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Abstract

There has been a plethora of experiments in the field of optimization of sensor de-

ployment for target detection. Since most of those are heuristic in nature, they are

optimal for a particular experiment but not universally optimal covering mathemat-

ical convergence. Moreover, none of those algorithms is applicable for heterogeneous

sensor deployment. In this thesis, a generalized framework for sensor deployment

based on optimal control theory for target detection is formulated and required

algorithm is developed accordingly. Here, we consider the sensing radii of differ-

ent sensors as the sole criterion for defining whether a deployment is homogeneous

or heterogeneous. The algorithm satiates for both homogeneous and heterogeneous

sensor deployment optimization. Simulation results illustrate its effectiveness. Later

we modify our algorithm to satiate the effects of obstacles and uncertainty of de-

ployment process and analyze the performances of the algorithm.
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Chapter 1

Introduction, Background and
Contributions

In this chapter, at first we provide a brief literature review on existing sensor de-

ployment techniques. Then we state the motivation and the contributions of the

thesis.

1.1 Introduction and Background

Sensor networks have emerged as a viable solution for many detection and surveil-

lance applications. Sensor deployment is mainly about the idea of distributing

sensors in the area of interest to detect and track identifiable targets and phenom-

ena of interest with high accuracy. Numerous maverick and adjunct works have

been done in the field of optimization of sensor deployment for target detection and

tracking.

There are mainly two approaches of sensor deployment- deterministic and non

deterministic. In deterministic sensor deployment, sensors are deployed in a partic-

ular strict geometric pattern to achieve the objectives [1-8]. In [1-3], 2D determin-

istic model is used. In [1] and [2], it is shown with mathematical calculations that

hexagonal deployment pattern would be the optimal coverage pattern. In [3], the

operational area is rectangular and is sub-divided into two regions: (i) central region
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and (ii) edge region. In [4-8], 3D deterministic model is used. In [4], it is shown with

mathematical calculations that truncated octahedron deployment pattern would be

the optimal coverage pattern. In [5], it is shown that the deployment pattern would

vary with the number of sensors. In [6], a special type of population-based swarm

intelligence SI (Swarm Intelligence) algorithm is used named as BSO (Brain Swarm

Optimization). Here a triangular tessellation pattern is proposed. In [7] and [8], the

operation grid-points are modeled as Voronoi cells and the sensors are to be filled

inside the centroid of each cell for optimization. However, the efforts in [1-8], are

all regular geometric patterns and do not take into account of the effect of obstacles

situated in the study gird.

In non deterministic approach [9-30], there is no fixed patterned sensor deploy-

ment but rather random deployment. To optimize the non deterministic deployment

process, a number of mathematical models like PSO (Particle Swarm Optimiza-

tion), Bio inspired and Enhanced Firework are used. In [9], a discrete PSO method

called DPSO (Discrete Particle Swarm Optimization) algorithm is used in non con-

vex region. In [10], a deployment method of optimal Underwater Acoustic Sensor

Networks (UWASNs) for 3D environment to detect antisubmarine by using PSO

(Particle Swarm Optimization) is formulated. In [11], IABPSO (Improved Adap-

tive Binary Particle Swarm Optimization) is used in the application of optimized

sensor deployment in green buildings. In [12], a new variety of PSO named QBPSO

(Quantum Behaved Particle Swarm Optimization) is proposed. In [13], a generic

version of PSO is used for area coverage called GAPSO (Generic Particle Swarm

Optimization). In [14], a bio inspired genetic algorithm is used. In [15], a sequential

deployment method is used towards optimization in an unknown terrain. In [16],

NP complete 2D optimal coverage VANET sensor deployment is used. In [17],

ABC (Artificial Bee Colony) method is used. In [18], ACO (Ant Colony Optimiza-

tion) method is used in WSN with redundancy check. In [19], an enhanced firework

algorithm is used which is a variant of SI (Swarm Intelligence) algorithm. In [20],
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a CPM (Coverage Probability Model) is used for sensor deployment optimization.

In [21], two linear programming formulations based on real pollutant’s dispersion

model is used for optimization. In [22], a GSA (Greedy Strategy Approximation)

algorithm is used to model a composite event and this is a heterogeneous sensor

deployment. In [23], RL (Restrained Lloyd) and DA (Deterministic Annealing) al-

gorithms are used for sensor optimizing. In [24], railway environment monitoring

system is modeled and WSN is deployed and optimized. In [25], GTF (Graph The-

oretical Framework) is used to connect mobile sensors for optimization. In [26], NP

complete GBPT (Greedy Based Polynomial Time) algorithm is used to optimize

sensor deployment. In [27], node deployment optimization on industrial environ-

ment is achieved in a heuristic manner. In [28], SA (Simulated Annealing) method is

used for optimization of sensors for lunar surveys. In [29], a non linear programming

algorithm is used on IoT (Internet of Things) for self localization. In [30], Poisson

random distribution is used to simulate the deployment process and a hierarchical

algorithm and disk modeling are used to optimize it.

From [1-30], all the processes irrespective of deterministic or random in nature,

use static sensor deployment. Whereas, in [31-33], different mobile sensor random

deployment optimization methods are used. In [31], hybrid nodes consisting of

sensors and mobile phones are nearly optimized. In [32], a blanket coverage of

mobile sensor network is achieved. In [33], a simple peer-to-peer communication is

used for mobile sensor network for optimization while keeping the sensors at the

centroid of the Voronoi cells.

However, None of the methods discussed in [1-33], are mathematically proven

optimal but optimal for a situation rather. There is a strong need for a mathemat-

ically optimal model. In [34], a novel approach on sensor deployment is effectuated

hinged on optimal control theory for homogeneous sensors. Here, the term homo-

geneous means that by definition all the sensors are of same type and radius. Using

dynamic linear equation for the system and formulating a quadratic cost function,
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the deployment problem is maneuvered as a LQR (Linear Quadratic Regulator)

problem in [35]. Here, the control vectors at each discrete step are the position

vectors of the sensors. Hence, the LQR optimality conditions are formed by ap-

plying KKT (Karush-Kuhn-Tucker) conditions [35], [36], [37] on the system model.

Finally, sweep method [36] is used to solve those KKT conditions to obtain the

coordinates of the sensors for optimal deployment process. The proposed algorithm

in [34] is not only based on a mathematical framework but also uses a minimum

number of sensors to satisfy given detection requirements. This is very desirable in

the field of target detection.

1.2 Motivation

From the previous section, it is ratified that all the previous works in [1-33], are of

heuristic in nature. Only in [34], we can find an algorithm based on a mathematical

model (optimal control theory). Yet it is only designed for homogeneous sensors.

There can be a situation where a limited number of sensors are available of a type

which is less than the required number of sensors for an application. In this case,

we can use heterogeneous sensors that are similar in type but different in radius. In

this thesis our main motivation is to develop an algorithm based on optimal control

theory to optimize the heterogeneous sensor deployment process. Then it is also

our motive to modify the proposed algorithm for two practical cases: (i) obstacles

and (ii) uncertainty of deployment to make it more realistic.

