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Abstract

DNA or deoxyribonucleic acid is a double helix polymer molecule that
carries the genetic information and controls every biochemical process in
the body of all organisms. By altering the DNA artificially, it is possible
to correct genetic problems, treat diseases, and even eradicate diseases.
Genome editing technologies have been developed in this regard to correct
the DNA. Such technologies often work by cutting the DNA double helix
at an intended location. These double-helix breaks can later be repaired by
modifying the sequence at those places. CRISPR/Cas9 is one such genome
editing technology, which has been recognized to be highly specific, cost-
effective, and less time-consuming compared to other technologies such as
ZFN and TALEN. CRISPR/Cas9 system introduces a DNA cleavage by
splicing the double-helix with the Cas9 enzyme. This enzyme is guided
to a particular genomic location by a single guide RNA (sgRNA), or
simply, guide RNA (gRNA). Genome editing using the CRISPR/Cas9
system, therefore, requires designing sgRNAs that are efficient and specific.
These RNAs are usually designed using reference genomes, by scanning
the genome for probable locations where a double-helix break could result.
The requirement to have to scan the reference genome limits their use in
organisms with incomplete reference genomes. We show that it is possible to
design sgRNAs without a reference genome. We do this by directly utilizing
genome sequencing reads and estimating the number of cuts introduced by
a particular sgRNA by counting k-mers in the reads. Using this estimation,
we give an alternative definition of the specificity score of a sgRNA. We also
show that sgRNAs filtered and sorted using this score are highly specific by
separately scanning the reference. We further show that our list of sgRNAs
is similar to those of other sgRNA designer tools that work with a reference
genome.

x



Chapter 1

Introduction

1.1 DNA and life

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all
other organisms. Nearly every cell in a person’s body has the same DNA. Most DNA
is located in the cell nucleus (where it is called nuclear DNA), but a small amount of
DNA can also be found in the mitochondria (where it is called mitochondrial DNA or
mtDNA) [7].
The information in DNA is stored as a code made up of four chemical bases: adenine
(A), guanine (G), cytosine (C), and thymine (T). Human DNA consists of about 3
billion bases, and more than 99 percent of those bases are the same in all people [8, 9].
The order, or sequence, of these bases determines the information available for building
and maintaining an organism, similar to the way in which letters of the alphabet appear
in a certain order to form words and sentences [7].
The information stored in DNA essentially determines everything about how an
organism lives, reproduces, survives, even dies. All biochemical process with in the
body of all organisms are controlled by the DNA.

1.2 Genome editing technologies

Genome editing technologies enable scientists to make changes to the DNA, leading
to changes in physical traits, like eye color, and disease risk. Scientists use different
technologies to do this. These technologies act like scissors, cutting the DNA at a
specific spot. Then scientists can remove, add, or replace the DNA where it was cut.
The key to genome editing is creating a double-strand break (DSB or ds-break) at a
specific location within the genome. Commonly used restriction enzymes are effective

1



1.3. IMPORTANCE OF GENOME EDITING 2

at cutting DNA, but generally recognize and cut at multiple sites. To overcome this
challenge and create site-specific DSB, three distinct classes of nucleases have been
discovered and bioengineered to date.

• Zinc finger nucleases (ZFNs) [10]

• transcription-activator like effector nucleases (TALEN) [11]

• clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system
[12, 13]

Based on the use of these nucleases, different genome-editing technologies are named.
These vary in their ease of designing a genome-editing wet-lab experiment, required
time, efficacy of the cut, specificity of targeting a particular location, and the ability to
target multiple sites within the genome simultaneously.

1.3 Importance of genome editing

Genome editing is a method that lets scientists change the DNA of many organisms,
including plants, bacteria, and animals. Editing DNA can lead to changes in physical
traits, like eye color, hair color etc. By editing the genome, scientists are also able
to reduce the risks of diseases [14]. This is often referred to as “gene therapy” [15].
Gene therapy, or treatments involving genome editing, have the potential to help
treat diseases at a genomic basis, like cystic fibrosis and diabetes, and many genetic
disorders [14]. This is a way to fix a genetic problem at its source [16]. The first
clinical use of TALEN-based genome editing was in the treatment of CD19+ acute
lymphoblastic leukemia in an 11-month old child in 2015. Modified donor T-cells were
engineered to attack the leukemia cells, to be resistant to Alemtuzumab, and to evade
detection by the host immune system after introduction [17, 18].
By editing the genome, scientists are also making way to eradicate diseases. Researchers
have used CRISPR-Cas9 gene drives to modify genes associated with sterility in A.
gambiae, the vector for malaria [19]. This technique has further implications in
eradicating other vector borne diseases such as yellow fever, dengue, and Zika [20].
Antiviral applications for therapies targeting human viruses such as HIV, herpes, and
hepatitis B virus are under research. CRISPR editing can be used to target the virus
or the host to disrupt genes encoding the virus cell-surface receptor proteins [21].
A particular area where genome editing has much potential and has been used
extensively is agriculture. Although regulatory frameworks have been imposed on
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Figure 1.1: CRISPR defense mechanism at a high level (This image was taken from [1])
.

genetically modified (GM) crops with a view to ensure environmental biosafety, and
thereby incurring more cost [22], genome-editing systems have been utilized in a
wide variety of plant species to characterize gene functions and improve agricultural
traits [23]. Trait stacking for maize and rice have been achieved using ZFN (a genome
editing technology) [24, 25]. TALEN has been used to build bacterial blight resistance
in rice [26], to introduce fragrance in rice grains [27], to increase oleic acid contents in
soybean [28], and to improve saccharification efficiency in sugercane [29].
CRISPR/Cas9 system has also been employed in agriculture, resulting in a number
of breakthroughs. Use of CRISPR/Cas9 has enabled larger grain size with higher
production in rice [30], increased protein content in wheat [31], higher amylopectin
content in potato [32], bacterial speck resistance in tomato [33], and virus resistance in
cucumber [34]. The list is not exhaustive, extensive review has been done to list the
genome-editing contributions in agriculture [23, 35, 36].

1.4 CRISPR/Cas9 to edit the genome

In recent times, CRISPR/Cas9 has emerged as a popular genome editing technology.
Originally, CRISPR (clustered regulatory interspaced palindromic repeats) is a bacterial
defense mechanism against viruses. As viruses attack bacteria, the DNA snippets of the
virus called spacers are recorded by the bacteria and stored in its own CRISPR sequence
as a memory. When the same virus attacks later, CRISPR-RNA is formed using those
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memory, guiding the splicer enzymes to the DNA of the virus. Then, the DNA of the
virus is torn apart by cutting them at places. A high level pictorial representation is
shown in Figure 1.1.
Using the same idea, CRISPR/Cas9 has been modified to edit the genome of other
organisms. The DNA snippet(s) of the genomic region (where genome editing is
intended) are recorded by the CRISPR/Cas9 system in form of single guide RNAs
(sgRNAs, or simply, guide RNAs or gRNAs). The Cas9 is an enzyme (CRISPR-
associated protein 9) that plays the role of a scissor which cuts the DNA at a certain
location. The guide RNAs “guide” the scissor to that location. Naturally, if the guide
RNAs are not designed with care, they can carry the Cas9 enzyme to an unintended
genomic location and introduce a ds-break at an unintended location within the genome.
Therefore, it is crucial to design the guide RNAs so that the gRNAs that may bind off-
target are ruled out and the highly specific gRNAs are identified.

1.5 Importance of reference-free work

Compared to other genome editing technologies, CRISPR/Cas9 is favorable for the ease
of use, cost-effectiveness, and reduced experiment time. As a result, huge number of
CRISPR related research is being undertaken by the research community. Consequently,
numerous computational tools have been developed to design these guide RNAs. Most
of these tools scan the target site (where CRISPR cut is intended), identify guide RNAs,
and then scans the whole reference genome to identify potential sites where those guide
RNAs are likely to make a cut. Finally, particular scores indicating the number of
off-target cuts are calculated for a certain target site.
However, having the reference genome at disposal is not always practical since genome
assembly itself is a complicated problem. Assembling the whole genome of an organism
and annotating all the loci accurately may take years to complete. Reference genome
for a large number of crops is not available to date. This impediment makes CRISPR
experiments for organisms with incomplete genome difficult and challenging. Moreover,
the reference genome of an organism often does not represent the individuals accurately.
That is, designing CRISPR/Cas9 experiments for an individual using the reference
genome for that particular organism may not be a clever idea, since the genome of that
individual can contain genetic variations with the reference.
To address these challenges, it is important to develop a guide RNA designing tool that
can operate without the necessity of a reference genome.
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1.6 Contributions of the research

In this thesis, we present kRISP-meR, a guide RNA designing tool that does not rely
on a reference genome. The reference genome for a particular organism is assembled
over years using the sequenced reads collected from individuals of that organism. The
sequencing reads, being collected from the DNA of an individual, also contains all
information of the DNA of that individual. Therefore, we utilize the sequencing reads
directly both to decouple the use of a reference genome, and to identify guide RNAs
personalized for that individual (whose sequencing reads are being used).
Goal of any gRNA designing tool is to identify guide RNAs with good on-target activity
as well as minimal off-target activity. Good on-target activity refers to the characteristic
of a guide RNA introducing a ds-break with high efficacy. On the other hand, minimal
off-target activity refers to the ability of a guide RNA to target a location within the
genome with high specificity. We identified the off-target activity of a guide RNA
without any reference genome. Typically, the off-target activity of a particular guide
RNA is summarized as a single score, ranging from 0.0 to 1.0, indicating the specificity of
the gRNA. The existing gRNA designing tools use different definitions of this specificity
score, almost all of which use features of the reference genome. In this thesis, we define
a novel score to indicate the off-target activity of a particular guide RNA which does not
require the use of a reference genome. To calculate this score, we model the sequencing
reads as a probabilistic model, capturing the attributes of the sequencing technology
(including the sequencing errors while collecting sequencing reads) with a mixture of
probabilistic distributions. We calculate various components of this score from this
model using Expectation Maximization algorithm and Maximul Likelihood Estimation.
With no reference genome to work with, our calculations engage k-mer counting heavily.
We use Jellyfish [37] to count k-mers in sequencing reads. To identify the personalized
target sequence, we use Bowtie2 [38], Samtools [39] and Pilon [40] in a pipeline. We
also calculate the on-target efficacy score of a target-site for a guide RNA using the
Doench model [41]. We implemented all of these in Python 2.0 to develop kRISP-meR
as a bioinformatics tool, which is available in https://github.com/mahmudhera/kRISP-
meR.
We verify the definition of our score by calculating the same score with the reference
genome and making a contrast of the two. To demonstrate that kRISP-meR, without
a reference, generates highly specific gRNAs, we compare ourselves with three other
gRNA designing tools that use the reference genome. Our experiments show that the
off-target activity exhibited by the gRNAs identified by the other tools is similar to
that of ours.

https://github.com/mahmudhera/kRISP-meR
https://github.com/mahmudhera/kRISP-meR


1.7. THESIS ORGANIZATION 6

1.7 Thesis organization

This thesis is organized as follows: it introduces the literature review on CRISPR/Cas9
gRNA designing in Chapter 2. Next, the mathematical concepts used to develop kRISP-
meR are elaborated in Chapter 3. After that, Chapter 4 describes the methods used to
develop kRISP-meR. In Chapter 5, we compare kRISP-meR with other gRNA designing
tools that use a reference genome. Finally, Chapter 6 concludes the thesis by mentioning
future directions of the work.



Chapter 2

Literature review

In this chapter, we review the research undertaken to design guide RNAs for
CRISPR/Cas9. In order to fully introduce the context, we first study the research
works on CRISPR/Cas9 technology itself (Section 2.1), even though these works are
more inclined towards biology and biochemistry rather than computation. Later,
we introduce the complications in designing gRNAs for CRISPR/Cas9 (Sections 2.2
and 2.3) and recognize the research conducted to design gRNAs for CRISPR/Cas9
(Section 2.4). Finally, we identify the gaps in the state of the art methods to design
gRNAs for CRISPR/Cas9 which lead towards our motivation to develop kRISP-meR
(Section 2.5).

