Bangla Text corpus. We experiment with both word-
level and character-level Recurrent Neural Network (RNN). For word-level RNN, we use 1
hidden layer with 1000 LSTM cells. Most frequent 65000 Bangla words are considered in our
vocabulary. For character level RNN, we use 2 hidden layers with 650 LSTM cells each.
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5.2.4 Beam Search

We use shallow fusion technique to combine the language model scores into the End-to-End
system [80]. Let, b be the width of beam search and v be the vocabulary size. At each step of
beam search, b partial hypotheses are maintained by the system. In the next beam search step,
each of these b hypotheses is extended by each of the tokens in the vocabulary. The total number
of candidates becomes bv. For each of these candidates, the following score is calculated.

log p(0,) = log p™"*(0,) 4 w; log p"™ (0,) (5.2)

Here, p(0,) be the probability of output label o,, given the previous output labels, p™°(0,,) be
the score from hybrid CTC-attention system, p'™(o0,,) be the language model score and w, be
the language model weight. After calculating scores for each of the bv candidates, the top b
candidates are considered for the next beam search step. The language model weight w, is a

hyper-parameter that needs to be tuned.



Chapter 6

Context Specific Optimization of

Voice Commands

Voice command recognition task commonly involves an Automatic Speech Recognition (ASR)
system with context-specific optimization. Context information for a specific smartphone user
includes contact names, installed apps, songs, media files, location, recent search history, the
content of the screen user is looking at, etc. Figure 6.1 shows the overview of context-specific
optimization of ASR system. This context information changes frequently so it is desired that

the contextual model will be updated on-the-fly within the device.

Some notable work on contextual speech recognition include [43], [44], [46], [47], [50], etc.
Google has incorporated contextual information with their state-of-the-art speech recognition
system [40], [42], [41] and more recently with End-to-End speech recognition system [45]. All
of the approaches used by Google are variations of n-gram based model for context detection.
We propose a multi-label topic modeling approach for context detection which has several
advantages over the n-gram based approach. N-gram based approach is too rigid. It is not robust
to synonymous, missing, or misplaced words. All possible synonyms and n-gram variations
need to be present in the contextual corpus. The topic modeling approach works on keywords
which is more flexible and robust than the n-gram approach. A variable number of contexts can

be easily handled with multi-label topic modeling.

Our contribution in this work is the following.

o We propose multi-label topic modeling based contextual rescoring for Bangla Voice

Command recognition

» We consider a wide range of Bangla voice commands (for smart-phone, home appliances,

automobiles, etc.)

e Our rescoring system achieves WER of 12.8% when provided the context accurately. It

outperforms all other existing voice command recognition systems in Bangla.
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6.1 Related Works

In various languages, researchers have used contextual information to increase the performance
of voice recognition systems. [40] present an online approach for adjusting language model
weights of n-grams corresponding to a specific context. [41] describe a composition based on-
the-fly re-scoring mechanism to employ contextual language models in a speech recognition
system. [42] use Named-Entity Recognition within the automatic speech recognition word lattice
for identifying contextually related paths. They report that their approach minimizes Word Error
Rate (WER) by 12.0% on a media playing commands data set. [43] provide a mechanism to learn
contextual information in an unsupervised manner and for building automatically contextually
biased models. [44] discuss two interpolation methods to merge contextual information with
knowledge from a general language model. [45] consider contextual information during beam
search in an end-to-end speech recognition system. [46] discuss contextual recurrent neural
network language model. They consider a contextual input vector for each word of a sentence.
[47] use class-based language models which provide contextual information during decoding in
an end-to-end speech recognition system. Moreover, [48] addresses an end-to-end ASR for low-
resource multilingual ASR context. [49] develop an end-to-end automatic speech recognition
system that is situation informed. They consider speaker gender, conversational history, etc. to

develop the situation-informed system. [50] develop an end-to-end speech recognition system
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that considers dialog context. We have not found any research work that focuses on considering
contextual information for voice command recognition in Bangla language.

6.2 Our System

In this section, we describe our system in details.

6.2.1 System Overview

We use End-to-End ASR in our system. We use shallow fusion technique similar to the system
described by [80] to incorporate the language model with the End-to-End architecture. Scores
from CTC-Attention and language model are combined during beam search to generate a set of
candidate hypotheses. Then we apply contextual rescoring on these candidates using Labeled
LDA.

6.2.2 End-to-End Architecture

Our End-to-End architecture is based on the work of [76]. We use hybrid of CTC and attention
mechanism. CTC and attention encoder networks share the same Bidirectional Long Term
Memory Units (BLSTM). The encoder network had 4 layers with 320 BLSTM cells in each
layer. The linear project layer has 320 cells. It is followed by each BLSTM layer. The decoder
network has 1 layer. It has 320 unidirectional LSTM cells. For each audio frame, we use 40
MFCC features along with their first and second-order temporal derivatives. This gives us 120
features per frame. The shared encoder absorbs the input sequence into hidden states and the

attention decoder generates the letter sequence.
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During decoding with beam search, both attention scores and CTC scores are combined in the
following manner. Let p(o,) be the probability of output label o, at position n, given previous
out labels and w, be the CTC weight.

logphyb(on) = w; log p““(0,) + (1 — wy) log p™*(0,,) (6.1)

6.2.3 Language Model

The language model is trained on a large Bangla Text corpus. We experiment with both word-
level and character-level Recurrent Neural Network (RNN). For word-level RNN, we use 1
hidden layer with 1000 LSTM cells. Most frequent 65000 Bangla words are considered in our
vocabulary. For character level RNN, we use 2 hidden layers with 650 LSTM cells each.

