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Abstract 

Due to increasing amount of cyber attack, there is a growing demand for Network intrusion 

detection systems (NIDSs) which are necessary for defending from potential attacks. Cyber 

attacks can harm in different sectors including small and large business, institutions and also 

an individual. By stealing confidential data and harvesting login credentials, attackers can turn 

an organization into destitute. Those attacks can occupy the network by traffic flooding which 

results in denial of service to its users. Besides, when an institution is hacked, they lose their 

reputation and customers. Detecting and preventing cyber attacks is one of the key research 

areas. Existing NIDSs use traditional machine learning algorithms with low detection rate and 

are also not suitable for the new unknown cyber attacks. In this thesis, we propose a detection 

model with ensemble machine learning methods. Ensemble method is a machine learning 

technique that combines several base models in order to produce one optimal predictive model. 

Ensemble machine learning methods have the potential to detect and prevent different types of 

attacks compared to traditional machine learning methods. Our proposed system uses ensemble 

machine learning methods with Voting, Stacking, Bagging and Boosting methodology. In this 

research work we have designed 16 new types of ensemble machine learning classifiers: 4 

Voting, 4 Stacking, 3 Boosting, 3 Bagging and 2 Hybrid classifiers. We have used the full 

training and testing NSL-KDD dataset to evaluate the performance of multiclass classification 

and we also compare the performance with deep learning as well as traditional base level 

machine learning techniques. NSL-KDD dataset provides data with DoS, Probe, R2L and U2R 

attacks. Result shows that detection rate of DoS, Probe, R2L and U2R network attacks vary 

with different types of classifiers. Different classifiers perform better for different types of 

attacks. Moreover, we also identified that the detection rate changes with the change of the 

number of features. To design, develop and evaluate our proposed ensemble ML classifiers, 

we have used Scikit learn library which is mainly based on python language. Our proposed 

system can detect known attacks as well as prevent unknown attacks. Experimental results 

show that the proposed intrusion detection classifier is superior to the performance of existing 

methods. Our models can improve the detection rate of the IDS which is vital for network 

intrusion detection systems.  
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   CHAPTER 1 
 Introduction 

1.1 Introduction 

Computers and networks have been under threat from viruses, worms and attacks from 

hackers since they were first used. Securing these devices and the data passing 

between them is a challenging task because the number of intrusions is also increasing 

sharply year by year. 

1.2 Background and Motivation 

In 2008, the number of devices connected to the Internet exceeded the number of 

human beings and this increasing trend will see about 50 billion devices by 2020 

(Figure 1.1) [1].  

 

 
Figure 1.1: Increases on the number of devices connected to the Internet over years [1] 

 
Furthermore, the amount of computer malware has increased rapidly in recent years 

from about 333,000 in 2005 to 972,000 in 2006, and 5,490,000 in 2007 [2]. 
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When anybody is not connected to the internet, he is at some risk of intrusion due to 

the physical access (access by someone when the owner is not present) of any others. 

This threat is more when we are connected to the network, particularly the Internet. 

At this time, anyone can access that computer remotely to take the credential or to 

make an attack on that system. To exploit a system using intrusion does not need 

execution of manual attack by a person. It can be done by automated engineered 

software. A well-known example of this attack is Slammer worm. It was mainly a 

Denial of Service (DoS) attack in 2003 performed in Microsoft’s SQL Server [3]. This 

attack disabled the Microsoft database and overloaded its network. This work is 

capable to infect approximately 75,000 computer systems within 10 minutes. Not only 

that, but it also can cancel airline flights, interference with elections, and ATM failures 

[3]. 

 

Professional companies and government organizations suffer more than a private 

person during cyber attacks. There are many examples of cyber attack. In 2009, using 

malware, the intruder was capable of shutting down an entire power grid of USA [4]. 

Later year, the GhostNet was discovered located in china, and it infiltrated to almost 

1000 organizational computers including foreign ministries and embassies. Another 

government related attack was reported in 2008, when Russia launched a cyber attack 

against Georgia during war [5]. Due to the cyber attack to the government agencies, 

President Barack Obama formed a national cyber security body in the USA in May 

2009 [6], followed by the UK [7]. 

 

There are several mechanisms that can be adopted to increase the security in computer 

systems. We can consider three levels protection: 

● Attack prevention: Firewalls, usernames and passwords, and user rights. 

● Attack avoidance: Encryption. 

● Attack detection: Intrusion detection systems. 

 

Despite adoption of different mechanisms, such as cryptography and protocols to make 

the computer network secure, it is not possible to prevent all intrusion. Firewalls can 

block and filter certain types of data used on a host or a network of computer. It cannot 
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handle the misuse within a network. Thus, IDS does not replace other mechanism, but 

complement them when malicious behavior occurs. Before 1990, the IDS was operated 

by system administrator manually, but now automated IDS software system is 

available. 

 

A wide range of Artificial Intelligence (AI) techniques have been adopted in IDSs, as 

reviewed in section 1.4. Initially, Rule Based Systems (RBSs) were the first to be 

employed successfully, but the drawback of RBSs is that they are inflexible (due to the 

rigid rules), and, thus, cannot detect new intrusions, or variations of known intrusions 

[8] [9]. 

 

Another area of AI, machine learning / data mining, such as base algorithms, Ensemble 

learning and deep learning with techniques of anomaly detection offer some desired 

flexibility. It can detect intrusion automatically by analyzing the behavior of user or 

network traffic. A benefit of this technique is that it can detect unknown or any new 

types of intrusion. 

 
Recent research takes advantage of hybridization techniques to improve the detection 
rates of machine learning classifiers. Sabhnani et al. [10] examines 9 Machine Learning 
(ML) algorithms on a commonly used KDD-Cup dataset. The NSL-KDD (updated 
version of KDD Cup ’99) data set has been widely used to evaluate intrusion detection 
prototypes in the last decade. 

 

In the literature, all studies indicate that there is a significant problem in detecting two 

particular classes of intrusion: User to Root (U2R) and Remote to Local (R2L). 

Imbalance classes is a problem in many real life application, and has been considered 

in medical diagnosis [11-13], credit scoring [14], customer churn [15], [16], natural 

language processing [17], lexical acquisition [18] and text recognition [19]. The general 

problem is that the minor class (es) are not classified well when there is a significant 

imbalance among the classes. Artificial Neural Networks (ANNs) and Decision Trees 

(DTs) have been popularly applied to intrusion detection, but both have been shown to 

be biased towards the major class(es) [20], [21]. This corresponds with the observations 

in the literature on intrusion detection, in which ANNs have been reported to be unable 
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to detect the minor class U2R [22] [23]. Furthermore, an alternative approach to train 

Ensemble Machine Learning (EML) is proposed to better learn from imbalanced data. 

 

Most of the network-based intrusion detection research is going on base level machine 

learning (for example SVM, KNN, Logistic Regression, etc.) and deep learning (such 

as CNN, DBN, LSTM, etc.). There is very less work using Ensemble machine learning 

in this field. In this research our main focus in on ensemble machine learning which 

is one of the most powerful classifiers in the artificial intelligence domain. 

 

This thesis presents a new set of solutions on ensemble classifier (classifier 

ensembles). Furthermore, the approach taken here shows a novel perspective on the 

analysis of the selection process for classifier ensembles and on the detection rate in 

the network intrusion detection systems using ensemble machine learning classifier. 

The Ensemble Machine Learning successfully learns from imbalanced data, which 

demonstrates that these classifiers are capable of detecting the minor classes with more 

detection rate. Another part of our research work is proposing a range of solutions with 

different Ensemble machine learning classifiers. Furthermore, the approach taken here 

shows a novel perspective on the analysis of the selection process for ensemble 

classifier. 

1.3 Research Objective 

Motivated by the present state of machine learning based network intrusion detection 

system, the objective of this thesis work is to develop a new design of Ensemble 

Machine Learning for better detection of malware in the network traffic. To fulfill this 

objective, the following aims have been considered: 

 

1. To identify an order of importance of features for detecting malware by 

packet header inspection found within network traffic.  

2. To design an efficient classifier algorithm for identifying malware in target 

networks based on their features.  

3. To compare the algorithm with existing works in the literature. 



5 

 

1.4 Literature Review  

Anderson, in 1980, first introduced anomaly-based intrusion detection methodology 

to detect abnormal activity [24]. After that, lots of researchers use machine learning to 

detect intrusion and make some improvements in this field. In [25], Kuang et al. 

proposed support vector machine (SVM) model combining with kernel trick principal 

with genetic algorithm (GA). K-nearest neighbor (KNN) was proposed to detect 

intrusion in a wireless sensor network in 2014 [26]. ANN was applied on NSL-KDD, 

where the detection rate was slightly higher in the classification of five classes [27]. A 

Random Forest (RF) model which is mainly an ensemble classifier was presented in 

[28]. Comparing the performance of Naive Bayes (NB) and a Decision Tree (DT), an 

empirical investigation was conducted on the KDD Cup ’99 dataset in [29]. The DT 

obtains a higher accuracy (92.28% compared with 91.47%), but NB obtains better 

detection rates on the three minor classes, namely Probing, U2R and R2L intrusions. 

Most significantly, the DT detects merely 0.52% R2L intrusions whilst NB detects 

7.11%. Similar observations are made by [30], as they compare NB with an ANN. 

ANNs and DTs are biased towards the major class(es) [20] [21], and, therefore, are 

prone to perform worse on the minor class(es). Therefore, this can be seen as a benefit 

of the NB, provided that the FPR does not become too high. 

 

NB has also been found to be more robust than some other machine learning 

techniques. The performance of two probabilistic techniques, NB and a Gaussian 

classifier, and two predictive techniques, a DT and Random Forest (RF, an ensemble 

of DTs) was compared in [31]. They analyze the performance of the techniques on 

three different training sets of the 10% KDD Cup ’99 data set (all tested on the original 

test set). Each training set consists of 90,000 instances, but with different proportions 

of normal and intrusive data. For each set, 10 randomly created versions were selected 

to examine the sensitivity of the techniques. In the best cases, NB and the Gaussian 

classifier performed significantly better on the minor classes, U2R and R2L, but NB 

performed worst on DoS. However, the DT and RF were very sensitive to the training 

data selected, and the mean performance was lower than the probabilistic classifiers. 
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The performance of NB with an Adaptive Bayesian Network (ABN) was compared in 

[32]. They use a different subset of the KDD Cup ’99 data set than [29], which led to 

significantly different results. Hence, direct comparisons are not made across these 

studies. However, the behavior of the algorithms is similar, i.e., NB obtains higher 

detection rates on the minor classes. The greatest difference is clear from the detection 

of U2R and R2L intrusions. Due to the low proportion of instances of these two classes, 

the ABN does obtain the highest accuracy by correctly classifying more Normal and 

DoS instances, which are the major classes. 

 

The findings of [33] suggests that NB with Kernel Estimation (NBKE) is 

advantageous. They compare the performance of NB with and without kernel 

estimation on data gathered at Wuhan University in July 2008, with a focus on 

detecting flooding attacks and port scans. NBKE obtains 98.80% accuracy compared 

with 94.40% for the basic NB algorithm. Furthermore, the authors propose using an 

additional feature, a Hurst exponential, which is a measure of the traffic rate and port 

dispersion (how many ports were used in a specific time window). Experiments on 

detecting UDP flooding gave a 6% higher accuracy with Hurst. 

 

In [29] and [30], the authors motivate potential hybridizations of techniques. For 

example, Benferhat et al. similarly to [29], also observe that NB is better at detecting 

some intrusions than a DT. They emphasize on the above issue, which lead them to 

propose a hybrid system of anomaly detection and misuse detection. 

 

Application of deep learning especially Deep Belies Network (DBN) was used for 

analysing NSL-KDD dataset [34]. In [35], Kim et al. used short term memory (LSTM) 

architecture to RNN, and LSTM-RNN IDS provides better accuracy with higher FAR. 

They used partial data from the full dataset and they also used the training set as a test 

set. In [36], Abolhasanzadeh et al. Proposed several methodologies using 

dimensionality reduction techniques on NSL-KDD. In [37], Fiore et al. presented a 

new technique of Discriminative Restricted Boltzmann Machine (DBM) with well 

classification ability. In [38], Ding et al. introduced CNN for intrusion detection and 

compared with different ML classifiers. 
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In 2018, Mirza et al. [39] implements ensemble classifier combining neural networks, 

decision trees and logistic regression. He used the KDD Cup 99 data set to measure 

the overall accuracy by combining the different types of attacks. Therefore he works 

with binary classification: normal traffic and attack traffic. Finally, he measures only 

three types of accuracy namely accuracy of attack traffic detection, accuracy of normal 

traffic detection and the overall accuracy. 

 

In 2019, Hu et al. [40] proposed an ensemble technique named Dynamic Deep Forest 

which is a tree-based approach. In his work, there are two parts. One is Dynamic Multi-

Grained Traversing where he does some feature selection work in the preprocessing 

stage using entropy. In this part he works with different set of features. Another part 

of his work is the Cascade Forest. In this part, he applied tree-based ensemble 

classifiers using cascades layered architecture to measure precision, recall and 

accuracy.    In their research work, they evaluate their model using KDD’99 (KDD 

CUP 99) dataset. 

 

Sharma et al. [41], in 2019, proposed an ensemble approach using ExtraTree feature 

selection mechanism. In their research work, at first they focused on present research 

scenario of intrusion detection using imbalance dataset and they mention that due to 

the multi-class detection using imbalance dataset, the previous work accuracy was not 

satisfactory. They propose three layers architecture of their work. In the first layer, 

they detect every attack individually and in the second layer they combine the previous 

layer using softmax to detect intrusion in the network. In their research work, they 

measure accuracy using the KDDcup99 and UNSW datasets. 

 

In 2019, GAO et al. [111], proposed ensemble approach using NSL-KDD dataset. 

Among different types of classifiers, they measure detection rate when used the 

Random Forest ensemble classifier; and also they work with voting ensemble 

technique. When they work with voting ensemble classifier, they measure accuracy of 

their model for detecting intrusion. In their work, they set multiple decision tree and 



8 

 

construct MultiTree classifier, and they also used different base classifiers to construct 

the ensemble classifiers. 

 

In our research work, we propose ensemble machine learning approach using NSL-

KDD dataset to measure the detection rate for detecting intrusion. In our work, we will 

compare our output with most recent research work where detection rate will be 

measured using ensemble machine learning approach and when they use the NSL-

KDD dataset. In most recent, Hu et al. [40] and Sharma et al. [41] used the KDD CUP 

99 dataset; in contrast GAO et al. [111] used RF ensemble classifier to measure the 

detection rate and used NSL-KDD dataset. However, all those methods have some 

limitations on performance, especially in detection rate. 

1.5 Contribution 

There are three empirical parts to this thesis. This research has made contributions to 

both the intrusion detection and machine learning domains. Although the focus of this 

thesis is on the application of machine learning to intrusion detection, several 

contributions have been made to the general machine learning domain. 

 

● Learning from imbalanced data has been identified as one of the reasons for 

poor detection of certain classes of intrusion. The empirical research conducted 

in this thesis demonstrates how commonly adopted techniques such as Base 

classifier and deep learning perform poorly compared to our proposed 

classifier. We provide some designs of ensemble classifiers which perform 

with the new combination of base level classifiers. We also propose a new 

hybrid ensemble classifier which is mainly combination of two ensemble 

classifier.  

 

● All the features on a dataset are not equally important for training and testing 

a classifier. We provide a new set of features according to their importance to 

improve the detection rate of the ensemble classifiers. 
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● The combination of base classifiers had not been considered previously in the 

literature. Addressing this is an important contribution to intrusion detection 

research. Furthermore, a novel approach to evolving ensembles classifier has 

been proposed, which successfully learns from imbalanced data and offers the 

user a wide range of solutions that exhibit different classification. From this, 

the user can select the solution that gives the best performance for the particular 

application. 