2.1 Introduction of CRISPR/Cas9 as a genome editing
technology

CRISPR (clustered regularly interspaced short palindromic repeats) is a family of
DNA sequences found in the genomes of prokaryotic organisms such as bacteria and
archaea [42]. These sequences are derived from DNA fragments of bacteriophages that
had previously infected the prokaryote. They are used to detect and destroy DNA from
similar bacteriophages during subsequent infections. Hence these sequences play a key
role in the antiviral (i.e. anti-phage) defense system of prokaryotes [42].
Cas9 is an enzyme that uses CRISPR sequences as a guide to recognize and cleave
specific strands of DNA that are complementary to the CRISPR sequence. Cas9
enzymes together with CRISPR sequences form the basis of a technology known as
CRISPR-Cas9 that can be used to edit genes within organisms [43]. This editing process
has a wide variety of applications including basic biological research, development of
biotechnology products, and treatment of diseases [44, 45].

7



2.1. INTRODUCTION OF CRISPR/CAS9 AS A GENOME EDITING TECHNOLOGY 8

The CRISPR-Cas system is a prokaryotic immune system that confers resistance to
foreign genetic elements such as those present within plasmids and phages [46,47] that
provides a form of acquired immunity. RNA harboring the spacer sequence helps Cas
(CRISPR-associated) proteins recognize and cut foreign pathogenic DNA. Other RNA-
guided Cas proteins cut foreign RNA [48]. CRISPR are found in approximately 50% of
sequenced bacterial genomes and nearly 90% of sequenced archaea [49].
In 2012, Jennifer Doudna and Emmanuelle Charpentier were the first to propose that
CRISPR-Cas9 (enzymes from bacteria that control microbial immunity) could be used
for programmable editing of genomes [12,13]. Ever since, CRISPR/Cas9 has been one of
the most notable technologies in field of genetic engineering looming in the limelight for
these past few years. Genome editing technologies such as ZFNs are seldom completely
specific, and some may cause a toxic reaction. However, the toxicity has been reported
to be reduced by modifications done on the cleavage domain of the ZFN [50]. TALEN,
on the other hand, has low on-target cutting efficiency. Both of these require time and
labor to design a genome editing experiment. On the other hand, CRISPR is highly
efficient and highly specific at the same time, and is able to target multiple target-sites
simultaneously [51].
Because of the ease of use and cost-efficiency of CRISPR, extensive research is currently
being done on it. There are now more publications on CRISPR than ZFN and TALEN
despite how recent the discovery of CRISPR is [42]. Science selected this to be the 2015
Breakthrough of the Year [52].

2.1.1 CRISPR/Cas system

CRISPR (clustered regularly interspaced short palindromic repeats) is a family of DNA
sequences in bacteria and archea that contain snippets of DNA from viruses that have
attacked the bacterium [42]. When a virus attacks a bacterium, snippets from the
genome of the attacking virus is copied into the genome of the bacterium. This is done
with the help of CAS enzyme. Later, these snippets act like a memory. Using this
memory, the bacterium is able to construct CRISPR-RNA (crRNA) containing those
snippets.
Cas9 (or “CRISPR-associated protein 9”) is an enzyme that uses CRISPR sequences
as a guide to recognize and cleave specific strands of DNA that are complementary
to the CRISPR sequence. Cas9 enzymes together with CRISPR sequences form the
basis of a technology known as CRISPR-Cas9 that can be used to edit genes within
organisms [43]. The crRNA containing memory snippets and CAS enzyme together
form CAS-crRNA complex. This complex attacks the viruses that later attack the
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Figure 2.1: CRISPR/CAS defence mechanism (This image was taken from [2])

host bacterium. Since this complex has the crRNA formed earlier (which contains the
snippets from the attacking virus), using the CAS enzyme, this complex can bind itself
at certain positions of the genome of the attacking virus. After that, the genome of the
virus is cut at the position where the complex is bound. Therefore, the genome of the
attacking virus is shredded into disintegrated pieces which are no longer a threat to the
host bacterium. This entire process is known as CRISPR prokaryotic antiviral defense
mechanism [2], which is shown in Figure 2.1.

2.1.2 CRISPR/Cas9 system and the guide RNA

A simple version of the CRISPR/Cas system, CRISPR/Cas9, has been modified to edit
genomes. CRISPR/Cas genome editing techniques have many potential applications,
including medicine and crop seed enhancement. The use of CRISPR/Cas9-gRNA
complex for genome editing [53] was the AAAS’s choice for breakthrough of the year in
2015 [54]. Bioethical concerns have been raised about the prospect of using CRISPR
for germline editing [55].
By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into
a cell, the cell’s genome can be cut at a desired location, allowing existing genes to
be removed and/or new ones added. The Cas9-gRNA complex corresponds with the
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Figure 2.2: Editing the genome after double-strand break has been introduced by the
Cas9 enzyme (This image was taken from [3]).

CAS-III crRNA complex in Figure 2.1. The guide-RNA is the determinant of where
the CAS enzyme will make its cuts in the cell’s genome. Thereby, the Cas9 nuclease
is guided by the gRNA, and hence, engineering the gRNA properly so that the cut is
made in the intended target region and not off-target, is crucial.
Once the Cas9 enzyme cuts both strands of the targeted DNA, this DSB can be repaired
in two ways, as shown in Figure 2.2. During gene silencing, the cell attempts to repair
the broken DNA in a process called Non-Homologous End Joining (NHEJ), but often
does so with errors that disrupt the gene and effectively silencing it. For gene editing, a
repair template with a specified change in sequence is added to the cell and incorporated
into the DNA during the repair process. The targeted DNA is now altered to carry this
new sequence [3].

2.2 gRNA and success of CRISPR/Cas9 experiments

CRISPR enables rapid, targeted, genome editing in a wide variety of systems [13]. The
CRISPR-associated Cas9 protein, an RNA-directed DNA endonuclease, can be used
to manipulate the genome effectively. A number of works have been undertaken to
demonstrate this effectiveness of Cas9. Jinek et. al. [12] first showed that Cas9, guided
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by CRISPR-RNAs (crRNAs) can introduce ds-breaks in the DNA. Later, Cong et.
al. [56] also showed that Cas9 nucleases can be directed by short RNAs to induce precise
cleavage at endogenous genomic loci in human and mouse cells. Cas9 was also used in
CRISPR to target and edit 293T cells, K562 cells and pluripotent stem cells [57]. These
works, establishing the succesful use of Cas9 in CRISPR experiments – all share the
same aspect: use of guide-RNAs to guide Cas9 nuclease complex to intended genomic
regions.
The ability to target a specific genomic location by designing guide-RNAs has made
CRISPR a robust, low-cost method – opening up the scope of many applications [45].
CRISPR based genetic screens have been developed using the CRSIPR/Cas9
system [58], which in turn led to identification of multiple gene-function for various
phenotypes [59–61]. Scientists have successfully removed HIV virus out of the cells of
infected rats [62]. CRISPR/Cas9 genome editing system was used to precisely remove
the HIV-1 genome spanning from human T-lymphoid cells [63]. Treatment of primary
open-angle glaucoma was successfully achieved in mouse eyes using CRISPR [64].
CRISPR/Cas9 was successfully used to distort sex-ratio in Anopheles gambiae [65],
reducing number of females in the population and thus controlling the growth. Human T
cells were modified using CRISPR for the treatment of X-Linked Hyper-IgM Syndrome,
a condition that affects the immune system [66]. Besides treatments, CRISPR/Cas9
has also been used successfully in agriculture to enhance crops including rice, wheat,
maize, potato, tomato, orange, cucumber and mushroom [23,35, 36].

2.3 The gRNA designing problem

A protospacer adjacent motif (PAM) is a 2–6-base pair DNA sequence immediately
following the DNA sequence targeted by the Cas9 nuclease in the CRISPR bacterial
adaptive immune system [67]. In the CRISPR/Cas9 system, the Cas9 protein is guided
by the sgRNA but will not be able to make an effective cut if the DNA-sequence (where
the Cas9 protein is to make a cut) is not followed by a PAM sequence [12,67–69]. Usually,
for CRISPR/Cas9, the PAM with most effective outcome is 5’-‘NGG’ [70].
When a guide RNA binds to a genomic site unintentionally and makes a cleavage
(or a cut), resulting in a double-strand break (or a ds-break), the effect is known as
off-target effect. Due to error in design (not considering indels and SNPs) and/or
experimental conditions, the ds-breaks can result at an undesired location [71,72]. Off-
target effects are widely studied whenever using a genome editing technology (including
CRISPR) [73–75].
Key to the success of CRISPR/Cas9 in modifying the genome is the design of a
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“good” guide-RNA; which is, therefore, an important research problem that has received
notable attention – requiring careful use of high-quality genome sequence and gene
annotations [76]. The primary goal of the design of an sgRNA is to make sure that
the Cas9 makes a cut only at the intended target region and nowhere else, minimizing
the off-target effect, which involves identifying sequences in the genome where a guide
RNA can bind to and Cas9 can make a cut.
Besides this, it is also important to design a guide RNA that completes making a cut and
does not stop midway. This is referred to in the literature as “on-target activity” or “on-
target cutting efficiency”. Thus, designing guide RNAs involve looking for gRNAs with
high specificity (minimizing off-target effects) and high cutting-efficiency (maximizing
on-target activity).

2.4 Current state of gRNA dsigning problem

To design sgRNAs with high efficacy and high specificity, several models and
computational tools have been developed. We are going to look into them in more
detail in the following sections.

2.4.1 Models to predict on-target cutting efficiency

Ideally, if the 5’-end of the 20-nt sequence is complementary to the DNA sequence,
then the cutting enzyme should make a cut. However, practically, this is not always the
case [12,56]. Therefore, models predicting target sites with high efficiency are necessary.
The first attempt to develop such a predictive model was undertaken by Doench et.
al. [77]. This model involves analyzing all possible target sites for six mouse genes and
three human genes, including 1841 sgRNAs. In their model, they employed a support
vector machine (SVM) model to choose subsets of features from 586 features [77]. The
features that have been filtered by the SVM classifier were used to predict the on-target
efficiency of an sgRNA. Their efficiency score is in the range of [0,1]; 1 being the most
efficient. This model was used to develop sgRNA Designer [77]. Being developed based
on experimental data, this tool is highly reliable to identify highly efficient sgRNAs.
Later, CRISPRpred outperformed this model, which also resorts to learning algorithms
to recognize highly efficient guide RNAs [78].
Later, in 2016, Doench et. al. improved the model and proposed Rule Set 2.0 scoring
algorithm [41]. Several new features were incorporated in this new scoring scheme, such
as counts of position-independent nucleotide, location of target site in the corresponding
gene, and melting temperature.
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Xu et. al. analyzed CRISPR screen data and analyzed for features that affect sgRNA
cutting efficiency [79]. Their use of Elastic Net [80] reveals new features, including
preference for cytosine. Moreno-Mateos et. al. found that guanine enrichment and
adenine depletion contribute to the efficiency of sgRNA by an analysis of target sites of
128 genes [81]. Their model was integrated in their tool CRISPRScan [81]. Chari et. al.
developed an in vivo method to evaluate sgRNA activity across thousands of genes [82].
Wong et. al. later identified some new features from the experimental data published by
Doench et. al. [77], and used SVM to develop an sgRNA potency prediction model [83].
Kuan et. al. used Elastic-Net algorithm in the Huang Laboratory to predict sgRNA
efficiency [84]. Labuhn et. al. analyzed knock-out assays to reveal nine additional
features affecting sgRNA efficacy [85].