6.2.4 Beam Search

We use shallow fusion technique to combine the language model scores into the End-to-End
system [80]. Let, b be the width of beam search and v be the vocabulary size. At each step of
beam search, b partial hypotheses are maintained by the system. In the next beam search step,
each of these b hypotheses is extended by each of the tokens in the vocabulary. The total number

of candidates becomes bv. For each of these candidates, the following score is calculated.

log p(0,) = log p"*(0,) + ws log p"™(0y,) (6.2)

Here, p(0,) be the probability of output label o,, given the previous output labels, p™°(0,,) be
the score from hybrid CTC-attention system, p'™(0,,) be the language model score and w, be
the language model weight. After calculating scores for each of the bv candidates, the top b

candidates are considered for the next beam search step.

6.2.5 Contextual Rescoring

We use Labeled LDA for contextual relevance detection [81]. Regular LDA is an unsupervised
algorithm that is not suitable for multi-label topic modeling. Unlike regular LDA, Labeled LDA
allows the incorporation of a set of predefined topics. In our case, we consider each candidate
sentence as a document and each contextual tag as a topic. We use label depth of 8 which is
equal to the length of our contextual tags. We do not apply any dictionary pruning. Alpha and
beta priors are set 0.1 and 0.01 respectively. Here, alpha represents document-topic density and
beta represents topic-word density. We use a set of 37 contextual tags. We run training for 20

iterations.
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Figure 6.4: Rescoring System

Figure 6.3, 6.4 illustrates the context specific rescoring approach we used. After beam search,
we have b candidates (assuming beam width of b) with their corresponding scores. First, we
normalize the scores. Then, we apply topic modeling on each candidate. The output is a
real-valued vector of length 37( i.e. the number of context tags ). Each value represents the
relevance of the sentence to that particular context. If the detected context matches with any of
the on-device contexts, a bias is added to this candidate’s score. Added bias is proportional to

contextual relevance. We use a context weight w3 to tune the context-sensitivity of the system.
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Algorithm 6 Contextual Rescoring

1: e2e < Scores from End-to-End system
2: rv < Contextual relevance vector

3: ¢l + Current device contexts

4: ws < Weight of contextual bias

5: normalize(e2e)

6: for each ¢ € candidateList do

7 rv = Labeled LD A(c)

8 for each r € rv do

9: if r > threshold and r € ¢l then
10: e2efc] = e2efc] + 1 X ws

11: output < Candidate with maximum e2e score

6.3 Contextual Corpus Management

6.3.1 Contextual Corpus Generation

We prepare a list of voice command templates from our domain study. These command
templates contain entity tags. An example of a command template is ‘<contact> (¥ F&1 IS
(Call <contact>). Here, <contact> is an entity tag. We have a list of 1700 voice command
templates containing around 20 entity tags. The entity tags include contact names, app names,
number, time & date, song, artist, writer, book, place, movie, actor, food, gadget, team, player,

company, etc.

Figure 6.5 shows the contextual corpus generation process in user device. Whenever the user
adds a new contact, all the command templates containing the entity tag <contact> are populated
with the new contact name, and all the new sentences are added to the contextual text corpus.
Similarly, when the user downloads a new song, all the command templates containing the
entity tag <song> are populated and new sentences are added to the contextual text corpus. The
contextual annotation of the newly formed sentences depends on the contextual annotation of the
command template. Thus the contextual corpus gradually grows depending on the activity of the
user. The labeled LDA system is periodically trained on the updated corpus. The personalized
corpus of a particular user is fairly small, containing a few thousand sentences. It is possible to

train the labeled LDA on a mid-range smartphone within a minute.

6.3.2 On-device Model Training

The information used for contextual model training is user’s private information such as contact
list, app list, list of songs, previous search history, location data, etc. So we need to perform the
contextual model training on client device to protect privacy (illustrated in figure 6.6). Therefore,

we consider the complexity of training the labeled LDA-based system on the client device.
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The main resource requirement of the labeled LDA training is the memory requirement. To be
specific, the memory is mainly required to keep track of the topic distribution over document
and word distribution over topic. So the memory requirement is dependent on the number of
topics, the number of keywords, and the number of documents in the training set. Currently,
the number of topics (i.e. contextual tags) is 37 and the number of relevant voice command
keywords is around 2000. We do not expect these two parameters to grow larger because we
already performed an elaborate domain study for voice commands. The memory requirement
can only grow with the number of documents (i.e. context annotated voice commands) in the
client device. For a typical user, we estimated the number of contacts, app lists, media list, etc.
to estimate the size of the contextual corpus. We consider how many of our voice commands
are associated with a particular entity tag, the number of possible values for each entity-tag for

estimating the size of the contextual corpus.
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For example, let us assume there are 500 people in the user’s contact list and there are 20 voice
command templates with the entity tag <contact>. That means the contextual corpus will have
500 x 20 or 1000 voice commands related to this entity tag. We perform similar calculations
for each possible entity tag. According to our estimation, the contextual corpus size can vary
between 40,000 to 60,000 sentences for a typical user. So contextual model training will take
a few megabytes of smartphone memory. This is not a big overhead because nowadays even
mid-range smartphones have around 4 to 8 GB of RAM. Moreover, we can easily perform the
model training at a time of the day when the user is usually inactive. If the size of the contextual
corpus grows beyond our estimate, then we can easily reduce the size based on recency and
frequency. For example, if a user downloads 10,000 songs in a device. We do not need to keep
all the songs in our contextual corpus. We will only keep the songs user has listened to recently

or frequently.

6.4 Dataset

6.4.1 Text Corpus

The text corpus was prepared after extensive crawling from various popular Bangla websites.
We crawl from around 42 websites and collect 10 million sentences. After collection of raw
sentences, we use text cleaning to remove non-Bangla sentences, punctuation, alphanumeric
characters, inconsistency, duplicates from the collected text. Later, we normalize these
sentences. We convert numbers to text, handle abbreviations, manage special numeric
expressions in Bangla, normalize decimal point & percentage symbol, consider contact numbers,

date, etc. We also add 1700 voice command specific texts collected from our domain study.