1.6 Organization of the Thesis 

The remainder of this thesis is organized as follows. Chapter 2 provides an introduction 

to the domain of intrusion detection, which is followed by different types of attacks, 

detection system and existing product in the market. Different types of machine 

learning classifier particularly ensemble machine learning classifier is discussed in 

chapter 3. Chapter 3 also considers classifier combination, which is widely employed 

in recent literature to improve upon the performance of single classifiers. Chapter 4 

discusses the dataset used by this research work and the methodology of this research 

work is also discussed in this chapter. Chapter 5 presents the experimental results of 

the algorithms. The performance of the algorithm was evaluated on independent 

training and testing dataset and was compared with existing classifiers. Chapter 6 

concludes the thesis and offers suggestions for further work. 

1.7 Summary 
This thesis considers the application of machine learning to network based intrusion 

detection. Section 1.2 outlines the background and motivation for the work presented 

in this thesis. The research objective is discussed in Section 1.3. The literature is 

discussed in Section 1.4, followed by the contribution of this thesis work in section 

1.5. The structure of the remainder of this thesis is discussed in Section 1.6. 
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CHAPTER 2 
Intrusion Detection 

2.1 Introduction 

An overview of potential intrusions to computers and computer networks is presented 

in this chapter. A taxonomy of intrusion detection systems is provided here. As an 

emerging area of research, intrusion detection in networks is discussed in this chapter. 

2.2 Intrusions Detection 

The high demand for usage of internet is growing rapidly and so is an increase of 

threats on the network. A report by Symantec from 2016 implies that they have 

discovered more than 430 million new malwares just in 2015, an increase of 36 percent 

more than the year before [43]. 

 

Attacks can be varied in a long range such as Brute Force Attack, Heartbleed Attack, 

DoS Attack, DDoS Attack, Web Attack etc. The bandwidth of the network is 

increasing rapidly as the number of users of the internet are increasing. There is a huge 

variation of standard speed today which is from 1Gbps to 10Gbps for an average data 

center. The Download speed and Upload speed is different for big tech. companies like 

Google, Facebook, etc., or big corporate companies, which is from 40 Gbps to 

100Gbps [44] [45]. 

 

Network-based Intrusion Detection System (NIDS), is a security tool which protects 

from an inside attack, outside attack and unauthorized access into the network. Which 

is designed by software and/or hardware. The most familiar concept is firewall which 

is built to protect the entire network from unauthorized access by IP address and port 

number and managing these activities by NIDS. It has extensive and wide range 

working applications which includes identifying the number of intrusion attempts on 

the network; for example, denial of service attack, hacking, etc. 
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NIDS is generally placed outside the firewall where the entire external traffic can be 

monitored by sensing and detecting the anomaly activities. When in a complex 

network, for example, a device connected to 1000 nodes, due to the complexity of 

network, it is the best decision to opt for a NIDS to keep track of changing network 

environment. Which brings to a conclusion as only one IDS in any network can 

compromise of confidential or sensitive data.  

 

An overwhelmed NIDS can easily become a bottleneck in a network. During this case, 

incoming and outgoing packets may experience long delays due to the inspection of 

last packets or in the worst case, NIDS can drop the packet.  An attacker can take this 

advantage easily. For example, any intrusion cannot be detected if the dropped packet 

has some properties for intrusion which results an incomplete packet matching. 

 

Furthermore, to protect the confidentiality of any network for example, an organization 

network structure from an attack and make sure the privacy of all users, network 

administrator is protected. There are large varieties of machine learning algorithms 

that have been widely used for detecting anomaly. For example, Artificial Neural 

Network (ANN), Support Vector Machine (SVM), Random Forest, Self Organized, 

Naive-Bayesian, and Deep learning. There has been a subsequent development of 

Network Intrusion Detection System as classifiers to differentiate any anomaly from 

normal traffic.  

 

Our approach proposes ensemble machine learning based approach which can provide 

a new insight to overcome the difficulties and challenges of developing a reliable and 

efficient Network Intrusion Detection System. We have used the latest NSL-KDD 

dataset of Canadian Institute for Cybersecurity (CIC) [46]. We also provide a 

comparison to other techniques. 

 

In general terms, intrusive behavior can be considered as any behavior that deviates 

from the normal and expected use of the system. There are many types of intrusion, 

which makes it difficult to give a single definition of the term. Asaka et al. [47] [48] 

offer the following breakdown of a successful intrusion: 
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Surveillance/probing stage: The intruder attempts to gather information about potential 

target computers by scanning for vulnerabilities in software and configurations that 

can be exploited. This includes password cracking. 

 

▪ Activity (exploitation) stage: Once weaknesses have been identified in the 

previous stage, they can be exploited to obtain administrator rights to the 

selected host(s). This will give the intruder free access to violate the system. 

This stage may also include Denial of Service (DoS) attacks, as detailed further 

below. 

 

▪ Mark stage: After the exploitation stage, the attacker may be free to steal 

information from the system, destroy data (including logs that may reveal that 

the attack took place), plant a virus or spyware software, or use the host as a 

medium for conducting further attacks. After which, this marks the stage where 

the attacker has achieved his or her goal(s) of the attack [47]. 

 

▪ Masquerading stage: In this final stage, the intruder will attempt to remove 

traces of the attack by, for example, deleting log entries that reveal the 

intrusion.  

 

The two first stages are further refined into an attack taxonomy that is widely adopted 

in the literature to classify attacks into four categories: Probing, Denial of Service 

(DoS), User to Root (U2R), Remote to Local (R2L) [49] [50]. 

2.3 Intrusion Detection System 

The specific architectures of IDSs are not discussed here, as these are diverse and 

continue to evolve with time. In general terms, Verwoerd et al. [51] have identified the 

following common building blocks of an IDS: 

 

● Sensor probes: gather data from the system under inspection. 
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● Monitor: receives events from a number of sensors and forwards suspicious 

content to a ‘resolver’. 

● Resolver: determines a suitable response to suspicious content. 

● Controller: provides administrative functions. 

2.4 Types of IDS 

An IDS may be described according to different characteristics, [48]:  

 

● Data Source: host based, or network based. 

● Structure: centralized or distributed 

● Detection method: signature or anomaly detection. 

● Reaction: passive or active. 

▪ Usage frequency: real-time or off-line. 

 

There are also some other types of IDS which will be described below one by one. 

 

For detecting abnormality of a network IDS tool is used. It monitors the behavior or 

pattern of the network or system and notifies the administrator regarding any kind of 

abnormal activities; Figure 2.1 reflects the total classification of an IDS. 

 

Firstly, IDS can be classified on basis of input data source. NIDS monitors the pattern 

or behavior of whole network whereas HIDS (Host-Based IDS) mainly monitors the 

activities of a system or network for instance: incoming TCP connection attempts, 

traffic flow of the network, login information and CPU, Memory, RAM usage, etc. 

 

In general, there are only two types of IDS: One is Signature based and another is 

Anomaly based. 
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Figure 2.1: Basic types of IDS 

There is another perspective of classifying IDS system which is based on reaction. In 

that way, there are two types of IDS system one is active, and another is passive. Active 
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IDS is able to take immediate action on any attack and inform the administrator. On 

the other hand, passive IDS stores the log details of intrusion and after that notify to 

the administrator. 

 

Lastly, based on usage of frequency, we can classify an IDS system as offline IDS and 

Online IDS. Offline IDS is used for analyzing pre-logged data to detect any attack 

whereas an Online IDS use continues runtime new data to detect an attack. 

 

Also considered here is ‘detection approach’, which describes, at a lower level, the 

strategies used to detect intrusions, and this is related to ‘detection method’. 

2.4.1 Detection Method  

The intrusion may be detected by many different techniques like signature pattern 

matching, anomaly detection, and many other techniques. The main two detection 

methods, referred to as signature detection and anomaly detection [52], [53], [54]. 

These terms are also known as knowledge based and behavior based intrusion 

detection [55], [56]. The former attempts to encode knowledge of known intrusions 

(misuses), typically as rules, and use this to screen events (also known as a misuse 

based IDS). The latter attempts to ‘learn’ the features of event patterns that constitute 

normal behavior, and, by observing patterns that deviate from established norms, 

detect when an intrusion has occurred [57]. Some IDSs offer both capabilities, 

typically via a hybridization of techniques [58]. However, a system may also be 

modeled according to both normal and intrusive data, which has become a common 

approach in recent research adopting machine learning techniques [59-63]. 

 

However, the performance of Signature based NIDS starts to decrease and becomes 

challenging whenever there is any unknown attack or when there is an anomaly traffic 

in the network. The signatures are pre-installed into the IDS system which has to be 

matched in order to detect any attack. For the case of Anomaly based NIDS 

(ADNIDS), it is possible to identify any unknown attack where this idea is widely 

acceptable among the research community. 
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However, rule/signature/misuse based approach cannot detect attacks for which it has 

not been programmed, and, thus, it is prone to issue false negatives if the system is not 

kept up to date with the latest intrusions [52] [64].  One of the benefits of anomaly 

detection is the ability to detect new attacks, since the system is modeled according to 

normal behavior.  

 

Anomaly detection is an intrusion detection technique in which normal network 

behavior is captured and any abnormality in the network or malicious activity is 

detected. This abnormality in the network can be a sudden increase in network traffic 

rate (number of IP packets per second). 

 

Signature pattern matching is an intrusion detection method where the network data is 

compared and analyzed with the known attack techniques that are saved in a database. 

For example, an Intrusion Detection System which monitors web servers might be 

programmed to have an attention. When an intrusion is detected and it alerts the system 

administrator about the details of the intrusion,  

The uses cases for IDS as below: 

▪ User: User sends a request to server and server responds by providing the 

requested service. 

▪ Network: In a network, IP packets are carried from the source to destination. 

▪ IDS: An Intrusion Detection System catches the packets from the network, 

analyses the packets. 

▪ System Administrator:  System Administrator is alerted by the IDS of any 

suspicious activity or whenever an intrusion is detected. 

 

Uses cases description for IDS as below: 

1) IP Packet: A Network gives the IP Packets to Intrusion Detection System which 

further processes these packets. 

2) Anomaly Detection: If an Intrusion Detection System detects any abnormality 

in the network traffic such as changes in traffic volume, bandwidth, traffic 

pattern, etc. Then, it triggers the alert system. 
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3) Signature recognition: An Intrusion Detection System monitors and examines 

the traffic looking for well-known attack patterns or unknown attack, which 

are saved in the database and if a match is found, it triggers the alert system. 

4) Alert System: It alerts the system administrator, whenever triggered by 

anomaly detection or signature recognition. 

 

In the Pattern or Signature detection type IDS, it has all information about the attack 

to detect them [65]. On the other hand, anomaly detection type IDS has all log of 

normal activity of network traffic and it detects any deviation from normal activity. 

When it finds any abnormal activity, it treats it as attack [66]. Another type of IDS is 

frequency detection technique which has a fixed threshold and checks whether 

anything crosses the threshold. 

2.5 Physical Network 

There are several of methods in which the security of a system can be compromised. 

While physically compromising a computer is an important security threat, we will 

focus on the problem of detecting intrusions across the network. All data come to a 

network as packet; our aim is to analyses all parts of that data to determine whether 

any attack is in progress or not. Intrusion detection often considered attacks from 

outside network or external network and the term misuse is then assigned to describe 

attacks from the internal network [67]. In order to understand what type of data is 

useful for detecting intrusions, it is very important to acknowledge the basic route that 

both appropriate and malicious users may traverse to use a specific system. There are 

three fundamental methods of accessing to a computer which are physical access to 

the host computer, using physical network, and a wireless network. This thesis will 

focus on using a physical network, which is described below. 

 

In physical network, data is transmitting in the form of packets through any physical 

media unlike wireless communication. A unit of data is called packet and packet routed 

from host to destination on internet or any kind of packet-switched network. The 

packets carry the data in the protocols. Transmission Control Protocol/Internet 

Protocol (TCP/IP). Each packet contains part of the body of the message. A normal 
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packet contains 1000 to 1400 bytes. A packet consists of three parts which are header, 

payload, and trailer [68]. The header is the beginning of the data and consists of 

information about the destination. The trailer is the end of the packet and payload is 

the actual information. Internet protocol (IP) is used to connect users on the Internet 

through an IP address. 

2.5.1 Packet Header Information 

Figure 2.2 shows the construction of a network packet and Figure 2.3 shows the header 
information of IP and TCP which is situated into the network packet. 

 

Figure 2.2: Network packet 
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Figure 2.3: Packet header information 

2.6 Network Attacks 

The attack types are very huge according to number and variety. For example, any 

intruder may get or guess the user’s password or may also monitor the traffic and after 

analyzing the traffic pattern, they may launch an attack. Sometimes intruder may set 

up an unauthorized program into the system that they managed access to that network. 

 

Furthermore, attacker also steals information and tries to make denial of service which 

make the system to become zombie. Various types of attack will be explained in this 

section.  
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2.6.1 Buffer Overflow 

The attack which exploits code that writing data to a buffer, swamp the boundary of 

the buffers also overwrites the memory location. This may cause confidentiality of 

sensitive data of an organization. For instance, the pointer of the instruction on stack 

may be overwritten in a way that the intruder wishes to execute. 

2.6.2 Teardrop 

This is one type of denial of service attack. In this attack, attacker exploits incorrect 

handling of overlapping packets. It is considered as a DoS attack because it crashes 

any vulnerable machine. There are some reports of being attacked by this attack on 

older windows or Linux operating system. 

2.6.3 Ping of Death 

Ping of Death attack is also one kind of Denial of service attack that uses unformatted 

or improperly formatted ping. When the octets of the ping is greater than 65535, this 

attack may happen. Linux, Windows OS are vulnerable for this attack. 

 
Attack varies across different OS. We will discuss here for Linux and Windows 

operating system. The cause of variation of attacks depends of several factors. Every 

operating system handling their incoming packets in their way with their default rules 

in the network. 

 

All packets do not maintain order while arriving. To deal with it and avoid 

miscommunication, packets from the same connection has given a number by the 

sender and rearrange by the receiving computer after arriving according to the rule of 

OS. The main problem is that, different receivers arrange their incoming packet 

differently. For instance, in the overlapping packet, if two arriving packet has the same 

SEQ number, they will face packet overlapping. In this situation, operating system 

must take decision on how to handle packets that are overlapped. The default rule for 

Linux is consider new packet where the default rule for windows is consider old 

packets [103]. 
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Figure 2.4: Overlapping Packet [42] 

In Figure 2.4, in number 4, slot there are two packets arrived at a time and one packet 

is denied. Here, it shows Linux and Windows OS systems structure. 

2.7 Types of Attack 

The number of attacks has a large variety but most of them will fit into four main 

categories [69]. 

1. Probe 

2. Denial of Service (DoS) 

3. User to Root 

4. Remote to User 

2.7.1 Probe 

Learning specific setup information of a computer or network is known as probe. We 

cannot say this is exactly an attack but with this information any attacker can launch 

an attack. Probe could be a sign of future attack. Many attacks mostly start from probe 

[70]. 

2.7.2 User to Root (U2R)  

These attacks exploit vulnerabilities in operating systems and software to obtain root 

(administrator) access to the system.  

2.7.3 Denial of Service (DoS) 

This attack overloads the resources by sending unimportant information in the system 

and prevents actual users from accessing in the system [71]. Commercial application 

has been affected mostly by this attack. For example, Sony play station network has 

been affected by DDoS [72]. The general purpose of DoS attacks is to interrupt some 
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service on a host to prevent it from dealing with certain requests. This may be a step 

in a multi-stage attack. Three types of DoS attacks are (1) “abuse legitimate features”, 

(2) “create malformed packets that confuse the TCP/IP stack of the machine that is 

trying to reconstruct the packet”, or (3) “take advantage of bugs in a particular network 

daemon” [71]. 

