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ABSTRACT

This thesis deals with the numerical study of coaxial turbulent

jets with sudden axisymmetric expansion, which has many practical

applications. The computer program used for this analysis

utilizes the k-E model. The governing equations are discretized

over the appropriate control volumes using the hybrid differencing

scheme and nonuniform staggered grid.

The capability of the model in predicting such complex flows having

recirculation, is tested by comparing with available experimental

data. It is shown that the model can predict complicated flows like

coaxial turbulent jet with sudden expansion with reasonable

accuracy. The effect of changing the jet velocity ratio,

computational grid size, Reynolds number and expansion ratio on

the flow field is also examined. It is observed that, by proper

nondimensionalization, we can plot profiles from which the

required flow variables can be interpreted at different jet

velocity ratio and Reynolds number. Grid size of 46 x 34 node

points is adopted for the present computation. Computational time

is observed to increase as square of the nodal points used in the

analysis and thus the minimum number of nodal points required for

attaining reasonably accurate results is necessary.

iii

. "j..



ACKNOWLEDGEMENT

The author would like to express his sincere gratitude and

indebtedness to his Supervisor, Dr. Showkat Jahan Chowdhury,

Assistant Professor, Department of Mechanical Engineering,

Bangladesh University of Engineering and Technology (BUET), Dhaka,

for his careful supervision, constant encouragement, invaluable

suggestions and untiring assistance throughout this research work.

The author is also very grateful to Dr. Md. Wahhaj Uddin, Professor

& Head, Department of Mechanical Engineering, Bangladesh Universi ty

of Engineering and Technology for his co~peration and inspiration.

special thanks to Mr. Maniruzzaman, Assistant Professor, Department

of Mechanical Engineering, BUET, Dhaka, for his assistance and

valuable suggestions while working on the computer.

The auther also expresses his gratitude to Md. Fakhrul Islam Hazra,

Accounts Assistant Cum-Typist, Department of Mechanical

Engineering, BUET for typing this thesis.

Finally, the author would like to thank all others who, directly or

indirectly, helped him while the research work was going on.

iv



TABLE OF CONTENTS

PAGE

1.4 Objective of this study
1.5 Outline of the Thesis

1.1 Background
1.2 Motivation of the Present Investigation
1.3 Literature Review

2.1 Scope
2.2 Governing Equations
2.3 Solution .Technique
2.4 Boundary Conditions
2.5 Solution Procedure
2.6 Closure

Title Page
certificate of Acceptance
Abstract
Acknowledgement
Table of Contents
List of Figures
List of Tables
List of Symbols

i
ii
iii
iv
v
vii
ix
x

1
.f ~

1
2

3

3

9

10
11

12

12
12
15
17
18
20

History of Turbulence
Previous Work.

INTRODUCTION

METHODOLOGY OF SOLUTION

1.3.1

1.3.2

CHAP'fER - 2

CHAPTER - 1

v



CHAPTER - 3 RESULTS & DISCUSSIONS 21

Effect of Velocity Ratio U1/U2
Effect of Reynolds number
Effect of Expansion Ratio
Closure

3.1 Scope
3.2 Problem statement
3.3 Comparison with Available Experimental Data
3.4 Effect of Grid Size
3.5
3.6
3.7
3.8

21
21
22

25
25
30

31
33

CHAPTER - 4 CONCLUSION 34

4.1 Summary of Main Findings
4.2 Suggestions for Future Work

REFERENCES

FIGURES

34

35

37

42

APPENDIX - A COMPUTER PROGRAMME FLOW CHART

vi

88



FIGURE

LIST OF FIGURES

PAGE

1: Geometry of confined coaxial jet expansion setup 42
2: staggered grid 43
3: Three control volumes associated with points of 43

the three grids
4: Nonuniform rectangular grid system 44
5: comparison of mean axial velocity profiles 45
6: comparison of turbulent kinetic energy profiles 47
7: Dissipation rate profiles at different 49

axial locations
8: Dimensionless mean axial velocity profiles for 51

different axial locations
9: Dimensionless turbulent kinetic energy profiles for 52

different axial locations
10: comparison of mean axial velocity profiles 53
11: .Mean axial velocity profiles for U,/U2 = 0.2 55
12: Turbulent kinetic energy profiles for U'/U2 = 0.2 57

13: Dissipation rate profiles for U'/U2 = 0.2 59
14: Dimensionless mean axial velocity profiles for 61

different axial locations
15: Dimensionless turbulent kinetic energy profiles for 62

different axial locations
16: Mean axial velocity profiles for,UjU2 = 0.5 63
17: Turbulent kinetic energy profiles for U'/U2 = 0.5

18: Dissipation rate profiles for U,/U, = 0.5

19: Dimensionless mean axial velocity profiles for
different axial locations

vii

~5

67

69



20: Dimensionless turbulent kinetic energy profiles for
different axial locations

