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Abstract

An influential community is defined as a closely connected group of people who have some

dominance over the populace. In a social network, usually each individual has expertise in

various topics. We consider the scenario where the network is represented as an attributed graph,

users being the vertices, and their social connections being the edges. The attributes of each

node is a set of keywords, representing the topics in which the corresponding user has some

expertise. Additionally, for each user, keywords are paired with an expertise score representing

how much expertise the user has in the representative topic. In such an attributed graph, we

study the problem of finding the most influential communities given a combination of keywords

as a query. A concern in keyword based community search is that, there can be millions of

keywords in real life social networks. It is not user friendly to assume that users can raise

queries using the keywords exactly as in the attributed graph. In this context, we propose a

novel word-embedding based similarity model that enables semantic community search, which

substantially alleviates the limitations of exact keyword based community search. Next, we

propose a new influence measure for a community that considers both the cohesiveness of the

community and the expertise scores of the members of the community in topics relevant to the

query. Such a measure eliminates the need for specifying values of internal parameters of a

network. Finally, we propose two efficient algorithms followed by a basic solution for searching

influential communities in large attributed graphs. We present detailed experiments and a case

study to demonstrate the effectiveness and efficiency of the proposed approaches.
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Chapter 1

Introduction

Community is generally defined as a group of individuals who have close interaction among

themselves. Communities serve as a basic structure for understanding the organization of many

real-world networks or graphs. These networks include academic networks like DBLP, social

networks like Facebook or Twitter, biological networks like protein-protein interactions, and

many more. These networks are usually modelled by graphs, where vertices represent the

individuals and edges represent the interaction between individuals. Finding communities from

such large graphs has received significant attention in recent years due to its diverse practical

applications that include event organization [1], friend recommendation [2], and e-commerce

advertisement [3]. Traditionally, community search (CS) on a large graph involves finding a

community around a given query vertex that satisfies query parameters like connectivity and

cohesiveness constraints [1,4–6]. For example, by using such techniques, one can find a community

from the DBLP network for an author as a query, where the community should be a connected

subgraph and each member should be connected to at least two other members in the community.

More recent research works [7, 8] have focused on finding influential communities from a

graph. The common goal of finding influential communities is to find a closely connected group

of users (vertices) who have some dominance over other users in the graph.

We consider a social network where the members have expertise in several keywords. In this

study, we address the problem of finding influential communities based on a particular set of

keywords that matches with the interest of the user.
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CHAPTER 1. INTRODUCTION 2

The rest of the chapter is organized as follows. We briefly describe the motivations and

applications of this study in Section 1.1. We discuss the research gaps in the state-of-the-

art literature in Section 1.2. Then, we present the challenges of this study and highlight our

contributions in Section 1.3. Finally, we present how the remaining chapters are organized in

Section 1.4.

1.1 Motivation and Applications

An influential community is a group of highly influential individuals who can affect the

emotions, opinions, or behavior of other people in the network. However, the interpretation of

influence depends varies from person to person. A community where the members are expert in

music will be highly influential for a person interested in music, while, for a person who does

not like music, the same community may not be influential at all.

Some existing works [4, 6] address the problem of topic based community search, but they

require a set of query vertex from the user. In a social network, a user may want to find

communities of specific interest without mentioning any query vertex or internal graph properties.

For example, a new researcher may want to find top research groups in topics of her interest while

applying for PhD admission. To her, a query like, “find top research groups in machine learning"

is easier to raise than queries like “find top research groups including Yoshua Bengio."

Searching communities with specific expertise (e.g., “machine learning") is beneficial for not

only academic network, but also for social networks (e.g., Facebook), location sharing networks

(e.g., Foursquare). It will be very helpful for a tourist who is planning to hike Everest to “find

the group of tourists who most frequently visit Everest." Also, in social network, it will be very

interesting to “find the social groups who are expert in suggesting music, movie or TV series."

Consider a social network where the vertices represent the users with relevant attributes and an

edge between two vertices captures the social connection. The applications mentioned above

can be represented by a query where a user needs to input some terms that captures her area

of interest (e.g., “machine learning", “Everest", “music, movie or TV series") and the result of

such queries are communities consisting of experts in these specific areas. Also, a user can be
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interested in finding more than one such community.

The queries mentioned above can be answered if we model the social network using an

attributed graph as presented in Figure 1.1. Here, we present a small network of 20 authors

(vertices) who work in the areas of “database” (DB), “machine learning” (ML), and “pattern

recognition” (PR). Each author is associated with her fields of interest, and for each field of

interest, she is assigned a score (a real number between 0 and 1) that represents how much

influential the author is in this particular field. For example, author n2 has very high influence in

database (0.9). The edges in the network captures the interaction (i.e., co-authorship) among the

authors.

Based on such attributed graphs, we present a novel parameter free influential community

search query, namely Top-r Keyword-aware Influential Community Query (KICQ). To illustrate,

let us consider the scenario where an aspirant Ph.D. student may be interested in finding the most

influential community who are working in “ML” or “DB.” The KICQ returns the community

C3 as shown in Figure 1.1 as the most influential community (see Chapter 5 for the influential

metric) since the members of the community have influence in either “ML” or “DB”, the community

is dense and also contains highly influential members.

The studied problem can also help selecting appropriate customers for advertising. For

example, a clothing company can target the top communities who are highly interested in “fashion”,

and offer them some promotional package. Since, these communities can be considered as the

trend setters in “fashion", the clothing company can benefit from obtaining good review from

these communities. Also, it can be applied for impromptu event organization where participants

(having similar interests) will be selected based on the retrieved communities.

1.2 State of the Art and Research Gaps

Although community search has been a very popular research area for a long time, influential

community search problem has received attention from the researchers recently, after Li et al. [7]

introduced the notion of influence of a community. We present several significant research gaps

in the previous works:



CHAPTER 1. INTRODUCTION 4

n2

n3

n4

n5

n6

n7

n8

n9 n10

n11

n12

n13

n14

n15

n16

n17

n18

n19

n20

n1

(DB, 0.9
ML, 0.8)

(PR, 0.4)

(DB, 0.3
ML, 0.2)

(DB, 0.6
ML, 0.7
PR, 0.3)

(DB, 0.2
ML, 0.2
PR, 0.1)

(PR, 0.5)(ML, 0.2)

(ML, 0.3)

(PR, 0.3)

(PR, 0.6)

(PR, 0.4) (PR, 0.5)

(PR, 0.9)

(PR, 0.2)

(PR, 0.8)

(ML, 0.7)
(DB, 0.7)

(PR, 0.8)
(ML, 0.8)

C3

C2

C4
C1

(DB, 0.7
ML, 0.8)

Figure 1.1: An attributed author-author graph, where each vertex has an associated list of
attributes (keywords) and influences denoting her expertise. Different types of CS communities
are marked as C1 − C4.

First, traditional CS works on an attributed graph require an input query vertex, and then

find a group of neighboring vertices whose keywords have high similarity with the query vertex

keywords. The resultant communities satisfy the required structural constraints [4, 6] (e.g., C1

in Figure 1.1 with n3 as the query vertex, and parameter k = 4 where k-truss is the structural

constraint). A major limitation of such CS techniques is that the user needs to define the query

vertex and the structural properties of the community explicitly, which might not be possible

or suitable in many application domains. A couple of recent studies [9, 10] tried to address

these limitations by finding cohesive (i.e., k-core or triangle density) communities having close

similarity with query keywords. However, they do not consider the influence of individuals in

different keywords (e.g., C1 in Figure 1.1 is highly cohesive in terms of structure and keyword,

but two highly influential vertices n1, n2 are ignored since influence is not considered) and also

do not support flexible conjoining (using AND or OR predicates) of query keywords.

Second, existing works on influential community search only work on non-attributed graphs

and also require specific values of structural parameters. For example, Li et al. [7] require users

to mention the value of k while finding k-core based communities; similarly, Li et al. [8] require
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the values of the minimum number of vertices (m) in a community and the maximum distance

between any two vertices (p) while finding an mp-clique based community. Although such

parameters allow high customization in search, we argue that the choice of these parameters

highly depends on the internal structure of the graph in practice. For example, if k is set to a high

value (e.g., 4) in a small graph (Figure 1.1), no community is returned by Li et al. [7] because

there is no 4-core in this graph; and if k is low (e.g., 2), the community returned (e.g., C2 in

Figure 1.1) does not have high cohesiveness. Similarly, given a query vertex, Li et al. [8] only

return the desired community under specific constraints of parameter values (e.g., C4 in Figure

1.1 with parameters m ≤ 6 and p = 2), which is impractical for an external user. Thus flexibility

in fixing parameters while searching for desired communities is crucial.

Third, existing approaches to quantifying a community in terms of influence do not consider

a comprehensive set of parameters that can affect the strength of a community. For example, the

influence of a community is defined as the minimum influence among all members [7]; thus, a

member with low influence can severely affect the influence of a community. We argue that an

influence measure that considers both cohesiveness, the influence of individuals, and the size of

the community should be considered while ranking communities, as all these factors contribute

to the overall ranking of a community.

1.3 Challenges and Contributions

A major challenge in realizing the proposed KICQ query is in matching the expertise

domains of vertices with the query keywords. Keywords are natural language text, and there

can be many keywords with similar meaning. For example, two keywords “natural language

processing”, and “computational linguistics” may look different, but these are very similar if

we consider their semantics. So, designing a mechanism that can automatically understand the

semantic similarity between keywords is necessary.

Another major challenge comes from the fact that communities and their influences need

to be computed and compared on the fly based on the set of keywords in the query. The

query can be any combination of multiple keywords, and it is impossible to pre-calculate scores
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for all possible combinations, since there can be millions of keywords involved in a network.

Thus, existing pre-computation based approaches are not suitable for our purpose. The idea of

obtaining communities for a single keyword and later combining them is also computationally

expensive. So, we need to design an influential community search algorithm that can efficiently

handle multiple keywords during runtime.

Additionally, influence is a subjective measure. So, designing a measure that can capture the

influence of a community is also a big challenge.