2.7.4 Remote to User (R2U) 

In this category, when an attacker wants to have user permission while he doesn’t have 

any permission to access that network. This type of attack then forwards to user to root 

attack. There are some similarities between this class of intrusion and U2R, as similar 

attacks may be carried out. However, in this case, the intruder does not have an account 

on the host and attempts to obtain local access across a network connection. To achieve 

this, the intruder can execute buffer overflow attacks, exploit misconfigurations in 

security policies or engage in social engineering (i.e., obtaining data by tricking a 

human operator, rather than targeting software flaws [49]).  

The four classes above may be used in IDS for classifying intrusions, rather than only 

differentiating between ‘normal’ and ‘intrusion’. 

2.8 Zero Day Attack 

One of our research questions consists of Zero-day attack. It can be any attack or any 

type of packets. From the earlier section, the attack which is not included in the first 

four categories is treated as the zero-day attack. This usually occurs when the time 

between the vulnerability found first and then exploited and the time of the application 

developers releases the fundamental solution to encounter the exploitation. This 

timeline is usually termed as the vulnerability window. These attacks can assume 

malware forms such as Trojan horses or worms and they are not always viruses. 

Updates of latest anti-malware software are often recommended, though it can only 

provide a minimum security against a zero day attack. The Network Based IDS(NIDS) 

uses raw packets as the data source and after analyzing the incoming packets it makes 

a pattern to decide an attack. 
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2.9 Open Source Intrusion Detection Systems 

2.9.1 Snort 

Snort is an open source software for intrusion detection and prevention system which 

is created by Martin Roesch in 1998. At this time, it is deployed by the sourcefire snort 

team [73]. This snort is single threaded which means only one job can be executed in 

one session without interruption. Snort uses only signature based intrusion detection 

from the users and the community maintains the rules like Snort VRT. The ruleset also 

called database [73]. 

 

First step of snort functioning is that packet acquisition. In this step, all network traffic 

is captured every packet is identified by structure. Snort doesn’t have built-in facility, 

so it uses libpcap library. When data is collected, it is forwarded to next step which is 

preprocessor. 

 

One type pre-processor adds another layer for complex analysis when signature based 

snort cannot express the rule to detect intrusion. Other type of preprocessor accepts 

modular plugin to view any suspicious activity into the network. 

Detection Engine detects the signature and its validity according to the rule. Detection 

engine checks the header and payload of the arriving data to check the pattern matching 

and give a decision to the output. Output will set detection alert which is informed by 

the detection engine and show the result. 

2.9.2 Rule 

Snort rule is available in the databases from snort research community (VRT) and can 

be downloaded. They created and updated new rules for new attack on network for 

snort users. There may be a possibility to create any personalize signature rules for any 

desired packets. 

 

Snort Sample Rule: 

“alert tcp any any -> any 80 (content "|00 00 00 00|"; depth 10; msg "Bad Bytes" 

sid:111000111; rev:2;)” 
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In details of this rule, if the packet uses TCP protocol from any source address and ip 

address to any destination address and destination port number 80 with only four null 

bytes in the beginning, then alert will be triggered out. It also marked as "Bad Bytes" 

and with signature identification of 111000111 with revision 2. 

2.9.3 Bro 

Bro IDS is a passive open source analyzer. It monitors all incoming traffic looking for 

any suspicious activity. Normally, Bro supports a wide range of traffic analysis even 

it analyses outside of security domain including troubleshooting and performance 

measurement [74]. 

2.10 Commercial Intrusion Detection Systems 

2.10.1 NetProwler 

NetProwler is a network-based intrusion detection system by Symantec. This is a 

Network based IDS designed by Symantac. It uses distributed architecture and it 

consists of three parts 

1.Agent 

2.Manager 

3.Console  

2.10.2 NetRanger 

This is designed by CISCO and also known as CISCO Netranger. It comes with all 

suite of software and hardware installation information and can easily set up into the 

network. Its maintenance and upgradation has been done by CISCO [75]. 

2.10.3 CFEngine 2  

In 1998, Burgess wrote "Computer Immunology", a paper at the USENIX/LISA98 

conference [5]. It laid out a manifesto for creating self-healing systems, reiterated a 

few years later by IBM in their form of Autonomic Computing. This started a research 

effort which led to a major re-write, CFEngine 2, which added features for machine 

learning, anomaly detection and secure communications. 
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2.10.4 Hogzilla   

Hogzilla is an open source Intrusion Detection System (IDS) supported by Snort, 

SFlows, GrayLog, Apache Spark, HBase and libnDPI, which provides Network 

Anomaly Detection. Hogzilla also gives visibility of the network. 

 

2.11 Summary 

In this chapter, we have discussed regarding Intrusion Detection System (IDS) and 

also its different types. Packed header information discussed in section 2.5.2. In section 

2.7, we discussed regarding various types of network attacks. We present a brief 

overview regarding open source IDS in section 2.9 whereas the commercial IDS 

discussed in section 2.10. 
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Chapter 3 
Classifiers 

3.1 Introduction 

Machine learning, nowadays, is popular in various fields of computer science [76-79]. 

Because of new computing technologies, machine learning today is not like machine 

learning of the past. It was born from pattern recognition and the theory that computers 

can learn without being programmed to perform specific tasks; researchers interested 

in artificial intelligence wanted to see if computers could learn from data. Ensemble 

machine learning is one of the effective types in this field which can combine the base 

classifiers. 

3.2 Machine Learning 

Machine learning needs to provide a huge amount of data for training the model where 

to predict the future aspects. When the model learns from the data perfectly, there is a 

high probability to predict the future correctly. Machine learning techniques are 

normally used when any problem cannot be solved by any mathematical calculation 

or writing any script alone. There are two categories of machine learning problems 

that can be addressed: one is supervised learning and other is unsupervised learning. 

3.2.1 Applications of Machine Learning 

While many machine learning algorithms have been around for a long time, the ability 

to automatically apply complex mathematical calculations to big data – over and over, 

faster and faster – is a recent development: [76-80]. Here are a few application areas 

of machine learning people are familiar with: 

1. Data Security - predict malware  

2. Personal Security - spot things human screeners might miss  

3. Financial Trading - predict what the stock markets will do  

4. Healthcare - spot cancers sooner than they are officially diagnosed 

5. Marketing Personalization - lead consumers reliably towards a sale  
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6. Fraud Detection - PayPal is using machine learning to fight money 

laundering 

All of these things mean that it is possible to quickly and automatically produce models 

that can analyze bigger, more complex data and deliver faster, more accurate results, 

even on a very large scale. And by building precise models, an organization has a better 

chance of identifying profitable opportunities or avoiding unknown risks. Most 

industries working with large amounts of data have recognized the value of machine 

learning technology. By gleaning insights from this data, often in real time, 

organizations are able to work more efficiently or gain an advantage over competitors. 

For example: Financial services, Health care, Oil and gas, Government, Marketing and 

sales, Transportation, etc. 

Some of the fields who use machine learning applications are shown in the Figure 3.1 

below. 

 

 
  

Figure 3.1: Application areas of machine learning (Source: [80]) 
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3.3 Types of Machine Learning 

Some popular types of machine learning algorithms are: 

3.3.1 Supervised Learning  

Supervised machine learning algorithms [81-83] are trained using labeled examples, 

such as an input where the desired output is known (Figure 3.2). For example, a piece 

of equipment could have data points labeled either “F” (failed) or “R” (runs). The 

learning algorithm receives a set of inputs along with the corresponding correct 

outputs, and the algorithm learns by comparing its actual output with correct outputs 

to find errors. It then modifies the model accordingly. Through methods like 

classification, regression, prediction and gradient boosting, supervised learning uses 

patterns to predict the values of the label on additional unlabeled data. 

 

 
Figure 3.2: Block diagram of supervised machine learning algorithm (Source: [84]) 

Supervised learning is commonly used in applications where historical data predicts 

likely future events. For example, it can anticipate when credit card transactions are 

likely to be fraudulent or which insurance customer is likely to file a claim. In 

supervised learning, predefined dataset has been provided before training the 

algorithms. Firstly, these datasets are labeled and based on the labels or tags, the 

algorithms learn. After learning from the dataset, model can predict any future 

expectations [85]. 
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3.3.2 Unsupervised Learning  

Unsupervised machine learning [81-83] is used against data that has no historical 

labels (Figure 3.3). The system is not told the "right answer." The algorithm must 

figure out what is being shown. The goal is to explore the data and find some structure 

within. Unsupervised learning works well on transactional data. For example, it can 

identify segments of customers with similar attributes who can then be treated 

similarly in marketing campaigns. Or, it can find the main attributes that separate 

customer segments from each other.  

 

 
Figure 3.3: Block diagram of unsupervised learning algorithm (Source: [81]) 

Popular techniques of unsupervised learning include self-organizing maps, nearest-

neighbor mapping, k-means clustering and singular value decomposition. These 

algorithms are also used to segment text topics, recommend items and identify data 

outliers. 

In this thesis, we propose a supervised NIDS with ensemble learning algorithm, which 

is compatible with the known attack as well as an unknown attack. Which we call zero-

day attack. Because based on the unknown attack in the NSL-KDD test dataset, which 

doesn’t need any experience, sees every attack, i.e., known attack or unknown attack 

as a new attack. Our proposed model has the capability to detect various types of new 

attacks, for example, DoS, Heartbleed, port scanning or any other types of attack which 
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may cause a huge amount of network traffic. Within that time, pattern or behavior of 

network traffic has been analyzed by the intruder which may cause an attack. Based 

on previous research on this, NIDS needs to improve the detection rate particularly 

R2L and U2L attack. 

3.3.3 Semi Supervised Learning  

Semi supervised learning [81] [82] is used for the same applications as supervised 

learning. But it uses both labeled and unlabeled data for training (Figure 3.4). Typically 

it uses a small amount of labeled data with a large amount of unlabeled data (because 

unlabeled data is less expensive and takes less effort to acquire).This type of learning 

can be used with methods such as classification, regression and prediction.  

 

 
Figure 3.4:  Block diagram of semi-supervised learning algorithm (Source:[ 82]) 

Semi supervised learning is useful when the cost associated with labeling is too high 

to allow for a fully labeled training process. Early examples of this include identifying 

a person's face on a web cam. 
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3.3.4 Reinforcement Learning  

Reinforcement learning [81-83] is often used for robotics, gaming and navigation. 

With reinforcement learning, the algorithm discovers through trial and error which 

actions yield the greatest rewards (Figure 3.5). 

 

 
Figure 3.5: Block diagram of reinforcement learning algorithm (Source: [83]) 

This type of learning has three primary components: the agent (the learner or decision 

maker), the environment (everything the agent interacts with) and actions (what the 

agent can do). The objective is for the agent to choose actions that maximize the 

expected reward over a given amount of time. The agent will reach the goal much 

faster by following a good policy. So, the goal in reinforcement learning is to learn the 

best policy. 

3.4 Base Level Classifier 

In machine learning, there are different base classifier which can be used to work with 

ensemble machine learning. Some of the base classifiers are described below 

3.4.1 Support Vector Machine (SVM) 

Support Vector Machines [86] [87] are based on the concept of decision planes that 

define decision boundaries. A decision plane is one that separates between a set of 

objects having different class memberships. A schematic example is shown in Figure 

3.6. In this example, the objects belong either to class GREEN or RED. The separating 

line defines a boundary on the right side of which all objects are GREEN and to the 
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left of which all objects are RED. Any new object (white circle) falling to the right 

will be labeled/classified, as GREEN (or classified as RED if it falls to the left of the 

separating line). 

 

 
Figure 3.6: Linear decision plane in SVM (Source: [87]) 

Figure 3.7 is a classic example of a linear classifier, i.e., a classifier that separates a set 

of objects into their respective groups (GREEN and RED in this case) with a line. Most 

classification tasks, however, are not that simple, and often more complex structures 

are needed in order to make an optimal separation, i.e., correctly classify new objects 

(test cases) on the basis of the examples that are available (train cases). This situation 

is depicted in Figure 3.8. Compared to the previous schematic, it is clear from Figure 

3.8 that a full separation of the GREEN and RED objects would require a curve which 

is more complex than a line. Classification tasks based on drawing separating lines to 

distinguish between objects of different class memberships are known as hyperplane 

classifiers. Support Vector Machines are particularly suited to handle such tasks. 

 

 
Figure 3.7: Non-linear decision plane in SVM (Source: [87]) 

Figure 3.8 shows the basic idea behind Support Vector Machines. Here, the original 

objects (left side of the schematic) are mapped, i.e., rearranged, using a set of 
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mathematical functions, known as kernels. The process of rearranging the objects is 

known as mapping (transformation). Note that in this new setting, the mapped objects 

(right side of the schematic) is linearly separable and, thus, instead of constructing the 

complex curve (left schematic), all one need to do is to find an optimal line that can 

separate the GREEN and the RED objects. 

 

 
Figure 3.8: Mapping of data points from the input space to another feature space in SVM (Source: [87]) 

If the data is not linearly separable, then a kernel trick is used. Kernels are functions 

that quantify similarities between observations. Common types of kernels used to 

separate non-linear data are polynomial kernels, radial basis kernels, and linear kernels 

[88-90]. Simply, these kernels transform the data in order to pass a linear hyperplane 

and thus classify the data. So, the rule of thumb is to use linear SVMs (or logistic 

regression) for linear problems, and nonlinear kernels such as the Radial Basis 

Function kernel for non-linear problems. Extensions of support vector machines can 

be used to solve a variety of other problems, such as - multiple class SVMs using One-

Versus-One Classification or One-Versus-All Classification. The chosen kernel 

defines the function class one is working with. The squared exponential kernel (radial 

basis function kernel) defines a function space that is a lot larger than that of the linear 

kernel or the polynomial kernel. A linear kernel allows the users to use linear functions, 

which are really impoverished. As the order of the polynomial kernel increases, the 

size of the function class increases. An nth order polynomial kernel gives all analytic 

functions whose derivatives of order (n+1) are constant, and hence all derivatives of 

and above order (n+2) are zero. The RBF kernel gives access to all analytic functions 

(that is, all infinitely differentiable functions). So, sense the RBF kernel can be viewed 

as powerful as an infinite order polynomial kernel. Technically if users use squared 
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exponential kernel, then the method is nonparametric. And if the kernel is polynomial, 

the model is parametric. In a way, nonparametric model means that the complexity of 

the model is potentially infinite, its complexity can grow with the data. If the users 

give it more and more data, it will be able to represent more and more complex 

relationships. In contrast, a parametric model's size is fixed. So, after a certain point 

this model will be saturated, and giving it more and more data won't help. So 

asymptotically assuming users have unlimited data and very weak assumptions about 

the problem, a nonparametric method is always better.  

 
In the basic classification, SVM classifies the data into two categories. Given a training 

set of instances, labeled pairs {(x, y)}, where y is the label of instance x, SVM works 

by maximizing the margin to obtain the best performance in classification. More 

thorough descriptions can be found in [84], [91]. 

 

However, typical examples of kernels used in SVM, which have been successfully 

applied to a wide variety of applications, are linear, polynomials and radial basic 

functions. 

 

In this study, linear functions kernel has been adopted because we believe that it is a 

suitable choice for our problem. We also apply other kernels (RBF and Poly) to work 

with this issue. The RBF kernel nonlinearly maps samples into a higher-dimensional 

space, Furthermore, the linear kernel is a special case of RBF as [92] shows that the 

linear kernel with a penalty parameter C has the same performance as the RBF kernel 

with some parameters. In addition, the sigmoid kernel behaves like RBF for certain 

parameters [93]. Moreover, the number of hyperparameters influences the complexity 

of model selection. The polynomial kernel has more hyperparameters than the RBF 

kernel. Finally, the linear kernel has less numerical difficulties. 

