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ABSTRACT 

Accurate prediction of construction schedule and cost plays critical role to project success. Many 

quantitative and associative models have been developed for more accurate prediction. However, 

these models often lack robustness due to bias and variance. Ensemble type of machine learning 

algorithm can perform well for prediction by balancing bias and variance.  

This study aims to develop construction schedule and cost prediction model using one of the recent 

ensemble machine learning algorithms named Gradient Boosted Regression Tree (GBRT). Data 

were obtained from 69 construction projects of Dhaka city of Bangladesh. These projects were 

categorized as low rise, medium rise and high rise buildings according to the number of floors. 

One-way ANOVA F-test has been applied to select the statistically significant features. Finally, 

the regularized GBRT has been applied to develop the construction schedule and cost prediction 

models. Performances of regularized GBRT models were compared to Support Vector Regression 

(SVR) and Multiple Linear Regression (MLR) models. Mean absolute percentage error (MAPE) 

and mean squared error (MSE) were used as performance metrics. One-way ANOVA feature 

selection method reveals that location, land size, floor height, floor area, number of basement, 

workforce level and number of floor had significant impact on schedule and cost prediction model 

for low rise buildings. For medium and high rise buildings, land size, floor area, number of 

basement, workforce level and number of floor are the most significant features. The results show 

that regularized GBRT models have lower MAPEs and MSEs than SVR and MLR models. 

Therefore, regularized GBRT models have performed better than SVR and MLR models in 

construction schedule and cost prediction for low, medium and high rise buildings. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background of the Study 

Prediction and estimation of construction project schedule and cost are very crucial steps of 

construction management for the project owners, contractors, and estimators because 

construction schedule and cost tend to fluctuate due to the variation of different parameters 

[Bayram, 2017; Y.-J. Kim et al., 2019]. As a result, it affects the budget estimation as well as 

pricing system. Therefore, construction project success is largely dependent on the early and 

accurate prediction of construction duration and cost [Shayboun & Koch, 2019]. However, it 

becomes very difficult for the estimators and project managers to predict and estimate the 

construction duration and cost accurately at the preliminary planning stage because the 

drawings and other documents are still incomplete. Meanwhile, business success largely 

depends on the project success. Management and mitigation of inherent risks also require early 

and accurate prediction of construction schedule and cost [Sullivan et al., 2017]. Therefore, 

development of some expert systems is required to perform these jobs of prediction as 

accurately as possible.  

Over the past few decades, researchers and construction engineers have explored the 

importance of model development for the prediction of construction duration and cost. Many 

quantitative and associative models have been developed for more accurate prediction. Most 

of these models face difficulties for big amount of data with large number of variables [Boon 

et al., 2019]. In this case, different supervised machine learning algorithms are being applied 

to predict construction duration and costs [Arage & Dharwadkar, 2017]. Many construction 

firms want to use these machine learning algorithms to predict schedule and costs for 

improving the business performance. However, they may fail due to lack of selecting important 

features and appropriate algorithms for model development. 

Many researchers have applied different machine learning algorithms and statistical techniques 

to develop construction duration and cost prediction models. Elfahham [2019] used some 

machine learning techniques such as neural network, linear regression and also auto regressive 

time series method to estimate and predict the construction cost index in Egypt. Thomas and 

Thomas & Thomas [2016] also developed multiple regression model for construction cost and 

duration prediction. Lin et al. [2019] came about an intelligent prediction model of the 

construction cost using support vector machine (SVM) algorithm for substation projects. They 
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optimized the hyper parameters of SVM using particle swarm optimization algorithm. 

However, to the best of our knowledge, the literature of construction project management still 

lacks the application of ensemble type of machine learning algorithms for developing 

construction duration and cost prediction models. Gradient boosted regression tree is one of 

the popular recent ensemble type machine learning algorithms. 

1.2 Objectives with Specific Aims 

The specific objectives of this research are- 

a) To identify the most significant features for developing construction schedule and cost 

prediction models for low rise, medium rise and high rise buildings. 

b) To select the best values of hyper-parameters of GBRT models using random search 

method. 

c) To develop construction schedule and cost prediction models for each category of 

building using regularized Gradient Boosted Regression Tree (GBRT) ensemble 

machine learning algorithm. 

d) To compare the performance of the regularized GBRT models with Support Vector 

Regression (SVR) and Multiple Linear Regression (MLR) models. 

 

1.3 Outline of the Methodology 

The methodology to achieve the objectives of the research is outlined below: 

a) Different features or criteria for construction schedule and cost prediction of different 

categories of building have been identified through reviewing previous literature and 

getting feedback from the industry experts. 

b) A framework has been developed to predict construction schedule and cost using 

Gradient Boosted Regression Tree (GBRT) algorithm for low, medium and high rise 

buildings. 

c) To validate the framework, data for those criteria identified in (a) have been collected 

and data preprocessing with exploratory data analysis has been performed. 

d) Statistically significant features or criteria have been selected using one-way ANOVA 

method. 

e) The criteria identified in (d) have been used as the input features of the data set of 

construction schedule and cost prediction model. 
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f) Construction schedule and cost prediction models have been developed using 

regularized Gradient Boosted Regression Tree (GBRT) algorithm. Regularization of 

the GBRT has been performed using Random Search method for reducing over fitting 

problem and getting best results. 

g) Finally, the performance of the GBRT models have been compared with Support Vector 

Regression (SVR) and Multiple Linear Regression (MLR) models. 

 

1.4 Contributions of the Present Study 

This research proposes construction project schedule and cost prediction models for low, 

medium and high rise buildings based on regularized Gradient Boosted Regression Tree 

(GBRT) algorithm. Different machine learning algorithms like Artificial Neural Network 

(ANN), Multiple Linear Regression (MLR), Support Vector Regression (SVR) etc. have been 

applied for predicting construction schedule and cost. However, sometimes these models lack 

robustness due to bias-variance trade-off. Ensemble type of machine learning algorithm can 

help to solve this issue. Gradient Boosted Regression Tree (GBRT) is one of the recent 

ensemble type of machine learning algorithms and to the best of our knowledge, this algorithm 

has not yet been applied in construction schedule and cost prediction. This research contributes 

to the construction project management literature by developing GBRT based prediction 

models.  

In this research, one-way ANOVA F-test has been applied for selecting the most significant 

features for developing the prediction model. Integration of one-way ANOVA in the GBRT 

model is also a new addition in developing construction schedule and cost prediction. 

Selection of best hyper-parameter values of GBRT models for best performance using Random 

Search method is another contribution of the study on which a very few work has been done. 

Finally, the performances of the developed models have been compared with the Support 

Vector Machine and Multiple Linear Regression for validation. 

 

1.4 Organization of the Thesis 

Chapter 1 presents the background of the research work, objectives with specific aims, 

contributions of the study and outline of the methodologies. 
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Chapter 2 is comprised of the relevant literature on construction schedule and cost prediction, 

use of machine learning algorithms in schedule and cost prediction and application of Gradient 

Boosted Regression Tree (GBRT). 

Chapter 3 provides the theoretical background of one-way ANOVA, ensemble machine 

learning algorithms, Gradient Boosted Regression Tree (GBRT) algorithm, performance 

metrics, and methods of regularization. 

Chapter 4 explains of the framework development for construction schedule and cost 

prediction. This chapter describes the development of the proposed framework using one-

way ANOVA, GBRT and random search regularization method. 

Chapter 5 is comprised of the data collection process and implementation of the proposed 

framework on the data to predict construction schedule and cost prediction for low, medium 

and high rise buildings. 

Chapter 6 contains the possible interpretation on the results obtained from the 

implementation of the proposed model. This chapter also includes the detailed discussion on 

the findings. 

Finally, Chapter 7 contains the conclusion of this work and the scope of future research 

associated with this work. 
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CHAPTER 2: LITERATURE REVIEW 

 

This section discusses the previous works on construction schedule and cost prediction models, 

application of machine learning algorithms in construction schedule and cost prediction, and 

gradient boosted regression tree algorithm (GBRT). 

2.1 Construction Schedule and Cost Prediction Models 

During the past few decades, researchers and construction engineers have explored different 

models for construction schedule and cost prediction.  

Al-Momani [1996] proposed an analytical model for estimating public school building 

construction costs. Observations of 125 school projects were performed in Jordan from 1984-

1994. They found that when a project was finished, the real cost exceeded the initial contract 

price by 30%, while the change orders resulted in a cost overrun of 8.3%. Capital spending on 

school programs over the next 5 years was expected at JD 695,9 million.  

The performance of three cost estimate models was analyzed by Kim et al. [2004]. The reviews 

were focused on the 530 historic cost data from multiple regression analysis (MRA), neural 

networks (NNS) and case-based reasoning (CBR). The best NN estimating model provided 

more reliable estimates than either the MRA or CBR estimates. However, with respect to long-

term use, available knowledge from the results and time versus precision compromise, the CBR 

estimating model worked better than the NN estimating model. 

In the context of road construction projects in the States of Florida, USA, Shr & Chen [2006] 

created a structure for the concept of building expenses and time. The model suggested 

providing the State Highway Agencies (SHAs) and contractors with more control and an 

appreciation of the time value of road construction projects. This model is not however, 

sufficient for projects with a high degree of change orders. 

Abu Hammad et al. [2008] developed a probabilistic model for the construction projects to 

predict the risk effect on construction cost and time. This time and cost prediction model was 

developed based on historical data. This model was based on historic data to estimate project 

cost and duration. On the actual data from 140 construction projects in Jordan, they employed 

linear regression and multiple linear regression. However, this model is limited to numerical 

variable and linear data. 
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Many researchers have widely used case-based reasoning (CBR) technique for developing 

duration and cost prediction models [Koo et al., 2018]. Koo et al., [2010] developed a case-

based reasoning (CBR)-based hybrid model with which to predict the construction duration 

and cost of a project in its early stage. One hundred and one cases among multi-family housing 

projects that were completed between 2000 and 2005 were used. The CBR-based hybrid model 

developed in this study was the result of integrating the advantages of (i) prediction 

methodologies, such as case-based reasoning, multiple regression analysis, and artificial neural 

networks, (ii) the optimization process using a genetic algorithm, and (iii) the probability 

distribution and the analysis process of outlier using Monte-Carlo simulation.  

Jin et al. [2012] built an enhanced CBR model that integrates multiple regression analysis 

techniques to early predict construction costs. This research was conducted on 41 company 

premises and 99 international housing projects. The result showed a 17.23% and 4.39% 

improved projected performance of the updated CBR model for business facilities and multi-

family homes compared with the current CBR model respectively. The proposed updated CBR 

MRA model was supposed to be helpful in the initial project process in estimating construction 

costs.  

Ahn et al. [2017] also applied the CBR technique for the early prediction of the construction 

costs. For accurate and reliable cost estimation, quality source data are required and the existing 

similarity measures have limitations in taking the covariance among attributes into 

consideration. In their works, they mentioned this challenge and to deal with this challenging 

issues, they examined the weighted Mahalanobis distance based similarity measure applied to 

CBR cost estimation.  

Case based reasoning method was revised by Jin et al. [2014] considering the deviation of 

categorical and numerical variables using regression analysis. They applied the revised method 

to multi-housing projects for cost prediction at the early stage of construction. These studies, 

however, were limited in considering the deviation of numerical variables while the majority 

of variables available in the early stage was more categorical (e.g., structural system or 

underground condition) than numerical (e.g., gross floor area). 

Soto & Adey [2015] have used case-based reasoning (CBR), to estimate building projects 

capital. They used the nearest neighbor technique to evaluate the similarity for the retrieval 

process to estimate the construction materials quantities (CMQs) in structural concrete. Two 

types of distances, i.e. 1) the City-block distance and 2) the Euclidean distance, and four 
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different types of weights, based on regression analysis and feature counting, to account for the 

relative importance of the different parameters, were investigated. The four different types of 

weights used were 1) the adjusted unstandardized coefficients from the regression models, 2) 

the unadjusted unstandardized coefficients from the regression models, 3) the standardized 

coefficients from the regression models, and 4) equal weights. 

Mackova et al. [2017] developed prediction model based on computer experiment to estimate 

the construction duration of residential buildings in Slovak republic. They considered the gross 

floor area, number of stories and floor area of one storey as variable inputs to predict the time 

duration for construction while taking into account the intensity of the deployment of labor 

resources. They used multiple linear regression analysis to develop the construction duration 

prediction model.  

Chen [2018] examined the longitudinal relationships between completed project time and 

project variables’ performance prior to the construction phase and to model those useful 

relationships to predict completed project duration. The study confirmed the significance of 

scope, team, communication, risk, and innovation performance prior to the construction phase 

and revealed reasonable estimation accuracy and a relatively small difference in prediction 

rates between in-sample (88.13%) and out-of-sample (85.49%) data. 

Apart from these, many time series techniques have been applied by researchers for 

construction duration and cost prediction. Niu & Hua [2016] built cost index prediction model 

using ARIMA and exponential smoothing technique for power transmission and 

transformation project. Ng et al. [2004] developed an integrated regression analysis (RA) and 

time series (TS) model for predicting construction tender price index. The performance of 

integrated RA-TS model has been compared to individual regression analysis (RA) and time 

series (TS) model.  

In conjunction with the well-established exponential smoothing technique, Khamooshi & Abdi 

[2017] developed a model construction duration prediction with EDI (earned duration index) 

method. The trial compares a number of model models with the use of different projects in 

various phases of completion and provides a comparative review of their results.  

Batselier & Vanhoucke [2017] performed the similar type of study by extending the traditional 

earned value management (EVM) and earned schedule (ES) methodology integrating 

exponential smoothing method with these approaches for construction time and cost 

forecasting. This study results in an extension of the known EVM and earned schedule (ES) 
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cost and time forecasting formulas. Mao & Xiao [2019] also applied time series forecasting 

technique for construction cost index prediction. First, time series data were mapped into a 

network by visibility graph. Then, the link prediction method was adopted to calculate the 

similarity index.  

Recently, different machine learning algorithms have been applied widely for developing more 

improved duration and cost prediction model. 

2.2 Application of Machine Learning Algorithms in Construction Schedule and Cost 

Prediction 

Machine learning models rely on historical data and statistical inference [Niu et al., 2017]. 

Many researchers have developed construction schedule and cost prediction models using 

supervised machine learning algorithms. Artificial neural network is one of the widely used 

approach to build the construction cost and duration prediction models [Bayram et al., 2016; 

Waziri et al., 2017].  

Mensah et al. [2016] developed a consistent model of early design cost prediction of road 

construction and the duration of the project using neural network approach. Data for 22 

completed bituminous surfaced road projects from the Department of Feeder Roads (rural road 

agency) were collected and analyzed using the principal component analysis (PCA) and ANN 

techniques. The data collected were final payment certificates which contained payment bill of 

quantities (BOQ) of work items executed for the selected completed road projects. The ANN 

was then used to develop the network using the identified significant quantities as input 

variables and the actual durations as output variables. 