1.3 Contributions

Most of the prior works on sensor deployment are heuristic in nature and none of

those are generalized for the optimization of both homogeneous and heterogeneous

sensor deployment. Hence, in this thesis, we attempt to develop a generalized

algorithm which is non-heuristic nature and pivoted on a mathematical model. We
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use optimal control theory for our benefit. In this thesis, mainly we have two

contributions:

(i) First, we declare the term heterogeneous on the pedestal of the difference of

sensing radii of various sensors. Our primary contribution is to develop a generalized

framework capable of both homogeneous and heterogeneous sensor deployment for

target detection based on optimal control theory. In other words, a generalized

sensor deployment problem is first considered as an optimal control theory based

problem by proposing an algorithm to select a unique overall miss probability matrix

from the overall miss probability matrices of each type of sensor on the basis of

minimum value of miss probabilities at particular detection points. That is how this

method is sufficient for both homogeneous and heterogeneous sensor deployment

simultaneously since both processes use a singular selection matrix rather than

heterogeneous process using multiple selection matrices and homogeneous process

using a singular selection matrix. Then, it is modeled as a discrete LQR problem

to find out a set of optimal conditions by minimizing its cost function. Next, sweep

method [36] is used to solve the LQR problem and from the solution, the co-ordinates

of the sensors are found. Finally, a distance dependent algorithm is proposed to

identify the type of each deployed sensor. Simulation results show the effectiveness

of our proposed algorithms.

(ii) Our secondary contribution is to consider two natural consequences of sensor

deployment: (i) presence of obstacles and (ii) uncertainty of the deployment process.

We then modify the algorithm and observe the performances accordingly. In [38]

and [39], the theoretical background of obstacle modeling is described and from [40]

the modeling of uncertainty of deployment is formulated.

1.4 Organization of the Thesis

The thesis is organized as follows: Firstly, Chapter 2 discuses the theoretical back-

ground. Secondly, Chapter 3 describes the system model, the problem formulation
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along with proposed algorithms. Next, Chapter 4 delineates the required alter-

ations of the original model for obstacles in the operation-grid and augmentation

of Gaussian probability theory of distribution into the original algorithms for the

case of uncertainty [40]. Then, Chapter 5 presents the simulations and results of

the proposed algorithms. Finally, Chapter 6 concludes the paper and discusses our

intended future works.
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Chapter 2

Background Study

In this chapter, we discuss the necessary theoretical backgrounds that we need

for our system model. First, we talk about the different mathematical sensing

models to attune the sensing behavior of the sensors and our pick of the model

among those. Here, we have to establish a discrete dynamic system model and

a cost function for our problem. Our goal is to optimize this discrete dynamic

system model by minimizing the cost function and we need optimal control theory

based approach to do that. So we describe how to construct these discrete dynamic

system model and cost function based on optimal control theory and apply KKT

conditions [35], [36], [37] to extract optimality conditions. Next, we discuss about

how to model a discrete dynamic system as a LQR (Linear Quadratic Regulator)

problem. Finally, we describe the sweep method [36] for solving a LQR problem.

2.1 Sensing Models

In this section, we discuss several sensing models that have been used to delineate

sensor detection process. Two points are required to be noted here. First one is the

sensor’s effective coverage area and second one is the sensors robustness to different

degradation from ideal model such as obstacles in the operational grid and uncer-

tainty in the deployment process. We mathematically model the sensing behavior
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of the sensors on a rectangular grid having a dimension of Nx ×Ny although grid

of any shape is applicable. That is what we call a ROI (Region of Interest). There

are mainly four sensing models that we discuss here.

1. Point Model:

In this model, a sensor does not require an effective coverage area rather the phe-

nomenon has to go through the sensor itself so that the sensor can sense it. For

example, gas sensors sense chemical gases when those gases go through the sensors.

2. Disc Model:

In this model, a sensor do have an effective coverage area to work with. When the

target reaches inside the coverage area the sensor detects the target. The effective

coverage can be a circle or a sphere depending on the nature of the model (2D/3D).

So in effect, this is a binary decision model. When the target is inside the effective

coverage area or sensing radius rd, the detection probability is 1 otherwise 0.

If the sensor is in (i, j) point and the target is in (x, y) point on the grid, distance

is

d(x, y) =
√

(x− i)2 + (y − j)2 (2.1)

Hence, the detection probability pdetect(x, y) with target at (x, y) point is

pdetect(x, y) =

1, if d(x, y) ≤ rd

0, if d(x, y) > rd

(2.2)

Disc model is widely used in acoustic and seismic sensors.

3. Distance Dependent Model:

In this model, sensors detection probability is similar as disc model but the differ-

ence is that inside the effective coverage area, its detection probability doesn’t stay

fixed at 1 but varies depending on the distance between sensor and target. The
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detection probability pdetect(x, y) with target at (x, y) point is

pdetect(t)(x, y) =

e−αd(x, y), if d(x, y) ≤ rd

0, if d(x, y) > rd

(2.3)

where, α is the decay parameter depending on sensor’s design and environment.

This model is more realistic than disc model since magnitude of detection signal

decays as it travels through a particular medium.

This is the model which we will use for our thesis.

4. Energy Detector Model:

In this model, the sensor measures the energy of the signal that target emits. This

depends on distance and noise. The measurement of energy is

y = S(d) +N2
o (2.4)

where, S(d) is the energy of the signal and N2
o is the energy of the noise.

2.2 Optimal Control Theory

Optimal control theory ensures that a dynamic system can be used to get prospective

results. It also provides an analytical solution to a problem and handles multi-

variables. Let us assume a discrete dynamic system:

Xn+ 1 = f(Xn, vn), n = 0, 1, ...., N − 1 (2.5)

Here n is the step number, N is the total number of time stamps, Xn is the state

vector and vn is the control vector. The function f(Xn, vn) depends on both Xn

and vn.

Then we assume the initial condition as

X0 = Xin (2.6)
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The cost function I is formulated as

I = L(XN) +

N−1∑
n=0

Vn(Xn, vn) (2.7)

where, L(XN) is the final state and Vn(Xn, vn) is the dynamic portion of the

function. In optimal control theory, the aim is to maneuver a set of control vectors

vn to minimize the cost function I.

The optimal control problem can be stated as a constrained optimization prob-

lem and so we can use Lagrange multipliers and variational calculus to find out

optimal conditions to minimize the cost function. We define the scalar Hamiltonian

function [35] Hn as

Hn = Vn(Xn, vn) + λTn+ 1fn(Xn, vn) (2.8)

where, λn is the nth Lagrangian multiplier.

Using the Hamiltonian [35] derive the discrete KKT (Karush-Kuhn-Tucker) condi-

tions [35], [36], [37] given below:

Xn+ 1 = f(Xn, vn) (2.9)

X0 = Xin (2.10)

λn = ∇TXnf(Xn, vn)λn+ 1 +∇XnVn (2.11)

λN = ∇XNL (2.12)

0 = ∇vnVn + λTn+ 1∇vnf(Xn, vn) (2.13)

where, ∇XL is the differential of L with respect to X.

It is notable that the boundary conditions for the set of equations (2.9-2.13) are

at n = 0, since X0 = Xin and at n = N , since λN=∇XNL. So this can be

called as a two-point boundary problem.

With regards to the deployment problem, this can be mapped as an optimal

control problem. The detection problem can be viewed as a system. The state
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of the system (Xn) corresponds to the network’s overall detection performance

when n number of sensors are deployed. As the system’s performance depends on

the number of sensors deployed, the additional sensor deployment (n → n + 1)

is equivalent to the effect of deploying a control vector in the system. Hence,

sequential deployment of sensors corresponds to a series of control vectors deployed

in the system. The system’s evolution function fn depends on the change in the

system when a control vector (i.e., deployment of an additional sensor) is applied

on the system. This change depends on network’s design, characteristics of the

deployed sensors and detection requirements. The final element is the cost function

I. The aim is to minimize the the squared difference between achieved and required

detection performance and this can easily be seen as equivalent to minimizing I.