6.4.2 Speech Corpus

We consider all publicly available Bangla speech corpus as well as prepared a speech corpus of
our own. The largest publicly available speech corpus is provided by Google [38]. It contains
217902 utterances from 505 speakers. Among the speakers, 323 of them are men and 182
women. The size of the speech corpus is approximately 220 hours. We also use our own open
domain Bangla speech corpus. This corpus has around 150,000 utterances from 5190 speakers.
There are 2680 make speakers and 2510 female speakers. The size of the speech corpus is
approximately 510 hours. Overall, our open domain Bangla speech corpus has around 730

hours of speech data.

Bangla voice commands contain a set of technical words that are missing from all publicly
available speech corpus. Also, the sentence structure of the voice commands is sometimes

different from regular Bangla sentences. So we develop a speech corpus solely containing
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Bangla voice commands. We prepare an Android app for speech data collection following the
approach by [39]. We are able to collect 28973 sentences from 56 speakers using this application.

Among the speakers, 34 are men and 22 are women. The size of this corpus is around 50 hours.

6.5 Experiments

6.5.1 Training Details

First, we train the hybrid CTC-attention based End-to-End system with our 780 hour speech
corpus described above. The RNN based language model was trained with our Bangla text
corpus containing 10 million sentences. The training of the End-to-End system takes around 72
hours and training of the RNN based language model takes around 18 hours. All experiments
are done on a desktop with core i7 CPU, 16 GB RAM, Nvidia RTX 2070 GPU.

6.5.2 Test Set

Our test set contains 2000 voice command utterances with 7 speakers. We manually annotated
the context for these utterances to prepare a context annotated test set. We refer to it as positive
test set. We also randomly annotate context of these utterances to prepare a negative test set.
the purpose of the negative test set is to test whether the system’s performance is affected with

inaccurate context information.

6.5.3 Results

Table 6.1 shows Phoneme Error Rate (PER), Word Error Rate (WER) and Sentence Error Rate
(SER) of our system in different setup. In our test set, the system using the character level
RNN language model performs significantly better than the system using the word level RNN
language model. The difference in performance is especially significant when test utterances
contain out-of-vocabulary words. 700 out of 2000 test utterances contain one or more out-of-
vocabulary words. For these utterances, WER was 26.6% and 46% for char-RNN and word-
RNN respectively. We tried larger word-RNN networks such as 2 layer, 1000 LSTM cells and
2 layer, 2000 LSTM cells. Overall WER were 27.2% and 26.9% respectively. Our rescoring

method outperforms trigram based contextual rescoring method.

The performance of our system for different voice command categories can be found in table 6.2.
In particular, regular system commands are recognized with very high accuracy (WER 7.6%)
because they contain no out-of-vocabulary words. Highest WER (19.2%) is found in the case

of random queries because they often contain out-of-vocabulary and out-of-domain input.
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WER

WER

Language | Rescoring | PER | WER | SER
Model %) | (%) | (%)
None 6.9 279 | 449

Word-RNN |  Trigram 6.4 257 | 424
LLDA 6.0 23.8 | 40.3

None 4.5 16.7 28.4

Char-RNN Trigram 3.9 14.1 25.3
LLDA 3.7 12.8 22.8

Table 6.1: Performance comparison
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Category WER
Regular 76
System Commands '
Numbers 9.2
Contacts 12.4
Place 13.5
Date
and Time 15.7
Media 12.7
Random 19.2
Queries

Table 6.2: WER for different Categories of Voice Command

Figure 6.7 shows the WER of the system for different values of context weight w3 (algorithm
6). For the positive set, WER decreases upto w3 = 0.3 then it starts to increase again. For
the negative set, WER remains largely unaffected upto w3 = 0.3 then it starts to increase
almost linearly. For the experiment shown in Figure 6.7, we use CTC weight 0.3 and char-
RNN language model with weight 0.5. Figure 6.8 and 6.9 shows the hyper-parameter tuning on
validation set for CTC weight w; (equation 6.1) and language model weight w, ( equation 6.2)
respectively. We found best results using CTC weight 0.3 and language model weight 0.5.



Chapter 7
Semi-supervised Speech Recognition

An annotated speech corpus is an essential component for the development of an automatic
speech recognition system (ASR). Speech corpus is a collection of audio files with
corresponding text transcriptions. Manually developing a speech corpus of required size is
a time consuming and monotonous task. It also requires some prerequisites like a recording
environment, clear utterance, and additional information such as gender of speakers, etc. For
achieving a large vocabulary continuous speech recognition we need approximately several
hundred to few thousands of hours of speech corpus. Semi-supervised training can be a useful
solution to tackle the hurdles related to speech corpus development. Semi-supervised training
can provide us a way to exploit a huge collection of publicly available text as well as audio

resources to improve the performance of an ASR.

In this work, we focus on improving an end-to-end speech recognition system for Bangladeshi
Bangla using semi-supervised training. There are very few publicly available large speech
corpora for Bangladeshi Bangla. Google released 229 hours of speech corpus for Bangladeshi
Bangla [38]. But there are huge amounts of publicly available news audio files, audiobooks,
recordings in Youtube and other media sources. There are a lot of text sources too like news
websites, blogs, e-books, etc. Considering the abundance of unpaired audio and text data for
Bangla language, a semi-supervised training method that can exploit both unpaired audio and
text is very useful. Proper use of the unpaired data along with existing paired speech corpus can
boost the performance of the Bangla ASR system.

Different researchers have tried different ways of incorporating this unlabelled, unannotated
data for speech recognition. Our approach is similar to the approach used by [63]. We utilize
an intermediate representation of speech and text data using a shared encoder network for semi-

supervised training of the ASR system. Our contributions in this work are as follows:

o We propose a novel inter-domain loss function based on global encoding distance (GED

loss) of speech and text data.

63
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e Our proposed Global Encoding Distance (GED) loss for inter-domain features performs
better than both the Gaussian KL-divergence loss proposed in [63] and Maximum Mean
Discrepancy (MMD) loss proposed in [64]. Our loss function is more meaningful and
intuitive in the context of unpaired audio and text data. The performance of the GED loss

is more robust to minibatch size compared to Gaussian KL-divergence and MMD loss.