In this study, we address the above challenges, and the limitations in the state-of-the-art

literature presented in Section 1.2. In summary, we make the following contributions:

First, we design KICQ in such a way that enables users to issue an influential community

search query intuitively by merely using a set of query terms (words or phrases), and predicates

(AND or OR) (addressing the first limitation). In this context, we propose a novel word-

embedding based keyword similarity model that enables semantic community search, which

substantially alleviates the limitations of exact keyword based community search. For example,

a user may use “song” instead of “music,” where exact search fails to retrieve the relevant

communities if the attributed graph does not contain “song” as a keyword. This approach is

of independent interest in enhancing any knowledge graph with semantically meaningful sets of

words. (Chapter 4)

Second, we propose a new influence measure for a community that considers both the

cohesiveness and influence of the community and eliminates the need for specifying values of

internal parameters of a network (addressing the second limitation). The influence measure also

captures the influence of individual members in a better intuitive sense rather than the influence

of the community being dominated by the minimum influence of a member (addressing the

third limitation). We demonstrate the effectiveness of the proposed measure in a case study.

(Chapter 5)

Third, we propose two efficient algorithms for searching influential communities in a large,

attributed graph. The basis of the first algorithm is pruning the communities that cannot be a

part of the answer set based on the computed scores of already explored subgraphs. The second

one is a novel tree-based approach, where we augment the tree with influence score bounds for
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each keyword and prune the unnecessary branches of the tree based on the scores of the explored

community. (Chapter 6)

Fourth, we conduct comprehensive experiments with real datasets to evaluate our proposed

algorithms. The experimental results show that our algorithms are highly efficient and effective

in retrieving keyword aware influential communities compared to the state-of-the-art influential

community search technique. (Chapter 7)

1.4 Organization

Now, we outline the organization of the rest of the book. First, we present the related works in

Chapter 2. Then, we formulate the problem and present the overview of our proposed system in

Chapter 3. In Chapter 4, we present the novel word-embedding based keyword similarity model.

The influence measure for a community is presented in Chapter 5. Afterward, we describe the

algorithms for influential community search in Chapter 6. We present extensive experiments on

two real large graphs in Chapter 7, and discuss a case study in Chapter 8. Finally, we conclude

the study in Chapter 9.



Chapter 2

Related Works

The notion of influential community search has been introduced by [7] in 2015 and since then,

it has received significant interest. Keyword search, cohesive subgraph mining, and community

detection are some well studied related problems. Several relevant but different works on team

formation in social networks are also included in this chapter. Finally, we discuss several state-

of-the-art studies on community search.

2.1 Keyword search

Keyword search is an extensively studied research topic, mostly for web searches. Zhang et

al. [11] addressed the spatial keyword search problem using ubiquitous inverted index to retrieve

objects of interest that are ranked based on both their spatial proximity to the query location as

well as the textual relevance of the object’s keywords. Li et al. [12] proposed and defined the

problem of keyword based correlated network computation over a massive graph. Bhalotia et

al. [13] proposed the first backward search algorithm. They defined BANKS, a system which

enables keyword-based search on relational databases together with data and schema browsing.

Kacholia et al. [14] improved this approach by proposing a bidirectional search algorithm. He et

al. [15] proposed BLINKS, a bi-level indexing scheme to find top-k keyword search on graphs.

They divided the graph into blocks and used both intra-block indexing and inter-block indexing

to make the search procedure faster. However, these works do not address the problem of finding

8
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communities.

2.2 Cohesive subgraph mining

Cohesive subgraph mining involves extracting dense subcomponents from graphs. Cohesive

subgraphs like maximal cliques [16], k-core [17], k-truss [18], etc. are widely used techniques

for social network analysis. Moody and White [19] worked on structural cohesion in social

networks, also known as maximal k-edge connected subgraphs. These cohesive subgraphs form

the basis of modeling communities.

2.3 Community detection

The task of finding communities can be divided into two major classes: community detection

(CD), and community search (CS). In CS, communities are defined based on the query, and CS

solutions aim to find communities efficiently in an online manner. CD methods usually use

global criteria to detect all the communities from an entire graph, where the focus is more on

quality (e.g., cohesiveness) than efficiency. Link based analysis was popular in initial studies [20]

that did not consider attributes in a graph. Clustering based techniques [21–24], and topic

modeling [25,26] are used in recent studies on attributed graphs. Studies on overlapping community

detection [27,28] address the fact that a person can be a part of several communities (e.g., family,

friends, co-workers). However, none of the studies enables a user to find specific communities

of her interest, which is the main focus of our study.

2.4 Team formation in social networks

Team formation is the task of finding a subset of available individuals to complete a project

which requires a specific set of skills. There has been significant works in this area but most

of them do not consider the presence of social network of individuals [29]. Lappas et al. [30]

introduced the inclusion of social networks. Li et al. [31] generalized the problem where there
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CS Approaches Simple graph
Attributed graph

Keyword Others

Basic CS [1, 35–40] [4, 6, 9, 10, 44, 45] [5, 46–48]

Influential CS [7, 8, 41–43] - [49]

Table 2.1: Existing works on community search

is a requirement of a specific number of experts for each task. Aris et el. [32] studied the case

where tasks arrive in an online manner and the workload is balanced among people. Kargar and

An [33] studied another variant which finds top-k teams. A slightly different but relevant problem

is selecting a group of individuals for an impromptu activity based on their location and social

interaction studied by Yang et al. [34]. Team formation can be viewed as a set coverage problem,

usually with a minimum communication cost objective. These works differ from community

search, as a team does not need to be cohesive (members are densely connected to each other).

2.5 Community search

We present different directions of CS studies in Table 2.1. Most of the basic CS studies

on simple graphs [1, 35–39] find communities containing given query vertices. Li et al. [40]

studied persistent communities in a temporal network, in which every edge is associated with

a timestamp. Li et al. [7] introduced the notion of influential CS where vertices are assigned

an influence score, and the influence of a community is modeled as the minimum influence of

the members. Chen et al. [41] and Bi et al. [42] developed faster algorithms to solve the same

problem. Zheng et al. [43] studied influential CS in an undirected weighted graph, where the

weight of an edge represents the semantic intimacy between two vertices. Li et al. [8] defined

a community in terms of kr-clique and designed algorithms to retrieve the most influential

community. All of these studies ignore rich information of vertices found in attributed graphs

and require several vertices or internal parameters as part of a query, which is very difficult for a

user who does not have enough knowledge of the graph.

There are several studies on CS in attributed graphs. Fang et al. [4] proposed the ACQ
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algorithm to find subgraphs satisfying structural and keyword cohesiveness. Huang et al. [6]

also explored attribute driven CS in terms of k-truss. Chen et al. [46] studied CS in an attributed

graph where each vertex has a profile: a set of keywords arranged in a tree structure. Chobe

et al. [44] employed keyword search techniques to facilitate CS in attributed graphs. However,

these studies also require a set of vertices and/or internal parameters as part of the query. Few

recent works [9, 9, 10] study keyword-based CS that take a set of keywords as input and return

a subgraph as the community that has the best match with the given set of query keywords. In

these works, the cohesiveness of the subgraph is measured differently, i.e., k-core in Zhang et

al. [9], triangle density in Chen et al. [10], and average proximity in Khan et al. [45]. To decide

a single best-matched subgraph, they define functions that consider the presence or absence of

keywords and structural cohesiveness in the subgraph. These studies are different from ours as

they only consider the presence or absence of keywords in different vertices of the subgraph and

cannot be adapted for the scenario where we need to rank the communities and each vertex has

a certain degree of influence in each keyword. There are CS studies on spatial graphs [5, 47, 48]

as well, which are of different interest to our problem.

Li et al. [49] studies skyline community search where each vertex is associated with a d-

dimensional influence score. However, their study is designed for low values of d (i.e., d < 5).

With d = 5, their algorithms require more than 103 seconds in a graph with half a million

vertices. This study cannot be extended for an attributed graph where vertices are associated with

influence scores in multiple keywords, because there can be millions of keywords (dimension)

in such an attributed graph. Also, this approach aims to find communities with a global objective

function, and there is no way to search communities of specific interest.

To the best of our knowledge, there is no CS study addressing both keywords and influence

scores simultaneously. Also, we introduce CS with semantic keywords, which relieves the users

from the burden of putting the keywords exactly as in the attributed graphs.



Chapter 3

Problem Definition and System Overview

In this chapter, we first define the attributed graph, propose our community model, and define

keyword aware influential community query (KICQ), a novel query to find the most influential

communities from the attributed graph. After that, we present a high level overview of the

proposed system.

3.1 Problem definition

Definition 1 (Attributed graph) An attributed graph G+(V,E,A) is an undirected graph, where

V is the set of vertices, E is the set of edges, and each vertex v is associated with a set of

attributes Av.

Definition 2 (Influential community) Influence means the power of affecting someone’s emotion,

activity or thinking. An influential community is a group of individuals who have close connection

among them, and can influence other individuals in the network.

Influential community consists of a group of closely connected individuals whose activities

are followed by a significant number of individuals in the network. For example, a group of

researchers who are dominating in some topic (keyword) act as the trend maker in that topic.

Any new researcher of that topic might follow their works constantly and his/her activities

are significantly influenced by that group. In this study, we will consider the influence of an

12
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individual person on a topic as a numerical value between 0 and 1. The more the value is, the

higher the influence of the person is in that topic.

We use an attributed graph to model a social network where the vertices V represent the set

of individuals in the network, and each edge e ∈ E captures the social connection between two

individuals. Each vertex v is associated with a set of tuples of the form Av = {(wi, sv(wi))},

where wi is a keyword and sv(wi) ∈ [0, 1] is the influence score of vertex v in keyword wi.

Example 1 A co-authorship network can be formed from a corpus of research articles and the

set of keywords can be identified from the frequently tagged keywords in each article. Each

author is associated with the keywords relevant to her fields of studies, and for each keyword, the

number of publications are considered while calculating her influence score. Let us consider the

attributed graph presented in Figure 1.1. Here the set of keywords are {“DB”(Database), “ML”

(MachineLearning), “PR”(PatternRecognition)}. Now, n1 is an author who published 35

research articles in “social network analysis" for which relevant keywords are “DB", and “ML".

n1 has also published 5 articles in “artificial neural network" and “ML" is the only relevant

keyword. So, n1 has total 40 publications relevant to keyword “ML" and 35 publications relevant

to “DB". Therefore, n1 has higher influence score in “ML" (e.g., 0.8) than in “DB" (e.g., 0.7).

We consider the connected components of maximal k-cores as the influential communities,

where the influence is defined as Equation 5.2 (see Section 5). k is termed as cohesion factor

throughout the article.

