
M.Sc. Engg. (CSE) Thesis

Handling Long Tail in Recommendation Systems for Niche
Markets Using Fuzzy Classification

Submitted by

Farzana Hoque
0413052095

Supervised by
Dr. Mahmuda Naznin

Submitted to
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

September 2019

Candidate’s Declaration

I, do, hereby, certify that the work presented in this thesis, titled, “Handling Long Tail in
Recommendation Systems for Niche Markets Using Fuzzy Classification”, is the outcome of
the investigation and research carried out by me under the supervision of Dr. Mahmuda Naznin,
Professor, Department of CSE, BUET.

I also declare that neither this thesis nor any part thereof has been submitted anywhere else for
the award of any degree, diploma or other qualifications.

Farzana Hoque

0413052095

i

The thesis titled “Handling Long Tail in Recommendation Systems for Niche Markets Using
Fuzzy Classification”, submitted by Farzana Hoque, Student ID 0413052095, Session April
2013, to the Department of Computer Science and Engineering, Bangladesh University of
Engineering and Technology, has been accepted as satisfactory in partial fulfilment of the
requirements for the degree of Master of Science in Computer Science and Engineering and
approved as to its style and contents on September 30,2019.

Board of Examiners

1 . n c ^ \ r v ^
Dr. Mahmuda Naznin v\
Professor
Department of CSE, BUET, Dhaka

Dr. Md. Mostofa Akbar
Professor and Head
Department of CSE, BUET, Dhaka

Dr. A. B. M. Alim Al Islam
Associate Professor
Department of CSE, BUET, Dhaka

Dr. Rifat Snahriyar
Associate Professor
Department of CSE, BUET, Dhaka

jgL-________
Dr. Hasan Sarwar
Professor
Department of CSE
United International University
Dhaka

Chairman
(Supervisor)

Member
(Ex-Officio)

Member

Member

Member
(External)

li

Acknowledgement

I would like to express my sincere gratitude and profound indebtedness to my supervisor
Dr. Mahmuda Naznin for her constant guidance, insightful advice, helpful criticism, valuable
suggestions, commendable support, and endless patience towards the completion of this thesis. I
feel very proud to have worked with her. Without her inspiring enthusiasm and encouragement,
this work could not have been completed.

I must express my very profound gratitude to my parents and my spouse for providing me with
unfailing support and continuous encouragement throughout my years of study and through the
process of researching and writing this thesis. Thesis work is always frustrating and challenging
but their supports made it easier to me. This accomplishment would not have been possible
without them.

Last, but by no means least, I thank Allah for the talents and abilities I was given that made it
possible to undertake this research.

Thank you.

Dhaka
September 30,
2019

Farzana Hoque
0413052095

iii

Contents

Candidate’s Declaration i

Board of Examiners ii

Acknowledgement iii

List of Figures vi

List of Tables viii

List of Algorithms ix

Abstract x

1 Introduction 1
1.1 Classifications of Recommendation System 1

1.1.1 Content Based Filtering . 2
1.1.2 Collaborative Filtering . 3
1.1.3 Knowledge-based Filtering . 5

1.2 Long Tail and Niche Market . 6
1.2.1 Long Tail . 6
1.2.2 Niche Market . 6
1.2.3 Challenges of Long Tail and Niche Market 7

1.3 Organization of the Thesis . 8

2 Related Work 9

3 Problem Domain 13
3.1 Fuzzy Set and Membership Function . 13
3.2 Preliminaries . 14

3.2.1 Selection of Item Attribute . 16
3.2.2 User Profile Generation . 17
3.2.3 User Choice List . 18

3.3 Item Profile Generation . 20

iv

3.4 Recommendation Methodology . 23
3.5 Data Collection . 24

4 Results and Analysis 28
4.0.1 Impact of Attribute Quantification . 30
4.0.2 Impact on the Tail . 32
4.0.3 User and Movie Class . 33

4.1 Impact on Attribute Coverage . 36

5 Conclusions 39

References 40

A Codes 42
A.1 SQL Query Code 1 . 42
A.2 SQL Query Code 2 . 50

v

List of Figures

1.1 Classification of Recommendation System [1] 2
1.2 Content-based and Collaborative filtering technique [1] 3
1.3 User-based Collaborative filtering technique [1] 4
1.4 Item-based Collaborative filtering technique [1] 5
1.5 Knowledge-based filtering technique [1] . 5
1.6 Long tail . 6

2.1 User-Item rating matrix using bipartite graph. 10
2.2 Fuzzy Inference System Model. 11

3.1 Graphical representation of fuzzy set. 13
3.2 Movie rating decides the fate of movie. 15
3.3 Low rated movies are on the tail. 15
3.4 Attribute of movie. 17
3.5 Proposed quantified attributes of movie. 17
3.6 User profile design approach. 18
3.7 User choice’s fuzzy fpecification. 19
3.8 Item Profile Design Approach . 21
3.9 Item Attribute’s fuzzy Specification . 22
3.10 User choice’s to movie with fuzzy classification 24
3.11 User choice class representation and the long tail. 26
3.12 Movie attribute class representation and the long tail. 27

4.1 Recommended movie for single user. 29
4.2 Single movie with attribute match for single user. 30
4.3 Recommended to User Robin followed by single rating. 33
4.4 Recommended to User Robin followed by attribute rating. 33
4.5 Attribute class of the user. 34
4.6 Attribute class of the user. 34
4.7 Precision value for proposed method . 35
4.8 Recall value for the proposed method. 36
4.9 F-measure value for proposed method . 37

vi

4.10 Attribute quantification of different users. 37
4.11 Attribute quantification of different movies. 38

vii

List of Tables

3.1 Table of rating classification. 14
3.2 Table of User Item rating matrix . 25

4.1 Standard deviation . 29
4.2 Standard Deviation for ’Movielence’ data-set 29
4.3 Table of degree of attribute for a single movie Paltan. 31
4.4 Attribute Quantification . 31
4.5 Table of Performance matrix of proposed method 35

viii

List of Algorithms

1 Attribute Rating Classification . 17
2 User rating classification for attribute . 19
3 Movie Rating Classification for Attribute . 21

ix

Abstract

Recommendation systems provide the best-desired items to a user based on
the user’s interest measured from user activities. Online movie search is a very
popular activity of the internet users. There are many systems, which are suggestive
for searching the movie based on the fact that users previously have viewed any
other similar types of movies. Items or movies are selected based on their features.
However, all of the attributes of the items are not equally important. All popular
items are not liked by all users and niche items are available to the classified users.
Therefore, the degree choice by the users based on the attributes of items of the
niche markets should be considered. In this work, the fuzzy rating has been used
for a niche market’s items. In this research, we use Mamdani Rule-Based Fuzzy
Inference Technique for movie recommendation. This methodology helps the movie
viewers to watch a movie after knowing that how much utility the user will get from
this movie. We find that, proposed fuzzy rating reduces the long tail of the movie list.
This helps users to consume a specific item. The movies will be recommended to the
specific users because segmentation and the fuzzy membership of the attribute helps
to achieve the popularity in niche market. We design a data-set, where the single
movie get multiple ratings for different attributes. We find our proposed model can
handle long tail problem of the items of niche markets.

x

Chapter 1

Introduction

Recommendation System is information filtering system which generates meaningful
recommendations to a collection of users for items or products those might interest them.
For example, Amazon suggests different books to its users, Netflix suggests popular movies
while searching. There are many real world examples of industry-strength recommendation
systems [2]. In the era of high internet usage, the recommendation system develops a notion
of affinity between users and items, which can be used to identify well-matched pairs and the
contents are such as movies, books, magazines, jobs, news, research articles, restaurants, historic
places, grocery stores etc. [3]. Because of the rapid growth in the amount of available digital
information about products in internet, search engines work as information retrieval system but
they do not provide prioritization and personalization of information. Recommendation System
solves these issues as information retrieval system more than ever before.

In a conventional system, like a book store, a CD/DVD store, newspaper, etc. have limited
physical storage to keep all collections instead of only popular items. Behind this, niche items
remain mostly away from users and tradings, whereas these items have the potentiality to
meet user satisfaction and can aggregate the total revenue of the business. It also abide by
Pareto Principle, better known as the 80/20 rule [4]. According to this principal long tail
makes a different view of marketing and niche products and he become apt for profitable
market. With the aspects of recent life, online movie platforms has become a popular source of
entertainment. Knowledge and the recommendation system is a very effective application for
this. The recommendation system gives the users a proper suggestion when they require a movie.

1.1 Classifications of Recommendation System

In this section, the classification of recommendation system is described. Figure 1.1 is a complete
basic classification of recommendation system. This techniques are used on different applications

1

1.1. CLASSIFICATIONS OF RECOMMENDATION SYSTEM 2

Figure 1.1: Classification of Recommendation System [1]

as the need of application plot. Some of this techniques are described here.

1.1.1 Content Based Filtering

Content-based Filtering is a recommendation technique which considers item properties for
recommendation. Content-based technique is a domain-dependent algorithm and it emphasizes
more on the analysis of the attributes of items in order to generate predictions [1]. For example,
web pages, publications, news, research-articles, e-learning, etc. can be recommended using this
technique. Content-based filtering use domain dependent algorithms and there is no dependence
on users. It uses Vector Space Model such as Term Frequency Inverse Document Frequency
(TF/IDF) or probabilistic models such as Naı̈ve Bayes Classifier, Decision Tree or Neural
Network to model the relationship between different documents within a corpus [1]. Figure 1.2,

1.1. CLASSIFICATIONS OF RECOMMENDATION SYSTEM 3

Figure 1.2: Content-based and Collaborative filtering technique [1]

is the demographic example of content-based filtering where similar item is recommended to
users.

1.1.2 Collaborative Filtering

This recommendation technique recommends users using features extracted from the users’ past
recommendation. Collaborative filtering technique is a domain-independent technique which
is applicable for content that cannot easily and adequately be described by metadata such as
movies, music, etc. It works on user preferences to items as making user-item matrix which
is used to calculate similarity and predict ratings from user’s behaviour and recommend the
similar item to neighbourhood users. Figure 1.2 is an example of collaborative filtering where,
if one item is consumed by a user, then it can be predict that item will be liked by the user’s
neighbourhood users. Collaborative filtering technique is divided in two categories: Model-
based and Memory-based filtering technique. Memory-based filtering technique works on two
categories- User-based Memory Filtering and Item-based Memory Filtering.

Model-based Filtering

Model-based filtering technique considers the user’s previous ratings from user-item matrix to
learn different models and to compute the similarity to predict the ratings for neighbourhood users
to recommend. Examples of this technique’s model are including Dimensionality Reduction
such as Singular Value Decomposition (SVD). Matrix Completion Technique, Latent Semantic

1.1. CLASSIFICATIONS OF RECOMMENDATION SYSTEM 4

Figure 1.3: User-based Collaborative filtering technique [1]

methods, and Regression and Clustering. Model-based techniques analyze the user-item matrix
to identify relations between items; they use these relations to compare the list of top-N
recommendations [1]

User-based Filtering

User based Collaborative Filtering calculates similarity between users by comparing their ratings
on the same item, and it then computes the predicted rating for an item by the active user. This is
context independent and compare to other such as content-based technique it is more accurate.
But it has the cold start problem with new users, who will have no to little information about
them to be compared with other users. Also the percentage of people who rate items is really
low. Figure 1.3 is graphical example of user-based collaborative filtering technique.

Item-based Filtering

Item-based collaborative filtering technique computes similarity between item by comparing
their ratings on that or similar item from neighbourhood user, not the similarity between two user.
There are some similarity measurement techniques to compute similarity between two rating
set, count as vector of item. These are Cosine-Based Similarity, Correlation-Based Similarity,
Adjusted Cosine Similarity, Jaccard distance, etc. used for similarity computation. Figure 1.4 is
an example of item-based collaborative filtering where item- item correlation has been prioritized.

1.1. CLASSIFICATIONS OF RECOMMENDATION SYSTEM 5

Figure 1.4: Item-based Collaborative filtering technique [1]

Figure 1.5: Knowledge-based filtering technique [1]

1.1.3 Knowledge-based Filtering

Knowledge-based filtering technique is combination of Content-based and Collaborative filtering
technique to overcome their limitations and problems and build an unified algorithm to provide
an effective and more accurate recommendation. It uses different model of different technique
and approaches combined multiple algorithm, if one algorithm has limitation other will solve that
issue. This recommendation is used applied for apartment booking, car sell, and etc. where user
profile and item profile both need to be considered for the best item to an appropriate user using
a huge amount of data analysis for the recommendation. Figure 1.5 is an example of structured
model of knowledge-based filtering technique.

1.2. LONG TAIL AND NICHE MARKET 6

Figure 1.6: Long tail

1.2 Long Tail and Niche Market

In this section we discuss the different challenges of long tail and niche market.

1.2.1 Long Tail

Long Tail is created due to the fact that the economy is increasingly shifting away from a focus
on a relatively small number of mainstream products and markets at the head of the demand
curve to toward a huge number of niches in the tail. As the costs of production and distribution
fall, all products do not get focus of consumers. Moreover, due to the limitation of space and
resources many products do not come to the mainstream store in conventional market place.
Long Tail concept abide 80/20 Perito Principle [4]) rule. It shows the most popular products lie
with the less popular items in aspects of business credit. According to the traditional business,
small number of products are sold rapidly, and the large number of products stay with less sale.
Figure 1.6 describes the scenario of long tail. The long tail is used to describe the phenomenon
that less sale products can be the future business [5].