» To our best knowledge, this is the first work on Bangla language that incorporates semi-

supervised training into deep learning based end-to-end ASR architecture.

« Using our semi-supervised training, we are able to exploit 1000 hours of unpaired
audio data and 800K unpaired Bangla sentences. Our experiments show that our semi-
supervised training with GED loss achieves WER of 31.9%, outperforming both the
baseline end-to-end system with an external language model and semi-supervised method
with MMD loss.

7.1 Related Works

Researchers have explored different methods of semi-supervised training for speech recognition.
[51] investigate large-scale semi-supervised training to improve acoustic models for automatic
speech recognition. They provide an empirical analysis of semi-supervised training with respect
to transcription quality, data quality, filtering, etc. [52] pre-train the encoder-decoder network
with unpaired speech and text. They use a large amount of unpaired audio to pre-train the encoder
and synthesized audio from the unpaired text to pre-train the decoder. [53], [54] integrate active
learning jointly with semi-supervised training in speech recognition system. [55] use transcribed
multilingual data and semi-supervised training to circumvent the lack of sufficient training data

for acoustic modeling. They train deep neural networks as data-driven feature front ends.

[56] use utterance-level and frame-level confidences for data selection during self-training.
They find it beneficial to reduce the disproportion in amounts of paired and unpaired data
by including the paired data several times in semi-supervised training. [57] describe the
combination of deep neural networks and graph-based semi-supervised learning for acoustic
modeling in speech recognition. [58] use a sparse auto-encoder to take advantage of both

unlabelled and labeled data simultaneously through mini-batch stochastic gradient descent.

[59] try to improve the performance of a code-switching speech recognition system for
Mandarin-English using semi-supervised training. They apply semi-supervised learning for
lexicon learning as well as acoustic modeling. Similarly, [60] & [61] use untranscribed data
for Luxembourgish & Lithuanian ASR respectively. [62] use a two-step training method to
generalize the air traffic control speech recognizer. First, a baseline speech recognition system

is trained using a paired speech corpus and it is used to transcribe publicly available unlabeled
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data. The transcribed data is then filtered based on confidence scores and is used to retrain the

acoustic model.

Recently, semi-supervised training has been proposed in the context of end-to-end ASR. [63]
propose a shared encoder architecture for speech and text inputs that can encode both data from
their respective domain to a common intermediate domain. They combine speech-to-text and
text-to-text mapping by using the shared network to improve speech-to-text mapping. They
propose an inter-domain loss function based on Gaussian KL-divergence which represents the
dissimilarity between the encoded features of speech and text data. They later proposed an inter-
domain loss function based on Maximum Mean Discrepancy [64]. In both cases, they assume
that the encoded speech features in the current minibatch are sampled from one distribution and
encoded text features in the current minibatch are sampled from a second distribution. The inter-
domain loss is calculated based on the discrepancy of these two distributions. This approach has
some weaknesses. The performance of this system varies based on the chosen minibatch size.
Moreover, this approach does not take into account the variance of the current encoded features
in the global context. We solve both problems by introducing a new inter-domain loss function

based on global encoding distance.

7.2 QOur System

In this section, we describe our baseline end-to-end architecture as well as semi-supervised

architecture.

7.2.1 Baseline System

Our baseline system is an end-to-end ASR system based on the work of [76]. The architecture
is shown in Figure 7.1. CTC and attention networks are combined in this architecture. Both
networks share an encoder network. The shared encoder network has 6 layers of Bi-directional
Long Short Term Memory (BLSTM) units. Each layer has 320 BLSTM units. A linear
projection layer is connected to each BLSTM layer. The linear projection layer consists of
320 units. The decoder has 1 layer of unidirectional LSTM units. The number of LSTM units
in this layer is 300. The scores from the attention network and the CTC network are combined
during decoding. Let p(c;) be the probability of output label ¢; at position t, given previous
output labels and let w be the CTC weight.

log p(c;) = wlog p™(e;) + (1 — w) log p™*(c;) (7.1)

As for the audio feature, we use 40 Mel-frequency cepstral coefficients (MFCC) per audio frame.

We also consider their first and second-order temporal derivatives. So, we have 120 speech
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Figure 7.1: Baseline System

features per audio frame. These features are fed to the shared encoder and the attention decoder

generates the character sequence.

We use a Recurrent Neural Network (RNN), based language model, in shallow fusion [80] with
the baseline end-to-end architecture. We use both character level and word level RNN in our
experiments. The character level RNN has 2 layers of LSTM, with each layer having 650 LSTM
units. The word-level RNN has 1 hidden layer and this layer has 1000 LSTM units. For the word

level RNN, we use most frequently used 65000 Bangla words as our vocabulary set.

7.2.2 Semi-supervised System

Our semi-supervised end-to-end speech recognition system for Bangla is based on the work
of [63]. The semi-supervised architecture is shown in Figure 7.2. We use a shared encoder
that encodes speech and text input sequences into a common intermediate domain. Speech
feature sequences and text character sequences are very different in length. Also, speech features
are continuous-valued vectors while text characters are discrete. We use a pyramid BLSTM
network that performs sub-sampling on the speech feature sequence. The sub-sampling process
shortens the length of the speech feature sequence. We use an embedding layer that converts the
text character ids to continuous domain vectors. Thus, the speech and the text inputs become
compatible with each other and they are both passed through a shared encoder containing
BLSTM units.

Our encoder network has 6 layers of BLSTM cells. The size of each layer is 320 units. The
decoder network has 1 layer of LSTM cells. The size of this layer is 300 units. First, this

architecture is trained in a supervised manner using the paired speech corpus. Then, we perform
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Figure 7.2: Semi-Supervised System

retraining using both paired and unpaired corpus. We use 3 different loss to guide semi-

supervised retraining. They are the following:

Speech-to-text loss This is a conventional speech-to-text loss during supervised learning,
which consists of a negative log-likelihood of the ground-truth text given by the encoded
speech features. This loss is the combination of CTC and attention loss similar to the
baseline system. We denote this loss as L,,. The calculation of speech-to-text loss is
shown in Equation 7.2. We use CTC weight w; to control the relative importance of CTC

and attention loss.