Definition 3 (maximal k-core) Let H be a subgraph of G+, induced by the set of vertices VH ⊆

V . Let the degree of a vertex v in H is denoted by degH(v). H is a k-core if ∀v∈VHdegH(v) ≥ k,

where k is a non-negative integer. H is a maximal k-core if there is no super k-core in G+ that

contains H .

Example 2 In Figure 1.1, each of the vertices in the subgraph induced by {n3, n4, n6, n7, n8}

has degree at least 3. Thereby, they form a 3-core. Also, there is no super 3-core that includes all

these vertices. So, these vertices form a maximal 3-core. As they are connected, this subgraph

can be considered as a candidate influential community.
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Now, we define the keyword-aware influential community query, KICQ as follows.

Definition 4 (KICQ) Let G+(V,E,A) be an attributed graph, and q(T, P ) be a query tuple

where T = {t1, t2, · · · , tn} is a set of terms (i.e., words or phrases) and P is a predicate

(AND, OR) for conjoining the query terms. Let kmin be the minimum cohesion factor for being a

candidate community, and r be a positive integer specifying the number of top communities to be

returned. Then we form theKICQ as a quadruple (X , P , r, kmin), whereX = {X1, X2, · · · , Xn}

andXi is the set of semantically similar keywords (see Chapter 4) of term ti. KICQ finds r most

influential communities H1, H2, ..., Hr from G+.

3.2 System overview

An overview of our system is presented in Figure 3.1. The system is mainly divided into

two phases. First, we construct a keyword-aware attributed graph from a social network corpus

that may consist of structured and/or unstructured (i.e., text) data. In an academic domain,

the corpus can be scientific publications of researchers (e.g., authors, titles, abstracts, author-

provided keywords, etc). Second, we focus on searching keyword-aware influential communities

using the constructed attributed graph, given a query as a set of terms and predicates.

The distinctive features of the first phase are as follows:

STEP 1 : First, we build an attributed graph from a domain corpus by extracting entities of

possible vertices and edges to represent the social network. We also extract the keywords

by finding the most frequent tags/terms in the corpus. One example of such a graph can

be seen as an academic graph, where vertices represent authors and an edge represent

co-authorship between two authors. Each node is associated with the relevant keywords

(i.e. attributes) of the corresponding author. Here, such keywords represent the expertise

topics of the authors in the graph. Each node is further given a score for each keyword that

represents its degree of expertise.

STEP 2 : To enable keyword-aware influential community search, we augment keywords with

their semantically related terms and keywords. These augmented vocabulary will be used
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Figure 3.1: The overview of the proposed system

for identifying X in KICQ (Definition 4). For this purpose, we build word embedding

vectors as an external knowledge source for associating keywords in the graph with semantically

related terms and keywords. These vectors are generated from a large text corpus relevant

to the source of the graph using the algorithm [50] that has shown the power of encoding

semantics of words. The semantic relatedness is estimated by exploiting the word embedding

vectors. These augmented keywords will enhance the capability of our community search

algorithms. The output of this step is a graph, called keyword-aware attributed graph.

Further, the unique features of the second phase of our system can be briefly highlighted below:
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STEP 1 : Initially, a query raised by a user is given in the form of a pair q(T, P ) consisting of a

set of query terms T , and a predicate P . The terms need to match with the keywords in the

attributed graph to find meaningful communities. We acknowledge the difficulty faced by

the users to put the exact terms while raising a query. For example, it is highly likely that

some of the users will input “song” instead of “music”. To help the users to easily raise a

query, we augment each query term with a semantically meaningful set of keywords. The

output of this step is a KICQ.

STEP 2 : Given a KICQ query, our objective is to find the vertices relevant to the query and

then compute their query relevance scores (Equation 5.1). Relevance score of vertices

are used to compute the scores of potential influential communities. We argue that a

measure that rewards both the cohesiveness of the community and high influence of the

members, and does not require user input of any internal parameters (e.g., k in k-core)

is more preferable than the existing influence measures. We propose a linear weighted

summation of the cohesiveness of the community and the total influence of the members

of the community to estimate the overall score of a community (Section 5).

STEP 3 : Given the augmented query and the influential score function, our focus is now

to retrieve top-r most influential communities relevant to the query. Since we are the

first to propose the keyword-aware influential community search problem, and existing

pre-computation based approaches are not suitable to retrieve communities for any given

query, we first present a basic solution named BASIC-EXPLORE followed by two efficient

algorithms: PRUNED-EXPLORE and TREE-EXPLORE.



Chapter 4

Constructing Attributed Graph

In a social network, each individual has expertise in various fields that can be represented by

terms (any combination of words in natural language). There are millions of such terms in a large

network and it is unlikely for users to come out with the exact terms while raising a query. We

design a semantic keyword similarity model which can capture the semantic meaning of a term

by converting it into a word vector. Then several measures can be used to compute the similarity

among these word vectors, thereby allowing us to find semantically relevant terms to any given

term.

In this chapter, we first present the semantic keyword similarity model, and then discuss how

we can generate the attributed graph and augment the query terms with keywords using this

model.

4.1 Semantic keyword similarity model

In this section, we present how to augment keywords that can be used to form a KICQ.

Given a term, finding its semantically related keywords is not trivial; basic preprocessing like

removing whitespaces and stopwords can be helpful but there are still some major concerns.

Two or multiple terms with syntactical difference can indicate a similar or the same keyword

(e.g., “error detection and error correction" and “error detection and correction"). Even two

different terms can represent the same keyword (e.g., “AI" and “artificial intelligence"). Also,

17
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some terms are semantically very related to each other (e.g., “neural network" and “gradient

descent optimization").

We first train a word embedding model to generate an embedding vector of any given term

(and also keyword). Then, we use such a vector to capture the semantics of a term and find

its relevant keywords. For training this model, we collect a domain corpus (e.g. scientific

publications in an academic domain), where each document is already associated with keywords.

We call this training corpus. Among the keywords in the training corpus, we select N keywords

with the highest document frequencies (a document frequency is defined as the number of times

a keyword appears in all the documents in the corpus). Then, our focus is to develop a model

that can find the relevant keywords out of these N -top keywords given a term by using the word

embedding model.

Word embedding is a learning technique that can enable words or phrases to map to vectors

of real number. Word2vec [51] is a representative word embedding model that can be trained

to construct linguistic contexts of words and thereby generate such a mapping. The output of

Word2vec is a vector space where similar words are positioned close to one another. It has

been well demonstrated that Word2vec has many advantages over earlier traditional embedding

techniques for semantic analysis of words [51].

To build a Word2vec model on the training corpus, we perform tokenization from each text

document on the training corpus. This process includes removing stopwords, and extracting

only nouns, adjectives and gerunds as usually important concepts are represented via nouns [52].

Also, some keywords consist of adjectives and gerunds (i.e., expert systems, machine learning,

etc.). After tokenization, we convert each of the extracted words into lemmatized form to identify

its single canonical form. Then, we feed the extracted words into a Word2Vec model that

represents each word as a vector. Using similarities between two vectors, we can estimate how

close and distant they are in terms of semantic meaning.

Now, we represent a keyword or term as a vector. A keyword/term can be thought of as a

phrase containing one or many words. In our approach, the representative vector is formed using

the average of the embedding vectors of the constituent words. By doing so, we are now ready

to estimate the similarity between any term and any keyword according to their vectors.
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Given any two terms (or two keywords, or a term and a keyword) t1 and t2, we denote their

embedding vectors as xt1 and xt2 , respectively. In the following, we present three approaches to

estimating a similarity between these two terms, denoted as S(t1, t2):

• cosine

The cosine similarity of two vectors x and y is defined as, cosine(x, y) = xT y
‖x‖‖y‖ , where xT

denotes the transpose of vector x and ‖x‖ denotes the L2 norm. The similarity of terms t1

and t2 is calculated by the cosine similarity of their embedding vectors xt1 , xt2 .

S(t1, t2) = cosine(xt1 , xt2) (4.1)

• normalized maximum

Given a term t, its word vector V t is denoted as V t = [(wt1, s
t
1), (w

t
2, s

t
2), · · · , (wtL, stL)],

where wti is the ith most similar word to xt, sti is the corresponding similarity score, and

L is the number of similar words considered. Now, given two terms t1, t2 and their word

vectors V t1 , V t2 , we use the following formula proposed by Kang et. al. [53] to calculate

their similarity. This measure has been used to measure a similarity between two sentences,

where each sentence consist of multiple words. In a sense, a sentence is a word vector in

our context.

S(t1, t2) =

∑
(w1,s1)∈V t1

simmax(w1, V
t2) +

∑
(w2,s2)∈V t2

simmax(w2, V
t1)

|V t1|+ |V t2|
(4.2)

Here, simmax(w, V
t) = max(wi,si)∈V t sim(w,wi) and sim(w,wi) can be calculated by

measuring the cosine similarity of the embedding vectors of w and wi.

• indirect cosine

Given two terms t1, t2 and their word vectors V t1 , V t2 , we first construct a vocabulary, U
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combining words from both vectors. Formally,

U = {w : (w, s) ∈ V t1or (w, s) ∈ V t2} (4.3)

To simplify our notation, let U be denoted as U = {w1, w2, · · · , wn}, where n = |U |.

Now, we define another vector SV t = [s1, s2, · · · , sn], where si is the similarity score of

term t to word wi ∈ U , which can be found from V t. If (wi, si) /∈ V t, si is set to 0. Finally,

S(t1, t2) is calculated as,

S(t1, t2) = cosine(SV t1 , SV t2) (4.4)

In our evaluation in Section 7.2, we compare the above three methods and choose the best

one to augment the attributed graph. Finally, for any term t, we calculate its similarity with all

the keywords in the given attributed graph, and find M -top most relevant keywords Xt ranked

based on the similarity scores. M is a system configurable parameter. By default, M is set to 10.

4.2 Constructing attributed graph

In attributed graph G+, a vertex v is associated with a set of keywords. For all vertices, we

extend each keyword t with its M -top most relevant keywords Xt using the semantic similarity

model. For any keyword w ∈ Xt, the influence score of vertex v, sv(w) = sv(t) since w and t

are semantically similar.

4.3 Augmenting keywords for KICQ

A query q(T, P ) consists of a set of terms T = {t1, t2, · · · , tn} and a predicate P . First,

the semantic similarity model is used to augment each term ti with the set of relevant keywords

Xti . Then the system parameters r and kmin are used to formulate the keyword aware influential

community query, KICQ(X,P, r, kmin) where X = {Xt1 , Xt2 , · · · , Xtn}.