21: Comparison of dimensionless mean axial
velocity profiles

22: Comparison of dimensionless turbulent kinetic
energy profiles

23: comparison of nondimensional centerline velocities

24: Comparison of dimensionless mean axial
velocity profiles

25: Comparison of mean axial velocity profiles

26: Comparison of dimensionless turbulent kinetic
energy profiles

27: Comparison of turbulent kinetic energy profiles

28: Comparison of dimensionless mean axial
velocity profiles

29: comparison of dimensionless turbulent kinetic
energy profiles

viii

70

71

73

75

76

78

80

82

84

86



LIST OF TABLES

Table 2.1 Source Terms for the General Equation

ix

PAGE

14



Symbol Meaning

LIST OF SYl'.I[130LS

" Turbulence model constant~1

C, Turbulence model constant

Co Turbulence model constant

C" Turbulence model constant
J< Kinetic energy of turbulence
1 Lenth scale
p Mean pressure
Q"Q, Jet flow rate
r Radial distance
r"r, Radius of inner and outer jets
R. Reynolds number
S~ Source term for variable ~
u Mean axial velocity
Uo Reference velocity
U"U, Jet velocity
v, Instantaneous velocty

v~ Fluctuating velocity
x Axial coordinate
xR Reattachment length

x



Greek Symbol Meaning

E Dissipation rate of turbulent kinetic energy

v Kinetic viscosity

v. Turbulent (eddy) "kinetic viscosity

M Dynamic viscosity

M, Laminar dynamic viscosity

M. Turbulent dynamic viscosity

p Constant mass density

a~ Prandtl number for variable ~
w~ Turbulent fluctuating vorticity

xi



CHAPTER :L

INTRODuc'rION

1.1 Background.

When a fluid flows from a region of high pressure to a region of

low pressure through some nozzle, it forms a jet. The jet may be,

(i) a Free jet, if it is allowed to expand freely in the low

pressure region, (ii) a Wall jet, if it impinges on a wall, (iii)

a Confined jet, if it is allowed to expand in a closed conduit on

the low pressure side. Although all these three types of jets have

many practical engineering applications, confined jets are mainly

used in the combustion chambers of gas turbines, ramjets, and in

.industrial furnaces, and hence are receiving special attention in
the recent years.

When a confined jet is surrounded by another concentric circular

jet, it is called confined coaxial jet. In combustors, usually the

inlet flow comes as confined coaxial jets with fuel flowing as the

inner jet and air flowing as the outer annular jet. The incoming

coaxial jets which are normally turbulent in nature like other real

flow, may again have sudden axisymmetric expansion in the

combustion chamber. Due to this sudden expansion, the turbulence

kinetic energy increases and the mixing rate is enhanced, which is

desired. Such a flow is shown in Fig. 1. The resulting flow-field

after expansion may include recirculation zones, due to which heat
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and mass transfer increases several times than that for fully-

developed turbulent pipe flow at the same Reynolds number.

In the development of combustion chambers for gas turbines,

ramjets, and various industrial furnaces, designers usually depend

on experiments. But as a supplement to them, economical design and

operation can be greatly facilitated by the availability of prior

predictions of the flowfield. These may be obtained by use of a

mathematical model incorporating a numerical finite difference

prediction procedure. A mathematical soiution of the flowfield of

interest should provide results more cheaply, quickly and correctly

than possible by experiments on real-life systems or models.

1.2 Motivation of the Present Investigation:

The mixing of nonreacting and reacting fluids is encountered in

many practical engineering applications. One example is that of two

confined coaxial jets mixing in a chamber with sudden axisymmetric

expansion. Mixing of confined coaxial jet with sudden axisymmetric

expansion may have numerous practical engineering applications,

e.g., in combustors of gas turbine engines, ramjet combustors, I.C.

engines, jet engines, boilers, etc. As stated above, the sudden-

expansion geometry produces mixing rates downstream of the

expansion that are substantially higher than those that would be

obtained at the same Reynolds number in the entrance region of a

pipe. The elevated mixing rates are due to very high levels of
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turbulence kinetic energy generated by shearing as the core flow

issues into the larger pipe. Detail knowledge of the flow

properties are required before manufacturing equipment having these

types of flow. Experimental investigations are quite expensive.

This thesis, therefore, suggests numerical studies to investigate

the effects of the different flow parameters and to generate

information which will be helpful for production, in a cost

effective way.

1.3 Literature Review:

1.3.1 History of Turbulence:

with more than a century of intensive research, turbulence remains

as the unsolved problem of classical physics. Although the Navier-

stokes equations govern the instantaneous turbulence fluid motion,

effort in direct simulation of turbulence has been limited to low

Reynolds number (Re :s 5000) and to relatively simple parallel

flows. As the Reynolds number of the flow increases, the range of

length and time scales required for solving the instantaneous

turbulent motions by direct simulation increases rapidly exceeding

the storage capacity of the largest computers in the foreseeable

future even for simple flows. On the other hand, most industrially

important flows are quite complex and requires only knowledge of

the averaged quantities. Thus, turbulence modeling remains as the

economically feasible approach for simulating mean flow fields in

industrial applications.
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Extensive reviews of the historical and recent developments in

turbulence modeling were provided by Launder and Spalding [1972],

Lumley [1978, 1983], Donaldson [1972], Reynolds [1976], Bradshaw,

Cebeci and Whitelaw [1981], Rodi [1982] and Zeman [1981]. In this

section a brief review of the fundamental assumptions is given.

The existing turbulence models can be categorized in several ways.

The most common way is to classify them according to the number of

differential equations solved in addition to the mean flow

equations [Reynolds 1976]. These classifications are: (i) zero-

equation models, (ii) one-equation models, (iii) two-equation
models and (iv) stress-transport models.

Historically, turbulence models were initiated by Boussinesq

[1877], Prandtl [1925] and TaYlor [1932]. Zero-~quation models
(classical phenomenological models) employ Boussinesq eddy
viscosity concept. In the later part of the nineteenth century,

Boussinesq suggested modeling turbulent mean motion as a laminar

flow with a greatly increased viscosity (termed an eddy viscosity).