 
The solution of the model parameters of SVM corresponds to a convex optimization 

problem. 

 
Thus, k(w,x) = wTx is a valid kernel function. (Known as the linear kernel). We can 

write down as g(x) = wTx + b 
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Polynomial Kernel Functions: The Polynomial kernel is defined as 

 

K(x,y) = (x.y+c)n 
 
Where n is the “order” of the kernel, and c is a constant that allows to trade off the 

influence of the higher order and lower order terms. 

 
Radial Basis Function (RBF): Also known as a Gaussian Kernel, Radial Basis 

Function (RBF) kernels are often used in Computer Vision. The RBF Kernel function 

has the form: 

   K(x,y) = exp {(-||x-y||2)/(2σ)2} 
 

The term ||x-y|| is the Euclidean distance from the set of points {y}. The σ (sigma) 

parameter acts as a smoothing parameter that determines the influence of each of the 

points, y. 

3.4.2 Logistic Regression 

Logistic regression is firstly developed by statistician D. R. Cox in 1958 as a statistical 

method, and after that it is used widely in many fields [94]. In the early 1980’s, it has 

become routinely available in statistical packages.   

 
Logistic regression deals with the relationship existing between a dependent variable 

and one or more independent variables. It provides a method for modeling a binary 

response variable which takes values 1 and 0. Logistic regression analysis extends the 

technique of multiple regression analysis to research situations in which the outcome 

variable is categorical. Situation involving categorical outcomes are quite common in 

practice. Logistic regression model has been applied in a number of contexts; which 

includes applications to adjust for bias, in comparing two groups in observational 

studies. Logistic regression analysis is part of a category of statistical model known as 

generalized linear models which consist of fitting a logistic regression model to an 

observed proportion in order to measure the relationship between the response variable 

and set of explanatory variables. 
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There are some cases where dependent variables can have more than two outcomes, 

are classified as multinomial logistic regression.  The logit function (sigmoid function) 

is calculated as 

 

 

 
Figure 3.9: logit function 

3.4.3 KNN 

K nearest neighbors (KNN) [95] [96] is a simple algorithm that stores all available 

cases and classifies new cases based on a similarity measure (e.g., distance functions). 

KNN is a non-parametric, lazy learning algorithm. Its purpose is to use a database in 

which the data points are separated into several classes to predict the classification of 

a new sample point. How closely out-of-sample features resemble the training set 

determines how accurately the algorithm classifies a given data point [95]. When KNN 

is used for classification - the output is a class membership (predicts a class — a 
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discrete value). An object is classified by a majority vote of its neighbors, with the 

object being assigned to the class most common among its k nearest neighbors. 

 
Suppose there is a dataset with n classified examples. Each classified example acts as 

a point in the feature space. A way to calculate the k-nearest neighbors for unclassified 

examples would be to find the k already classified examples that are closest to the 

unclassified data. Once the k neighbors have been identified, a majority class vote will 

take place among them to classify the new instances. 

 

Figure 3.10 shows a graphical representation of KNN classification. The test sample 

(green circle) should be classified either to the first class of blue squares or to the 

second class of red triangles. If k=3 (solid line circle), it is assigned to the second class 

because there are 2 triangles and only 1 square inside the inner circle. 

 
Figure 3.10: Example of KNN classification method (Source: [96]) 
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3.5 Ensemble Machine Learning 

An ensemble is itself a supervised learning algorithm, because it can be trained and 

then used to make predictions. Ensemble learning techniques attempt to make the 

performance of the predictive models better by improving their accuracy. Ensemble 

Learning is a process using which multiple machine learning models (such as 

classifiers) are strategically constructed to solve a particular problem. 

 

An ensemble is the art of combining a diverse set of learners (individual models) 

together to improvise on the stability and predictive power of the model. In the above 

example, the way we combine all the predictions collectively will be termed as 

Ensemble learning. 

Figure 3.11 presents a basic Ensemble structure: 

 

 
Figure 3.11: Typical prediction by ensemble learners 
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3.6 Types of Ensemble Learning Methods 

Although there are several types of Ensemble learning methods, the following four are 

the most-used ones in the industry. 

 

3.6.1 Bagging Ensemble Learning 

Bagging is one of the Ensemble construction techniques which is also known 

as Bootstrap Aggregation. Bootstrap establishes the foundation of Bagging technique. 

Bootstrap is a sampling technique in which we select “n” observations out of a 

population of “n” observations. But the selection is entirely random, i.e., each 

observation can be chosen from the original population so that each observation is 

equally likely to be selected in each iteration of the bootstrapping process. After the 

bootstrapped samples are formed, separate models are trained with the bootstrapped 

samples. In real experiments, the bootstrapped samples are drawn from the training 

set, and the sub-models are tested using the testing set. The final output prediction is 

combined across the projections of all the sub-models. Figure 3.12 gives a brief idea 

of Bagging: 

 
Figure 3.12: prediction by Bagging (Source: [97]) 



40 

 

Bootstrap Aggregating is an ensemble method. First, we create random samples of the 

training data set with replacement (sub sets of training data set). Then, we build a 

model (classifier or Decision tree) for each sample. Finally, results of these multiple 

models are combined using average or majority voting. 

 
As each model is exposed to a different subset of data and we use their collective 

output at the end, so we are making sure that problem of overfitting is taken care of by 

not clinging too closely to our training data set. Thus, Bagging helps us to reduce the 

variance error. 

 

Combinations of multiple models decrease variance, especially in the case of unstable 

models, and may produce a more reliable prediction than a single model. 

3.6.2 Boosting Ensemble Learning 

Boosting is a form of sequential learning technique. The algorithm works by training 

a model with the entire training set, and subsequent models are constructed by fitting 

the residual error values of the initial model. In this way, Boosting attempts to give 

higher weight to those observations that were poorly estimated by the previous model. 

Once the sequences of the models are created the predictions made by models are 

weighted by their accuracy scores and the results are combined to create a final 

estimation. Models that are typically used in Boosting technique are XGBoost 

(Extreme Gradient Boosting), GBM (Gradient Boosting Machine), ADABoost 

(Adaptive Boosting), etc. 

Boosting is an iterative technique which adjusts the weight of an observation based on 

the last classification. If an observation was classified incorrectly, it tries to increase 

the weight of this observation and vice versa. 

Boosting is a sequential technique in which, the first algorithm is trained on the entire 

data set and the subsequent algorithms are built by fitting the residuals of the first 

algorithm, thus giving higher weight to those observations that were poorly predicted 

by the previous model. It relies on creating a series of weak learners each of which 

might not be good for the entire data set but is good for some part of the data set. Thus, 

each model actually boosts the performance of the ensemble. Figure 3.13 gives a brief 

idea of Boosting. 
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Figure 3.13: Prediction by Boosting (Source: [98]) 

3.6.3 Voting Ensemble Learning 

Voting is one of the most straightforward Ensemble learning techniques in which 

predictions from multiple models are combined. The method starts with creating two 

or more separate models with the same dataset. Then, a Voting based Ensemble model 

can be used to wrap the previous models and aggregate the predictions of those models. 

After the Voting based Ensemble model is constructed, it can be used to make a 

prediction on new data. The predictions made by the sub-models can be assigned 

weights. Stacked aggregation is a technique which can be used to learn how to weigh 

these predictions in the best possible way. Figure 3.14 gives an idea of Voting-based 

Ensembles: 

 
Figure 3.14: prediction by voting (Source: [97]) 
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For voting classifiers, we used different combination of DT, KNN, LR SVM as base 
level classifiers and design 4 different voting classifiers 

3.6.4 Stacking Ensemble Learning  

Stacking is an ensemble learning technique that combines multiple classification or 

regression models via a meta-classifier or a meta-regressor. The base level models are 

trained based on a complete training set, then the meta-model is trained on the outputs 

of the base level model as features. The base level often consists of different learning 

algorithms and therefore stacking ensembles are often heterogeneous. 

 

 
 

Figure 3.15: prediction by Stacking (Source: [99]) 
 
The ensemble of models will give better performance on the test case scenarios 

(unseen data) as compared to the individual models in most of the cases. The aggregate 

result of multiple models is always less noisy than the individual models. This leads 

to model stability and robustness. 

3.7 Summary 

In this chapter, we discussed regarding various Machine Learning Classifiers (MLC). 
At first we presented a brief discussion on supervised and unsupervised learning and 
after that we also discussed about the base machine learning classifiers. At the end of 
this chapter, we discussed various types of ensemble machine learning classifiers 
including Voting, Stacking, Bagging and Boosting classifiers in section 3.6. 
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Chapter 4 
Proposed Methodology  

 

4.1 Introduction 
This chapter will discuss regarding the methodology of the proposed algorithm. At 

first, the basic block diagram will be discussed and at the end of this chapter, every 

step will be discussed. 

 

The techniques of data collection, feature extraction and feature selection will also be 

discussed in this chapter. After selecting significant features, the final feature set has 

been constructed. Now, a classification algorithm needs to be developed which will 

maximize the detection rate. For this purpose, a number of classification algorithms 

are required to be tested for this dataset. Their description and working procedure will 

be discussed in this chapter. Their performance will be presented in the next chapter. 

At the end, the best classifier for this dataset will be selected for the proposed method. 

  
A basic block diagram of the proposed algorithm is presented in Figure 4.1 

 
 
 
 
 

 
Figure 4.1: Basic block diagram for our workflow 

 

4.2 Proposed Algorithm 
This thesis proposes a set of new methods for intrusion detection based on network 

traffic. It uses the header information of a packet (IP and TCP header as discussed in 

section 2.5.1) extracted from the network traffic. They create an opportunity to start a 

new era of working with less complex features and developing newer algorithms. So, 
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some important feature selection techniques have been incorporated here to select 

optimal features, e.g., F-test (filter method). Feature selection has a significant impact 

on subsequent stages of the learning. The selection of appropriate classification 

techniques is one of the most important aspects for prediction issues. To find out the 

appropriate one for the proposed method, several ensemble classification algorithms 

(Voting, Stacking, Bagging Boosting) have been experimented with and then the best 

one was selected. Use of cross-validation technique [49] here ensured random split of 

data into test set. Then, performance of the proposed algorithm has been checked. 

Results are discussed in chapter 6. Before discussing the proposed methodology of this 

research work step by step, the dataset used in this research work will be described 

first. 

 

4.2.1 Dataset Description 
The inherent drawbacks in the KDD cup 99 dataset [100] have been revealed by 

various statistical analyses has affected the detection accuracy of many IDS modeled 

by researchers. NSL-KDD data set [101] is a refined version of its predecessor. 

 

It contains essential records of the complete KDD data set. There is a collection of 

downloadable files at the disposal for the researchers. They are listed in the Table 4.1 

 
Table 4.1: List of NSL-KDD dataset files and their description 

 

S.No. Name of the file Description 
1 KDDTrain+.ARFF The full NSL-KDD train set with binary labels in 

ARFF format 
2 KDDTrain+.TXT The full NSL-KDD train set including attack-type 

labels and difficulty level in CSV format 
3 KDDTrain+_20Perce 

nt.ARFF 
A 20% subset of the KDDTrain+.arff file 

4 KDDTrain+_20Perce 
nt.TXT 

A 20% subset of the KDDTrain+.txt file 

5 KDDTest+.ARFF The full NSL-KDD test set with binary labels in 
ARFF format 
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S.No. Name of the file Description 
6 KDDTest+.TXT The full NSL-KDD test set including attack-type 

labels and difficulty level in CSV format 
7 KDDTest-21.ARFF A subset of the KDDTest+.arff file which does 

not include records with difficulty level of 21 out 
of 21 

8 KDDTest-21.TXT A subset of the KDDTest+.txt file which does not 
include records with difficulty level of 21 out of 
21 

 
In each record, there are 41 attributes unfolding different features of the flow and a 

label assigned to each, either as an attack type or as normal. 

 

The details of the attributes namely the attribute name, their description and sample 

data are listed in the Tables 4.2, 4.3, 4.4, 4.5. The Table 4.6 contains type information 

of the 41 attributes available in the NSL-KDD data set. These attribute contains data 

about the various 5 classes of network connection vectors and they are categorized as 

one normal class and four attack classes. The 4 attack classes are further grouped as 

DoS, Probe, R2L and U2R.  

 

Table 4.2: basic features of each network connection vector 

Attribut

e 
No. 

Attribute 
Name 

Description Sample 
Data 

1 Duration Length of time duration of 
the connection 

0 

2 Protocol_type Protocol used in the 
connection 

Tcp 

3 Service Destination network 
service used 

ftp_data 

4 Flag Status of the connection – 
Normal or Error 

SF 

5 Src_bytes Number of data bytes 
transferred 
from source to destination 
in single connection 
 

491 
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Attribut

e 
No. 

Attribute 
Name 

Description Sample 
Data 

6 Dst_bytes Number of data bytes 
transferred 
From destination to source 
in 
Single connection 
 

0 

7 Land if source and destination IP 
addresses and port numbers 
are equal then, this variable 
takes value 1 else 0 

0 

8 Wrong_fragm 
ent 

Total number of wrong 
fragments in this 
connection 

0 

9 Urgent Number of urgent packets 
in this connection. Urgent 
packets are packets with the 
urgent bit 
activated 

0 

 
 

Table 4.3: content related features of each network connection vector 

Attribut

e 
No. 

Attribute 
Name 

Description Sample 
Data 

10 Hot Number of hot‟ indicators in 
the content such as: entering a 
system directory, creating 
programs and executing 
programs 

0 

11 Num_failed 
_logins 

Count of failed login attempts 0 

12 Logged_in Login Status : 
1 if successfully logged in;  
0 otherwise 

0 

13 Num_comp 
romised 

Number of compromised  
conditions 

0 
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Attribut

e 
No. 

Attribute 
Name 

Description Sample 
Data 

14 Root_shell 1 if root shell is obtained;  
0 otherwise 

0 

15 Su_attempt 
ed 

1 if ``su root'' command 
attempted or used;  
0 otherwise 
 
 

0 

16 Num_root Number of root accesses or 
number of operations 
performed as a root in the 
connection 

0 

17 Num_file_c 
reations 

Number of file creation 
operations in the connection 

0 

18 Num_shells Number of shell prompts 0 
19 Num_acces 

s_files 
Number of operations on access 
control files 

0 

20 Num_outbo 
und_cmds 

Number of outbound 
commands in an ftp session 

0 

21 Is_hot_logi 
n 

1 if the login belongs to the 
``hot'' list i.e., root or admin; 
else 0 

0 

22 Is_guest_lo 
gin 

1 if the login is a ``guest'' login;  
0 otherwise 

0 

 

Table 4.4: time related traffic features of each network connection vector 

Attribut

e 
No. 

Attribute 
Name 

Description Sample 
Data 

23 Count Number of connections to the same 
destination host as the current 
connection in the past two seconds 

2 

24 Srv_count Number of connections to the same 
service (port number) as the current 
connection in the past two seconds 

2 
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Attribut

e 
No. 

Attribute 
Name 

Description Sample 
Data 

25 Serror_rate The percentage of connections 
that have activated the flag (4) s0, s1, 
s2 or s3, among the connections 
aggregated in 
count (23) 

0 

26 Srv_serror_rate The percentage of connections 
that have activated the flag (4) s0, s1, 
s2 or s3, among the connections 
aggregated in 
srv_count (24) 

0 

27 Rerror_rate The percentage of connections 
that have activated the flag (4) REJ, 
among the connections 
aggregated in count (23) 

0 

28 Srv_rerror_rate The percentage of connections 
that have activated the flag (4) REJ, 
among the connections 
aggregated in srv_count (24) 

0 

29 Same_srv_rate The percentage of connections 
that were to the same service, among 
the connections aggregated in count 
(23) 

1 

30 Diff_srv_rate The percentage of connections that 
were to different services, 
among the connections aggregated 
in count (23) 

0 

31 Srv_diff_host_ 
rate 

The percentage of connections 
that were to different destination 
machines among the connections 
aggregated in srv_count (24) 

0 
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Table 4.5: host based traffic features in a network Connection vector 

Attribute 
No. 