Chapter 5

Influential Community Measures

Given a keyword-aware influential community query, KICQ(X,P, r, kmin), we need to

find top-r communities based on their influence measure. To define such measures, we first

define the relevance of a vertex to a KICQ query. Then, we present the desired properties of

such communities and finally, propose a scoring function that can capture the influence of a

community.

5.1 Query relevance score of a vertex

First, for a given query, we redefine the influence of a vertex based on its relevance to the

query. The query relevance score γv of a vertex v is estimated as follows: each vertex v in

the attributed graph is annotated with keywords and their influence score for the corresponding

keywords, i.e., (wi, sv(wi)). To estimate the relevance score, γv ∈ [0, 1], we need to consider

the list of semantic keywords X and the predicate P in the KICQ query. Formally, we use the

following definition for computing γv:

γv = fXti∈X [gw∈Xtisv(w)] (5.1)

Here, f and g are two aggregate functions: g combines the relevance of the vertex for the

semantic keywords of a query term, and f combines the relevance scores in all terms considering

21
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the predicate P . We use g as the aggregate function, MAX; whereas we use f as MIN for AND

predicate and MAX for OR predicate, respectively. MIN aggregate ensures that a vertex has high

relevance to all the terms, while MAX only requires high relevance to any of the terms.

Example 3 Consider a query q({“social network analysis”, “graph mining”}, AND). The query

can be interpreted as find top-r influential communities with members who have expertise in

“social network analysis” AND “graph mining”. Now, the terms mentioned in the query does

not exactly match the keywords(i.e., “DB”, “ML”, and “PR”) in the attributed graph in Figure

1.1. We first find the relevant keywords for the terms in the query. Say, the relevant keywords

are {“DB”, “ML”} for “social network analysis" , and {“DB”, “PR”} for “graph mining".

Let, r = 3 and kmin = 2. So, the augmented query becomes KICQ({{“DB", “ML"}, {“DB",

“PR"}}, AND, 3, 2). The interpretation is, we need to find top 3 (r) most influential communities

with members who have some influence in keywords “DB" or “ML" (for term “social network

analysis") AND(predicate P ) in keywords “DB" or “PR" (for term “graph mining"). In such

communities, each member must be connected to at least 2 other members (kmin).

Let us consider the aggregate functions g be maximum and f be minimum. Then the relevance

of n1 to term “social network analysis" will be the maximum among 0.7 (for DB) and 0.8 (for

ML), which is 0.8. Similarly, the relevance of n1 to term “graph mining" becomes maximum of

0.7 (DB) and 0.0 (PR), i.e., 0.7. Finally, the relevance of n1 to the query is minimum of 0.8 and

0.7, which is 0.7.

5.2 Desiderata of an influential community

The influence measure of a community is mostly subjective. However, the following properties

are desired from an influential community.

(1) Connectivity. A good community must be connected.

(2) Cohesiveness. Cohesion of a community is defined as the number of nodes that needs to

be removed to disconnect it. A community is desired to have high cohesion and therefore high

density.
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(3) Highly influential individuals. A good community should consist of individuals who

are highly influential in their field of expertise.

(4) Large. large communities are preferred, if the connectivity and high cohesion of a

community can be retained.

5.3 Influential score function

We use a linear weighted summation of the cohesiveness and influences to calculate the

overall score of a community. Let H = (VH , EH) is a subgraph of attributed graph G+(V,E,A).

If H is a community (connected component of maximal k-core), then the score of H is:

ζ(H) = β × k
max-deg(G+)︸ ︷︷ ︸

cohesiveness score

+(1− β)×
∑
v∈VH

γv

|V |︸ ︷︷ ︸
influence score

(5.2)

Here, max-deg(G+) is the maximum degree of all vertices in G+. Both the cohesiveness and

the influence score of a community are normalized within [0, 1], and the preference parameter

β ∈ [0, 1] defines the importance of one score relative to the other. A large value of β leads to

retrieval of the communities with more cohesiveness while a small value promotes communities

with highly influential individuals. β is a system configurable parameter. Suppose, the user sets

a ratio of the weight of cohesiveness score to the weight of influence score as 1:2. So, β
1−β = 1

2
,

i.e., β = 1
3
.

Finally, we discuss the benefits of choosing such a scoring function. Since we model a

community using connected k-core, connectivity and cohesiveness is ensured. max-deg(G+)

and |V | is constant for attributed graph G+. Thus the influence score of community H depends

on
∑

v∈VH γv which prefers large community with highly influential individuals. Also as long

as some low influential members do not disrupt the cohesiveness of the community, the score of

this community is not penalized, which is the case in Li et al. [7]. We acknowledge that such a

measure is not unique, and other measures can be explored in the future. However, experiments

using real datasets and the case study presented in Chapter 8 demonstrate that our proposed

influence measure can capture cohesive communities with highly influential members.



Chapter 6

Algorithms for Influential Community

Search

In this chapter, we present algorithms for finding r most influential communities from the

attributed graph G+ for a given KICQ(X,P, r, kmin). Since the notion of influential community

changes with different sets of query keywords, existing pre-computation based approach [7, 8]

cannot be adapted for this purpose.

6.1 A straightforward approach, BASIC-EXPLORE

A straightforward approach to answerKICQ on a large graph is as follows. First, we extract

the subgraph, which we call the query essential subgraph, Gq, containing vertices and edges

that are relevant to the query. Then we find all the connected components of maximal k-core

subgraphs for all possible values of k. Finally, we return the top r communities having the

highest influential community scores (as per Equation 5.2).

6.1.1 Finding query essential subgraph

The query essential subgraph,Gq(Vq, Eq, γ) is a subgraph of the attributed graphG+(V,E,A)

induced by Vq, the set of vertices with a non-zero query relevance score. In Gq, each vertex v is

24
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Algorithm 1 BASIC-EXPLORE (Gq)
1: compute core decomposition for all vertices in Gq
2: initialize a priority queue Q with r empty communities (score 0)
3: for k = kmin to max-deg(Gq) do
4: Hk = maximal k-core in Gq
5: CCk = set of connected components in Hk

6: for all h(Vh, Eh) ∈ CCk do
7: ζ(h) = score of h
8: if ζ(h) > rth best score then
9: Q.pop()

10: Q.push(h)

annotated with its relevance score γv, and Eq is the set of edges between any two vertices in Vq.

To efficiently generate the Gq, we maintain an inverted index, where for each keyword w, a list

ILw of the vertices that contain w is stored. Thus, for a given KICQ query, Vq can be obtained

by,

Vq =


⋂
Xti∈X

[
⋃
w∈Xti

ILw], if P = AND

⋃
Xti∈X

[
⋃
w∈Xti

ILw], otherwise

(6.1)

After retrieving Vq, we compute the query relevance score of each vertex v ∈ Vq (Equation

5.1) and retrieve Eq that denotes the connections between all pairs of vertices in Vq.

6.1.2 Finding k-cores and most influential communities

Algorithm 1 outlines the procedure BASIC-EXPLORE for finding rmost influential communities

fromGq. First, we compute core decomposition for all vertices inGq using theO(|Eq|) algorithm

proposed by Batagelj et al. [54]. A priority queue Q is used to hold our solution. We initialize Q

with r empty communities having 0 score. In our case, a community must be at least kmin-core.

Again, the maximum cohesion factor of a community in Gq can be max-deg(Gq), since there

is no vertex in Gq with a higher degree. Thus we need to first find all connected components

of maximal k-cores from Gq, where the value of k is in range [kmin,max-deg(Gq)]. Then,

we compute the influential scores of each computed community, and finally, maintain the top-r

communities in Q ordered by the scores of the communities.

Example 4 To demonstrate how the basic exploration algorithm works, consider the query
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Figure 6.1: A query essential subgraph.

“social network analysis", for which the KICQ is (X = {“DB", “ML"}, P = NONE, r =

3, kmin = 2). We first identify the query essential subgraph Gq (showed in Figure 6.1) given the

attributed graph as in Figure 1.1. Here |V | = 20. Since kmin = 2 and max-deg(G+) = 6, the

value of k can be any integer between 2 and 6. The connected components of 2-core are h1 =

{n1, n2, n3, n4, n6, n7, n8} and h2 = {n17, n18, n19}. The cohesiveness score is 2/6 = 0.333 for

both of the communities. The influence score of h1 is (0.8+0.9+0.3+0.7+0.2+0.3+0.2)/20 =

0.17 and h2 is 0.11. If β is set to 1/3 (for example), then the score of the communities are 0.224

and 0.1844 respectively. Again, h3 = {n3, n4, n6, n7, n8} is the only connected component of

3-core with score 0.2233. The procedure BASIC-EXPLORE terminates as there is no 4-core in

the Gq. So, according to the proposed scoring function, h1 is the most influential community

while h3 and h2 rank second and third respectively.

6.1.3 Time complexity

Finding the relevant vertices and calculating their relevance score can be done in O(|Vq| ×

Nw) time, where Nw =
∑

Xi∈X |Xi| is the total number of relevant keywords. If the graph
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is implemented with adjacency list, Eq can be obtained in O(|Vq|) time by taking union of

adjacency list and Vq for each vertex. So, time complexity for computing Gq is O(|Vq| ×Nw).

Core decomposition of Vq is done in O(|Eq|) time. The operations (push, pop) performed

in the priority queue takes O(log r) time. So, the time required for initializing Q is O(r log r).

Exploring a maximal k-core requires computing its connected components (O(|Vq| + |Eq|)),

obtaining k-core vertices (O(|Vq|)), computing scores of each connected components, and updating

the priority queue Q. For any community h(Vh, Eh), the run-time for computing its score is

bounded by O(|Vh|) = O(|Vq|) (simplified). So, if Nk is the number of influential communities

with cohesion factor k, then the runtime of exploring all k-cores is bounded byO(max-deg(Gq)×

((|Vq|+ |Eq|) +Nk × (|Vq|+ log(r))).

Considering |Vq| > log(r), the bound can be simplified as O(max-deg(Gq) × |Vq|2) for a

dense graph 1. Since, this dominates the time complexity of finding Gq, we can conclude that,

the overall complexity of BASIC-EXPLORE is O(max-deg(Gq)× |Vq|2).