1.2.2 Niche Market

Niche market is a part of mainstream market where niche items have specific unique features
for satisfying specific customers. This market is a specialized market which is limited and has

1.2. LONG TAIL AND NICHE MARKET 7

clearly defined a range of products for a specific group of customers. Every product can be
defined as a market niche. It is marketing to a more narrowly defined consumer group which
seeks products or services tailored specially for the individual needs and preferences. Niche
marketing is very common on the Internet’s, on various websites [6]. In traditional market,
there is scarcity of space and resources. But in Internet world, there is abundance of space and
resources. For example, Amazon or any other online platform’s have limitation of storage and
became ’one-stop shopping convenience’ which aggregate the total revenue of business and user
satisfaction [5, 7].

Niche market has lot of advantages to make profit using customer need and personalization of
products. It has low competitors in market and to earn best profit need to do best research on
customer need and mainstream market analysis. It is important to implement an efficient niche
marketing strategy for the establishment of this market.

There are two important facts of niche market is market segmentation strategy and positioning
of niche products. In [6], the authors proposed a topic-based Hierarchical Bayesian model
for niche product recommendation. They only use the user-item ratings matrix and movies’
descriptive content information. They did not classify or distinguish popular item, niche item,
and long tail item.

A market segment is a segmented category of customers who have similar likes and dislikes in an
homogeneous market. These customers can be individuals, families, businesses, organizations
or a blend of multiple types. Market segments are known to respond somewhat predictably
to a marketing strategy, plan or promotion.It employs a strategy to differentiated marketing
approaches for subset of a market with unique needs and preferences. Segmentation of a markets
can be developed in several ways, such as

• Geographically by region or area,

• Demographically by age, gender, family size, income, or life cycle,

• Psycho-graphically by social class, lifestyle, or personality,

• Behaviorally by benefit, use, or response.

1.2.3 Challenges of Long Tail and Niche Market

There are limitations of long tail and niche market with a lot of opportunities. Basically, the
tail items of the long tail from mainstream market goes on niche market with lot of risk. These
items face challenges of niche markets which are are discussed as follows. To get profit need to
understand the customer need and satisfaction. Although this is cheaper than mainstream market,
but there is high risk about to gain the customer satisfaction and get profit. Niche products are not
be aggregated to the business all the time. For example, if we consider the online movie platform,

1.3. ORGANIZATION OF THE THESIS 8

some movies really go on bottom because of the missing of rating or marketing. Moreover, some
movie items comes on the top of sale which are not most liked by the audience and if one movie
is picked up from the tail or low rated, it would be just time wasting for audience. And niche
products are limited to serve with minimum number of customer, that’s a big problems of niche
market.

We now provide the main contribution of the thesis. Positioning is the practice of designing a
product, item or brand to have a unique selling proposition relative to the competition, aspects
of users. This can include factors such as product, price, distribution, promotion and brand
identity etc. In this thesis, positioning in long tail is be factorized with attribute, item rating of
the membership class which it belongs to. Then positioning the items will be recommended to
the users.

1.3 Organization of the Thesis

In this section, we provide the organization of the thesis. The rest of this thesis is organized as
follows. The review of the related work is in Chapter 2. In Chapter 3, the problem formulation
is elaborately described. The experimental results and comparisons are reported in Chapter 4.
Finally, Chapter 5 provides conclusions.

Chapter 2

Related Work

In this chapter, we discuss some relevant recommendation systems.

Now in these internet times, peoples are going online for even a single thing to buy or choose
like: electronics gadgets, books, movies, clothes, household things, research articles, restaurants,
historic places, shopping malls, twitter pages, and many more products as their needs. First of
all, the users look for these in a specific web site or search engine. Search engine solves the
information overload but they do not provide personalization of data [2]. Many work have been
done on this topic, still, it is a very challenging area because of the diversity under the domain of
data science.
There are so many applications of recommendation system which are always companion in our
daily life [2]. Along with the basic three recommendation systems, [7] describes the challenges
and benefits of Demographic technique based and Keyword based recommendation system. In
demographic recommendation system the user0s characteristics such as gender, age, education,
etc. are considered and the user rating or reviews are not considered.
On the other hand, the keyword-based recommendation system makes user preferences from
the keyword of the user0s text reviews. In [2], the authors focused on the electronics gadget as
product and reviews as feedback. They used Collaborative Filtering recommendation system
with the keyword-based technique and developed a recommendation system with classified
users like ”admin user” and ”active user”, where Admin user can log in through the interface
and upload reviews, add products, perform training on the data. And an active user also can
log in, select a product, provide reviews for the product, view his reviews and when he clicks
on the recommend link gets the recommended products. But there is no activity with ”rating”
or any product specified recommendation, sometimes the only keyword cannot identify the
diversification of the product and the niche products are not focused properly in this system.

As compared with the conventional and digital market, a seller can only keep the ”popular” or
”must be sold out” type items with a large volume because of the scarcity of space and resources
in the conventional market. On the other hand, in the online digital market comes with an
abundance of space and resources. This state of market long-tail concept supports ”one-stop

9

10

Figure 2.1: User-Item rating matrix using bipartite graph.

shopping” which provides mainstream and niche products. In [7] , they proposed a graph-
based algorithms for the long tail recommendation where user-item information represented in
an undirected edge-weighted graph representing in figure 2.1, and analyzed theoretically the
foundation of applying Hitting Time algorithm with considering the random walk similarity
for long-tail item recommendation aspects of collaborative filtering recommendation system.
From their proposed hitting time algorithm they recommend the item with minimum hitting time
to similar user which differ from traditional collaborative recommendation. But the item with
minimum hitting time, has most probability to be inappropriate for the average user. They used
user ratings on the item and then applied absorbing time and cost with user entropy where there
is a chance to fall into the niche market. Because all time user will not prefer the tailed or less
selling products. Also, they were not focused on the item’s category diversification at all.

On the other hand [8], the authors carried out detailed feature engineering work and proposed
a new evaluation criteria system that improves the long tail recommendation rate and stability.
They consider user behavior, product information and all features which are categorized into
three categories. The first category is the information of user characteristics, second is the
information of behavior characteristics and third is the information of the platform. They build
feature0s tree, using the cascade model and classified the item in proportion to 8:2 where the
smaller part is from long tail, which sometimes distorts the niche market.

In [9], using the fuzzy logic concept for user preferences the author builds a shortlist of audio
gadget products to recommend which is likely to match the Pereto-Principal rule and their

11

Figure 2.2: Fuzzy Inference System Model.

system only recommends top listed items. They consider budget, reviews, genres, sound quality,
etc as a fuzzy inference system0s (figure 2.2) parameter and apply rule-based Mamdani Fuzzy
Model for each parameter. Where this system provides user weight-based adaptation for best
budget-friendly recommendations. But this is not applicable for niche items such as movies or
books where the category has many diversification and choices vary for different users vastly.

In [10], algorithms based on fuzzy concept like fuzzy c-means, k-means clustering have been
used in machine learning-based system and also used for rank prediction for scientific research
papers. Here publication date, authors, keywords, citations indicate the rank of these papers.
Those are classified items. They also developed their algorithm focused on research paper article
as item which is appropriate for higher studies education area. However it does not have any
solution for long tail handling.

In the case of item-oriented markets like jobs, books, movies, songs, etc where user and item
are directly personalized and there is a one to one relation between user and item. Sometimes it
represents using the user-item matrix with their dimension. In [11], they build a low dimensional
subspace of a novel inter-item proximity matrix which consisting of a similarity and a scaling
component of user and item. They proposed the EIGENREC algorithm based on a pure-SVD
(Singular Value Decomposition) algorithm where pure-SVD is popular for matrix factorization.
But they cover the collaborative recommendation where item attribute’s rating is not considered.

Considering the average scenario of recommendation systems, the users have the full consent to

12

give any rating on product feedback. But all users would not be good decision-makers all the
time in give rating. It depends on the knowledge of the users. As a result, some anonymous or
noisy data will be added to a good product. To resolve this problem [12] works on this issue
using a fuzzy set classifier to remove noisy data as divided them in strong, week, average class
and used Bhattacharya coefficient and Pearson coefficient similarity for noise-free rating for
recommending to the user [12]. However, their work is good for a single rating in one product
aspect of a collaborative filtering recommendation system but not suitable for category wise
rating classification. They also show that the performance matrix worked well with the existing
method.

In business markets, all users do not behave in the same manner [13]. Therefore, recommendation
models substantially vary in the markets. Besides, to predict every user0s potential rating for a
specific item, existence of only one score for an item is generally used by currently available
models such as fuzzy tree structure [14], bi-clustering and fusion methods [15], fuzzy c-means
[10], etc. These models do not consider item0s degree of attributes, i.e., how precisely an attribute
can add value to the item is also important. Other recent studies [12] , [9], also do not consider
this either. Thus, consideration of degree of attributes, especially for the niche markets an item is
yet to be considered.

Chapter 3

Problem Domain

In this chapter, we formulate the problem and describe our solution approach.

3.1 Fuzzy Set and Membership Function

Fuzzy Set: A fuzzy set is a set of real numbers xi which represents the membership values of ui

which (generally) lies in the range from 0 to 1. A fuzzy set is represented by a set of pair ui /
xi, where ui, is the membership value of xi [16]. For example, let us consider X = g1, g2, g3, g4

be the reference set of students and A is the fuzzy set of smart students, where smartness is a
fuzzy variable for the students with value pair set A = (g1, 0.8), (g2, 0.6), (g3, 0.7), (g4, 1) Here,
A indicates the smartness value of g1 is 0.8. Figure 3.1 explains the example.

Figure 3.1: Graphical representation of fuzzy set.

Fuzzy Logic is an approach to compute based on degrees of truth rather than boolean value for
True or False (1 or 0). Figure 3.1 helps to understand the representation of the fuzzy set and it’s
membership value.

In our model, we use fuzzy set for classifying the rating. Rating is considered as the degree of
membership. We consider the rating range from 0 to 5 and put them poor, low, medium, and

13

3.2. PRELIMINARIES 14

high class for each attribute. For example, the user’s feedback that gives the movie rating value
considers user interest also for find the quality of the rating. Therefore, the rating for movie can
be weighted.

Table 3.1: Table of rating classification.

Rating Class
0.1-1.5 Poor
1.6-2.5 Low
2.6-3.5 Medium
3.6-5 High

Table 3.1 represents rating category and range. Poor has the rating 0.1-1.5, High class with rating
range 3.5-5.0 defines the degree of the class.

3.2 Preliminaries

Online business platforms are more popular for recommendation systems where users do not
need to use a search engine to find an item because users automatically get recommended or
suggested from the user behavior and profile. This is possible after analyzing the user’ profile
and behavior pattern. Usually, users give their feedback as a rating, like, dislike or any other
activities such as watch, purchase or use. Any user’s feedback can be of two values either yes
(1) or no(0). Our proposed system focuses on the feedback with some quality.
For example, an user A likes a movie X-man and gives a rating 4.5 to ’X-man’ can be considered
as a movie of Action, or Thriller, or Sci-fiction, etc. On the other side, another movie named
Breathe can belong to drama, thriller, story-line, etc. However, user A gives rating 2.0 for Action
class. The movie will not sustain as an Action movie in the box office because of its poor rating.
Many users will not consider this even. These types of movie will position at the in tail always
as review is poor. Figure 3.2 and 3.3 are the examples of niche item in online platform.

We propose a new classification method based on user’s choice using Fuzzy inference which
maintains the input data’s quality [17]. Fuzzy inference technique works using input value and
applies a different rules for decision-making problem.
Mamdani method is the most commonly to use fuzzy inference technique. Mamdani Model is
a knowledge-driven predictive model, it works with input of crisp data and also with different
intervals or linguistic terms. The major advantage of this model is-it provides a measure of
confidence for predicting future value when the actual value is unknown. The important domain
of its applications are web-based applications such as online shopping platform, movie site,
online book stores, etc. [17].

Therefore, Fuzzy Mamdani model is good for our proposed method for movie recommendation.
Attributes ratings will be decided based on different levels of membership functions or based

3.2. PRELIMINARIES 15

Figure 3.2: Movie rating decides the fate of movie.

Figure 3.3: Low rated movies are on the tail.

on their degree (existence). In this model, the long tail produced, where users choices can be
measured from the user profile. There will the same classification for user choices on different
categories and preferences obtained by fuzzy function.

If movie attributes become more classified and movies are recommended to the right user, an
important aggregation in business with maximum user satisfaction will be there. This is also
applicable for the interaction perspectives for user choice attributes. Recommendation System
tries to provide the best-desired items to a user as per the user’s interest in measuring activities
such as rating, preferences, etc. Capturing the user’s activity on an item can provide a better
recommendation system. To do this, a new customized configuration for user and item has been
proposed here.

In the proposed system, the user provides preferences for the items. Items are classified based
on the degree of the choices of the users’ based on fuzzy set theory where the conventional

3.2. PRELIMINARIES 16

recommendation systems are based on the crisp set. Fuzzy theory will help to classify and
measure the consistency of rating more precisely for both of the users and the movies or the
items. This system has the following steps.

• Step 1: We select appropriate attributes for user choice and movie.

• Step 2: We give rating for classification for attribute.

• Step 3: We make fuzzy set based user profile according to their choices.

• Step 4: We make movie profile and its classification based on fuzzy set theory from the
given degree of attributes.

• Step 5: We make recommendation for users from highly preferred attribute match with the
movies’ degree of attribute.