Text-to-text auto-encoder loss This is the negative log-likelihood that the encoder-
decoder architecture can reconstruct the output text from an unpaired text corpus. We

denote this loss as L.

Inter-domain loss This is the dissimilarity between distributions of the encoded speech
features and the encoded text features. We use global encoding distance as a measurement
for our inter-domain loss. We denote this loss as L;;. More on this is described in section

7.3.

Lsup = Wy Lege + (1 - wl)Latt (7.2)

Luns = w2Lid + (1 — ’UJQ)Lae (73)
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Ltot = wBLsup + (1 - w3)Luns (74)

Equation 7.3 shows how the text auto-encoder loss and the inter-domain loss are combined to
generate the unsupervised loss. We use speech text ratio parameter ws to control the relative
importance of the text auto-encoder loss and the inter-domain loss. Then both the supervised
loss L, and the unsupervised loss L,,,s are combined to calculate the total loss L, (shown
in Equation 7.4). Here, w3 is the supervised loss ratio which controls the relative importance

between the supervised and the unsupervised loss.

7.3 The Inter-Domain Loss

In this section, we describe our proposed inter-domain loss function.

7.3.1 Encoding Procedure

First, we pre-process the speech and text data in a way that they become compatible with each
other. We reduce the length of the speech data by performing sub-sampling with a pyramid
BLSTM unit. We also transform the text sequences into a continuous domain vector with an
embedding layer. The pre-processed speech and text data are then absorbed by an encoder
unit. The output of the encoder unit is considered as the inter-domain representation of the
speech and text data. The overview of the encoding process is shown in Figure 7.3. Figure 7.4
shows the visualization of the encoded data using t-distributed stochastic neighbor embedding
(t-SNE) [82].



7.3. THE INTER-DOMAIN LOSS

69

100 ® Speech
® Text

75

50

25

s >

.,

o Y
® ‘o L

- Conee®

-25 ane™ 32

)
@™

Dimension 2 from t-SNE
o

@O (C00Ngy

=50

L)) H
. e 2 eleeie)) @
e L g, g
00; caen(®!

-75 L

»
o
®esene)
o ¥’
e vy e
2@
® 010y 000101

-100

-100 =75 -50 =25 0 25 50 75 100

Dimension 1 from t-SNE

Figure 7.4: t-SNE Visualization of Encoded Data

7.3.2 Maximum Mean Discrepancy Loss

Here, we describe the MMD loss proposed by [64] and some of its limitations. A minibatch is
formed by sampling the encoded features from unpaired speech and text data. All encoded
speech features in this minibatch are considered to be from one underlying distribution.
Similarly, all encoded text features from this minibatch are considered to be from another
underlying distribution. Then Maximum Mean Discrepancy between these two distributions
is calculated. A similar MMD calculation is repeated for the paired minibatch. Then the inter-
domain loss is calculated by combining the MMD loss from the paired and the unpaired set, as
shown in Algorithm 7.

This approach has some limitations because the distribution assumption is made only
considering the unpaired data in the current minibatch. This loss calculation lacks the knowledge
about global distribution, density, and variance of the unpaired data. Also, assuming a
distribution based on the current minibatch makes the system unstable with respect to changing
batch size. In other words, the system is not guaranteed to converge to the optimal solution for

all minibatch sizes.
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Algorithm 7 Computation of the MMD loss

N < Number of samples
D + dimension of encoded vector
Hgp + encoded speech, paired minibatch
Hrp < encoded text, paired minibatch
Hgy <+ encoded speech, unpaired minibatch
Hrpy < encoded text, unpaired minibatch
HSP c RNSPXD,HTP c RthxD
HSU c RNsuxD7 HTU c RNtuXD
function LOSS(HSP, Hpp, Hgy, HTU)
Ilp=MMD(Hgp, Hrp)
lu=MMD(Hgsy, Hry)
return [p + lu
: function MMD(HS,HT)
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7.3.3 Global Encoding Distance (GED) Loss

We have found that a significant performance gain can be made by exploiting the global
distribution and variance of the encoded unpaired data. We pre-calculate the encoding for our
entire unpaired dataset in every epoch and generate a representative matrix X for our unpaired
set. X is calculated as follows. A set of neighboring points are repeatedly sampled from the
encoded unpaired data. A representative mean is calculated for these neighboring points. X is
the concatenation of all such neighboring means. Here, X € R™=*P where NV, is the number of
representative means and D is the dimension of an encoded feature. The representative mean is
used to reduce the size of the matrix X. This matrix X now functions as a global representing
matrix for the unpaired set. Now the global encoding distance for an encoded vector v* with

respect to X is defined as follows:

. N:l: . .
d;=GED('X) = mi{1||eZ — | (7.5)
.

Here, €' is the i;;, row of the matrix X (¢! € R'*?) and it represents the i, representing mean of
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Figure 7.5: GED Loss

the unpaired set. The global encoding distance for four sample points is shown in Figure 7.5. For
each point, the global encoding distance is the distance from this point to the closest representing
mean in matrix X. The pseudocode for calculating inter-domain loss based on global encoding
distance is shown in Algorithm 8.

Unlike MMD loss, our proposed loss function captures the dissimilarity between the encoded
speech and text features with respect to the global representing matrix X. In addition to
capturing the dissimilarity between the data in current minibatch, GED based loss also captures
the variance of the encoded data in the global context. This system is less likely to suffer from
any potential shortsightedness introduced by the assumption based on a few samples within a
minibatch. Also, our system is more likely to converge to the optimal solution for any given
minibatch size.