6.2 Pruned exploration approach, PRUNED-EXPLORE

The major bottleneck of BASIC-EXPLORE is that it needs to explore all maximal k-cores,

for different values of k, and find the connected components of each maximal k-core subgraph.

Such exploration is computationally expensive for a large graph. Instead of directly exploring

the subgraphs to compute the maximal k-core and its connected components (communities), we

first estimate the upper bound score of the communities of the corresponding subgraph. This

bound can be used to prune a large number of redundant subgraphs that cannot be a part of the

top-r influential communities.

First, we find the query essential subgraph Gq, compute core decomposition, and initialize

priority queueQ as described in Section 6.1. Now, we need to exploreGq to retrieve communities

for all possible values of k. As discussed before, the value of k must be between kmin and

max-deg(Gq). We propose the following lemmas, which pave the foundation of our pruning.

1 Nk < |Vq| and for any dense graph G(V,E), |E| is O(|V |2)
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Algorithm 2 PRUNED-EXPLORE (H , k)
Input: Subgraph of Gq H = (VH , EH), cohesion factor k.
1: min-deg(H) = min

vεVH

(degH(v))

2: if min-deg(H) > k then
3: k = min-deg(H)

4: Hk = maximal k-core in H
5: CCk = set of connected components of Hk

6: for all h ∈ CCk do
7: if actual score, ζ(h) > rth best score then
8: Q.pop()
9: Q.push(h)

10: for k′ = k + 1 to max-deg(Gq) do
11: if upper bound score, ζ∗k′(h) > rth best score then
12: PRUNED-EXPLORE(h, k′)
13: break

Lemma 1 Let, H(VH , EH) be a subgraph of Gq. For any community in H , the maximum

influence score can be the sum of the query relevance scores of all vertices in H . Thus, without

computing the vertices of k-core subgraph, we can calculate the upper bound of the score of any

community in H for a particular value of k as follows.

ζ∗k(H) = β × k
max-deg(G+)

+ (1− β)×
∑
v∈VH

γv

|V | (6.2)

Lemma 2 If H = (VH , EH) is a subgraph and min-deg(H) = min
v∈VH

(degH(v)) > k, then any

community in H must be at least min-deg(H)-core.

According to Lemma 1, we can prune a subgraph if its upper bound score is lower than the

rth best score of already retrieved communities from Gq. Moreover, Lemma 2 helps us to avoid

the computation of certain cores from Gq.

Now, we develop a recursive procedure PRUNED-EXPLORE to search for influential communities

in Gq. Algorithm 2 outlines the procedure. Initially, PRUNED-EXPLORE(Gq, kmin) is called to

extract communities with minimum cohesion factor. In later steps, the procedure is recursively

called to extract communities with higher cohesion factors.

Let us consider that we want to find communities with cohesion factor k, from a subgraph

H(VH , EH) ofGq. In lines 1-3, we determine the minimum degree of the vertices inH ,min-deg(H).

If min-deg(H) > k, we set k = min-deg(H) and directly compute such k-cores (according

to Lemma 2). In lines 4-5, we find the set of connected components of maximal k core of



CHAPTER 6. ALGORITHMS FOR INFLUENTIAL COMMUNITY SEARCH 29

H , denoted by CCk. The loop in line 6 runs for each connected component. We update the

priority queue if any connected component’s score is higher than the current top-r communities

in lines 7-9. We explore the connected component for higher values of k in lines 10-13. We use

Lemma 1 to prune exploration for the values of k for which the upper bound of the score is lower

than the rth best community. When the procedure terminates, the queue holds the final top-r

communities.

Example 5 Suppose, we want to explore the query essential subgraph Gq in Figure 6.1 and our

goal is to find top-2 communities (r = 2). Initially, queue contains two empty communities with

score 0, i.e., rth best score = 0. In the original attributed graph G+ (Figure 1.1), the number of

vertices in the original attributed graph (Figure 1.1), |V | = 20 and maximum degree of vertices,

max-deg(G+) = 6. Let’s assume the value of system parameter β is 1
3
. Initially PRUNED-

EXPLORE(H = Gq, k = kmin = 1) is called.

(i) Here, min-deg(QEG) = 2 > k. So, we set k = 2 and start extracting communities which

are connected components of a 2-core. We find the connected components of maximal 2-core

CC2 = {h1 = {n1, n2, n3, n4, n6, n7, n8}, h2 = {n17, n18, n19}} with scores 0.224 and 0.1844

respectively (Eqn. 5.2). We update the queue accordingly and now, rthbest score = 0.1844. The

upper bound score of a subgraph must be higher than 0.1844 to be considered for exploration.

(ii) Then, we explore h1 for communities with cohesion factor k = 3 as the upper bound 0.28

is greater than the current 2nd highest score (0.1844). After computing the maximal core and its

connected components, we find a community h3 = {n3, n4, n6, n7, n8} with score 0.2233. The

queue is updated and the current 2nd highest score is 0.2233.

(iii) Now ζ∗4 (h3) = 0.4467 indicates that there can be potential top communities in h3 for

k = 4, but the procedure PRUNED-EXPLORE(h3, 4) terminates as there is no 4-core found from

this subgraph.

(iv) Similarly, PRUNE-AND-EXPLORE(h2, 3) terminates and finally, top-2 communities found

are h1 and h3.
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6.3 Keyword indexed tree exploration, TREE-EXPLORE

Though the above PRUNED-EXPLORE can prune a large number of subgraphs based on

the derived upper bounds, it still explores subgraphs and their connected components with low

cohesiveness, which usually do not contain the most influential communities. This exploration

can be costly, especially in a scenario where the query essential graph, Gq, turns out to be very

large. So, we propose a novel index, namely keyword indexed core-label tree (KIC-tree), that

pre-computes and organizes the connected components of maximal k-core subgraphs hierarchically

with computed upper bound of influence scores for each keyword.

The key idea of our KIC-tree based KICQ comes from the following observations:

(i) Top communities are structurally cohesive and thereby can be retrieved by exploring

the subgraphs of higher cohesion factors. Thus, if k-cores are precomputed, disregarding the

associated keywords, we can still prune the subgraphs with low k value.

(ii) Communities are represented using connected maximal k-cores which are nested, i.e., by

definition, a (k + 1)-core is also a k-core (k ≥ 0). This property helps to store all the connected

components of maximal k-cores in compressed tree-based structures as shown in previous works

ICP-index [7], CL-tree index [4].

(iii) We can compute the upper bounds for both the components: influence and cohesiveness,

of the the scoring function, and use these upper bounds to prune the search space during query

time.

We first discuss the basic structure of the KIC-tree index. Then we present the upper

bounds for individual keywords and aggregate them for a set of keywords and predicates (in

KICQ) for an upper bound score of a node. We also show how the cohesiveness score can be

bounded based on a pre-computed structure alone. Finally, we present our TREE-EXPLORE

algorithm for influential community search using the KIC-tree. In this section, we use the

term “node” to exclusively indicate a tree node.
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Figure 6.2: A subgraph of the graph presented in Figure 1.1.

6.3.1 KIC-tree index

The KIC-tree index organizes the connected components of k-cores into a space-efficient

tree structure. We adopt the concept of compressed tree based structure of previous works (e.g.,

CL-tree index [4]), and augment the structure with derived bounds to prune the search

space.

For simplicity of presentation, let us consider a smaller subgraph of the social network

presented in Figure 1.1, which is shown in Figure 6.2. Figure 6.3 shows the corresponding

KIC-tree. The left shows the hierarchical representation of all maximal k-core connected

components in the subgraph. We refer this tree as the uncompressed tree. The right figure shows

KIC-tree index, a more compact representation of the left tree, which removes the graph

vertices present in its descendant nodes ensuring that each graph vertex appears exactly once.

Let u be a KIC-tree node and subtree(u) be the subtree rooted at u. The structure of u is

as follows:

(i) k, the cohesion factor;

(ii) vertexSet, the set of compressed graph vertices at node u;

(iii) childNodes, the set of child nodes of u;

(iv) kmax, the maximum cohesion factor of any connected component contained by the

subtree(u);
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Figure 6.3: KIC-tree for the attributed graph in Figure 6.2

(v) iList, an inverted list containing the upper bounds of influence scores for all keywords

appeared in subtree(u).

For each keyword w that appears in subtree(u), the inverted list u.iList[w] contain the

following elements:

(i) relV , a set of graph vertices in u.vertexSet containing the keyword w;

(ii) maxKNScore, the upper bound of influence score component by only considering

keyword w in a community (i.e., a connected component) contained by the subtree(u), where

the community must include at least one vertex present in node u containing the keyword w;

(iii) maxKDScore, the upper bound of influence score component by only considering

keyword w of a community contained by the subtree(u), where the community does not include

any vertex from u.vertexSet (i.e., all vertices of the community come from the descendent nodes

of u).

We compute maxKNScore and maxKDScore as follows.

For a node u, let childV be the set of graph vertices stored at the descendent nodes of u, and

allV be the set of graph vertices at subtree(u) (i.e., all the vertices in node u and its descendent

nodes).

If u is a leaf node, u.childV = ∅.
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Otherwise, u.childV =
⋃
p∈u.childNodes p.allV . On the other hand, in all cases, u.allV =

u.vertexSet
⋃
u.childV .

Now, if there is no relevant graph vertex in node u for keywordw, then we setmaxKNScore

as 0. Otherwise, the upper bound is the sum of influence scores of all graph vertices in u.allV .

Formally,

u.iList[w].maxKNScore =


0, if u.iList[w].relV = ∅

∑
v∈u.allV (sv(w)), otherwise

Here, sv(w) is the influence score of vertex v for keyword w.

Now, maxKDScore is the maximum influence score component among the communities

represented by the descendant nodes of u.

u.iList[w].maxKDScore = 0 if u is a leaf node.

Otherwise, we can use the computed values ofmaxKNScore to compute themaxKDScore

as follows.

u.iList[w].maxKDScore = max
p∈u.childNodes

max(p.iList[w].maxKNScore, p.iList[w].maxKDScore)

Figure 6.3 (right) shows an example tree, where the table inside the ellipse represents the iList

of the corresponding node. For simplicity, we only show the iList for node u3.