3.2.1 Selection of Item Attribute

There are too many attributes in movie and user choice. But some attributes will be compressed
with maximum similarity and less difference.
Some attributes can be liked this. Action, Thriller, Adventure, Mystery, Drama, Romance,
Horror, Crime, Comedy, Science-Fiction, Documentary, Story Line, Performance, Print Quality,
Animation, etc. These attributes also define the user0s choice or interest area. Some of them
are also known as genre. But here some other attributes change the genre. These attributes
preference value as feedback from the user is yes or no but the proposed method offers between
yes or no as the degree of choices or interest. This will help to predict items attribute and user
choices more in-depth.
For example, let us consider the movie Thor, which has three(Action, Adventure, Fantasy)
attributes. Another user group defines this movie with two (Fantasy, Sci-Fiction) attributes. For
this item confusion is created which one would be its attribute.

In our model system, admin or authorized users will be allowed to upload a movie and add
specific attributes with consistency range by rating. This attribute list can be changed by the
users who will watch and they can add more attributes with a rating. In this way, the movie will
have dynamic attribute list and rating. This model will help the user to understand the movie
specification precisely.

We find in Figure 3.4, the movie Thor has three attributes. These attributes are focused in this
movie and the overall average rating is the only way to decide to watch this movie. But in
our new system, shown in Figure 3.5, tells us about the maximum coverage of attributes suits
with this movie and also with the quantity it contains. It ensures the user about each attributes
consistent with the movie and make user satisfaction precisely.

3.2. PRELIMINARIES 17

Figure 3.4: Attribute of movie.

Figure 3.5: Proposed quantified attributes of movie.

Attribute consistency of users and items will be classified using the algorithm 1. It helps
to determine the user choice for a recommendation. The degree of membership for class is
quantifying the measurement of user choices and movie attributes.

3.2.2 User Profile Generation

In recommendation system, user profile is a collection of information and interest area associated
with a user. User’s basic information such as Name, Address, Gender, Age, Profession, etc. are
considered the digital identity of that person. Here, the item is a movie. Which kind of movie
he/she prefer to enjoy more or less, and all information will be considered to create the user
profile. From different activity such giving rating, views, like, dislike, etc. all are counted as
user’s activity. In our recommendation methodology, there are two types of user. One is admin
user and authorized users, and the other is general user. The first type of users are permitted to
upload movie with maximum attribute it contains, and the second type of users are permitted to
view, give ratings, the last category users add more attributes with rating. The user will put a

Algorithm 1 Attribute Rating Classification
Require: Rating value in attribute
Ensure: Degree of membership in fuzzy class and Root Mean Square (RMS) value

Step 1: Get the rating value for each attribute as Ra and calculate RMS value as crisp input.
Step 2: Get the degree of membership class using rating RaRMS value as poor, low,
medium, high.
Step 3: Calculate the percentage value from degree of membership value, RaRMS for each
attribute.
Step 4: Prepare the attributeś rating as degree of membership class, RMS value, and
percentage value.

3.2. PRELIMINARIES 18

Figure 3.6: User profile design approach.

rating on different attributes of a movie as they enjoy, these will make their profile according to
each attribute. These ratings will be used by fuzzy classification for selecting degree of attributes.
Figure 3.6 represents the user choice design model. This system will collect all rating of user
for different attributes on different movies. Then it calculates the RMS value for each attribute.
Afterwards, it converts them into fuzzy set value. This attribute’s set value will represent the user
choice list.

Figure 3.7 shows the user choice specification using fuzzy set theory and the generation of long
tail from each choice weight (ratings). In this system, the single rating has been broken into
possible multiple values, which classifies the actual interest for each attribute. It helps to decide
item should recommend.

3.2.3 User Choice List

The following algorithm 2 classify the user rating which is described bellow.

Step 1: For user Ua, the feedback as rating on different attributes of movie Thor are (8.30),
Avatar (7.17), and Ring (7.5).
UaThor = (Action=3.5, Thriller=4.0, Sci-Fiction=4.0)
UaAvatar = (Action = 4.0, Fantasy= 4.5, Thriller=4.5)
UaRing = (Horror= 4.0, Mystery = 3.0)

3.2. PRELIMINARIES 19

Figure 3.7: User choice’s fuzzy fpecification.

Step 2: The classified set of user Ana for her attribute wise rating, calculate Root Mean Square
value.

UaRMS = (Action=3.75, Thriller =4.25, Mystery=3.0, Horror=4.0, Sci-Fiction = 4.0 , Fantasy=
4.5)

Step 3: Convert the classified set to fuzzy set of Ana using fuzzy set theory.

Algorithm 2 User rating classification for attribute
Require: Users rating on movies attribute.
Ensure: Fuzzy set of user choice as membership value of the attribute class.

Step 1: Get the registered user choice attribute with weight from user profile.
Step 2: Optimized all attributes rating value Ra of user Ui, and calculate RMS value as
crisp input.
Step 2: Calculate the degree of fuzzy membership class as poor, low, medium, high for
user Ui.
Step 3: Compute the percentage value of membership class of rating RaRMS for each
attribute.
Step 4: Sort the attribute’s rating value in descending order and use for create long tail.
Step 5: Save the data in three output as membership degree value, RMS value and
percentage value.

3.3. ITEM PROFILE GENERATION 20

Uafuzzyset = (Action=0.375, Thriller =0.425, Mystery=0.30, Horror=0.40, Sci-Fiction=0.40 ,
Fantasy= 0.45)

Step 4: Final choice list of user Ana is in percentage and membership class.

Uachoicelist = Fantasy | 90 percent | High,
Sci-Fiction | 80 percent | High,
Thriller | 85 percent | High,
Horror | 80 percent | High,
Action | 75 percent | High,
Mystery | 60 percent | Medium,

This choice List of user will be used to measure the degree of attribute, match with movie’s
attribute list for recommendation.

3.3 Item Profile Generation

In our ’Movie Recommendation’ movies will be uploaded with basic information such as Name,
Director, Production, Release Date, Cast, and etc. Some attributes will be added to the movie as
core attribute by authentic users. Then general user, after watching the movie he/she will be able
to add more attributes and the rating with existing attributes. All rating from users for a single
movie will create movie profile. This profile will be used for make recommendation to users
according to the degree of attributes.

In general, after enjoying the movie as newly released, recommended or searched, the user will
put some rating on a different attributes of the movie. After that, the user just give one rating
according to default movie attributes. And also in a different online movie site, movie attribute
become changed. In this situation sometimes users choose a movie with their favorite genre (in
general), but after sometimes, some movies tagged with action, drama, comedy, etc. genre and
people who like action very much, get recommended to them. But after the user watched, he/she
realized this movie is more on drama and comedy with less action, and users get disappointed.

To solve this issue, admin and user can give their rating in each attribute to express how much
they like this movie as in attributes consistency, i.e. how much action is in this movie from user
view.

Each movie will be classified by rating due to their attribute consistency and then, there will be a
long tail for each attribute which will help to recommend the exact types of a movie to pick for
the similar attribute users.

3.3. ITEM PROFILE GENERATION 21

Figure 3.8: Item Profile Design Approach

Figure 3.8 is representing the model of item profile and in figure 3.9 is presenting the attribute’s
specification for crisp and fuzzy set. In general, one movie has some attributes and all those
attributes are exist in that movie. But in general, other system is not quantify the attribute.
Applying fuzzy set concept we take a initiate to quantify the attribute for a specific movie, that it
contains.

Algorithm 3 Movie Rating Classification for Attribute
Require: Ratings of Movie for Attribute.
Ensure: Fuzzy set of Movie Ratings as degree of membership class.

Step 1: Get Attribute list of movie profile for each movie Mi with weight value Ra and
compute RMS value of Ra as crisp input.
Step 2: Optimized Rating for Attribute of Mi and compute degree of membership class
in poor, low, medium, high.
Step 3: Calculate the percentage value of Mi , from Rating value of Attribute RaRMS

for each attribute.
Step 4: Sort the attribute’s rating value in descending order and use for create long tail.
Step 5: Save the data in three output as degree of membership class, RMS value and
percentage value.

Example of Movie Attribute List

Considering Avengers as Item as Movie and some Users to give feedback as they preferred to.
Following the algorithm 3 step by step and classify the Movie rating is described bellow.

Step 1: Considering a movie Avengers , and its rating from different user Ut(4.015) ,
Ub(3.64),Uz(3.75).

UtAvengers = (Action=3.5, Thriller=4.0, Sci-Fiction=4.0, Fantasy= 4.5)

3.3. ITEM PROFILE GENERATION 22

Figure 3.9: Item Attribute’s fuzzy Specification

UbAvengers = (Action=3.0, Animation= 3.5, Thriller=4.0, Fantasy= 4.0)
UzAvengers = (Sci-Fiction= 4.0, Mystery = 3.5)

Step 2: Now the classified set of movie Avengers attribute’s rating, calculate Root Mean Square
value.

AvengersRMS = (Action=3.25, Thriller =4.0, Mystery=3.5, Animation=3.5, Sci-Fiction =4.0 ,
Fantasy= 4.25)

Step 3: Convert the classified set to fuzzy set of Avengers using fuzzy set theory.

Avengersfuzzyset = (Action=0.325, Thriller =0.40, Mystery=0.35, Animation=0.35, Sci-
Fiction=0.40 , Fantasy= 0.425)

Step 4: Final choice list of user Avengers is in percentage and membership class.

Avengerschoicelist = Fantasy | 85 percent | High,
Sci-Fiction | 80 percent | High,
Thriller | 80 percent | High,

3.4. RECOMMENDATION METHODOLOGY 23

Animation | 70 percent | Medium,
Mystery | 70 percent | Medium,
Action | 65 percent | Medium

This choice list of user will be used to measure the degree of attribute, match with user’s Attribute
List for recommendation.

3.4 Recommendation Methodology

Our proposed recommendation methodology is applying the fuzzy set theory for the attribute of
user profile and item profile. According to algorithm 1 and 2, there will be a user choice list of
the attributes with weight. From the user choice list, the weight of attribute will be compared
with the weight of item as the movie’s attribute list. For our recommendation system, there is a
predefined thresh-hold value, T to 0.30. This value is at 0.30 which will refer that the minimum
50 percent to 60 percent preference will be recommended to the user-item matched attributes.

From the basic concept of fuzzy inference system, we applied Rule-based fuzzy inference system.
Our recommendation methodology can be described in two approaches, first one is for new
user-item profile and second one is active user-item profile.

1. For new user User choice list of attribute and weight will compute from the preliminary
selected attribute during registration.

2. Active user The attribute choice list of user will be updated as adding attribute with weight
from his/her feedback as rating. Minimum 20 ratings on different movie as it’s attribute will be
considered for adding attribute to choice list.

Movie attribute As considering movie, a new movie will get weighted attribute in the time of
upload.

According to time, and ratings new attribute would be added to movie’s attribute list.

From the user attribute set, the degree of membership class will be multiplied by the movie’s
degree of membership class. If the result value is greater than thresh-hold value, then the movie
will be recommended to that user. And the result value indicate the minimum preference level
of user to movie. This will also tell about the membership class which means how much this
attribute belongs to this movie and user choice list. Now, the recommendation methodology for
user and movie is given bellow.

Step 1: Take the single user’s fuzzy classified set of attribute.
Step 2: Compute the shorted attribute list and find the movie list corresponding to maximum
similar attribute.
Step 3: According to attribute, multiply the degree of membership value according to user and

3.5. DATA COLLECTION 24

Figure 3.10: User choice’s to movie with fuzzy classification

movie.
Step 4: If the computed value is greater or equal to the thresh-hold value T , then the movie will
be recommended to the user.
Step 5: The computed value will define the minimum preference value of choice by the user and
indicate the predicted class of choice.

Example There is an example of movie recommendation for a single user given bellow.

If there is a new movie MIB with the attribute value of Action 0.707 , and the user Ua has degree
of attribute value is 0.77 for Action attribute, so how much this movie would be liked by user
Bob or not, can be compute as,

MIBAction ⇥ UaAction = 0.707 ⇥ 0.77 = 0.54 , so UaAction�MIB = 0.54 .

The value of UaAction�MIB is grater then the predefined thresh-hold value T which is 0.30, then
the MIB movie will be recommended to user Ua , shown in figure 3.10.

Each movie will be classified using rating as their attribute consistency and then there will be a
long tail for each attribute which will help to recommend the exact types of a movies to pick for
the user who has the similar interest.

3.5 Data Collection

To apply our new classified recommendation methodology, we build a customized website with
interface for taking input value of movie type, user, movie name, etc. From online registration
section, new user can create profile with basic information and can add the preferred attribute
from the attribute list. From this list, user will get suggestions from top movies of a matched
attribute list. The admin user uploads movie with core attribute of the movie and then general
users give feedback as rating on those attribute and the user can add more attribute anytime.

3.5. DATA COLLECTION 25

From this web site we collect attribute list, user preferred attribute list with rating, movie
data with rating for our analysis. In general each movie has single rating for feedback, but in
consideration of our classified method the rating will be added for each attribute. The name
of our web site is ’Movie Recommendation’ using MySql database for data management. We
collect 100 data-set of user-item rating on different attribute. The next steps of the experiment
are performed on this collected dataset. From the rating of users on movie for attributes, the
user-item rating matrix is given on table as example.