7.4 Corpus Description

In this section, we describe the corpus used for our experiments.
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Algorithm 8 Computation of the GED loss

N < Number of samples

D < dimension of encoded vector

Hgp + encoded speech, paired minibatch
Hrp < encoded text, paired minibatch
Hgy <+ encoded speech, unpaired minibatch
Hrpy < encoded text, unpaired minibatch
HSP c RNSPXD,HTP c RthxD

HSU c RNsuxD7 HTU c RNtuXD

function Loss(Hgsp, Hrp, Hsy, Hry)
Nep ‘
Ly = 3L GED(Hp|X)

)

>—~
@

Nep A
lp =2, GED(Hp|X)
=1

)

—_
—_

Nsu .
12: lsw =) GED(H{y,|X)
i=1

Nty .
13: lww= >, GED(H};|X)
i=1

lsp +lip+lsu+ltu
Nsp+th+Nsu+Ntu

14: return

7.4.1 Paired Speech Corpus

We use the corpus provided by [38] as our paired speech corpus. This corpus has around 229
hours of annotated speech data. The total number of utterances is around 217902 and the number

of speakers is 505.

7.4.2 Unpaired Audio Data

The news recordings from a lot of Bangladeshi TV channels are available in the public domain.
We mostly use these public domain news recordings as our audio source. After crawling the
data, we split the audio files based on silence. We use 0.5 seconds as minimum silence duration
and 0.0001 (between 0.0 and 1.0) as silence energy threshold. After silence based segmentation,
we discard all audio files shorter than 3 seconds and longer than 9 seconds. Encoding audio files
in the intermediate domain becomes easier when all audio files have a similar duration. After

this, we have 1000 hours worth of unpaired audio corpus.

7.4.3 Unpaired Text Data

We use Bangla newspaper websites for preparing unpaired text corpus. We crawl around 40
Bangla websites. We use text cleaning on the collected data to remove non-Bangla symbols,

punctuation, special characters, etc. We then perform text normalization. We convert all
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numbers to their textual form, elaborate abbreviations, convert dates, etc. We apply the same
text normalization on the text transcription of the paired dataset to maintain homogeneity among
paired and unpaired corpus. After text cleaning and normalization, we discard all Bangla
sentences that have fewer than 4 or greater than 10 words. Our text corpus has around 800K

Bangla sentences.

7.5 Evaluations

In this section, we describe the experimental results.

7.5.1 Test Set

We separate 2000 utterances from the Google speech corpus as our test set. The test set has 5

speakers and covers various domains.

7.5.2 Training Details

At first, we train the CTC-attention network with the paired speech corpus. It takes around 10
hours in our setup. Then we retrain the model using the unpaired speech and text corpus along
with the paired corpus. It takes around 20 hours. All experiments are performed on a hardware
with a Core i7 processor, 16 GB Memory, NVIDIA GeForce GTX 1070 GPU. The important
hyper-parameters of our system are shown in Table 7.1.

The training graph for the initial supervised training is shown in Figure 7.6. In this step, the
system learns to minimize the CTC and the attention loss, effectively minimizing the supervised
speech to text loss. The training graph for the retraining stage is shown in Figure 7.7. In this step,
the system learns to minimize the text auto-encoder loss, as shown in Figure 7.7. The CTC and
attention loss do not go through a big change in the retraining step because they have already
been minimized. The inter-domain loss is calculated in an unsupervised manner, so the loss
graph for the inter-domain loss does not fluctuate as much as the other loss terms throughout

retraining.

7.5.3 Performance Comparison with External Language Model

To maintain fairness, we use the same unpaired text corpus to train the RNN language model
in the baseline ASR model and the semi-supervised model. The only difference is, the semi-
supervised model exploits the additional unpaired audio corpus. The RNN language model is

used in shallow fusion with the baseline end-to-end system. Table 7.2 compares the Phoneme
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Parameter Value
Initialization Uniform Distr
Encoder layers 6
Encoder layer size 320 (BLSTM)
Encoder projection layer size 320
Decoder layers 1
Decoder layer size 300 (LSTM)
Learning Rate 0.5
Batch size 24
CTC weight 0.3
Speech text ratio 0.1
Supervised loss ratio 0.9

Table 7.1: Hyper-parameter Description
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Figure 7.6: Supervised Training
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Figure 7.7: Semi-supervised Retraining

Model Language | PER | WER | SER
Type Model (%) | (%) | (%)
None 12.6 37.0 64.6

Baseline Word 12 33.8 60.2

Char 11.4 32.5 | 585
None 11.3 31.9 58

Semi-supervised Word 11.6 30.5 55.5
Char 11.4 28.9 52.6

Table 7.2: Performance Comparison with Baseline

Error Rate (PER), Word Error Rate (WER), and Sentence Error Rate (SER) of our system with

the baseline system with an external language model.

When we do not use any language model, the baseline end-to-end system achieves WER of 37%.
Adding a word-level RNN language model improves the WER to 33.8%. The best accuracy
in the baseline setup is achieved by the character level RNN where the WER is 32.5%. The
character level RNN performs better than the word level RNN probably due to the presence of
out-of-vocabulary words in the test set. The semi-supervised end-to-end system that exploits
unpaired audio and text data outperforms all baseline setup and achieves WER of 31.9%. Using
language model for decoding, the performance of the semi-supervised system improves further
to 28.9%.
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Word Error Rate

7.5.4 Performance Comparison of Inter-domain Loss

Table 7.3 shows the performance of the semi-supervised system for different inter-domain loss.

Our proposed inter-domain loss based on global encoding distance achieves WER of 31.9% and

B
H
1

N
N

I
o

w
[ee]
1

w
o
1

w
H
1

w
N

w
o

Inter-Domain | PER | WER | SER
Loss (%) | (%) | (%)
Guassian KL 11.9 34.0 60.8
MMD 11.4 32.7 59.1
GED 11.3 31.9 58

Table 7.3: Performance of Inter-Domain Loss
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Figure 7.8: Effect of CTC Weight w;

SER of 58%, outperforming both Gaussian KL. and MMD loss.