2.4.2 Models to identify off-target cuts

Hsu et. al. evaluated more than 700 sgRNA variants and investigated the features
that affect sgRNA target specificity [86]. They found that the mismatch tolerance
between the sgRNA and the DNA target site is influenced by the number, position
and distribution of mismatches [87]. They used their analyses to summarize the effect
of mismatch position into a single penalty matrix. Based on this penalty score, each
sgRNA can be assigned a specificity score by iterating over all potential off-target sites.
The model developed by Hsu et. al. [86] was very slow [87]. Therefore, Stemmer et.
al. later developed CCTOp to address those issues [88], which uses alignment to filter
sgRNAs with high specificity. The off-target score defined in CCTop is as follows.

Score =
∑

off target

(
log dist + scoreoff-target

total-off-targets )− total-off-targets × −b±
√
b2 − 4ac

2a

Here, dist means the distance between this off-target site and the closest exon,
scoreoff-target is calculated by the relative position of mismatches in PAM, and total-
off-targets means the total number of candidate off-target sites.
Later, Doench et. al. analyzed pooled screening data, performed extensive experiments
to profile mismatch conditions between sgRNA and DNA, including alternative PAMs,
mismatches, deletions and insertions [41]. Based on their findings, the authors proposed
a scoring algorithm known as CFD scoring, and showed that this outperformed the
models developed by Hsu et. al. [86] and Stemmer et. al. [88].
Mendoza et. al. identified that these scoring methods are not suitable for using across
organisms and proposed their own novel algorithm to determine off-target effects known
a CASPER [89]. Many of the tools also developed their own scoring scheme, including
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WU-CRISPR [83], CROPT-IT [90] and E-CRISP [91].

2.4.3 Computational tools using the models

A number of publicly available methods and software have been developed to design
guide RNAs with a view to employ the use of these software directly in wet labs.
Popular among these tools include CCTop [88], CHOPCHOP [92], COSMID [93],
CRISPRdirect [94], Crispr Finder [95], Crispr-P [96], CRISPRseek [97], E-crisp [91],
sgRNAcas9 [98], Cas-OFFinder [99]. These tools vary in their fundamental use of the
off-target or on-target model, and in their functionalties (batch processing, available
PAM sequences, availability of web servers, ability to support alternate scoring schemes
etc.) [87,100]. Recent efforts are focusing on developing machine-learning based models
for on and/or off-target prediction [101] and tools that directly predict guides using
machine-learning [102].
CRISPRScan [81] is one of the popular guide RNA designing tools that was developed
after extensive wet-lab experiments. From the experiments carried out in various
conditions, guide RNA activity was recorded. Then, various features were extracted
from the guide RNA sequences and a regression tree was developed from the recorded
gRNA activity data, which is used to predict the specificity of a guide RNA.
CRISPRScan experiments revealed that guanine enrichment and adenine depletion
increases sgRNA activity. Therefore, CRISPRScan has the tendency to drop sgRNAs
with high adenine content.
One of the more recently developed tools with promising results are GuideScan [103] and
MultiGuideScan [104] (which is a parallel and faster version of GuideScan). GuideScan,
like many other tools, scans the target region for PAMs and identifies the potential
20-nt gRNA sequences. Next, together with the NGG PAM, these 23-nt sequences are
annotated with a specificity score and then ranked using that score. More specifically,
for a given gRNA, GuideScan enumerates all its neighbors up to Q mismatches,
calculates the CFD score for each neighbor using the schemes developed by Doench
et. al. [41], and then multiplies that score by the number of times the neighbor occurs
in the genome. It then aggregates the CFD values into a single composite score utilizing
the formula used by Hsu et. al. [86].

Specificity scoreGuideScan =
1∑

CFDi × qi

Here, n represents the number of unique targetable sites within up to a certain number
of mismatches. The GuideScan specificity score for a gRNA that generates no off-target
cut (considering 0 mismatches) will be 1.0, since the CFD score as well as the number
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of occurrences will both be 1.0.
This CFD score proposed by Doench et. al. [41] largely profiles the in vivo experiments
involving CRISPR experiments. From these experiments, data of gRNA activity was
recorded which was expressed in a matrix form that gives the probability of making a cut
for a certain neocleotide of the gRNA aligned with a neocleotide of the target sequence.
Scanning over all neocleotide positions of the target sequence and the guide RNA, a
CFD score can be calculated. Hsu et. al. [86], on the other hand, extensively profiled the
Streptococcus pyogenes Cas9 (spCas9) activity in wet-lab experiments and recorded the
specificity in various conditions. They expressed specificity in many forms and finally
proposed a specificity score to be used in their computational tool to facilitate the
selection and validation of sgRNAs (available at http://www.genome-engineering.org/).
The specificity score developed and proposed by Hsu et. al. [86] has been used to develop
CRISPOR [105]. Along with the Hsu specificity score, CRISPOR also generates some
other scores and annotates the guide RNAs with those scores.

2.5 Motivation of the work

All these mentioned tools are common in one aspect: that they all require the reference
genome to design a guide. The design of sgRNAs is, in fact, a complex optimization
problem. The multitude of sequences comprising a candidate gene for targeting can
be used as targets for guides. However, ideally guide targets are unique in the genome
to reduce off-target binding. Thus, effective sgRNA design requires knowing all the
sequences of the genome to be targeted. This is why the long list of tools mentioned
before all use the reference genome to start with. Unfortunately, most genomes are not
completely sequenced and assembled yet. As a result, designing guide RNAs for many
organisms, especially non-model organisms, is difficult if we are restricted within the
reference based tools. Therefore, it is important to develop a method that is capable
of designing guide RNAs without relying on the reference. Recent works have started
to focus on reference-free methods to design guide RNAs. Sun et al. presented a tool
to design sgRNAs for non-reference plant genomes [106].
Another key factor is that even if we have a reference genome assembled for an organism,
the reference seldom represents all individuals accurately. Recent study shows that
human genome does not represent all sequences present in individuals [107,108]. Thus,
it is also important to address the issue of individual specific genome variation and
design “personalized guides”. This has been partly addressed by a few tools, namely
AlleleAnalyzer [109], CrisFlash [110] and CRISPRitz [111]. However, these tools still
use reference genomes and sequencing reads to detect variation and may lack specificity

http://www.genome-engineering.org/
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if the individual contains duplications or regions missing from the reference. Synthetic
sex-ratio distortion using CRISPR was achieved by Papathanos et al. [19] using a tool
that does not require a reference genome, yet the method is not generally applicable
for general sgRNA design.
All in all, in order to design guide RNAs for organisms with incomplete reference genome,
and for individuals with genomic variations with the reference, it is important to develop
a gRNA designing tool that decouples the use of a preassembled reference genome.



Chapter 3

Preliminaries

In this chapter, we introduce the concepts that are later used in Chapter 4 to develop
the methods used in kRISP-meR. As the primary purpose of developing kRISP-meR is
to not use the reference, kRISP-meR relies on the information available in the sequenced
reads. Therefore, a lot of the following concepts relate to a set of sequenced reads.

3.1 Sequenced reads in DNA sequencing

In a typical DNA sequencing experiment, a genome is output as fragmentation of
many molecules [112]. After the end of sequencing process, a sequence of base pairs
corresponding to all or part of a single DNA fragment is obtained which can be
represented as a string over the alphabet Σ = {‘A’, ‘C’, ‘G’, ‘T’}. These “reads” are
stored in text-based FASTQ/FASTA file format.
A set of sequenced reads can contain characters other than the alphabet mentioned
above. Often, the reads contain the character ‘N’, indicating any of the valid characters
may take a place there, and the particular read does not know which for sure.
Length of the sequenced reads can affect biological experiments [113]. Therefore, it is
important for bioinformatics pipelines to consider the length of sequenced reads [114].
kRISP-meR is designed and developed considering short read libraries.

3.2 k-mer

k-mers are substrings of length k contained within a biological sequence [115]. Primarily
used within the context of computational genomics and sequence analysis, in which k-
mers are composed of nucleotides (i.e. A, T, G, and C). An example k-mer is shown in
Figure 3.1.

17
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ATGG…

ATG

TGG

Figure 3.1: k-mer example. The sequence ATGG has two 3-mers: ATG and TGG.
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Figure 3.2: An example trie.

In general, a sequence of length L will have L− k + 1 k-mers and nk total possible
k-mers, where n is number of possible monomers (four in the case of DNA) [115].

3.3 Prefix tree: trie

A trie, also called digital tree or prefix tree, is a kind of search tree — an ordered
tree data structure used to store a dynamic set or associative array where the keys are
usually strings [116]. Unlike a binary search tree, no node in the tree stores the key
associated with that node; instead, its position in the tree defines the key with which
it is associated. All the descendants of a node have a common prefix of the string
associated with that node, and the root is associated with the empty string [117].
An example of a trie is shown in Figure Figure 3.2 for keys “A”, “to”, “tea”, “ted”, “ten”,
“i”, “in”, and “inn”. Note that this example does not have all the children alphabetically
sorted from left to right as it should be (the root and node ‘t’). The image was taken
from [117].
Using a trie has the advantage of minimizing search time at the expense of higher
storage requirements. If we store keys in binary search tree, a well balanced BST will
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Figure 3.3: An example 8-mer spectrum for Escherichia coli comparing 8-mers’
frequency with their number of occurrences.

need time proportional to M ∗ logN , where M is maximum string length and N is
number of keys in tree. Using Trie, we can search the key in O(M) time [118].
Using a trie for storing genomic sequences has been particularly popular in literature.
In a trie, any node can have upto |Σ| children, where Σ is the alphabet. For the genomic
sequences, Σ = {‘A’, ‘C’, ‘G’, ‘T’}. Therefore, even though the storage requirement is
higher, the maximum number of children one node can have is small. Besides that,
in kRISP-meR, we store sequences of the same length as a guide RNA in a trie. For
CRISPR/Cas9 system, this length is always 23. Therefore, at the expense of higher
space requirement, kRISP-meR is able to retrieve these sequences in constant time.

3.4 k-mer counting in sequenced reads: k-mer spectrum

k-mer abundance data is a useful information in genomic data analysis. This data is
used to estimate parameters for genome assembly. In k-mer abundance histogram, each
data point is a value fi which is the number of distinct k-mers that appears i times in
sequencing data. In order to compute k-mer abundance, one popular approach is to use
k-mer counting tools like Jellyfish, DSK, KMC2, Squeakr, Tallymer, Khmer etc. An
example k-mer spectrum is shown in Figure 3.3, which was generated using the k-mer
counts found in a genome.
Repeating the same experiment for the sequencing reads, not only the genome would
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generate a similar plot, with a very sharp peak near zero. This is because when
sequencing technologies generate sequenced reads, they almost always outputs erroneous
bases. Consequently, counting all k-mers in a set of sequenced reads will result in a lot
of sequences that appear only once or twice, but do not appear in the genome. This,
therefore, results in a very high peak in the histogram data near zero. The next peak
appears at the value “coverage”, which is approximates the number of times each base
in the genome is covered by the sequencing technology. For example, let us assume
that a sequencing technology has coverage λ while sequencing a certain genome. Then,
generating a k-spectrum from the sequenced reads would result in an abundance plot
with a peak at λ.

3.5 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a method of estimating the parameters of a
probability distribution by maximizing a likelihood function, so that under the assumed
statistical model the observed data is most probable [119]. The point in the parameter
space that maximizes the likelihood function is called the maximum likelihood estimate.
If the likelihood function is differentiable, the derivative test for determining maxima
can be applied. However, in practical circumstances, numerical methods are often used
to find the maximum of the likelihood function as the calculation of the derivatives may
be analytically difficult, and even impossible to perform.
If we are to determine the parameter θ that explains a set of observation O1, O2, O3,
..., On, then MLE defines likelihood as follows:

Ln(θ) =
n∏

i=1

P (Oi|θ)

The goal of maximum likelihood estimation is to determine the θ in the parameter space
Θ that maximizes this likelihood.