The value of the eddy viscosity is to be determined from

experiment. This approach allows the use of the same solution

procedure for turbulent flows which is similar to that of laminar

flows. The fundamental assumption in these early phenomenological

models is that the state of motion of the mean field fluid is fully
,

determined by the mean velocity vectory, and the mean pressure p
at a point.
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Prandtl's mixing length hypothesis, which was developed in

midtwenties, utilizes the eddy viscosity concept to relate the

turbulent transport terms to the local gradients of mean flow

quantities. Though the mixing length model has been successfully

applied to a large number of thin shear layer flows [Spalding

1982 J , it has several serious shortcomings. One of the ma jor

drawbacks of this hypothesis is that it assumes local equilibrium

conditions for turbulence. This implies that, at any point in the

flow, turbulence production is balanced by the dissipation-rate,

and there is no diffusion or convection. Hence the mixing length

model ignores transport and history effects of turbulence

altogether. The model also erroneously leads to zero values for

eddy viscosity and turbulent heat and mass diffusivities whenever

the mean velocity gradient is zero. Furthermore, the effects due to

buoyancy, rotation or streamline curvature on turbulence can only

be introduced in an entirely empirical way, and hence generally,

applicable expressions are hard to formulate. Moreover, for complex

flows, such as separated flows, empirical specification of the

mixing length becomes impossible.

Recent generations of turbulence modelings

motivated by the so-called Kolmogorov-Prandtl

Prandtl 1945J hypothesis,

I!T ~ pu'l',

are essentially

[Kolmogorov 1968,

[1.1J

where ~T is the turbulent (eddy) viscosity, u' is a characteristic

turbulent velocity scale and l' is a characteristic turbulent
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length scale. While most existing models make use of Equation

[1.1], the methods for obtaining the relevant scales differ.

In one-equation models, a transport equation for a suitable

turbulent velocity scale is used to account for the transport and

history effects of turbulence. Usually, jk acts as an appropriate

velocity scale, where k is the kinetic energy of turbulent motion.

The transport equation for k is derived from the Navier-Stokes

equations [Launder and Spalding 1972]. Based on the Kolmogorov-

Prandtl hypothesis, the eddy viscosity VT = MT/P is expressed as VT
= C"k'/'l. In these models, the length scale 1 is still specified

algebraically and hence the approach can not account for convection

and diffusion of 1. Moreover, for complex flows with separation,

streamline curvature or rotation, the empirical specification of

the length scale faces a number of difficulties. Due to significant

limitations of algebraic expressions for the length scale, one

equation models provided only little improvement over the zero
equation models.

Two equation models, employ transport equations for both turbulent

velocity scale and turbulent length scale. The use of a transport

equation for the length scale 1, accounts for the evolution of the

spatial scale of turbulent throughout the flow region. In this

length scale transport equation, the dependent variable can be any

combination of land k. Various combinations of two equation models

have been proposed, but the k-E model as developed by Launder &

6



Spalding [1972, 1974] and Jones & Launder [1972, 1973] using an
3

equation for the dissipation rate, € = CDk'jl , has been widely
used in most industrial applications. Here CD is a constant. One

reason for popularity of the two-equation model is that it can be

conveniently accommodated in the computer codes for solving the

Navier-Stokes equation. It also offers considerable saving in

computational time when compared to the more sophisticated stress

transport models. However, it is also known that the standard k-E

model is unable to handle unequal turbulent normal stresses and has

limitation in using isotropic eddy viscosity and diffusivity. Due

to the use of isotropic eddy viscosity, the model becomes incapable

of predicting the observed secondary flows in rectangular ducts.

The effects of curvature, rotation and buoyancy forces have to be

modeled separately. In addition the model can not account for the

convection and diffusion of the shear stresses.

In the stress transport model, to account for the evolution of the

individual stress components, transport equations for each

component of v~v; have been introduced. Exact equations for the v~v;
can be obtained directly from the Navier-Stokes equation. However,

these transport equations contain unknown higher order correlations

which have to be approximated by closure assumptions. In exact

Reynolds stress equation, however, terms accounting for buoyancy,

rotation and other effects are introduced automatically. In

modeling, turbulence processes are assumed to be characterized by

a single time-scale, k/E, where' k is the kinetic energy of

7



fluctuating motion. Furthermore, local isotropy for dissipation is

assumed to prevail so that the dissipation is same for all three

normal components. The modeled Reynolds stress transport equations

along with that for energy dissipation rate E, have ~o be solved

simultaneously. Thus, considerable computational effort is needed

for solving practical engineering problems. Elaborate stress

transport models were also developed by Daley and Harlow [1970],

Hanjalic and Launder [1972, 1976], Lumley and Khajeh-Nouri [1974],

Launder, Reece and Rodi [1975] and Newman, Launder and Lumley

[1981].

In the stress transport models, one has to solve a large number of

differential equations for each component of turbulent stresses and

fluxes, which requires extensive computational effort. To reduce

the required computational work, algebraic stress models have been

developed by Rodi [1976], Yoshizawa [1984, 1985], Speziale [1987],

Ahmadi & Chowdhury [1991] and Chowdhury [1990].

In spite of the extensive research effort to develop more accurate

turbulence models, the linear k-E model of turbulence is still

widely used in industries for solving practical flow problems. One

main reason is that, the needed computational effort for

application of stress transport models to industrial fluid

engineering problems is quite extensive, since the transport

equations for each component of the Reynolds stress tensor have to

be solved. In addition," in order to close the exact transport

equations for the Reynolds stresses, closure approximations for the

8



higher order turbulence correlations such as pressure-strain terms

are required which are difficult to achieve. Many turbulence

researchers [Speziale 1987] believe that these shortcomings

outweigh the main advantage of second order closures in practical

applications. The other reason for the popularity of the k-E model

is that it has been accommodated into many commercially available
computer codes.