6.3.2 Complexity analysis for index construction

We use the advanced method proposed by Fang et. al. [4] that compresses the tree and for

each node u, computes u.iList[w].relV for all the relevant keywords of u. The time complexity

of this method is O(|E| × α(|V |)), where α(|V |), the inverse Ackermann function,

is less than 5 for all remotely practical values of |V |. For each iList[w] entry, we also need

to compute the two upper bounds maxKNScore and maxKDScore. If Amax is the maximum

number of keywords associated with a graph vertex, the time complexity for computingmaxKNScore

isO(Amax×|V |). Computing maxKDScore for a node u only requires visiting its childNodes

which is non-dominant. So, overall time complexity for index construction is O(|E| × α(|V |) +
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Amax × |V |).

In iList, we need additional space to store two upper bound scores (constant space) for each

keyword. The space cost is still dominated by storing relV in iList. So, the space complexity

remains O(Ā× |V |) as in [4], which is proportional to the graph size (Ā is the average number

of keywords associated with each vertex).

6.3.3 Computing upper bound scores for a query

Given a KICQ(X,P, r, kmin) query, we need to compute an upper bound influence score of

a community denoted by Sinf and the maximum possible cohesiveness score of that community,

Sk by using the precomputed upper bounds in KIC-tree. Then the upper bound of the total

score of that community can be computed as maxScore = β × Sk + (1 − β) × Sinf (as in

Equation 5.2).

We define two upper bounds for the communities inside subtree(u): (i) maxNodeScore,

the maximum possible score of any community that can be exclusively found by exploring the

connected k-core stored at node u and (ii) maxDesScore, the maximum possible score of any

community that can be found by exploring the descendant nodes of u.

Computing maxNodeScore: For any community contained exclusively by node u, there

must be at least one vertex v that is stored at u. Now, for any vertex v exclusive to node u, u.k

is the maximum core number. So, a subgraph containing v can be at most u.k-core (irrespective

of any keyword) and the upper bound of cohesiveness score of any community contained by the

node can be computed as Sk = u.k/max-deg(G+).

Now, for each keyword w, u.iList[w].maxKNScore already defines the upper bound of

influence score component for any community in the subgraph exclusively contained by node u

(considering the single keyword w). We combine these bounds for considering all the keywords

in the KICQ query and compute the maximum influence score as:

Sinf = 1
|V | × FXti∈X(

∑
w∈Xti

u.iList[w].maxKNScore)

Here F is an aggregate function that combines the influence scores of the community for

multiple terms depending on the predicate P and division by |V | normalizes the score within
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[0,1]. For the queries with OR predicate, a top community can be formed by joining multiple

communities pre-computed for a single term, and these communities may have disjoint vertex

set. So, it is safe to consider F as a summation aggregate. For the same reason,
∑

is explicitly

used to combine the semantic keywords of a term. Again, for the queries with AND predicate,

any graph vertex forming a community for a single term must be present in communities of other

terms as well. So, F can be safely considered as minimum aggregate.

Computing maxDesScore: For any community contained by the descendant nodes of u,

the maximum cohesion factor is u.kmax and the upper bound of cohesiveness score is Sk =

u.kmax/max-deg(G+).

Again, for keywordw, u.iList[w].maxKDScore already defines the upper bound of influence

score component for any community contained by the descendant nodes. We combine these

bounds for considering all the keywords in theKICQ query and compute the maximum influence

score similarly as computing maxNodeScore, i.e.,

Sinf = 1
|V | × FXti∈X(

∑
w∈Xti

u.iList[w].maxKDScore)

6.3.4 TREE-EXPLORE algorithm

We follow a best-first exploration strategy. Since the leaf nodes contain the communities

with high cohesiveness while nodes near root contain communities with low cohesiveness, we

explore the KIC-tree in a post-order manner. Likewise the previous exploration algorithms

(e.g., PRUNED-EXPLORE), a priority queue Q initialized with r empty communities is used to

store the results. The exploration algorithm, which we call TREE-EXPLORE is developed based

on the following pruning techniques:

(i) Subtree pruning: For any node u, we examine the u.maxDesScore before visiting its

children. If it is less than the rth best score, then none of the communities to be found in the

descendent nodes can score higher than the current rth top community. Therefore, we can skip

visiting the descendant nodes of u.

(ii) Node pruning: Before exploring the pre-computed connected k-core subgraph at any

node u, we examine the u.maxNodeScore. If it is less than the rth best score, we can safely



CHAPTER 6. ALGORITHMS FOR INFLUENTIAL COMMUNITY SEARCH 36

Algorithm 3 TREE-EXPLORE (u, U )
Input: Tree node u, query relevant nodes U .
1: if u is an internal node then
2: Compute influence score component Sinf and cohesiveness score component Sk for u.maxDesScore
3: u.maxDesScore = β × Sk + (1− β)× Sinf
4: if Sinf > 0 and u.maxDesScore > rth best score then
5: for each p ∈ (u.childNodes ∩ U) do
6: TREE-EXPLORE(p, U )
7: if u.k < kmin then
8: return
9: Compute influence score component Sinf and cohesiveness score component Sk for u.maxNodeScore

10: u.maxNodeScore = β × Sk + (1− β)× Sinf
11: if Sinf = 0 or u.maxNodeScore < rth best score then
12: return
13: u.Vrel = compute relevant graph vertices in the subtree rooted at u
14: Compute query relevance score of all vertices in u.Vrel
15: Compute u.Erel, the edges among u.Vrel
16: Construct subgraph H(u.Vrel, u.Erel), each vertex annotated with relevance score
17: MODIFIED-PRUNED-EXPLORE(H , kmin, u.k)

prune this exploration.

Algorithm 3 outlines the pseudocode for the KIC-tree traversal. The inverted list that we

have used to find the Gq is adopted for computing U , the set of tree nodes relevant to a query.

Initially, the recursive procedure TREE-EXPLORE(u, U ) is called with u being the root of the

KIC-tree.

For any internal node u, we first compute and examine the influence score component, Sinf ,

and the cohesiveness score component, Sk of u.maxDesScore. If Sinf is 0, the descendants

of u do not contain any graph vertex relevant to the query, and therefore we do not need to visit

subsequent nodes across the subtree. If Sinf > 0 and u.maxDesScore is greater than the current

rth best score, then we visit its children (lines 1-6).

Now we want to explore the pre-computed connected k-core subgraph represented by node

u. If the cohesion factor k in node u is less than kmin, then we prune exploring the subgraph.

Otherwise, we compute the influence score component (Sinf ) and the cohesiveness score component

(Sk) of u.maxNodeScore. If Sinf is 0, then the node does not contain any graph vertex relevant

to the query, and we can safely skip exploring the subgraph. Again, we skip the exploration if

u.maxNodeScore is less than the current rth best score (lines 7-12).

If the exploration of the connected k-core subgraph cannot be pruned, we first need to find

all the relevant graph vertices, u.Vrel present in the subgraph (line 13). Since KIC-tree
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compresses these graph vertices by removing ones present at descendant nodes, we need to

decompress in a bottom-up manner. At any node u, the relevant graph vertices u.Vrel can be

computed like the vertices in QEG (Equation 6.1) just by replacing ILw with u.iList[w].relV .

For any internal node u, we need to add the relevant graph vertices in child nodes to u.Vrel.

Now we compute the relevance score of each vertex v ∈ u.Vrel (Equation 5.1) and then

compute the edges among these vertices, thereby construct the subgraph H(u.Vrel, u.Erel) (lines

14-16).

The procedure MODIFIED-PRUNED-EXPLORE(H, k, kmax) is a slightly modified version of the

procedure PRUNED-EXPLORE(H, k) that takes an extra argument kmax, the maximum value of

cohesion factor for sub-graph H . Lines 10-13 in Algorithm 2 are replaced by the following:

10: for k′ = k + 1 to kmax do

11: if ζ∗k′(h) > rth best score then

12: MODIFIED-PRUNED-EXPLORE(h, k′, kmax)

13: break

Since no graph vertex at u belongs to any k-core with cohesion factor higher than u.k, here

kmax = u.k. Initially, k = kmin. So, MODIFIED-PRUNED-EXPLORE(H, kmin, u.k) is called to

explore the subgraph H (line 17).



Chapter 7

Experimental Study

In this chapter, we present experiments to evaluate the performance of our proposed system.

We first describe the experimental setup, then evaluate our semantic similarity model, and finally,

we conduct experiments to evaluate the efficiency and effectiveness of our proposed influential

community search algorithms.

7.1 Experimental setup

We implemented the semantic similarity model in Python using nltk and gensim libraries.

All the community search algorithms are implemented in JAVA. Experiments were run on a

virtual environment of OzSTAR1 supercomputer with two cores of Intel Gold 6140 CPU @

2.30 GHz 2.30GHz, 192 GB RAM, and 400 GB SSD. We assume that the graph and all the

indexes will fit in the memory. For the simplicity of presentation, we use shorter names for our

algorithms: BASIC, PRUNE, and TREE to represent BASIC-EXPLORE, PRUNED-EXPLORE,

and TREE-EXPLORE respectively. We present the average results of 100 queries.

1 https://supercomputing.swin.edu.au/ozstar/

38
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7.1.1 Datasets

We use two large real datasets: OAG (Open Academic Graph)2 [55] and Gowalla3 to

generate the attributed graph reflecting the real life application scenarios. Both of the computed

attributed graphs are publicly available4.

OAG is generated by linking two large academic graphs: Microsoft Academic Graph (MAG)

and AMiner. Here, we represent each author as a vertex and co-authorships between authors as

edges. This dataset contains more than 150 million academic articles with metadata like title,

abstract, authors, keywords provided by authors, etc. We first choose 1, 000 most frequent author-

provided keywords as the set of keywords for the attributed graph. Each vertex of the graph is

further augmented with the semantically relevant set of keywords (by applying our semantic

similarity model) for the author provided keywords. The score is modeled as the author’s

percentile rank (scaled to 1.0), considering the number of citations in publications relevant to a

keyword. We skipped non-English articles and the articles with no citation. Finally, there were

10, 714, 737 articles in our dataset. In the attributed graph, we considered the first 1 million

authors as vertices and 15, 677, 940 co-authorship relations among the authors as edges.

In Gowalla dataset, users are modeled as vertices, and the location ids are considered as

keywords. Edges represent the friendship between two users. Each user is augmented with the

locations where she checked in. The influence score of a user at a location is modeled as the

user’s percentile rank considering the number of check-ins posted by the user at that location.

There are 407, 533 vertices, 2, 209, 169 edges and 2, 727, 464 keywords in this attributed graph.