Attribute 
Name 

Description Sample 
Data 

32 Dst_host_coun 
t 

Number of connections having 
the same destination 
host IP address 

150 

33 Dst_host_srv_ 
count 

Number of connections having 
the same port number 

25 

34 Dst_host_same 
_srv_rate 

The percentage of connections 
that were to the same service, 
among the connections 
aggregated in dst_host_count 
(32) 

0.17 

35 Dst_host_diff_ 
srv_rate 

The percentage of connections 
that were to different services, 
among the connections 
aggregated in dst_host_count 
(32) 

0.03 

36 Dst_host_same 
_src_port_rate 

The percentage of connections 
that were to the same source 
port, among the connections 
aggregated in dst_host_srv_c 
ount (33) 

0.17 

37 Dst_host_srv_ 
diff_host_rate 

The percentage of connections 
that were to different 
destination machines, among 
the connections aggregated in 
dst_host_srv_c ount (33) 

0 

38 Dst_host_serro 
r_rate 

The percentage of connections 
that have activated the flag (4) 
s0, s1, s2 or s3, among the 
connections aggregated in 
dst_host_count (32) 

0 
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Attribute 
No. 

Attribute 
Name 

Description Sample 
Data 

39 Dst_host_srv_s 
error_rate 

The percent of connections that 
have activated the flag (4) s0, 
s1, s2 or s3, among the 
connections aggregated in 
dst_host_srv_c ount (33) 
 
 

0 

40 Dst_host_rerro 
r_rate 

The percentage of connections 
that have activated the flag (4) 
REJ, among the connections 
aggregated in dst_host_count 
(32) 

0.05 

41 Dst_host_srv_r 
error_rate 

The percentage of connections 
that have activated the flag (4) 
REJ, among the connections 
aggregated in dst_host_srv_c 
ount (33) 

0 

 
The attack classes present in the NSL-KDD data set are grouped into four categories 

[102] [100]: 

 

1. DOS: Denial of service is an attack category, which depletes the victim’s 

resources thereby making it unable to handle legitimate requests – e.g., syn 

flooding. 

 

2. Probing: Surveillance and other probing attack’s objective is to gain 

information about the remote victim e.g., port scanning. 

 

3.  U2R: unauthorized access to local super user (root) privileges is an attack 

type, by which an attacker uses a normal account to login into a victim system 

and tries to gain root/administrator privileges by exploiting some vulnerability 

in the victim e.g., buffer overflow attacks. 
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4.  R2L: unauthorized access from a remote machine, the attacker intrudes into 

a remote machine and gains local access of the victim machine. E.g., password 

guessing. 

 

Table 4.6: attribute value type 

Type Features 
Nominal Protocol_type(2),  

Service(3),  
Flag(4) 

Binary Land(7), logged_in(12), 
root_shell(14), su_attempted(15), 
is_host_login(21), 
is_guest_login(22) 

Numeric Duration(1), src_bytes(5), 
dst_bytes(6), wrong_fragment(8), 
urgent(9), hot(10), 
num_failed_logins(11), 
num_compromised(13), 
num_root(16), 
num_file_creations(17), 
num_shells(18), 
num_access_files(19), 
num_outbound_cmds(20), count(23) 
srv_count(24), serror_rate(25), 
srv_serror_rate(26), rerror_rate(27), 
srv_rerror_rate(28), same_srv_rate(29) 
diff_srv_rate(30), 
srv_diff_host_rate(31), 
dst_host_count(32), 
dst_host_srv_count(33), 
dst_host_same_srv_rate(34), 
dst_host_diff_srv_rate(35), 
dst_host_same_src_port_rate(36), 
dst_host_srv_diff_host_rate(37), 
dst_host_serror_rate(38), 
dst_host_srv_serror_rate(39), 
dst_host_rerror_rate(40), 
dst_host_srv_rerror_rate(41) 
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The specific types of attacks are classified into four major categories. Table 4.7 shows 

this detail. 

Table 4.7: mapping of attack class with attack type 

Category Training Set Testing Set 

DoS 
back, land, Neptune, pod, 
smurf, teardrop 

apache2, back, land, mailbomb, 
Neptune, pod, smurf, teardrop, 
worm processtable, udpstorm 

Probe 
ipsweep, nma, portsweep, 
satan 

ipsweep, mscan, nmap, 
portsweep, saint, satan 

R2L 
spy, warezclient, ftpwrite, 
guesspasswd, imap, 
multihop, phf, warezmaster 

ftpwrite, guesspasswd, 
httptunnel, imap, multihop, 
named, phf, sendmail, 
snmpgetattack, snmpguess, 
wxlock, warezmaster, xsnoop 

U2R 
bufferoverflow, ps, 
loadmodule, rootkit 

bufferoverflow, ps, perl, 
loadmodule, sqlattack, xterm 

normal normal normal 

 

The Table 4.7 shows the distribution of the normal and attack records available in the 

various NSL-KDD datasets. 

Table 4.8: details of normal and attack data in different types of NSL-KDD dataset 

Attack type KDDTrai

n+ 
KDDTest+ KDDTrain+_2

0Percent 
KDDTes

t-21 
DoS 45,927 7460 9234 4342 

Probe 11,656 2421 2289 2402 
U2R 52 67 11 200 
R2L 995  2885  209 2754 

Normal 67,343 9711 13,449 2152 
Total 125,973 22,544 25,192 11,850 

 
Figure 4.2 clearly exhibits the count of normal and various attack class records in the 

different train and test NSL KDD data sets. 
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Figure 4.2: Network vector distribution in various NSL-KDD train and test data set 

4.2.2 Data Extraction 
The dataset which we have used in our research work was extracted from Canadian 

cyber crime website [46], the network traffic dataset named NSL-KDD. This dataset 

is an improved version by solving various lacking of KDD CUP 99 dataset. NSL-KDD 

dataset includes four files: KDDTrain+, KDDTest+, KDDTest-21 and KDDTest-20. 

There are 125,973 network traffic samples in the KDDTrain+ dataset, 22,554 network 

traffic samples in the KDDTest+ dataset and 11,850 network traffic samples in the 

KDDTest-21 dataset. There are 43 features which include 10 basic features, 12 content 

features, and 19 traffic features.  

When the dataset is not balanced, it is difficult to classify using class label; therefore, 

they can be categorized into 5 network attacking groups: Normal, Probe, R2L, U2R 

and DoS. There are some attacks which are not present in the training set but exist in 

test set, which make it more realistic. 

 4.2.3  Data Cleaning 
By using Python language programming, the first procedure or technique that been 

used throughout this research after extracting the dataset is data cleaning. One of the 
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methods of data cleaning is by replacing all the attributes that only filled with 

categorical numeric attribute, with the name of features. By extracting the Canadian 

NSL-KDD dataset, we get 43 features. Among them, we remove two features which 

mainly contain some continuous value instead of categorical data. And, we also 

remove another feature which contains constant value. Finally, after cleaning the 

dataset, we obtained 40 useful features. Among 40 features, one feature is used as a 

target feature. 

4.2.4 Data Labeling  
One of the methods of data labeling is by replacing all the attributes that only filled 

with numeric indicators. Among the 40 features, there are 3 attributes which are non-

numeric. They are “class”, “flag” and “protocol_type”. For instance, the feature 

protocol type has tcp, udp, and icmp types of attributes and after labeling, it is turned 

into 0, 1, and 2 respectively. Similarly, the feature “class” has 5 types of attributes and 

“flag” have 11 types of attributes. In the same way, all non-numerical values are 

transformed into numerical values after labeling and finally, our prediction target is 

mapped into 5 categories of classification. 

4.2.5 Data Scaling 
The important step after transformation is scaling. Data normalization is a process of 

scaling. Data scaling can avoid attributes with greater values dominating those 

attributes with smaller values, and also avoid numerical problems in computation. Data 

normalization is a process of scaling the value of each attribute into a well-

proportioned range, so that the bias in favor of features with greater values is 

eliminated from the dataset without altering their statistical properties. Feature 

normalization is essential for scaling the values of each feature into a certain range 

(e.g., [0, 1] or any others).  

 
The standard scores (also called z scores) of the features are calculated as follows: 

 

z = (x - μ) / σ 
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Where μ is the mean of the training samples, and σ is the standard deviation of the 

training samples. 

 

Min-Max scaling, also referred to as normalization, consists of data being scaled to a 

fixed range, typically [0,1]. The only issue with this type of scaling method is that 

there will be smaller standard deviations, which can work to suppress the effectiveness 

of outliers.  

 

In this work, Standardization is used to normalize the features during this step. 

4.2.6 Feature Selection 
The method that is used during this thesis work for selecting significant features is 

statistical significance test (F-test, filter method).  

 
Feature Selection is essentially the process of selecting a subset of relevant and 

informative features from a larger collection of features that produce a better 

characterization of patterns belonging to different classes. Whereas principal 

component analysis (PCA) combines similar (correlated) attributes and creates new 

ones which is superior to original attributes. Feature selection technique can eliminate 

irrelevant and redundant features. Redundant features are those that provide no 

additional information beyond what is already provided by the currently selected 

features. Irrelevant features are those that do not provide any useful information in the 

given context. This has the advantage of decreasing storage requirements, reduces 

overfitting, improves accuracy, reduces processing time and improves the detection 

rate. Some examples of some filter methods include the Chi squared test, information 

gain and correlation coefficient scores, etc. 

 

Filter: Filters determine the best feature subsets by using statistical approaches. Input 

features with a strong statistical relationship with the output feature are kept. Each 

feature is scored individually on certain specified criteria and the features are then 

ranked based on the scores and the highest ranked features are selected. Feature 

selection then simply becomes a manner of selecting the features based on this ranking. 

The methods are often univariate and consider the feature independently, or with 

https://machinelearningmastery.com/how-to-use-correlation-to-understand-the-relationship-between-variables/
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regard to the dependent variable. Univariate feature selection works by selecting the 

best features based on univariate statistical tests. This feature selection examines each 

feature individually to determine the strength of the relationship of the feature with the 

response variable. These methods are simple to run and understand and are in general 

particularly good for gaining a better understanding of data. There are lots of different 

options for univariate selection. 

 

Wrapper: Wrapper methods consider the selection of a set of features as a search 

problem, where different combinations are prepared, evaluated and compared to other 

combinations. A predictive model is used to evaluate a combination of features and 

assign a score based on model accuracy. The search process may be methodical such 

as a best-first search; it may be stochastic such as a random hill-climbing algorithm, 

or it may use heuristics, like forward and backward passes to add and remove features.  

 

Embedded: With embedded methods, feature selection is performed as part of the 

model construction process. An embedded method is usually specific to a given 

classification algorithm [104]. Some view embedded approaches as a type of wrapper 

method [105], while others view them as lying between filters and wrappers in terms 

of computational complexity. For instance, some embedded methods perform more 

efficiently than wrapper methods by directly optimizing an objective function, often 

defined by two or more parameters – one to encourage the goodness-of-fit and the 

other to penalize for a large number of variables [106] [107]. From the foregoing, we 

can see that each category of techniques has its own benefits and drawbacks [104] 

[105]. Thus, each class of techniques still has its place in the general problem of feature 

selection. 

 
In this study, we focus on filter methods for identifying network attacks. Filter 

techniques are highly scalable (important and critical for high-dimensional datasets), 

relatively simple and efficient, and independent of the underlying classification 

algorithms [108]; Filter techniques are much faster than the other methods since they 

evaluate each feature once, rather than evaluating a large number of feature subsets. 

The filter method does not require a particular learning algorithm. It uses a heuristic 

to evaluate a feature subset. Filter algorithms utilize an independent measure (such as, 
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information measures, distance measures, or consistency measures) as a criterion for 

estimating the relation of a set of features, while wrapper algorithms make use of 

particular learning algorithms to evaluate the value of features. Features filters are 

known to be faster than feature wrappers because heuristics are faster than induction 

learning. Due to the continuous growth of data dimensionality, feature selection as a 

pre-processing step is becoming an essential part in building intrusion detection 

systems. 

 
Regarding the scoring functions, we have different functions from Scikit learn library 

for classification. In our research work, we have used the chi() function [109]. This 

function returns 2 arrays: one contains the F-Scores which are then evaluated against 

the chi2 distribution to obtain the p-value. If p-value is small, the parameters are said 

to be significant.  Here, we have used the SelectKBest() class. Using this class, we can 

select a fixed number of significant features according to the next smallest p-value of 

the feature ranking. 

According to the p-value, the order of 39 important features is shown in Table 4.9 

 

Table 4.9:  order of 39 important features 

Number of 

features 

Number according 

to section 4.2.1 

Feature Name 

1 22 'is_guest_login' 

2 39 'dst_host_srv_serror_rate' 

3 38 'dst_host_serror_rate' 

4 35 'dst_host_diff_srv_rate' 

5 34 'dst_host_same_srv_rate' 

6 33 'dst_host_srv_count' 

7 31 'srv_diff_host_rate' 

8 30 'diff_srv_rate' 

9 29 'same_srv_rate' 

10 28 'srv_rerror_rate' 

11 27 'rerror_rate' 

12 26 'srv_serror_rate' 
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Number of 

features 

Number according 

to section 4.2.1 

Feature Name 

13 25 'serror_rate' 

14 23 'count' 

15 40 'dst_host_rerror_rate' 

16 41 'dst_host_srv_rerror_rate' 

17 9 'urgent' 

18 4 'flag' 

19 12 'logged_in' 

20 14 'root_shell' 

21 16 'num_shells' 

22 32 'dst_host_count' 

23 11 'num_failed_logins' 

24 36 'dst_host_same_src_port_rate' 

25 21 'is_host_login' 

26 37 'dst_host_srv_diff_host_rate' 

27 24 'srv_count' 

28 2 'protocol_type' 

29 19 'num_access_files' 

30 1 'duration' 

31 17 'num_file_creations' 

32 10 'hot' 

33 16 'num_root' real' 

34 13 'num_compromised' 

35 6 'dst_bytes' 

36 8 'wrong_fragment' 

37 7 'land' 

38 5 'src_bytes' 

39 15 'su_attempted' 
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4.2.7 Selection of Classifier 
Once the optimal features are sorted by their importance, these features are then taken 

into the classifier training stage where ensemble machine learning are employed. The 

classifier distinguishes attacks data from Normal traffics. Ensemble learning are 

categorized under the same umbrella of supervised machine learning. The main 

difference between classification and regression is that the output variable in 

regression is numerical (or continuous) while that for classification is categorical (or 

discrete). Common classification algorithms include logistic regression, Naïve Bayes, 

decision trees, and K Nearest Neighbors (KNN), Support Vector Machine (SVM), etc. 

Among them, we used various base classifiers as an input of ensemble learning in our 

work. We are selecting categorical data to do our work. 

 

During execution of the algorithm, we used separate dataset for training and testing. 

After selecting the classifier, the training samples will first be fed to the developed 

model for learning the features of network attacks and normal network traffics. After 

that, the test set will be used to evaluate the trained model. The steps required for the 

execution of the algorithm are shown in the flowchart (Figure 4.12). To work with 

cross-validation, we used the full testing dataset and to work without cross validation 

we used the full training and testing dataset separately. 

4.2.7.1 Design of Ensemble Classifier 

In this section, design of classifiers namely Voting, stacking, bagging and Boosting 

has been discussed in detail. We design and develop our model by trial and error basis. 