This can be done by solving the KKT [35], [36], [37] based LQR optimality conditions

through sweep method [36]. Hence total problem can be viewed as a sequential

discrete control system shown in Figure 2.1.

Figure 2.1: A sequential discrete control system
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2.3 Linear Quadratic Regulator

The linear quadratic regulator (LQR) problem is very well studied. One advantage

of LQR method is that we can use KKT (Karush-Kuhn-Tucker) conditions [35], [36],

[37] to set up specific optimality conditions (2.9-2.13) which are sufficient enough

to solve the problem. There are well defined approaches such as sweep method [36]

to solve a set of optimality conditions resulting from the application of discrete

KKT conditions [35], [36], [37]. In this section, we discuss the LQR formulation and

modeling of the deployment problem as a LQR problem.

In a LQR problem, the system function f is linear and can be stated as

Xn+ 1 = CnXn +Dnvn, n = 0, 1, 2, ..., N − 1 (2.14)

where, Cn and Dn are matrices of appropriate dimensions. Also the cost function

I is quadratic and stated as

I =
1

2
XT
NQfXN +

1

2

N−1∑
n=0

(XT
nQnXn + vTnRnvn) (2.15)

Here, Rn, Qn and Qf are non negative definite diagonal weighting matrices with

appropriate dimensions. Rn and Qn are also called as designer’s parameters. In

order to have a positive value of the cost function I, the possible combination of

Xn and vn and the weighting matrices have to be non negative.

So we can use Hamiltonian function [35] with regards to LQR as

Hn =
1

2
XT
nQnXn +

1

2
vTnRnvn + λTn+ 1(CnXn +Dnvn) (2.16)

Applying KKT conditions [35], [36], [37] at equations (2.14-2.16), we can achieve

the optimality conditions form equations (2.9-2.13) as,

Xn+ 1 = CnXn +Dnvn, n = 0, 1, ..., N − 1 (2.17)

X0 = Xin (2.18)
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λn = CT
nλn+ 1 +QnXn (2.19)

λN = QfXN (2.20)

vn = −R-1
nD

T
nλn+ 1 (2.21)

The LQR problem is a very well behaved problem and can be analytically solved by

solving equations (2.17-2.21). The linearity of fn and convexity of cost function I

means that LQR optimality conditions, derived from the KKT conditions [35], [36],

[37] are sufficient. For above reason, the modeling of an optimal control problem as

a LQR problem is desirable.
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2.4 LQR Solution Method

In this section, we discuss sweep method [36] to solve the LQR problem. LQR

problem can be classified as static or dynamic depending on the system evolution

function fn remaining same or changing with the inclusion of a control vector.

In other words, Cn and Dn are functions of n = 0, 1, ..., N − 1 in a dynamic

problem and fixed in a static problem. So in a dynamic LQR problem the opti-

mal control vector is calculated on the basis of current system evolution function.

Also the designer’s parameters remain same for static LQR problem and evolve for

dynamic LQR problem. Therefore, solving a dynamic LQR problem is stated as 1-

step horizon optimization problem and static LQR problem as N -step optimization

problem.

2.5 Sweep Method

The sweep method [36] is structured to solve static LQR problem or in other words,

N -step optimization problems. Since this a is case of static LQR problem, the

designer’s parameters Rn and Qn remain fixed irrespective of state changing. So

we can rename them as R and Q. It is based on the observation that the boundary

condition on the Lagrange multiplier is stated as

λN = QfXN . (2.22)

Based on sweep method [36], equation (2.22) can be re-written as

λn = PnXn, n = 0, 1, ..., N − 1 (2.23)

where, Pn is a square matrix with proper dimensions.

Substituting λn in equation (2.21) we get

vn = −R-1DTPn+ 1Xn+ 1, n = 0, 1, ..., N − 1. (2.24)
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Since Xn+ 1 = CnXn +Dnvn we can express vn as

vn = −GnXn, n = 0, 1, ..., N − 1 (2.25)

where, Gn is a square matrix with proper dimensions and given as

Gn = (R+DTPn+ 1D)-1DTPn+ 1C. (2.26)

From above euations we can define Pn as

Pn = CT (Pn+ 1 − Pn+ 1DS
-1DTPn+ 1)C +Qn (2.27)

where, Sn is a square matrix with proper dimensions and given as

Sn = R+DTPn+ 1D. (2.28)

The boundary condition of equation (2.27) can be acquired from equation (2.22)

and (2.23) as

PN = Qf . (2.29)

Equation (2.27) can described as a discrete time algebraic Riccati equation.

So in this chapter, we have discussed the necessary theoretical backgrounds to

understand the mathematical modeling of the system, considered in this thesis. In

the next chapter, we will formulate our system model and describe the proposed

algorithms.
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Chapter 3

Proposed Deployment Scheme
Based On Optimal Control Theory

In this chapter, at first we state our system model followed by sensor deployment

problem formulation. Later on we describe the solution of deployment problem

based on optimal control theory. Finally, we discuss two other features on the

initial system model to make it more realistic and modify the original algorithms

accordingly.

3.1 System Model, Optimal Control Formulation

and Proposed Algorithms

Before describing our system model, we first consider some assumptions for the

convergence of the model which are given below:

(1) Individual sensors are the sources and fusion center is the sink and network

architecture is parallel architecture with fusion center.

(2) Required detection probability is predetermined by end users and works as a

threshold value for each point in case of both deployment and decision making.

(3) It is a non collaborative detection networks so ’OR’ rule is used at FC which is

overall achieved miss probability.

(4) No false alarm rate is considered.
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(5) Noiseless communication is considered.

(6) The performance degradation of sensors with time is ignored.

(7) Each of the deployed sensors will be on for all the time until it is drained off.

(8) In active hours, energy of the sensors are not depleted.

(9) Only detection process before actual deployment is considered. Meanwhile,

parameter like communication radius which is significant in communication after

deployment process is not in our focus and is not considered.

Here, in our system model, we use a Nx × Ny sample-grid (η) for problem

formulation. The types of sensors we used here are heterogeneous based on their

sensing radii values. Let us assume that there are L class of sensors and N number

of sensors and the sensing range matrix is

rd =
[
rd1 rd2 rd3 ..... rdL

]
(3.1)

If the sensor is in (i, j) point and the target is in (x, y) point on the grid, distance

is

d(x, y) =
√

(x− i)2 + (y − j)2. (3.2)

Henceforth, the detection probability equation of any sensor in any class in the set

becomes

pdetect(t)(x, y) =

e−αd(x, y), if d(x, y) ≤ rd(t)

0, if d(x, y) > rd(t)
(3.3)

where, t = 1 to L and d(x, y), rd(t) and α are Euclidean distance between target

and sensor, sensor range, and attenuation factor respectively.

‘OR’ fusion rule is adopted. Under this rule, if a target is detected by one or

more sensors, we assume that the target is detected. The opposite of this is the

miss probability where it is assumed that the target point is not covered even by a

single sensor. According to this rule, we would like to use miss probability instead
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of detection probability in our thesis which is

pmiss(t)(x, y) = 1− pdetect(t)(x, y). (3.4)

where, t = 1 to L and (x, y) is the detection point.

The deployment vector equation is

v(i, j) =

1, if there is presence of a sensor at (i, j) point

0, if there is absence of a sensor at (i, j) point
(3.5)

It determines whether or not there is presence of a sensor in a grid point.