θ̂ = arg max
θ∈Θ

L̂n(θ)

Most of the times, the product of the sums underflow in a computer program. Therefore,
it is common to use log-likelihood and maximize that.

ℓ(θ) = lnLn(θ) =
n∑

i=1

lnP (Oi|θ)
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3.6 Expectation Maximization algorithm

The Expectation-Maximization (EM) algorithm is a way to find maximum-likelihood
estimates for model parameters when data is incomplete, has missing data points, or
has unobserved latent variables. It is an iterative way to approximate the maximum
likelihood function. While maximum likelihood estimation can find the best fit model
for a set of data, it does not work particularly well for incomplete data sets. The more
complex EM algorithm can find model parameters even if there is missing data. It
works by choosing random values for the missing data points, and using those guesses
to estimate a second set of data. The new values are used to create a better guess for the
first set, and the process continues until the algorithm converges on a fixed point [120].
Although Maximum Likelihood Estimation (MLE) and EM can both find best-fit
parameters, how they find the models are very different. MLE accumulates all of the
data first and then uses that data to construct the most likely model. EM takes a guess
at the parameters first — accounting for the missing data — then tweaks the model to
fit the guesses and the observed data.
An initial guess is made for the model’s parameters and a probability distribution is
created. This is the E-Step for the expected distribution. Newly observed data is then
fed into the model. The probability distribution from the E-step is tweaked to include
the new data. This is called the M-step. These steps are repeated until stability is
reached.
The EM Algorithm always improves a parameter’s estimation through this multi-step
process. However, it sometimes needs a few random starts to find the best model
because the algorithm can hone in on a local maxima that is not that close to the
(optimal) global maxima. In other words, it can perform better if it is forced to restart
and take that initial guess from Step 1 over again.
The EM algorithm can be very slow, even on the fastest computer. It works best when
you only have a small percentage of missing data and the dimensionality of the data is
not too big. The higher the dimensionality, the slower the E-step; for data with larger
dimensionaloty, it is possible that the E-step runs extremely slow as the procedure
approaches a local maximum.

3.7 The Poisson distribution to model sequenced reads

The Poisson distribution is popular for modeling the number of times an event occurs
in an interval of time or space [121]. A discrete random variable X is said to have a
Poisson distribution with parameter λ > 0, if, for k = 0, 1, 2, ..., the probability mass
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function of X is given by:

f(k;λ) = Pr(X = k) =
λke−λ

k!

The k-mer spectrum of a set of sequenced reads can be modeled using a set of Poisson
distributions. The idea behind using a Poisson distribution is that, Poisson is a special
case of a Binomial distribution. Given that the parameters of a Binomial distribution
are n and p, where n is the number of trials and p is the probability of success in each
trial; if n→ ∞ and p→ 0, the Binomial appears as a Poisson distribution with mean
np. Likewise, when we are counting k-mers in a set of sequenced reads, one particular
sequence showing up during the counting is a very low probability event (considering
a sequence of a considerable length). Yet, with a huge number of base-pair positions
in the genome, we do observe the sequence a number of times. Consequently, trying
to find a certain k-mer in millions of base-pair positions in a genome, and therefore
sequenced reads, can be modeled using Poisson distribution.
The use of a mixture of multiple Poisson distributions is more intuitive. A genome
can be thought of as a sequence of repetitive regions. Some regions repeat more than
one time, others appear only once in the genome. Therefore, when a DNA sequencing
technology attempts to sequence a genome with read-coverage λ and generates λ number
of sequencing reads on average covering every base position – the sequenced reads
generated from a genomic region that appears i times can be modeled using a Poisson
distribution with mean λi. When a k-mer appears in the read set due to the presence
of one or more copies of the sequence in the genome, Poisson distributions have been
observed to model the counts well in genome sequencing data [122].

3.8 EM in mixture of Poisson distributions

The EM algorithm finds maximum-likelihood estimates for model parameters when we
have incomplete data. The “E-Step” finds probabilities for the assignment of data
points, based on a set of hypothesized probability density functions; The “M-Step”
updates the original hypothesis with new data. The cycle repeats until the parameters
stabilize [4]. The process is well accepted for continuous cases such as a mixture of
Gaussian distributions [123,124]. A sketch of the approach to determine the parameters
of Gaussian Mixture Models (GMMs) is shown in Figure 3.4 [4].
Similarly, parameters of a mixture of Poisson distributions can also be determined
for the discrete case using the EM algorithm. EM has been used for discrete case of
Gaussian in literature [125] and therefore, is a good choice to determine the parameters
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Figure 3.4: Flow of EM algorithm in determining the parameters of a very simple
Gaussian Mixture Model (This image was taken from [4]).

of a mixture of Poisson distributions. The steps in the process are similar to that shown
in Figure 3.4, only done for a discrete distribution with only the location parameter.

3.9 Bayes decomposition: priors and posteriors

In probability theory, the probability of an event B occurring from the precondition
that an event A has triggered event B is given by P (A|B), and can be elaborated using
the Bayes formula as follows.

P (A|B) =
P (B|A)P (A)

P (B)

Here, the event A is one of the many preconditions that can result in triggering the
event B. It is usually difficult to determine the probability of a cause from the effect.
The Bayes formula solves this by reversing the role of the events. After breaking the
probability formula using the Bayes rule, we are left to determine the probability of an
effect from a cause, which is easier in specific application scenarios.
Additionally, the P (A) and P (B) parts are the prior and posterior probabilities
respectively. From prior knowledge, we know the probability of the many triggering
causes. The posterior is usually calculated using the evidence observed.



Chapter 4

Methods

This chapter describes the mathematics applied in kRISP-meR to list the guide RNAs.
Figure 4.1 shows an overview of the methods. kRISP-meR takes as input a target
sequence and sequenced reads from the organism. It starts by aligning the sequenced
reads to the target sequence to detect sample-specific variations. Then, the candidate
guide RNAs are identified from the personalized target sequence. Next, scores to
indicate efficiency and specificity of each candidate are determined using the copy-
number of k-mers in the sequences reads with the use of probabilistic models.
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Figure 4.1: Overview of kRISP-meR.
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4.1 Overview

The steps of kRISP-meR are shown in Figure 4.1 briefly. It takes as input a set of
sequenced reads from the genome of the individual to be edited and a target sequence
that corresponds to the region in the genome where CRISPR cleavage is intended. The
target sequence can come from a pre-assembled reference genome of the same organism
or a similar organism. Bowtie2 and Pilon are used to customize the target sequence
personalized for the individual. After that, the personalized target sequence is scanned
for the protospacer adjacent motif (PAM) sequences. Next, the target sequence is split
at the PAMs, and candidate guide RNAs are listed. These candidate gRNAs are then
scored and sorted, which heavily engages k-mer counting in the sequencing reads. These
scores are finally used to drop some of these guide RNAs, and then sort and output the
list of remaining ones.

4.2 Computing personalized target sequence

The target region is taken as a snap from the reference of a similar genome, chromosome,
or an exon. As the the individual may have genetic variations in the target region, it is
important to first determine the target sequence for the individual. This is done using
sequenced reads of the individual as follows:

• Aligning sequenced reads to the target: The sequenced reads are aligned to the
input target sequence using Bowtie2 [38], which aligns the sequencing reads to
the target sequence. In doing so, the reads that fall below threshold score are
discarded. The sequenced reads aligned to the target are recorded in a sorted
SAM file.

• Converting to binary file: SAM file format is a text file. In the next step,
Samtools [39] is then used to convert the SAM file into a BAM file, the
corresponding binary counterpart. Then, the BAM file is sorted and indexed
using Samtools once more.

• Polishing the target sequence: The final BAM file, which contains the sorted
and aligned sequenced reads, along with the input target sequence are processed
by Pilon [40]. Pilon attempts to better the input target sequence using the
aligned sequenced reads. The output generated by Pilon is the target sequence
personalized for the individual, and thus the target sequence is polished to
generate a personalized target sequence.

This personalized target sequence is then scanned for candidate sgRNAs.
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4.3 Identifying candidate gRNAs

From the target sequence, kRISP-meR determines the list of potential guide RNAs
by looking for a short (3 nucleotides long for CRISPR/Cas9) protospacer adjacent
motif (PAM) sequence. As introduced in Section 2.3, guide RNAs must be followed
by this short PAM sequence to result in an effective cleavage (cut). The length of the
guide is usually fixed for a particular genome editing technology (20 neocleotides for
CRISPR/Cas9).
Candidate guides are searched for in two ways:

1. Searching for PAM sequences directly: kRISP-meR finds candidate guide RNAs
by locating the PAM sequences in the target.

(a) kRISP-meR searches for the PAM sequence in the target sequence in the 5’-
3’ direction. Wherever the PAM is located, kRISP-meR takes the preceding
sequence consisting of 20 nts, and lists the 23 nts long sequence as a potential
guide RNA. Technically, only the 20 nts long sequence is to be considered
as a guide RNA. However, the entire 23 nts long sequence make an effective
cleavage. Therefore, kRISP-meR does not distinguish the PAM separately.

(b) A quite similar search is done on the 3’-5’ direction by computing the reverse
complement of the target sequence.

2. Searching for PAM sequences considering mismatches: kRISP-meR also considers
one mismatch in the PAM sequence and lists the corresponding 23 nts long
sequence as a potential guide RNA. This is not as straightforward, as the models
used for cutting frequency determination strictly require ‘NGG’ PAMs. Therefore,
the sequences with one mismatch (computed from the substring of the target) are
listed as the potential guide RNAs, marking the original 23-nts substring sequence
as the target site where cleavage is expected.

In both cases, the strand information is stored. The mostly used PAM for
CRISPR/Cas9 is NGG, and therefore, NGG is kept as default in kRISP-meR. However,
kRISP-meR can be configured to work with alternate PAMs (must have GG in the 3’
end) with the ‘-a’ flag.
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Figure 4.2: 23-spectrum of E. coli sequenced reads (read coverage: 74).

4.4 Counting k-mers in sequenced reads

4.4.1 Storing the k-mer counts

Since kRISP-meR is a reference free tool for guide RNA design, it cannot directly
determine the number of times a sequence, where a guide RNA may bind to, is present
in the genome. Instead, it first counts the number of times sequences of length 23 are
present in the set of sequenced reads using Jellyfish 2 [37]. The counts are stored in
a hash table as a binary file, which is later used to quickly retrieve the copy-number
of sequences in sequenced reads. These counts are required to estimate the number of
times a sequence is present in the reference, and in turn, to estimate the number of times
a potential guide RNA can make a cut in genome. Detailed steps of this estimation are
elaborated in Section 4.5.

4.4.2 Determining the k-spectrum of sequenced reads

The k-mer counting makes a way to determine the k-mer coverage λ of the sequencing
technology, which approximates the read-coverage. The k-spectrum shown in Figure 4.1
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is generated by counting all possible k-mers in the sequencing reads and determining
the number of i-mers in the reads H(i) for all i. A 23-spectrum of the sequenced reads
collected from an experiment (NCBI SRA experiment ID: SRX4680200) is shown in
Figure 4.2.
The first peak in the spectrum, appearing near zero, is due to large number of k-mers
that arise due to sequencing errors and appear very few times. The next peak appears
at the k-mer coverage λ, which is required in the steps to score the candidate gRNAs.