User Movie A1(Action) A2(Thriller) A3(Drama) A4(Romance) A5(Horror)
U1 M1 5 5 2 2 0
U2 M1 4.5 4 1.5 2 1
U3 M1 4 5 2 1 0
U4 M1 5 4.5 1 1.5 0
U5 M2 2 2 4 4 4
U6 M2 1.5 1.5 3.5 4.5 4
Un Mn

Table 3.2: Table of User Item rating matrix

From the above user-item rating matrix table, the rating process is easy to understand and
afterward, the rating of the individual attribute is counted for user and the item both for which
rating class it should belong to.

XRMS =

r
⌃(X1

2 + X2
2 + X3

2 ++ XN
2)

N
(3.1)

Then, Standard Deviation is computed to detect the rating accuracy.
U1M1C1,W1(Action) = RMS of A1 value is computed from the equation,
U1M1C2,W1(Action�M1)RMS = 4.643
U1M1C3,W1(Thriller �M1)RMS = X

U1M1C4,W1(Drama�M1)RMS = Y

Where, U is user, M is for movie, C for choice in the list of users, W is the weight of rating.

The RMS value of each attribute corresponds to the user and item or movie gets input to the
fuzzy inference system (Rule� basedMamdaniModel) as a crisp set. Here, the RMS value
is giving better average estimation. Mamdani and Assilian [17] models work with input data
with the minimal or no tuning. Our proposed method with some modification provides better
estimation. In Figure 2.2, fuzzy inference technique has been used with Mamdani model.

Mamdani model has good efficiency for getting a crisp set from the fuzzy set as output with
shorted in descending order. This output has been used to build the Long Tail graph for each
attribute with their item. We calculate the similarity using the fuzzy multiplication operator of

3.5. DATA COLLECTION 26

the user profile’s ’proficiency of attribute’ and ’movie attribute’. We then compare with the
threshhold value T which is predefined as 0.30. Figure 3.10the movie recommendation for user.

By the time of using the model of user profile gets matured by adding more attributes and then it
recommends the user the most desirable item or movie.

Figure 3.11: User choice class representation and the long tail.

Figure 3.11 represents the user’s preferred choices. For a single user, each user’s ratings will be
counted a class and a sorted list of rating and the long tail is created.

Figure 3.12 represents the movie’s attributes which have been in their specific class. The above
example has been done for a single movie. However, each movie’s ratings is computed in this
way. The long tail is generated from sorted rating. From overall rating, the attribute’s consistency
is measured in numeric percentage which decides the movie category.

3.5. DATA COLLECTION 27

Figure 3.12: Movie attribute class representation and the long tail.

Chapter 4

Results and Analysis

In this chapter, we provide the experimental results and analysis. Here, user-item rating
frequencies with attribute class labeling are reported. Furthermore, the comparison results
with different classification algorithms on popular Movielence data-sets from the Grouplence
organization [18] are also reported here. In Movielence data-set, there is only one class label for
each movie, however, in our proposed method movie are labeled as multiple classes (according
to attribute classification)

We report items’ attribute classification based on the user choices. Different performance metrics
are stated as follows. Standard Deviation, Recall, Precision etc. have been used to measure the
performance of our proposed recommendation system.

In our experiment, we have considered one hundred users feedback on seventy movies. These
movies are classified based on the attributes of the movies. To verify the rating by users, we
consider the minimum number (20) from one user and minimum twenty ratings for one movie.
We also consider the standard deviation value for user’s rating valuation precisely. Furthermore,
the rating from users for movie is used to recommend from their fuzzy set classification and the
degree of membership.
For our data set, measuring the value of standard deviation is important because it measures the
spread out of rating values from an average value. Standard Deviation is a number which is
used to tell how the measurements for a group spreads out from the average (mean), or expected
value. A low standard deviation means that most of the numbers are closed to the average. A
high standard deviation means that the numbers are more spread out. Standard Deviation can be
computed by taking the square root of the variance, which itself is the average of the squared
differences of the mean [19]. In our system, we calculate the standard deviation for user’s ratings
on attributes. This is used for measure the rating authenticity of user which ensure that active

28

29

Figure 4.1: Recommended movie for single user.

users are put their feedback appropriately.

� =

vuut 1

N

NX

i=1

(xi � x)2.

Table 4.1: Standard deviation

Rating Mean Standard Deviation Variance
Attribute (Ai) 4.9375 0.165 0.0272

Personalized User(Ui � Ai) 4.3235 0.593 0.3516
Movie (Mi) 4.1765 .64 0.4096

Table 4.2: Standard Deviation for ’Movielence’ data-set

Rating Mean Standard Deviation Variance
Useri 4.2414 0.773 0.5975

Movie (Mi) 4.1552 0.778 0.6053

In Table 4.1, we take 35 rating of users for our new data-set and in Table 4.2, we take 35 rating
of user from Movielence data-set. From these two tables we can see that, the standard deviation
and variance are more in Movielence data-set.

From our web application we collect user’s choice according to movies attribute and we find
that users receive recommendation matching their choices or according to the given attributes.
User can see the number of matched attribute. Figure 4.1 is a representation of recommended
matched movie for a single user with his or her choice list of attributes.

Here we can see, this user get recommended first three movies with four matched attributes, then

30

Figure 4.2: Single movie with attribute match for single user.

three and rest as the minimum matching. Our system is performing this result to make decision
for users so that the movie will be the best suitable matching for him/her. Users can see only the
matched and familiar movie, he/she can take one from this list. If user wants to see some new
attributes for the movie, user can take one from the tail of list.

Figure 4.2 shows the detail of attribute matching quantity with users. For example, U1 to movie
M7, named as Avengers:End Game, where U1 is highly matched with attribute Sci� Fiction,
then StoryLine, Adventure, and Action as quantifying into 100, 90, 70, and 60 percent. In
this way, user can find the suitable movie from these detail information which is very simply
represented.

4.0.1 Impact of Attribute Quantification

From the analysis of some existing movies such as Paltan, which has two matched attribute
with U1, this user may not be willing to enjoy this movie. But this movie has total five attribute
with degree of attribute attached in table 4.3.

This Paltan movie has rating 5.2 out of 10 in IMDB website and only 29 percent is the
recommended probability as popular in Rotten Tomato site. Which means, when a viewer review
this rating he/she unwilling have watched this movie. But this movie is full of war environment
and military activities and also it is a true story of Sikkim war plot of 1962. If this movie is
watched by those users who love to watch true story or historical movies, then this will get the

31

Attribute Id Attribute Name Degree of Attribute
1 Action 3
2 Adventure 4
8 Drama 4.5
17 War 5
25 History 5

Table 4.3: Table of degree of attribute for a single movie Paltan.

popularity as it deserves. Sometimes, some users who has the Low level of attribute choice in
History, he/she might be interested to watch this movie from this attribute quantification.

There is also given a list of recommended movies to the users who love action type movie
in compared with Movielence data-set and our new produced data-set. Where we can see the
difference of number of recommended movies with attribute quantification.

Sometimes, with a good IMDB rating suppose above of six out of ten, movies are getting ”flop”
and a very few people know about that.

IMDB Rotten Tomato New RecSys
Movie

Paltan

5.2 (10)
Action
Drama
History

29%

Action 3
Adventure 4
Drama 4.5
War 5
History 5
True Story 5

India’s Most Wanted
4.4 (10)
Action
Thriller

29%

Action 3.5
Thriller 4
Story-Line 4
Performance 4

Romeo Akbar Walton

6.5 (10)
Action
Drama
Thriller

17%

Action 4
Adventure 4
Thriller 4.5
Story-Line 5
Biography 4.5

Breathe

7.1 (10)
Biography
Drama
Romance

68%

Biography 5
Adventure 4.5
Romance 4
Art-Film 4.5
True Story 5
Drama 3
Story-Line 5

Table 4.4: Attribute Quantification

32

Table 4.4 is a comparison scenario of our proposed recommendation approach and different
popular online platforms for movie recommendation. We can see that our quantification of movie
attribute is more specific than others and this will help users to pick the right item or movie.
From the preliminary rating or review percentage of movie is completely discouraged any user
to see this movie. But using our the attribute quantification of this movie, new viewers can be
added which it deserves.

We upload fifteen flop movies from different movie list of Bollywood and Hollywood recently
released in 2018 and 2019, to get the feedback from the users as they got recommended of those
movies. As from our attribute quantification, these movies are presented to users and the users
are put their feedback using rating. They also added attribute as they felt. Some movies got one
or two additional attribute with the degree of attribute.

4.0.2 Impact on the Tail

Now, the comparison of recommended movie to a user who loves watching good movies and also
is a active user corresponding to online platform. Here, we have taken some same movie data-set
form Movielence, IMDB, and some other movie sites and our collected data set. In Movielence
and other sites have single rating on a movie, but in our collected set has weighted rating for
different attributes. For example, we have taken a movie which has 5.2 out of 10 rating in IMDB
and can not earn the budget limit, where budget was 14 crore rupi, earned less then 10 crore rupi.
And this movie can not reach the people0s crowd.

Figure 4.3 is recommended the movie list to user Robin, where the movie Paltan is in 30th

position in top 40th movie according to single rating.
Figure 4.4 is recommended the movie list to user Robin, with his attribute choice list. And the
movie is in 3rd position in top 40th movie list, with Five matched attribute from 8 attribute of
his list.
From this above comparison, we can see that, this new recommendation systemś recommended
movie is so near to user choice. The algorithm also counts the degree of attribute given by users
and movie attribute for precise computation.

Our system also has a good impact on niche market strategy and positioning. Many niche movies
will able to meet the budget with this recommendation to appropriate user.

Aspects of this new data-set, there is 25 user who has some off-pick attributes such as History,
War, TrueStory, Art�Film, Story�Line, Performance, etc. with pick attributes such as
Action, Adventure, Thriller, etc. After the recommendation of movie using this methodology,
80% Users are like these movie and add some new attribute with rating. So we can say that, this
system will able to sustain the niche market.

33

Figure 4.3: Recommended to User Robin followed by single rating.

Figure 4.4: Recommended to User Robin followed by attribute rating.

4.0.3 User and Movie Class

Figure 4.5and 4.6 represents the attribute wise user and item proficiency area, where the attribute
part is more specific to represent about the profile of users and movies. We can see from Figure
4.5 and 4.6, is that, there is a pi-chart representation of User1 and Movie1 with the attribute
existence. We find different colors for different attributes and we can see that one user has many
choices in different measurement. Also one movie may have many attributes.

34

Figure 4.5: Attribute class of the user.

Figure 4.6: Attribute class of the user.

Here. we present some performance metrics which we used to measure the performance of the
system.

We have used the data mining tool Rapidminer Stdio 9.3.1 on data-set [18] and have compared

35

Figure 4.7: Precision value for proposed method

the proposed method to the performance for different algorithms. The value of Precision, Recall,
and F-measure are also used to measure the performance.

We provide the classification results as follows.

The value of Precision, Recall, and F-measure are also summarized in the corresponding table.

Table 4.5: Table of Performance matrix of proposed method

User Precision % Recall % F1 Measure %
10 93.175 80.64 86.455
20 96.815 90.9 94.21
30 95.723 76.92 85.296
40 83.134 81.10 82.10
50 99.648 83.91 91.104
60 100 87.11 93.111
70 98.595 90.9 94.591
80 96.82 71.42 82.2
90 100 80.66 89.294
100 97.861 90.19 93.869

Precision at N is the proportion of recommended movies in the top-N set that are relevant. Here,
N is set on 10 as the top-10 movies are recommended. In our experiment, precision at 10 in a
top-10 recommendation problem is 90.90% for the first 10 users. This means that 90.90% of the
recommendation this new system make are relevant to first 10 users choice.

In classification performance measurement the precision value is calculated based on four
possible indicators of predicted rating, namely true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) [12].

Precision = TP / (TP+FP)

The graph showing the precision value in fig:4.7.

Recall at N is the proportion of relevant movies found in the top-N recommendations. Here, N is

4.1. IMPACT ON ATTRIBUTE COVERAGE 36

Figure 4.8: Recall value for the proposed method.

set on 10 as the top-10 movies are recommended. In our experiment, we computed recall at 10
and found it is 80.64% in our top-10 recommendation of the movie. This means that 80.64% of
the total number of the relevant movies appear in the top-N results, where N is set on 10.

In classification performance measurement the recall value is calculated based on four possible
indicators of predicted rating, namely true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) [12].

Recall = TP / (TP+FN)

Figure 4.8, shows the recall value for proposed data-set.

F1 Measure is the weighted average of Precision and Recall. It is a statistical measure of the
accuracy of a test or an individual. With an increase in the number of neighbors, the precision
value decreases, while the recall value increases. Hence, the harmonic mean of both the precision
and recall is accounted for evaluating the F1- measure. A higher F1 value signifies a high quality
of prediction [12].

F1Measure = (2 ⇥ precision ⇥ recall) / (Precision + Recall)

In Figure 4.9, different f-measure values for proposed data-set are shown.

4.1 Impact on Attribute Coverage

A good recommendation system has a vast dependency on an attribute of user choices on the
items. The basic goal is to cover the user choices attribute with the maximum matched items
with those attributes. In this scenario, new methodology is working to obtain the maximum
attribute coverage with high efficiency to satisfy the users.

For niche market establishment, Segmentation, Target marketing, and Positioning are the most
important phases which are in combinedly known as STP model. The customer or user has four

4.1. IMPACT ON ATTRIBUTE COVERAGE 37

Figure 4.9: F-measure value for proposed method

Figure 4.10: Attribute quantification of different users.

criteria of segmentation. These are Demographic, Geographic, Behavioral, and Psycho-graphic.
Basically attribute coverage is graphical representation of the existence of attribute values in data-
set. Our methodology focused on niche items as less popular movies, which has the potentiality
to be popular as they deserve. We have applied segmentation on users considering their attribute
preferences.