By taking ‘OR’ fusion rule and combining equation (3.4) and (3.5) we can extract

the overall miss probability as

PMoverall(t)(x, y) =
∏

(i,j) ε η

pmiss(t)((x, y), (i, j))v(i, j) (3.6)

where, t = 1 to L, (x, y) is the detection point and (i, j) is the sensor point.

Equation (3.6) is a non-linear one and it will increase the calculative complexities if

we use this for further mathematical derivatives. Hence, we use natural logarithm

to convert equation (3.6) into a linear one which is

pmoverall(t)(x, y) =
∑

(i,j) ε η

v(i, j)lnpmiss(t)((x, y), (i, j)). (3.7)

where, t = 1 to L, (x, y) is the detection point and (i, j) is the sensor point.

Now we define a function,

a(t)(x, y) =

lnpmiss(t)((x, y), (i, j)), if d((x, y), (i, j)) ≤ rd(t)

0, if d((x, y), (i, j)) > rd(t)
.

The deployment vector v is of dimension (NxNy × 1). The ((i− 1)×Ny + j)th

point of v is the relative to (i, j) point in the operational grid. Whereas, the

dimension of a(t) matrix is (NxNy × NxNy). a(t) matrix can be expressed as
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a(t)(row, column), where row = (x−1)Ny+y and column = (i−1)Ny+j.

There can be as many types of a matrices as there are types of sensors. We propose

an algorithm to choose the best possible A matrix from a(t) matrices and that is

shown in Algorithm 1.

Algorithm 1 : Proposed algorithm for Choosing best A matrix

1. Input : a{t}

where, t = 1 to L

2. Output : A

3. for x = 1 to length (Nx ×Ny) do

4. for y = 1 to length (Nx ×Ny) do

5. A(x, y) = 1000.

6. for i = L : −1 : 2 do

7. c(x, y) = MIN(a{i}(x, y), a{i− 1}(x, y))

8. A(x, y) = MIN(A(x, y), c(x, y))

9. end for

10. end for

11. end for

The overall logarithmic miss probability can be written in terms ofA and v matrices

which is

pmoverall = Av (3.8)

Now, for deploying optimal number of sensors in the grid, we use minimum squared

error (MSE) criterion. For that, we use some empirical values as overall required

detection probabilities (pdreqoverall) of dimension (1×NxNy) at different points of

the grid depending on distance from center point on the grid which are

pdreqoverall = nm
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where, nm depends on d(x, y).

Hence, overall required miss probability is

pmreq
overall = (ln(1− pdreqoverall))T

and overall required detection probability is

pdreqoverall = (pdreqoverall)
T

So we define MSE for deploying N sensors as

MSE = MIN
N∑
n=1

(pmn
overall(k)− pmreq

overall(k))2 (3.9)

where, pndetect(k) < preqdetect(k) at kth point in the grid.

By defining, Xn = pmn
overall − pm

req
overall, equation (3.8) can be expressed as

Xn+ 1 = Xn +Avn (3.10)

where, vn is deployed at nth step. Now to optimize the dynamic deployment process

of sensors, we assign a cost function I which itself is weighted squared error (SE)

function of Xn state variable. I is defined as

I =
1

2
XT
NQfXN +

1

2

N−1∑
n=0

(XT
nQXn + vTnRvn) (3.11)

Here,R,Q andQf are non negative definite diagonal matrices and their dimensions

are NxNy ×NxNy. R and Q are called designer’s parameters.

We use,

R(j, j) = (
pmreq

overall(j)∑
j=1 to NxNy(pm

req
overall(j))

)-1

and

Q(j, j) = (R(j, j))-1
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and Qf = Qn to simplify the model because those values satisfy the requirement of

being non negative definite diagonal weighting matrix. Now, by using above R, Q,

Qf and MSE function (equation (3.9)), we can minimize cost function I. Hence,

the dynamic transformation of MSE function from equation (3.9) is

ESE = MIN
N∑
n=1

Xn(k)2. (3.12)

where, pndetect(k) < preqdetect(k) at kth point in the grid.

We call it as the effective SE or ESE function. Since we are using a squared function,

we can nullify the problem of the function being positive or negative. The result is

always positive and this function detects the points where detection probability is

under-satisfactory (i.e., negative Xn value) or exceeding (i.e., positive Xn value)

the satisfaction levels. However, there is a problem. Since this function punishes

both positive and negative deviations, to avoid getting chastised for positive devia-

tions(i.e, exceeding required detection probability at a particular grid point), we set

zero value for ESE at those points. So the cost function I is minimized at satisfied

points. Except those points, after each sensor deployment, calculating ESE and

minimizing it subsequently is equivalent to minimizing whole the cost function I.

This is a linear-quadratic regulator problem. We use dynamic optimization tech-

nique to solve the linear quadratic regulator problem. The dynamic equation (3.10)

can be expressed as

Xn+ 1 = f(xn, vn), n = 0, 1, ...., N − 1. (3.13)

With an initial condition X0 = Xin, we can write the cost function as

I = L(XN) +

N−1∑
n=1

Vn(Xn, vn). (3.14)

Now, we can use Hamiltonian function from equation (2.8) to derive discrete KKT

conditions [35], [36], [37] given below:

Xn+ 1 = f(Xn, vn) (3.15)
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X0 = Xin (3.16)

λn = ∇TXnf(Xn, vn)λn+ 1 +∇XnVn (3.17)

λN = ∇XNL (3.18)

0 = ∇vnVn + λTn+ 1∇vnf(Xn, vn). (3.19)

We re-write Hamiltonian function [35] with regards to LQR as

Hn =
1

2
XT
nQXn +

1

2
vTnRvn + λTn+ 1(Xn +Avn)

Now applying conditions from equations (3.15-3.19) on Hamiltonian function, we

can find the following optimality conditions

Xn+ 1 = Xn +Avn (3.20)

X0 = Xin (3.21)

λn = λn+ 1 +QXn (3.22)

λN = QfXN (3.23)

vn = −R-1ATλn+ 1 (3.24)

where, Q and R are design parameters.

Comparing equation (3.21) to equation (2.18), we get the values of parameters,

C = 1 and D = A. Now, to find optimal vn, we have to use sweep method [36].

Substituting the values of C and D into equations (2.22-2.29), we get

λn = PnXn (3.25)

Where,

Pn = Pn+ 1 − Pn+ 1AS
-1
nA

TPn+ 1 +Q (3.26)

Sn = R+ATPn+ 1A (3.27)

Gn = S-1
nA

TPn+ 1 (3.28)
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So, vn can be solved from Gn and Xn as

vn = −GnXn (3.29)

We calculate Sk, Gk and Pk in reverse order from n = N − 1 to n = 0. The

initial steps of sweep method [36] include the final conditions for KKT [35], [36], [37]

equations as Pn = Qf , Gn = 0 and Sn = 0. The dimension of matrices Pn, Sn

and Gn is equal and it is NxNy × NxNy. The steps of sweep method [36] are

given in Algorithm 2.

Algorithm 2 : Algorithm for Sweep method [36]

1. Inputs : A,Q,R

2. Output : Gain Matrix Gn

3. Initialize Pn = Qf , Gn = 0 and Sn = 0

4. for n = N − 1 to 0 do

5. Calculate Sn from equation (3.27)

6. Calculate Gn from equation (3.28)

7. Save Gn.

8. Calculate Pn from equation (3.26)

9. end for

10. for n = 0 to N − 1 do

11. Calculate vn from equation (3.29)

12. end for

Though LQR method is used for minimizing the ESE function which is equiva-

lent to minimizing cost function I, we can actually go a step forward by stating an
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algorithm to calculate the number of sensors and their corresponding coordinates

needed for each step of deployment to minimize the ESE from equation (3.12) at

unsatisfied points. The deployment method is given in Algorithm 3.