4.2.7.1.1 Voting  

Figure 4.3 shows the design of Voting-1 classifier. In Voting-1 classifier, the base 
classifiers are DT, KNN and LR. 
 



60 

 

 
Figure 4.3: Voting-1 

Figure 4.4 shows that the base classes for Voting-2 classifier is DT, SVM(kernel = 
poly) and LR 

 
Figure 4.4: Voting-2 

Figure 4.5 shows that the base class of Voting -3 is DT, SVM(kernel = rbf) and LR 

The base classes of Voting-4 is DT, SVM (kernel = linear) and LR. All base classes 
arrangement is shown in Table 5.1 
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Figure 4.5: Voting-3 

 
 

 
Figure 4.6: Voting -4 

 
Voting has two types Hard Voting or Max Voting and Soft Voting. In a Hard voting 
system, it aggregate the predictions of each classifier and predict the class that gets the 
most votes. If all classifiers are able to estimate the probability of classes 
(predict_proba() method) then predict class with the highest class probability, 
averaged over individual classifiers. In our work, we used the hard voting that works 
on most votes. 

4.2.7.1.2 Stacking 

To design Stacking we need base classes as well as a meta class. Figure 4.7 shows the 
base classes of Stacking-1 which use SVC (kernel = linear) and Logistic regression 
and its meta class is also SVC (kernel = linear) 
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Figure 4.7: Stacking-1 
 
Figure 4.8 shows that the base classes of Stacking-2 with SVC (kernel = rbf ) and 

Logistic regression and its meta class is SVC (kernel = rbf ) 

 

 
 

Figure 4.8: Stacking-2 
 
From Figure 4.9 shows that the base classes of Stacking-3 with SVC (kernel = rbf ) 

and Logistic regression and its meta class is Naïve Bayes. 
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Figure 4.9: Stacking-3 
 
From Figure 4.10 shows that the base classes of Stacking-4 with SVC (kernel = linear) 

and Logistic regression and its meta class is RandomForest classifier 

 
 

 
 

Figure 4.10: Stacking-4 
 

4.2.7.1.3 Boosting 

Boosting can take only one classifier. We designed 3 Boosting classifiers namely 

Boosting-1, Boosting-2 and Boosting-3 using Logistic Regression, DT and Gradient 

Boosting respectively. Table 4.9 shows the name of Boosting classifiers and their 

respective base classes. 
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Table 4.10: Boosting Classifiers 

Classifier Base Classifier 

Boosting-1 Adaboost (LR) 

Boosting -2 Adaboost (DT) 

Boosting -3 GradientBoosting 

4.2.7.1.4 Bagging 

Bagging also can take only one classifier. We designed 3 Bagging classifiers namely 

Bagging -1, Bagging-2 and Bagging-3 using Logistic Regression, Random Forest and 

Naïve Bayes respectively. 

 

4.2.7.1.5 Hybrid Model 

We also designed two hybrid models as shown in 4.11. Hybrid Model-1 is a Voting 

classifier, however it takes two Boosting classifiers (AdaBoost and Gradient-Booston) 

as its base classifier. Figure 4.11 shows Hybrid Model-1. 

 
Figure 4.11: Hybrid-1 

 
The Hybrid-2 is a Bagging classifier, and it takes voting-1 as its base classifier. 
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4.3 Block Diagram 

 

 
(a) 
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(b) 

Figure 4.12: Block diagram of various stages of proposed work (a) without cross-validation (b) 
with cross-validation 

This is the workflow diagram of our research work. 

4.4 Model Evaluation 
For the performance evaluation in the experiment, first, we denote TP, FP, TN and FN 

as true positive, false positive, true negative and false negative, respectively. 

Table 4.11: Specification of confusion matrix 

Measures Specification 

P Total number of samples classified as positive 
N Total number of samples classified as negative 

True Positive (TP) The number of samples correctly classified as attack 
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Measures Specification 

True Negative 
(TN) 

Number of samples correctly classified as normal 

False Positive (FP) Number of samples wrongly classified as attack 
False Negative 

(FN) 
Number of samples wrongly classified as normal 

 
Then, we can obtain the detection rate or sensitivity as follows: 

 

Detection Rate (DR)  

DR is indicating the proportion of actual positives values being correctly identified. It 

is the ratio of correctly classified network attacks to the total number of network traffic. 

This is given by 

 

DR = TP/ (TP+ FN) 

 

DR is also synonymous with sensitivity. The DR measures the rate of malware samples 

(i.e., positive instances) correctly classified by the classification model 

 

In intrusion detection, sometimes we pay more attention to the detection rate rather 

than accuracy. The higher the detection rate, the lower the probability that a network 

which will have the risk of attack is predicted to have no attack. 

4.4.1 Confusion Matrix  
In simple terms, confusion matrix is a result table that summarizes results of 

classification algorithm when actual true values are known. 

Table 4.12: confusion matrix 

Actual Predicted 
Attack Normal 

Attack TP FP 
Normal FN TN 

 
As the dataset has 4 types of attacks, each attack was labeled as a class. An 

evaluation of the proposed algorithm has been made to check the classification 
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performance by computing the confusion matrix, considering the class labels of the 

training dataset as the reference and the predicted class labels as the outcome of the 

proposed algorithm. The output of ensemble machine learning algorithms should 

remain in any of the four categories in the confusion matrix: True Positive (TP), True 

Negative (TN), False Positive (FP) and False Negative (FN). Then, these values were 

used to calculate the detection rate or sensitivity of the classification. 

4.4.2 ROC-AUC 
In addition to the aforementioned evaluation criteria, the receiver operating 

characteristic (ROC) curve and the area under curve (AUC) can evaluate the pros and 

cons of the classier. The ROC curve shows the trade-off between the true positive rate 

(TPR) and the false positive rate (FPR). If the ROC curve is closer to the upper left 

corner of the graph, the model is better. The AUC is the area under the curve. When 

the area is closer to 1, the model is better.  

4.4.3 Precision Recall Curve 
Precision-Recall curves summarize the trade-off between the true positive rate and the 

positive predictive value for a predictive model using different probability thresholds. 

4.5 Implementation Environment 

For the implementation of this algorithm, Scikit Learn has been used. Jupiter notebook 

IDE has been used for executing the python [110] code. 

4.6 Summary 

In this research work, we used the KSL-KDD dataset. At the beginning of this chapter, 

we presented a brief discussion of this dataset. After that, we discussed the 

methodology step by step of our research work. We also discussed regarding various 

types of features selection technique in section 4.2.6. In section 4.2.7.1, we discussed 

regarding different types of new design of ensemble classifiers. At the end of this 

chapter, we discussed regarding model evaluation and the implementation 

environment of our research work.  
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Chapter 5 
Results and Discussion 

 

5.1 Introduction 
This is the last stage and one of the most significant tasks of the thesis work where all 

of the data is analyzed. At first, we work without cross validation and compare the 

result with literature. After that we use the cross validation to train and test the dataset. 

When we work without cross validation, we used the full NSL-KDD train and test 

dataset separately. In contrast, when we use the cross validation, we used the full test 

dataset. 

5.2 Executing the Ensemble Classifier 
In this stage, we analyze and verify the data that was extracted during the experiment 

in-depth. We analyze the data to see if the objective set in this thesis is met. We show 

that how well the algorithm performed by comparing the attributes in the detection of 

network attacks. 

5.2.1 Detection Without Cross Validation 
At first, the dataset is tested without cross validation using the Voting, Bagging and 

Boosting ensemble machine learning classifiers.  

Bagging_NB 

When we have used the Bagging classifier, the base class of the bagging is Naïve 

Bayes. Using this Bagging_NB classifier, we calculate the detection rate according to 

increasing the number of feature. The number of feature is increased according to the 

Table 4.9. Table 5.1 shows the detection rate using Bagging_NB classifier. The 

Random State parameter value is 3, when we calculate the detection rate below. 
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Table 5.1: Detection Rate by feature importance using Bagging_NB classifier 

No. of 

feature 
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4) 

First 1 

feature 
0.89 0.00 0.00 0.00 0.01 

First 2 

features 
0.89 0.00 0.00 0.04 0.10 

First 3 

features 
0.82 0.00 0.00 0.51 0.05 

First 4 

features 
0.82 0.00 0.00 0.55 0.05 

First 5 

features 
0.81 0.00 0.00 0.54 0.22 

First 6 

features 
0.81 0.00 0.00 0.60 0.44 

First 7 

features 
0.81 0.00 0.00 0.58 0.41 

First 8 

features 
0.81 0.00 0.00 0.63 0.42 

First 9 

features 
0.80 0.01 0.00 0.67 0.45 

First 10 

features 
0.79 0.00 0.00 0.72 0.55 

First 11 

features 
0.76 0.00 0.00 0.76 0.75 

First 12 

features 
0.75 0.00 0.00 0.78 0.79 

First 13 

features 
0.75 0.00 0.01 0.66 0.81 

First 14 

features 
0.75 0.01 0.01 0.66 0.80 

First 15 

features 
0.78 0.03 0.04 0.63 0.70 

First 16 

features 
0.78 0.06 0.06 0.60 0.69 

First 17 

features 
0.78 0.08 0.06 0.60 0.69 
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No. of 

feature 
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4) 

First 18 

features 
0.77 0.07 0.06 0.60 0.73 

First 19 

features 
0.75 0.10 0.06 0.61 0.73 

First 20 

features 
0.75 0.53 0.07 0.61 0.72 

First 21 

features 
0.74 0.51 0.10 0.63 0.72 

First 22 

features 
0.74 0.49 0.11 0.58 0.73 

First 23 

features 
0.74 0.48 0.11 0.60 0.73 

First 24 

features 
0.74 0.48 0.12 0.60 0.74 

First 25 

features 
0.77 0.50 0.19 0.60 0.67 

First 26 

features 
0.77 0.52 0.19 0.60 0.67 

First 27 

features 
0.78 0.54 0.19 0.66 0.67 

First 28 

features 
0.77 0.77 0.19 0.66 0.69 

First 29 

features 
0.77 0.88 0.19 0.66 0.69 

First 30 

features 
0.76 0.88 0.19 0.66 0.70 

First 31 

features 
0.78 0.89 0.19 0.67 0.69 

First 32 

features 
0.79 0.89 0.32 0.66 0.47 

First 33 

features 
0.79 0.90 0.32 0.67 0.30 

First 34 

features 
0.79 0.91 0.33 0.67 0.29 

First 35 

features 
0.80 0.91 0.33 0.67 0.20 
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No. of 

feature 
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4) 

First 36 

features 
0.82 0.91 0.33 0.60 0.16 

First 37 

features 
0.82 0.91 0.33 0.60 0.13 

First 38 

features 
0.79 0.91 0.39 0.61 0.10 

First 39 

features 
0.80 0.91 0.40 0.57 0.07 

  

 

We can understand the Table 5.1 more easily by graphical representation. Figure 5.1 

to Figure 5.5 are the graphical representation of Table 5.1. 

 

 

Figure 5.1: DR of Normal traffic by feature selection 
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(a) 

 

 

 
(b) 

Figure 5.2: DR of DoS attack by feature selection (a) 0 to 1 scale (b) Zoom view 
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Figure 5.3: DR of Probe attack by feature selection  

 

 

 

 

Figure 5.4: DR of R2L attack by feature selection  
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Figure 5.5: DR of U2R attack by feature selection  

 

From Table 5.1, and from Figure 5.1 to Figure 5.5, we can understand that using 

Bagging_NB classifier, the get the better detection rate using first 36 features. The 

confusion matrix for the better case is as follows in Figure 5.6. 

 
Figure 5.6: Confusion matrix of Bagging_NB 
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Boosting_DT 

Boosting_DT is another ensemble classifier. Here, the base classifier of Boosting is 

Decision Tree. Using this Boosting_DT classifier, the detection rate is represented in 

Table 5.2. In that case the value of Random State is 1234. 

Table 5.2: Detection Rate by feature importance using Boosting_DT classifier 

No. of 

feature 
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4) 

First 1 

feature 
0.81 0.00 0.00 0.04 0.94 

First 2 

features 
0.76 0.25 0.00 0.15 0.96 

First 3 

features 
0.76 0.23 0.00 0.31 0.96 

First 4 

features 
0.76 0.52 0.03 0.37 0.97 

First 5 

features 
0.72 0.55 0.02 0.28 0.96 

First 6 

features 
0.75 0.55 0.02 0.07 0.97 

First 7 

features 
0.75 0.58 0.06 0.30 0.97 

First 8 

features 
0.75 0.53 0.06 0.15 0.97 

First 9 

features 
0.78 0.61 0.06 0.09 0.97 

First 10 

features 
0.77 0.55 0.06 0.12 0.97 

First 11 

features 
0.76 0.55 0.06 0.12 0.97 

First 12 

features 
0.77 0.58 0.05 0.10 0.97 

First 13 

features 
0.80 0.62 0.07 0.10 0.97 

First 14 

features 
0.76 0.60 0.01 0.06 0.97 

First 15 

features 
0.77 0.62 0.00 0.07 0.97 
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No. of 

feature 
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4) 

First 16 

features 
0.76 0.60 0.01 0.07 0.97 

First 17 

features 
0.78 0.60 0.01 0.04 0.97 

First 18 

features 
0.77 0.61 0.01 0.06 0.97 

First 19 

features 
0.81 0.57 0.01 0.03 0.97 

First 20 

features 
0.74 0.59 0.03 0.03 0.97 

First 21 

features 
0.77 0.59 0.01 0.04 0.97 

First 22 

features 
0.77 0.59 0.04 0.03 0.97 

First 23 

features 
0.75 0.60 0.04 0.04 0.97 

First 24 

features 
0.75 0.61 0.03 0.03 0.97 

First 25 

features 
0.75 0.59 0.01 0.03 0.97 

First 26 

features 
0.75 0.60 0.01 0.03 0.97 

First 27 

features 
0.75 0.62 0.01 0.06 0.97 

First 28 

features 
0.75 0.62 0.01 0.04 0.97 

First 29 

features 
0.75 0.60 0.03 0.04 0.97 

First 30 

features 
0.75 0.60 0.02 0.06 0.97 

First 31 

features 
0.77 0.59 0.02 0.04 0.97 

First 32 

features 
0.75 0.62 0.01 0.04 0.97 

First 33 

features 
0.80 0.59 0.02 0.06 0.97 
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No. of 

feature 
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4) 

First 34 

features 
0.76 0.60 0.02 0.07 0.97 

First 35 

features 
0.78 0.61 0.03 0.12 0.97 

First 36 

features 
0.78 0.60 0.01 0.06 0.97 

First 37 

features 
0.78 0.65 0.02 0.07 0.97 

First 38 

features 
0.82 0.63 0.05 0.03 0.97 

First 39 

features 
0.81 0.62 0.03 0.09 0.97 

 

The Table 5.2 is graphically represented from Figure 5.7 to Figure 5.11. 

 

 

 

(a) 
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(b) 
Figure 5.7: DR of Normal Traffic by feature selection (a) 0 to 1 scale (b) Zoom view 

 

 

 

(a) 
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(b) 

Figure 5.8: DR of DoS attack by feature selection (a) 0 to 1 scale (b) Zoom view 

 

 

 
(a) 



81 

 

 
(b) 

Figure 5.9: DR of Probe attack by feature selection (a) 0 to 1 scale (b) Zoom view 

 

 

 
(a) 
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(b) 

Figure 5.10: DR of R2L attack by feature selection (a) 0 to 1 scale (b) Zoom view 

 

 

 
(a) 
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(b) 

Figure 5.11: DR of U2R attack by feature selection (a) 0 to 1 scale (b) Zoom view 

From Figure 5.6 to Figure 5.11, we can understand that the combination of first 38 

features get the better detection rate that other features combination when used the 

Boosting_DT ensemble classifier. The confusion matrix for the better case is as 

follows in Figure 5.12. 