Naik & Radhika [2015] developed different artificial neural network (ANN) models for the 

estimation of cost and duration for highway road construction projects. They collected data 

from the completed projects and after normalizing, they used the data as inputs and targets for 

developing ANN models.  

Petroutsatou et al. [2012] built early cost prediction model for road tunnel construction projects 

using neural network approach. First, the basic parameters (geological, geometrical, and work 

quantities-related) affecting temporary and permanent support and final construction cost were 

determined. Appropriate price lists were then applied to calculate the costs; subsequently, cost-

estimating models were developed using two types of neural networks: (1) the multilayer feed-
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forward network; and (2) the general regression neural network. Finally, these models were 

compared against real quantities and costs for accuracy and robustness. 

Leu & Liu [2016] used back-propagation neural network (BP-NN) for predicting the 

construction duration during the initial stage. Here, they applied principle component analysis 

(PCA) for selecting the key features as input data for developing the duration prediction model. 

Principal component analysis was applied to the database to identify key factors to serve as 

input data for a back-propagation neural network (BP-NN) that was used to estimate the project 

duration. Three prediction models were identified and developed separately based on the total 

cost for large, medium, and small construction projects. 

Many researchers have applied another popular machine learning algorithm namely support 

vector machine (SVM). Cheng et al. [2010] constructed an evolutionary estimate at completion 

method to estimate final construction project costs. They fused two artificial intelligence 

methods, namely the fast messy genetic algorithm (fmGA) and support vector machine (SVM), 

to create an evolutionary support vector machine inference model (ESIM).  

Wang et al. [2012] applied artificial neural network (ANN) and support vector machine (SVM) 

algorithms in order to predict project cost and plan success, using early plan status as model 

inputs. Data were collected from 92 building projects. A comparative analysis was performed 

by  Kim et al. [2013] to compare the accuracy of three estimating techniques regression analysis 

(RA), neural network (NN) and support vector machine techniques (SVM) by performing 

estimations of construction costs.  

Petroutsatou et al. [2012] also used support vector machine for construction cost forecasting. 

Some researchers optimized the value of hyper-parameters of support vector machine 

algorithms in many models. Cheng & Hoang [2014] utilized least squares support vector 

machine (LS-SVM), machine learning based interval estimation (MLIE), and differential 

evolution (DE) to establish a novel model for predicting construction project cost.  

Project schedule and cost forecasting models were presented by Wauters & Vanhoucke [2014] 

that compared the performance of support vector regression model with the best performing 

earned value and earned schedule methods. The parameters of the SVM were tuned using cross 

validation and grid search procedure. 

Yi et al. [2018] applied particle swarm optimization algorithm for selecting the best values of 

hyper-parameters of least square support vector machine (LSSVM) for predicting the 



 
 

10 

 

construction cost of transmission line projects. Principal component analysis (PCA) was used 

to reduce the dimension of indexes and particle swarm optimization (PSO) was innovatively 

introduced to optimize the parameters of LSSVM model to obtain the optimal parameters. The 

obtained principal component data were imported into empirical parameter LSSVM prediction 

model and the optimized parameter PSO-LSSVM prediction model, respectively, for modeling 

and prediction. 

Support vector machine has also been integrated with Bromilow TCM for road structures 

construction cost prediction by Petrusheva et al. [2019]. Five hybrid models have been built 

for comparison purposes: SVM-Bromilow TCM, LR-Bromilow TCM, RBFNN-Bromilow 

TCM, MLP-Bromilow TCM and GRNN-Bromilow TCM, combining Bromilow TCM with 

SVM, LR (linear regression), RBFNN (radial basis function neural network), MLP (Multilayer 

perceptron) and GRNN (general regression neural network), respectively. 

Luu & Kim [2009] applied neural network approach to estimate the construction costs of 

apartment projects in Vietnam. Ninety-one questionnaires were collected to identify input 

variables. Fourteen data sets of completed apartment projects were obtained and processed for 

training and generalizing the neural network(NN). 

Magdum & Adamuthe [2017] also developed neural network and multilayer perceptron based 

model for construction cost prediction. Different models of NN and MLP are developed with 

varying hidden layer size and hidden nodes. Four artificial neural network models and twelve 

multilayer perceptron models are compared. 

Juszczyk [2019] developed early cost prediction model for bridge construction using support 

vector machine algorithm. Different regression models have also been developed by many 

researchers. Mahamid [2019] built multiple linear regression model for the early prediction of 

road construction duration. El-Dash et al. [2019] also developed duration prediction model 

based on regression analysis. A small number of construction duration and cost prediction 

models have been developed based on ensemble machine learning algorithms [Choi et al., 

2018; Juszczyk & Leśniak, 2019; Ugur et al., 2019].  

2.3 Application of Gradient Boosted Regression Tree Algorithm 

In recent years, Gradient Boosted Regression tree (GBRT) has become very popular and it has 

widely been applied in different areas such as energy consumption forecasting, solar power 

forecasting, and web search ranking [Mohan et al., 2011; Persson et al., 2017]. Gradient 
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Boosted Regression Tree is an ensemble type of machine learning algorithm which can be used 

for classification and regression [Ponomareva et al., 2017].  

Williams & Gong [2014] used ensemble machine learning algorithm to predict the cost overrun 

of projects. Features were selected based on correlation and regression analysis. The stacking 

ensemble model had an average accuracy of 43.72% for five model runs. The model performed 

best in predicting projects completed with large cost overruns and projects near the original 

low bid amount. It was found that a stacking model that used only numerical data produced 

predictions with lower precision and recall. 

Hu et al., [2015] used ensemble machine learning algorithm decision tree based on bagging to 

develop a model for outsourced software project risk prediction. Comparative analysis with T-

test on 60 different risk prediction models using 327 outsourced software project samples 

suggested that the ideal model has been a homogeneous ensemble model of decision trees (DT) 

based on bagging. Interestingly, DT underperformed Support Vector Machine (SVM) in 

accuracy (i.e., assuming equal misclassification cost), but outperformed in cost-sensitive 

analysis under the proposed framework. 

Torres-Barrán et al. [2019] developed models using GBRT algorithm for predicting wind 

energy and solar radiation. Besides a complete exploration of the fundamentals of RFR, GBR 

and XGB, they showed experimentally that ensemble methods improved on support vector 

regression (SVR) for individual wind farm energy prediction. 

GBRT based electricity price prediction model has been developed by Agrawal et al. [2019]. 

They also compared the model with relevance vector machine, multilayer perceptron and forest 

regression models. However, the developed model outperformed all of these models. GBRT 

has also been used for stock prediction [Kohli et al., 2019]. However, to the best of our 

knowledge, Gradient Boosted Regression Tree has not been applied to develop construction 

project duration and cost prediction model.  

2.4. Research Gap 

Although previous studies, to some extent, have developed many models for construction 

duration and cost prediction using different machine learning algorithms, ensemble type 

machine learning algorithms have not been applied yet in this area. Therefore, this study aims 

to use one of the recent ensemble machine learning algorithm Gradient Boosted Regression 

Tree (GBRT) for developing construction schedule and cost prediction models. Selection of 

https://www.sciencedirect.com/topics/computer-science/ensemble-method
https://www.sciencedirect.com/topics/computer-science/support-vector-regression
https://www.sciencedirect.com/topics/computer-science/support-vector-regression
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significant features is an important step before building the models. However, in case of 

gradient boosted tree, optimization of hyper-parameter value is required to reduce the over 

fitting problem. There is a little work on the regularization of hyper-parameters of gradient 

boosted regression. Considering the research gaps mentioned above, this research aims to 

optimize the hyper-parameters of Gradient Boosted Regression Tree and to develop 

construction duration and cost prediction models based on regularized gradient boosted 

regression tree. Feature selection will be performed using one-way ANOVA F-test and the 

regularization of hyper-parameters will be done by Random Search algorithm. 
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CHAPTER 3: THEORETICAL BACKGROUND 

 

In this study, theoretical background covers the topics of one-way ANOVA F-test, Gradient 

Boosted Regression Tree (GBRT) and regularization of hyper-parameters. This chapter 

explains the computational method of one-way ANOVA F-test and the Gradient Boosted 

Regression Tree (GBRT) algorithm. This chapter also discusses different hyper-parameters of 

GBRT and one of the methods of regularization, random search for selecting the best values of 

hyper-parameters. 

3.1. One-way ANOVA F-test 

Analysis of variance (ANOVA) is a statistical analysis tool that splits an observed aggregate 

variability found inside a dataset into two parts. One part is systematic factor and the other is 

random factor. The systematic factors have a statistical influence on the given dataset, while 

random factors do not. ANOVA test is used to determine the influence that independent 

variables have on the dependent variable in a regression study. One-way ANOVA uses F-test 

to assess whether the expected values of a quantitative variable within several pre-defined 

groups differ from each other. The formula for the one-way ANOVA F-test statistic is 

𝐹 =
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

(3.1) 

Or, 

𝐹 =
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

(3.2) 

The explained variance or between-group variability is 

∑𝑛𝑖 (�̅�𝑖 − �̅�)
2 (𝐾 − 1)⁄

𝐾

𝑖=1

 

(3.3) 

Where �̅�𝑖 denotes the sample mean in the i -th group, 𝑛𝑖 is the number of observations in the i

-th group, �̅� denotes the overall mean of the data, and 𝐾 denotes the number of groups. 

The unexplained variance or within-group variability is 

∑∑(�̅�𝑖𝑗 − �̅�𝑖)
2
(𝑁 − 𝐾)⁄

𝑛𝑖

𝑗=1

𝐾

𝑖=1

 

(3.4) 

Where, �̅�𝑖𝑗 is the 𝑗-th observation in the 𝑗-th out of 𝐾 groups and 𝑁 is the overall sample size. 

This F-statistics follow the F-distribution with degrees of freedom 𝑑1 = 𝐾 − 1 and 𝑑1 = 𝑁 −

𝐾. The statistic will be large if the between group variability is large relative to the within-
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group variability, which is unlikely to happen if the population means of the groups all have 

the same value. In this study, one-way ANOVA F-test has been used for selecting the 

significant features. One-way ANOVA F-test method analyzes the data such that one response 

variable is calculated under various conditions identified by one input variable. It is often used 

in the analysis of data and drawing interesting information based on p-value. One-way 

ANOVA analysis by comparing the given dataset and returns a single p-value, which is 

significant. If the p-value is less than certain predefined value, then the input variable is 

considered to be significant. On the other hand, if p-value is greater than the predefined value, 

then the input variable is considered to be not significant. 

 

3.2. Ensemble Machine Learning Algorithms 

The ensemble algorithms consist of different basic models such as decision tree, neural 

networks, etc., and each basic models offers an alternative solution to the problem. The 

predictions of each model are somewhat combined to generate the final output model which is 

usually averaged or weighted. The combination of each model group predictions often results 

in a more stable and exact prediction than the prediction provided by each of the basic models 

in the group. Our everyday life often uses the basic idea behind the ensemble methods. In 

decision-making, it is usually used to seek opinions of others. By weighted combinations of 

these ideas, it can make more informed decisions. The effectiveness of ensemble methods 

depends largely on the variety of simple models that make up the ensemble. Combining results 

of several basic models is only useful if individual models have various outputs, or, in other 

words, disagree on some inputs with each other. Total error reduced by assembling methods 

by fixing error in each model. No advantage is that models which make similar mistakes are 

combined. The total error of the model can be reduced by combining individual base models 

that make various errors (or errors). Various models can be achieved through the application 

of different training data sets or through different training parameters for each model. Two 

popular ensemble techniques that use different sampling methods to create various training 

data for the acquisition of different basic models are packaging and boosting. Despite similar 

training datasets, the basic models are often compelled to be weak in order to produce various 

basic models. This can lead to various model results by disturbing the training data. Trees are 

one type of base model used for assemblies. They can be very prone to small changes in training 

data and a slight shift in training data will result in very different reversal trees. This unique 

property makes them successful assembly candidates. Moreover, trees are fast and easy 
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algorithms which reduce the time and complexity of computation. Tree-based ensemble 

methods create many different trees and then combine the results of each tree. The benefit of 

an ensemble tree is that the variance can be minimized by means of average. Details will be 

illustrated in the later section. In general, the random forest and the gradient boosting regressive 

tree exist in two effective tree-based ensemble algorithms. Both approaches are based on a 

single regression tree. The random forest approach is derived from the principle of bagging, 

and boosting technique is the theoretical basis for gradient regression. A single regression tree 

is explained shortly in the following section, and then how various ensemble trees can be 

created [Zhang & Haghani, 2015].  

3.2.1 Single regression tree 

A single tree model partitions the feature space into a set of regions and fits a simple model (a 

constant) for each region. For simplicity, consider a regression problem with continuous 

response variable 𝑌 and two independent variables 𝑋1 and  𝑋2. The space is first split into two 

regions and model the response 𝑌 (mean of 𝑌) individually in each region. Then, it continues 

to split each individual region into two more regions and continue the process until some 

stopping rule is met. The Figure 3.1(a) shows that the feature space is divided into five regions  

{𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5} according to two variables  𝑋1 and  𝑋2 using four split-points 𝑏1, 𝑏2, 𝑏3 and 

𝑏4. The size of the tree is the total number of end nodes of the tree. In Figure 3.1(b), the size of 

the tree is 5 as the tree is partitioned into 5 regions or end nodes. During each partition process, 

the best fit is achieved through the selection of variables and split-point. Figure 3.1(b) is a 

binary tree representation of the same model. 

It is now considered a generalized version of the above example: a regression problem 

consisting of 𝑝 inputs with one response variable. For example, there are 𝑛 observations, each 

observation consists of (𝑦𝑖,  𝑥𝑖1,𝑥𝑖2,… 𝑥𝑖𝑗,…. 𝑥𝑖𝑝) for 𝑖 = 1,2, … . , 𝑛, 𝑗 = 1,2, … , 𝑝. In terms of 

construction schedule and cost prediction, 𝑦𝑖 can be construction duration or cost. 𝑥𝑖1, 𝑥𝑖2,…, 

 𝑥𝑖𝑗,…. 𝑥𝑖𝑝 are variables that are relevant to predicted construction schedule and construction 

cost, such as location, land size or other external factors. A single regression tree is the basic 

model for Random Forest and Gradient Boosting Regression Tree methods. 
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Figure 3.1: Single regression tree 

 

3.2.2. Random Forest Algorithm 

In 2001, Breiman [2001] developed Random Forest. It brings together two powerful machine 

learning techniques: Amit & Geman [1997] and Ho's [1998]  idea of 'bagging' and their random 

features. The following sections clarify the idea of bagging and random selection of features to 

understand how a Random Forest works [Zhang & Haghani, 2015]. 

In bagging or bootstrap aggregation, each individual based model is trained on the bootstrap 

sample from the training data. The bootstrap techniques were initially developed to estimate 

the sampling distribution by sampling the original data of an estimator from limited data. 