Figure 4.10 shows the attribute impact on different users. Here, we present two users User1

and User2 with their attribute choices. These two user has three common attribute with
different weights. And they have also their individual attributes with weight. These users
gets recommendation of movie with their similar attribute choices.

Figure 4.11 presents the attribute consistency of different movie. Here, we have considered two
movies: Movie2 and Movie7. The curves for these two movies are very dissimilar. Only two
attributes are similar with different weights and they could be recommended to the same users
having much common attribute choices.

4.1. IMPACT ON ATTRIBUTE COVERAGE 38

Figure 4.11: Attribute quantification of different movies.

This methodology has focused on niche market items with attributes along with the popular
mainstream attributes too. The users who are not willing to go through trending movies such as
full of action, thriller, etc., and they will not get good recommendations from some of mainstream
popular movies.

From all above experimental results, we find that our proposed recommendation model using
fuzzy set concept provide better recommendations of niche market items.

Chapter 5

Conclusions

In this thesis, we have proposed a recommendation system for the items of niche market based on
fuzzy rating. We have considered movie recommendation system. We have developed interactive
recommendation platform which provides the maximum satisfaction with weighted attribute
matching of the items. We find that this system reduces the time in the long tail and helps in
resolving cold start problem.
Our method can be applied to online book stores, video or content sharing sites etc. In our
proposed model, long tail can be handled in such a way that niche items spend less time in
tail position. Therefore, classified items can reach classified users quickly with the maximum
business revenue generation.

39

References

[1] F. Isinkaye, Y. Folajimi, and B. Ojokoh, “Recommendation systems: Principles, methods
and evaluation,” Egyptian Informatics Journal, vol. 16, no. 3, pp. 261–273, 2015.

[2] N. Vaidya and A. Khachane, “Recommender systems-the need of the ecommerce era,”
in 2017 International Conference on Computing Methodologies and Communication
(ICCMC), pp. 100–104, IEEE, 2017.

[3] “Springer link.” https://link.springer.com/referenceworkentry/. Last
Accessed: 2019-09-09.

[4] R. Dunford, Q. Su, and E. Tamang, “The pareto principle,” 2014.

[5] C. Anderson, “Why the future of business is selling less of more,” 2006.

[6] Y. Liu, Q. Xiong, J. Sun, Y. Jiang, T. Silva, and H. Ling, “Topic-based hierarchical bayesian
linear regression models for niche items recommendation,” Journal of Information Science,
vol. 45, no. 1, pp. 92–104, 2019.

[7] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen, “Challenging the long tail recommendation,”
Proceedings of the VLDB Endowment, vol. 5, no. 9, pp. 896–907, 2012.

[8] X. Hu, C. Zhang, M. Wu, and Y. Zeng, “Research on long tail recommendation algorithm,”
in IOP Conference Series: Materials Science and Engineering, vol. 261, p. 012019, IOP
Publishing, 2017.

[9] M. M. Chowdhury, F. Tanvir, M. S. Rahman, M. M. Rahman, M. Al-Sahariar, and R. M.
Rahman, “Audio gadget recommendation by fuzzy logic,” in Computer Science On-line
Conference, pp. 266–276, Springer, 2019.

[10] M. El Mohadab, B. Bouikhalene, and S. Safi, “Predicting rank for scientific research papers
using supervised learning,” Applied Computing and Informatics, vol. 15, no. 2, pp. 182–190,
2019.

[11] A. N. Nikolakopoulos, V. Kalantzis, E. Gallopoulos, and J. D. Garofalakis, “Factored
proximity models for top-n recommendations,” in 2017 IEEE international conference on
big knowledge (ICBK), pp. 80–87, IEEE, 2017.

40

https://link.springer.com/referenceworkentry/

REFERENCES 41

[12] S. Bag, S. Kumar, A. Awasthi, and M. K. Tiwari, “A noise correction-based approach to
support a recommender system in a highly sparse rating environment,” Decision Support
Systems, vol. 118, pp. 46–57, 2019.

[13] E. Christakopoulou and G. Karypis, “Local item-item models for top-n recommendation,”
in Proceedings of the 10th ACM Conference on Recommender Systems, pp. 67–74, ACM,
2016.

[14] D. Wu, J. Lu, and G. Zhang, “A fuzzy tree matching-based personalized e-learning
recommender system,” IEEE transactions on fuzzy systems, vol. 23, no. 6, pp. 2412–2426,
2015.

[15] D. Zhang, C.-H. Hsu, M. Chen, Q. Chen, N. Xiong, and J. Lloret, “Cold-start
recommendation using bi-clustering and fusion for large-scale social recommender systems,”
IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 2, pp. 239–250, 2013.

[16] C. Wang, “A study of membership functions on mamdani-type fuzzy inference system for
industrial decision-making,” 2015.

[17] H. Sandya, P. Hemanth Kumar, and S. K. R. Himanshi Bhudiraja, “Fuzzy rule based feature
extraction and classification of time series signal,” Int. J. Soft Comput. Eng.(IJSCE), vol. 3,
no. 2, pp. 2231–2307, 2013.

[18] “Movielens.” https://grouplens.org/datasets/movielens/. Last Ac-
cessed: 2019-09-09.

[19] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean absolute error (mae)?–
arguments against avoiding rmse in the literature,” Geoscientific model development, vol. 7,
no. 3, pp. 1247–1250, 2014.

https://grouplens.org/datasets/movielens/

Appendix A

Codes

A.1 SQL Query Code 1

1 /*
2 Navicat Premium Data Transfer

3

4 Source Server : MySQL_LOCAL

5 Source Server Type : MySQL

6 Source Server Version : 100135

7 Source Host : localhost:3306

8 Source Schema : movies

9

10 Target Server Type : MySQL

11 Target Server Version : 100135

12 File Encoding : 65001

13

14 Date: 21/09/2019 22:13:32

15 */

16

17 SET NAMES utf8mb4;

18 SET FOREIGN_KEY_CHECKS = 0;

19

20 -- ----------------------------

21 -- Table structure for countries

22 -- ----------------------------

23 DROP TABLE IF EXISTS ‘countries‘;

24 CREATE TABLE ‘countries‘ (

25 ‘id‘ int(11) NOT NULL AUTO_INCREMENT,

26 ‘name‘ varchar(500) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,

42

A.1. SQL QUERY CODE 1 43

27 ‘created_at‘ timestamp(0) NULL DEFAULT NULL,

28 ‘updated_at‘ timestamp(0) NULL DEFAULT NULL,

29 ‘created_by‘ int(11) NULL DEFAULT NULL,

30 ‘updated_by‘ int(11) NULL DEFAULT NULL,

31 PRIMARY KEY (‘id‘) USING BTREE

32) ENGINE = InnoDB AUTO_INCREMENT = 4 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

33

34 -- ----------------------------

35 -- Records of countries

36 -- ----------------------------

37 INSERT INTO ‘countries‘ VALUES (1, ’Bangladesh’, NULL, NULL, NULL, NULL);

38 INSERT INTO ‘countries‘ VALUES (2, ’India’, NULL, NULL, NULL, NULL);

39 INSERT INTO ‘countries‘ VALUES (3, ’Pakisthan’, NULL, NULL, NULL, NULL);

40

41 -- ----------------------------

42 -- Table structure for genres

43 -- ----------------------------

44 DROP TABLE IF EXISTS ‘genres‘;

45 CREATE TABLE ‘genres‘ (

46 ‘id‘ int(11) NOT NULL AUTO_INCREMENT,

47 ‘genre_name‘ varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NULL DEFAULT NULL,

48 ‘created_at‘ timestamp(0) NULL DEFAULT NULL,

49 ‘updated_at‘ timestamp(0) NULL DEFAULT NULL,

50 PRIMARY KEY (‘id‘) USING BTREE

51) ENGINE = InnoDB AUTO_INCREMENT = 21 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

52

53 -- ----------------------------

54 -- Records of genres

55 -- ----------------------------

56 INSERT INTO ‘genres‘ VALUES (2, ’Action’, ’2019-09-21 14:28:18’, NULL);

57 INSERT INTO ‘genres‘ VALUES (3, ’Adventure’, ’2019-09-21 14:28:18’, NULL);

58 INSERT INTO ‘genres‘ VALUES (4, ’Animation’, ’2019-09-21 14:28:18’, NULL);

59 INSERT INTO ‘genres‘ VALUES (5, ’Childrens’, ’2019-09-21 14:28:18’, NULL);

60 INSERT INTO ‘genres‘ VALUES (6, ’Comedy’, ’2019-09-21 14:28:18’, NULL);

61 INSERT INTO ‘genres‘ VALUES (7, ’Crime’, ’2019-09-21 14:28:18’, NULL);

62 INSERT INTO ‘genres‘ VALUES (8, ’Documentary’, ’2019-09-21 14:28:18’, NULL);

63 INSERT INTO ‘genres‘ VALUES (9, ’Drama’, ’2019-09-21 14:28:18’, NULL);

64 INSERT INTO ‘genres‘ VALUES (10, ’Fantasy’, ’2019-09-21 14:28:18’, NULL);

65 INSERT INTO ‘genres‘ VALUES (11, ’Film-Noir’, ’2019-09-21 14:28:18’, NULL);

66 INSERT INTO ‘genres‘ VALUES (12, ’Horror’, ’2019-09-21 14:28:18’, NULL);

67 INSERT INTO ‘genres‘ VALUES (13, ’Musical’, ’2019-09-21 14:28:18’, NULL);

A.1. SQL QUERY CODE 1 44

68 INSERT INTO ‘genres‘ VALUES (14, ’Mystery’, ’2019-09-21 14:28:18’, NULL);

69 INSERT INTO ‘genres‘ VALUES (15, ’Romance’, ’2019-09-21 14:28:18’, NULL);

70 INSERT INTO ‘genres‘ VALUES (16, ’Sci-Fi’, ’2019-09-21 14:28:18’, NULL);

71 INSERT INTO ‘genres‘ VALUES (17, ’Thriller’, ’2019-09-21 14:28:18’, NULL);

72 INSERT INTO ‘genres‘ VALUES (18, ’War’, ’2019-09-21 14:28:18’, NULL);

73 INSERT INTO ‘genres‘ VALUES (19, ’Western’, ’2019-09-21 14:28:18’, NULL);

74 INSERT INTO ‘genres‘ VALUES (20, ’Unknown’, ’2019-09-21 14:47:26’, NULL);

75

76 -- ----------------------------

77 -- Table structure for menus

78 -- ----------------------------

79 DROP TABLE IF EXISTS ‘menus‘;

80 CREATE TABLE ‘menus‘ (

81 ‘id‘ int(10) UNSIGNED NOT NULL AUTO_INCREMENT,

82 ‘name‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

83 ‘menus_description‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NULL DEFAULT NULL,

84 ‘menus_type‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NULL DEFAULT NULL,

85 ‘parent_menus_id‘ int(11) NOT NULL,

86 ‘modules_id‘ int(11) NOT NULL,

87 ‘icon_class‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

88 ‘menu_url‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

89 ‘sort_number‘ int(11) NOT NULL,

90 ‘created_by‘ int(11) NOT NULL DEFAULT 0,

91 ‘updated_by‘ int(11) NOT NULL DEFAULT 0,

92 ‘created_at‘ timestamp(0) NULL DEFAULT NULL,

93 ‘updated_at‘ timestamp(0) NULL DEFAULT NULL,

94 ‘is_active‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’1’,

95 PRIMARY KEY (‘id‘) USING BTREE

96) ENGINE = InnoDB AUTO_INCREMENT = 6 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

97

98 -- ----------------------------

99 -- Records of menus

100 -- ----------------------------

101 INSERT INTO ‘menus‘ VALUES (1, ’Add New Movie’, NULL, ’Main’, 0, 2, ’fa fa-plus’, ’/add_new_movie’, 0, 0, 0, NULL, NULL, ’1’);

102 INSERT INTO ‘menus‘ VALUES (5, ’All Movies’, NULL, ’Main’, 0, 1, ’fa fa-list’, ’/all_movies’, 3, 0, 0, NULL, NULL, ’1’);

103

104 -- ----------------------------

105 -- Table structure for migrations

106 -- ----------------------------

107 DROP TABLE IF EXISTS ‘migrations‘;

108 CREATE TABLE ‘migrations‘ (

A.1. SQL QUERY CODE 1 45

109 ‘id‘ int(10) UNSIGNED NOT NULL AUTO_INCREMENT,

110 ‘migration‘ varchar(191) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

111 ‘batch‘ int(11) NOT NULL,

112 PRIMARY KEY (‘id‘) USING BTREE

113) ENGINE = InnoDB AUTO_INCREMENT = 3 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

114

115 -- ----------------------------

116 -- Records of migrations

117 -- ----------------------------

118 INSERT INTO ‘migrations‘ VALUES (1, ’2014_10_12_000000_create_users_table’, 1);

119 INSERT INTO ‘migrations‘ VALUES (2, ’2014_10_12_100000_create_password_resets_table’, 1);

120

121 -- ----------------------------

122 -- Table structure for modules

123 -- ----------------------------

124 DROP TABLE IF EXISTS ‘modules‘;

125 CREATE TABLE ‘modules‘ (

126 ‘id‘ int(10) UNSIGNED NOT NULL AUTO_INCREMENT,

127 ‘name‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

128 ‘modules_icon‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

129 ‘description‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

130 ‘home_url‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

131 ‘created_by‘ int(11) NOT NULL DEFAULT 0,

132 ‘updated_by‘ int(11) NOT NULL DEFAULT 0,

133 ‘status‘ varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

134 ‘created_at‘ timestamp(0) NULL DEFAULT NULL,

135 ‘updated_at‘ timestamp(0) NULL DEFAULT NULL,

136 PRIMARY KEY (‘id‘) USING BTREE

137) ENGINE = InnoDB AUTO_INCREMENT = 3 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