7.5.5 Effect of CTC Weight

Figure 7.8 shows the effect of the CTC weight w; (Equation 7.2) on the performance of our
system. We found the best results when using CTC weight of 0.3. The tuning of the hyper-

parameters is performed on a separate validation set.

7.5.6 Effect of Speech Text Ratio

Figure 7.9 shows the effect of the speech text ratio w, (Equation 7.3) on the performance of our

system. We found the best results when using speech text ratio of 0.1.
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7.5.7 Effect of Supervised Loss Ratio

Figure 7.10 shows the effect of the supervised loss ratio w3 (Equation 7.4) on the performance

of our system. We found the best results when using supervised loss ratio of 0.9.

7.5.8 Effect of Batch Size

Figure 7.11 shows the performance of the semi-supervised system with respect to batch size.
The performance of the semi-supervised system with MMD loss decreases with smaller batch

sizes. Our proposed GED loss is more robust to batch size and more likely to converge to the

optimal solution even for small batch size.
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Chapter 8

Evaluation of ASR System

In this chapter, we evaluate our ASR system on open domain and voice command specific
Bangla ASR tasks.

8.1 Experiments on Open Domain ASR Task

8.1.1 Dataset

Text Corpus

The text corpus was prepared after extensive crawling from various popular Bangla websites.
We crawl from around 42 websites and collect 10 million sentences. After collection of raw
sentences, we use text cleaning to remove non-Bangla sentences, punctuation, alphanumeric
characters, inconsistency, duplicates from the collected text. Later, we normalize these
sentences. We convert numbers to text, handle abbreviations, manage special numeric
expressions in Bangla, normalize decimal point & percentage symbol, consider contact numbers,

date, etc.

Speech Corpus

Table 8.1 shows the summary of our speech corpus for open domain ASR task. We use 220
hours of Google speech corpus, 510 hours of transcribed and verified speech corpus and 450

hours of synthesized speech corpus. The overall size of the corpus is around 1180 hours.

8.1.2 Training Details

First, we train the hybrid CTC-attention based End-to-End system with our speech corpus
described above. The RNN based language model was trained with our Bangla text corpus

79
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Aspect Google | Transcribed | Synthesized | Total
Num of Utt 217902 150,000 1.64M 2M
Num of Speaker 505 5190 1 5696
Male Speaker 323 2680 N/A 3003
Female Speaker 182 2510 N/A 2692
Size (Hours) 220 510 450 1180

Table 8.1: Speech Corpus

containing 10 million sentences. The training of the End-to-End system takes around 120 hours
and training of the RNN based language model takes around 18 hours. All experiments are done
on a desktop with core i7 CPU, 16 GB RAM, Nvidia RTX 2070 GPU.

8.1.3 Test Set

Our test set contains 13000 open domain utterances separated from our speech corpus. We do
not consider synthetic speech for test set. There are 35 speakers in the test set. Because the
utterances of the test set are collected from publicly available sources, the signal to noise ratio
(SNR) of the test set varies a lot. According to our estimation, the worst, best, mean and median

of SNR from crowd-sourced speech data are -2.1, 57.8, 15.1, 12.6 respectively.

8.1.4 Results

We use two different models for evaluating each speech corpus. As our first model, we use
traditional HMM-GMM based recipe from Kaldi [83]. HMM-GMM based system requires a
lexicon that contains the phonetic transcriptions for all words in the vocabulary. The same
lexicon was used for evaluating both speech corpora. We use our previously developed lexicon
[84]. The lexicon contains 95000 transcribed Bangla words. An N-gram based language model
is used with HMM-GMM based model.

As our second model, we use a deep learning-based end to end speech recognition system that
uses a hybrid of CTC and Attention mechanism. We follow the approach of [76]. We use four
BLSTM layers in the encoder network. The number of BLSTM cells in each layer is 320. Each
BLSTM layer is connected to a linear projection layer with 320 units. The decoder network

has 1 layer with 300 unidirectional LSTM units. We use a Recurrent Neural Network-based

language model in shallow fusion with the CTC-Attention network. We use word level RNN.

The RNN has 1 layers with 1000 LSTM units in each layer. We get the best performance when
using CTC weight 0.3 with the language model weight 0.5.

Table 8.2 shows the performance of the ASR system for different combination of training
datasets and models. Best performance is achieved when we use both transcribed and

synthesized corpus along with Google’s dataset. For example, when using CTC-Attention
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| Train Set | Model | LM | WER (%) |
Google HMM-GMM | N-gram 30.95
CTC-Attention | RNN 26.0
Google HMM-GMM | N-gram 27.20
+Transcribed CTC-Attention | RNN 23.0
Google HMM-GMM | N-gram 31.40
+Synthesized CTC-Attention | RNN 26.6
Google+ HMM-GMM | N-gram 24.38
Transcribed+Synthesized | CTC-Attention | RNN 20.2

Table 8.2: Evaluation of ASR performance

Beam Width | Decoding Speed (WPM) | WER
8 108 24.3
12 7 21.2
16 72 20.2
20 o4 19.5

Table 8.3: Decoding Speed

network, the combined corpus achieves WER of 20.2%. This system outperforms the same
model trained on Google’s dataset only, which shows WER of 26.0%. When we use
Google+Transcribed corpus the WER is 23.0%. This shows the effectiveness of our iterative
corpus generation approach. When use Google+Synthesized corpus, the system actually
performs even worse than the system trained on Google corpus alone. Possibly, it happens
because the size of synthesized corpus is larger than Google corpus. The overwhelming size of
the synthesized corpus leads to excessive bias. But presence of synthesized corpus improves the

ASR performance when we use all three corpus combined.

Table 8.3 shows the decoding speed of the end-to-end ASR system (+RNNLM) with respect
to a changing beam width. Beam width can be used to find appropriate compromise between

decoding speed and ASR accuracy.