Algorithm 3 : Algorithm for deployment method

1. Inputs : detection requirement (pdreqoverall), number of sensors (N ) and A

2. Output : deployment vector (vn)

3. Global V ariables : deployment variable (vn) of dimension (NxNy × 1),

overall detection probability at nth stage (pdnoverall) of dimension (NxNy×1) and

overall miss probability at nth stage (pmn
overall) of dimension (NxNy × 1)

4. Initialize n = 0, vn = 0, pdnoverall = 0 and pmn
overall = 0

5. Calculate Xn = pmn
overall − pm

req
overall

6. while (n < N) or ESE 6= 0 do

7. Find the set of the satisfactory points i in the grid

(i.e., i : pdnoverall(i) ≥ pd
req
overall(i))

8. Set Xn(i) = 0 (i.e., The satisfactory points are taken out of calculation)

9. Calculate vn = −GnXn from equation (3.29)

10. Set jmax = MAXIndex(vn) (i.e., jmax is the value of index, respective

to which vn is the largest)

11. Set v(jmax) = 1

12. Calculate pmn
overall = Av

13. Calculate pdnoverall = 1− epmn
overall

14. Calculate Xn = pmn
overall − pm

req
overall

15. Set n = n+ 1

16. end while

17. if vn(i) == 1

18. for i = 1 to length(v)
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19. Calculate

X(n) = ceil(
i

Ny

) and Y (n) = i− (X(n)− 1)Ny

20. Discard the corresponding indexes of X(n) and Y (n) where one or

both of their values are zero.

21. end if

22. end for

The 19th line gives us the coordinates of the deployed sensors. In the beginning

of the chapter, we have described that the deployment vector v is of dimension

(NxNy× 1) and ((i− 1)×Ny + j) th point of v is the relative to (i, j) point in

the operational grid. The X and Y coordinates are calculated by taking into con-

sideration of the dimension of v and the its relation to the operation grid. In case

of X coordinate calculation, if we divide the index of v by Ny and take the nearest

positive round number by applying ceiling function over it, we get the dimension

Nx for X. This is actually correct. For Y coordinate calculation, we use the above

relation between v and operation grid as, Index(v) = (X − 1) ×Ny + Y and

then reshape it to get Y = Index(v)−(X−1)×Ny. That are the initial coordi-

nates. Next, we discard all the zero values from those and get the final coordinates

of sensor deployment.

Now then, we get all the coordinates of sensors to deploy in the operation grid.

However, there arises a new challenge about which point would contain which type

of sensor. For that we calculate Euclidean distance of every pair of grid points where

sensors have been placed. For example, there are two pointsm(X(m), Y (m)) and

i(X(i), Y (i)) where m is coordinate of the 1st sensor and i is the coordinate for
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the 2nd sensor. Henceforth, from 1st sensor’s point of view, it sees the Euclidean

distance from 2nd sensor as

d(X,Y ) =
√

(X(m)−X(i))2 + (Y (m)− Y (i))2 (3.30)

Then, the minimum Euclidean distance is taken keeping in mind that the result is

discarded when m = i since the result is always zero at this case as we are taking

the same point twice to calculate the distance. Now, since heterogeneous sensors

are used according to their sensing ranges, we can actually sort out the sensors

like rd1 > rd2 > rd3 > .... > rdL. Meanwhile, from each minimum distance

calculated for each sensor, there can be at best three cases. Firstly, the distance

falls in between a sensor range bracket of an upper and a lower value. Secondly,

the distance is lower than or equal to the lowest sensor range type. Finally, the

distance is higher than the highest sensor range type. From this concept, the sensor

type at each point can easily be determined. The proposed process is summarized

in Algorithm 4.

Algorithm 4 : Proposed algorithm for choice of sensor type for each occupied point

1. Inputs : X and Y

2. Outputs : M, Xf and Yf

3. Initialize M = {[1], [1], [1]}

4. for m = 1 : length(X)

5. Set c = MIN(d(m, :))

6. Set i = L

where, L is types of sensors

7. while (i 6= 0)
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8. if (c > rad(i))

9. Set i = i− 1

10. else

11. Set Xf{i}(1,M{i}) = X(1,m)

12. Set Yf{i}(1,M{i}) = Y (1,m)

13. Set M{i} = M{i}+ 1

14. Break

15. end if

16. end while

17. if i == 0 do

18. Set Xf{1}(1,M{1}) = X(1,m)

19. Set Yf{1}(1,M{1}) = Y (1,m)

20. Set j = 1

21. Set M{j} = M{j}+ 1

22. end if

23. end for

24. for i = 1 : L

25. Set M{i} = M{i} − 1

26. end for
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3.2 System Model Alteration Due To Change of

Parameters

In this section, we discuss about two features added on the initial system model to

make it more realistic. The first one is effect of obstacles on the operation grid and

second one is the uncertainty of sensor deployment on the intended place.

3.2.1 Effects of Obstacles

If there remain one or more obstacles in the terrain, this will affect the outcome of

the initial sensor deployment model.

First of all, if we put a sensor in front of an obstacle, it will not detect the points

straight in front of the obstacle. In the algorithm, we consider every obstacle as a

polygon which has edge points. Henceforth, we calculate the angular distances of

the edge points of the obstacle from each sensor point. Then the difference between

highest and lowest angle is considered as deleted angular range for each sensor and

we call a LOS (line of sight) between a detection point and a sensor point if there

is no such deleted angular range or the detection point is not inside the obstacle’s

edge points.
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Figure 3.1: Presence of obstacle in the operation grid

Figure 3.1 shows the placement of sensor, obstacle, LOS, deleted angular range

and the portion where target can be invisible. If there is no LOS, we call the case in-

accessible and in that case theA(row, column) = 0, pdreqoverall(inaccessible) =

0, Q(inaccessible) = Qf(inaccessible) = 0, vn(inaccessible) = 0 and

R(inaccessible) is set to a very large value. The algorithm is described below.

Modification of Algorithm due to the presence of obstacles:

1. if sensor point (i, j) is inaccessible or detection point (x, y) is inaccessible

Set A(row, column) = 0

2. else if d(x, y)≤ rd and LOS is present between (x, y) and (i, j) then A will

follow Algorithm 1

3. else Set A(row, column) = 0

4. end if

5. Set pdreqoverall(inaccessible) = 0

6. Set Q(inaccessible)=Qf(inaccessible) = 0

7. Set R(inaccessible) to a very large positive value
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8. Set vn(inaccessible) = 0

9. Keep rest of the algorithm same.

3.2.2 Effects of Uncertainty of Deployment

Uncertainty plays a vital role in deployment method. For example, if the sensors are

to be deployed from airplane, then it is possible that the sensors will not be deployed

in the exactly intended positions but a slight deviation will occur and hence there

will be difference in the outcome from theoretical result. In this thesis, we consider

this deviation due to uncertainty of sensor deployment as a Gaussian probability

distribution model [40]. The joint probability density function for uncertainty can

be written as

PG(m,n) =
e
− (m−i)2

2σ2
i

− (n−j)2

2σ2
j

2πσiσj
. (3.31)

where, (i, j) is the mean value which is the sensor placing point, (m,n) is the

coordinate of the operation grid and σi and σj are the standard deviations in X

and Y directions which are independent from each other. Hence, the modified A

matrix will be
Amodified(row, column) =∑

(m,n) ε ηA(row, column)PG(m,n)∑
(m,n) ε η PG(m,n)

(3.32)

We keep the rest of the algorithms exactly same as before.