4.5 Scoring candidate gRNAs

kRISP-meR assigns a score to each guide RNA indicating its off-target activity. The
major steps in determining and assigning this score are as follows:

• Determining expected number of cuts made by a guide RNA in the entire genome

• Determining expected number of cuts made by a guide RNA in the target site

• Determining “most likely” number of appearances of the target in reference

• Calculating the score using the former three

4.5.1 Determining expected number of cuts in the genome

For all the identified potential guide RNAs, kRISP-meR determines the expected
number of cuts made by those: both in the whole genome and the target site.
A particular guide RNA, when deployed in CRISPR and is asked to guide the Cas9
enzyme, makes a cut where the exact match of the RNA (including PAM) is located.
However, in addition to making a cut where it finds a perfect matching sequence in the
genome, the guide RNA may make cuts at sites with number of mismatches as well,
albeit with lower probabilities. If the set of all k-mers within a specified Hamming
distance of the complementary sequence of the guide RNA is K, we define the expected
number of cuts in the genome as follows:

Expected number of cuts in genome, E[xG] =
∑
kϵK

cG,k × ψk (4.1)

where ψk is the cutting probability of the guide RNA at the k-mer site determined by
an experimentally determined mutation matrix [41], and cG,k is the number of the times
the k-mer is present in the genome.
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Determining cG,k, and thereby E[xG], allows us to accurately determine the behavior
of a guide RNA when deployed in CRISPR. However, in the absence of a reference
genome to work with, we have no direct way to calculate these. Therefore, we take the
expectation and estimate E[xG] from the number of times it appears in the read set
cR,k using the Bayes rule.
Therefore, we can express cG,k, copy-number of a particular k-mer in genome using
expectation as follows.

cG,k =

∞∑
cG,k=1

P (cG,k|cR,k)× cG,k (4.2)

Here, P (cG,k|cR,k) is the conditional probability of the k-mer appearing cG,k times in the
genome, given that, this particular k-mer is present cR,k times in the sequenced reads.
The value cR,k is the evidence that we observe in the sequenced reads, which is the direct
consequence of cG,k, the number of times a particular k-mer is present in genome. Thus,
we are to calculate the probability of the cause from the occurrence of a consequence,
which is naturally complicated. This is a classic case of applying Bayes Theorem to
reverse the role of the two, which solves this complication by introducing the priors and
the posteriors.
After applying Bayes, we have:

P (cG,k|cR,k) =
P (cR,k|cG,k)P (cG,k)

P (cR,k)
(4.3)

Now that the two conditional-probability elements are ordered the “easier” way
(probability of effect given a cause), we can use some modeling and calculate this
probability. As discussed before in Section 3.7, Poisson distributions can be used to
model a set of sequenced reads. If a sequenced read set has been obtained using a
sequencing technology with coverage λ, and if a particular k-mer is present a times in
the genome, then the number of times this particular k-mer appears in the sequenced
reads is Poisson distributed with mean λa. Therefore, this conditional probability in
Equation (4.2) can be written as follows:

P (cR,k|cG,k) =
e(−λcG,k)(λcG,k)

cR,k

(cR,k)!
(4.4)

Where λ is the estimated coverage of the sequenced technology. Plugging everything
back to Equation (4.2) and Equation (4.1), we have the following.
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E[xG] ≈
∑
kϵK


∞∑

cG,k=1

P (cG,k|cR,k)× cG,k

× ψk

=

∑
kϵK


∞∑

cG,k=1

P (cR,k|cG,k)P (cG,k)

P (cR,k)
× cG,k

× ψk

=

∑
kϵK


∞∑

cG,k=1

e(−λcG,k)(λcG,k)
cR,k

(cR,k)!
× P (cG,k)

P (cR,k)
× cG,k

× ψk

Reorganizing a little to avoid calculating the same thing repeatedly, we have the
expected number of cuts made by a guide RNA, E[xG] as follows.

E[xG] =
∑
kϵK

 ψk

P (cR,k)(cR,k)!

∞∑
cG,k=1

{
e(−λcG,k)(λcG,k)

cR,k ×P (cG,k)× cG,k

} (4.5)

Here, P (cG,k) is the prior probability that there are cG,k copies of k in the genome;
where k represents all k-mers in K, whereas P (cR,k) is the posterior probability that k
appears cR,k times in the sequenced read set. Steps to calculate these are elaborated in
Sections 4.5.5 and 4.5.6.

4.5.2 Determining expected number of cuts in the target

Similar to the expected number of cuts in the genome, we define the expected number
of cuts in the target as follows:

Expected number of cuts in target, E[xt] =
∑
kϵK

ct,k × ψk (4.6)

Again, K is the set of all k-mers within a specified Hamming distance of the
complementary sequence of the gRNA which is being examined. The definition of
ψk, the cutting probability of the guide RNA at the k-mer site also remains the same.
Here, ct,k is the number of the times the k-mer is present in the target site. In this
case, determining the number of expected cuts resulted from a particular guide RNA
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is easier, because computation of ct,k is not so complicated as cG,k. Therefore, without
relying on the sequenced reads, we can simply count the number of appearances of a
sequence in the target sequence.

4.5.3 Determining CG,t: number of appearances of the target in
reference

The k-spectrum introduced in Section 3.4 can be modeled using a mixture of Poisson
distributions, with mean λ× i for i = 1 to above; where λ is the read-coverage. The use
of a mixture of Poisson distributions to model a set of sequenced reads was introduced
earlier in Section 3.7.
Now, if we restrict ourselves within the sequences in the target region while counting
the k-mers, we would still get a similar k-spectrum – only a distorted view focusing the
sequences found within the target region. Most of the copy numbers illustrated in the
original k-spectrum comes from the Poisson with mean λ. On the other hand, most
of the copy numbers in this distorted k-spectrum comes from the Poisson with mean
cG,t × λ.
Therefore, we can calculate the value of cG,t maximizing likelihood. Let the copy
numbers of the k-mers within the target sequence be k1, k2, k3 and so on. Then,
we define likelihood L(i, j) as:

L(i, j) = P (λi, kj) (4.7)

which is the likelihood of observing kj from the Poisson with mean λi. Hence, the
likelihood of the Poisson with mean λi is:

L(i) =

∏
all j

P (λi, kj) (4.8)

where P (λi, kj) is the Poisson probability of observing kj where the mean of the
Poisson is λi. As discussed already in the previous section (while putting together
Equation (4.4)), this probability is as follows.

P (λi, kj) =
e(−λi) × (λi)kj

(kj)!
(4.9)

The i that maximizes L(i) is the estimated value of cG,t. kRISP-meR works by
computing the log-likelihoods to avoid underflow. By plugging in the values back to
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Equation (4.8) and taking logarithm, we have log-likelihood of the Poisson with mean
λi, l(i) as follows:

l(i) =

∑
allj

ln
e(−λi) × (λi)kj

(kj)!
(4.10)

Elaborating this log-likelihood mathematically gives us the following:

l(i) =
∑
j

ln e−λi +
∑
j

ln (λi)kj −
∑
j

ln kj

= −λi
∑
j

1 + ln (λi)
∑
j

kj −
∑
j

ln kj

= −λi
∑
j

1 + lnλ
∑
j

kj + ln i
∑
j

kj −
∑
j

ln kj

Here, the parts
∑

j ln kj and lnλ
∑

j kj are going to be the same for all i’s. Also,
∑

j 1

is the count of the copy-numbers, and
∑

j kj is the summation of the copy-numbers.
Therefore, maximizing the following suffices:

f(i) = −λi× (count of copy-numbers) + ln i× (sum of copy-numbers) (4.11)
= c1 ln(i)− c2i (4.12)

Here, c1 = count of copy-numbers and c2 = λ× (sum of copy-numbers). These are two
positive constants with respect to i.
The i that maximizes the f(i) is the estimated value of CG,t. Taking derivative with
respect to i, we have:

f ′(i) =
c1
i
− c2 (4.13)

To maximize this, we would need to calculate the i for which f ′(i) = 0. This results in
the following:

i =
c1
c2

(4.14)

Verifying that this local optima is indeed a maxima, we take the second derivative and
plug-in this value of i as follows.
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f ′′(i) = −c1
i2

= − c1
( c1
c2
)2

= −c2
2

c1

Since c1 and c2 both are always positive, the second derivative is negative for this value
of i, indicating that this i will maximize f(i), and consequently, the likelihood.

4.5.4 Calculating the score

Finally, having introduced the pieces to profile the off-target activities, the score
assigned to a gRNA, which can be interpreted as the inverse of the specificity, is defined
as follows:

s ≈ E[xG]

E[xt]× cG,t
(4.15)

4.5.5 Learning probability distributions and estimating priors

To calculate the scores using the equations mentioned above, the prior probability
distribution as well as the posterior in Equation (4.5) need to be defined. First, we are
going to establish the method of calculating the priors.
Just as we have been using this for quite a number of analyses: if a genomic region
is present i times, then the counts of the k-mers within that region are assumed to
be Poisson distributed with mean λi, where λ is the k-mer coverage of the dataset.
However, k-mers may also appear due to sequencing errors even though it is not present
in the genome. This results in large number k-mers that appear one or few times. This
is also evident in Figure 4.2, where a very large number of 23-mers are noticed that
appear only a few times in the sequenced reads.
Therefore, it is important to model these error-reads (referred to as the “error-
component” of the spectrum henceforth) accurately. In our experiments, we tried the
following distributions to model this error-component:

• Poisson: with mean of Poisson set to very low, the Poisson “thinning” can model
such sharp-rate data

• ZTP (Zero Truncated Poisson): A zero truncated Poisson is a Poisson who never
yields zero. The PMF and CDF are revised accordingly [126].
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• Empirical: We also converted the k-spectrum into a histogram and treated values
below a threshold directly as probabilities.

• Geometric: Geometric distribution with small mean has a very sharp falling rate,
exactly like ours.

We found that the geometric distribution works the best in modeling this error-
component.
Since organisms differ in their repeat structure, we estimate priors on copy numbers in
the genome from the data. The steps of the EM are detailed further in broken down
section.

◦ The input

The input to the EM algorithm is the k-mer spectrum of the sequenced reads, like the
example showed in Figure 4.2. Let the copy number in this spectrum (the values plotted
along the y-axis) be k1, k2, k3, ... etc.

◦ The model

This input data is modeled using N + 1 distribution: D0, D1, D2, ... upto DN . Here,
D0 is a geometric distribution, and the others are Poissons.

◦ Initialization

1. We initialize read-coverage, λ as the first peak after the trough in the spectrum

2. We initialize the mean of the distributions as follows:

Di.mean = λi =

1.0 + ϵ if i = 0, ϵ is a small number

i× λ otherwise

3. We initialize the priors as: π[i] = 1.0/(N + 1) for all i

◦ The ‘E’-step

1. Probability of observing a copy-number kj from the distribution Di, Pi(kj):

Pi(kj) =


1
λi
× (1− 1

λi
)(kj−1) if i = 0

e−λi×λ
kj
i

kj !
otherwise
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2. Membership of the copy-number kj to the distribution Di, Mi(kj):

Mi(kj) =
π[i]Pi(kj)∑
i

π[i]Pi(kj)

◦ The ‘M’-step

1. The means of the distributions, λi:

λi =

∑
j Mi(kj)× kj∑
j

Mi(kj)

2. The priors, π[i]:

π[i] =

∑
j Mi(kj)∑
j

kj

3. The estimated read coverage, λ:

λ =
∑
i

π[i]× λi for i > 0

Just as the traditional EM-algorithm, these ‘E’ and ‘M’ steps are repeated until
convergence. When the algorithm finishes, the read-coverage λ as well as the priors
are ready to be used in Equation (4.5).

4.5.6 Calculating the posterior probabilities

The last piece, which puts everything together, is the posterior probability P (cR,k), the
probability of observing a certain sequence cR,k times in the set of sequenced reads.
This is simply determined using the priors as follows:

P (cR,k) =

∞∑
i=1

P (cR,k|cG,i)×P (cG,i) (4.16)

Here, P (cR,k|cG,i) is the probability of observing a 23-bp long k-mer cR,k times, when
we know that the sequence appears cG,i times in the genome; which is calculated just
as Equation (4.4).
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Figure 4.3: Posterior probabilities determined by kRISP-meR working with sequenced
reads of Staphylococcus aureus (taken from GAGE [5]).