Bootstrap was used to create a variety of datasets for the training base model in recent 

development of ensemble techniques. For a given training data set with sample size 𝑛, bagging 

generates 𝑘 new training set, each with sample size 𝑛, by sampling from the original training 

data set uniformly and with replacement. Through sampling with replacement, some 

observations appear more than once in the bootstrap sample, while other observations will be 

‘left out’ of the sample. Then, 𝑘 base models are trained using the newly generated 𝑘 training 
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set and combined through averaging (regression problem) or majority voting (classification 

problem).  

The individual base model should have the characteristics of instability to ensure the 

effectiveness of the bagging process. Bagging increases prediction precision by the diversity 

of the basic models generated by a disturbed training set. The basic model should be poor to 

obtain different basic models from similar training sets. "Weak" here means a model that is 

somewhat better than random conjecture. The simplest and easiest ensemble tree, the bagged 

tree, can be accomplished with a tree as the basic model. Growing tree in the ensemble is 

generated by randomly drawing data samples that replace the original data. However, with lots 

of data, it is usually used to learn the same regression tree. Averaging output of these trees does 

not improve prediction accuracy. 

Random selection of features is the second technique used by the random forest. Further 

development of the bagged regression tree is the random forest. The bootstrapped samples are 

still focused on the output of individual trees. It makes only a random subset of characteristics 

at each tree splitting node instead of using all features. Thus, variety between basic models is 

enhanced. The pseudo-code for random forest is shown in Table 3.1. 

Random Forest increases predictive accuracy by combining several noisy yet almost neutral 

trees, by reducing variance. According to Hastie et al. [2009], the variance of a Random Forest 

with total number (𝑀) of trees is: 

𝜌𝜎2 +
1 − 𝜌

𝑀
𝜎2 

(3.5) 

Where the variance of individual tree is indicated by 𝜎2, 𝜌 denotes correlation between the 

trees, and 𝐾 is the total number of trees in the ensemble. It is obvious that the second term tends 

to be zero by increasing the total number of trees 𝑀. Therefore, the variance of a Random 

Forest depends on three things: 

(1) The correlation 𝜌 between any pair of trees: the total variance is decreased by decreasing 

the correlation. This can be achieved by: randomly selecting 𝜈 out of the 𝑝 variables to split at 

each splitting node when growing a tree on a bootstrapped dataset. Reducing 𝜈, reduces both 

the correlation between trees and the strength of individual tree, and vice versa. Therefore, 

there is a need to find the optimal value of 𝜈 for certain dataset. 

(2) The variance 𝜎2 of each individual tree, or in other words, the strength of each individual 

tree: Strengthening the performance of each individual tree can decrease the total variance of 

the model. 
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Table 3.1: Pseudo-code for Random Forest Ensemble algorithm [Breiman, 2001] 

Algorithm-1: Random Forest Ensemble  

1. Initialize the total number of trees (𝑀) to be generated and the number  𝜈 < 𝜌 of 

variables used for each individual tree: 

2. for 𝑚 = 1 to 𝑀 do 

3. Draw a random sample 𝑆∗ of size 𝑛 with replacement from the original training 

data (This is also referred to as the bootstrap sample. This sample will be the 

training data to grow the tree); 

4. Grow a tree 𝑇𝑚 using training sample 𝑆∗ through the following loop: 

5. Do until (the maximum node size 𝑛𝑜𝑑𝑚𝑖𝑛 is reached) 

6. for the terminal node of the tree; 

7. Randomly select 𝜈 variables out of the 𝑝 variables; 

Select the best pair of split variable/point among the 𝜈 variables; 

Split the node into two daughter nodes; 

8. end for 

9. Output the constructed tree 𝑇𝜈(𝑥); 

10. end for 

 

(3) The total number of trees 𝑀: The second term of the equation can be reduced by increasing 

𝑀. Therefore, adequate number of trees should be trained to make sure the second term of the 

equation goes to zero. 

Random Forests are usually based on the concept of bagging, but improve the random feature 

selection of each tree. The random forest theoretical history supports parallel computation, so 

parallel computing allows its training speed to be accelerated. Random forest predictions are 

mainly calculated by three variables, namely the association between each tree, its output and 

the total number of trees. 

 

3.2.3 Gradient Boosted Regression Tree (GBRT) 

Gradient Boosted Regression Tree has recently emerged as one of the top ensemble type 

machine learning algorithms. Trees are a base model form commonly used for ensemble 

machine learning techniques. Tree based algorithms are very fast and efficient as they reduce 

the computational time. Tree based ensemble techniques build a large number of different trees 

and then combine the results from each individual tree. 



 
 

19 

 

Unlike bagging, the boosting process sequentially produces simple models. The accuracy of 

prediction is improved by designing many sequence models by concentrating on those cases 

which are difficult to estimate. Examples difficult to estimate using previous simple models 

are more commonly found in training data than those properly calculated in the boosting 

process. That new base model attempts to correct the errors of its preceding base models. From 

the answer [Schapire, 1990] to Kearns' question is the beginning of the boosting technique: Is 

a set of weak learner equivalent to a single strong learner? A weaker leaner is an algorithm that 

only performs marginally better than a random guess; a stronger simple model is an arbitrarily 

well correlated prediction or classification algorithm. It is really important to address this issue. 

When contrast to a strong model, it is always easier to predict a weak model. Schapire [1990] 

proves that the response is good by using boosting algorithms to combine many weak models 

into one precise model. Table 3.2 represents the pseudo-code of boosting algorithm. 

Table 3.2: Pseudo-code of Boosting algorithm [Schapire, 1990]. 

Algorithm-2: Boosting Algorithm 

1. Determine the total number of base models as 𝑀: 

Define the initial training sample distribution as 𝐷1 = 𝐷 

2. for 𝑚 = 1 to 𝑀 do 

3. Train a base model 𝐵𝑚(𝑥) from the training sample distribution 𝐷𝑚. 

4. Compute the error of the model. 

5. Adjust the distribution 𝐷𝑚 to 𝐷𝑚+1 to make the mistake of the model more 

evident. 

6. Output the constructed base model 𝐵𝑚(𝑥). 

7. end for 

8. Output the prediction of the ensemble trees for a given new input 𝑥: 
1

𝑀
∑ 𝐵𝑚(𝑥);
𝑀
𝑚=1  

 

 

The key difference between the bagging and boosting approaches is that the boosting approach 

carefully tests the training data for each successive model to provide the most valuable details. 

The corrected distribution is based on the error produced by previous models during each 

training phase. The probability of selecting a single example is not equal to the boosting 

algorithm. Compared to the bagging approach where each sample is uniformly selected to 

produce a training dataset, the probability of selecting an individual sample is not equal for the 

boosting algorithm. Samples misclassified or misestimated are more likely with higher weight 
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to be picked. Therefore, the samples that were misclassified by earlier models are highlighted 

in each new model. 

The boost suits additional models, such as a squared error or an absolute failure which 

minimized a certain loss function averaged over training data. The loss function calculates the 

value expected by the true value. A forward-looking modeling approach is one of the tentative 

solutions to this problem. The forward-looking approach incorporates new basic models 

sequentially, without modifying current parameters and model coefficients. The boost method 

is a type of "decent functional gradient" in relation to the regression problem. 

Boosting fits additional models that minimize a certain loss function averaged over the training 

data, such as a squared error or an absolute error. The loss function measures the amount the 

predicted value deviates from the true value. One of the approximate solutions to this problem 

is by using a forward stage-wise modeling approach. The forward stage-wise approach 

sequentially adds new base models without changing parameters and coefficients of models 

that have already been added. In terms of regression problem, the boosting method is a form of 

‘‘functional gradient decent’’. It is an optimization technique that minimizes a certain loss 

function by adding a base model at each step that best reduces the loss function. Table 3.3 

represents the pseudo-code for Gradient Boosted Regression Tree algorithm. 

Table 3.3: Pseudo-code of Gradient Boosted Regression Tree (GBRT) algorithm [Friedman, 

2002]. 

Algorithm-3: Gradient Boosted Regression Tree  

1. Initialize 𝐻0(𝑥) to be constant, 𝐻0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌 ∑ 𝐿(𝑦𝑖, 𝜌)
𝑁
𝑖=1 . 

2. for 𝑡 = 1 𝑡𝑜 𝑇 do 

3. for 𝑖 = 1 to 𝑁 do 

4. Compute the negative gradient 

�̃�𝑖𝑡 = −[
𝜕𝐿(𝑦𝑖 , 𝐻(𝒙𝑖))

𝜕𝐻(𝒙𝑖)
]
𝐻(𝒙)=𝐻𝑡−1(𝒙)

 

5. end for 

6. Fit a regression tree to predict the targets �̃�𝑖𝑡 from covariates 𝑥𝑖 for all training 

data. 

7. Update the model as  

                                            𝐻𝑡(𝒙) = 𝐻𝑡−1(𝒙) + 𝜈 ∑ 𝛾𝑗𝑡1(𝒙 ∈ 𝑅𝑗𝑡)
𝐽𝑡
𝑗=1  

8. end for 

9. Output the final model       𝑓𝑀(𝑥) 
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The computational steps for the generic gradient boosting method is as follows [Friedman, 

2002; Hastie et al., 2009]: 

Input features and target features are defined as 𝒙 = (𝑥1, 𝑥2, …… , 𝑥𝑘) and𝑦, respectively. Let 

{𝑦𝑖, 𝒙𝒊}1
𝑀 be a set of training data including 𝑀 pairs. The GBRT algorithm iteratively constructs 

𝑇 different regression trees 𝑓(𝒙, 𝒂1), …… , 𝑓(𝒙, 𝒂𝒕)from the set of training data and constructs 

the additive function 𝐻(𝒙) as follows: 

𝐻(𝒙) = 𝜌0 +∑𝜌𝑡𝑓(𝒙, 𝒂𝒕)

𝑇

𝑡=1

 

(3.6) 

Where, 𝜌𝑡 and 𝒂𝑡 are a weight and vector of parameters for the 𝑡th regression tree 𝑓(𝒙, 𝒂𝒕)and 

𝜌0is an initial value. Both the weight 𝜌𝑡 and the parameters 𝒂𝒕 are iteratively determined from 

𝑡 = 1 to 𝑡 = 𝑇 so that a loss function 𝐿(𝑦, 𝐻(𝒙)) is minimized. Now, an additive function is 

defined which is combined from the first regression tree to the (𝑡 − 1)th regression tree as 

𝐻𝑡−1(𝒙). The weight 𝜌𝑡 and the parameter 𝒂𝒕 for the 𝑖th regression tree is determined as follows: 

(𝜌𝑡, 𝒂𝒕) = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝜌,𝒂

∑𝐿(𝑦𝑖, 𝐻𝑡−1(𝒙𝒊) + 𝜌𝑓(𝒙𝑖, 𝒂))

𝑁

𝑖=1

 

(3.7) 

Where, 𝐻0(𝒙) is an initial value and given by 𝐻0(𝒙) = 𝜌0 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌 ∑ 𝐿(𝑦𝑖, 𝜌
𝑁
𝑖=1 ). 

However, in general, it is not straightforward to solve Eq. (2). Therefore, gradient boosted 

regression tree separately and approximately (𝜌𝑡 , 𝒂𝒕) with a simple two-step procedure 

(Friedman, 2002). To estimate the parameters 𝒂𝒕 for the regression tree, the function defined 

by the regression tree approximates a gradient with respect to the current function ℎ𝑡−1(𝒙) in 

the sense of least-square error as follows: 

𝒂𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝑎

∑(�̃�𝑖𝑡 − 𝑓(𝒙𝑖, 𝒂))
2

𝑁

𝑖=1

 

(3.8) 

Where �̃�𝑖𝑡 is the gradient and is given by, 

�̃�𝑖𝑡 = − [
𝜕𝐿(𝑦𝑖, 𝐻(𝒙𝑖))

𝜕𝐻(𝒙𝑖)
]
𝐻(𝒙)=𝐻𝑡−1(𝒙)

  
(3.9) 

When the 𝑡th regression tree using the 𝒂𝑡 has 𝐽𝑡leaf nodes, the regression tree is given by 

𝑓 (𝒙, {𝑅𝒋𝒕}𝑗=1
𝐽𝑡
) =∑�̃�𝑗𝑡1(𝒙 ∈ 𝑅𝑗𝑡)

𝐽𝑡

𝑗=1

 

(3.10) 
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Where, 𝑅𝑗𝑡 is a disjoint region that the 𝑗th leaf node of the 𝑡th regression tree defines. The step 

size of the gradient descent can be forwardly estimated using a line search on the loss function. 

Then, the model updating rule becomes 

𝐻𝑡(𝒙) = 𝐻𝑡−1(𝒙) + 𝜈∑𝛾𝑗𝑡1(𝒙 ∈ 𝑅𝑗𝑡)

𝐽𝑡

𝑗=1

 

(3.11) 

Where, 𝛾𝑗𝑡 = 𝜌𝑡�̃�𝑗𝑡 and 0 <  𝜈 < 1is a shrinkage parameter to improve the generalization 

capability.  

 

3.4. Performance measure of GBRT 

The most common approached have been utilized to determine the estimation accuracy in 

Gradient Boosted Regression Tree (GBRT) are: 

 Mean absolute error (MAE) 

 Mean absolute percentage error (MAPE) 

 Mean squared error (MSE) 

Mean absolute error is one of many ways to quantify the difference between an estimated and 

the actual value of the projects being estimated. According to Willmott & Matsuura [2005] the 

MAE is relatively simple. It involves summing the magnitudes or absolute values of the errors 

to obtain the ‘total error’ and then dividing the total error by number of exemplars in the data 

set, 𝑛, it can be defined by the following formula: 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|
𝑛
𝑖=1

𝑛
 

(3.12) 

Where, 𝑦𝑖 is the predicted output by the Gradient Boosted Regression Tree model and 𝑥𝑖 is the 

actual or desired output. 

The mean absolute percentage error (MAPE) is a quantity used to measure how close forecasts 

or predictions are to the eventual outcomes, according to Principe [2010], the MAPE is defined 

by the following formula: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑥𝑖
𝑥𝑖

|
𝑛

𝑖=1
× 100% 

(3.13) 

Where, 𝑦𝑖 is the predicted output by the Gradient Boosted Regression Tree model and 𝑥𝑖 is the 

actual or desired output. Note that this value can easily be misleading. For example, say that 

the output data is in the range of 0 to 100. For one exemplar, the desired output is 0.1 and the 
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predicted output is 0.2. Even though the two values are quite close, the percent error for this 

exemplar is 100 [Principe, 2010]. 

The mean squared error (MSE) of an estimator (of a procedure for estimating an unobserved 

quantity) measures the average of squares of the errors that is, the average squared difference 

between the estimated values and what is estimated. MSE is a risk function, corresponding to 

the expected value of the squared error loss. It is perhaps the simplest and common metric for 

regression evaluation, but also probably the least useful. It is defined by the following equation: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)

2
𝑛

𝑖=1
× 100% 

(3.14) 

Where, 𝑦𝑖 is the predicted output by the Gradient Boosted Regression Tree model and 𝑥𝑖 is the 

actual or desired output. The higher this value, the worse the model is. It is never negative, 

since the individual prediction-wise errors are squared before summing them, but would be 

zero for a perfect model. 