So to summarize this chapter, it can be said that we have stated four algorithms

in a sequential order to model our problem as a LQR problem and solve it accord-

ingly. Specifically at first, we propose an algorithm (Algorithm 1) to find the best

possible A matrix to get the minimum logarithmic overall achieved miss probability

at each point of the grid for the whole combination of sensors rather than choosing

one for each type of sensors and then try to solve all of those at a time. In that
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way we are able to comply with the same method that we can use on a homoge-

neous sensor deployment as well as in a heterogeneous sensor deployment without

broadening the complexity of calculation. Finally, we propose another algorithm

(Algorithm 4) to determine the type of sensors at each occupied point. Although

one might think that to determine the type of sensors after deployment is a bit

odd, this is in fact a smart way to reduce the complexity and volume of calcula-

tion especially in case of heterogeneous deployment and since the knowledge of the

types of sensors in the occupied points does not necessarily change the deployment

points in the grid to achieve optimization, this sequence serves the purpose per-

fectly. Additionally, we have added two extra features: obstacles and uncertainty

of deployment as augmentations of our original generalized system model to make

it more pragmatic for deploying in the real scenarios. The simplified block diagram

of proposed deployment process is given in Figure 3.2.

Figure 3.2: Block diagram of the proposed deployment process
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Chapter 4

Simulations and Results

In this chapter, we evaluate the performances of the proposed algorithms by simu-

lating it in MATLAB. In simulation set-up we construct 3 cases.

Case 1: We choose a heterogeneous combination of three type sensors and com-

pare their combined performances with the homogeneous deployment of each of the

three type of sensors individually by varying the attenuation factor and grid-matrix

size. Then, we calculate the difference between achieved and required probability

for each point and analyze whether or not it suffices our expectations. Though it

is sufficient from this step to declare if the proposed algorithm holds or not, we

still want to troubleshoot the process in a simpler manner by target injection. So

we inject random targets in the operation grid and try to find out if one or more

sensors can actually detect each of the targets regardless of its positions.

Case 2: We do the same thing as in Case 1 with the inclusion of obstacles.

Case 3: We repeat the process as in Case 1 with the addition of uncertainty of

deployment process.

Now we elaborate these 3 cases below.
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4.1 Case 1: Simulation without Obstacles or Un-

certainty

4.1.1 Simulation Parameters

Here, for our problem we select three types of sensors according to their sensing

radii. The radius matrix rd is [8 4 3] and we set attenuation factor α as 0.10,

0.15 and 0.20, respectively. We consider two grids (η) of size [20 × 20] and [40

× 40], consecutively. Figure 4.1 shows the required detection probabilities for the

operation grid. In our thesis, the operation grid and sensor radius are unitless and

it is immaterial that whatever unit we choose, our system model will always hold

true irrespective of that. However, in case of practical sensors we have studied that

in real word proximity sensors are of mainly two types: IR sensors and ultrasound

sensors. Long range IR sensors can have range from 1-5 m and long ultrasound

sensors can have range from 10-50 m for target detection depending on price. So,

if we take an operation grid of 100 m × 100 m and take 10 m radius ultrasound

sensors, we can choose 1 unit = 1 m for our case. Then the field will be 100 unit ×

100 unit and each sensor has a 10 unit sensing radius. The sensing radii matrix is

constructed based on real life proximity IR sensors [41] and ultrasound sensors [42].

Attenuation factors are chosen based on [34].
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Figure 4.1: Required Detection Probabilities
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4.1.2 Simulation Results

Firstly, we observe the performance of the deployment algorithm without obstacles

and uncertainty into the grid and compare it with homogeneous sensor deployment

[34]. Table 4.1 shows the deployment results. In Table 4.1 the first four columns

show the result of our developed generalized sensor deployment framework whereas

the last column shows results in Ref. [34].

Table 4.1: Simulation results for Case 1

type α [20 × 20] [40 × 40] [25 × 25] [25 × 25] in [34]
Homogeneous 0.10 [11 28 37] [31 102 147] 26 27
Homogeneous 0.15 [12 29 39] [35 98 147] 32 28
Homogeneous 0.20 [15 31 39] [44 104 152] 33 34
Heterogeneous 0.10 11 [9 0 2] 31 [31 0 0] - -
Heterogeneous 0.15 13 [11 2 0] 34 [30 2 2] - -
Heterogeneous 0.20 16 [14 0 2] 44 [38 4 2] - -

It is to be noted that in Table 4.1, for a given attenuation factor and grid size,

rows under Homogeneous type contain information about the individual number

of sensors having sensing radii of 8, 4 and 3 units respectively for homogeneous

deployments whereas rows under Heterogeneous type contain information about

the number of the combination of sensors for heterogeneous deployments. The

fourth row under Homogeneous type describes the number of sensors of 5 unit radius

needed for a grid size of [25× 25] and fifth row gives us the number of homogeneous

sensors that we attain from [34] for same grid size and sensing radius. That is how

we are able to compare our results with that of [34]. From Table 4.1, we can see

that when we use sensors of 8 unit radius for homogeneous sensor deployment, the

result is almost same for both homogeneous and heterogeneous deployment but

when we take sensors of 4 or 3 unit radius, we need a huge number of sensors

for homogeneous sensor deployment compared to heterogeneous sensor deployment.
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So our developed generalized sensor deployment framework is successful for both

homogeneous and heterogeneous sensor deployment. Table 4.1 also shows that

with increase in the value of α or grid size, number of sensors also increases as

expected. Also we can observe that homogeneous sensor deployment obtained from

our developed generalized sensor deployment framework very closely matches with

that in [34].

Figure 4.2: Heterogeneous sensor deployment for a [20 × 20] grid size with 30 input
sensors

Figure 4.2 shows heterogeneous sensor deployment for a [20 × 20] grid size with

α = 0.20. From the figure, we can see that only sensors of 8 and 3 unit radius are

required. We use 30 sensors as input and find that an output of total 16 [14 0 2]

sensors is required. Next, we change the number of input sensors to 50 to see if the

optimal result of 16 sensors holds or not.
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Figure 4.3: Heterogeneous sensor deployment for a [20 × 20] grid size with 50 input
sensors

Figure 4.3 shows that the output for an input of 50 sensors is also the exactly

same. As we can see same location and same type of total 16 [14 0 2] sensors are

deployed as before. So we can conclude that optimum result holds irrespective of

number of input sensors.
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Figure 4.4: Difference between achieved and required detection probability for Het-
erogeneous sensor deployment for a [20 × 20] grid size

Figure 4.4 depicts the difference between required and achieved detection prob-

ability at α = 0.20 after heterogeneous sensor deployment for a [20 × 20] grid size

and we can see that the difference is positive at all points so the algorithm achieves

the required probability at all points.
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Figure 4.5: Heterogeneous sensor deployment for a [40 × 40] grid size

Figure 4.5 is for heterogeneous sensor deployment for a [40 × 40] grid size at

α = 0.20. From the figure, we can see all types of sensors (8, 4 and 3 unit radius)

are required for this.
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Figure 4.6: Difference between achieved and required detection probability for Het-
erogeneous sensor deployment for a [40 × 40] grid size

Figure 4.6 depicts the difference between required and achieved detection prob-

ability at α = 0.20 after heterogeneous sensor deployment for a [40 × 40] grid size

and we can see that the difference is positive at all points so the algorithm achieves

the required probability at all points.