4.6 Determining on-target scores

So far, we have discussed the methods to determine a score profiling the off-target
effects of a particular guide RNA. It is also important to profile on-target activity of
the guides as well.
On-target, or the “cutting efficiency” scores for each candidate gRNA is determined
using the scheme suggested by Doench et al. [41] As in GuideScan [103], we use Rule
Set 2 [41] which takes as input a sequence of length 30 at the target site and the 20-mer
from the candidate gRNA and calculates cutting efficiency of the candidate gRNA using
a boosted regression tree model.
As calculating this model requires the reference genome information, kRISP-meR does
not attempt in calculating this model. Instead, this model must be delivered to kRISP-
meR as an argument. If no such model is given, then kRISP-meR will simply annotate
the off-target score according to Equation (4.15).
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4.7 Importance of the error component

The crucial role played by the posterior probabilities is explained with the help of
Figure 4.3. Here, the read-coverage is estimated to be a little over 25. The periodic
local maximas capture the repetitive regions, and the likelihood of observing a k-mer
from those regions.
While counting k-mers in the K of a candidate guide RNA, if we find a particular
sequence present very small number of times (compared to the read-coverage), then
it is crucial that we treat that copy-number as an error resulting from sequenced
reads. Otherwise, this small number would contribute largely to the value E[xG] in
Equation (4.5), and the overall score in Equation (4.15) would no longer be accurate.
The initial sharp fall-off serves the purpose of neglecting the small copy-numbers. That
is, if a copy-number is too small, then the posterior for that copy-number would be very
large. As the posterior will divide the other values, that particular copy-number would
not be able to contribute significantly.

4.8 Interpretation of the score

It is particularly important to establish an interpretation of the score defined in
Equation (4.15) which is assigned to each of the guide RNAs. We present two
interpretations of the score, a direct interpretation, and a relation with the “specificity”
scores.

4.8.1 Direct interpretation

The score is the ratio of the number of cuts made by a guide RNA in the whole genome
to the number of cuts made by the guide RNA in the target site. Therefore, a score
of 2.0 means that this particular guide RNA is likely to make two cuts in the whole
genome, given that it makes only one cut in the target site (and, of course, that the
target site appears only once in the genome). Accordingly, the number of off-target
cuts made by this guide RNA should be 1.
Thus, the score in Equation (4.15) has two interpretations:

• The number of cuts made in genome by a guide RNA with score s will be s times
the number of cuts made in the target site by the same guide RNA

• This follows from the previous: the number of off-target cuts made by a guide
RNA with score s will be: s− 1
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It is important to note that, by definition, the score must be in the range [1,∞).

4.8.2 Relation with specificity score

As discussed before in literature review, specificity scores are popular metrics in profiling
the off-target effects of guide RNAs. A high specificity guide RNA is less likely to make
off-target cuts, and vice versa. Specificity scores are given in the range [0,1]. Therefore,
the score defined in Equation (4.15) can be thought of as the inverse of the specificity
score for that guide RNA.
Due to the direct interpretation, kRISP-meR annotates each guide RNA with the
inverse-specificity score. However, at times, it is easier (and more meaningful) to
analyze certain things with the specificity scores. Hence, in our subsequent discussions
(experiments and results), we will specifically mention whether the score being discussed
is specificity or inverse-specificity.



Chapter 5

Experiments and results

In this chapter, we compare kRISP-meR with other popular guide RNA designing tools
that require a reference genome. The experiments in this chapter show that, without
having to use a reference genome, kRISP-meR is able to generate lists of guide RNAs
in par with the other tools.

5.1 Datasets

Comparing kRISP-meR with other tools means that we would have to build genome-
wide guide RNA libraries for other tools “using a reference genome” and extract guide
RNAs for a certain genomic target site; and generate a list of guide RNAs from kRISP-
meR using sequenced reads. That is, we need both the reference genome and a set
of sequenced reads. Table 5.1 lists all organisms whose genome was used for various
experiments, and the sources from which the sequenced reads were taken.

5.1.1 The genome assemblies

The genome assemblies that we use are selected from various sources, as shown in Table
5.1. For S. aureus, R. sphaeroides and H. sapiens chr-14, we collected the assembly from
the GAGE dataset. GAGE is considered to be the gold standard dataset which are used
to critically evaluate the genome assemblers and assembly related bioinformatics tools.
These tools often compare themselves and the results with GAGE assembly using the
sequenced reads available in the GAGE dataset [127].
For the other three organisms, we used the consensus assembly converged after multiple
iterations done by the researchers. For S. cerevisiae, we used the S288C strand assembly
available in the yeast-genome database popularly known as Saccharomyces Genome

39
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Database (SGD). This database is developed with a view to combine all sequenced
reads of S. cerevisiae from experiments performed all over the world. With time, the
database polishes available assembly and publishes new releases. In our experiments,
we used the S288C assembly in particular (out of multiple available assemblies) because
this is widely known and accepted by default by many tools.
Next, for C. elegans and D. melanogaster, just as S. cerevisiae, there are multiple
assembly releases available. Out of those, we used the ce11 release and dm6 release [128]
for our experiments respectively. Again, this is because it is important to compare our
results with other tools, and most web interfaces of bioninformatics tools use the ce11
as well as dm6 releases by default.

5.1.2 The sequenced reads

Just as the genome assembly, we again used the sequenced reads available in the GAGE
dataset for S. aureus, R. sphaeroides and H. sapiens chr-14. Again, the reason to select
this set of reads is because GAGE provides a gold standard for genome assemblers
and assembly related bioinformatics tools. The sequenced reads available in GAGE
often are used to determine what read coverage is determined even when designing a
sequencing experiments and analyzing the requirements. Therefore, it is natural to use
these reads and generate results.
In GAGE, there are two libraries available for each of these three dataset. For our
expriments, we used the fragmanted dataset with paired-end reads. The coverage is
greater than 15 for all cases, which clearly indicates that the data is good enough to be
used in experiments (the error components will not merge them with the other poisson
components).
For the other three organisms, we searched the NCBI database and sorted out sequenced
reads. All of these sequenced reads were collected using the Illumina technology, which
is less expensive and more available compared to other sequencers, and at the same
time, is able to render a significantly less rate of sequencing error. All these datasets
have a minimum coverage of 15. The reads are collected as FASTQ files, which is the
expected input format for kRISP-meR.

5.1.3 Using paired-end reads

kRISP-meR has been developed and implemented considering that the sequenced reads
are unpaired reads. Therefore, when we are using paired-end sequenced reads collected
from a sequencing experiment, how we accommodate this is that we either use only one
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Table 5.1: Datasets used to perform various experiments and their sources

Organism name Genome source Sequenced reads source #bases (reads)
Staphylococcus aureus GAGE GAGE 1.3G
Rhodobacter sphaeroides GAGE GAGE 2.1G
Homo sapiens (Chr 14) GAGE GAGE 3.6G
Saccharomyces cerevisiae link (S288C) ncbi: SRR12442616 2.9G
Caenorhabditis elegans link (ce11) ncbi: ERX1161562 4.0G
Drosophila melanogaster link (dm6) [128] ncbi: SRR7167961 4.0G

Table 5.2: Genomic co-ordinates of the target sites

Organism name Genomic coordinates
Staphylococcus aureus genome:3221-7700
Homo sapiens (Chr 14) chr14:33322521-33327770
Saccharomyces cerevisiae chrI:67141-68940

of the two pair of reads and simply drop the other file, or we merge both the files into
a single FASTQ file and simply consider two paired-end reads as independent unpaired
reads. Our experiments reveal that doing so does not harm the outcome of the tool.

5.2 Comparing inverse of specificity scores: with and without a
reference

For the organisms Staphylococcus aureus, Saccharomyces cerevisiae and the
Chromosome-14 of Homo sapiens, we picked random segments from the reference
genome as target sites and generated guide RNAs with kRISP-meR from sequenced
reads. The exact genomic locations of these targets are listed in Table 5.2.
After generating the guide RNAs with kRISP-meR, we listed the inverse-specificity
scores attributed to each gRNA according to Equation (4.15). Then, to assess that
these scores are, in fact, meaningful and significant, we calculated the same scores; but
this time, using the reference genome. That is, instead of calculating the number of
expected copy numbers of a particular sequence, we directly calculated the number of
times this sequence exists in the reference. These two versions of the same scores, one
calculated by kRISP-meR without the reference, and the other with the reference – are
contrasted in Figure 5.1.
The genome of Staphylococcus aureus and Saccharomyces cerevisiae have low repeat

https://downloads.yeastgenome.org/sequence/S288C_reference/chromosomes/fasta/
http://hgdownload.soe.ucsc.edu/goldenPath/ce11/bigZips/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352887/
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Figure 5.1: Comparison of inverse-specificity scores calculated by kRISP-meR and
separately calculated using a reference (each point in the figure denotes a gRNA).

complexity. For these two, we found that the majority of the gRNAs have scores close
to 1.0 according to both the schemes. The scores calculated without the reference
genome have greater spread compared to the ones obtained using the reference. This
is expected because of the variation in sequencing depth across the genome caused by
stochasticity and biases in the sequencing process as well as the presence of extraneous
k-mers arising because of sequencing errors. However, we observe that almost half the
gRNAs have scores close to 1.2 or less, and almost three-fourths are below 1.5.
For the repeat-rich Chromosome-14 of Homo sapiens, there are many gRNAs with high
scores indicating a lack of specificity and highlighting the importance of appropriately
scoring and avoiding these as guides. For this dataset, we observe that the scores
computed using both approaches have similar median and inter-quartile ranges.
Another popular way to contrast the specificity scores is to put their CDFs calculated
by different methods in the same plot. Since the inverse of the specificity scores are not
limited in a range, we plotted the CDFs of the specificity scores in Figure 5.2. Paralleling
the boxplots of Figure 5.1, the CDFs for Staphylococcus aureus and Saccharomyces
cerevisiae disagree a little, whereas for Homo sapiens, the CDFs are more aligned and
agreeing owing to the same reasons.
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5.3 Determining the default cut-off score and pruning guide
RNAs

As evident from Figure 5.1, particularly the Homo sapiens scores, the inverse of
specificity scores for a lot of the guide RNAs are very high, which indicates very low
specificity. These high scores, in turn, mean that these guide RNAs are likely to result
in cleavages in sites other than the target site. Ergo, it is crucial to identify such low-
specificity guide RNAs and drop them. Therefore, we have to determine a particular
cut-off specificity score for the guide RNAs.
To do so, we look at the interpretations of the scores discussed in Section 4.8. The
number of off-target cuts made by a guide RNA is profiled by the inverse-specificity
score, which is determined by subtracting 1.0.
We wanted to investigate and establish a range in which the predicted number of off-
target cuts is low and agrees well with the actual number of off-target cuts. The
exact number of off-target cuts made by a particular guide RNA is calculated in
silico, following the schemes introduced by Doench et. al [41]. Having determined
the predicted and actual number of off-target cuts for all the guide RNAs, we plotted
specificity in the x-axis and the number of off-target cuts made by guide RNAs with a
specificity lower than that in the y-axis. The plot is shown in the top-left of Figure 5.3.
This plot shows that for an extensive range of specificity scores (0.33-1.0), the two
curves are horizontal. This means that the guide RNAs with a specificity higher than
0.33 (inverse of specificity lower than 3.0) produce a small number of off-target cuts.
The top-left figure showed the number of off-target cuts resulted by guide RNAs with
specificity lower than a specific value. The same figure with the number of off-target
cuts caused by guide RNAs with a specificity higher than a particular value is shown
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Figure 5.4: Venn diagrams showing numbers of candidate guide RNAs found by only
kRISP-meR, only GuideScan and both tools for randomly chosen regions in S. aureus
genome, S. cerevisiae genome and H. sapiens chromosome 14.

in top-right. This somewhat zoomed-in view urges us to look even closer. The plot at
the bottom allows us to entertain that interest, which reveals that to consider a guide
RNA to hold “very high specificity”, we are to drop all guides with specificity scores
below 0.5 (inverse of specificity higher than 2.0).
Finally, we designed kRISP-meR to output guide RNAs with an inverse-specificity score
less than or equals to 3.0. kRISP-meR can be asked to output only the guide RNAs
with “very high” specificity, in which case, kRISP-meR outputs the guides with inverse-
specificity less than or equals to 2.0. kRISP-meR can also run with any cut-off score
with the argument ‘-c’ to facilitate keener investigations.