138

139 -- ----------------------------

140 -- Records of modules

141 -- ----------------------------

142 INSERT INTO ‘modules‘ VALUES (1, ’Admin’, ’fff’, ’na’, ’/’, 0, 0, ’Active’, NULL, NULL);

143 INSERT INTO ‘modules‘ VALUES (2, ’User’, ’’, ’’, ’’, 0, 0, ’Active’, NULL, NULL);

144

145 -- ----------------------------

146 -- Table structure for movie_ratings

147 -- ----------------------------

148 DROP TABLE IF EXISTS ‘movie_ratings‘;

149 CREATE TABLE ‘movie_ratings‘ (

A.1. SQL QUERY CODE 1 46

150 ‘id‘ int(11) NOT NULL AUTO_INCREMENT,

151 ‘movie_id‘ int(11) NULL DEFAULT NULL,

152 ‘genre_id‘ int(11) NULL DEFAULT NULL,

153 ‘rating‘ float(126, 0) NULL DEFAULT NULL,

154 ‘created_at‘ timestamp(0) NULL DEFAULT NULL,

155 ‘updated_at‘ timestamp(0) NULL DEFAULT NULL ON UPDATE CURRENT_TIMESTAMP(0),

156 ‘created_by‘ int(11) NULL DEFAULT NULL,

157 PRIMARY KEY (‘id‘) USING BTREE

158) ENGINE = InnoDB AUTO_INCREMENT = 10 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

159

160 -- ----------------------------

161 -- Records of movie_ratings

162 -- ----------------------------

163 INSERT INTO ‘movie_ratings‘ VALUES (6, 9, 6, 5, ’2019-09-21 13:00:13’, ’2019-09-21 13:00:13’, 1);

164 INSERT INTO ‘movie_ratings‘ VALUES (7, 9, 4, 5, ’2019-09-21 19:17:30’, ’2019-09-21 13:00:13’, 1);

165 INSERT INTO ‘movie_ratings‘ VALUES (8, 8, 1, 5, ’2019-09-21 19:18:28’, NULL, 1);

166 INSERT INTO ‘movie_ratings‘ VALUES (9, 9, 6, 4, ’2019-09-21 19:43:33’, NULL, 1);

167

168 -- ----------------------------

169 -- Table structure for movies

170 -- ----------------------------

171 DROP TABLE IF EXISTS ‘movies‘;

172 CREATE TABLE ‘movies‘ (

173 ‘movie_id‘ int(11) NOT NULL AUTO_INCREMENT,

174 ‘title‘ varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NULL DEFAULT NULL,

175 ‘poster_path‘ varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NULL DEFAULT NULL,

176 ‘created_at‘ timestamp(6) NULL DEFAULT NULL ON UPDATE CURRENT_TIMESTAMP(6),

177 ‘updated_at‘ timestamp(6) NULL DEFAULT NULL ON UPDATE CURRENT_TIMESTAMP(6),

178 ‘created_by‘ int(11) NULL DEFAULT NULL,

179 ‘updated_by‘ int(11) NULL DEFAULT NULL,

180 ‘description‘ text CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NULL,

181 PRIMARY KEY (‘movie_id‘) USING BTREE

182) ENGINE = InnoDB AUTO_INCREMENT = 10 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

183

184 -- ----------------------------

185 -- Records of movies

186 -- ----------------------------

187 INSERT INTO ‘movies‘ VALUES (9, ’Pulp Fiction’, ’images/1569070813.png’, ’2019-09-21 19:02:24.099045’, ’2019-09-21 19:02:24.099045’, 1, NULL, ’Pulp Fiction’);

188

189 -- ----------------------------

190 -- Table structure for password_resets

A.1. SQL QUERY CODE 1 47

191 -- ----------------------------

192 DROP TABLE IF EXISTS ‘password_resets‘;

193 CREATE TABLE ‘password_resets‘ (

194 ‘email‘ varchar(191) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

195 ‘token‘ varchar(191) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

196 ‘created_at‘ timestamp(0) NULL DEFAULT NULL,

197 INDEX ‘password_resets_email_index‘(‘email‘) USING BTREE

198) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

199

200 -- ----------------------------

201 -- Table structure for privilege_levels

202 -- ----------------------------

203 DROP TABLE IF EXISTS ‘privilege_levels‘;

204 CREATE TABLE ‘privilege_levels‘ (

205 ‘users_id‘ int(11) NULL DEFAULT NULL,

206 ‘user_levels_id‘ int(11) NULL DEFAULT NULL,

207 ‘created_at‘ timestamp(0) NULL DEFAULT NULL,

208 ‘updated_at‘ timestamp(0) NULL DEFAULT NULL,

209 UNIQUE INDEX ‘privilege_levels_user_id_user_level_id_unique‘(‘users_id‘, ‘user_levels_id‘) USING BTREE

210) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

211

212 -- ----------------------------

213 -- Records of privilege_levels

214 -- ----------------------------

215 INSERT INTO ‘privilege_levels‘ VALUES (1, 1, NULL, NULL);

216 INSERT INTO ‘privilege_levels‘ VALUES (2, 2, ’2019-07-05 20:09:30’, ’2019-07-05 20:09:30’);

217

218 -- ----------------------------

219 -- Table structure for privilege_menus

220 -- ----------------------------

221 DROP TABLE IF EXISTS ‘privilege_menus‘;

222 CREATE TABLE ‘privilege_menus‘ (

223 ‘menus_id‘ int(10) UNSIGNED NOT NULL,

224 ‘user_levels_id‘ int(11) NULL DEFAULT NULL,

225 ‘users_id‘ int(11) NULL DEFAULT NULL,

226 ‘all‘ tinyint(1) NOT NULL DEFAULT 0,

227 ‘create‘ tinyint(1) NOT NULL DEFAULT 0,

228 ‘edit‘ tinyint(1) NOT NULL DEFAULT 0,

229 ‘del‘ tinyint(1) NOT NULL DEFAULT 0,

230 ‘created_at‘ timestamp(0) NULL DEFAULT NULL,

231 ‘updated_at‘ timestamp(0) NULL DEFAULT NULL,

A.1. SQL QUERY CODE 1 48

232 UNIQUE INDEX ‘privilege_menus_menu_id_user_level_id_unique‘(‘menus_id‘, ‘user_levels_id‘) USING BTREE

233) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

234

235 -- ----------------------------

236 -- Records of privilege_menus

237 -- ----------------------------

238 INSERT INTO ‘privilege_menus‘ VALUES (1, 1, NULL, 0, 0, 0, 0, NULL, NULL);

239 INSERT INTO ‘privilege_menus‘ VALUES (5, 1, NULL, 0, 0, 0, 0, NULL, NULL);

240

241 -- ----------------------------

242 -- Table structure for sys_dropdowns

243 -- ----------------------------

244 DROP TABLE IF EXISTS ‘sys_dropdowns‘;

245 CREATE TABLE ‘sys_dropdowns‘ (

246 ‘id‘ int(10) NOT NULL AUTO_INCREMENT,

247 ‘dropdown_slug‘ varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,

248 ‘dropdown_mode‘ enum(’dropdown’,’dropdown_grid’) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT ’dropdown’,

249 ‘sys_search_panel_slug‘ varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,

250 ‘sqltext‘ text CHARACTER SET utf8 COLLATE utf8_general_ci NULL,

251 ‘value_field‘ varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,

252 ‘option_field‘ varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,

253 ‘multiple‘ tinyint(1) NULL DEFAULT 0,

254 ‘search_columns‘ text CHARACTER SET utf8 COLLATE utf8_general_ci NULL,

255 ‘dropdown_name‘ varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL DEFAULT ’0’,

256 ‘description‘ text CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,

257 ‘created_by‘ int(10) NULL DEFAULT NULL,

258 ‘created_at‘ datetime(0) NOT NULL DEFAULT CURRENT_TIMESTAMP(0),

259 ‘updated_by‘ int(10) NULL DEFAULT NULL,

260 ‘updated_at‘ datetime(0) NULL DEFAULT NULL,

261 ‘status‘ enum(’Active’,’Inactive’) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT ’Active’,

262 PRIMARY KEY (‘id‘) USING BTREE,

263 UNIQUE INDEX ‘dropdownslug‘(‘dropdown_slug‘) USING BTREE

264) ENGINE = InnoDB AUTO_INCREMENT = 4 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

265

266 -- ----------------------------

267 -- Records of sys_dropdowns

268 -- ----------------------------

269 INSERT INTO ‘sys_dropdowns‘ VALUES (1, ’country’, ’dropdown’, NULL, ’SELECT id, name FROM countries’, ’id’, ’name’, 0, NULL, ’countries’, ’’, 1, ’2019-07-06 18:11:23’, 1, ’2019-07-06 16:19:10’, ’Active’);

270 INSERT INTO ‘sys_dropdowns‘ VALUES (2, ’city’, ’dropdown’, NULL, ’SELECT id, name FROM cities’, ’id’, ’name’, 0, NULL, ’cities’, ’’, 1, ’2019-07-06 18:11:23’, 1, ’2019-07-06 16:19:10’, ’Active’);

271 INSERT INTO ‘sys_dropdowns‘ VALUES (3, ’users’, ’dropdown’, NULL, ’SELECT users.id, users.name FROM users LEFT JOIN privilege_levels ON users.id = privilege_levels.users_id LEFT JOIN user_levels ON privilege_levels.user_levels_id = user_levels.id WHERE user_levels.id <> 1’, ’id’, ’name’, 0, NULL, ’users’, ’’, 1, ’2019-07-06 17:03:29’, NULL, ’2019-07-06 17:03:25’, ’Active’);

272

A.1. SQL QUERY CODE 1 49

273 -- ----------------------------

274 -- Table structure for user_genre

275 -- ----------------------------

276 DROP TABLE IF EXISTS ‘user_genre‘;

277 CREATE TABLE ‘user_genre‘ (

278 ‘id‘ int(11) NOT NULL AUTO_INCREMENT,

279 ‘user_id‘ int(11) NULL DEFAULT NULL,

280 ‘genre_id‘ int(11) NULL DEFAULT NULL,

281 ‘created_at‘ timestamp(0) NULL DEFAULT NULL,

282 ‘updated_at‘ timestamp(0) NULL DEFAULT NULL ON UPDATE CURRENT_TIMESTAMP(0),

283 PRIMARY KEY (‘id‘) USING BTREE

284) ENGINE = InnoDB AUTO_INCREMENT = 4 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

285

286 -- ----------------------------

287 -- Records of user_genre

288 -- ----------------------------

289 INSERT INTO ‘user_genre‘ VALUES (1, 3, 2, ’2019-09-21 11:49:29’, ’2019-09-21 11:49:29’);

290 INSERT INTO ‘user_genre‘ VALUES (2, 3, 4, ’2019-09-21 11:49:29’, ’2019-09-21 11:49:29’);

291 INSERT INTO ‘user_genre‘ VALUES (3, 3, 6, ’2019-09-21 11:49:29’, ’2019-09-21 11:49:29’);

292

293 -- ----------------------------

294 -- Table structure for users

295 -- ----------------------------

296 DROP TABLE IF EXISTS ‘users‘;

297 CREATE TABLE ‘users‘ (

298 ‘id‘ bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT,

299 ‘name‘ varchar(191) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

300 ‘email‘ varchar(191) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

301 ‘email_verified_at‘ timestamp(0) NULL DEFAULT NULL,

302 ‘password‘ varchar(191) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,

303 ‘remember_token‘ varchar(100) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NULL DEFAULT NULL,

304 ‘created_at‘ timestamp(0) NULL DEFAULT NULL,

305 ‘updated_at‘ timestamp(0) NULL DEFAULT NULL,

306 PRIMARY KEY (‘id‘) USING BTREE,

307 UNIQUE INDEX ‘users_email_unique‘(‘email‘) USING BTREE

308) ENGINE = InnoDB AUTO_INCREMENT = 4 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ROW_FORMAT = Compact;

309

310 -- ----------------------------

311 -- Records of users

312 -- ----------------------------

313 INSERT INTO ‘users‘ VALUES (1, ’Foysal Ahmed’, ’nibir2k12@gmail.com’, NULL, ’$2y$10$Wj2D05OcOGnwGg05gsksJe3IqLvqSp5t2e6bwo6lWOC3t8RHDms/S’, NULL, ’2019-09-16 19:22:50’, ’2019-09-16 19:22:50’);

A.2. SQL QUERY CODE 2 50

314 INSERT INTO ‘users‘ VALUES (2, ’Sazid’, ’nibir2k12@live.com’, NULL, ’$2y$10$a3conL2XHkYqSmfkQYvkhO1iFy9yQsjaYm0WRRqyzp3mKijOZTBO2’, NULL, ’2019-09-21 11:32:03’, ’2019-09-21 11:32:03’);

315 INSERT INTO ‘users‘ VALUES (3, ’quraishi sazid’, ’sazid.mehtaz@gmail.com’, NULL, ’$2y$10$hj3aBEF/7fmq0SoUvvGlLeEQAIG10180pb8qV1NVFhwI71j0lU2NO’, NULL, ’2019-09-21 11:49:29’, ’2019-09-21 11:49:29’);