7.1.2 Query Generation

To generate a query for OAG datasets, first, we choose the number of query terms randomly

within [1,5]. Then we randomly choose a keyword from the most frequent 10, 000 author-

provided keywords. This keyword is taken as the first query term. We choose the rest of the

query terms randomly. Any keyword that appears with the first query term in the author-provided

2 https://aminer.org/open-academic-graph
3 http://www.yongliu.org/datasets/index.html
4 https://drive.google.com/drive/folders/1yU32kH6E2xvQow8hxCbCtMoFASDVn4TE?usp=sharing
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keyword list is a candidate to be chosen as a query term. Additionally, we augment each keyword

with its semantically similar keywords using our semantic keyword similarity model.

For each set of query terms, we take both AND and OR predicates. Note that low-frequency

keywords are usually very specific, and when we consider AND predicate among them, the

communities may not be meaningful. For example, queries like “astrophysics” AND “genomics”

do not yield meaningful communities. For this reason, we do not choose straightforward random

keywords as a query. Parameters r and kmin are set to default values unless otherwise specified.

For Gowalla dataset, we randomly choose a location as the first keyword, and then choose

0-4 additional random locations within the radius of 5km from the first location. We do so

because if the locations are very far from each other, there will be very few users who visit all

the locations, thereby making the AND queries meaningless. For the entire query setup, we only

consider the locations where at least 50 users checked in.

7.1.3 Experiment parameters

We vary different parameters as shown in Table 7.1. When one parameter is varied, other

parameters are fixed at their default values.

Parameter Range Default

Dataset OAG, Gowalla OAG

Dataset size (vertices) 300K, 500K, 700K, 900K, 1M 500K

Number of keywords 100, 250, 500, 750, 1000 1000

β any real value within [0.0, 1.0] 0.60

r any integer within [1, 5] 3

kmin any integer within [2, 50] 10

Table 7.1: Parameters for experimental analysis
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7.2 Evaluation of semantic similarity model

In this section, we first present the experimental studies to evaluate our proposed similarity

metrics followed by parameter selection for the semantic similarity model.

7.2.1 Selection of similarity metric

In Chapter 4, we presented three approaches for finding semantic similarity between two

terms or keywords. Here, we empirically evaluate which approach is the most effective. Our

goal here is to measure a similarity between two terms using the three measures, and compare

the similarity results with the ground truth. As the ground truth, we use the semantic similarity

measure that has been widely used in Information Retrieval for measuring the similarity between

two concepts in a given taxonomy [56]. Its unique feature is measuring the similarity based on

the intrinsic information content of the taxonomy structure only. As the taxonomy, we use the

ACM taxonomy provided by the 2012 ACM Computing Classification System5 that contains

2,113 topics and organizes them hierarchically based on relevance (e.g., “clustering" is a sub-

topic of “data mining").

In our context, each topic in the taxonomy can be seen as a keyword or a term, and each

of our proposed similarity measures can be considered as a ranker that finds the most similar

topics to any topic in the taxonomy. So, we use a widely accepted performance measure of

ranking systems, that is, Normalized Discounted Cumulative Gain (NDCG) [57], to evaluate

the proposed similarity metrics.

First, given the taxonomy τ , we give the ground truth formula of the similarity between two

topics t1 and t2 proposed in [56]:

simjcn(t1, t2) = 1− [dτjcn(t1, t2)/2]

5 https://dl.acm.org/ccs/ccs_flat.cfm

https://dl.acm.org/ccs/ccs_flat.cfm
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Here, dτjcn(t1, t2) denotes a distance metric between t1 and t2, defined by Jiang et al. [58].

dτjcn(t1, t2) = ICτ (t1) + ICτ (t2)− 2× ICτ (lcs(t1, t2))

lcs(t1, t2) is the “least common subsumer” in τ that subsumes t1 and t2. Finally, ICτ (t)

indicates the information content of topic t in τ , calculated by log ( |sc
τ (t)|+1
|τ | )/ log ( 1

|τ |) as in [56].

Here, scτ (t) is the set of subsumed topics of t and |τ | is the total number of topics in τ . The

denominator log ( 1
|τ |), which is equivalent to the value of the most informative topic, serves as a

normalizing factor, assuring that the information content values are in [0,1].

Second, given a topic t in τ , our task is to rank the M -top similar topics {w1, w2, · · · , wM}

in τ . The ranking goodness is evaluated by NDCG@M defined as

NDCG =
1

|τ |
∑
t∈τ

NDCGt (7.1)

Here,NDCGt = DCGt

IDCGt
where,DCGt =

∑M
i=1

simjcn(t,wi)

log(i+1)
is the discounted cumulative gain

that gives more importance on the ranking of a more relevant entity than the ranking of entities

with lower relevance. IDCGt provides the maximum DCG value that could be obtained by a

ranker if the ranking was ideal.

To obtain a vector representation of each topic in τ , we used Google’s pre-trained word2vec

model6. This model includes embedding vectors for a vocabulary of 3 million words and is

trained on about 100 billion words from a Google News dataset which also covers academic

research. The length of the embedding vector is 300.

Table 7.2 shows the comparison among the three similarity metrics in terms of NDCG@50,

NDCG@20, andNDCG@10. As seen, overall, it turns out that indirect cosine outperforms

the other metrics. Thereby, we have chosen this metric to associate each term or keyword with

its semantically related keywords or terms.

6 https://code.google.com/archive/p/word2vec/
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Metric cosine normalized maximum indirect cosine

NDCG@50 0.528 0.543 0.542

NDCG@20 0.537 0.583 0.607

NDCG@10 0.573 0.614 0.633

Table 7.2: Performance results of the three similarity metrics

7.2.2 Parameter setting

In the indirect cosine similarity measure, given a term t, we need to retrieve its

semantically relevant vector V t =[(wt1, s
t
1), (w

t
2, s

t
2), · · · , (wtL, stL)] (see Chapter 4). V t contains

L-top words and their similarity to t. Here, a challenge is how to determine a good value for L.

To examine this, we use three measures.

The first is word coherence, WCL(V t), to evaluate how coherent the L-top words in vector

V t are. The more coherent it is, the better we can represent the set of keywords. We define the

word coherence as the average pairwise cosine similarity of the L-top words. Formally,

WCL(V t) =
2

L× (L− 1)

L∑
i=1

L∑
j=i+1

sim(wi, wj) (7.2)

Here sim(wi, wj) is the cosine similarity of the embedding vectors of wi and wj . WCL = 0

indicates no coherence and value WCL = 1 indicates maximum coherence.

Also, in a sense, each term is a cluster containing its relevant words. As the second measure,

we use Davies-Bouldin Index [59] that optimizes two criteria: (1) minimizing intra-distance

between words and the centroid, and (2) maximizing inter-distance between keywords. Values

closer to zero indicate a better clustering.

Again, the number of similar keywords found depends on the value of L. For example, when

L = 2, a keyword will be considered similar to a given term only if at least one of the two top

words matches. If L = 50, the keyword will be somewhat similar to the term if they have at least

one top word common among the 50 top words. Let, we are to retrieveM most similar keywords

to a given term t. If we are able to retrieve m keywords, then the percentage of top-M retrieval
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(a) Average word coherence WCL (b) Davies-Bouldin index

(c) Average number of top 20 similar topics
found vs number of top words, L.

Figure 7.1: L=15 (L: number of top words) provides reasonably high keyword coherence, low
Davies-Bouldin index, and high retrieval percentage

is defined as

RP@M t =
m

M
(7.3)

Average percentage of top-M retrieval, RP@M is calculated by averaging RP@M t over all

terms.

Small value of L usually contains words with high coherence and better clustering, but it

is very difficult to find similar keywords. Again, large value of L contains words with low

coherence and worse clustering, but it is easier to find similar keywords. So, we need to choose

a value which provides a good trade-off. The desired value of L should provide high word

coherence WCL, low Davies-Bouldin index, and high retrieval percentage RP@M . Figure 7.1
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shows the average cohesiveness, Davies-Bouldin index, average percentage of top 20 retrieval vs

various values of L. Here L = 15 provides a good trade-off.

7.3 Evaluation of KICQ

The OAG dataset is enriched with metadata from millions of articles, and better fits the

application scenarios of our study, and thus we use it as the default dataset, unless otherwise

stated, to demonstrate the performance of our proposed algorithms. First, we evaluate how

different parameters (Table 7.1) affect the efficiency and effectiveness of the competitive algorithms.

Then we compare the performance of our algorithm with the state-of-the-art influential community

search algorithm [7].

7.3.1 Performance evaluation

In this section, we show the scalability, sensitivity of different parameters, memory requirement,

and the cohesiveness of the retrieved communities by running a wide range of experiments.

KICQ processing time

In this set of experiments, we evaluate and compare the runtime of our proposed algorithms.

Varying the dataset size: To show the scalability, we consider different size of OAG dataset by

varying the number of vertices and thereby edges. Figure 7.2 shows that with the increase in the

number of vertices, runtime also increases. Usually, when AND predicates are involved, most of

the vertices become irrelevant to the query and get filtered out making the query essential graph

is much smaller than OR predicates. So, OR query is more time consuming and challenging. We

can see that TREE-EXPLORE significantly outperforms the other approaches for OR queries

with various number of keywords. For AND query, the advantage of pruning few vertices is

ruled out by the overhead of exploring the large tree in TREE-EXPLORE, but it still maintains

reasonable performance. Also, PRUNED-EXPLORE and TREE-EXPLORE scales much better

than BASIC-EXPLORE.
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(a) OR predicate (2 keywords) (b) OR predicate (3 keywords)

(c) OR predicate (4 keywords) (d) OR predicate (5 keywords)

(e) AND predicate (2-5 keywords)

Figure 7.2: Query processing time for varying dataset size

Varying kmin. Figure 7.3 shows how the query processing time is affected by parameter kmin.

None of the BASIC-EXPLORE and PRUNED-EXPLORE algorithms are significantly affected
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by the value of kmin. However, if kmin is set to a high value, TREE-EXPLORE does not need to

explore the tree nodes representing k-cores with lower k values. This enables TREE-EXPLORE

to skip a larger part of the tree since most of the vertices in the OAG dataset has degree less than

10 making TREE-EXPLORE significantly faster for higher kmin values.