 

3.5 Hyper-parameter of Gradient Boosted Regression Tree (GBRT) 

In machine learning, a hyper-parameter is a parameter whose value is set before the learning 

process begins. By contrast, the values of other parameters are derived via training.  Gradient 

Boosted Regression Tree (GBRT) is an ensemble type of machine learning algorithm. The 

major hyper-parameters of GBRT are described below: 

a) Number of trees: The total number of trees in the sequence or ensemble. The averaging 

of independently grown trees in bagging and random forest makes it difficult to overfit 

with too many trees. However, Gradient Boosted Regression Tree (GBRT) functions 

differently as each tree is grown in sequence to fix up the past tree’s mistakes. For 

example, in regression, GBRT will chase residuals as long as user allows them to. Also 

depending on the of the other hyper-parameters, GBRT often require many trees but 

since they can easily over fit, the optimal number of trees must be found that minimize 

the loss function of interest with cross validation. 

b) Minimum number of leaf: Minimum number of leaf also controls the complexity of 

each tree. Higher values of this hyper-parameter help prevent a model from learning 

relationships which might be highly specific to the particular sample selected for a tree 

(overfitting) but smaller values can help with imbalanced target classes in classification 

problems. 
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c) Tree depth: Tree depth controls the depth of the individual trees. Typical values ranges 

from a depth of 3-15 but it is not uncommon to see a tree depth of 1. Smaller depth trees 

such as decision stumps are computationally efficient (but require more trees); 

however, higher depth trees allow the algorithm to capture unique interactions but also 

increase the risk of over-fitting. 

d) Learning rate: Learning rate determines the contribution of each tree on the final 

outcome and controls how quickly the algorithm proceeds down the gradient decent 

(learns). Values range typically 0.01 to 0.4. Smaller values make the model robust to 

the specific characteristics of each individual trees, thus allowing it to generalize well. 

Smaller values also make it easier to stop prior to over-fitting. This hyper-parameter is 

also called shrinkage. 

3.6 Random Search for Hyper-Parameter Regularization 

Hyper-parameters have great impact on the performance of machine learning algorithms. 

Hyper-parameters have to be set before training the model. In Gradient Boosted Regression 

Tree, the values of some hyper-parameters such as number of trees, maximum depth, minimum 

sample leaf and learning rate have significant impact on model performance. Therefore, these 

hyper-parameters need to be optimized. Two popular hyper-parameter tuning algorithms are 

grid search and random search algorithm. Random Search algorithm has shown better 

performance than grid search algorithm in many experiments [Bergstra & Bengio, 2012]. In 

this study, Random Search algorithm has been used for hyper-parameter selection. In Random 

Search algorithm, the trials are given by randomly chosen the values of hyper-parameters 

within certain range. In this study, Random Search algorithm has been applied by using 

RandomSearchCV library in Pyhton 3.6. 

The generic random search algorithm is described by a sequence of iterates {𝑋𝑘} on iteration 

𝑘 = 0,1, … which may depend on previous points and algorithmic parameters. The current 

iterate 𝑋𝑘 may represent a single point, or a collection of points, to include population-based 

algorithms. The iterations are also capitalized to denote that they are random variables 

reflecting the probabilistic nature of the random search algorithm. 

Step 0. Initialize algorithm parameters Θ0, initial points 𝑋0 ⊂ 𝑆 and iteration index 𝑘 = 0. 

Step 1. Generate a collection of candidate points 𝑉𝑘+1 ⊂ 𝑆 according to a specific generator 

and associated sampling distribution. 
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Step 2. Update 𝑋𝑘+1 based on the candidate points 𝑉𝑘+1, previous iterations and algorithmic 

parameters. Also update algorithmic parameters Θ𝑘+1. 

Step 3. If a stopping criterion is met, stop. Otherwise increment 𝐾 and return to Step 1. 
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CHAPTER 4: PROPOSED CONSTRUCTION SCHEDULE AND COST 

PREDICTION FRAMEWORK 

 

This study proposes a framework for predicting the construction schedule and cost more 

accurately at the early stage for low rise, medium rise and high rise building. This proposed 

framework consists of several key phases which are: preliminary phase, data collection and 

preprocessing phase, feature selection phase, regularization and model development phase and 

result comparison phase. These key phases have to be followed to predict the construction 

schedule and cost more accurately as shown in Figure 4.1. The details of the proposed 

framework are described below: 

 

4.1 Preliminary Phase 

The first step of developing construction schedule and cost prediction is to identify the input 

features required to develop the models. After reviewing previous literature and consulting 

with experts, 10 input features were selected for building the schedule and cost prediction 

models. These 10 features are: “Location (F1)”, “Land size (F2)”, “Floor height (F3)”, “Floor 

area (F4)”, “No. of basement (F5)”, “Design (F6)”, “Finishing materials type (F7)”, “Approval 

complexity (F8)”, “Workforce level (F9)” and “No. of floor (F10)” Table 4.1 represents the 

description of these 10 features.  

4.2 Data Collection and Data Preprocessing Phase 

After identifying the input features for the prediction model, historical data of those feature 

will be collected in this step. Data collection is a crucial step in machine learning model 

development. Data should be collected from the same distribution so that the learning process 

works well. In the data preprocessing step, statistical analysis will be performed on the 

collected data. Data encoding process will be done before model development. This step is 

required to understand the nature of the collected data. 
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Table 4.1: Description of input features for schedule and cost prediction models 

No. Feature name Brief description Source 

1 Location (F1) Location refers to the place of construction 

of building and infrastructure  

[Koo et al., 2010; 

Bala et al., 2014] 

2 Land size (F2) Land size means the area of the land where 

the construction work is being 

commenced. 

Experts 

3 Floor height 

(F3) 

Floor height refers to height measured 

from the top of floor to the surface of the 

ceiling plus the thickness of the floor 

between the planes. 

[Abu Hammad et al., 

2008] 

4 Floor area (F4) In construction, floor area refers to the area 

of each floor measured to the external face 

of the external walls. 

[Sonmez, 2011; 

Wang et al., 2012] 

5 No. of basement 

(F5) 

No. of basement refers to the no. of floor 

of a building which is partly or entirely 

below ground level. 

Experts 

6 Design (F6) Design refers to the architectural design of 

the infrastructure. 

[Lowe et al., 2006;  

Jin et al., 2012] 

7 Finishing 

materials type 

(F7) 

Finishing materials type is the type of 

those materials and items used to improve 

the service and decorative qualities of 

buildings and structures. 

[Wang et al., 2012;  

Kim et al., 2013] 

 

8 Approval 

complexity (F8) 

Approval complexity indicates the 

complication regarding the approval of 

building designs and other documents 

from different government agencies. 

Experts 

9. Workforce level 

(F9) 

Workforce refers to the required level of 

manpower for completing the construction 

project. 

Experts 

10. No. of floor 

(F10) 

No. of floor refers to the storey of the 

building from the ground floor to top floor. 

[Sonmez, 2011] 
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Figure 4.1: Flow chart of the current research 

Reviewing previous literature and consultation with the 

experts 

Identifying relevant input features for construction schedule 

and cost prediction model 

Preliminary Phase 

Data collection from the low, medium and high rise buildings 

Exploratory data analysis 

Data Collection and 

Data Preprocessing 

Phase 

Feature selection based on p-value using One-Way ANOVA 

F-test 

Feature Selection 

Phase 

Hyper-parameter 

Regularization and 

Model 

Development Phase 

Regularization of GBRT hyper-parameters by using Random 

Search method 

GBRT model development for construction schedule and cost 

prediction 

Result Comparison 

Phase 

Comparison the performances of GBRT models with the 

performance of Support Vector Machine models 
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4.3 Feature Selection Phase 

In this phase, statistically significant features have been identified through feature selection 

process. In this study, one-way ANOVA F-test has been used as feature selection method. One-

way ANOVA F-test has been performed to select those features which are statistically 

significant based on p-value. Features with p-values less than 0.05 should be selected. In this 

study, p-value was set to 0.05. Any value lesser than 0.05 was considered as effective feature 

while any value greater than this value was considered as non-significant. 

4.4 Hyper-parameter Regularization and Model Development Phase 

4.4.1 Hyper-parameter Regularization 

Hyper-parameters can be classified as model hyper-parameters, that cannot be inferred while 

fitting the machine to the training set because they refer to the model selection task, or 

algorithm hyper-parameters. To develop the Gradient Boosted Regression Tree (GBRT) 

model, the best values of hyper-parameters have been derived in this step. This process is 

known as hyper-parameter regularization. Four hyper-parameters of GBRT have been 

regularized. These four hyper-parameters are: number of trees, minimum sample leaf, tree 

depth and learning rate. To regularize these four hyper-parameters, Random Search method 

has been used. In this study, regularization has been performed using RandomSeachCV library 

in Python 3.6. 

4.4.2 Model Development 

After finding the best values of hyper-parameters, the construction schedule and cost prediction 

models have been developed using GBRT. The dataset was split into training set and testing 

set. The model was trained with the training data and was tested with the testing data. The 

mathematical expression of GBRT model. 

Inputs for the model: 

The two inputs for GBRT model are: (a) Dataset {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛  where 𝑥𝑖 denotes the 𝑖th row and 

𝑦𝑖 denotes the actual output of the 𝑖th row and n is the number of rows in the dataset, and (b) 

Loss function 𝐿(𝑦𝑖 , 𝐹(𝑥)) where 𝐹(𝑥) is the predicted value. In this study, 𝐿2 loss function or 

Least Square Error loss function is used. 

 

 

https://en.wikipedia.org/wiki/Model_fitting
https://en.wikipedia.org/wiki/Model_selection
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Building the model: 

Step 1: Initialize the model with a constant value: 𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝛾

∑ 𝐿(𝑦𝑖, 𝛾)
𝑛
𝑖=1 ; here,  𝛾 is 

the predicted value for the model. 

Step 2: For 𝑚 = 1 to 𝑀, compute 𝑟𝑖𝑚 = −[
𝑑𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝑑𝐹(𝑥𝑖)
]
𝐹(𝑥)=𝐹𝑚−1(𝑥)

, Here, M is the number of 

trees in the model. This is one of the hyper-parameters of GBRT. The value of number of trees 

in the model (M) has been selected using Random Search method. 𝑟𝑖𝑚 is the pseudo residual 

for 𝑖th row and m tree. 

Step 3: For 𝑚 = 1 to 𝑀, fit a regression tree to the 𝑟𝑖𝑚 values and create terminal regions 𝑅𝑗𝑚 

for 𝑗 = 1,2, … , 𝑗𝑚. Here, 𝑗 is the leaf number.  

Step 4: For 𝑗 = 1,2, … 𝑗𝑚, compute 𝛾𝑗𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝛾

∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛾)𝑥𝑖∈𝑅𝑖𝑗
. 

Step 5: Updating rule: 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈 ∑ 𝛾𝑗𝑚𝐼(𝑥 ∈ 𝑅𝑗𝑚)
𝑗𝑚
𝑗=1 . Here, 𝜈 is the learning rate. 

To compare the results from Gradient Boosted Regression Tree models for construction 

schedule and cost prediction, two performance metrics namely mean squared error (MSE) and 

mean absolute percentage error (MAPE) have been used. The performance of GBRT models 

were compared with the results from Support Vector Machine and Multiple Linear Regression 

models.  
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CHAPTER 5: NUMERICAL EXPERIMENTATION 

 

5.1 Data Collection 

As machine learning models are developed based on some datasets, data collection is the 

primary stage of developing a machine learning model. This step is very crucial because most 

of the cases, the quantity and quality of data determine the accuracy of the corresponding 

machine learning model. In this study, the aim is to develop construction schedule and cost 

prediction model based on a popular ensemble machine learning algorithm named Gradient 

Boosted Regression Tree (GBRT). However, to get better performance, the hyper-parameters 

of the models have been regularized.  

To develop the model, data for these features were collected from a reputed real estate 

development company. The data consists of historical information about 69 residential 

construction projects from a reputed construction engineering company of Dhaka city of 

Bangladesh executed from 2013 to 2018. These 69 residential projects were divided into low 

rise, medium rise and high rise building. Table 5.1 represents the data description for the 

schedule and cost prediction models. The illustrative example has the following conditions and 

assumptions: 

i. All the data were collected from the same distribution. Here, the same distribution 

means the same company. There is some true but unknown data distribution from which 

each of the training and test points are drawn independently. 

ii. All the recent projects were considered for building schedule and cost prediction 

models. 

iii. All the projects were categorized as low rise, medium rise and high rise building. 

Buildings having the number of floors between 8 to 10, were considered as low rise 

buildings. Medium rise buildings have number of floors between 11 to 13. Buildings 

with number of floors between 14 to 16 were considered as high rise buildings. 

iv. External non-controllable factors such as political turbulence, environmental factors, 

country’s economic conditions were not considered for developing the models. 

v. Some of the features have very low effect on the response variables. They will be 

removed by using feature selection methods. 

vi. The raw data were converted to numerical form using data encoding method. 
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Table 5.1: Description of data for schedule and cost prediction models. 

Feature type Feature name Description 

Input Location (F1) 1 = Dhanmondi, 2 =  Gulshan, 3 = Banani, 4 

= Lalmatia, 5= Baridhara 

Input Land size (F2) 1 = 335 – 670 m2, 2 = 670 – 1005 m2, 3 = 100 

– 1340 m2 

Input Floor height (F3) 1 = 3.1 m, 2 = 3.4 m, 3 = 3.7 m 

Input Floor area (F4) 1 = 230 – 334 m2, 2 = 334 – 390 m2, 3 = 390 

– 450 m2 

Input No. of basement (F5) 1 = 1 basement, 2 = 2 basements, 3 = 3 

basements 

Input Design (F6) 1 = Design type C, 2 = Design type B, 3 = 

Design type C 

Input Finishing materials type (F7) 1 = Finishing materials type C, 2 = Finishing 

materials type B, 3 = Finishing materials type 

A 

Input Approval complexity (F8) 1 = Low, 2 = Medium, 3 = High 

Input Workforce level (F9) 1 = Very low level, 2 = Low level, 3 = 

Medium level, 4 = High level, 5 = Very high 

level. 

Input No. of floor (F10) 8 to 16 (Integer) 

Output Duration (F11) 26 to 60 months (Continuous) 

Output Cost (F12) BDT 12.5 to 23.5 (Continuous) 

 

5.2 Exploratory Data Analysis 

Among these features, “Location (F1)”, “Land size (F2)”, “Floor height (F3)”, “Floor area 

(F4)”, “No. of basement (F5)”, “Design (F6)”, “Finishing material type (F7)”, “Approval 

complexity (F8)”, “Workforce level (F9)” and “No. of floor (F10)” were considered as input 

features. In the feature selection method, one-way ANOVA-F test has been used to choose the 

most significant predictor features for developing the model. In this study, two separate models 

have been built to predict construction time duration and cost for low rise, medium rise and 
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high rise buildings. Two features namely “Duration (F11)” and “Cost (F12)” were used as 

output or target features for these models respectively.  