316

317 SET FOREIGN_KEY_CHECKS = 1;

A.2 SQL Query Code 2

1 -- phpMyAdmin SQL Dump

2 -- version 4.8.5

3 -- https://www.phpmyadmin.net/

4 --

5 -- Host: localhost:3306

6 -- Generation Time: Sep 22, 2019 at 12:29 AM

7 -- Server version: 10.2.27-MariaDB

8 -- PHP Version: 7.2.7

9

10 SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";

11 SET AUTOCOMMIT = 0;

12 START TRANSACTION;

13 SET time_zone = "+00:00";

14

15

16 /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

17 /*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

18 /*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

19 /*!40101 SET NAMES utf8mb4 */;

20

21 --

22 -- Database: ‘nusaim_movies‘

23 --

24

25 -- --

26

27 --

28 -- Table structure for table ‘countries‘

29 --

30

31 CREATE TABLE ‘countries‘ (

32 ‘id‘ int(11) NOT NULL,

33 ‘name‘ varchar(500) DEFAULT NULL,

34 ‘created_at‘ timestamp NULL DEFAULT NULL,

A.2. SQL QUERY CODE 2 51

35 ‘updated_at‘ timestamp NULL DEFAULT NULL,

36 ‘created_by‘ int(11) DEFAULT NULL,

37 ‘updated_by‘ int(11) DEFAULT NULL

38) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;

39

40 --

41 -- Dumping data for table ‘countries‘

42 --

43

44 INSERT INTO ‘countries‘ (‘id‘, ‘name‘, ‘created_at‘, ‘updated_at‘, ‘created_by‘, ‘updated_by‘) VALUES

45 (1, ’Bangladesh’, NULL, NULL, NULL, NULL),

46 (2, ’India’, NULL, NULL, NULL, NULL),

47 (3, ’Pakisthan’, NULL, NULL, NULL, NULL);

48

49 -- --

50

51 --

52 -- Table structure for table ‘genres‘

53 --

54

55 CREATE TABLE ‘genres‘ (

56 ‘id‘ int(11) NOT NULL,

57 ‘genre_name‘ varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

58 ‘created_at‘ timestamp NULL DEFAULT NULL,

59 ‘updated_at‘ timestamp NULL DEFAULT NULL

60) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

61

62 --

63 -- Dumping data for table ‘genres‘

64 --

65

66 INSERT INTO ‘genres‘ (‘id‘, ‘genre_name‘, ‘created_at‘, ‘updated_at‘) VALUES

67 (2, ’Action’, ’2019-09-21 18:28:18’, NULL),

68 (3, ’Adventure’, ’2019-09-21 18:28:18’, NULL),

69 (4, ’Animation’, ’2019-09-21 18:28:18’, NULL),

70 (5, ’Childrens’, ’2019-09-21 18:28:18’, NULL),

71 (6, ’Comedy’, ’2019-09-21 18:28:18’, NULL),

72 (7, ’Crime’, ’2019-09-21 18:28:18’, NULL),

73 (8, ’Documentary’, ’2019-09-21 18:28:18’, NULL),

74 (9, ’Drama’, ’2019-09-21 18:28:18’, NULL),

75 (10, ’Fantasy’, ’2019-09-21 18:28:18’, NULL),

A.2. SQL QUERY CODE 2 52

76 (11, ’Film-Noir’, ’2019-09-21 18:28:18’, NULL),

77 (12, ’Horror’, ’2019-09-21 18:28:18’, NULL),

78 (13, ’Musical’, ’2019-09-21 18:28:18’, NULL),

79 (14, ’Mystery’, ’2019-09-21 18:28:18’, NULL),

80 (15, ’Romance’, ’2019-09-21 18:28:18’, NULL),

81 (16, ’Sci-Fi’, ’2019-09-21 18:28:18’, NULL),

82 (17, ’Thriller’, ’2019-09-21 18:28:18’, NULL),

83 (18, ’War’, ’2019-09-21 18:28:18’, NULL),

84 (19, ’Western’, ’2019-09-21 18:28:18’, NULL),

85 (20, ’Unknown’, ’2019-09-21 18:47:26’, NULL);

86

87 -- --

88

89 --

90 -- Table structure for table ‘menus‘

91 --

92

93 CREATE TABLE ‘menus‘ (

94 ‘id‘ int(10) UNSIGNED NOT NULL,

95 ‘name‘ varchar(500) COLLATE utf8mb4_unicode_ci NOT NULL,

96 ‘menus_description‘ varchar(500) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

97 ‘menus_type‘ varchar(500) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

98 ‘parent_menus_id‘ int(11) NOT NULL,

99 ‘modules_id‘ int(11) NOT NULL,

100 ‘icon_class‘ varchar(500) COLLATE utf8mb4_unicode_ci NOT NULL,

101 ‘menu_url‘ varchar(500) COLLATE utf8mb4_unicode_ci NOT NULL,

102 ‘sort_number‘ int(11) NOT NULL,

103 ‘created_by‘ int(11) NOT NULL DEFAULT 0,

104 ‘updated_by‘ int(11) NOT NULL DEFAULT 0,

105 ‘created_at‘ timestamp NULL DEFAULT NULL,

106 ‘updated_at‘ timestamp NULL DEFAULT NULL,

107 ‘is_active‘ varchar(500) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’1’

108) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

109

110 --

111 -- Dumping data for table ‘menus‘

112 --

113

114 INSERT INTO ‘menus‘ (‘id‘, ‘name‘, ‘menus_description‘, ‘menus_type‘, ‘parent_menus_id‘, ‘modules_id‘, ‘icon_class‘, ‘menu_url‘, ‘sort_number‘, ‘created_by‘, ‘updated_by‘, ‘created_at‘, ‘updated_at‘, ‘is_active‘) VALUES

115 (1, ’Add New Movie’, NULL, ’Main’, 0, 2, ’fa fa-plus’, ’/add_new_movie’, 0, 0, 0, NULL, NULL, ’1’),

116 (5, ’All Movies’, NULL, ’Main’, 0, 1, ’fa fa-list’, ’/all_movies’, 3, 0, 0, NULL, NULL, ’1’),

A.2. SQL QUERY CODE 2 53

117 (6, ’Chart’, NULL, ’Main’, 0, 1, ’fa fa-list’, ’/charts’, 3, 0, 0, NULL, NULL, ’1’);

118

119 -- --

120

121 --

122 -- Table structure for table ‘migrations‘

123 --

124

125 CREATE TABLE ‘migrations‘ (

126 ‘id‘ int(10) UNSIGNED NOT NULL,

127 ‘migration‘ varchar(191) COLLATE utf8mb4_unicode_ci NOT NULL,

128 ‘batch‘ int(11) NOT NULL

129) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

130

131 --

132 -- Dumping data for table ‘migrations‘

133 --

134

135 INSERT INTO ‘migrations‘ (‘id‘, ‘migration‘, ‘batch‘) VALUES

136 (1, ’2014_10_12_000000_create_users_table’, 1),

137 (2, ’2014_10_12_100000_create_password_resets_table’, 1);

138

139 -- --

140

141 --

142 -- Table structure for table ‘modules‘

143 --

144

145 CREATE TABLE ‘modules‘ (

146 ‘id‘ int(10) UNSIGNED NOT NULL,

147 ‘name‘ varchar(500) COLLATE utf8mb4_unicode_ci NOT NULL,

148 ‘modules_icon‘ varchar(500) COLLATE utf8mb4_unicode_ci NOT NULL,

149 ‘description‘ varchar(500) COLLATE utf8mb4_unicode_ci NOT NULL,

150 ‘home_url‘ varchar(500) COLLATE utf8mb4_unicode_ci NOT NULL,

151 ‘created_by‘ int(11) NOT NULL DEFAULT 0,

152 ‘updated_by‘ int(11) NOT NULL DEFAULT 0,

153 ‘status‘ varchar(500) COLLATE utf8mb4_unicode_ci NOT NULL,

154 ‘created_at‘ timestamp NULL DEFAULT NULL,

155 ‘updated_at‘ timestamp NULL DEFAULT NULL

156) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

157

A.2. SQL QUERY CODE 2 54

158 --

159 -- Dumping data for table ‘modules‘

160 --

161

162 INSERT INTO ‘modules‘ (‘id‘, ‘name‘, ‘modules_icon‘, ‘description‘, ‘home_url‘, ‘created_by‘, ‘updated_by‘, ‘status‘, ‘created_at‘, ‘updated_at‘) VALUES

163 (1, ’Admin’, ’fff’, ’na’, ’/’, 0, 0, ’Active’, NULL, NULL),

164 (2, ’User’, ’’, ’’, ’’, 0, 0, ’Active’, NULL, NULL);

165

166 -- --

167

168 --

169 -- Table structure for table ‘movies‘

170 --

171

172 CREATE TABLE ‘movies‘ (

173 ‘movie_id‘ int(11) NOT NULL,

174 ‘title‘ varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

175 ‘poster_path‘ varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

176 ‘created_at‘ timestamp(6) NULL DEFAULT NULL ON UPDATE current_timestamp(6),

177 ‘updated_at‘ timestamp(6) NULL DEFAULT NULL ON UPDATE current_timestamp(6),

178 ‘created_by‘ int(11) DEFAULT NULL,

179 ‘updated_by‘ int(11) DEFAULT NULL,

180 ‘description‘ text COLLATE utf8mb4_unicode_ci DEFAULT NULL

181) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

182

183 --

184 -- Dumping data for table ‘movies‘

185 --

186

187 INSERT INTO ‘movies‘ (‘movie_id‘, ‘title‘, ‘poster_path‘, ‘created_at‘, ‘updated_at‘, ‘created_by‘, ‘updated_by‘, ‘description‘) VALUES

188 (9, ’Pulp Fiction’, ’images/1569070813.png’, ’2019-09-21 23:02:24.099045’, ’2019-09-21 23:02:24.099045’, 1, NULL, ’Pulp Fiction’);

189

190 -- --

191

192 --

193 -- Table structure for table ‘movie_ratings‘

194 --

195

196 CREATE TABLE ‘movie_ratings‘ (

197 ‘id‘ int(11) NOT NULL,

198 ‘movie_id‘ int(11) DEFAULT NULL,

A.2. SQL QUERY CODE 2 55

199 ‘genre_id‘ int(11) DEFAULT NULL,

200 ‘rating‘ float(126,0) DEFAULT NULL,

201 ‘created_at‘ timestamp NULL DEFAULT NULL,

202 ‘updated_at‘ timestamp NULL DEFAULT NULL ON UPDATE current_timestamp(),

203 ‘created_by‘ int(11) DEFAULT NULL

204) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

205

206 --

207 -- Dumping data for table ‘movie_ratings‘

208 --

209

210 INSERT INTO ‘movie_ratings‘ (‘id‘, ‘movie_id‘, ‘genre_id‘, ‘rating‘, ‘created_at‘, ‘updated_at‘, ‘created_by‘) VALUES

211 (6, 9, 6, 5, ’2019-09-21 17:00:13’, ’2019-09-21 17:00:13’, 1),

212 (7, 9, 4, 5, ’2019-09-21 23:17:30’, ’2019-09-21 17:00:13’, 1),

213 (8, 8, 1, 5, ’2019-09-21 23:18:28’, NULL, 1),

214 (9, 9, 6, 4, ’2019-09-21 23:43:33’, NULL, 1),

215 (77, 9, 6, 2, ’2019-09-21 22:25:20’, ’2019-09-21 22:25:20’, 3),

216 (78, 9, 4, 2, ’2019-09-21 22:25:20’, ’2019-09-21 22:25:20’, 3),

217 (79, 9, 2, 3, ’2019-09-21 22:25:20’, ’2019-09-21 22:25:20’, 3),

218 (80, 9, 11, 2, ’2019-09-21 22:25:20’, ’2019-09-21 22:25:20’, 3),

219 (81, 9, 15, 3, ’2019-09-21 22:25:20’, ’2019-09-21 22:25:20’, 3);

220

221 -- --

222

223 --

224 -- Table structure for table ‘password_resets‘

225 --

226

227 CREATE TABLE ‘password_resets‘ (

228 ‘email‘ varchar(191) COLLATE utf8mb4_unicode_ci NOT NULL,

229 ‘token‘ varchar(191) COLLATE utf8mb4_unicode_ci NOT NULL,

230 ‘created_at‘ timestamp NULL DEFAULT NULL

231) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

232

233 -- --

234

235 --

236 -- Table structure for table ‘privilege_levels‘

237 --

238

239 CREATE TABLE ‘privilege_levels‘ (

A.2. SQL QUERY CODE 2 56

240 ‘users_id‘ int(11) DEFAULT NULL,

241 ‘user_levels_id‘ int(11) DEFAULT NULL,

242 ‘created_at‘ timestamp NULL DEFAULT NULL,

243 ‘updated_at‘ timestamp NULL DEFAULT NULL

244) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

245

246 --

247 -- Dumping data for table ‘privilege_levels‘

248 --

249

250 INSERT INTO ‘privilege_levels‘ (‘users_id‘, ‘user_levels_id‘, ‘created_at‘, ‘updated_at‘) VALUES

251 (1, 1, NULL, NULL),

252 (2, 2, ’2019-07-06 00:09:30’, ’2019-07-06 00:09:30’);