1.3.2 Previous Work

Turbulent flow downstream of an abrupt pipe expansion was studied

numerically by Amano [1983]. In this paper, the sudden expansion

flow for a single jet was simulated. Here, expansion of concentric

jets were not considered. Computations employed a hybrid method of

central and upwind finite differencing to solve the Navier-Stokes

equations with the k-E turbulence model.

Experimental and numerical study of confined coaxial turbulent jets

were performed by Khodadadi and Vlachos [1989]. The turbulent

mixing of a primary jet and its surrounding fluid in a pipe was

studied. But, in this experiment, the sudden expansion geometry was

not considered. A hybrid difference scheme that combines central

and upwind differencing was used for computation.

Numerical study in the developing region of coaxial axisymmetric

confined jets was also carried out by Paul [1992]. Here also, the

sudden expansion of the jets was not consider~d.
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This thesis, therefore, analyses the flow of coaxial turbulent jets

with sudden axisymmetric expansion, and uses the hybrid

differencing scheme and k-E turbulence model in the computer code

of Chowdhury [1990].

1.4 Objective of this study

The objective of this thesis is to investigate numerically some

important flow characteristics, valuable for greater understanding

of the behavior of the nonreacting confined coaxial jets with

sudden axisymmetric expansion. A fast and reliable computer program

was adopted from Chowdhury [1990], for solving the governing

fini te-difference equations for given boundary conditions. The

velocity components, turbulence kinetc energy, dissipation rate,

etc., should be calculated at different sections of the mixing

chamber (combustion chamber) for different input parameters. These

parameters are Reynolds number, velocity ratio of jets, expansion

ratio, etc. The specific objectives of this research are:

(i )

(ii)

(iii)

to test the capability of the model in predicting complex

recirculating flows,

to study the effect of jet velocity ratio on the flow

field,

to observe the effect of Reynolds number on the flow

properties,

10
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(iv) to study the e~fect of grid spaci~g, and

(v) to analyze the effect of expansion ratio on the flow

field.

1.5. Outline of the Thesis

The main purpose of this thesis is to analyze numerically, the flow

of coaxial turbulent jets with sudden axisymmetric expansion. The

governing equations required for this numerical analysis, along

with the solution technique and boundary conditions are briefly
given in Chapter 2 of this thesis.

Chapter 3 contains the results and discussion. In this chapter, the

predicted results are first compared with the available

experimental data to prove the capability of the program. Then the

effect of changing the jet velocity ratio, grid spacing, Reynolds

number and expansion ratio on the flow properties is studied.

The summary of main findings of this thesis and the suggestions for

future work are presented in Chapter 4.

References and figures are given at the end of this thesis.

11

!



CHAPTER :2

METHODOLOGY OF SOLUTION

2.1 Scope:

In this chapter, the method of the numerical simulation is briefly

described. As already mentioned in the previous chapter, k-E model

is used to solve this axisymmetric, steady, turbulent flow. The

governing equations are first summarized. The solution technique is

then briefly outlined. Boundary conditions are described in short.

Finally, the solution procedure along with under-relaxation

principle is briefly discussed. Closing remarks are also given.

2.2 Governing Equations:

The equations which govern the flow of an incompressible fluid are:
Conservation of mass

Linear momentum

dVi
P dt ~ + 1.1

[2.1]

[2.2]

But in a state of turbulent motion the field quantities become

random functions of space and time. The instantaneous motions will

still satisfy Equations [2.1] and [2.2], but will become too

12 c



complex and mathematically untractable. The usual approach is to

use an averaging technique and to deal with the rather smooth

variation of the mean flow field. In turbulence modeling, the

complex motion of a simple (Newtonian) fluid is replaced by a

simple motion of a complex mean field fluid.

During turbulent motions, the flow parameters may be decomposed
into mean and fluctuating parts, i.e.

1/1 = iji + 1/1 I [2.3J

where iji is the mean (expected value) and 1/11 is the fluctuating

part of the variable W.

The governing equations then have more unknowns than the number of

equations and hence require closure assumptions. These are the

functions of turbulence modeling. In this thesis, the k-E
turbulence model of Launder and Spalding [1974J is used. In this

model, there are also two transport equations for kinetic energy of

turbulence, k and dissipation rate, E. The turbulent kinetic energy

and its dissipation rate are defined as,

e I I2vw iW i [ 2 • 4 J

where vi is the fluctuating velocity and w~ is the fluctuating
vorticity of turbulence.

13 c



The resulting governing equations are all similar and hence can be
put in the common form:

1 . a- l- (pUT<!»
T ax [2.5]

Here, ~ = 1 gives the continuity equation, ~ = u and v gives the

momentum equations, and ~ = k and E gives the transport equation

for k and E. In Equation [2.5] the first two terms are the

convection terms, third and fourth terms are the diffusion terms

and S~ is the source term which contains terms describing the

generation (creation) and consumption (dissipation) of variable ~.

The forms for the source term S~ are given in Table 2.1.

Table 2.1: Source Terms for the General Equation [2.5].