Next, we inject three different targets at random positions to figure out whether

or not our proposed model can detect all of them regardless of their positions in the

simulation grid.
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Figure 4.7: Sensors used only for injected target detection for a [20 × 20] grid size

Figure 4.7 shows that at α = 0.20 for a grid size of [20 × 20], three targets

are injected and more than one sensors can detect each of the targets. We use

random coordinates for these targets. So we can say that our proposed algorithm

successfully handles the detection of targets regardless of their positions. It is also to

be noted here that the mobility of targets does not affect the detection probability

since all the points under in operation grid are covered by the deployed sensors.

Now, we add two quantitative analysis. Firstly, we construct sensor numbers vs

ESE (dynamic minimum squared error) graph for homogeneous and heterogeneous

deployment and results of homogeneous deployment are compared to that of [34].
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Figure 4.8: Effective SE convergence graph of homogeneous sensor deployment for
a [20 × 20] grid size with α=.15
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Figure 4.9: Effective SE convergence graph of heterogeneous sensor deployment for
a [20 × 20] grid size with α=.15
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Figure 4.10: Effective SE convergence graph of homogeneous sensor deployment for
a [20 × 20] grid size with α=.15 at [34]

From Figure 4.8 and 4.10 comparing our graph with the graph of Optimal Pro-

posed Algorithm of [34] we can palpably reach into conclusion that the results of

our thesis are very close to that of [34].

Secondly, we add line graphs of grid dimensions vs sensor number for both

homogeneous and heterogeneous deployments.
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Figure 4.11: Line graph of grid dimensions vs sensor number for homogeneous
deployment

Figure 4.11 shows that we need a significantly large number of smaller radius

sensors and a comparatively small number of large radius sensors in case of larger

operational grids. So, it signifies that it is advantageous to use small radius sensors

if the operation grid is small and large radius sensors if the operation grid is large

for homogeneous deployment.
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Figure 4.12: Line graph of grid dimensions vs sensor number for heterogeneous
deployment

Figure 4.11 and 4.12 shows that in cases of both homogeneous and heterogeneous

deployments with larger grid size we need more sensors than smaller grid size for

optimal deployment as expected.
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4.2 Case 2: Simulation with Obstacles

Now, we add 2 obstacles into our operation grid. One is a polygon whose coordinates

are(2, 2), (6, 2), (8, 4), (4, 5), ( 2, 4). The other is a rectangle whose coordinates

are (16, 16), (18, 16), (18, 18), (16, 18). Then the previous procedure is repeated.

Table 4.2 shows the distribution of three types of sensors for [20 × 20] and [40 ×

40] grid sizes.

Table 4.2: Simulation results for Case 2

type α [20 × 20] [40 × 40]
Heterogeneous 0.10 14 [7 1 6] 35 [26 1 8]
Heterogeneous 0.15 15 [8 3 4] 38 [29 1 8]
Heterogeneous 0.20 18 [11 3 4] 47 [32 7 8]

Figure 4.13: Heterogeneous sensor deployment for a [20 × 20] grid size with obsta-
cles
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Figure 4.13 for heterogeneous sensor deployment with obstacles for a grid size

of [20 × 20] at α = 0.20. From the figure, we can see all types of sensors (8, 4 and

3 unit radius) are required for this.

Figure 4.14: Difference between achieved and required detection probability for
Heterogeneous sensor deployment for a [20 × 20] grid size with obstacles

Figure 4.14 depicts the difference between required and achieved detection prob-

ability at α = 0.20 after heterogeneous sensor deployment of a grid size of [20 ×

20] and we can see that the difference is positive at all points so the algorithm

achieves the required probability at all points.
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Figure 4.15: Heterogeneous sensor deployment for a [40 × 40] grid size with obsta-
cles

Figure 4.15 is for heterogeneous sensor deployment with obstacles for a grid size

of [40 × 40]. From the figure, we can see all types of sensors (8, 4 and 3 unit radius)

are required for this.
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Figure 4.16: Difference between achieved and required detection probability for
Heterogeneous sensor deployment of for a [40 × 40] grid size with obstacles

Figure 4.16 depicts the difference between required and achieved detection prob-

ability at α = 0.20 after heterogeneous sensor deployment for a grid size of [40

× 40] and we can see that the difference is positive at all points so the algorithm

achieves the required probability at all points.

Next, we inject three different targets at random positions to figure out whether

or not our proposed model can detect all of them regardless of their positions in the

simulation grid.
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Figure 4.17: Sensors used only for injected target detection for a [20 × 20] grid size
with obstacles

Figure 4.17 shows that for a grid size of [20 × 20] with the presence of two

obstacles and at α = 0.20, three targets are injected and more than one sensors

can detect each of the targets. We use random coordinates for these targets. So

we can say that in case of obstacles presence, our proposed algorithm successfully

handles the detection of targets regardless of their positions.
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4.3 Case 3: Simulation with Uncertainty

We then add uncertainty with the original heterogeneous sensor deployment model.

Then the previous procedure is repeated. There are two points to be noted. Firstly,

we consider that every deployed sensor is in a mistaken coordinate rather than

its intended coordinate. In every point, we calculate average Gaussian probability

distribution rather than its actual probability. The sensor’s capability to achieve

the required detection probability decreases. We use an empirical value for

required detection probability =
6

grid dimension along any axis
(4.1)

to get a nominal positive threshold value to model the process. Secondly, in the

previous two cases, the threshold for ESE was set to 0 but here the ESE does not

reach absolute 0. We extract a nominal positive threshold value for ESE. We find

that ESE = 1 is the nominal threshold value that gives us good results and holds

the algorithm in while-loop breaking situation [line 12 and line 13 in Algorithm

for Deployment method] for optimization process. Table 4.3 shows the simulation

results for [20 × 20] and [40 × 40] grid sizes.

Table 4.3: Simulation results for Case 3

type α [20 × 20] [40 × 40]
Heterogeneous 0.10 8 [2 2 4] 32 [10 4 18]
Heterogeneous 0.15 11 [4 3 4] 40 [11 5 24]
Heterogeneous 0.20 12 [3 6 3] 48 [13 8 27]
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Figure 4.18: Heterogeneous sensor deployment for a [20 × 20] grid size with uncer-
tainty

Figure 4.18 is for heterogeneous sensor deployment with uncertainty for a [20

× 20] grid size. From the figure, we can see all types of sensors (8, 4 and 3 unit

radius) are required for this.
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Figure 4.19: Difference between achieved and required detection probability for
Heterogeneous sensor deployment for a [20 × 20] grid size with uncertainty

Figure 4.19 depicts the difference between required and achieved detection prob-

ability at α = 0.20 after heterogeneous sensor deployment for a grid size of [20

× 20] and we can see that the difference is positive at all points so the algorithm

achieves the required probability at all points.
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Figure 4.20: Heterogeneous sensor deployment for a [40 × 40] grid size with uncer-
tainty

Figure 4.20 for heterogeneous sensor deployment with uncertainty for a grid size

of [40 × 40]. From the figure, we can see all types of sensors (8, 4 and 3 unit radius)

are required for this.
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Figure 4.21: Difference between achieved and required detection probability for
Heterogeneous sensor deployment for a [40 × 40] grid size with uncertainty

Figure 4.21 depicts the difference between required and achieved detection prob-

ability at α = 0.20 after heterogeneous sensor deployment for a grid size of [40

× 40] and we can see that the difference is positive at all points so the algorithm

achieves the required probability at all points.

We also observe that in case of uncertainty we can not set just any random given

required detection for a grid point but a specific empirical value from equation 4.1

which is related to grid dimensions. So it is significantly less than previous two cases.