5.4 Comparison with GuideScan to validate the performance

Having determined the cut-off score, we listed the output guide RNAs from kRISP-meR
using this cut-off, and compared them with the guide RNAs generated by GuideScan
[103], a popular and widely used guide RNA designing tool which requires a reference
genome.
We ran kRISP-meR on the randomly chosen target sites from the genomes of
Staphylococcus aureus, Saccharomyces cerevisiae and the Chromosome-14 of Homo
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Figure 5.5: Numbers of guide RNAs predicted by kRISP-meR and GuideScan with
off-target effects with no mismatches.

sapiens. The exact location of the target sites are shown separately in Table 5.2. We also
ran GuideScan on the three reference genomes and built genome-wide sgRNA library
with a maximum of 2 mismatches. Next, we identified the sgRNAs from the library for
the same target region (which was used from kRISP-meR). Figure 5.4 shows the extent
of agreement between the sets of sgRNAs generated by kRISP-meR and GuideScan. It
reveals that kRISP-meR is able to recognize the majority of the sgRNAs identified by
GuideScan while reporting very few additional ones for all three the datasets.
Finally, we investigated potential off-target effects of the highly specific guide RNAs
generated by kRISP-meR. For all the guides identified by GuideScan, and by kRISP-
meR, we determined whether they match any site outside of the target region
considering no mismatches i.e. have perfect matches. The results are shown in
Figure 5.5. We observe that for the S. aureus dataset, kRISP-meR generates one
guide RNA with off-target effect whereas GuideScan has none, for the S. cerevisiae
dataset, no off-target cut was made by any guide RNA, and for the human chromosome
14 dataset, kRISP-meR and GuideScan generate 1 and 3 guide RNAs with off-target
effects respectively.
This indicates that, for the human choromose 14, kRISP-meR outperforms GuideScan
in terms of the number of off-target producing guide RNAs. At the same time, this
also indicates that for a simple genome such as S. aureus, kRISP-meR is performing
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Figure 5.6: Partial phylogenetic tree constructed using the strains of E. coli. [6]

worse. This is expected, as we have already seen in Section 5.3, the scores work the
best when there are some repetitions in the genome. As the methods of kRISP-meR
take into account the repeated regions very carefully, it was able to throw out two of
the off-target producing guide RNAs; which GuideScan fails to do.
These investigations from Figure 5.4 and Figure 5.5 reveal that the determined cut-off
scores work well in capturing the guide RNAs with high specificity.

5.5 Comparison with GuideScan in terms of variant-aware
gRNA design

Having realized the potential for kRISP-meR to outperform reference-based tools in
terms of number of off-target cuts by working in a variant-aware fashion, we wanted
to investigate this further. In order to do that, we selected a simple and short genome:
Escherichia coli to do our experiment.
E. coli is a bacterium of the genus Escherichia. This is commonly found in the lower
intestine of warm-blooded organisms. E. coli has various strains, most of them has been
well characterized. For our experiment, we chose the strains of K-12 (MG1655 variant),
which is the standard used when considering E. coli, and ATTC8739. These two are
quite similar in their genome structure and are close relatives in the phylogenetic tree
of the strains of E. coli (see Figure 5.6), and yet, they have enough dissimilarities to
consider one of the assemblies an incomplete representative genome for the other and
do our experiment.
We collected sequencing reads of the ATTC8739 strain from a real experiment [129]
for our analysis. There are 441.3M bases in this dataset of sequencing reads, with a
read-coverage of 80. The sequence technology that was used was Illumina MiSeq. We
collected the assembly of both the strains from NCBI standard releases [130, 131].
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Figure 5.7: Number of guide RNAs resulting in perfect off-targets identified by kRISP-
meR and GuideScan. GuideScan uses K-12 assembly and kRISP-meR uses ATTC8739
reads. The off-targets are counted in ATTC8739 assembly.

For this experiment, what we did is, we chose this target sequence (link) from the
genome assembly of the K-12 strain. Then, we used the sequencing reads of the
ATTC8739 strain to design guide RNAs for this target sequence using kRISP-meR. At
the same time, we also used the standard K-12 assembly for populating the genome-wide
guide RNA library for K-12 using GuideScan. Then, we looked for perfect off-target
cuts (considering zero hamming distance) in the genome of the ATTC8739 assembly.
The results are shown in Figure 5.7, which shows that the number of guide RNAs
that result in one or more perfect off-target cuts is 21 for GuideScan, and only 3 for
kRISP-meR.
The idea behind doing this experiment is: we have K-12 and ATTC8739 assemblies
as two individuals of the same species with different genomes. In other words, K-12
genome is the incomplete genome which represents the K-12 individual perfectly and
not able to represent the ATTC8739 individual accurately. Using the sequencing reads
of the ATTC8739 strain individual, we may be able to design a better set of guide
RNAs in contrast to using the K-12 assembly. Hence, considering K-12 assembly as the
reference genome for this species, the outcome of our experiment is to show that the
guide RNAs designed using this reference will result in a higher number of off-target
cuts when used in a CRISPR experiment on the ATTC8739 strain. The results shown
in Figure 5.7 reveal exactly that.

https://raw.githubusercontent.com/mahmudhera/temp-files/master/e-coli-k12-target.fasta


5.6. COMPARISON WITH OTHER GRNA DESIGNING TOOLS 49

Table 5.3: Genomic co-ordinates of the target sites of Saccharomyces cerevisiae, and
number of guide RNAs recognized by different tools for these targets

Target sequence GuideScan CRISPRSCAN CRISPOR kRISP-meR
ChrI:67141-68940 187 97 191 185
ChrII:18001-19800 190 98 189 191
ChrIII:79201-81000 191 96 180 191
ChrIV:86521-88320 188 94 184 185
ChrV:16321-18120 185 97 186 186
ChrVI:88501-90300 188 95 187 188
ChrVII:85381-87180 192 94 189 188
ChrVIII:279121-280920 191 94 186 192
ChrIX:154981-156780 192 96 181 188
ChrX:231661-233460 185 95 183 187
ChrXI:83941-85740 189 98 189 185
ChrXII:255901-257700 187 94 187 186
ChrXIII:56701-58500 187 96 189 188
ChrXIV:272641-274440 193 95 180 188
ChrXV:329881-331680 186 95 192 185
ChrXVI:490681-492480 194 96 198 193

5.6 Comparison with other gRNA designing tools

Finally, we went on to compare kRISP-meR with other popular guide RNA designing
tools, namely GuideScan [103], CRISPRScan [81] and CRISPOR [105]. All these three
require a reference genome to operate.
We experimented on the genome of three different organisms: Saccharomyces cerevisiae
(release 3), Caenorhabditis elegans (release 11) and Drosophila melanogaster (release
6). We built genome wide guide RNA library for the three organisms for all of the three
reference-using tools. Then, for each of the chromosomes of these organisms (16 for S.
cerevisiae, 6 for C. elegans and 8 for D. melanogaster), we located a random target site.
For the chosen target site, we retrieved the guide RNAs from the genome wide library.
Next, we located sequenced reads for various strains of all three of the organisms
from real experiments by browsing the Short Reads Archive (SRA). Using the target
sites mentioned in the last paragraph and the located sequenced reads from publicly
available experiments, we generated guide RNAs for all of the target sites considering
the corresponding sequenced reads.
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Table 5.4: Genomic co-ordinates of the target sites of Caenorhabditis elegans, and
number of guide RNAs recognized by different tools for these targets

Target sequence
coordinates GuideScan CRISPRSCAN CRISPOR KRISP-mER

ChrI:47451-49450 113 41 124 116
chrII:37801-39800 112 39 128 114
chrIII:44401-46400 112 45 130 117
chrIV:61701-63700 117 43 118 121
chrV:119351-121350 119 45 117 121
chrX:436651-438650 111 38 130 114

Table 5.5: Genomic co-ordinates of the target sites of Drosophila melanogaster, and
number of guide RNAs recognized by different tools for these targets

Target sequence
coordinates GuideScan CRISPRSCAN CRISPOR KRISP-mER

armX:44401-64600 188 102 199 193
arm2L:37801-39800 187 104 203 191
arm2R:44401-46400 186 101 195 191
arm3L:61701-63700 194 104 203 196
arm3R:119351-121350 192 107 203 194
arm4:436651-438650 192 99 193 198
armU:119351-121350 187 100 203 190
armXHet:436651-438650 185 98 193 187
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5.6.1 Number of guide RNAs recognized

The target sites for the three organisms, along with the number of guide RNAs
recognized by the four tools (kRISP-meR and the other three) are shown in Tables
5.3, 5.4 and 5.5.
Immediately, it is evident that the number of guide RNAs identified by CRISPRScan is
smaller compared to the other three (including kRISP-meR). This is expected, because
of the way CRISPRScan work. CRISPRScan drops quite a few number of guide RNAs
based on the Adenine and Guanine contents. Likewise, it is expected that the level
of agreement between kRISP-meR and CRISPRScan is going to be less than what we
observe for the other two tools (GuideScan and CRISPOR).

5.6.2 Overlap of the guide RNAs recognized by kRISP-meR and other
tools

Figure 5.8 shows the overlap of the guide RNAs generated by the other three tools with
the guide RNAs generated by kRISP-meR. The percentages shown in the y-axis are
calculated as follows: for a certain experiment, we determined the size of the the sets
A∩B and A∪B where A and B stand for the set of guide RNAs recognized by kRISP-
meR and the other contrasting tool; and then we converted |A∩B|

|A∪B| into percentages. We
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Figure 5.9: Percentage of high-specificity guide RNAs captured by kRISP-meR.

averaged the percentages for all the experiments for a certain organism and plotted
that in Figure 5.8. While this plot shows a quite high degree of agreement for kRISP-
meR with GuideScan and CRISPOR, the figure is not too impressive with CRISPRScan.
This is because CRISPRScan drops some of the guide RNAs by examining the sequence
and looking for adenine and guanine content. This is also evident from the number of
guide RNAs recognized by CRISPScan, listed in Tables 5.3, 5.4 and 5.5.
Next, we show the percentage of guide RNAs with high specificity score (generated by
the contrasting tool) captured by kRISP-meR’s list of guide RNAs with high specificity.
For all the experiments of a certain organism, we aggregrated the percentages and
plotted them in Figure 5.9. This shows that kRISP-meR was able to capture almost
all of the high-specificity guide RNAs in its own list of high-specificity guide RNAs.
The results shown in Figure 5.8 and Figure 5.9 simply support our validation made
by the experiments detailed in Section 5.4, in which we saw that kRISP-meR is able
to produce results that are directly comparable to those of GuideScan. The results in
Figure 5.8 and Figure 5.9 just support the same for two other reference-based tools.