Name of Equation ~ Source Term, S~
Continuity 1 a

u-momentum u -
ap

+ s"ax

- ap - 2!J.v + SV
v-momentum v aT r2

G - cDpek-equation k

C eG - pe2

E-equation 1 k C2T
€

14



Here,

su -.iL (j.1au ) 1 a av~ + ar (rj.1 ax)ax ax r

8v -.iL (Il au) 1 a ava (Illa)ax ar r r r

G [2{(aU)2 + ( av) 2 + ( ~) 2) + ( au + av) 2]j.1 ax ar r ar ax

[2.6J

L? 7]

[2.8]

[ 2 • 9 ]

According to Launder and Spalding [1974], the empirical constants

are taken as,

CD ~ 1.0, C" ~ 0.09, C1 ~ 1.44 and. C2 ~ 1.92 [2.10]

These equations have to be solved for the time mean pressure and

velocity components.

2.3 Solution Technique:

The differential equations presented in the previous section are in

their exact form. In order to solve these equations, the exact

differential equations are first to be converted into approximate

finite difference equations. The finite difference equations are

solved on a complex mesh illustrated in Figure 2. The
intersections, the point P for example, of the solid lines mark the

grid nodes where all variables except u and v velocity components

are stored. The latter are stored at points which are denoted by

arrows located midway between the grid intersections, and the

boomerang-shaped envelope encloses a triad of points with reference

15



location P at (I, J). This is known as staggered grid system.
Details of the special merits of this staggered grid system have
been reported by Patankar [1980]. The different control volumes c,
U and V Ioihichare appropriate for the P, wand s locations
respectively are given in Figure 3.

The finite difference equations for each ~ are obtained by
integrating Equation [2.5] over the appropriate control volume and
expressing the result in terms of neighboring grid point values.
Here, a hybrid scheme which is a combinaton of the so-called
central and upwind finite differencing have been employed to
discretize the equations. The advantages of this hybrid
differencing scheme over central-difference and upwind scheme have
been described in detail by Patanker [1980]. The discretized
equations can finally be written in the following general form:

where

dp<l> p = L dj<l> j + Su
j

[2.11]

sum over N, S, E and W neighbors thus linking each ~-valueL =
j

at a point P with its four neighboring values.

16



2.4 Boundary Conditions:

The flowfield is covered with a nonuniform rectangular grid system

as shown in Figure 4. Typically the boundary of the solution domain

falls halfway between its immediate nearby parallel gridlines.

Clearly, specification of the x and r co-ordinates of the

gridlines, together with the specification of JMAX(I) for each I is

sufficient to determine the flowfield of interest. The finite

difference formulation requires amendment for the near boundary

points through insertion of correct boundary conditions. The

boundary conditions for the present flowfield are briefly described

below.

Inlet BounQary:

At the inlet, the axial velocity (u-velocity) is specified. No data

was available for the radial velocity, and hence the radial

velocity at inlet was set to zero. The turbulence kinetic energy k

and dissipation rate 0 were also specified at the inlet through the

following relations,

kill € in :;;:; [2.12]

where Uin is the mean inlet velocity, and A., and A, are some

constants.

17



Outlet Boundary:

The axial velocities at the outlet are deduced from their immediate

upstream values. Zero normal gradient is specified for all other

variables at the outlet.

Top and Side Wall:

At the top and side solid wall, no slip boundary conditions were

applied. Near wall tangential velocities are connected with their

zero wall values by way of the tangential shear stress wall

functions.

Symmetry Axis:

At the axis of symmetry, zero normal gradient were specified for

all the variables except the radial velocity. The radial velocity

was given zero value at this symmetry axis.

2.5 solution Procedure:

The finite difference equations and boundary conditions constitute

a system of strongly-coupled simultaneous algebraic equations. They

form a set of nonlinear equations. The nonlinear algebraic

equations are solved by an iterative technique. Values of all the

variables are first guessed. Then using the tridiagonal matrix

18



algorithm (TDMA), the set of equations are solved. This solution is

considered as improved guess and the iteration is repeated until

convergence criteria is satisfied.

At each iteration it is necessary to employ some degree of under-

relaxation. A weighted average of the newly calculated value and

the previous value is taken at each point. Because, if the

corrections are two large per iteration, the nonlinearity of the

finite difference equations causes divergence. Velocity and

pressure corrections per iteration become smaller as the solution
"

proceeds towards convergence.

Final convergence is decided by way of a residual-source criterion,

which measures the departure from exactness for the variable ~ at

the point. The residual sources are defined for each variable at

each point by equation like,

Rp = ap<flp - L dj<fl.i -Sa
.i

[2.13]

The solution is considered to be converged if the cu~ulative sum of

the absolute residuals throughout the field for all variables is

less than 0.4 percent of the inlet flow rate of the corresponding
variable.

19



2.6 Closure:

The governing differential equations are presented in this chapter

in a form which is used in the computer programme. The solution

technique and boundary conditions are discussed briefly. Finally,

the solution procedure is also outlined.

An available computer programme is used to simulate the present

flowfield and the results are discussed in the next chapter.

20



CHAPTER-3
RESULTS AND DISCUSSIONS

3.1 Scope

This chapter presents the results of numerical simulation of the

coaxial turbulent jet with sudden axisymmetric expansion, using a

modified version of the TEACH computer code of Chowdhury [1990J.

The governing equations using the k-E model, presented. in the

previous chapter, are used for the present study. First, the

problem is defined. Then, the problem is solved for a particular

case for which experimental data are available, and comparison is

made for varifying the validity of the programme. The effect of

changing the grid size on the flow-field simulation is observed.

The effect of changing the jet velocity ratio (flow ratio) is also

presented. Computations were also done by changing the jet Reynolds

number and the results are discussed. Finally, the effect of

changing the expansion ratio is studied, and closing remarks are

given.