8.2 Experiments on Voice Command Task

8.2.1 Dataset

Text Corpus

We use the same text corpus mentioned in 8.1.1. We also add 1700 voice command specific

texts collected from our domain study.
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Aspect Google | Voice Command | Transcribed | Total

Num of Utt 217902 28973 150,000 396875
Num of Speaker 505 56 5190 5751
Male Speaker 323 34 2680 3037
Female Speaker 182 22 2510 2714
Size (Hours) 220 50 510 780

Table 8.4: Speech Corpus

Speech Corpus

Table 8.4 shows the summary of our speech corpus for voice command recognition task. We use
220 hours of Google speech corpus, 510 hours of transcribed and verified speech corpus and 50

hours of voice command corpus. The overall size of the corpus is around 780 hours.

8.2.2 Training Details

First, we train the hybrid CTC-attention based End-to-End system with our speech corpus
described above. The RNN based language model was trained with our Bangla text corpus
containing 10 million sentences. The training of the End-to-End system takes around 72 hours
and training of the RNN based language model takes around 18 hours. All experiments are done
on a desktop with core 17 CPU, 16 GB RAM, Nvidia RTX 2070 GPU.

8.2.3 Test Set

Our test set contains 2000 voice command utterances with 7 speakers. We manually annotated
the context for these utterances to prepare a context annotated test set. We refer to it as positive
test set. We also randomly annotate context of these utterances to prepare a negative test set.
the purpose of the negative test set is to test whether the system’s performance is affected with

inaccurate context information.

8.2.4 Results

Table 8.5 shows Phoneme Error Rate (PER), Word Error Rate (WER) and Sentence Error Rate
(SER) of our system in different setup. In our test set, the system using the character level
RNN language model performs significantly better than the system using the word level RNN
language model. The difference in performance is especially significant when test utterances
contain out-of-vocabulary words. 700 out of 2000 test utterances contain one or more out-of-
vocabulary words. For these utterances, WER was 26.6% and 46% for char-RNN and word-
RNN respectively. We tried larger word-RNN networks such as 2 layer, 1000 LSTM cells and
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Language | Rescoring | PER | WER | SER

Model (%) (%) (%)
None 6.9 27.9 44.9
Word-RNN |  Trigram 6.4 25.7 | 424
LLDA 6.0 23.8 | 40.3
None 4.5 16.7 28.4
Char-RNN Trigram 3.9 14.1 25.3
LLDA 3.7 12.8 22.8

Table 8.5: Performance on Voice Command Task
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Figure 8.1: Effect of Context Weight w3

2 layer, 2000 LSTM cells. Overall WER were 27.2% and 26.9% respectively. Our rescoring

method outperforms trigram based contextual rescoring method.

The performance of our system for different voice command categories can be found in table 8.6.
In particular, regular system commands are recognized with very high accuracy (WER 7.6%)
because they contain no out-of-vocabulary words. Highest WER (19.2%) is found in the case

of random queries because they often contain out-of-vocabulary and out-of-domain input.

Figure 8.1 shows the WER of the system for different values of context weight w3 (algorithm
6). For the positive set, WER decreases upto w3 = 0.3 then it starts to increase again. For
the negative set, WER remains largely unaffected upto ws = 0.3 then it starts to increase
almost linearly. For the experiment shown in Figure 8.1, we use CTC weight 0.3 and char-
RNN language model with weight 0.5. Figure 8.2 and 8.3 shows the hyper-parameter tuning on
validation set for CTC weight w; (equation 6.1) and language model weight w, ( equation 6.2)
respectively. We found best results using CTC weight 0.3 and language model weight 0.5.
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Category WER
Regular 76
System Commands '
Numbers 9.2
Contacts 12.4
Place 13.5
Date
and Time 15.7
Media 12.7
Random 19.2
Queries

Table 8.6: WER for different Categories of Voice Command



Chapter 9

Conclusion and Future Work

In this chapter, we provide a summary of our research work, related outcomes, and future

research direction.

9.1 Summary of Research Work

We performed research on traditional as well as state-of-the-art End-to-end speech recognition
architectures. We developed a web application and Android application related to the corpus
buildup system. We developed a web crawler, text cleaner, text normalizer, word frequency
analysis tool, Grapheme-to-Phoneme conversion tool for our ASR. We have developed an
improved lexicon that has around 100K most frequently used Bangla words and considers critical
cases for G2P conversion in Bangla language. We were able to generate a text corpus with
10 million Bangla sentences, We proposed an efficient method for automated speech corpus
development and developed a speech corpus with 1010 hours of annotated speech. We solved
the out-of-vocabulary problem of Bangla ASR system using synthetic speech data generation.
We proposed a novel approach for context-specific optimization of voice commands which is
based on multi-label topic modeling. We have proposed a novel semi-supervised ASR training

method for exploiting unpaired audio data effectively.

9.2 Research Outcome
The outcomes of our study are as follows:

e An improved lexicon that has around 100K most frequently used Bangla words and

considers critical cases for G2P conversion in Bangla language.

« An efficient data collection tool for speech corpus development.
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A Bangla Speech Corpus containing both domain-independent and domain-specific

utterances. The overall size of the corpus is 1010 hours.
» A Bangla text corpus containing 10 million Bangla sentences.

o A context annotated voice command corpus. The corpus has 1700 voice command
templates and includes all necessary voice commands related to smartphones, home

appliances, automotive and office work accessories.

» A novel approach for context-specific optimization of voice commands which is based on

multi-label topic modeling.

e A novel semi-supervised ASR training method for exploiting unpaired audio data

effectively.

9.3 Future Research Direction

In the future, we need to find more effective ways of learning from unpaired speech data. More
advanced semi-supervised or fully unsupervised ASR training approaches need to be explored.
Another important research direction would be multi-modal speech recognition such as audio-
visual ASR. It may be possible to improve the ASR performance significantly by exploiting the

available visual cues such as speaker lip movement or body language.
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