253

254 -- --

255

256 --

257 -- Table structure for table ‘privilege_menus‘

258 --

259

260 CREATE TABLE ‘privilege_menus‘ (

261 ‘menus_id‘ int(10) UNSIGNED NOT NULL,

262 ‘user_levels_id‘ int(11) DEFAULT NULL,

263 ‘users_id‘ int(11) DEFAULT NULL,

264 ‘all‘ tinyint(1) NOT NULL DEFAULT 0,

265 ‘create‘ tinyint(1) NOT NULL DEFAULT 0,

266 ‘edit‘ tinyint(1) NOT NULL DEFAULT 0,

267 ‘del‘ tinyint(1) NOT NULL DEFAULT 0,

268 ‘created_at‘ timestamp NULL DEFAULT NULL,

269 ‘updated_at‘ timestamp NULL DEFAULT NULL

270) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

271

272 --

273 -- Dumping data for table ‘privilege_menus‘

274 --

275

276 INSERT INTO ‘privilege_menus‘ (‘menus_id‘, ‘user_levels_id‘, ‘users_id‘, ‘all‘, ‘create‘, ‘edit‘, ‘del‘, ‘created_at‘, ‘updated_at‘) VALUES

277 (1, 1, NULL, 0, 0, 0, 0, NULL, NULL),

278 (5, 1, NULL, 0, 0, 0, 0, NULL, NULL),

279 (6, 1, NULL, 0, 0, 0, 0, NULL, NULL);

280

A.2. SQL QUERY CODE 2 57

281 -- --

282

283 --

284 -- Table structure for table ‘sys_dropdowns‘

285 --

286

287 CREATE TABLE ‘sys_dropdowns‘ (

288 ‘id‘ int(10) NOT NULL,

289 ‘dropdown_slug‘ varchar(100) DEFAULT NULL,

290 ‘dropdown_mode‘ enum(’dropdown’,’dropdown_grid’) DEFAULT ’dropdown’,

291 ‘sys_search_panel_slug‘ varchar(100) DEFAULT NULL,

292 ‘sqltext‘ text DEFAULT NULL,

293 ‘value_field‘ varchar(50) DEFAULT NULL,

294 ‘option_field‘ varchar(100) DEFAULT NULL,

295 ‘multiple‘ tinyint(1) DEFAULT 0,

296 ‘search_columns‘ text DEFAULT NULL,

297 ‘dropdown_name‘ varchar(100) NOT NULL DEFAULT ’0’,

298 ‘description‘ text NOT NULL,

299 ‘created_by‘ int(10) DEFAULT NULL,

300 ‘created_at‘ datetime NOT NULL DEFAULT current_timestamp(),

301 ‘updated_by‘ int(10) DEFAULT NULL,

302 ‘updated_at‘ datetime DEFAULT NULL,

303 ‘status‘ enum(’Active’,’Inactive’) DEFAULT ’Active’

304) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC;

305

306 --

307 -- Dumping data for table ‘sys_dropdowns‘

308 --

309

310 INSERT INTO ‘sys_dropdowns‘ (‘id‘, ‘dropdown_slug‘, ‘dropdown_mode‘, ‘sys_search_panel_slug‘, ‘sqltext‘, ‘value_field‘, ‘option_field‘, ‘multiple‘, ‘search_columns‘, ‘dropdown_name‘, ‘description‘, ‘created_by‘, ‘created_at‘, ‘updated_by‘, ‘updated_at‘, ‘status‘) VALUES

311 (1, ’country’, ’dropdown’, NULL, ’SELECT id, name FROM countries’, ’id’, ’name’, 0, NULL, ’countries’, ’’, 1, ’2019-07-06 18:11:23’, 1, ’2019-07-06 16:19:10’, ’Active’),

312 (2, ’city’, ’dropdown’, NULL, ’SELECT id, name FROM cities’, ’id’, ’name’, 0, NULL, ’cities’, ’’, 1, ’2019-07-06 18:11:23’, 1, ’2019-07-06 16:19:10’, ’Active’),

313 (3, ’users’, ’dropdown’, NULL, ’SELECT users.id, users.name FROM users LEFT JOIN privilege_levels ON users.id = privilege_levels.users_id LEFT JOIN user_levels ON privilege_levels.user_levels_id = user_levels.id WHERE user_levels.id <> 1’, ’id’, ’name’, 0, NULL, ’users’, ’’, 1, ’2019-07-06 17:03:29’, NULL, ’2019-07-06 17:03:25’, ’Active’);

314

315 -- --

316

317 --

318 -- Table structure for table ‘users‘

319 --

320

321 CREATE TABLE ‘users‘ (

A.2. SQL QUERY CODE 2 58

322 ‘id‘ bigint(20) UNSIGNED NOT NULL,

323 ‘name‘ varchar(191) COLLATE utf8mb4_unicode_ci NOT NULL,

324 ‘email‘ varchar(191) COLLATE utf8mb4_unicode_ci NOT NULL,

325 ‘email_verified_at‘ timestamp NULL DEFAULT NULL,

326 ‘password‘ varchar(191) COLLATE utf8mb4_unicode_ci NOT NULL,

327 ‘remember_token‘ varchar(100) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

328 ‘created_at‘ timestamp NULL DEFAULT NULL,

329 ‘updated_at‘ timestamp NULL DEFAULT NULL

330) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

331

332 --

333 -- Dumping data for table ‘users‘

334 --

335

336 INSERT INTO ‘users‘ (‘id‘, ‘name‘, ‘email‘, ‘email_verified_at‘, ‘password‘, ‘remember_token‘, ‘created_at‘, ‘updated_at‘) VALUES

337 (1, ’Foysal Ahmed’, ’nibir2k12@gmail.com’, NULL, ’$2y$10$Wj2D05OcOGnwGg05gsksJe3IqLvqSp5t2e6bwo6lWOC3t8RHDms/S’, NULL, ’2019-09-16 23:22:50’, ’2019-09-16 23:22:50’),

338 (2, ’Sazid’, ’nibir2k12@live.com’, NULL, ’$2y$10$a3conL2XHkYqSmfkQYvkhO1iFy9yQsjaYm0WRRqyzp3mKijOZTBO2’, NULL, ’2019-09-21 15:32:03’, ’2019-09-21 15:32:03’),

339 (3, ’quraishi sazid’, ’sazid.mehtaz@gmail.com’, NULL, ’$2y$10$hj3aBEF/7fmq0SoUvvGlLeEQAIG10180pb8qV1NVFhwI71j0lU2NO’, NULL, ’2019-09-21 15:49:29’, ’2019-09-21 15:49:29’);

340

341 -- --

342

343 --

344 -- Table structure for table ‘user_genre‘

345 --

346

347 CREATE TABLE ‘user_genre‘ (

348 ‘id‘ int(11) NOT NULL,

349 ‘user_id‘ int(11) DEFAULT NULL,

350 ‘genre_id‘ int(11) DEFAULT NULL,

351 ‘created_at‘ timestamp NULL DEFAULT NULL,

352 ‘updated_at‘ timestamp NULL DEFAULT NULL ON UPDATE current_timestamp()

353) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=COMPACT;

354

355 --

356 -- Dumping data for table ‘user_genre‘

357 --

358

359 INSERT INTO ‘user_genre‘ (‘id‘, ‘user_id‘, ‘genre_id‘, ‘created_at‘, ‘updated_at‘) VALUES

360 (1, 3, 2, ’2019-09-21 15:49:29’, ’2019-09-21 15:49:29’),

361 (2, 3, 4, ’2019-09-21 15:49:29’, ’2019-09-21 15:49:29’),

362 (3, 3, 6, ’2019-09-21 15:49:29’, ’2019-09-21 15:49:29’);

A.2. SQL QUERY CODE 2 59

363

364 --

365 -- Indexes for dumped tables

366 --

367

368 --

369 -- Indexes for table ‘countries‘

370 --

371 ALTER TABLE ‘countries‘

372 ADD PRIMARY KEY (‘id‘) USING BTREE;

373

374 --

375 -- Indexes for table ‘genres‘

376 --

377 ALTER TABLE ‘genres‘

378 ADD PRIMARY KEY (‘id‘) USING BTREE;

379

380 --

381 -- Indexes for table ‘menus‘

382 --

383 ALTER TABLE ‘menus‘

384 ADD PRIMARY KEY (‘id‘) USING BTREE;

385

386 --

387 -- Indexes for table ‘migrations‘

388 --

389 ALTER TABLE ‘migrations‘

390 ADD PRIMARY KEY (‘id‘) USING BTREE;

391

392 --

393 -- Indexes for table ‘modules‘

394 --

395 ALTER TABLE ‘modules‘

396 ADD PRIMARY KEY (‘id‘) USING BTREE;

397

398 --

399 -- Indexes for table ‘movies‘

400 --

401 ALTER TABLE ‘movies‘

402 ADD PRIMARY KEY (‘movie_id‘) USING BTREE;

403

A.2. SQL QUERY CODE 2 60

404 --

405 -- Indexes for table ‘movie_ratings‘

406 --

407 ALTER TABLE ‘movie_ratings‘

408 ADD PRIMARY KEY (‘id‘) USING BTREE;

409

410 --

411 -- Indexes for table ‘password_resets‘

412 --

413 ALTER TABLE ‘password_resets‘

414 ADD KEY ‘password_resets_email_index‘ (‘email‘) USING BTREE;

415

416 --

417 -- Indexes for table ‘privilege_levels‘

418 --

419 ALTER TABLE ‘privilege_levels‘

420 ADD UNIQUE KEY ‘privilege_levels_user_id_user_level_id_unique‘ (‘users_id‘,‘user_levels_id‘) USING BTREE;

421

422 --

423 -- Indexes for table ‘privilege_menus‘

424 --

425 ALTER TABLE ‘privilege_menus‘

426 ADD UNIQUE KEY ‘privilege_menus_menu_id_user_level_id_unique‘ (‘menus_id‘,‘user_levels_id‘) USING BTREE;

427

428 --

429 -- Indexes for table ‘sys_dropdowns‘

430 --

431 ALTER TABLE ‘sys_dropdowns‘

432 ADD PRIMARY KEY (‘id‘) USING BTREE,

433 ADD UNIQUE KEY ‘dropdownslug‘ (‘dropdown_slug‘) USING BTREE;

434

435 --

436 -- Indexes for table ‘users‘

437 --

438 ALTER TABLE ‘users‘

439 ADD PRIMARY KEY (‘id‘) USING BTREE,

440 ADD UNIQUE KEY ‘users_email_unique‘ (‘email‘) USING BTREE;

441

442 --

443 -- Indexes for table ‘user_genre‘

444 --

A.2. SQL QUERY CODE 2 61

445 ALTER TABLE ‘user_genre‘

446 ADD PRIMARY KEY (‘id‘) USING BTREE;

447

448 --

449 -- AUTO_INCREMENT for dumped tables

450 --

451

452 --

453 -- AUTO_INCREMENT for table ‘countries‘

454 --

455 ALTER TABLE ‘countries‘

456 MODIFY ‘id‘ int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=4;

457

458 --

459 -- AUTO_INCREMENT for table ‘genres‘

460 --

461 ALTER TABLE ‘genres‘

462 MODIFY ‘id‘ int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=21;

463

464 --

465 -- AUTO_INCREMENT for table ‘menus‘

466 --

467 ALTER TABLE ‘menus‘

468 MODIFY ‘id‘ int(10) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=7;

469

470 --

471 -- AUTO_INCREMENT for table ‘migrations‘

472 --

473 ALTER TABLE ‘migrations‘

474 MODIFY ‘id‘ int(10) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=3;

475

476 --

477 -- AUTO_INCREMENT for table ‘modules‘

478 --

479 ALTER TABLE ‘modules‘

480 MODIFY ‘id‘ int(10) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=3;

481

482 --

483 -- AUTO_INCREMENT for table ‘movies‘

484 --

485 ALTER TABLE ‘movies‘

A.2. SQL QUERY CODE 2 62

486 MODIFY ‘movie_id‘ int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=10;

487

488 --

489 -- AUTO_INCREMENT for table ‘movie_ratings‘

490 --

491 ALTER TABLE ‘movie_ratings‘

492 MODIFY ‘id‘ int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=82;

493

494 --

495 -- AUTO_INCREMENT for table ‘sys_dropdowns‘

496 --

497 ALTER TABLE ‘sys_dropdowns‘

498 MODIFY ‘id‘ int(10) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=4;

499

500 --

501 -- AUTO_INCREMENT for table ‘users‘

502 --

503 ALTER TABLE ‘users‘

504 MODIFY ‘id‘ bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=4;

505

506 --

507 -- AUTO_INCREMENT for table ‘user_genre‘

508 --

509 ALTER TABLE ‘user_genre‘

510 MODIFY ‘id‘ int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=4;

511 COMMIT;

512

513 /*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;

514 /*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

515 /*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

	Board of Examiners
	Acknowledgement
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Introduction
	Classifications of Recommendation System
	Content Based Filtering
	Collaborative Filtering
	Knowledge-based Filtering

	Long Tail and Niche Market
	Long Tail
	Niche Market
	Challenges of Long Tail and Niche Market

	Organization of the Thesis

	Related Work
	Problem Domain
	Fuzzy Set and Membership Function
	Preliminaries
	Selection of Item Attribute
	User Profile Generation
	User Choice List

	Item Profile Generation
	Recommendation Methodology
	Data Collection

	Results and Analysis
	Impact of Attribute Quantification
	Impact on the Tail
	User and Movie Class

	Impact on Attribute Coverage

	Conclusions
	References
	Codes
	SQL Query Code 1
	SQL Query Code 2

	Candidate's Declaration