Table 5.2 represents the quantity of different types of features for low rise buildings. There are 

20 buildings in the low rise category. Form the table, it is seen that there are 5 types of 

“Location (F1)”. “Floor height (F3)”, “Floor area (F4)”, “No. of basement (F5)”, “Design 

(F6)”, “Finishing materials type (F7)”, and “Approval complexity (F8)” have been divided into 

3 types. Again, there are 2 types of “Land size (F2)” and 4 types of “Workforce level (F9)” for 

low rise buildings. 

Table 5.2: Types of features for low rise buildings.         

 Type 1 Type 2 Type 3 Type 4 Type 5 

Location (F1) 5 3 8 2 2 

Land size (F2) 17 3 0 0 0 

Floor height (F3) 8 8 4 0 0 

Floor area (F4) 13 4 3 0 0 

No. of basement (F5) 7 11 2 0 0 

Design (F6) 13 6 1 0 0 

Finishing materials (F7) 9 5 6 0 0 

Approval complexity (F8) 7 5 8 0 0 

Workforce level (F9) 5 3 8 4 0 

 

Table 5.3 represents the quantity of different types of features for medium rise buildings. There 

are 28 buildings in the medium rise category. Form the table, it is seen that there are 5 types of 

“Location (F1)” in case of medium rise buildings. However, “Land size (F2)” and “No. of 

basements (F5)” are divided into 2 types. Again, “Floor height (F3)”, “Floor area (F4)”, 

“Design (F6)”, “Finishing materials type (F7)”, and “Approval complexity (F8)” have been 

divided into 3 types. There are 4 types of “Workforce level (F9)” for medium rise buildings. 
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Table 5.3: Types of features for medium rise buildings.         

 Type 1 Type 2 Type 3 Type 4 Type 5 

Location (F1) 10 6 3 6 3 

Land size (F2) 0 19 9 0 0 

Floor height (F3) 8 8 12 0 0 

Floor area (F4) 14 11 3 0 0 

No. of basement (F5) 0 12 16 0 0 

Design (F6) 12 9 7 0 0 

Finishing materials (F7) 11 8 9 0 0 

Approval complexity (F8) 7 11 10 0 0 

Workforce level (F9) 0 3 7 11 7 

 

The quantity of different types of features for high rise buildings have been shown in Table 

5.4. There are 21 buildings in the high rise category. Here, also the “Location (F1)” feature is 

divided into 5 types. Like medium rise buildings, “Land size (F2)”, “Floor area (F4)” and “No. 

of basements (F5)” are divided into 2 types for high rise buildings. “Floor height (F3)”, “Design 

(F6)”, “Finishing materials type (F7)”, and “Approval complexity (F8)” have been divided into 

3 types. “Workforce level (F9)” is of 4 types for high rise buildings. 

Table 5.4: Types of features for high rise buildings.         

 Type 1 Type 2 Type 3 Type 4 Type 5 

Location (F1) 3 7 1 2 8 

Land size (F2) 0 3 18 0 0 

Floor height (F3) 7 4 10 0 0 

Floor area (F4) 0 8 13 0 0 

No. of basement (F5) 0 10 11 0 0 

Design (F6) 10 4 7 0 0 

Finishing materials (F7) 7 7 7 0 0 

Approval complexity (F8) 8 7 6 0 0 

Workforce level (F9) 0 0 2 6 13 
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5.3 Kendall’s Tau Correlation Coefficient 

The Kendall’s Tau correlation coefficient, commonly referred to as Kendall's τ coefficient 

(after the Greek letter τ, tau), is a statistic used to measure the ordinal association between two 

measured quantities. A τ test is a non-parametric hypothesis test for statistical dependence 

based on the τ coefficient. In this study, Kendall’s τ coefficient has been used to measure the 

correlation between the features. Table 5.5 shows the Kendall’s Tau correlation coefficient 

among the features. From the table, it is seen that there does not exist significant correlation 

between any two features. This means all the features are independent. 

Table 5.5: Kendall’s Tau correlation coefficient for all the features 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

F1 1.000 0.194 0.425 0.023 0.086 -0.024 0.056 0.083 0.154 0.149 0.147 0.156 

F2 0.194 1.000 0.184 0.461 0.491 0.134 0.055 -0.007 0.730 0.347 0.768 0.765 

F3 0.425 0.184 1.000 0.267 0.293 0.021 0.184 0.053 0.152 0.126 0.129 0.162 

F4 0.023 0.461 0.267 1.000 0.410 0.145 0.033 -0.017 0.463 0.378 0.413 0.427 

F5 0.086 0.491 0.293 0.410 1.000 -0.104 0.010 -0.057 0.502 0.445 0.431 0.419 

F6 -0.024 0.134 0.021 0.145 -0.104 1.000 0.174 0.046 0.041 0.053 0.111 0.103 

F7 0.056 0.055 0.184 0.033 0.010 0.174 1.000 0.020 0.153 0.098 0.094 0.143 

F8 0.083 -0.007 0.053 -0.017 -0.057 0.046 0.020 1.000 0.031 -0.024 0.013 -0.008 

F9 0.154 0.730 0.152 0.463 0.502 0.041 0.153 0.031 1.000 0.472 0.697 0.760 

F10 0.149 0.447 0.126 0.378 0.445 0.053 0.098 -0.024 0.672 1.000 0.812 0.733 

F11 0.147 0.468 0.129 0.413 0.431 0.111 0.094 0.013 0.697 0.312 1.000 0.716 

F12 0.156 0.565 0.162 0.427 0.419 0.103 0.143 -0.008 0.760 0.433 0.716 1.000 

 

5.4 Feature Selection 

In this stage of the study, feature selection has been performed on the collected data using one-

way ANOVA for each category of building. Although, the primary stage (Data collection stage) 

has selected 10 input or predictive features for developing construction duration and cost 

prediction model, one-way ANOVA F-test has been performed to select those features which 

are statistically significant based on p-value. As suggested by Kumar et al. [2015], features 

with p-values less than 0.05 should be selected. On the other hand, if the p-value is larger than 

0.05 then the feature value was considered as non-significant. One-way ANOVA F-test was 

applied for both duration and cost prediction models separately for each category of building. 

Table 5.6 shows the result of one-way ANOVA F-test performed on the collected data of low 

rise building for dependent variable “Duration (F11)”. In case of duration prediction of low 

https://en.wikipedia.org/wiki/%CE%A4
https://en.wikipedia.org/wiki/Statistic
https://en.wikipedia.org/wiki/Ordinal_association
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Hypothesis_test
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rise building, p-value for “Location (F1)” is 0.006 which is less than 0.05. The feature is 

statistically significant as the value is less than 0.05. Hence, this feature has been considered 

for developing duration prediction model for low rise building. Similarly, p-values for “Land 

size (F2)”, “Floor height (F3)”, “Floor area (F4)”, “No. of basement (F5)”, “Workforce level 

(F9)” and “No. of floor (F10)” are less than 0.05 which confirm that all these features are 

significant for the duration prediction of low rise building. So, all these features have been 

considered for model development. On the other hand, p-values for “Design (F6)”, “Finishing 

materials type (F7)”, and “Approval complexity (F8)” are above 0.05. This indicates that all 

these features are not statistically significant. Hence, all these features have been rejected.  

Table 5.6: Results of one-way ANOVA performed on the collected data of low rise buildings 

for dependent variable “Duration (F11)”.  

Feature Sum of 

squares 

Degree of 

freedom 

Mean 

square 

F P-value Status 

Location (F1) 

Between Groups 145.133 4 36.283 

5.516 0.006  

Selected 

Within Groups 98.667 15 6.578 

Total 243.800 19 _ 

Land size (F2) 

Between Groups 176.020 1 176.020 46.745 0.000 Selected 

Within Groups 67.78 18 3.766 

Total 243.800 19 _ 

Floor Height (F3) 

Between Groups 140.300 2 70.150 11.522 0.001 Selected 

Within Groups 103.500 17 6.088 

Total 243.800 19 _ 

Floor area (F4) 

Between Groups 203.073 2 101.536 42.382 0.000 Selected 

Within Groups 40.727 17 2.396 

Total 243.800 19 _ 

No. of basement (F5) 

Between Groups 186.800 2 93.400 27.856 0.000 Selected 

Within Groups 57.000 17 3.353 
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Total 243.800 19 _ 

Design (F6) 

Between Groups 24.108 2 12.054 0.933 0.413 Rejected 

Within Groups 219.692 17 12.923 

Total 243.800 19 _ 

Finishing materials type (F7) 

Between Groups 8.244 2 4.122 0.298 0.746 Rejected 

Within Groups 235.556 17 13.856 

Total 243.800 19 _ 

Approval complexity (F8) 

Between Groups 4.071 2 2.036 0.144 0.867 Rejected 

Within Groups 239.729 17 14.102 

Total 243.800 19 _ 

Workforce level (F9) 

Between Groups 197.800 2 98.900 36.550 0.000 Selected 

Within Groups 46.000 17 2.706 

Total 243.800 19 _ 

No. of floor (F10) 

Between Groups 135.600 2 67.800 10.652 0.001 Selected 

Within Groups 108.200 17 6.365 

Total 243.800 19 _ 

 

Table 5.7 represents the result of one-way ANOVA F-test performed on the collected data for 

dependent variable “Cost (F11)” of low rise buildings. In case of cost prediction of low rise 

buildings, the p-value of “Location (F1)” is 0.005 which is less than 0.05. Thus this feature has 

been selected. P-values for “Land size (F2)”, “Floor height (F3)”, “Floor area (F4)”, “No. of 

basement (F5)”, “Workforce level (F9)” and “No. of floor (F10)” are close to zero for cost 

prediction which indicate that these features are statistically significant. Thus, these features 

have been selected for developing construction cost prediction model of low rise building. On 

the other hand, p-values for “Design (F6)”, “Finishing material type (F7)”, and “Approval 

complexity (F8)” are more than 0.05. This confirms that these features are not statistically 

significant. For this reason, these features have been rejected. 
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Table 5.7: Results of one-way ANOVA performed on the collected data of low rise buildings 

for dependent variable “Cost (F12)”. 

Feature Sum of 

squares 

Degree of 

freedom 

Mean 

square 

F-value P-value Status 

Location (F1) 

Between Groups 32.643 4 8.161 5.758 0.005 Selected 

Within Groups 21.259 15 1.417 

Total 53.902 19 _ 

Land size (F2) 

Between Groups 41.794 1 41.794 62.134 0.000 Selected 

Within Groups 12.108 18 0.673 

Total 53.902 19 _ 

Floor Height (F3) 

Between Groups 35.042 2 17.521 15.793 0.000 Selected 

Within Groups 18.860 17 1.109 

Total 53.902 68 _ 

Floor area (F4) 

Between Groups 46.227 2 23.113 51.196 0.000 Selected 

Within Groups 7.675 17 0.451 

Total 53.902 19 _ 

No. of basements (F5) 

Between Groups 38.908 2 19.454 22.056 0.000 Selected 

Within Groups 14.994 17 0.882 

Total 53.902 19 _ 

Design (F6) 

Between Groups 5.944 2 2.972 1.054 0.370 Rejected 

Within Groups 47.958 17 2.821 

Total 53.902 19 _ 

Finishing materials type (F7) 

Between Groups 1.979 2 0.990 0.324 0.728 Rejected 

Within Groups 51.923 17 3.054 

Total 53.902 19 _ 
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Approval complexity (F8) 

Between Groups 1.590 2 0.795 0.258 0.775 Rejected 

Within Groups 52.312 17 3.077 

Total 53.902 68 _ 

Workforce level (F9) 

Between Groups 45.299 2 22.649 44.755 0.000 Selected 

Within Groups 8.603 17 0.506 

Total 53.902 19 _ 

No. of floor (F10) 

Between Groups 42.386 2 21.193 31.285 0.000 Selected 

Within Groups 11.516 17 0.677 

Total 53.902 19 _ 

 

Figure 5.1 and 5.2 show the main effect plot of duration and cost prediction for low rise 

buildings, respectively. From the main effect plot, it is seen that the lines for “Design (F6)”, 

“Finishing materials type (D7)” and “Approval complexity (F8)” are almost horizontal 

indicating no effect on the response feature. On the other hand, the lines for the rest of the 

features are not horizontal indicating main effect on the response feature. 

 

Figure 5.1: Main effect plot for “Duration (F11)” prediction of low rise buildings. 
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Figure 5.2: Main effect plot for “Cost (F12)” prediction of low rise buildings. 

Table 5.8 shows the result of one-way ANOVA F-test performed on the collected data of 

medium rise buildings for dependent variable “Duration (F11)”. In case of duration prediction 

of medium rise buildings, p-values for “Land size (F2)”, “Floor area (F4)”, “No. of basement 

(F5)”, “Workforce level (F9)” and “No. of floor (F10)” are less than 0.05. Therefore, all of 

these features are significant for the duration prediction of medium rise buildings. These 

features have been selected for model development. On the other hand, p-values for “Location 

(F1)”, “Floor height (F3)”, “Design (F6)”, “Finishing materials type (F7)”, and “Approval 

complexity (F8)” are above 0.05. Therefore, all of these features were not considered for 

duration prediction of medium rise building. 

Table 5.8: Results of one-way ANOVA performed on the collected data of medium rise 

buildings for dependent variable “Duration (F11)”.  

Feature Sum of 

squares 

Degree of 

freedom 

Mean 

square 

F P-value Status 

Location (F1) 

Between groups 179.412 4 44.853 2.496 0.071 Rejected 

Within Groups 413.267 23 17.968 

Total 592.679 27 _ 



 
 

41 

 

Land size (F2) 

Between Groups 142.152 1 142.152 8.204 0.008 Selected 

Within Groups 450.526 26 17.328 

Total 592.679 27 _ 

Floor Height (F3) 

Between Groups 16.529 2 8.214 0.356 0.704 Rejected 

Within Groups 576.250 25 23.050 

Total 592.679 27 _ 

Floor area (F4) 

Between Groups 231.513 1 231.513 16.666 0.000 Selected 

Within Groups 361.166 26 13.891 

Total 592.679 27 _ 

No. of basement (F5) 

Between Groups 278.679 1 278.679 23.075 0.000 Selected 

Within Groups 314.000 26 12.077 

Total 592.679 27 _ 

Design (F6) 

Between Groups 57.583 2 28.792 1.345 0.279 Rejected 

Within Groups 535.095 25 21.404 

Total 592.679 27 _ 

Finishing materials type (F7) 

Between Groups 56.258 2 28.129 1.311 0.287 Rejected 

Within Groups 536.420 25 21.457 

Total 592.679 27 _ 

Approval complexity (F8) 

Between Groups 9.882 2 4.941 0.212 0.810 Rejected 

Within Groups 582.796 25 23.312 

Total 592.679 27 _ 

Workforce level (F9) 

Between Groups 271.324 3 90.775 6.801 0.002 Selected 

Within Groups 320.355 24 13.348 

Total 592.679 27 _ 
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No. of floor (F10) 

Between Groups 286.779 2 67.800 10.652 0.001 Selected 

Within Groups 305.900 17 6.365 

Total 592.679 19 _ 

 

Table 5.9 represents the result of one-way ANOVA F-test performed on the collected data for 

dependent variable “Cost (F11)” of medium rise buildings. In case of cost prediction of medium 

rise buildings, the p-values for “Land size (F2)”, “Floor area (F4)”, “No. of basement (F5)”, 

“Workforce level (F9)” and “No. of floor (F10)” are less than 0.05 which indicate that these 

features are statistically significant. On the other hand, p-values for “Location (F1)”, “Floor 

height (F3)”, “Design (F6)”, “Finishing material type (F7)”, and “Approval complexity (F8)” 

are larger than 0.05. This confirms that these features are not statistically significant. 