5.6.3 Off-target cuts made by the guide RNAs

Having investigated the overlap of the identified guide RNAs, we next calculated the
number of guide RNAs that result in perfect-off targets. A perfect off-target, as
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explained before, means a genomic location other than the target site where a guide
RNA matches perfectly (with no mismatch). The number of such guide RNAs are
shown in Figure 5.10. The actual number of off-target cuts (one guide RNA can make
multiple off-target cuts) are shown in Figure 5.11.
These figures show that kRISP-meR recognizes 12 guide RNAs that result in one or more
perfect off-target cuts. At the same time, this shows that this number for GuideScan
is only 9. Considering the fact that one signle guide RNA can result in one or more
off-target cuts, it is therefore important to not only count the number of such guide
RNAs, but also to count the actual number of off-target target cuts. When we do that,
we see that for both kRISP-meR and GuideScan, this number is 12. This, therefore,
means that there are some guide RNAs identified by GuideScan that result in more
than one off-target cuts that kRISP-meR was able to throw out.
This success of kRISP-meR effectively comes from the evidence we saw in Section 5.3.
As kRISP-meR accounts for the repeated regions very carefully, kRISP-meR was able
to figure out and throw away the guide RNAs that resulted in more than one off-target
cuts.
These investigations presented in Section 5.6 show that kRISP-meR, without using a
reference genome, is able to capture guide RNAs with high specificity as recognized
by other competing tools, and generate guide RNAs that result in tolerable number of
mismatches compared to the huge number of gRNAs recognized.

5.7 Benchmarking the running time of kRISP-meR

In order to demonstrate that kRISP-meR will not starve for resources, we wanted to
benchmark the running time of the tool. In order to do so, we ran the tool for all the
target sites mentioned in Section 5.1 earlier. As the tool operates, we recorded the
running time for the major components.
As we have discussed in Chapter 4, kRISP-meR first counts the k-mers in all the
sequenced reads. Next, kRISP-meR polishes the target sequence to determine the
genetic variations of the individual. After that, kRISP-meR has to go through a number
of analyses before processing each one of the candidate guide RNAs. Finally, having all
the information ready to process the potential gRNAs, kRISP-meR iterates over all the
guide RNAs and assigns the off-target indicating inverse-specificity score to the guide
RNAs.
We recorded the running time of all of these components. The averages of the running
time are presented in Figure 5.12. We performed the experiment by varying number
of mismatches that we consider when we are listing the potential target sites. The
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Figure 5.13: Capturing individual genetic variations and determining personalized
target sequence by kRISP-meR

machine where we performed these runs is an everyday use desktop computer with only
8GB of RAM and 2.7GHz Intel i7 processor with two cores.
Figure 5.12 shows that kRISP-meR is able to identify the gRNAs in just 10-15 minutes
of time. We have also made runs on the complete human genome as well by collecting
and using the whole-genome shotgun sequences from credible experiments. Our records
show that it takes about 104 minutes (less than 2 hours) to generate a list of guide
RNAs for a human target site of 2000 nts, if the Jellyfish run and the personalized
target-detection are done before running the experiment.

5.8 Experimenting the accuracy of the personalized target site

Before concluding, we wanted to confirm that kRISP-meR can identify individual
genetic variations for an intended CRISPR target accurately. In our attempt to do
so, we selected arbitrarily long segments from the reference genome of two organisms,
namely Staphylococcus aureus and Rhodobacter sphaeroides (both the reference and the
sequenced reads for these two were taken from GAGE [5]). After that, to mimic genetic
variation, we perturbed these sequences using wgsim [132] and introduced structural
variations (indels and SNPs). We wanted to examine how well the initial pipeline
of kRISP-meR can reproduce the original sequence from this perturbed sequence. We
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aligned the final sequence with the original sequence selected from the reference genome.
We performed a global alignment using the Needleman-Wunch algorithm and calculated
the similarity score.
For a particular organism, we picked a random sequence and repeated this experiment
20 times for a certain amount of introduced structural variation. The average similarity
scores are shown in Figure 5.13, which shows that for up to 10% of structural variations,
kRISP-meR can detect individual genetic variations and determine the personalized
target-sequence for the individual from which the sequenced reads have been collected.
This particular experiment shows that it is possible to accurately reconstruct a genome
sequence of a short length (typical of the lengths of CRISPR guide RNAs) from the
sequencing reads, which in turn enables kRISP-meR to be successfully claimed “variant-
aware”. Besides making this claim, it is also important to note and point out that if the
sequenced reads do not have any similarity at all with the input genome sequence, then
we are in trouble. These results shown in Figure 5.13 were obtained using the default
parameters of bowtie2 and pilon. If the sequenced reads come from an organism whose
geome is a complete stranger to the reference genome sequence, then the parameters
used in bowtie2 and pilon may need to be tweaked around to get an expected result. To
enable that, kRISP-meR allows the user to set the parameters of these tools as well.



Chapter 6

Conclusions

In this thesis, we presented kRISP-meR, a bioinformatics tool that integrates other tools
along with a novel definition of gRNA specificity score. This tool is able to generate
a list of guide RNAs suitable for CRISPR/Cas9 genome editing technology. Most
other tools that exist in the literature require a reference genome to work with. As this
requirement is dropped in kRISP-meR, it is possible to design guide RNAs for organisms
with incomplete reference genome using this tool. Besides that, kRISP-meR directly
utilizes sequencing reads which contain genetic information of an individual. Therefore,
kRISP-meR is also able to design gRNAs personalized for a particular individual.

Because of the fact that kRISP-meR directly uses sequencing reads and works in absence
of any reference genome, it was crucial to establish a link between the two. We did so
by modeling the sequenced reads with a mixture of Poisson distribution coupled with
an additional geometric distribution accounting for the sequencing errors. With an
Expectation-Maximization algorithm, we determine the parameters of this model and
use these parameters to assign a score to all gRNAs indicating their off-target effects.
To calculate this score, we list all potential target sites for a particular guide RNA,
determine the cutting probability of the gRNA to each target site, and estimate the
number of occurrences of the target sites in the genome (by utilizing the parameters
of the mixture of Poisson distributions model). These, in turn, enable us to estimate
the number of cleavages introduced by a guide RNA without having to use a reference
genome.

We defined this score in such a way that this has a direct relation with the traditional
specificity score, and we can get an upper bound of the number of off-target cuts made
by a particular gRNA using the score as well. Since kRISP-meR lists the gRNAs using
this score, it was vital to verify that the score, defined for sequencing reads, works
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well. We did this verification by calculating the same score, only by using the complete
reference genome. Then, we contrasted our score with the score calculates using the
genome. Our analyses show that the copy number of a particular sequence within the
genome can be accurately estimated by using only the sequenced reads. We also find
that it is possible to predict the number of off-target cuts made by a particular gRNA
without a reference genome.

Moreover, we also determined a cut-off for our score experimentally. kRISP-meR drops
all potential gRNAs with a score crossing this cut-off. At the same time, we kept the
option open for a user to set her own cut-off score as well.

After establishing a threshold, initially, we compared kRISP-meR with GuideScan
firstly because our score definition reflects that of GuideScan a lot, and secondly because
GuideScan needs a reference genome to generate a list of guide RNAs. Finding a
promising agreement with GuideScan, we compared ourselves with two other tools,
namely CRISPRScan and CRISPOR, both of which require a reference genome. These
comparisons were done in the following manner: we took a random target sequence from
the reference genome. Then, these three mentioned tools were run with the reference
genome and this particular target sequence. Next, the same experiment was done for
kRISP-meR as well with the same target sequence, only without using a reference
genome, rather, a set of sequencing reads.

Finally, we compared the list of guide RNAs generated by kRISP-meR with the lists
generated by the other three tools. Our analyses reveal that the lists are quite similar
and the numbers of guide RNAs that result in one or more off-target cuts are almost
the same.

6.1 Discussions

The experiments show that without using a reference genome, simply by using the
information available in the sequenced reads, high-specificity guide RNAs can be
identified that would perform well in real CRISPR experiments. With sequencing
technologies becoming cheaper and more available everyday, decoupling the need to
use a reference may turn out to be highly impactful. This holds true both for CRISPR
and other application scenarios. The specificity of the guide RNAs identified by kRISP-
meR also shows the potential of solving other computational problems relating to a
reference genome without using a reference.
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Genome editing has been massively successful in changing traits of various crops and
thus was able to greatly influence agriculture. The genome of various important crops
related to agriculture are still incomplete. This is owing to the fact that oftent the
genome is very long (e.g. wheat) and contains multiple repeated regions. On top of
that, the genome assembly literature has so many important organisms to deal with
(including the humans) that the efforts to assemble to entire reference genome shifted
away from these important plants. kRISP-meR is expected to solve this problem
in terms of designing a CRISPR experiment and generating good guide RNAs by
decoupling the use of reference genome.

Besides solving the problem of having to work with incomplete reference genome,
our experiments also revealed that kRISP-meR performs better for some cases over
a reference-based guide RNA designer tool, especially when there are repeated regions
in the genome. With so many genome with so many repeats, this is a highlighted upside
of using kRISP-meR.

kRISP-meR is also designed to generate variant-aware guide RNAs by utilizing the
information content available with in the sequenced reads about a particular individual.
This is a very important aspect because using the guide RNAs generated using GRCh38
may be potentially harmful for a random person. The ability to design variant-aware
guide RNAs has the potential to effectively make CRISPR experiments safer and more
robust.

In our experiments, we always used the sequencing reads collected from the Illumina
technology, rather than using long read technology such as PacBio or MinION. This is
because of two reasons. Firstly, the sequencing error rates for PacBio and MinION are
higher compared to Illumina. Secondly, the coverage for Illumina is higher compared
to the other two. At the same time, the Illumina reads are cheaper to generate and
more available than other long read generating technologies. Therefore, it makes sense
to prepare the tool for Illumina reads. Moreover, the motivation to use longer reads
is not to capture the variant information, rather to collapse the gaps in the existing
assembly of a genome. In any case, if the long read generating technology can generate
reads with higher depth and reduce the error rate, in principle, kRISP-meR will be able
to process those reads as well.
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In implementation, kRISP-meR does not use the reference genome at all. We
implemented kRISP-meR this way to ensure that when we are polishing the target
string in a variant aware fashion, we are not incorporating any bias from the original
reference assembly. At the same time, this implementation strengthens the novelty and
contributions of kRISP-meR in operating at the absence of the reference genome.

6.2 Future works

We plan to test the effectiveness of kRISP-meR by experimenting with de novo
assemblies of humans. Our plan is to take a sequence from the reference human genome
(GRCh38) as the target, but use the Illumina sequencing reads collected from a bio-
sample. At the same time, we plan to run GuideScan (or some other reference based
guide RNA designer) using the reference genome (GRCh38). After that, we plan to
show that the list generated by kRISP-meR performs better in the de novo assembly
of the bio-sample than does the guide RNAs identified by GuideScan (which uses the
information available only with in GRCh38).

Besides doing these experiments, we also plan to extend kRISP-meR from its current
state in multiple directions. First, we plan to implement the tool so that it supports
all other cutting enzymes besides Cas9. This involves handling a variable length guide
RNA (instead of a fixed 20-nt sequence for CRISPR/Cas9), determining the cutting
probability for the variable length, and handling variable length PAM sequences. kRISP-
meR already handles multiple alternate PAM sequences, the other mentioned features
are to be implemented in future.

We also plan to analyze the pipeline that identifies the personalized target sequence.
This is important because kRISP-meR needs a target sequence to work with, and this
target sequence is usually taken from the reference genome of the same organism or a
related organism. Therefore, it is crucial that this pipeline functions accurately.

Another major direction to explore is working with the sequencing reads in the target
site as well. Currently, we utilize the sequencing reads of the genome, and take the
target sequence as an input. Methods can be developed to drop the requirement of
taking a target sequence as input. In order to do so, we have to model the sequencing
reads coming from a particular location in genome and incorporate those accordingly
in the definition of the score.
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6.3 Availability

kRISP-meR is publicly available https://github.com/mahmudhera/kRISP-meR, with
an installation guide and usage instructions. The preprint of the work is available
here [133] for a quicker read.

https://github.com/mahmudhera/kRISP-meR
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