 

Figure 5.12: Confusion Matrix of Boosting_DT 
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Voting 

The base classes of voting classifiers are DT, KNN and LR. The detection rate of 

voting classifier using the first 34 features is presented in Table 5.3. The confusion 

matrix of this classifier is presented below in Figure 5.13. 

 

Figure 5.13: Confusion Matrix of Voting classifier 

 

We compare with only recent literature that implement ensemble machine learning 

classifiers and also measure the detection rate. Table 5.3 shows our implemented result 

and the literature result of detection rate. From Table 5.3, we can see that in 2019 the 

Random Forest ensemble machine learning classifier implemented to find out the 

detection rate. In that table, we show three ensemble machine learning classifiers 

namely Boosting_DT, Voting and Bagging_NB. For Boosting_DT, the base class of 

Boosting is Decision Tree; for Voting, the base classes are same as Voting-1 (Figure 

4.3); for Bagging_NB, the base class of Bagging classifier is Naïve Bayes.  
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Table 5.3: DR of ensemble methods without cross validation 

Classifiers Normal 

(%) 

DoS 

(%) 

Probe 

(%) 

R2L 

(%) 

U2R 

(%) 

Random Forest [ 111 ] 97.37 81.47 68.86 2.73 1.50 

Boosting_DT 97 82 63 5 3 

Voting 97 78 71 01 15 

Bagging_NB 16 82 91 33 60 

 

 
Figure 5.14: DR of Voting methods without cross validation 

From Figure 5.14, it is clear that among four types of ensemble classifiers, the 

Bagging_NB performs the best in case to detect the DoS, Probe, R2l and U2R attacks; 

however, the detection rate of normal traffic is low of Bagging_NB classifiers. Thus, 

Boosting_DT performs also similar in the case to detect the normal traffic and DoS 

attack. This classifier performs better than recent literature to detect R2L and U2R, the 

only exception is to detect the probe attack. In that case, we would like to propose the 

Boosting_DT. To execute this work, we have used the full training and testing dataset 

separately. 
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Figure 5.15: Precision-Recall Curve of Boosting_DT 

From the Precision-Recall curve (Figure 5.15), we can observe the individual area of 

detection of normal traffic and 4 types of attacks. Here, the area of R2L attack (class 

3, Figure 5.15) was the lowest and area for DoS attack (Class 0, Figure 5.15) was the 

highest.  

5.2.2 Detection Using Cross Validation 
In this step, 3-fold cross validation has been implemented. At first, using 3-fold cross 

validation, the Voting-1 ensemble classifier is implemented. For Voting-1, the base 

classifier is the combination of Decision Tree (DT), K Nearest Neighbour (KNN) and 

Logistic Regression (LR). According to the importance of features (p-value, described 

in chapter 5) every time one more feature has been added and Voting-1 ensemble 

classifier is executed.  

5.2.2.1 Voting 

Voting methods discussed in section 3.6.3 and our proposed design depicted in section 
3.7.1. Four types of voting and their base classes are shown in Table 5.4. 
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Table 5.4: DR of voting methods without cross validation 

Methodo

logy 
Base 

Classifier-1 
Base 

Classifier-2 
Base 

Classifier-3 
Voting 

type 
Voting-1 DT KNN LR Hard 
Voting-2 DT SVC(kernel = 

Poly) 
LR Hard 

Voting-3 DT SVC(kernel = 
RBF) 

LR Hard 

Voting-4 DT SVC(kernel = 
Linear) 

LR Hard 

 

5.2.2.1.1 Findings of Voting-1 

For voting-1 method, the findings in terms of detection rate has shown in Table 5.5 

Table 5.5: Detection Rate by feature importance 

No. of 

feature 
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4) 

First 1 

feature 
0.99 0.22 0.79 0.06 0.94 

First 2 

features 
0.99 0.32 0.89 0.10 0.98 

First 3 

features 
1.00 0.38 0.88 0.07 0.98 

First 4 

features 
0.97 0.83 0.88 0.12 0.94 

First 5 

features 
0.93 0.83 0.82 0.04 0.91 

First 6 

features 
0.95 0.86 0.83 0.04 0.92 

First 7 

features 
0.95 0.86 0.81 0.00 0.92 

First 8 

features 
0.95 0.83 0.87 0.00 0.93 

First 9 

features 
0.96 0.90 0.89 0.00 0.95 

First 10 

features 
0.96 0.90 0.89 0.00 0.96 
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No. of 

feature 
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4) 

First 11 

features 
0.96 0.91 0.89 0.01 0.96 

First 12 

features 
0.96 0.92 0.89 0.01 0.96 

First 13 

features 
0.96 0.92 0.89 0.09 0.96 

First 14 

features 
0.97 0.94 0.92 0.12 0.95 

First 15 

features 
0.97 0.95 0.92 0.16 0.95 

First 16 

features 
0.97 0.95 0.92 0.19 0.95 

First 17 

features 
0.97 0.94 0.92 0.15 0.95 

First 18 

features 
0.97 0.95 0.93 0.18 0.95 

First 19 

features 
0.99 0.95 0.93 0.13 0.95 

First 20 

features 
0.99 0.96 0.94 0.12 0.95 

First 21 

features 
0.99 0.96 0.94 0.10 0.95 

First 22 

features 
0.99 0.96 0.94 0.09 0.95 

First 23 

features 
0.99 0.96 0.94 0.10 0.95 

First 24 

features 
0.99 0.97 0.95 0.12 0.95 

First 25 

features 
0.99 0.96 0.94 0.25 0.95 

First 26 

features 
0.99 0.97 0.94 0.27 0.96 

First 27 

features 
0.99 0.97 0.94 0.40 0.96 

First 28 

features 
0.99 0.97 0.94 0.42 0.96 
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No. of 

feature 
DoS(0) Probe(1) R2L(2) U2R(3) Normal(4) 

First 29 

features 
0.99 0.97 0.94 0.40 0.96 

First 30 

features 
0.99 0.97 0.95 0.40 0.96 

First 31 

features 
0.99 0.97 0.95 0.49 0.96 

First 32 

features 
0.99 0.97 0.94 0.48 0.96 

First 33 

features 
0.99 0.97 0.94 0.55 0.96 

First 34 

features 
0.99 0.97 0.94 0.55 0.97 

First 35 

features 
1.00 0.97 0.94 0.54 0.97 

First 36 

features 
1.00 0.97 0.94 0.57 0.97 

First 37 

features 
0.99 0.97 0.94 0.55 0.97 

First 38 

features 
1.00 0.97 0.94 0.55 0.97 

First 39 

features 
1.00 0.97 0.94 0.57 0.97 

 

 

It is easy to understand Table 5.5 by graphical visualization from Figure 5.16 to Figure 

5.20. 
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(a) 

 

 
(b) 

Figure 5.16: DR of Normal traffic by feature selection (a) 0 to 1 scale (b) Zoom view 

It is easy to understand from Table 5.5 and Figure 5.16 that only first 2 or 3 features 

are enough to detect the normal traffic with 98% detection accuracy using voting-1 

algorithm. Using 36 features, we again get the better detection rate. The lowest 
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detection rate is obtained when number of features are 5 which indicate that the number 

5 feature contains some noise data to predict the normal traffic. The number 5 features 

make the classifier get confused to predict the normal traffic accurately. We will 

observe the same scenario in Figure 5.17 and Figure 5.19. Now, we will show how DR 

rate is changing with the number of features to detect the DoS, Probe, R2L and U2R 

attacks. 

 

 
(a) 
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(b) 

Figure 5.17: DR of DoS attack by feature selection (a) 0 to 1 scale (b) Zoom view 

From Figure 5.17 and Table 5.5, it is clear that only first 3 features are enough to detect 

DoS attack with 100% detection accuracy using voting-1 algorithm.  

 
Figure 5.18: DR of Probe attack by feature selection 
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From Figure 5.18, it can be clearly seen that using first 5 important features the 
detection rate of probe attack increases rapidly. Using first 5 to 25 important features 
the detection rate increases slowly. After taking first 26 important features the 
detection rate is constant. So, first 26 important features are enough to get the highest 
detection rate of probe attack using voting-1 algorithm. 

 

(a) 

 
(b) 

Figure 5.19: DR of R2L attack by feature selection (a) 0 to 1 scale (b) zoom view 
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From Figure 5.19, it is clear that Voting-1 provide the highest detection rate by 95% 
when it takes first 24 important features and also when takes first 30 important features. 

 
Figure 5.20: DR of U2R attack by feature selection 

From Figure 5.20, it can be seen that using lower number of features, voting-1 does 
not perform well to detect U2R attack. The highest detection rate is 57% when it takes 
first 36 important features. 
 
Form Figure 5.16 to 5.20, we can see that using first 36 important features can perform 
better if it is trained by the classifier to detect normal traffic and four types of network 
attacks. 
 
After implementing voting-1 classifier, another three voting classifiers has been 

implemented. For all of the voting classifiers, their base classifiers is shown in Table 

5.4 

5.2.2.1.2 Performance of Voting Methods 

Confusion matrix of four voting classifiers is shown in Figure 5.21, Figure 5.22, Figure 

5.23 and Figure 5.24. 
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Confusion Matrix of Voting-1 

 
Figure 5.21: Confusion matrix of Voting-1 (using 36 features) 

Confusion Matrix of Voting-2 

 
Figure 5.22: Confusion matrix of Voting - 2 (using 36 features) 
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Confusion Matrix of Voting-3: 

 
Figure 5.23: Confusion matrix of Voting - 3 (using 36 features) 

Confusion Matrix of Voting-4 

 
Figure 5.24: Confusion matrix of Voting -4 (using 36 features) 
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5.2.2.1.3 Detection Rate of Voting Methods 

Detection rate of normal traffic and four types of attacks using four types of voting 

classifiers is shown in Table 5.6. 

Table 5.6: Detection rate for Voting with 36 features 

Classifier Normal (4) DoS (0) Probe (1) R2L (2) U2R (3) 

Voting-1 0.97 1.00 0.97 0.94 0.57 
Voting-2 0.96 0.98 0.97 0.72 0.52 

Voting-3 0.96 0.99 0.98 0.72 0.48 

Voting-4 0.94 0.97 0.98 0.70 0.46 

 

 
Figure 5.25: Detection rate of Voting classifiers with 36 features 

Using cross validation, most of the cases voting-1 perform well except probe attack 

detection. Interestingly, this classifier performs very well in the case of R2L and U2R 

attack detection. 
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5.2.2.2 Stacking  

Stacking method discussed in section 3.6.4 and our proposed design depicted in section 

3.7.2. As mentioned earlier that the stacking classifier can take more than one classifier 

and take a meta classifier to predict from the base classifiers. Table 5.7 shows four 

types stacking classifier arrangements 

Table 5.7: Four Stacking arrangements 

Classifier Base Classifier-1 Base Classifier-2 Meta classifier 
Stacking-1 SVC (kernel = 

Linear) 
LR SVC (kernel = 

Linear) 
Stacking-2 SVC (kernel = RBF) LR SVC (kernel = 

RBF) 
Stacking-3 SVC (kernel = RBF) LR NB 
Stacking-4 SVC (kernel = RBF) LR RandomForest 

 
Confusion matrix of four types of stacking classifiers is shown in Figure 5.26, Figure 

5.27, Figure 5.28 and Figure 5.29. 

 

Confusion Matrix of Stacking-1 

 
Figure 5.26: Confusion matrix of Stacking-1 (using 36 features) 
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Confusion Matrix of Stacking-2 

 
Figure 5.27: Confusion matrix of Stacking-2 (using 36 features) 

Confusion Matrix of Stacking-3: 

 
Figure 5.28: Confusion matrix of Stacking-3 (using 36 features) 
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Confusion Matrix of Stacking-4 

 
Figure 5.29: Confusion matrix of Stacking-4 (using 36 features) 

5.2.2.2.1 Detection Rate of Stacking Methods 

The performance in terms of detection rate of normal traffic and four types of attacks 

using four stacking classifiers has shown in Table 5.8. To clearly visualize, bar chart 

has depicted in Figure 5.30. 

Table 5.8: Detection rate for Stacking with 36 features 

Classifier Normal(4) DoS(0) Probe(1) R2L(2) U2R(3) 
Stacking -1 0.93 0.97 0.98 0.70 0.00 
Stacking -2 0.95 0.99 0.97 0.70 0.28 
Stacking -3 0.92 0.97 0.94 0.72 0.00 
Stacking -4 0.95 0.99 0.97 0.70 0.28 
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Figure 5.30: Detection rate for Stacking classifiers with 36 features 

From Figure 5.30, it can be clearly seen that Stacking-2 and Stacking-4 perform same 

in every case and their detection rate is in satisfactory level. When use stacking-1, the 

DR of probe attack is the highest, in contrast when using stacking-3, the detection rate 

of R2l is the highest. However, Stacking-1 and Stacking-3 perform very poor in case 

of U2R attack.  

5.2.2.3 Boosting 

Boosting method discussed in section 3.6.2 and our proposed classifiers is shown in 

Table 3.1. In our thesis work, three type of Boosting methods are used, and their 

confusion matrices is depicted in Figure 5.31, Figure 5.32, Figure 5.34. 
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Confusion Matrix of Boosting-1 

 
Figure 5.31: Confusion matrix of Boosting-1 (using 36 features) 

Confusion Matrix of Boosting-2 

 
Figure 5.32: Confusion matrix of Boosting-2 (using 36 features) 
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ROC_AUC curve of Boosting-2  

Since multiclass does not allow to plot ROC_AUC curve. Therefore, we sum up the 

DoS, Probe, R2L and U2R attacks and the combination named as Malware. After that, 

the ROC_AUC curve of Boosting-2 classifiers using normal traffic and malware traffic 

data is plotted in Figure 5.33. 

 

Figure 5.33: ROC_AUC of Boosting-2 classifier 

Confusion Matrix of Boosting-3 

 
Figure 5.34: Confusion matrix of Boosting-3 (using 36 features) 
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5.2.2.3.1 Detection Rate of Boosting Methods  

Detection rate of Boosting classifiers have shown in Table 5.9 

Table 5.9: Detection rate for Boosting with 36 features 

Classifier Normal(4) DoS(0) Probe(1) R2L(2) U2R(3) 
Boosting -1 0.46 0.56 0.88 0.28 0.55 
Boosting -2 0.99 1.00 0.99 0.95 0.69 
Boosting -3 0.97 0.99 0.90 0.81 0.42 

 
 

 
Figure 5.35: Detection rate for Boosting classifiers with 36 features 

From Figure 5.35, it is clearly seen that the Boosting-2 classifier perform better in 

every case among other types of Boosting classifiers 

5.2.2.4 Bagging 

Bagging method is discussed in section 3.6.1. Three types of Bagging classifiers 

arrangement are shown in Table 5.10. 
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Table 5.10: three Bagging arrangements 

Classifier Base Classifier 

Bagging-1 LR 

Bagging-2 RandomForest 

Bagging-3 Naïve Bayes 

 
Confusion matrix of three types of bagging classifiers are shown in Figure 5.36, Figure 

5.37 and in Figure 5.38 

 

Confusion Matrix of Bagging-1 

 

Figure 5.36: Confusion matrix of Bagging-1 (using 36 features) 
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Confusion Matrix of Bagging-2 

 
Figure 5.37: Confusion matrix of Bagging-2 (using 36 features) 

Confusion Matrix of Bagging-3 

 
Figure 5.38: Confusion matrix of Bagging-3 (using 36 features) 
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5.2.2.4.1 Detection Rate of Bagging Methods 

Detection rate using three types of Bagging classifiers is shown in Table 5.11 

Table 5.11: Detection rate for Bagging with 36 features 
Classifier Normal(4) DoS(0) Probe(1) R2L(2) U2R(3) 
Bagging -1 0.93 0.97 0.94 0.59 0.49 
Bagging -2 0.98 0.82 0.25 0.01 0.00 
Bagging -3 0.08 0.27 1.00 0.28 0.85 

 
Figure 5.39: Detection rate of Bagging with 36 features 

From Figure 5.39, Bagging-1 perform better in case of Normal traffic, Bagging-2 

perform well in case of DoS and R2L attack detection and bagging-3 performs better 

in case of Probe and U2R attacks 

5.2.2.5 Hybrid Model 

Two hybrid models are shown in Table 5.12. For model-1 finally predict the result by 

voting method; however, as a base classifier it takes two ensemble methods (Adaboost 

and GradietBoosting ) and one base level classifier (SVM). It is mainly a combination 

of Boosting and voting methods. Hybrid model-2 finally predicts by bagging 
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algorithms, but it takes voting-1 as its base classifier which itself an ensemble 

classifier. It is mainly a combination of Voting and Bagging classifiers.   