Table 5.9: Results of one-way ANOVA performed on the collected data of medium rise 

buildings for dependent variable “Cost (F12)”. 

Feature Sum of 

squares 

Degree of 

freedom 

Mean 

square 

F P-value Status 

Location (F1) 

Between Groups 39.843 4 9.961 4.461 0.408 Rejected 

Within Groups 51.358 23 2.233 

Total 91.201 27 _ 

Land size (F2) 

Between Groups 34.139 1 34.139 15.555 0.001 Selected 

Within Groups 57.062 26 2.195 

Total 91.201 27 _ 

Floor Height (F3) 

Between Groups 7.516 2 3.758 1.123 0.341 Rejected 

Within Groups 83.685 25 3.347 

Total 91.201 27 _ 

Floor area (F4) 

Between Groups 42.240 1 42.240 22.431 0.000 Selected 

Within Groups 48.961 26 1.883 

Total 91.201 27 _ 
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No. of basement (F5) 

Between Groups 29.052 1 29.052 12.154 0.002 Selected 

Within Groups 62.149 26 2.390 

Total 91.201 27 _ 

Design (F6) 

Between Groups 5.124 2 2.562 0.744 0.485 Rejected 

Within Groups 86.077 25 3.443 

Total 91.201 27 _ 

Finishing materials type (F7) 

Between Groups 11.535 2 5.767 1.810 0.184 Rejected 

Within Groups 79.666 25 3.187 

Total 91.201 27 _ 

Approval complexity (F8) 

Between Groups 2.481 2 1.240 0.350 0.708 Rejected 

Within Groups 88.720 25 3.549 

Total 91.201 27 _ 

Workforce level (F9) 

Between Groups 67.930 3 22.643 23.353 0.000 Selected 

Within Groups 23.271 24 0.970 

Total 91.201 27 _ 

No. of floor (F10) 

Between Groups 45.775 2 22.887 12.596 0.000 Selected 

Within Groups 45.427 25 1.817 

Total 91.201 27 _ 

 

Figure 5.3 and 5.4 represent the main effect plot of duration and cost prediction for medium 

rise building, respectively. From the main effect plot, it is seen that the lines for “Land size 

(F2)”, “Floor area (F4)”, “No. of basement (F5)”, “Workforce level (F9)”, and “No. of floor 

(F10)” are not horizontal which indicate that there exists main effect on the response feature. 

On the other hand, the lines for the rest of the features are almost horizontal indicating no main 

effect on the response feature. 
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Figure 5.3: Main effect plot for “Duration (F11)” prediction of medium rise buildings. 

 

Figure 5.4: Main effect plot for “Cost (F12)” prediction of medium rise buildings. 

Table 5.10 shows the result of one-way ANOVA F-test performed on the collected data of high 

rise buildings for dependent variable “Duration (F11)”. In case of duration prediction of high 

rise buildings, the selected features are “Land size (F2)”, “Floor area (F4)”, “No. of basement 
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(F5)”, “Workforce level (F9)” and “No. of floor (F10)” as the p-values of these features are 

less than 0.05. The rest of the features have not been considered for developing the model. 

Table 5.10: Results of one-way ANOVA performed on the collected data of high rise 

buildings for dependent variable “Duration (F11)”. 

Feature Sum of 

squares 

Degree of 

freedom 

Mean 

square 

F P-value Status 

Location (F1) 

Between Groups 59.810 4 14.952 

1.259 0.326 

Rejected 

Within Groups 190.000 16 11.875 

Total 249.810 20 _ 

Land size (F2) 

Between Groups 96.032 1 96.032 11.865 0.003 Selected 

Within Groups 153.778 19 8.094 

Total 249.810 20 _ 

Floor Height (F3) 

Between Groups 48.595 2 24.298 2.174 0.143 Rejected 

Within Groups 201.214 18 11.179 

Total 249.810 20 _ 

Floor area (F4) 

Between Groups 99.858 1 99.858 12.653 0.002 Selected 

Within Groups 149.952 19 7.892 

Total 249.810 20 _ 

No. of basement (F5) 

Between Groups 161.082 1 161.082 34.494 0.000 Selected 

Within Groups 88.727 19 4.670 

Total 249.810 20 _ 

Design (F6) 

Between Groups 6.495 2 3.248 0.240 0.789 Rejected 

Within Groups 243.314 18 13.517 

Total 249.810 20 _ 

Finishing materials type (F7) 

Between Groups 14.381 2 7.190 0.550 0.586 Rejected 
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Within Groups 235.429 18 13.079 

Total 249.810 20 _ 

Approval complexity (F8) 

Between Groups 34.476 2 17.238 1.441 0.263 Rejected 

Within Groups 215.333 18 11.963 

Total 249.810 20 _ 

Workforce level (F9) 

Between Groups 142.117 2 71.059 11.877 0.001 Selected 

Within Groups 107.692 18 5.983 

Total 249.810 20 _ 

No. of floor (F10) 

Between Groups 88.087 2 44.044 04.902 0.020 Selected 

Within Groups 161.722 18 8.902 

Total 249.810 20 _ 

 

Table 5.11 represents the result of one-way ANOVA F-test performed on the collected data for 

dependent variable “Cost (F11)” of high rise building. In case of cost prediction of high rise 

buildings, the p-values for “Land size (F2)”, “Floor area (F4)”, “No. of basement (F5)”, 

“Workforce level (F9)” and “No. of floor (F10)” are less than 0.05 which indicate that these 

features are statistically significant. On the other hand, p-values for “Location (F1)”, “Floor 

height (F3)”, “Design (F6)”, “Finishing material type (F7)”, and “Approval complexity (F8)” 

are larger than 0.05. Therefore, these features were not selected. 

Table 5.11: Results of one-way ANOVA performed on the collected data of medium rise 

buildings for dependent variable “Cost (F12)”. 

Feature Sum of 

squares 

Degree of 

freedom 

Mean 

square 

F P-value Status 

Location (F1) 

Between Groups 6.883 4 1.721 

0.881 0.497 

Rejected 

Within Groups 31.249 16 1.953 

Total 38.131 20 _ 

Land size (F2) 

Between Groups 7.975 1 7.975 5.027 0.037 Selected 
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Within Groups 30.156 19 1.587 

Total 38.131 20 _ 

Floor Height (F3) 

Between Groups 1.846 2 0.923 0.458 0.640 Rejected 

Within Groups 36.286 18 2.016 

Total 38.131 20 _ 

Floor area (F4) 

Between Groups 18.585 1 18.585 18.066 0.000 Selected 

Within Groups 19.546 19 1.029 

Total 38.131 20 _ 

No. of basement (F5) 

Between Groups 21.002 1 21.002 23.296 0.000 Selected 

Within Groups 17.129 19 0.902 

Total 38.131 20 _ 

Design (F6) 

Between Groups 0.422 2 0.211 0.101 0.905 Rejected 

Within Groups 37.710 18 2.095 

Total 38.131 20 _ 

Finishing materials type (F7) 

Between Groups 1.449 2 0.724 0.355 0.706 Rejected 

Within Groups 36.683 18 2.038 

Total 38.131 20 _ 

Approval complexity (F8) 

Between Groups 7.119 2 3.560 2.066 0.156 Rejected 

Within Groups 31.012 18 1.723 

Total 38.131 20 _ 

Workforce level (F9) 

Between Groups 19.962 2 9.981 9.888 0.001 Selected 

Within Groups 18.169 18 1.009 

Total 38.131 20 _ 

No. of floor (F10) 

Between Groups 23.768 3 7.923 9.377 0.001 Selected 
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Within Groups 14.364 17 0.845 

Total 38.131 20 _ 

 

Figure 5.4 and 5.6 represent the main effect plot of duration and cost prediction for high rise 

building, respectively. From the main effect plot, it is seen that the lines for “Land size (F2)”, 

“Floor area (F4)”, “No. of basement (F5)”, “Workforce level (F9)”, and “No. of floor (F10)” 

are not horizontal. Therefore, there exists main effect on the response feature for these features. 

On the other hand, the lines for the rest of the features are almost horizontal indicating no main 

effect on the response feature. 

 

 

Figure 5.5: Main effect plot for “Duration (F11)” prediction of high rise buildings. 
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Figure 5.6: Main effect plot for “Cost (F12)” prediction of high rise buildings. 

5.5 Building the Model 

At this stage, two models were built for construction schedule and cost prediction for each 

category of building with corresponding features selected in the previous step. Models were 

built using Python 3.6. Primarily, the collected dataset was divided into two parts. One part of 

the dataset was for training the models and this is known as training set. Another part of the 

data set was for testing the models and this is known as testing set. In the current study, training 

set was constructed by choosing 70% of the total data randomly and rest 30% of the data were 

considered as testing dataset. Then the values of hyper-parameters of Gradient Boosted 

Regression Tree (GBRT) for each model were chosen using Random Search method. The 

hyper-parameter can be defined as the parameters of the model whose values are required to 

set before training the models. 

5.6 Hyper-parameter Regularization using Random Search 

Random Search method was applied on the training dataset to select the values of the hyper-

parameters for determining the best model performances for each category of building. This 

process of selecting the values of hyper-parameters is also known as hyper-parameter 

regularization or hyper-parameter tuning. In the current study, for hyper-parameter tuning of 

Gradient Boosted Regression Tree (GBRT) schedule and cost prediction models, k-fold cross 
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validation has been used. K-fold cross validation means that the total dataset will be divided 

into k equal parts. One part of the k parts will be used for training the model. Then, the model 

is fitted to k-1 parts of the data. The mean r-squared value also known as mean cross validation 

score has been calculated on the kth part for randomly selected hyper-parameters in random 

search method. In the current study, the cross validation value of k was set to 3. Therefore, the 

cross validation score was calculated by taking the average of r-squared values for k=1, 2 and 

3. 

In order to establish regularized Gradient Boosted Regression Tree (GBRT) models, values of 

different hyper-parameters have to be identified for best results of the models. There are two 

categories of hyper-parameters Gradient Boosted Regression Tree (GBRT) algorithm. 

Learning rate and number of trees are included in the first category of hyper-parameters of 

GBRT. Learning rate is the step size which is also known as shrinkage parameters. Learning 

rate can be used to improve the model’s generalization capacity.  

The first category of hyper-parameter includes learning rate and number of trees. Learning rate 

is the shrinkage parameter which can be tuned to improve the generalization ability of the 

model. The number of sub-models in the GBRT is known as number of trees. These two hyper-

parameters are used to adjust the gradient boost. The second category of hyper-parameters 

includes maximum depth and minimum sample leaf. Maximum depth in GBRT is defined as 

the number of nodes from the longest path. Minimum sample leaf can be defined as the 

minimum number of leaf nodes.  

In this study, random search method has been used for determining the values of gradient boost 

hyper-parameters to achieve the best estimating effect and improve the model’s generalization 

capacity. The values of hyper-parameters were selected based on the highest mean cross 

validation r-squared value. This value was considered as the performance metric. 

Figure 5.7 represents the mean r-squared values for different number of trees for construction 

time and cost prediction models of low, medium and high rise buildings. Initially, the number 

of trees were selected randomly from a normal distribution. Then, random search method has 

been applied. From figure, it is seen that based on the highest mean cross validation r-squared 

values, the number of trees for duration prediction models of low, medium and high rise 

buildings are 100. On the other hand, the number of trees for cost prediction models of low rise 

building is 75, and for medium and high rise building, this value is 125. 
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Figure 5.7: Mean CV r-squared values for different number of trees. 

Figure 5.8 represents the mean r-squared values for different number of sample leaf for 

construction time and cost prediction model. Initially, the number of sample leaf were selected 

randomly from a normal distribution. Then, random search method has been applied. Based on 

the highest mean cross validation r-squared values, the number of sample leaf for duration 

prediction models of low, and medium rise buildings is 5 and for high rise building, the value 

is 4. On the other hand, the numbers of sample leaf for cost prediction models of low, medium 

and high are 5, 4 and 6. 

 

Figure 5.8: Mean CV r-squared values for different number of sample leaf. 
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Figure 5.9 represents the mean r-squared values for different depth of trees for construction 

duration and cost prediction model. Initially, different numbers of depth of trees were selected 

randomly from a normal distribution. Then, random search method has been applied. Based on 

the highest mean cross validation r-squared values, the number of depth of trees for duration 

prediction models of low, medium and high rise buildings are 3, 7 and 6. On the other hand, 

the numbers of depth of trees for cost prediction models of low rise building is 6, and for 

medium and high rise building, this value is 5. 

 

Figure 5.9: Mean CV r-squared values for different depth of trees. 

Figure 5.10 represents the mean r-squared values for different learning rates for construction 

duration and cost prediction model. Initially, different learning rates were selected randomly 

from a normal distribution. Then, random search method has been applied. Based on the highest 

mean cross validation r-squared values, the learning rates for duration prediction models of 

low, medium and high rise buildings are 0.6, 0.1 and 0.6. On the other hand, learning rate for 

cost prediction models of low and medium rise building is 0.4, and for medium, this value is 

0.5. 
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Figure 5.10: Mean CV r-squared values for different learning rates. 

Table 5.12 shows the summary of selected values of the four hyper-parameters of Gradient 

Boosted Regression Tree (GBRT) for developing construction schedule and cost prediction 

models for low, medium and high rise buildings. 

Table 5.12:  Selected values of the hyper-parameters for the models. 

 Number of 

trees 

Minimum 

sample leaf 

Maximum 

depth 

Learning rate 

Time (low rise) 100 5 3 0.6 

Time (medium rise) 100 5 7 0.1 

Time (high rise) 100 4 6 0.6 

Cost (low rise) 75 4 6 0.4 

Cost (medium rise) 125 5 5 0.4 

Cost (high rise) 125 6 5 0.5 
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CHAPTER 6: RESULT AND ANALYSIS 

 

In this section, the performances of the developed models were evaluated. The estimated 

construction durations and costs of low, medium and high rise buildings based on regularized 

Gradient Boosted Regression Tree models were not only analyzed against the performance 

metrics but also compared with the performance results of Support Vector Regression (SVR) 

and Multiple Linear Regression (MLR) models. 