3.2 Problem statement

As already mentioned, the confined coaxial turbulent jet with

sudden axisymmetric expansion is analyzed in this thesis. The flow

geometry is shown in Figure 1. Two coaxial jets of velocity U, and

U2 are corning in through the inner pipe of radius r, = 0.012m and.

outer annular pipe of radius r2 = 0.0295m, respectively. The jets
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then suddenly expand into a larger pipe of radius R = 0.061m, for

better mixing. Vniform profiles for the mean velocity, turbulence

kinetic energy and dissipation rate are assumed at the inlet. The

inlet turbulence kinetic energy and dissipation rate are taken by,

0.03 U1n e: in
k'12
>n

0.02R
[3.1J

where V'n is the inlet mean velocity, i.e. v, or V,. The flowfield

is solved for a nonuniform staggered grid of size 46 x 34 (i.e.

there are 46 grids in the axial direction and 34 grids in the

radial direction) with finer spacing in the regions of large

spatial gradients. In order to study the effect of grid size

variation, the flow-field is also solved for 46 x 24 grids. The

results are described in the subsequent sections.

3.3 Comparison with Available Experimental Data

Flow of coaxial jets with sudden axisymmetric expansion was studied

experimentally by Johnson and Bennett [1981J in a water test rig

for the test configuration shown in Figure 1 and described in the

previous section. Measurements for mean velocity and turbulence

fluctuations were made using a laser Doppler velocimeter. The inner

jet has a velocity of V, = 0.52 mls and the outer annular jet

velocity is V, = 1.66 m/s. The ratio of the velocities of the inner

and outer jets, V,IV, = 0.31, and the ratio of the flow rates for

the inner and outer jets, Q,/Q, = 1/16. The average velocity of the

outer annular jet is taken as the reference velocity, Vo = V, = 1.66

m/s.
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Based on this reference velocity and 2r" the flow Reynolds number

is 97000. The above flow is simulated using the computer code of

Chowdhury [1990], which is a modified version of the 1'EACH computer

code. A nonuniform grid of 46 x 34 node points is used. The

governing equations employing the k-E model are given in Chapter 2

of this thesis. The inlet turbulence energy and dissipation rate

are calculated by Equation [3.1]. The predictions of the numerical

model are compared with the experimental results of Johnson and

Bennett [1981] in Figures 5 and 6. In these figures, the solid

lines correspond to the numerical predictions of the present model

and the boxes correspond to the experimental data.

The mean axial velocity distribution across the flow as predicted

by the present numerical model at different axial locations are

shown in Figure 5. The experimental data of Johnson and Bennett

[1981] are also shown in this figure for comparison. It is observed

that the model predictions for the mean velocity are in good

agreement with the data. The reattachment length was found to be xR
= 27.2 em, orx./H = 8.64, where H is the expansion step height of

3.15 em.

Figure 6 compares the predicted turbulence kinetic energy

distribution across the flow with the experimental data of Johnson

and Bennett (1981). It is observed that the present model

predictions are in good agreement with the data.

23

r ~
, "
\.. (' ~-.' .



The dissipation rate profiles as predicted by the present model at

different axial locations are shown in Figure 7. The trends of

variations of the dissipation rate profiles appear to be quite

reasonable; however, no experimental data for dissipation rate for

the particular flow were reported in the literature for comparison.

Figure 8 shows the distributions of the dimensionless mean axial

velocity as predicted by the present model for different axial

locations. The mean velocities are nondimensionalized with the aid

of the reference velocity which is the average velocity of the

annular jet. In these velocity profiles we find the presence of the

recirculation zone caused by the sudden expansion, which ultimately

helps in mixing.

Distributions of the dimensionless turbulence kinetic energy across

the flow at different axial locations are shown in Figure 9. Here

also, the turbulence kinetic energy is nondimensionalized with the

aid of the reference velocity, Do = D2• The high level of turbulence

kinetic energy generated due to high rate of shearing of the flow

helps in the mixing process.

Based on the above presented results and comparison with

experimental data, it may be concluded that the present numerical

model has the capability of predicting turbulent flows with
"reasonable accuracy. Hence, this model will be used for further

simulations in the following sections.
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3.4 Effect of Grid size

In the previous section, for Figures 5-9, the particular flow was

simulated based on a grid of 46 x 34 node points. However, the

effect of grid size variation on the simulated results, needs to be

checked. So, the above flow was also simulated using 46 x 24 node

points and the results presented.

Figure 10 shows the distribution of the mean axial velocity across

the flow, for the conditions of the previous section, and for both

the grid sizes of 46 x 34 and 46 x 24. The plots for 46 x 34 node

points shown by solid lines are almost similar to those for 46 x 24

node points shown by dotted lines, except for a few places where

the larger grid size has better matching with the experimental

data. The distribution of turbulence kinetic energy and dissipation

rate across the flow were also plotted for both the grid size and

found to almost superimpose, and so were not presented here.

Hence, the use of 46 x 34 grid size seems to be reasonable, and so

will be used for the present computation.

3.5 Effect of Velocity Ratio U,/U,

In section 3.3 of this thesis, computations for the coaxial

turbulent jets, with sudden expansion were performed for jet

velocity ratio U,/U, = 0.31, which corresponds to flow rate ratio
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Q,: Q, = 1:16, where Q, and Q, are the flow rates of the inner and

outer annular jets, respectively. In practice, flow rate ratio

different from the above might be required for the design of

combustion chambers. Hence, the effect of changing this flow rate

ratio or consequently jet velocity ratio on the flowfield will be

studied in this section.