(a) OR predicate (b) AND predicate

Figure 7.3: Query processing time for varying kmin

Varying r. Figure 7.4 demonstrates how the query processing time is affected by the number

of communities to be retrieved (query parameter r). Both BASIC-EXPLORE and PRUNED-EXPLORE

compute core decomposition once on the entire query essential graph. However, TREE-EXPLORE

performs the core decomposition on-demand basis. BASIC-EXPLORE is not affected by the

value of r since it does not use any pruning based on the retrieved communities. PRUNED-EXPLORE

prunes some expansion based on top-r score, but the query processing time is not noticeably

affected. The effect is more substantial in TREE-EXPLORE. A significant part of the graph does

not require core decomposition if r is small. If r is high, the algorithm can only prune a few tree

nodes, but the advantage is ruled out by the overhead of decompressing the graph vertices inside

a tree node. However, for small values of r, TREE-EXPLORE significantly outperforms the

other algorithms, especially for OR predicate where query processing time is markedly higher

than the AND predicate.
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(a) OR predicate (b) AND predicate

Figure 7.4: Query processing time for varying r

Index size

Figure 7.5 shows how the size of the graph and corresponding KIC-tree index increase

with the increasing number of vertices and keywords. The result conforms to the complexity

analysis demonstrated in Section 6.3.2. Index size is linear to both the number of vertices and

number of keywords if one of these remains unchanged. Also, index size is bounded by the graph

size.

Figure 7.5: Index size for varying vertices and keywords
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Structural cohesiveness

We use popular structural cohesiveness metrics diameter, density, average degree, and clustering

coefficient [60] to measure the quality of the communities retrieved by our approach. These

measures mostly depend on the community models (e.g., k-core, k-truss) as discussed in a survey

of community search [60]. They prefer the k-core model because of its high efficiency with

minimal sacrifice in structural cohesiveness. By analyzing the cohesiveness measures in Table

7.3, we claim that our algorithms can retrieve cohesive communities with a small diameter.

Dataset Density Average Degree Clustering Coefficient Diameter

OAG 0.621 177.897 0.708 2.12

Gowalla 0.579 7.484 0.881 2.70

Table 7.3: Structural cohesiveness measures

Setting the value of β

We first run experiments to find an appropriate β, which balances the weight of connectivity

and individual influence (query relevance score). For larger β, top communities are likely to show

more cohesiveness and discard communities with influential individuals but less connectivity.

When β is smaller, the top communities might incline to individual influence than cohesiveness.

To find a good choice of β, we consider the network structure, that is: (1) we plot structural

cohesiveness measures (i.e., density and average degree [4]), and (2) use the average influence

score of the members for different β values as shown in Figure 7.6.

For OAG, communities with higher cohesiveness seem to contain influential individuals. This

can be easily explained by the fact that an author who has co-authorship with a large number of

authors is likely to have a strong influence in her field of studies. So, for OAG, we choose a high

value of β (i.e., 0.6). Note that, considering the influence of communities is still essential since

it is the tie-breaker between two communities with the same cohesiveness.
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(a) OR predicate (b) AND predicate

Figure 7.6: Performance measures for varying β values

7.3.2 Comparison with state-of-the-art

We choose Online-All [7] as the state-of-the-art approach as they find influential community

in non-attributed graphs.

Efficiency

To compare our algorithms with Online-All, we construct queries with a single keyword

(as it does not support keywords) and compute the query essential graph, which is the input

graph to Online-All. We also need to input the cohesiveness parameter k in Online-All.

For this, we only consider the top community (r = 1), and the value of k in the top community

returned by our approach is fed to Online-All. We do not consider the other algorithms in [7]

since they use pre-computation which cannot be adopted for our problem. For fair comparison,

we do not consider TREE-EXPLORE algorithm since it uses pre-computed index. We show the

query processing times of these algorithms in Figure 7.7a. Our approaches are four times faster

compared to the Online-All algorithm.

Cohesiveness

To compare the keyword cohesiveness, we use community pair-wise Jaccard (CPJ) metric

proposed in [4]. CPJ measures the similarity of the members of top communities in terms of

keywords. We form the queries as described in Section 7.1 to evaluate our approach. OnlineAll

cannot process queries with keywords; rather, it requires a cohesiveness parameter k as input. For
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(a) Query processing time (b) Keyword cohesiveness

Figure 7.7: Effectiveness and efficiency comparison

the simplicity of presentation, we denote our approach as KICQ-AND, KICQ-OR for AND, OR

predicates, respectively. Online-x denotes OnlineAll with parameter k = x. The comparison

is presented in Figure 7.7b. For the communities returned by our approach with AND predicate,

keyword cohesiveness is 1.5 times higher than OnlineAll, while for OR predicate CPJ is

similar. This is expected as for OAG, two vertices are only connected when corresponding authors

publish a paper together, and they also share common keywords. For this reason, OnlineAll

finds communities with good CPJ value. However, this might not the case to other social

networks (e.g., Gowalla, Twitter). Note that our approach and [7] use the same community

model (i.e., k-core), and the structural cohesiveness is similar.

7.4 Experiments with Gowalla dataset

We conduct experiments on Gowalla dataset to show that our algorithms can handle large

number (millions) of keywords. For these experiments, we carefully craft the queries as described

in Section 7.1, and use β = 0.5, r = 3, kmin = 5 as default values. First, we report the

cohesiveness measures in Table 7.3 and observe that our approach can retrieve cohesive communities

with a small diameter for Gowalla dataset as well. We also compare the effectiveness and

efficiency of the communities retrieved by our approach, and Li et al. [7]. The query setup and
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parameter settings are done in the same way as in the OAG dataset. The query processing time

and keyword cohesiveness of these two approaches are presented in Figure 7.8. The number of

relevant vertices is very small for queries in this dataset. The average query processing time is

around 2 ms for all the algorithms. However, our key observation is that unlike OAG, in a dataset

where connectivity is not related to keywords, the Online-All fails to address the keyword

cohesiveness of the communities, while our approach returns communities considering both

structural and keyword cohesiveness. The results show that our approach returns communities

with significantly higher (approx. 15 and 5 times for AND and OR predicate respectively)

keyword cohesiveness than the Online-All.

(a) Query processing time (b) Keyword cohesiveness

Figure 7.8: Effectiveness and efficiency comparison
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Case Study

We use a small dataset of co-author network from ArnetMiner1 [55] to study the quality

of retrieved communities. The dataset contains 5,411 vertices and 17,477 edges. Each vertex

represents an author annotated with fields from eight different research areas: Data Mining

(DM), Web Services (WS), Bayesian Networks (BN), Web Mining (WM), Semantic Web (SW),

Machine Learning (ML), Database Systems (DS), and Information Retrieval (IR), where the

influence score in each field depends on the number of publications in that field. There is an

edge between two authors if they publish at least two papers together.

(a) Retrieved by our approach (b) Retrieved by [7].

Figure 8.1: Retrieved top communities for DS.

1 https://aminer.org/lab-datasets/soinf/

53



CHAPTER 8. CASE STUDY 54

Note that [7] also conducted a case study on this dataset. Figure 8.1 shows the top community

in DS retrieved by our approach (Figure 8.1a) and by [7] (Figure 8.1b). The top community

returned by our approach is 8-core and thus we compare the result of [7] for k = 8. The details,

i.e., h-index and number of citations of each author in our community are shown in Table 8.1.

Among them, the authors who are not included in [7]’s community are shown in bold text. Due

to the minimum score modelling, they missed out some of the top authors in this area including

Rakesh Agrawal who was awarded the most influential scholar in the research area of Database

Systems (DS) in Aminer 2. Our approach keeps him in the community as we did not exclude

a relatively less influential (with good connectivity) author Laura M. Haas. When Laura is not

included in the community, Rakesh Agarwal is connected to less than 8 authors in the community,

which turns out to be a non 8-core community. Since in the minimum weight modelling of [7],

inclusion of a low influential member like Laura M. Haas significantly reduces the score of the

entire community, the resultant community no longer remains the top community for k = 8.

These findings show the effectiveness of our problem formulation and score function modelling.

(a) Top most (k = 6) (b) Second top most (k = 5)

Figure 8.2: Top communities for BN OR DM.

Figure 8.2 presents two top communities for “BN OR DM” returned by our algorithms. The

top most community is fully connected and contains highly influential authors like Didier Dubois

(h-index: 125, citations: 82,295), Henri Prade (h-index: 119, citations: 78,700). The second top

most community also contains all the authors from top-1 community, but the inclusion of another

author Rudolf Kruse (h-index: 54, citations: 16,829) increases the contribution of individual

scores, but decreases the cohesiveness of the community resulting in a lower total score than

2 https://aminer.org/mostinfluentialscholar
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the first one. This shows the flexibility and the trade-off capability among parameters while

searching for the communities.

Vertex Id Author Name h-index Citations

0 Hector Garcia-Molina 138 90,220

1 David Maier 65 36,687

2 David J. DeWitt 89 38,770

3 Philip A. Bernstein 80 37,823

4 Michael Stonebraker 72 26,153

5 Michael J. Franklin 34 7,746

6 Serge Abiteboul 80 35,950

7 Jennifer Widom 101 63, 641

8 Joseph M. Hellerstein 90 43,207

9 Alon Y. Halevy 103 47,228

10 Jim Gray 81 46,884

11 Gerhard Weikum 88 34,028

12 Jeffrey F. Naughton 76 22,963

13 Yannis E. Ioannidis 59 15,017

14 Laura M. Haas 49 12,834

15 Stefano Ceri 77 29,506

16 Michael J. Carey 59 16,451

17 Rakesh Agrawal 108 124,595

18 Umeshwar Dayal 62 26,527

Table 8.1: Top communities by our approach in DS.
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Conclusion

In this study, we have introduced the keyword-aware influential community query (KICQ)

that finds top-r most influential communities from an attributed graph, which has many practical

applications. First, we have designed theKICQ as a set of query terms conjoining with predicates

(AND or OR) that enables a user to search for influential communities from an attributed graph

enriched by our proposed word-embedding based keyword similarity model. We have also

proposed an influence measure for a community that considers both the cohesiveness and influence

of individuals in the community. To answer the KICQ efficiently, we have developed two

algorithms based on the derived upper bounds and results from already explored subgraphs.

Our experimental results and case study show that our approach outperforms the state-of-the-

art approach in both efficiency (up to 4 times faster) and effectiveness (up to 15 times higher

keyword cohesiveness).
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