6.1 Performance Evaluation of the Models 

Several papers have discussed about the performance evaluation metrics for regression models  

[Belavagi & Muniyal, 2016; Strom et al., 2019]. Some of these metrics are mean absolute 

percentage error (MAPE), r-squared value, mean squared error (MSE), etc. In order to evaluate 

the predictive performance, regularized Gradient Boosted Regression Tree (GBRT) based 

construction schedule and cost prediction models were measured by r-squared value, mean 

absolute percentage error (MAPE) and mean squared error (MSE).  

The comparison between the actual and predicted construction duration of low rise buildings 

of the regularized Gradient Boosted Regression Tree (GBRT) model for training dataset has 

been shown in Figure 6.1. Here, the blue rectangle stands for the true or actual value of 

construction time duration while the orange triangle indicates the predicted construction 

duration for low rise buildings. It is noted that there is no significant difference between actual 

and predicted duration for the training model. 

 

Figure 6.1: Actual and predicted duration of the regularized GBRT schedule prediction model 

of low rise building for training data. 
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For the testing data, the comparison between the actual and predicted construction durations of 

low rise buildings of the regularized Gradient Boosted Regression Tree (GBRT) model has 

been shown in Figure 6.2. Here, the blue rectangle stands for the true or actual value of 

construction time duration while the orange triangle indicates the predicted construction 

duration for low rise buildings. It is noted that there is also no significant difference between 

actual and predicted duration for the testing model. To check the performance more precisely, 

r-squared value and mean absolute percentage error (MAPE) have been calculated. 

 

Figure 6.2: Actual and predicted duration of the regularized GBRT schedule prediction model 

of low rise building for testing data. 

The r-squared value of the regularized Gradient Boosted schedule prediction model for training 

data of low rise building is shown in Figure 6.3. The r-squared value is 0.79 which indicates 

very good predictive performance for the training data. 

 

Figure 6.3: R-squared value of the regularized GBRT schedule prediction model of low rise 

building for training data. 
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The training set and test set deviance (mean squared error) of GBRT model for low rise building 

has been shown in Figure 6.4. The deviance has been expressed as the mean squared error 

which is the function of the number of iterations for the regularized Gradient Boosted 

Regression Tree based construction schedule prediction model. The optimal value of the 

boosting iteration was set at the point for which the deviance (mean squared error) was 

minimum. Here, it is noted that the boosting iteration value is 120 where the test set deviance 

tends to decrease and the mean squared value is 0.9715 for the testing set. The deviance 

between training set and test set is very low. This is happened because GBRT has the ability to 

minimize the performance gap between training and test set. 

 

Figure 6.4: Testing set deviance of the regularized GBRT schedule prediction model for low 

rise building. 

The comparison between the actual and predicted construction duration of medium rise 

buildings of the regularized Gradient Boosted Regression Tree (GBRT) model for training 

dataset has been shown in Figure 6.5. Here, the blue rectangle stands for the true or actual value 

of construction time duration of medium rise buildings while the orange triangle indicates the 

predicted construction duration. It is noted that for medium rise building, there is no significant 

difference between actual and predicted duration for the training model. 
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Figure 6.5: Actual and predicted duration of the regularized GBRT schedule prediction model 

of medium rise building for training data. 

For the testing dataset, the comparison between the actual and predicted construction duration 

of medium rise buildings of the regularized Gradient Boosted Regression Tree (GBRT) model 

has been shown in Figure 6.6. In case of testing model, it is noted that for medium rise building, 

there is little difference between actual and predicted duration for some projects while no 

significant differences have been found for most of the projects. 

 

 

Figure 6.6: Actual and predicted duration of the regularized GBRT schedule prediction model 

of medium rise building for testing data. 
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The r-squared value of the regularized Gradient Boosted schedule prediction model for training 

data of medium rise building is shown in Figure 6.7. The r-squared value is 0.75 which 

indicates very good predictive performance for the training data. 

 

Figure 6.7: R-squared value of the regularized GBRT schedule prediction model of medium 

rise building for training data. 

The training set and test set deviance (mean squared error) of GBRT model for medium rise 

building has been shown in Figure 6.8. Here, it is noted that the boosting iteration value is 100 

where the test set deviance tends to decrease and the mean squared value is 20.0078 for the 

testing set. Here, the deviance between training set and test set higher than the low rise building.  

 

Figure 6.8: Testing set deviance of the regularized GBRT schedule prediction model for 

medium rise building. 
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Figure 6.9 shows the comparison between the actual and predicted construction duration of 

high rise buildings of the regularized Gradient Boosted Regression Tree (GBRT) model for 

training dataset. Here, the blue rectangle stands for the true or actual value of construction time 

duration of high rise buildings while the orange triangle indicates the predicted construction 

duration. It is noted that there is no significant difference between actual and predicted duration. 

 

Figure 6.9: Actual and predicted duration of the regularized GBRT schedule prediction model 

of high rise building for training data. 

Figure 6.10 shows the comparison between the actual and predicted duration in case of high 

rise buildings for testing data. It is noted that there is no significant difference between actual 

and predicted duration. This indicates the very satisfactory performance of GBRT model. 

 

Figure 6.10: Actual and predicted duration of the regularized GBRT schedule prediction 

model of high rise building for testing data. 
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The r-squared value of the regularized Gradient Boosted schedule prediction model for training 

data of high rise building is shown in Figure 6.11. The r-squared value is 0.85 which indicates 

very good predictive performance for the training data in case of high rise buildings. 

 

Figure 6.11: R-squared value of the regularized GBRT schedule prediction model of high rise 

building for training data. 

Figure 6.12 represents the training set and test set deviance (mean squared error) of GBRT 

model for high rise buildings. Here, it is noted that the boosting iteration value is 100 where 

the test set deviance tends to decrease and the mean squared value is 23.2011 for the testing 

set. For high rise building, the training and test set deviance is higher than low and medium 

rise building. As the number of floor of the building increases, it becomes very difficult to 

predict the construction schedule. 

 

Figure 6.12: Testing set deviance of the regularized GBRT schedule prediction model for 

high rise building. 
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The comparison between the actual and predicted construction cost of low rise buildings of the 

regularized Gradient Boosted Regression Tree (GBRT) model for training dataset has been 

shown in Figure 6.13. Here, the blue rectangle stands for the true or actual value of construction 

cost of medium rise buildings while the orange triangle indicates the predicted construction 

costs. It is noted that for low rise building, there is no significant difference between actual and 

predicted costs for the training model. 

 

Figure 6.13: Actual and predicted cost of the regularized GBRT cost prediction model of low 

rise building for training data. 

Figure 6.14 shows the comparison between the actual and predicted costs in case of high rise 

buildings for testing data. It is noted that there is no significant difference between actual and 

predicted cost. 

 

Figure 6.14: Actual and predicted cost of the regularized GBRT cost prediction model of low 

rise building for testing data. 

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
o

st

Project

Actual

Predicted (GBRT)

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

1 2 3 4 5 6

C
o

st

Project

Actual

Predicted (GBRT)



 
 

62 

 

Figure 6.15 shows the r-squared value of the regularized Gradient Boosted cost prediction 

model for training data of low rise building. The r-squared value is 0.70 which indicates very 

good predictive performance because higher r-squared value indicates satisfactory 

performance. 

 

Figure 6.15: R-squared value of the regularized GBRT cost prediction model of low rise 

building for training data. 

Figure 6.16 represents the training set and test set deviance (mean squared error) of GBRT cost 

prediction model for low rise buildings. Here, it is noted that the boosting iteration value is 70 

where the test set deviance tends to decrease and the mean squared value is 0.5507 for the 

testing set. There is no significant difference between training set and test set deviance. 

Therefore, it can be said that the overfitting problem is minimized in this case. The deviance is 

minimized because GBRT has the ability to reduce overfitting problems. 

 

Figure 6.16: Testing set deviance of the regularized GBRT cost prediction model for low rise 

building. 
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Figure 6.17 shows the comparison between the actual and predicted construction cost of 

medium rise buildings of the regularized Gradient Boosted Regression Tree (GBRT) model for 

training dataset. Here, the blue rectangle stands for the true or actual value of construction cost 

of medium rise buildings while the orange triangle indicates the predicted construction costs. 

It is noted that for medium rise building, there is no significant difference for the training 

model. 

 

Figure 6.17: Actual and predicted cost of the regularized GBRT cost prediction model of 

medium rise building for training data. 

Figure 6.18 shows the comparison between the actual and predicted costs of the GBRT model 

in case of medium rise buildings for testing data. It is noted that there exists little difference 

between actual and predicted cost. 

 

Figure 6.18: Actual and predicted cost of the regularized GBRT cost prediction model of 

medium rise building for testing data. 
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The r-squared value of the regularized Gradient Boosted cost prediction model for training data 

of medium rise building is shown in Figure 6.19. The r-squared value is 0.83 which indicates 

very good predictive performance for the training data in case of medium rise buildings. 

 

Figure 6.19: R-squared value of the regularized GBRT cost prediction model of medium rise 

building for training data. 

Figure 6.20 represents the training set and test set deviance (mean squared error) of GBRT cost 

prediction model for medium rise buildings. Here, it is noted that the boosting iteration value 

is 120 where the test set deviance tends to decrease and the mean squared value is 2.9834 for 

the testing set. Here, the deviance is higher than the low rise building. It is difficult to predict 

the construction cost of medium rise buildings than low rise buildings. 

 

Figure 6.20: Testing set deviance of the regularized GBRT cost prediction model for medium 

rise building. 
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Figure 6.21 shows the comparison between the actual and predicted construction cost of high 

rise buildings of the regularized Gradient Boosted Regression Tree (GBRT) model for training 

dataset. Here, the blue rectangle stands for the true or actual value of construction cost of 

medium rise buildings while the orange triangle indicates the predicted construction costs. It is 

noted that for high rise building, there is no significant difference between the actual and 

predicted costs for the training model. 

 

Figure 6.21: Actual and predicted cost of the regularized GBRT cost prediction model of high 

rise building for training data. 

Figure 6.22 shows the comparison between the actual and predicted costs of the GBRT model 

in case of high rise buildings for testing data. It is noted that there is no significant difference 

between actual and predicted cost in case of testing model. 

 

Figure 6.22: Actual and predicted cost of the regularized GBRT cost prediction model of high 

rise building for testing data. 
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The r-squared value of the regularized Gradient Boosted cost prediction model for training data 

of high rise building is shown in Figure 6.23. The r-squared value is 0.86 which indicates very 

good predictive performance for the training data in case of high rise buildings. 

 

Figure 6.23: R-squared value of the regularized GBRT cost prediction model of high rise 

building for training data. 

Figure 6.24 represents the training set and test set deviance (mean squared error) of GBRT cost 

prediction model for high rise buildings. Here, it is noted that the boosting iteration value is 70 

where the test set deviance tends to decrease and the mean squared value is 0.3003 for the 

testing set. 

 

Figure 6.24: Testing set deviance of the regularized GBRT cost prediction model for high rise 

building. 
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6.2 Feature importance  

One of the advantages of Gradient Boosted Regression Tree (GBRT) model is that 

interpretation of features can be done based on importance. Applying GBRT, the ranking of 

features can be obtained based on their contributions to the model performance. Usually 

features are used to split branches in GBRT. The feature which gives relatively low training 

error than other feature while splitting the branch are ranked better than that feature. 

Figure 6.25, Figure 6.26 and Figure 6.27 display the relative importance of the most influential 

predictor variables of the construction schedule prediction model for low rise, medium rise and 

high rise building respectively. Since these measures are relative, total values of these features 

are equal to 1. From the figures, it is noted that for low rise buildings, “Location (F1)” is the 

most influential feature since it has got the value of 0.342. Various locations have different 

working time restrictions. Again, for the medium rise buildings, “No. of floor (F10)” is the 

most influential feature. In most of the cases, higher the number of floor in the building, higher 

the duration required for construction. In case of high rise buildings, No. of floor (F10)” is the 

most influential feature and it has got the value of 0.555. 

 

Figure 6.25: Feature importance for the regularized GBRT schedule prediction model low 

rise building. 
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Figure 6.26: Feature importance for the regularized GBRT schedule prediction model 

medium rise building. 

 

 

Figure 6.27: Feature importance for the regularized GBRT schedule prediction model high 

rise building. 
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(F1)” is the most influential feature for cost prediction since it has got the value of 0.0.787. 

Various locations have different demands for features and amenities. Again, for the medium 
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0.372. In most of the cases, higher the number of floor in the building, higher the duration 

required for construction. In case of high rise buildings, No. of floor (F10)” is the most 

influential feature and it has got the value of 0.56. 

 

Figure 6.28: Feature importance for the regularized GBRT cost prediction model of low rise 

building. 

 

Figure 6.29: Feature importance for the regularized GBRT cost prediction model of medium 

rise building. 
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Figure 6.30: Feature importance for the regularized GBRT cost prediction model of high rise 

building. 

 

6.3 Partial dependence of features 

Partial dependence plots show the dependence between the dependent feature and other input 

features. Additional insights about how the set of input features affect the dependent feature in 

each model have been represented through the partial dependence plots. Figure 6.31 shows the 

partial dependence plots of construction schedule prediction model for low rise buildings. The 

vertical scale is in the log odds and the hash marks on the x-axis represent the deciles of the 

distribution of the corresponding feature. Partial dependence plots show that “Location (F1)” 

has a moderate partial dependence impact on the construction duration for low rise buildings. 

Construction duration has significant partial dependence on “Land size (F2)” and “Floor area 

(F4)”. Construction duration has not significant partial dependence on “Floor area (F4)” and 

“No. of basement (F5)”. They show the linear relationship with construction duration since it 

is positively associated with construction duration. “Location (F1)” has also been identified as 

the most influential feature of construction duration prediction model for low rise building. 

Construction duration has also significant partial dependence on “Workforce level (F9)” for 

low rise buildings. In reality, the workforce level has much impact on the construction time. 
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Figure 6.31: Partial dependence plots of features for the regularized GBRT schedule 

prediction model of low rise building. 

An interesting relationship given in Figure 6.32 which shows the joint dependence between 

“Location (F1)” and other significant factors on construction duration. There appears an 

interaction effect among these features. Construction duration tends to be higher for type 4 and 

type 5 of “Location (F1)”. 
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Figure 6.32: Joint partial dependence plots of regularized GBRT schedule prediction model 

of low rise building. 

Figure 6.33 shows the partial dependence plots of construction schedule prediction model for 

medium rise buildings. Partial dependence plots show that “Land size (F2)”, “Floor area (F4)”, 

“No. of basement (F5)” have moderate partial dependence impact on the construction duration 

for medium rise buildings. Construction duration has significant partial dependence on 

“Workforce level (F9)” and “No. of floor (F10)”.  

 

Figure 6.33: Partial dependence plots of features for the regularized GBRT schedule 

prediction model of medium rise building. 
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Figure 6.34 which shows the joint dependence between “Land size (F2)”, “No. of basement 

(F5)” and “No. of floor (F10)” on construction duration for medium rise building. There 

appears an interaction effect among these features. Construction duration tends to be higher for 

higher “No. of floor (F10)”. 

  

 

Figure 6.34: Joint partial dependence plots of for regularized GBRT schedule prediction 

model of medium rise building. 