However, the achieved probability is greater than required detection probability at

each point of the grid.

Next, we inject three different targets at random positions to figure out whether

or not our proposed model can detect all of them regardless of their positions in the

simulation grid.
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Figure 4.22: Sensors used only for injected target detection for a [20 × 20] grid size
in the presence of uncertainty of deployment

Figure 4.22 shows that at α = 0.20 for a grid size of [20 × 20] and with the

presence of deployment uncertainty, three targets are injected and more than one

sensors can detect each of the targets. We use random coordinates for these targets.

So we can say that our proposed algorithm successfully handles the detection of

targets regardless of their positions in case of uncertainty as well.

So in a nutshell it can be said that at first in this chapter, we have evaluated the

performances of our developed generalized sensor deployment framework. We have

observed that our developed framework is successful in a generalized case. Then,

we have compared our results with that of Ref. [34] and these are very close. Next,
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we have repeated the process with the augmentation of obstacles and uncertainty of

deployment to give a more realistic simulation. It is to be noted that for inclusion

of obstacles the number of sensors increases. Moreover, in case of uncertainty the

required detection probability for any point in grid is far less than previous two cases

since we can not simply choose any random value but an empirical value related to

the dimension of axes. However, the achieved detection probability is greater than

required detection probability for each points in the grid. Finally, we have injected

random target points for all cases and observed that each target has been detected

by one or more sensors. So in practical manner our developed generalized sensor

deployment framework is successful.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this thesis, we have formulated a generalized deployment framework for both ho-

mogeneous and heterogeneous sensors using optimal control theory (linear quadratic

regulator) for target detection and developed algorithms accordingly. Our formu-

lated generalized deployment framework consists of four algorithms in a sequential

order. At first, we have proposed (Algorithm 1) to find the best possible A ma-

trix to get the minimum logarithmic overall achieved miss probability at each grid

point for the whole combination of sensors rather than choosing one for each type of

sensors and then try to solve all of those at a time. In that way, we have successfully

complied with the same method that we can use on a homogeneous sensor deploy-

ment as well as in a heterogeneous sensor deployment without broadening the com-

plexity of calculation. Algorithm 2 describes the sweep method and Algorithm

3 is the optimal control theory based deployment method. Algorithm 3 basically

gives the co-ordinates of the sensors. Finally, we have proposed another algorithm

Algorithm 4 to determine the type of sensors at each occupied point. Addi-

tionally, we have revamped our method to satiate for obstacles and uncertainty of

deployment process and observed the performances of the proposed algorithms.

We have simulated our generalized developed framework in MATLAB. We have
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observed that our developed framework is successful for both homogeneous and

heterogeneous sensor deployment as desired. We have compared our results on

homogeneous sensor deployment with that of [34] and these are closely matched.

It is evident that in case of obstacles more sensors are required. In the case of

uncertainty, the required detection probability for any point in grid is much smaller

than the previous two cases since we can not simply choose any random value but an

empirical value related to the dimension of axes. However, the achieved detection

probability is greater than required detection probability for each points in the

grid. Finally, we have injected random target points for all cases and observed that

each target has been detected by one or more sensors. So in practical manner, our

developed generalized sensor deployment framework is successful.

5.2 Future Works

For future works, firstly, we are interested to add quite a number of additional fea-

tures to our system model to make it even more realistic which are given below.

(1) We will try to consider false alarm rate in our model.

(2) We will try to incorporate the effect of noise in communication channel for our

system model.

(3) Energy constraints of sensors will be taken into consideration. In reality, solar

energy driven proximity sensors [43] are available now and we will try to integrate

those.

(4) The performance degradation of sensors with time will be considered and self

healing mechanisms will be applied to overcome that.

(5) In case of obstacles, we will try to incorporate the fringing effect of the trans-

mitted signal of the sensor where it bends over the edges of the obstacles.

Secondly, here, we have only used the term heterogeneous in case of sensing ra-

dius meanwhile all the sensors serve the same purpose. However, a combination of

sound detectors, smoke detectors and temperature detectors is required to be used
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to detect a situation where an industrial explosion occurs. Hence, choosing a het-

erogeneous combination for each category of sensors and optimizing the deployment

process as a whole will be interesting to be studied.
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[28] F. J. Parrado-Garćıa, J. Vales-Alonso, and J. J. Alcaraz, “Optimal planning of

wsn deployments for in situ lunar surveys,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 53, no. 4, pp. 1866–1879, 2017.

65



[29] P. Beuchat, H. Hesse, A. Domahidi, and J. Lygeros, “Optimization based self-

localization for iot wireless sensor networks,” 2018 IEEE 4th World Forum on

Internet of Things (WF-IoT), pp. 712–717, 2018.

[30] T. O. Olasupo and C. E. Otero, “A framework for optimizing the deployment

of wireless sensor networks,” IEEE Transactions on Network and Service Man-

agement, vol. 15, no. 3, pp. 1105–1118, 2018.

[31] F. H. Bijarbooneh, P. Flener, E. C. Ngai, and J. Pearson, “An optimisation-

based approach for wireless sensor deployment in mobile sensing environments,”

2012 IEEE Wireless Communications and Networking Conference (WCNC),

pp. 2108–2112, 2012.

[32] A. V. Savkin, F. Javed, and A. S. Matveev, “Optimal distributed blanket

coverage self-deployment of mobile wireless sensor networks,” IEEE Commu-

nications Letters, vol. 16, no. 6, pp. 949–951, 2012.

[33] H. Park and S. Hutchinson, “Robust optimal deployment in mobile sensor net-

works with peer-to-peer communication,” 2014 IEEE International Conference

on Robotics and Automation (ICRA), pp. 2144–2149, 2014.

[34] A. Ababnah and B. Natarajan, “Optimal control-based strategy for sensor

deployment,” IEEE Transactions on Systems, Man, and Cybernetics - Part A:

Systems and Humans, vol. 41, no. 1, pp. 97–104, 2011.

[35] P. Dorato, C. T. Abdallah, and V. Cerone, Linear Quadratic Control: An

Introduction. Melbourne, FL: Krieger, 2000.

[36] A. Sage and C. White, Optimum Systems Control. Englewood Cliffs, NJ:

Prentice-Hall, 1977.

[37] M. Mahmoud and M. Singh, Dicrete Systems: Analysis, Control and optimiza-

tion. Springer-Verlag, 1984.

66



[38] T. S. Helal, P. Mozumdar, and L. Akter, “Evaluating the performance of op-

timal control based sensor deployment algorithms for realistic terrain model,”

8th International Conference on Electrical and Computer Engineering, pp. 741–

744, 2014.

[39] A. Syarif, A. Abouaissa, L. Idoumghar, R. F. Sari, and P. Lorenz, “Perfor-

mance analysis of evolutionary multi-objective based approach for deployment

of wireless sensor network with the presence of fixed obstacles,” 2014 IEEE

Global Communications Conference, pp. 1–6, 2014.

[40] Y. Zou and K. Chakrabarty, “Uncertainty-aware and coverge-oriented deploy-

ment for sensor networks,” Journal of Parallel and Distributed Computing,

pp. 788–798, 2004.

[41] https://cdn-shop.adafruit.com/datasheets/gp2y0a710k.pdf.

[42] https://holykell.en.made-in-china.com/product/CyqJpruAnbcd/

China-Holykell-5m-10m-50m-60m-Wide-Range-Ultrasonic-Sensor.html.

[43] https://www.youtube.com/watch?v=PUO8D3ZYAM8.

67