First, the coaxial turbulent jet flow for the geometry of Figure 1

is again simulated for U, = 1.66 mls but U1 = 0.33 mis, which

corresponds to U1/U, = 0.2 or Q1: Q, = 1:25, and the results are

presented in Figs. 11-15.

Figure 11 shows the distribution of the mean axial velocity across

the flow at different axial' locations. Here x means the axial

distance from the sudden expansion geometry. Here also, we observe

the presence of the recirculation zone due to the sudden expansion.

The reattachment length was found to be, xR = 27.8 ern or xR/H =

8.83, where H is the step height. The recirculation length has

slightly increased compared to that for U1/U, = 0.31.

The predicted variation of the turbulent kinetic energy across the

flow at different sections are shown in Figure 12. Here, we find

that the turbulent kinetic energy level is high at points where

shearing of the flow is maximum. This high level of turbulent

energy helps in the mixing process. The turbulent energy is

generated more in the initial region after expansion and the

profile flattens as goes away from the expansion section.
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.The predicted dissipation rate profiles at different locations are

also shown in Figure 13. The peak of the dissipation rate profile

is quite high near the expansion section, and decreases rapidly as
we move along the axial direction.

Figure 14 shows the distribution of the dimensionless mean axial

velocity across the flow at different axial locations. The mean

velocity is nondimensionalized by the reference velocity Uo = U, =
1.66 m/s. Here we observe that the centerline velocity recovers
faster than that for U,/U, = 0.31.

The predicted variation of the nondimensional turbulence kinetic

energy is shown in Figure 15. In this figure, the solid line stands

for x = 5.1 em, and the dotted lines with increasing dot lengths

represent the subsequent sections of 10.2 em, 15.2 em, 20.3 em,

25.4 em and 30.5 em. The corresponding values of x/R for these

sections are 0.84, 1.67, 2.49, 3.33, 4.16 and 5.0 respectively.

Next, the coaxial turbulent jet flow for the geometry for Figure 1

is simulated for U, = 1.66 m/s but U, = 0.83 m/s, which corresponds

to UjU, = 0.5 or Q,: Q, = 1:10, and the results are presented in
Figures 16-20.

The mean axial velocity distribution across the flow as predicted

by the present model at different sections are shown in Figure 16.

The reattachment length for the recirculation zone near the wall,
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was found to be xR = 26.7 cm or xR/H = 8.48, where H is the step

height. The reattachment length is slightly less than that for V,/V2

= 0.31.

Figure 17 shows the variation of the turbulent kinetic energy

across the flow at different axial locations. The turbulent kinetic

energy is generated more at the regions of the larger shearing of

flow.

The dissipation rate profiles as predicted by the present model at

different axial locations are shown in Figure 18. The peak of the

dissipation rate profile in the first section is quite large,

whereas in the last section it has decreased a lot.

The predicted variation of the dimensionless mean axial velocity

across the flow at different locations have been plotted in Figure

19. From this figure we can see how the velocity profile changes

from section to section and the changes in the recirculation zone.

Figure 20 shows the dimensionless turbulent kinetic energy profiles

for different sections. The reference velocity Vo = V2 has been used

for nondimensionalization.

Now, th'e distribution of the dimensionless mean axial velocity

across the flow at different axial positions for V,/V2 = 0.2, 0.31

and 0.5 are shown in Figure 21, for comparison.

Nondimensionalization has been done with the aid of the reference
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velocity Uo = U, = 1.66 m/s. From the figure we find that the

nondimensional curves are very similar except near the centerline.

It can be seen that, the mean velocity for U1/U2 = 0.2, near the

centerline, recovers much faster unlike that for U1/U, = 0.5. At

sections away from the expansion, the curves almost superimpose.

From this figure, the mean velocity for different flow ratios of

the two jets, can be predicted by interpolation.

Figure 22 compares the distribution of the dimensionless turbulent

kinetic energy across the flow for U1/U2 = 0.2, 0.31 and 0.5. Here

we observe that the nondimensional turbulent kinetic energy

profiles are very similar except near the centerline for the

initial sections.

The predicted nondimensional centerline mean velocities are plotted

in Figure 23, for U1/U2 = 0.2, 0.31 and 0.5. From the figure we find

that, in the initial region, the centerline velocity for U1/U2 = 0.2

drops rapidly after sudden expansion ~nd then recovers very fast.

The centerline velocity for UjU2 = 0.31 drops slowly and again

recovers, unlike that for U1/U, = 0.5. At a certain distance away

from the expansion section, the centerline velocity for all the

three cases decreases at the same rate.

From the above figures we may conclude that, though there are

certain changes in the flow field due to the change of jet velocity

or flow ratio, but the properties can be predicted from the

dimensionless figures like Figures 21 and 22, by interpolation.
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3.6 Effect of Reynolds Number

The flow of the coaxial turbulent jet with sudden axisymmetric

expansion was studied in section 3.3 for U1 = 0.52 mlsand U, = 1.66

mis, corresponding to which the velocity ratio U1/U2 = 0.31 and the

R~ynolds number Re = 97000, based on the outer jet velocity U2 and

diameter 2r2• The effect of changing the Reynolds number will be
observed in this section.

The coaxial turbulent jet flow of section 3.3 is again simulated

for U1 = 1.04 mls and U2 = 3.32 mis, while keeping other parameters

constant. The Reynolds number now becomes, Re = 194000 i.e. doubled

as before, while U1/U2 and Q1:Q2 still remain the same as 0.31 and

1:16 respectively. The simulated results are shown in Figures 24-

27. In these figures, the solid line corresponds to Re = 97000, and

the dotted line corresponds to Re = 194000.