 

Figure 6.35 shows the partial dependence plots of construction schedule prediction model for 

high rise buildings. Partial dependence plots show that “Floor area (F4)”, “No. of basement 

(F5)” have moderate partial dependence impact on the construction duration for high rise 

buildings. Construction duration has significant partial dependence on “Workforce level (F9)” 

and “No. of floor (F10)” in case of high rise buildings.  

Figure 6.36 which shows the joint dependence between “Workforce level (F9)” and “No. of 

floor (F10)” on construction duration for medium rise building. There appears an interaction 

effect among these features. Construction duration tends to be higher for higher “No. of floor 

(F10)” and lower “Workforce level (F9)”. 
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Figure 6.35: Partial dependence plots of features for the regularized GBRT schedule 

prediction model of high rise building. 

 

Figure 6.36: Joint partial dependence plots of features with respect to feature F5 for 

regularized GBRT schedule prediction model of high rise building. 

 

Figure 6.37 shows the partial dependence plots of construction cost prediction model for low 

rise buildings. Partial dependence plots show that “Location (F1)”, “Floor height (F3)” and 

“Floor area (F4)” have moderate partial dependence impact on the construction cost for low 

rise buildings.  
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Figure 6.37: Partial dependence plots of features for the regularized GBRT cost prediction 

model of low rise building. 

 

Figure 6.38 shows the joint dependence among “Location (F1)”, “Floor height (F3)” and “Floor 

area (F4)” on construction cost. Partial dependence is very high for type 4 and type 5 of 

“Location (F1)”. Partial dependence is also large for higher “Floor height (F3)” and “Floor area 

(F4)” for low rise building. 

 

Figure 6.38: Partial dependence plots of features for the regularized GBRT cost prediction 

model of low rise building. 
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Figure 6.39 shows the partial dependence plots of construction cost prediction model for 

medium rise buildings. Partial dependence plots show that “Land size (F2)”, “Workforce level 

(F9)” and “No. of floor (F10)” have significant partial dependence impact on the construction 

cost for medium rise buildings. “Floor area (F4)” and “No. of basement (F5)” have moderate 

partial dependence impact on construction cost. 

 

Figure 6.39: Partial dependence plots of features for the regularized GBRT cost prediction 

model of medium rise building. 

Figure 6.40 represents the joint dependence between “Workforce level (F9)” and “No. of floor 

(F10)” on construction cost.  

 

Figure 6.40: Joint partial dependence plots of features for the regularized GBRT cost 

prediction model of medium rise building. 
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The partial dependence plots of construction cost prediction model for high rise buildings has 

been shown in Figure 6.41. Partial dependence plots show that “Floor area (F4)”, “No. of 

basements (F5)” and “No. of floor (F10)” have significant partial dependence impact on the 

construction cost for high rise buildings. “Floor height (F2)” has moderate partial dependence 

impact on construction cost for high rise building. 

\ 

Figure 6.41: Partial dependence plots of features for the regularized GBRT cost prediction 

model of high rise building.  

Figure 6.42 represents the joint dependence between “Workforce level (F9)” and “No. of floor 

(F10)” on construction cost.  

 

Figure 6.42: Joint partial dependence plots of features for the regularized GBRT cost 

prediction model of high rise building. 
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6.4 Performance comparison 

In the next step of this study, performances of the regularized Gradient Boosted regression tree 

(GBRT) models have been compared against Support Vector Regression (SVR) and Multiple 

Linear Regression (MLR) models based on the test dataset. This was done by comparing the 

mean absolute percentage error (MAPE) and mean squared error (MSE) of the models. Figure 

6.43, Figure 6.44 and Figure 6.45 show the absolute percentage errors (MAPE) for the testing 

data of low rise, medium rise and high rise buildings for regularized GBRT, Support Vector 

Regression and Multiple Linear Regression schedule prediction models.  

 

Figure 6.43. Comparison of absolute percentage error (APE) of regularized GBRT with SVR 

and MLR models for construction schedule prediction (Low rise building). 

 

 

Figure 6.44. Comparison of absolute percentage error (APE) of regularized GBRT with SVR 

and MLR models for construction schedule prediction (Medium rise building). 
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Figure 6.45. Comparison of absolute percentage error (APE) of regularized GBRT with SVR 

and MLR models for construction schedule prediction (High rise building). 

Figure 6.46, Figure 6.47 and Figure 6.48 show the absolute percentage errors (MAPE) for the 

testing data of low rise, medium rise and high rise buildings for regularized GBRT, Support 

Vector Regression and Multiple Linear Regression cost prediction models.  

 

 

Figure 6.46. Comparison of absolute percentage error (APE) of regularized GBRT with SVR 

and MLR models for construction cost prediction (Low rise building). 
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Figure 6.47. Comparison of absolute percentage error (APE) of regularized GBRT with SVR 

and MLR models for construction cost prediction (Medium rise building). 

 

 

Figure 6.48. Comparison of absolute percentage error (MAPE) of regularized GBRT with 

SVR and MLR models for construction cost prediction (High rise building). 

Table 6.1 shows the summary of performance comparison of regularized GBRT with SVR and 

MLR models for schedule prediction. It is noted that the average MAPEs for regularized GBRT 

schedule prediction model are 2.71% for low rise, 5.76% for medium rise and 6.71% for high 

rise buildings. On the other hand, the MAPEs for Support Vector Regression schedule 

prediction models of low, medium and high rise buildings are 7.75%, 7.90% and 6.86% 

respectively. Again, the MAPEs for Multiple Linear Regression schedule prediction models of 

low, medium and high rise buildings are 6.57%, 7.45% and 6.97% respectively.  This indicates 
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that regularized GBRT has performed better than Support Vector Regression and Multiple 

Linear Regression in schedule prediction. Since, GBRT is a combination of many models it 

has given better performances than SVR and MLR. From the table, it is seen that the mean 

squared errors (MSEs) of regularized GBRT models are smaller than MSEs of SVR and MLR 

models for low rise, medium rise and high rise buildings. 

Table 6.1: Summary of performance comparison of schedule prediction models. 

 
Low rise building 

Medium rise 

building 
High rise building 

MAPE MSE MAPE MSE MAPE MSE 

Regularized GBRT 2.71% 0.9715 5.76% 20.0077 6.71% 23.2011 

Support vector 

regression (SVR) 
7.75% 3.1612 7.90% 23.1612 6.86% 24.4520 

Multiple linear 

regression (MLR) 
6.57% 6.0487 7.45% 22.0487 6.97% 25.8164 

 

Table 6.2 represents the summary of performance comparison of regularized GBRT with SVR 

and MLR models for cost prediction. It is noted that the average MAPEs for regularized GBRT 

cost prediction models are 3.93% for low rise, 8.05% for medium rise and 2.26% for high rise 

buildings. On the other hand, the MAPEs for Support Vector Regression cost prediction models 

of low, medium and high rise buildings are 5.02%, 8.18% and 2.77% respectively. Again, the 

MAPEs for Multiple Linear Regression cost prediction models of low, medium and high rise 

buildings are 6.45%, 9.02% and 2.71% respectively.  This indicates that regularized GBRT has 

performed better than Support Vector Regression and Multiple Linear Regression in cost 

prediction.  Here, also the mean squared errors (MSEs) of regularized GBRT cost prediction 

models are smaller than MSEs of SVR and MLR models for low rise, medium rise and high 

rise buildings. 
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Table 6.2: Summary of performance comparison of cost prediction models. 

 
Low rise building 

Medium rise 

building 
High rise building 

MAPE MSE MAPE MSE MAPE MSE 

Regularized GBRT 3.93% 0.5507 8.05% 2.9834 2.26% 0.3034 

Support vector 

regression (SVR) 
5.02% 1.1832 8.18% 2.2180 2.77% 0.4587 

Multiple linear 

regression (MLR) 
6.45% 1.4562 9.02% 3.2354 2.71% 0.5221 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

The aim of the current research was to develop regularized Gradient Boosted Regression Tree 

models to predict the construction schedule and cost for low rise, medium rise and high rise 

buildings. In this thesis, the theory of Gradient Boosted Regression Tree (GBRT) has been 

described and the regularization of the hyper-parameters of GBRT has been performed by using 

Random Search method. Regularized GBRT has been applied to estimate the construction 

schedule and construction cost. The following conclusions can be drawn from the research 

work. 

i. For low rise building, the most significant features, selected through one-way ANOVA 

F-test, for construction schedule and cost prediction models are “Location (F1)”, “Land 

size (F2)”, “Floor height (F3)”, “Floor area (F4)”, “No. of basement (F5)”, “Workforce 

level (F9)”, and “No. of floor (F10)”. 

ii. For medium rise and low rise buildings, the most significant features are “Land size 

(F2)”, “Floor area (F4)”, “No. of basement (F5)”, “Workforce level (F9)”, and “No. of 

floor (F10)” 

iii. Random Search method has been applied to identify the best values of the hyper-

parameters to regularize the GBRT models for low rise, medium rise and high rise 

buildings. In this study, number of trees, minimum sample leaf, maximum depth and 

learning rate have been tuned for both construction duration and cost prediction model. 

iv. For GBRT schedule prediction model of low rise building, the number of trees are 100, 

minimum sample leaf is 5, maximum depth is 3 and learning rate is 0.6. For GBRT cost 

prediction model of low rise building, the number of trees are 75, minimum sample leaf 

is 4, maximum depth is 6 and learning rate is 0.4. 

v. For GBRT schedule prediction model of medium rise building, the number of trees are 

100, minimum sample leaf is 5, maximum depth is 7 and learning rate is 0.1. For GBRT 

cost prediction model of medium rise building, number of trees are 125, minimum 

sample leaf 5, maximum depth is 5 and learning rate is 0.4. 

vi. For GBRT schedule prediction model of high rise building, the number of trees are 100, 

minimum sample leaf is 4, maximum depth is 6 and learning rate is 0.6. For GBRT cost 
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prediction model, the number of trees are 125, minimum sample leaf is 6, maximum 

depth is 5 and learning rate is 0.5. 

vii. MAPEs of regularized GBRT schedule prediction models for low rise, medium rise and 

high rise buildings are 2.71%, 5.76% and 6.71%. MSEs of the models are 0.9715, 

20.0077 and 23.2011. Regularized GBRT model has outperformed SVR and MLR 

models in schedule prediction 

viii. MAPEs of regularized GBRT cost prediction models for low rise, medium rise and high 

rise buildings are 3.93 %, 8.05% and 2.26%. MSEs of the models are 0.5507, 2.9834 

and 0.3034. Regularized GBRT model has outperformed SVR and MLR models in cost 

prediction 

7.2 Future Work 

i. In this study, regularized GBRT based robust models for construction schedule and cost 

prediction have been developed for 69 projects. In future, more projects can be 

considered to develop more robust model. 

ii. For regularization, Random Search method has been used. Evolutionary algorithms like 

genetic algorithm, particle swarm algorithm (PSO) can be used to optimize the hyper-

parameter value in future work. 
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Appendix 

A. Dataset 

Project 

Name 

Location Land 

size 

Floor area No. of 

basements 

No. of floor Work 

force 

level 

Duration Cost 

Project 1 1 1 1 1 9 1 31 12.5 

Project 2 1 1 2 2 8 2 33 16.5 

Project 3 1 2 2 3 12 2 38 15.5 

Project 4 1 2 2 3 12 3 48 17 

Project 5 1 2 3 3 11 4 49 19.5 

Project 6 1 2 3 3 11 3 44 17 

Project 7 1 2 3 3 13 5 52 19 

Project 8 1 2 3 2 12 3 45 16.5 

Project 9 2 2 3 2 11 4 39 18 

Project 10 2 2 3 2 10 2 37 16.5 

Project 11 2 3 3 3 13 4 46 17.5 

Project 12 2 3 3 3 15 4 54 19 

Project 13 2 3 2 2 13 4 48 19.5 

Project 14 2 3 2 2 13 4 45 19 

Project 15 2 1 1 1 9 1 28 15 

Project 16 2 1 1 1 9 1 31 14.5 

Project 17 3 1 1 1 8 1 27 12.5 

Project 18 3 1 2 1 9 1 36 13.1 

Project 19 3 1 2 2 8 2 31 13.2 

Project 20 3 1 1 2 9 2 34 14.5 

Project 21 3 1 1 2 8 3 35 13 

Project 22 3 1 1 2 8 3 33 12.9 

Project 23 3 1 1 2 9 3 34 13.1 

Project 24 3 1 1 2 9 4 31 15.5 

Project 25 3 2 2 2 13 4 53 19.7 

Project 26 3 2 2 2 12 4 45 19.5 

Project 27 4 2 2 2 12 2 51 17 

Project 28 4 2 3 2 12 3 46 18.5 

Project 29 4 2 3 2 11 3 40 17.5 

Project 30 4 2 3 3 12 4 46 19 

Project 31 4 2 3 3 10 2 40 16.5 

Project 32 4 2 3 3 10 3 37 18.2 

Project 33 4 2 3 3 13 5 48 21 

Project 34 4 2 3 3 12 4 42 17.7 

Project 35 4 3 2 2 15 4 50 20.2 

Project 36 4 3 2 3 15 4 55 19 

Project 37 5 3 2 3 14 5 58 21.2 

Project 38 5 3 2 3 16 5 54 21.8 

Project 39 5 3 2 3 14 4 49 19.8 
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Project 40 5 3 2 3 15 5 55 23 

Project 41 5 3 2 3 13 4 47 21.3 

Project 42 5 3 3 2 14 4 50 19.2 

Project 43 5 3 3 2 13 5 55 20 

Project 44 5 3 3 3 14 5 51 22.5 

Project 45 5 3 3 3 14 4 53 19.5 

Project 46 5 3 3 3 13 5 54 20.9 

Project 47 5 3 3 3 15 4 60 23.4 

Project 48 5 1 1 1 8 1 26 13 

Project 49 5 1 1 1 9 1 33 12.8 

Project 50 1 1 1 2 8 1 29 12.8 

Project 51 1 1 1 2 8 1 30 13 

Project 52 1 1 2 2 9 1 31 13.5 

Project 53 1 2 2 2 11 2 41 15.5 

Project 54 1 2 3 2 11 3 42 18 

Project 55 1 2 2 3 12 3 41 18 

Project 56 1 2 3 2 12 4 42 19.2 

Project 57 1 3 2 3 14 5 52 21.2 

Project 58 2 3 2 2 15 3 60 21.8 

Project 59 2 3 2 2 15 4 52 20.8 

Project 60 2 3 2 3 13 5 50 21.6 

Project 61 2 3 2 3 14 5 58 21.8 

Project 62 2 3 3 2 15 5 60 22.5 

Project 63 2 3 3 2 13 5 51 22 

Project 64 2 3 3 2 14 5 55 21.5 

Project 65 2 3 3 2 15 5 60 21.8 

Project 66 3 3 3 2 13 5 51 22 

Project 67 1 3 3 3 15 5 54 23.5 

Project 68 3 3 3 3 16 5 57 21.6 

Project 69 1 3 3 3 16 5 56 21 

 