Table 5.12: hybrid models 

Classifier description 
Hybrid-1 
(Model-1) 

- Base classifiers: Adaboost+ svc (kernel 
=RBF)+ GradietBoosting 

- Finally predicted by voting 
Hybrid-2 
(Model-2) 

- Base Classifier: Voting-1 
- Finally predicted by Bagging 

 
Confusion matrix of model-1 and model-2 depicted in Figure 5.40 and in Figure 5.41 

respectively 

 
Confusion Matrix for Hybrid Model-1 

 
Figure 5.40: Confusion matrix of Model-1  
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Confusion Matrix for Hybrid Model-2 

 
Figure 5.41: Confusion matrix of Model-2  

 

5.2.2.5.1 Detection Rate of Hybrid Models 

DR of every types of traffic shown in Table 5.13  

Table 5.13: Detection rate for hybrid model with 36 features 

Classifier Normal(4) DoS(0) Probe(1) R2L(2) U2R(3) 
Model -1 
(Boosting + 

Voting) 

0.96 0.99 0.96 0.69 0.46 

Model -2 
(Bagging + 

voting) 

0.98 0.99 0.98 0.95 0.63 
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Figure 5.42: Detection rate for hybrid model with 36 features 

From Figure 5.42, we can see that in every case, the Hybrid-2 performs better. Hybrid-

2 mainly a Bagging of Voting-1. Now comparison of DR between Voing-1 and 

Hybrid-2 is shown in Table 5.14. 

Table 5.14: Voting vs Bagging_voting 

Classifier Normal(4) DoS(0) Probe(1

) 
R2L(2

) 
U2R(3

) 
Voting-1 0.97 1.00 0.97 0.94 0.57 

Hybrid-2 
(Bagging_voti
ng) 

0.98 0.99 0.98 0.95 0.63 
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Figure 5.43: Voting vs Bagging_voting 

It is clear from Figure 5.43 that bagging of voting-1 (Hybrid-2, Bagging+Voting) 

performs better than voting-1 except for DoS attack. 

 
From Figure 5.25, we can see that voting-1 perform the best among four voting 

classifiers. Stacking-4 performs the best among four stacking classifiers (Figure 5.30). 

From figure 5.35, we can see that Boosting-2 performs the best to detect the network 

attacks. From figure 5.39, we can see that Bagging-1 performs the best to detect DoS 

and R2l attack; in contrast Bagging-3 performs the best to detect Probe and U2R 

attack. From Figure 5.42, we can see that the hybrid model-2 performs better than 

hybrid model-2 for detecting network attacks. 

5.3 Performance Comparison of Classifiers 
Comparison among 16 new designs of ensemble classifiers is shown in Figure 5.44, 

Figure 5.45, Figure 5.46, Figure 5.47 and in Figure 5.48. 
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Figure 5.44: Comparison of normal traffic detection among 16 new arrangement of ensemble machine 

learning 

From Figure 5.4, we can see that among 16 new design ensemble classifier Boosting-

2 performs the best to detect normal traffic. Besides, Bagging-2 and Hybrid-2 

classifiers perform better. Among classifiers, Bagging-3 performs the worst. 

 
Figure 5.45: Comparison of DoS attack detection 16 new arrangement of ensemble machine learning 

 
From Figure 5.45, we can see that to detect the DoS attack, voting-1 and Boosting-2 

perform the best. Besides, Stacking-2, Stacking-4, Hybrid-1 and Hybrid-2 perform 

better. Among classifiers, Bagging-3 performs the worst. 
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Figure 5.46: Comparison of Probe attack detection among 16 new arrangement of ensemble machine 
learning 

 
To detect the probe attack, Bagging-3 performs the best. Besides, Boosting-2 performs 

better depicted in Figure 5.46. Among classifiers, Bagging-2 performs the worst. 

 

Figure 5.47: Comparison of R2L attack detection among16 new arrangement of ensemble machine 

learning 

We can see from Figure 5.47 that Boosting-2 and Hybrid-2 performs the best to detect 

R2L attack whereas, the performance of Bagging-2 is the lowest. 
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Figure 5.48: Comparison of U2R attack detection among 16 new arrangement of ensemble machine 
learning 

 

Among 16 new design ensemble classifiers from Figure 5.48, Bagging-3 performs the 

best to detect U2R attack.  

 

From Figure 5.44 to 5.48, we can see that for detecting the normal and DoS attack 

Bagging-3 perform the lowest. And Bagging-2 performs the lowest to detect the Probe, 

R2L and U2R attacks. The base class of Bagging-3 is Naïve Bayes which perform very 

worse when the data overlap each other, in contrast, the base class of Bagging-2 is a 

Tree-based classifier which does not bother when data is overlapping. For the first two 

cases, detecting normal and DoS attach Bagging-3 perform the worst due to the 

overlapping of normal and DoS attack data. On the other hand, for Probe, R2L and 

U2R the data does not overlap each other and Bagging-3 perform better. Due to not 

bother with data overlapping, Tree-base Bagging-2 performs opposite. 

 

The all findings regarding detection rate of network attacks shown together in Table 

5.15. 
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Table 5.15: Comparison of DR of normal traffic and four types of attacks among 16 new arrangement 
of ensemble machine learning 

Classifiers Normal  DoS  Probe  R2L  U2R  

Voting 1 0.97 1.00 0.97 0.94 0.57 

Voting 2 0.96 0.98 0.97 0.72 0.52 

Voting 3 0.96 0.99 0.98 0.72 0.48 

Voting 4 0.94 0.97 0.98 0.70 0.46 

Stacking -1 0.93 0.97 0.98 0.70 0.00 

Stacking -2 0.95 0.99 0.97 0.70 0.28 

Stacking -3 0.92 0.97 0.94 0.72 0.00 

Stacking -4 0.95 0.99 0.97 0.70 0.28 

Boosting -1 0.46 0.56 0.88 0.28 0.55 

Boosting -2 0.99 1.00 0.99 0.95 0.69 

Boosting -3 0.97 0.99 0.90 0.81 0.42 

Bagging -1 0.93 0.97 0.94 0.59 0.49 
Bagging -2 0.98 0.82 0.25 0.01 0.00 
Bagging -3 0.08 0.27 1.00 0.28 0.85 
Hybrid-1 

(Boosting of 

Voting-1) 

0.96 0.99 0.96 0.69 0.46 

Hybrid-2 

(Bagging of 

voting-1) 

0.98 0.99 0.98 0.95 0.63 

 

From these research findings, it is clear that all of the features is not important for 

every types of network attacks. The detection rate can vary according to the number 
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of features. Besides, every classifier does not perform well for every type of attack. 

The detection rate also can vary according to the choosing of classifier in every case. 

 

Table 5.16 shows four types of attacks and proposed classifiers to detect those attacks 

separately and Table 5.17 shows the detection rate of one classifier which perform 

moderately to detect all types of attacks. 

Table 5.16: Proposed classifiers for different types of network attacks  

Network Attacks Proposed classifiers and DR  
DoS Voting-1 (100%), Boosting-2(100%), Hybrid-1 (99%), 

Hybrid-2 (99%), Stacking-2 (99%), Stacking-4 (99%) 
Probe Bagging-3 (100%), Boosting-2 (99%) 
R2L Boosting-2 (95%), Hybrid-2(95%) 
U2R Bagging-3 (85%), Boosting-2 (69%) 

 

Table 5.17 shows the detection rate of every types of attacks using Boosting-2 
classifiers and we have used the first 36 important features to evaluate this model. 

Table 5.17: Proposed classifiers for all types of attacks  

Network Attacks DR (Boosting -2) 
DoS 100 % 

Probe 99 % 
R2L 95 % 
U2R 69 % 

5.4 Summary 
According to the above discussion, we can see that different classifiers perform better 

for different types of attacks; however, we would like to propose a classifier which 

will perform moderately better for every type of attacks. We can see that the Boosting-

2 classifier do this work better. Performance of this classifier is shown in Table 5.17. 
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Chapter 6 
Conclusion and Future Works 

6.1 Conclusion 

In this thesis work, a novel approach has been proposed to predict intrusion in the 

network traffic based on packet header information that finally helps to develop 

effective classifiers. We used both without and with cross-validation to implement the 

ensemble classifiers. When we worked without cross validation, we used the full KSL-

KDD training and testing dataset, and when we worked with-cross validation, we used 

the full KSL-KDD testing dataset. The proposed method without cross-validation 

achieves the improved detection rate in the case of R2L and U2R attacks compared to 

recent literature. In this paper, our main focus is on detection rate; therefore we 

compare our findings with recent literature that works on the detection rate using 

ensemble machine learning classifiers. For detecting normal and DoS attacks the 

detection rate of our proposed classifier is almost the same except Probe attack. 

 

The proposed ensemble classifiers with cross validation have two parts. In the first 

part, after preprocessing, we do some feature engineering to get the best detection rate 

with reduces number of features. In the second part, we compare our 16 types of new 

design ensemble classifiers with each other. This work achieves detection rate of 100% 

for DoS attack, 100% for Probe attack, 95% for R2L attack and 85% for U2R attack. 

The proposed method starts working with a new set of features, which can be easily 

extracted from the network traffic. It introduces 36 features as a set to be used for the 

first time to detect the network attacks; those show impressive results and improve the 

performance of the proposed algorithm. Thus, the proposed algorithm proves to be 

better in terms of detection rate compared to other classifiers detecting network 

attacks. 
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6.2 Future Works 
 

Despite its better performance than other similar algorithms, few limitations of the 

proposed algorithm have been found out during the thesis work. They will help to find 

out the scopes for further development of the algorithm. A list of these limitations is 

given below: 

a) Not trying out platforms other than R, which could have led towards new 

discoveries by providing more control over the classifier parameters 

b) Some other popular classifiers, such as deep learning with artificial neural 

networks and base level algorithms, could have been tested with 

c) Architecture and data collection of intrusion detection that are not considered 

here, since the NSL-KDD data set is adopted in this work. 

d) Using the detection rate of other algorithms reported in the literature, while 

comparing them with the newly proposed algorithm in this thesis work; as 

those algorithms could not be implemented due to lack of related information 

in the literature 

Using the method detection rate of other algorithms reported by their authors in the 

literature, while comparing them with the newly proposed algorithm in this thesis 

work; as those algorithms could not be implemented due to lack of related information 

in the literature 

 

To improve the algorithm functionality and provide additional evaluation of its 

performance, there are several areas of future work that can be served. They are: 

 

a) Further improvements can be obtained by preparing data sets of higher quality. 

It should be possible to increase the number of data entries from updated 

databases.  

b) Adding new network attacks or defining finer classifications will also be 

important in practical applications of predicting intrusion. 

c) Other features of network traffic can be introduced and tested with 
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8. Background and present state of the problem:  

Network Intrusion Detection Systems (NIDSs), particularly, Anomaly Detection Systems 
(ADSs) [1], have become more significant in detecting novel attacks than Signature Detection 
Systems (SDSs) [2]. One of the key intrusion detection systems is to inspect the network traffic 
flow between hosts, and the network packets to discriminate between the observations: normal 
or abnormal. Currently, due to the massive growth in computer networks and applications, 
many challenges arise for network security research. Intrusions/attacks are able to compromise 
the principles of computer systems, e.g., availability, authority, confidentiality and integrity. 
Firewall systems cannot detect modern attack environments and are not able to analyze 
network packets in depth. A NIDS monitors network traffic flow to identify attacks. The 
signature-based NIDS matches the existing of known attacks to detect intrusions. However, in 
the anomaly-based NIDS, a normal profile is created from the normal behavior of the network 
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and any deviation from this is considered as an attack. Further, the signature-based NIDSs 
cannot detect unknown attacks, and for these anomalies, anomaly-based NIDS are 
recommended in many studies [3] [4]. In this context, anomaly-based network intrusion 
detection techniques are a valuable technology to protect target systems and networks against 
malicious activities. However, despite the variety of such methods described in the literature 
[5-9] in recent years, security tools incorporating anomaly detection functionalities are just 
starting to appear, and attack detection accuracy still not good enough. Researchers have used 
different machine learning methodologies for NIDS but ensemble machine learning approach 
has not been applied effectively. Ensemble method combines several base models in order to 
produce one optimal predictive model. Additionally, considering the inclusion of large number 
of features and complexity of the algorithms with respect to the classification, further 
improvement is required in classifier design and feature engineering for better performance in 
malicious network traffic classification. 

9.  (a)  Objectives with specific aims:  

The objective of this thesis is to develop an algorithm using ensemble machine learning 
techniques for better detection of malware in the network traffic. To achieve this objective, the 
following specific aims are identified. 

1. To identify an order of importance of features for effective detection of malware 
by packet header inspection found within network traffic.  

2. To design an efficient classifier algorithm for identifying malware in target 
networks based on their features.  

3. To implement the algorithm for simulation and compare the performance with 
existing works in the literature. 

 (b)  Possible outcome: 

Successful completion of this research will result in a machine learning algorithm which can 

detect malware in the network traffic data with high accuracy. 

10. Outline of Methodology/ Experimental Design: 

In this research, standard network packet header information available on the web for normal 
traffic will be considered and 4 different types of attacks such as Denial of Service (DoS), 
Probe, Remote to Local (U2R) and User to Root (R2L) in the network will be addressed. 
Below is a list of activities which will be followed throughout this research: 
 

i. An order of importance of features will be derived from the packet 
header information for ease of the feature computation and simplicity of 
the method. Feature significance will be studied through hypothesis 
testing and computing parameters such as p-value.  

ii. An Ensemble machine learning classification algorithm based on Voting, 
Stacking, Bagging and Boosting will be developed considering its wide 
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range of applicability and superior performances for intrusion detection 
in network traffic compared to other algorithms. 

iii. A Python based library Scikit Learn will be used for pre-processing, 
feature engineering, classification algorithm design, training and testing 
to develop the algorithms based on ensemble machine learning 
algorithms to improve the security in a network intrusion detection 
system. 

iv. The performance of the algorithm (e,g., sensitivity or detection rate) will 
be evaluated on independent training and testing dataset and will be 
compared with existing other algorithms. 

v. Then, a detailed analysis will be performed to find the suitability of the 

available machine learning algorithms for intrusion detection system. Best 

performing machine learning algorithms including base level[6] as well as deep 

learning[7-9] on literature will be explored for suitability (e. g.,  Support Vector 

machine (SVM) [6], Discriminative Restricted Boltzmann Machine (DBM) [7], 

long short-term memory (LSTM) [8],  Convolutional neural network (CNN))[9]. 

vi. The Strength of the proposed system will be shown in terms of area 
under of receiver operating characteristics (ROC-AUC) curve, 
sensitivity, specificity as well as Precision-Recall curve (PR-Curve). 
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