Figure 24 compares the distribution of the dimensionless mean axial

velocity across the flow for the two Reynolds number, at different

axial locations. In this figure, the mean velocities have been

nondimensionalized with the aid of the reference velocity Uo' For

Re = 97000, Uo = U2 = 1.66 mis, while for Re = 194000, Uo = U2 = 3.32

m/s. The nondimensional profiles for the mean velocity for both the

Reynolds number are almost the same. The mean axial velocity

distributions for the above Reynolds number have also been plotted

in Figure 25, but without nondimensionalizing. In Figure 25, we
.~~---
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find that the curves for different Reynolds numbers are quite

different. Hence, if the mean velocity profiles are plotted in the

above nondimensional form, they can be used for predicting the flow
at different Reynolds number.

The distribution of the nondimensional turbulent kinetic energy

across the flow at different sections for Re = 97000 and 194000

have been plotted in Figure 26. Here, both the nondimensional

figures coincide. The reference velocity Vo = V, has been used for

nondimensionalization, where the value of V, is different for each
Re. The predicted dimensional turbulent kinetic energy
distributions for the above Reynolds number are also shown in

Figure 27. From this figure we observe that the dimensional

profiles are quite different.

From the above study, it may be concluded that, if the variables

are nondimensionalized with the aid of the reference velocity, then

the figures can be used to predict the properties for different
Reynolds number.

3.7 Effect of Expansion Ratio

In this thesis, the flow of the coaxial turbulent jet with sudden

axisymmetric expansion is being studied. The sudden-expansion

geometry produces mixing rates downstream of the expansion that are

substantially higher than that without it. Therefore, the effect of

changing this expansion ratio on the flow field needs to be

r
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observed. Expansion ratio may be defined in terms of the change of

radius or flow-area. The jet flow of section 3.3 is again studied

in this section by increasing the radius of the larger pipe, R by

10%, while keeping other parameters constant. The results are

presented in Figures 28 and 29. In these figures, the solid line

represents the flow of section 3.3, where R/r, = 2.07, and the

dotted line represents the flow due to the increased R,

corresponding to which R/r, = 2.27.

The distribution of the predicted dimensionless mean axial velocity

across the flow has been shown in Figure 28, for both expansion

ratios R/r, = 2.07 and 2.27, for comparison. In this figure, the

mean velocity has been nondimensionalized with the reference

velocity = u" and the radial distance has been

nondimensionalized with the radius of the larger pipe R, which is

different for the two cases. The peak of the mean velocities are

shifted towards the centerline for larger R. Also, the length of

the recirculation zone has increased for larger R. In section 3.3,

the recirculation length was, xR= 27.2 cm and xR/H = 8.64, where

H is the expansion step height of 3.15 cm. Here, due to increase of

R by 10%, the recirculation length has become, xR = 32.5 cm, but

the expansion step height has also increased to 3.76 cm. So, for

this increased R, nondimensional recirculation length becomes XR/H

= 8.64, which is the same as that of section 3.3.
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Figure 29 compares the nondimensional turbulent kinetic energy

distributions for both the expansion ratios~ Here also we observe

that the peaks are shifted towards the centerline.

3.8 Closure

The present computer code is used to simulate the mean flow of the

coaxial turbulent jets with sudden axisymmetric expansion. The

predicted results are compared with the available experimental data

and found to have reasonably good matching. The flow is studied by

changing the jet velocity ratio or flow ratio, and useful

nondimensi0nal results are presented. The effect of changing the

grid size and flow Reynolds number is also studied. It is shown

that 46 x 34 grid size is stable, and properly nondimensionalized

plots can be used for different Reynolds number. Finally, the

expansion ratio is changed and simulated results compared.

I
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CHAPTER 4,

CONCLUSION

In this chapter, the main findings of the present computational

study are presented, along with suggestions for developments in

the future.

4.1 Summary of Main Findings

Based on the presented results the following conclusions may be

drawn:

i. The present computational

complex flows like coaxial

reasonable accuracy.

model is capable of predicting

turbulent jet expansion, with

ii. Due to the change in jet velocity ratio, the mean velocity and

turbulence kinetic energy profiles have some variation near

the centerline. The mean velocity profiles for different jet

velocity ratio can be interpreted from the presented results.

iii. with the increase of jet velocity ratio U,/U, from 0.2 to 0.5,

the recirculation length x./H slightly decreases from 8.83 to

8.48.
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iv. The centerline velocity for UJU2 = 0.2, decreases sharply
after expansion and again increases rapidly in the initial
region, unlike that for UjU2 = 0.5.

v. The grid size of 46 x 34 node points used in the present
computation for simulating the coaxial turbulent jet
expansion, is sufficient. Further increase of node points will
only increase the computational time and cost, without
appreciable improvement of flow predictions.

vi. The change of Reynolds number, changes the mean velocity,
turbulent energy, etc. But if the results are plotted in
proper nondimensional form, the profiles coincide.

vii. The increase of expansion ratio, increases the recirculation
length, but remains as a constant multiple of the expansion
step height.

4.2 Suggestions for Future Work

The following works can be done in future:

i. Swirl velocity can be added to the jets to study the effect of
swirl, as used in swirl combustors.
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ii. Higher order schemes can be used to have better accuracy of
prediction.

iii. More sophisticated turbulence model can be employed.

iv. Transport equation for temperature can be added .
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